WO2016147534A1 - Induction heating element and induction heating vessel - Google Patents

Induction heating element and induction heating vessel Download PDF

Info

Publication number
WO2016147534A1
WO2016147534A1 PCT/JP2016/000576 JP2016000576W WO2016147534A1 WO 2016147534 A1 WO2016147534 A1 WO 2016147534A1 JP 2016000576 W JP2016000576 W JP 2016000576W WO 2016147534 A1 WO2016147534 A1 WO 2016147534A1
Authority
WO
WIPO (PCT)
Prior art keywords
induction heating
heating
heating element
region
conductive layer
Prior art date
Application number
PCT/JP2016/000576
Other languages
French (fr)
Japanese (ja)
Inventor
萩乃 藤田
充由 斉藤
Original Assignee
東洋製罐グループホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015101034A external-priority patent/JP2016171979A/en
Priority claimed from JP2015207317A external-priority patent/JP5954482B1/en
Application filed by 東洋製罐グループホールディングス株式会社 filed Critical 東洋製罐グループホールディングス株式会社
Priority to CN201680011267.8A priority Critical patent/CN107249405A/en
Publication of WO2016147534A1 publication Critical patent/WO2016147534A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J27/00Cooking-vessels

Definitions

  • the present invention includes an induction heating heating element in which an eddy current is induced by a high-frequency magnetic field generated by an electromagnetic induction heating coil included in an electromagnetic cooker and the like, and Joule heat is generated by the electric resistance, and the induction heating heating element is provided. It relates to an induction heating container.
  • cooking appliances that have been mainly gas appliances
  • cooking appliances generally called electromagnetic cookers are used in the food and beverage industry in terms of safety, cleanliness, convenience, and economy. Not only for use, but also for general households.
  • this type of electromagnetic cooker generates a high-frequency magnetic field by an electromagnetic induction heating coil provided inside, and heats an object to be heated by Joule heat generated by the induced eddy current. For this reason, while cooking can be performed without using flames, the cooking utensils that can be used are limited in principle, and special cooking utensils made of magnetic metals such as iron and iron enamel must be used. There was a restriction.
  • Patent Document 1 a container for an electromagnetic cooker provided with a non-magnetic (or non-conductive) container body as a container that eliminates the restriction of the electromagnetic cooker described above. Has been proposed.
  • Patent Document 1 proposes a heating method using an electromagnetic cooker that heats an 0.10 to 100 ⁇ m aluminum foil by eddy current generated from the electromagnetic cooker, and the contents of a non-magnetic container are transferred to the electromagnetic cooker. Is disclosed. However, in such a heating method, when the air is accidentally blown, the container may be heated due to the danger that the aluminum foil will be rapidly heated and burned and scattered, or the heat when the aluminum foil is rapidly heated. May be damaged.
  • Patent Document 2 provides a fuse function unit having a part that is selectively heated excessively and breaks when it is in an empty-cooked state, and the part breaks to produce an electromagnetic cooker.
  • Induction heating heating elements have been proposed in which an electromagnetic cooker stops and finishes heating by the safety mechanism of the above.
  • the part where the fuse function part breaks is formed on the upper edge side of the part where the conductive material is bent and started up, and when cooking, storing and transporting the container in layers, There was a risk of damaging the launched site.
  • the present invention has been made in view of the above circumstances, and an induction heating heating element is attached to a non-magnetic (or non-conductive) container main body, and the object to be heated is heated by an electromagnetic cooker or the like.
  • an induction heating heating container Used as an induction heating container, when cooking, storing and transporting containers in layers, An induction heating heating element that effectively avoids damage to the container body due to heat generated during heating of the heating element such as air blow without damaging the fuse function part, and the induction heating heating element that enhances the safety of the container. It aims at providing the induction heating container provided with the body.
  • An induction heating heating element is an induction heating heating element having a predetermined shape formed of a laminate in which a heat seal layer is laminated on a conductive layer that generates heat when an eddy current is induced by a high-frequency magnetic field, the heat seal layer A non-laminated heat seal layer non-laminated portion is provided, and a planar fuse functional portion is formed in a fuse functional portion forming region composed of the conductive layer of the heat seal layer non-laminated portion.
  • the induction heating container according to the present invention has a configuration in which the above-described induction heating heating element is attached to a container body made of a non-conductive material.
  • the induction heating heating element of the present invention damage to the fuse function unit is prevented when cooking, or when storing and transporting containers in a stacked manner.
  • the safety function provided in the electromagnetic cooker detects an abnormality without degrading the function of the fuse function unit when it is in the empty cooking state, and the electromagnetic cooking appliance is automatically stopped to generate heat such as empty cooking. It is possible to prevent damage to the container body due to heat generated when the body is heated.
  • the induction heating container of this invention it can be set as the induction heating container with which safety
  • FIG. 2 is a schematic sectional view showing an AA section of FIG. 1. It is a perspective view showing the outline of the induction heating heating element concerning a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a BB cross section of FIG. 1.
  • FIG. 2 is a schematic cross-sectional view showing a CC cross section of FIG. 1.
  • FIG. 16 is a schematic cross-sectional view showing the HH cross section of FIG. 15.
  • FIG. 16 is a schematic cross-sectional view showing a II cross section of FIG. 15. It is explanatory drawing which shows the modification of the slit in 3rd embodiment of this invention.
  • the induction heating container 1 in this embodiment includes a container main body 2 made of a non-conductive material and an induction heating heating element 3 that is attached to the container main body 2 and enables induction heating by an electromagnetic cooker.
  • the container main body 2 has a side wall that is erected so as to surround the inner bottom surface 21 so as to accommodate a liquid object to be heated such as water, and the induction heating heating element 3 is formed of such a container main body. 2 is attached to the inner bottom surface 21 side.
  • the induction heating container 1 is usually used by being placed on a commercially available electromagnetic cooker. Therefore, the size of the inner bottom surface 21 of the container body 2 and the induction heating heating element 3 attached to the inner bottom surface 21 side of the container body 2 is not particularly limited, and the electromagnetic induction heating coil included in the electromagnetic cooker to be used is not limited. It can be set according to the size.
  • a general electromagnetic induction heating coil provided in a commercially available home-use electromagnetic cooker has an inner diameter of about 5 cm and an outer diameter of about 20 cm.
  • size can be suitably determined according to the electromagnetic cooker assumed.
  • the shape of the inner bottom surface 21 of the container body 2 is not limited to a square shape as illustrated.
  • a polygonal shape such as a triangle, pentagon, or hexagon may be used.
  • the overall shape of the container body 2 can also be changed to various shapes in consideration of ease of use.
  • the induction heating heating element 3 attached to the container body 2 is a conductive material made of a conductive material that generates eddy currents by a high-frequency magnetic field generated by an electromagnetic induction heating coil included in an electromagnetic cooker and generates heat due to Joule heat due to its electrical resistance. It is formed by cutting out a laminate formed by laminating a heat seal layer 31 having heat sealability to the container body 2 on the layer 30 into a flat plate-like shape (see FIGS. 5, 8, and 10). ).
  • a metal such as aluminum, nickel, gold, silver, copper, platinum, iron, cobalt, tin, or zinc, or an alloy thereof, heat is generated by induction heating using a high frequency magnetic field. It can be formed using various conductive materials. More specifically, for example, when aluminum is used as the conductive material, the conductive layer 30 can be formed using an aluminum foil having a thickness of preferably about 0.10 to 100 ⁇ m, more preferably about 1 to 40 ⁇ m. . If the conductive layer 30 is formed using a metal foil such as an aluminum foil, when the induction heating heating element 3 is attached to the container body 2, it can be easily attached via the heat seal layer 31, and the container body 2 Can be adapted to any shape.
  • the heat seal layer 31 is not particularly limited as long as it has heat sealability with respect to the container body 2, and can be appropriately selected according to the non-conductive material forming the container body 2. Resins that are easy to mold, have good heat-sealing properties, and have moderate heat resistance are preferred, and resins of the same type as the container body 2 described below are particularly preferred.
  • the conductive layer 30 and the heat seal layer 31 can be laminated by a known laminating technique directly or via an appropriate adhesive. By constructing the induction heating heating element 3 as a laminate, conventionally known multilayer film and multilayer sheet manufacturing techniques can be applied, so that the manufacturing becomes easy.
  • a synthetic resin material such as a polystyrene resin such as polystyrene, a polyester resin such as polyethylene terephthalate, a polyolefin resin such as polypropylene, and a polyamide resin can be suitably used.
  • the container body 2 may be a single layer or a multilayer structure in which these resins are combined with other functional resins.
  • the non-conductive material paper, glass or the like can be used, but the above-mentioned synthetic resin is laminated or coated on the inner surface in consideration of heat sealability with the heat seal layer 31 of the induction heating heating element 3. Is preferred.
  • the induction heating heating element 3 is formed in a substantially circular shape, and the heat seal layer non-laminated portion 31a extends in the radial direction. This will be described later.
  • the shape of the induction heating heating element 3 is most efficient when it is circular due to the characteristics of the induced eddy current, but it may be square or rectangular according to the shape of the container body 2. The direction from the center side to the outer peripheral edge side of these figures shall be said.
  • the induction heating heating element 3 includes a central region CF and cutting lines 33a and 33b that concentrically cut the conductive layer 30 along the circumferential direction. It is partitioned into a main heating area HF and a peripheral area OF. A plurality of main heating regions HF positioned between the cutting lines 33a and 33b are radially formed by cutting lines 33c, 33d, and 33e that cut the conductive layer 30 along the circumferential direction concentrically with the cutting lines 33a and 33b.
  • the heating regions HF1, HF2, and HF3 are partitioned, and the region between the cutting lines 33c and 33d is partitioned into a plurality of regions in the circumferential direction by a cutting line 34b extending in the radial direction.
  • the central region CF located inside the cutting line 33a is divided into a plurality of regions in the circumferential direction by a cutting line 34a extending in the radial direction.
  • the peripheral area OF positioned outside the cutting line 33b is divided into a plurality of areas in the circumferential direction by a cutting line 34c extending in the radial direction.
  • the conductive layer 30 When the conductive layer 30 is cut, the conductive layer 30 may be cut from the side of the conductive layer 30 with a blade, or the conductive layer 30 may be selectively cut using a YAG laser, a semiconductor laser, or the like. As long as there is no problem in handling the induction heating heating element 3 as an integral part, the heat seal layer 31 may be partially cut, but if the heat seal layer 31 is connected without being cut. In addition, since the induction heating heating element 3 can be handled as an integral body, handling during manufacture becomes extremely easy.
  • the eddy current induced in the conductive layer 30 is converted into the cutting line 33a. , 33b, 33c, 33d, 33e, 34a, 34b, and 34c. For this reason, an eddy current is induced for each region defined by the cutting lines 33a, 33b, 33c, 33d, 33e, 34a, 34b, and 34c.
  • the eddy current induced in the induction heating heating element 3 placed on the electromagnetic induction heating coil is induced according to the shape of the electromagnetic induction heating coil.
  • the eddy current induced in the central region CF is not so strong, but the current density distribution is somewhat unstable, and the eddy current flowing outside may be disturbed. For this reason, the division
  • the positions where the cutting lines 33a and 33b that partition the main heating region HF are formed are regions where the current density distribution of the induced eddy current is stable and the conductive layer 30 can efficiently generate heat. It can adjust suitably according to the magnitude
  • the current density distribution of the induced eddy current is generally not uniform along the radial direction of the electromagnetic induction heating coil, and has a current density peak at a position slightly closer to the outer periphery with respect to the radial center, The object to be heated tends to be strongly heated at that position.
  • the main heating region HF is divided into a plurality of heating regions HF1, HF2, and HF3 in the radial direction.
  • the positions where the cutting lines 33c, 33d, and 33e that divide the main heating region HF into a plurality of heating regions HF1, HF2, and HF3 in the radial direction are formed to control the induced eddy current to equalize the heating of the object to be heated.
  • the cutting lines 33c, 33d, and 33e that divide the main heating region HF into a plurality of regions are densely provided near the outer periphery so that eddy currents are not concentrated near the outer periphery, rather than being arranged uniformly in the radial direction. preferable.
  • the main heating region HF is partitioned by the cutting lines 33a and 33b that cut the conductive layer 30 along the circumferential direction, and the conductive layer 30 is cut along the circumferential direction.
  • the eddy current induced in the main heating region HF is controlled so that the main heating region HF is as uniform as possible. It generates heat.
  • the heating nonuniformity of a to-be-heated material can be suppressed, liquid to-be-heated materials, such as water, can be prevented from being heated locally rapidly, and generation
  • production of bumping can be suppressed.
  • the edges of the cutting lines 33a, 33b, 33c, 33d, and 33e in the main heating area HF are used when bubbles are generated by boiling a liquid heated object such as water. The starting point. For this reason, a large number of small bubbles are continuously generated as when boiling stones are added during heating, and the occurrence of sudden large bubbles is prevented, thereby preventing the occurrence of sudden boiling. As a result, it is possible to avoid a situation in which the user is burned by the object to be heated scattered by bumping or the vicinity of the electromagnetic cooker is soiled.
  • the central region CF is partitioned into a plurality of regions in the circumferential direction by the cutting line 34a, and the peripheral region OF is also partitioned into a plurality of regions in the circumferential direction by the cutting line 34c. .
  • the central region CF and the peripheral region OF are not so hot.
  • the heat seal layer 31 in the case is also heat-sealed with the container main body 2 to effectively suppress the convection and flow of the object to be heated, or the lifting or undulation of the induction heating heating element 3 due to repulsion with the electromagnetic induction heating coil. And more stable heating is possible.
  • the heat seal layer 31 is formed with a predetermined width along the radial direction passing through the center of the induction heating heating element 3.
  • a strip-shaped heat seal layer non-laminated portion 31a (conductive layer 30) extending in the radial direction intersecting with the main heating region HF (heating regions HF1, HF2, HF3) is provided.
  • region HF is made into the fuse functional part formation area 32a which consists of the conductive layer 30, and a liquid to-be-heated object is in this area
  • a planar fuse function portion 32 that is broken is formed.
  • the planar fuse function unit 32 causes the current density of the eddy current to be biased so as to exhibit the above-described function in a shape that does not involve a three-dimensional process in which the conductive material of the conductive layer 30 is bent and started up. If it is formed as a site where the height is the highest, the specific form is not limited. For example, as shown in FIGS. 1, 5, and 7, the heating regions HF1, HF2, and HF3 defined by the cutting lines 33a and 33c, the cutting lines 33d and 33e, and the cutting lines 33e and 33b of the main heating region HF.
  • the part left in the conductive layer 30 can function as the planar fuse function unit 32.
  • the current density of eddy currents induced in the heating regions HF1, HF2, and HF3 is biased, and the current density in the part remaining in the conductive layer 30 is the highest.
  • the planar fuse function part in which the part remaining in the conductive layer 30 selectively generates heat excessively and breaks when it is in an empty state where heat transfer to the object to be heated is not performed. 32 functions.
  • the planar fuse function unit 32 When the planar fuse function part 32 breaks, the conduction of the eddy current is cut off, and the safety device of the electromagnetic cooker detects the abnormality, whereby the electromagnetic cooker stops and the heating ends. 2 damage can be prevented. Further, since the heating time can be controlled by the amount of the object to be heated, the planar fuse function unit 32 is applied as a cooking timer when the induction heating container 1 is used as a disposable container for steam cooking. You can also In addition, the induction heating heating element 3 is provided with the heat seal layer non-laminate portion 31a, and the planar fuse function portion 32 is formed in the heat seal layer non-laminate portion 31a. The heat seal layer 31 is not damaged by heat.
  • the planar fuse function part 32 has a fuse function that intersects with the heat seal layer non-lamination part 31 a in the main heating area HF (heating areas HF1, HF2, HF3). It is also possible to cut and form cut lines 36a, 36b, 36c in the conductive layer 30 along the extending direction of the heat seal layer non-laminated portion 31a in the portion forming region 32a. In this case, the current density at the portion where the thickness is reduced by engraving the cut lines 36a, 36b, and 36c is the highest, and when the air is in a state where the heat transfer to the object to be heated is not performed. In addition, the portion functions as a planar fuse function portion 32 that selectively generates excessive heat and breaks.
  • the planar fuse functional unit 32 is a fuse that intersects the heat seal layer non-laminated portion 31a in the main heating region HF (heating regions HF1, HF2, and HF3).
  • Circular punching holes 37a, 37b, and 37c that leave a part of the conductive layer 30 along the extending direction of the heat seal layer non-laminated portion 31a can also be formed in the functional portion forming region 32a.
  • the punched holes 37a, 37b, and 37c are formed, and the current density of the conductive layer 30 that remains in the radial direction is the highest, and the punched state in which heat transfer to the object to be heated is not performed.
  • the part functions as a planar fuse function part 32 that selectively generates excessive heat and breaks.
  • the size and number of the punched holes 37a, 37b, and 37c that leave a part of the conductive layer 30 are appropriately selected according to the range of the main heating region HF. The appropriate shape can be adopted.
  • planar fuse function part 32 is formed without bending and raising the conductive layer 30, and when cooking or when storing and transporting the containers as shown in FIG. In addition, it can be formed without having a raised portion that is easily damaged.
  • the heat sealing layer non-lamination portion 31a of the heating regions HF1, HF2, and HF3 defined by the cutting lines 33a and 33c, the cutting lines 33d and 33e, and the cutting lines 33e and 33b of the main heating region HF
  • the intersecting regions are defined as fuse function portion formation regions 32a
  • the fuse function portions 32 are formed in the respective regions.
  • the present invention is not limited to this.
  • a region that intersects the heat seal layer non-stacked portion 31a of at least one region of the partitioned main heating region HF is defined as a fuse function portion forming region 32a in a planar shape.
  • the fuse function unit 32 may be formed.
  • the induction heating heating element 3 is formed in a circular shape, and the heat seal layer non-stacking portion 31a is provided along the radial direction passing through the center of the induction heating heating element 3, but the heat seal layer non-stacking is performed.
  • the part 31a is not limited to this as long as the part 31a is provided so as to cross the main heating region HF and extend in a strip shape.
  • the induction heating heating element 3 is attached separately from the inner bottom surface 21 of the container main body 2.
  • a liquid heated object such as water accommodated in the container main body 2 is allowed to move to the inner bottom surface of the induction heating heating element 3 and the container main body 2. It will come to and from 21.
  • the heating efficiency for the object to be heated can be increased, and the container main body 2 can be effectively avoided from being damaged by the heat from the induction heating heating element 3.
  • a hole or slit 38 that penetrates the conductive heating heating element 3 is provided on the back side of the induction heating heating element 3 so as to promote convection without stagnation of the heated object. Can be formed.
  • a first support portion 22 a provided protruding near the center of the inner bottom surface 21 of the container body 2 and a second support portion 22 b provided protruding toward the outer peripheral side thereof.
  • the induction heating heating element 3 is heat-sealed to the third support portion 22c provided so as to protrude from the outer peripheral side thereof, thereby attaching the induction heating heating element 3 away from the inner bottom surface 21 of the container body 2.
  • a heat seal portion between these support portions 22a, 22b, 22c and the induction heating heating element 3 is shown by hatching in FIG.
  • the height of the support portions 22a, 22b, and 22c is set to the first support portion 22a, the second support portion 22b, and the third support.
  • the center side is higher and the height is lower toward the peripheral edge.
  • the object to be heated is water or the like
  • the object to be heated flows from the center of the induction heating heating element 3 to the periphery thereof, and induction heating is performed. It stays in the gap between the inner bottom surface of the container body 2 and the heat seal layer 31 of the induction heating element 3 from the unheat-sealed portion of the peripheral region OF of the heating element 3 with the container body 2. In this way, by retaining the object to be heated, damage to the container 1 due to overheating of the induction heating heating element 3 caused by the decrease in the object to be heated can be prevented via the object to be heated.
  • a step portion 23 is provided at the periphery of the opening of the container body 2 so that the tray 4 on which the food is placed can be supported or fitted. can do.
  • the conductive layer 30 is partitioned into the central region CF, the main heating region HF, and the peripheral region OF by a plurality of cutting lines 33a and 33b along the circumferential direction, and the heat seal layer
  • the non-stacked portion 31a is provided extending in a strip shape so as to intersect with the main heating region HF, and the intersecting region is defined as a fuse function portion forming region 32a.
  • the conductive layer 30 is not divided into these regions, and the fuse function portion forming region 32a composed of the conductive layer 30 of the heat seal layer non-laminated portion 31a in which the heat seal layer 31 is non-laminated is planar.
  • the point which formed the fuse function part 32 differs from 1st embodiment.
  • a circular heat seal layer non-laminate portion 31 a inscribed in the periphery of the induction heating heating element 3 is provided.
  • a circular hole 38 is formed in the fuse function part forming region 32a composed of the conductive layer 30 of the heat seal layer non-laminated part 31a, leaving the conductive layer 30 around the fuse functional part forming region 32a.
  • the hole 38 in the conductive layer 30 of the fuse function part formation region 32a the current density of the eddy current induced in the induction heating element 3 is biased, and the periphery of the induction heating element 3 is increased.
  • the current density of the conductive layer 30 remaining between the hole 38 and the hole 38 becomes the highest.
  • the part functions as a planar fuse function part 32 that selectively generates excessive heat and breaks.
  • planar fuse function unit 32 of the present embodiment does not form the conductive layer 30 by bending up and stacks containers as shown in FIG. Therefore, the planar fuse function unit 32 is not damaged when stored and transported.
  • other configurations are the same as those in the first embodiment, and the description thereof is omitted.
  • FIG. 15 is a plan view schematically showing the induction heating container according to the present embodiment, the side view of which is the same as the side view (FIG. 2) of the first embodiment, and the bottom view is the first embodiment. It appears the same as the bottom view (FIG. 3). 15 is the same as the cross-sectional view (FIG. 4) showing the AA cross section of FIG.
  • the conductive layer 30 is divided into a central region CF, a main heating region HF, and a peripheral region OF by a plurality of cutting lines 33a and 33b along the circumferential direction.
  • the heat seal layer non-laminated portion 31a is provided so as to extend in a band shape intersecting with the main heating region HF, and the intersecting region is defined as a fuse function portion forming region 32a.
  • the form of the planar fuse function part 32 to be formed is different from that of the first embodiment.
  • HF3 that intersect with the heat seal layer non-laminated portion 31a is defined as a fuse function portion forming region 32a, and the conductive layer 30 is cut across the heat seal layer non-laminated portion 31a.
  • HF2, and HF3, arc-shaped slits 39a, 39b, and 39c that are in contact with each other on the heat seal layer 31 are formed on one of the cutting lines 33a, 33d, and 33e located on the inner peripheral side.
  • region HF1, HF2, HF3, and slit 39a, 39b, 39c is made narrow, and this part (slit 39a,
  • the portions of the slits 39a, 39b, and 39c that are in contact with both ends of the slits 39a, 39b, and 39c are located on the side opposite to the cutting lines 33a, 33d, and 33e) to function as the planar fuse function portion 32.
  • the current density of eddy currents induced in the heating regions HF1, HF2, and HF3 is biased and formed between the cutting lines 33c, 33e, and 33b and the slits 39a, 39b, and 39c, respectively.
  • the current density in the planar fuse function unit 32 is the highest.
  • the planar fuse function part 32 selectively generates heat excessively and breaks when it is in an empty state where heat transfer to the object to be heated is not performed.
  • the conductive layer 30 is formed in a planar shape without being bent and raised, so that when cooking, as shown in FIG. When transported, the planar fuse function part 32 is prevented from being damaged.
  • the slits 39a, 39b, and 39c are particularly preferably formed in an arc shape in order to make it difficult for the induced eddy current to be disturbed, but the invention is not limited to this.
  • the slits 39a, 39b, and 39c only need to be able to form a portion that functions as the planar fuse functional portion 32 by narrowing the width between the other cutting lines 33c, 33e, and 33b located on the opposite outer peripheral side. Is formed so as to protrude in a direction away from one cutting line 33a, 33d, 33e located on the inner peripheral side where both ends of the slits 39a, 39b, 39c are in contact.
  • the slits 39a, 39b, and 39c are formed by cutting the conductive layer 30 across the heat seal layer non-laminated portion 31a, and the outer periphery that partitions the heating regions HF1, HF2, and HF3.
  • One of the cutting lines 33c, 33e, 33b positioned on the side is formed as arc-shaped slits 39a, 39b, 39c whose both ends are in contact with each other on the heat seal layer 31, and the inner circumference that defines the heating regions HF1, HF2, HF3
  • the width between the other cutting lines 33a, 33d, and 33e located on the side and the slits 39a, 39b, and 39c may be narrowed, and this portion may be used as the planar fuse function portion 32.
  • FIG. 20 shows a modified example of the slit 39a by enlarging the portion surrounded by the chain line in FIG.
  • the slits 39a, 39b, 39c are formed by cutting the conductive layer 30 across the heat seal layer non-laminated portion 31a, and partition the heating regions HF1, HF2, HF3.
  • Arc-shaped slits 39a both ends of which are in contact with each other on the heat seal layer 31, respectively, on one cutting line 33a, 33d, 33e located on the circumferential side and the other cutting line 33c, 33e, 33b located on the outer circumferential side.
  • 39b and 39c may be formed, and the narrow portion between the slits 39a, 39b and 39c may be used as the planar fuse function portion 32.
  • the planar fuse functional unit 32 is formed by cutting the conductive layer 30 across the heat seal layer non-laminated portion 31a, and cutting at least one of the inner peripheral side and the outer peripheral side that partitions the heating regions HF1, HF2, and HF3.
  • the slits 39a, 39b, and 39c whose ends are in contact with the line, the slits 39a, 33d, and 33e on the inner circumferential side are formed in a planar shape between the cutting lines 33c, 33e, and 33b on the outer circumferential side. It ’s fine.
  • a general electromagnetic induction heating coil provided in a commercially available home-use electromagnetic cooker has an inner diameter of about 5 cm and an outer diameter of about 20 cm, and the heating coil diameter is small.
  • the eddy current is cut off on the outer peripheral cutting line 33c. , 33e, 33b and the slits 39a, 39b, 39c, the fuse function unit 32 operates more safely and the container body 2 is prevented from being damaged.
  • both ends of the slits 39a, 39b, and 39c are formed so as to straddle the heat seal layer non-stacked portion 31a and contact the inner peripheral cutting lines 33a, 33d, and 33e on the heat seal layer 31.
  • the conductive layer 30 is not cut off and dropped off.
  • both ends of the slits 39a, 39b, and 39c do not straddle the heat seal layer non-laminate portion 31a, and come into contact with the inner peripheral cutting lines 33a, 33d, and 33e in the heat seal layer non-laminate portion 31a. If formed, the conductive layer 30 is cut off by the slits 39a, 39b, and 39c and falls off.
  • the induction heating heating element 3 When the induction heating heating element 3 is manufactured, the falling pieces that have been cut off due to the conductive layer 30 must be processed as cutting waste, which requires time and effort. According to this embodiment, The induction heating heating element 3 can be manufactured without requiring such labor. However, as long as the processing of cutting waste does not become a problem at the time of manufacture, the slits 39a, 39b, and 39c do not straddle the heat seal layer non-laminated portion 31a at both ends as described above.
  • the laminated portion 31a may be formed so as to be in contact with the inner peripheral cutting lines 33a, 33d, and 33e, and the fuse functional portion 32 is formed between the other outer peripheral cutting lines 33c, 33e, and 33b. If it is, it will not be limited to the said aspect.
  • a region intersecting with the heat seal layer non-laminated portion 31a of at least one region of the partitioned main heating region HF is defined as a fuse function portion forming region 32a.
  • the planar fuse functional unit 32 may be formed in the same manner as in the first embodiment, but the main heating region HF is divided as one heating region according to the size and shape of the induction heating heating element 3. May be.
  • the cutting lines 33c, 33d, and 33e that divide the main heating region HF into a plurality of heating regions HF1, HF2, and HF3 may be omitted.
  • a slit is formed so that both ends thereof are in contact with at least one of the inner peripheral cutting line 33a or the outer peripheral cutting line 33b that defines the main heating region HF, and the inner peripheral cutting is performed.
  • the planar fuse function part 32 may be formed between the line 33a and the outer peripheral cutting line 33b.
  • the cutting line 33a that divides the central region CF and the main heating region HF is located on the outer peripheral side compared to the first embodiment, and the central region CF is an induction heating heating element.
  • 3 is divided into a plurality of regions in the circumferential direction by a plurality of cutting lines 34a that radially cut the conductive layer 30 from the center side toward the outer peripheral edge side, and the conductive layer concentrically with the cutting lines 33a along the circumferential direction. It is also divided into a plurality of regions in the radial direction by a cutting line 33 f that cuts 30.
  • the central region CF is divided into eight regions in the circumferential direction by the radial cutting lines 34a, and is divided into two regions in the radial direction by the cutting lines 33f.
  • heat generation is suppressed by dividing, it is not limited to this. If the heat generation in the central region CF can be suppressed, the number of radial cutting lines 34a that divide the central region CF into a plurality of regions in the circumferential direction is increased or decreased according to the size and shape of the induction heating heating element 3, The cutting line 33f that divides the partial region CF in the radial direction may be omitted or increased or decreased.
  • This embodiment is different from the first embodiment in the above points, but the other configurations are the same as those of the first embodiment, and the description thereof is omitted.
  • the present invention provides an induction heating container that can heat an object to be heated safely and easily with a commercially available electromagnetic cooker.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Cookers (AREA)

Abstract

An induction heating element 3 of prescribed shape comprising a layered body derived from a heat seal layer 31 layered on an electrical conduction layer 30 that emits heat when overcurrent is induced therein by a high-frequency magnetic field, wherein the element is provided with a heat-seal-layer-unlayered part 31a to which the heat seal layer 31 is unlayered, and a planar fuse function part 32 is formed in a fuse function formation area 32a comprising the electrical conduction layer 30 of the heat-seal-layer-unlayered part 31a. In an induction heating vessel 1 provided with this induction heating element 3, the planar fuse function part 32 does not experience damage during cooking, or when the vessel is stacked for storage or transport, and damage to the vessel body 2 caused by heat during heating up of the induction heating element 3 while empty, etc., can be effectively avoided, enhancing the safety of the vessel.

Description

誘導加熱発熱体、及び誘導加熱容器Induction heating heating element and induction heating container
 本発明は、電磁調理器などが備える電磁誘導加熱コイルが発する高周波磁界により渦電流が誘起され、その電気抵抗によりジュール熱が生じて発熱する誘導加熱発熱体、及びこの誘導加熱発熱体を備えた誘導加熱容器に関する。 The present invention includes an induction heating heating element in which an eddy current is induced by a high-frequency magnetic field generated by an electromagnetic induction heating coil included in an electromagnetic cooker and the like, and Joule heat is generated by the electric resistance, and the induction heating heating element is provided. It relates to an induction heating container.
 近年、ガス機器が主流であった加熱調理機器に代わって、一般に、電磁調理器と称される加熱調理機器が、安全性、清潔性、利便性、経済性などの観点から、飲食業などにおける業務用のみならず、一般家庭においても広く普及するようになってきている。 In recent years, instead of cooking appliances that have been mainly gas appliances, cooking appliances generally called electromagnetic cookers are used in the food and beverage industry in terms of safety, cleanliness, convenience, and economy. Not only for use, but also for general households.
 しかしながら、この種の電磁調理器は、内部に備えた電磁誘導加熱コイルにより高周波磁界を発生させ、誘起された渦電流によって生じるジュール熱により加熱対象物を加熱するというものである。このため、炎を使わずに加熱調理を行うことができる反面、その原理上、使用できる調理器具が限られてしまい、鉄、鉄ホーローなどの磁性金属からなる専用の調理器具を用いなければならないという制限があった。 However, this type of electromagnetic cooker generates a high-frequency magnetic field by an electromagnetic induction heating coil provided inside, and heats an object to be heated by Joule heat generated by the induced eddy current. For this reason, while cooking can be performed without using flames, the cooking utensils that can be used are limited in principle, and special cooking utensils made of magnetic metals such as iron and iron enamel must be used. There was a restriction.
 このような状況下、上記した電磁調理器の制限を解消する容器として、例えば、特許文献1、特許文献2などにおいて、非磁性(又は非導電性)の容器本体を備えた電磁調理器用の容器が提案されている。 Under such circumstances, for example, in Patent Document 1, Patent Document 2, etc., a container for an electromagnetic cooker provided with a non-magnetic (or non-conductive) container body as a container that eliminates the restriction of the electromagnetic cooker described above. Has been proposed.
特開2003-325327号公報JP 2003-325327 A 特開2014-198231号公報JP 2014-198231 A
 特許文献1には、電磁調理器から生じる渦電流により、0.10~100μmのアルミニウム箔を発熱させる電磁調理器を用いる加熱方法が提案されており、非磁性の容器の内容物を電磁調理器によって加熱することが開示されている。
 しかしながら、このような加熱方法においては、誤って空焚きした場合などに、アルミニウム箔が急激に昇温して容易に燃えて飛散する危険や、アルミニウム箔が急激に昇温したときの熱により容器が損傷する虞がある。
Patent Document 1 proposes a heating method using an electromagnetic cooker that heats an 0.10 to 100 μm aluminum foil by eddy current generated from the electromagnetic cooker, and the contents of a non-magnetic container are transferred to the electromagnetic cooker. Is disclosed.
However, in such a heating method, when the air is accidentally blown, the container may be heated due to the danger that the aluminum foil will be rapidly heated and burned and scattered, or the heat when the aluminum foil is rapidly heated. May be damaged.
 これに対して、特許文献2には、空焚き状態となった場合に、選択的に過剰に発熱して破断する部位を有するヒューズ機能部を設けて、当該部位が破断することによって電磁調理器の安全機構が働いて、電磁調理器が停止して加熱を終えるようにした誘導加熱発熱体が提案されている。
 しかしながら、特許文献2では、ヒューズ機能部の破断する部位を、導電性材料を折り曲げて立ち上げた部位の上縁側に形成しており、調理や、容器を重ねて保管、搬送する際に、この立ち上げた部位を損傷してしまう虞があった。
On the other hand, Patent Document 2 provides a fuse function unit having a part that is selectively heated excessively and breaks when it is in an empty-cooked state, and the part breaks to produce an electromagnetic cooker. Induction heating heating elements have been proposed in which an electromagnetic cooker stops and finishes heating by the safety mechanism of the above.
However, in patent document 2, the part where the fuse function part breaks is formed on the upper edge side of the part where the conductive material is bent and started up, and when cooking, storing and transporting the container in layers, There was a risk of damaging the launched site.
 本発明は、前記の事情に鑑みてなされたものであり、非磁性(又は非導電性)の容器本体に誘導加熱発熱体を取り付けて、収容された被加熱物を電磁調理器などにより加熱する誘導加熱容器として使用され、調理や、容器を重ねて保管、搬送する際に、
ヒューズ機能部が損傷することなく、空焚きなどの発熱体の昇温時の熱による容器本体の損傷を有効に回避して、容器の安全性を高めた誘導加熱発熱体、及びこの誘導加熱発熱体を備えた誘導加熱容器の提供を目的とする。
The present invention has been made in view of the above circumstances, and an induction heating heating element is attached to a non-magnetic (or non-conductive) container main body, and the object to be heated is heated by an electromagnetic cooker or the like. Used as an induction heating container, when cooking, storing and transporting containers in layers,
An induction heating heating element that effectively avoids damage to the container body due to heat generated during heating of the heating element such as air blow without damaging the fuse function part, and the induction heating heating element that enhances the safety of the container. It aims at providing the induction heating container provided with the body.
 本発明に係る誘導加熱発熱体は、高周波磁界により渦電流が誘起されて発熱する導電層に、ヒートシール層を積層した積層体から成る所定形状の誘導加熱発熱体であって、前記ヒートシール層が非積層とされたヒートシール層非積層部を設け、前記ヒートシール層非積層部の前記導電層から成るヒューズ機能部形成領域に、平面状ヒューズ機能部を形成した構成としてある。 An induction heating heating element according to the present invention is an induction heating heating element having a predetermined shape formed of a laminate in which a heat seal layer is laminated on a conductive layer that generates heat when an eddy current is induced by a high-frequency magnetic field, the heat seal layer A non-laminated heat seal layer non-laminated portion is provided, and a planar fuse functional portion is formed in a fuse functional portion forming region composed of the conductive layer of the heat seal layer non-laminated portion.
 また、本発明に係る誘導加熱容器は、上記した誘導加熱発熱体を、非導電性材料からなる容器本体に取り付けた構成としてある。 Further, the induction heating container according to the present invention has a configuration in which the above-described induction heating heating element is attached to a container body made of a non-conductive material.
 本発明の誘導加熱発熱体によれば、調理する際や、容器を重ねて保管、搬送する際に、ヒューズ機能部の損傷が防止される。この結果、空焚き状態となった場合のヒューズ機能部の機能を低下させることなく、電磁調理器が備える安全機構に異常を検知させ、電磁調理器を自動的に停止させて空焚きなどの発熱体の昇温時の熱による容器本体の損傷等を防止できる。
 さらに、本発明の誘導加熱容器によれば、上記誘導加熱発熱体を備えることにより、安全性が高められた誘導加熱容器とすることができる。
According to the induction heating heating element of the present invention, damage to the fuse function unit is prevented when cooking, or when storing and transporting containers in a stacked manner. As a result, the safety function provided in the electromagnetic cooker detects an abnormality without degrading the function of the fuse function unit when it is in the empty cooking state, and the electromagnetic cooking appliance is automatically stopped to generate heat such as empty cooking. It is possible to prevent damage to the container body due to heat generated when the body is heated.
Furthermore, according to the induction heating container of this invention, it can be set as the induction heating container with which safety | security was improved by providing the said induction heating heating element.
本発明の第一実施形態に係る誘導加熱容器の概略を示す平面図である。It is a top view which shows the outline of the induction heating container which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係る誘導加熱容器の概略を示す側面図である。It is a side view which shows the outline of the induction heating container which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係る誘導加熱容器の概略を示す底面図である。It is a bottom view which shows the outline of the induction heating container which concerns on 1st embodiment of this invention. 図1のA-A断面を示す概略断面図である。FIG. 2 is a schematic sectional view showing an AA section of FIG. 1. 本発明の第一実施形態に係る誘導加熱発熱体の概略を示す斜視図である。It is a perspective view showing the outline of the induction heating heating element concerning a first embodiment of the present invention. 図1のB-B断面を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing a BB cross section of FIG. 1. 図1のC-C断面を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing a CC cross section of FIG. 1. 本発明の第一実施形態に係る誘導加熱発熱体の変形例の概略を示す斜視図である。It is a perspective view which shows the outline of the modification of the induction heating heat generating body which concerns on 1st embodiment of this invention. 図8のD-D断面を示す概略断面図である。It is a schematic sectional drawing which shows the DD cross section of FIG. 本発明の第一実施形態に係る誘導加熱発熱体の他の変形例の概略を示す斜視図である。It is a perspective view which shows the outline of the other modification of the induction heating heat generating body which concerns on 1st embodiment of this invention. 図10のE-E断面を示す概略断面図である。It is a schematic sectional drawing which shows the EE cross section of FIG. 本発明の第一実施形態に係る誘導加熱容器を積み重ねた状態を示す説明図である。It is explanatory drawing which shows the state which accumulated the induction heating container which concerns on 1st embodiment of this invention. 本発明の第二実施形態に係る誘導加熱容器の概略を示す平面図である。It is a top view which shows the outline of the induction heating container which concerns on 2nd embodiment of this invention. 図13のF-F断面を示す概略断面図である。It is a schematic sectional drawing which shows the FF cross section of FIG. 本発明の第三実施形態に係る誘導加熱容器の概略を示す平面図である。It is a top view which shows the outline of the induction heating container which concerns on 3rd embodiment of this invention. 本発明の第三実施形態に係る誘導加熱発熱体の概略を示す平面側斜視図である。It is a plane side perspective view showing the outline of the induction heating heating element concerning a third embodiment of the present invention. 本発明の第三実施形態に係る誘導加熱発熱体の概略を示す底面側斜視図である。It is a bottom side perspective view showing the outline of the induction heating heating element concerning a third embodiment of the present invention. 図15のH-H断面を示す概略断面図である。FIG. 16 is a schematic cross-sectional view showing the HH cross section of FIG. 15. 図15のI-I断面を示す概略断面図である。FIG. 16 is a schematic cross-sectional view showing a II cross section of FIG. 15. 本発明の第三実施形態におけるスリットの変形例を示す説明図である。It is explanatory drawing which shows the modification of the slit in 3rd embodiment of this invention.
 以下、本発明の好ましい実施形態について、図面を参照しつつ説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
[第一実施形態]
 まず、本発明の第一実施形態について説明する。
 本実施形態における誘導加熱容器1は、非導電性材料からなる容器本体2と、容器本体2に取り付けて電磁調理器による誘導加熱を可能とする誘導加熱発熱体3とを備えている。容器本体2は、水などの液状の被加熱物を収容できるように内底面21の周りを囲むように立設された側壁を有しており、誘導加熱発熱体3は、このような容器本体2の内底面21側に取り付けられる。
[First embodiment]
First, a first embodiment of the present invention will be described.
The induction heating container 1 in this embodiment includes a container main body 2 made of a non-conductive material and an induction heating heating element 3 that is attached to the container main body 2 and enables induction heating by an electromagnetic cooker. The container main body 2 has a side wall that is erected so as to surround the inner bottom surface 21 so as to accommodate a liquid object to be heated such as water, and the induction heating heating element 3 is formed of such a container main body. 2 is attached to the inner bottom surface 21 side.
 誘導加熱容器1は、通常、市販の電磁調理器の上に置いて使用される。このことから、容器本体2の内底面21や、容器本体2の内底面21側に取り付けられる誘導加熱発熱体3の大きさは特に限定されず、使用する電磁調理器が備える電磁誘導加熱コイルの大きさに応じて設定することができる。例えば、市販の家庭用電磁調理器が備える一般的な電磁誘導加熱コイルは、内径5cm程度、外径20cm程度であり、業務用のものであれば、これよりも大きいものもあるが、使用が想定される電磁調理器に応じて大きさを適宜定めることができる。 The induction heating container 1 is usually used by being placed on a commercially available electromagnetic cooker. Therefore, the size of the inner bottom surface 21 of the container body 2 and the induction heating heating element 3 attached to the inner bottom surface 21 side of the container body 2 is not particularly limited, and the electromagnetic induction heating coil included in the electromagnetic cooker to be used is not limited. It can be set according to the size. For example, a general electromagnetic induction heating coil provided in a commercially available home-use electromagnetic cooker has an inner diameter of about 5 cm and an outer diameter of about 20 cm. A magnitude | size can be suitably determined according to the electromagnetic cooker assumed.
 容器本体2の内底面21の形状も、図示するような正方形状に限定されない。例えば、矩形状、円形状とするほか、三角形、五角形、六角形などの多角形状としても良い。容器本体2の全体的な形状も、使い勝手などを考慮して種々の形状とすることができる。 The shape of the inner bottom surface 21 of the container body 2 is not limited to a square shape as illustrated. For example, in addition to a rectangular shape or a circular shape, a polygonal shape such as a triangle, pentagon, or hexagon may be used. The overall shape of the container body 2 can also be changed to various shapes in consideration of ease of use.
 容器本体2に取り付ける誘導加熱発熱体3は、電磁調理器などが備える電磁誘導加熱コイルが発する高周波磁界により渦電流が誘起され、その電気抵抗によりジュール熱が生じて発熱する導電性材料からなる導電層30に、容器本体2に対してヒートシール性を有するヒートシール層31を積層してなる積層体を平板状の所定形状に切り抜くことによって形成されている(図5、図8及び図10参照)。 The induction heating heating element 3 attached to the container body 2 is a conductive material made of a conductive material that generates eddy currents by a high-frequency magnetic field generated by an electromagnetic induction heating coil included in an electromagnetic cooker and generates heat due to Joule heat due to its electrical resistance. It is formed by cutting out a laminate formed by laminating a heat seal layer 31 having heat sealability to the container body 2 on the layer 30 into a flat plate-like shape (see FIGS. 5, 8, and 10). ).
 導電層30を形成する導電性材料としては、例えば、アルミニウム,ニッケル,金,銀,銅,白金,鉄,コバルト,錫,亜鉛などの金属、又はこれらの合金など、高周波磁界による誘導加熱によって発熱する種々の導電性材料を用いて形成することができる。より具体的には、例えば、導電性材料としてアルミニウムを用いる場合、好ましくは0.10~100μm程度、より好ましくは1~40μm程度の厚みのアルミニウム箔を用いて導電層30を形成することができる。アルミニウム箔などの金属箔を用いて導電層30を形成すれば、誘導加熱発熱体3を容器本体2に取り付ける際に、ヒートシール層31を介して容易に取り付けることができ、また、容器本体2の形状に適合させることができる。 As the conductive material forming the conductive layer 30, for example, a metal such as aluminum, nickel, gold, silver, copper, platinum, iron, cobalt, tin, or zinc, or an alloy thereof, heat is generated by induction heating using a high frequency magnetic field. It can be formed using various conductive materials. More specifically, for example, when aluminum is used as the conductive material, the conductive layer 30 can be formed using an aluminum foil having a thickness of preferably about 0.10 to 100 μm, more preferably about 1 to 40 μm. . If the conductive layer 30 is formed using a metal foil such as an aluminum foil, when the induction heating heating element 3 is attached to the container body 2, it can be easily attached via the heat seal layer 31, and the container body 2 Can be adapted to any shape.
 ヒートシール層31は、容器本体2に対してヒートシール性を有するものであれば特に限定されず、容器本体2を形成する非導電性材料に応じて適宜選択することができる。成形加工し易く、ヒートシール性が良好で、適度な耐熱性を有する樹脂が好ましく、特に、後述する容器本体2と同種の樹脂が好ましい。導電層30とヒートシール層31とは、直接、又は適宜の接着剤を介して、公知のラミネート技術により積層することができる。誘導加熱発熱体3を積層体として構成することにより、従来公知の多層フィルム、多層シートの製造技術が応用できるため、その製造が容易になる。 The heat seal layer 31 is not particularly limited as long as it has heat sealability with respect to the container body 2, and can be appropriately selected according to the non-conductive material forming the container body 2. Resins that are easy to mold, have good heat-sealing properties, and have moderate heat resistance are preferred, and resins of the same type as the container body 2 described below are particularly preferred. The conductive layer 30 and the heat seal layer 31 can be laminated by a known laminating technique directly or via an appropriate adhesive. By constructing the induction heating heating element 3 as a laminate, conventionally known multilayer film and multilayer sheet manufacturing techniques can be applied, so that the manufacturing becomes easy.
 容器本体2を形成する非導電性材料としては、ポリスチレン等のポリスチレン系樹脂、ポリエチレンテレフタレート等のポリエステル系樹脂、ポリプロピレン等のポリオレフィン系樹脂、ポリアミド系樹脂などの合成樹脂材料を好適に使用できる。容器本体2は、単層、又はこれらの樹脂同士或いは他の機能性樹脂と組み合わせた多層構成であっても良い。非導電性材料としては、紙、ガラスなども使用できるが、誘導加熱発熱体3のヒートシール層31とのヒートシール性を考慮して、内面に前記の合成樹脂がラミネート或いはコートされているのが好ましい。これらの材料にて容器本体2を形成することにより、電磁調理器を用いた加熱調理が可能な誘導加熱容器1を安価に提供することが可能となる。 As the non-conductive material for forming the container body 2, a synthetic resin material such as a polystyrene resin such as polystyrene, a polyester resin such as polyethylene terephthalate, a polyolefin resin such as polypropylene, and a polyamide resin can be suitably used. The container body 2 may be a single layer or a multilayer structure in which these resins are combined with other functional resins. As the non-conductive material, paper, glass or the like can be used, but the above-mentioned synthetic resin is laminated or coated on the inner surface in consideration of heat sealability with the heat seal layer 31 of the induction heating heating element 3. Is preferred. By forming the container body 2 with these materials, it is possible to provide the induction heating container 1 capable of cooking using an electromagnetic cooker at a low cost.
 本実施形態において、誘導加熱発熱体3は、ほぼ円形に形成されており、ヒートシール層非積層部31aが径方向に延在して設けられているが、これについては後述する。誘導加熱発熱体3の形状は、誘起される渦電流の特性から円形が最も効率が良いが、容器本体2の形状に対応させて、正方形状、矩形状などでも良く、「径方向」とは、これらの図形の中心側から外周縁側に向かう方向をいうものとする。 In this embodiment, the induction heating heating element 3 is formed in a substantially circular shape, and the heat seal layer non-laminated portion 31a extends in the radial direction. This will be described later. The shape of the induction heating heating element 3 is most efficient when it is circular due to the characteristics of the induced eddy current, but it may be square or rectangular according to the shape of the container body 2. The direction from the center side to the outer peripheral edge side of these figures shall be said.
 また、誘導加熱発熱体3は、図1、図5、及び図6に示すように、同心円状に周方向に沿って導電層30を切断する切断線33a,33bによって、中央部領域CFと、主加熱領域HFと、周縁部領域OFとに区画されている。そして、切断線33a,33bの間に位置する主加熱領域HFは、切断線33a,33bと同心円状に周方向に沿って導電層30を切断する切断線33c,33d,33eによって径方向に複数の加熱領域HF1,HF2,HF3に区画されるとともに、切断線33c,33dの間の領域が、径方向に延在する切断線34bによって周方向に複数の領域に区画されている。 In addition, as shown in FIGS. 1, 5, and 6, the induction heating heating element 3 includes a central region CF and cutting lines 33a and 33b that concentrically cut the conductive layer 30 along the circumferential direction. It is partitioned into a main heating area HF and a peripheral area OF. A plurality of main heating regions HF positioned between the cutting lines 33a and 33b are radially formed by cutting lines 33c, 33d, and 33e that cut the conductive layer 30 along the circumferential direction concentrically with the cutting lines 33a and 33b. The heating regions HF1, HF2, and HF3 are partitioned, and the region between the cutting lines 33c and 33d is partitioned into a plurality of regions in the circumferential direction by a cutting line 34b extending in the radial direction.
 また、切断線33aに対して内側に位置する中央部領域CFは、径方向に延在する切断線34aにより周方向に複数の領域に区画されている。さらに、切断線33bに対して外側に位置する周縁部領域OFは、径方向に延在する切断線34cにより周方向に複数の領域に区画されている。 Further, the central region CF located inside the cutting line 33a is divided into a plurality of regions in the circumferential direction by a cutting line 34a extending in the radial direction. Further, the peripheral area OF positioned outside the cutting line 33b is divided into a plurality of areas in the circumferential direction by a cutting line 34c extending in the radial direction.
 導電層30を切断するに際しては、刃物により導電層30側から切断したり、YAGレーザー、半導体レーザーなどを用いて導電層30を選択的に切断したりすればよい。誘導加熱発熱体3を一体のものとして取り扱うのに支障がない範囲で、ヒートシール層31の一部まで切断が及んでもよいが、ヒートシール層31を切断せずに繋がった状態とすれば、誘導加熱発熱体3を一体のものとして取り扱うことができるため、製造時の取り扱いがきわめて容易になる。 When the conductive layer 30 is cut, the conductive layer 30 may be cut from the side of the conductive layer 30 with a blade, or the conductive layer 30 may be selectively cut using a YAG laser, a semiconductor laser, or the like. As long as there is no problem in handling the induction heating heating element 3 as an integral part, the heat seal layer 31 may be partially cut, but if the heat seal layer 31 is connected without being cut. In addition, since the induction heating heating element 3 can be handled as an integral body, handling during manufacture becomes extremely easy.
 誘導加熱発熱体3の導電層30を切断して切断線33a,33b,33c,33d,33e,34a,34b,34cを形成することによって、導電層30に誘起された渦電流は、切断線33a,33b,33c,33d,33e,34a,34b,34cを横切る方向には流れなくなる。このため、切断線33a,33b,33c,33d,33e,34a,34b,34cによって区画された、それぞれの領域ごとに渦電流が誘起される。 By cutting the conductive layer 30 of the induction heating heating element 3 to form the cutting lines 33a, 33b, 33c, 33d, 33e, 34a, 34b, and 34c, the eddy current induced in the conductive layer 30 is converted into the cutting line 33a. , 33b, 33c, 33d, 33e, 34a, 34b, and 34c. For this reason, an eddy current is induced for each region defined by the cutting lines 33a, 33b, 33c, 33d, 33e, 34a, 34b, and 34c.
 電磁誘導加熱コイル上に置かれた誘導加熱発熱体3に誘起される渦電流は、電磁誘導加熱コイルの形状に則して誘起される。通常、中央部領域CFに誘起される渦電流はそれほど強くはならないが、電流密度の分布がやや不安定で、より外側を流れる渦電流を乱す場合がある。このため、切断線33aによって中央部領域CFと主加熱領域HFとに区画することで、主加熱領域HFへの影響を低減することができる。 The eddy current induced in the induction heating heating element 3 placed on the electromagnetic induction heating coil is induced according to the shape of the electromagnetic induction heating coil. Usually, the eddy current induced in the central region CF is not so strong, but the current density distribution is somewhat unstable, and the eddy current flowing outside may be disturbed. For this reason, the division | segmentation into the center part area | region CF and the main heating area | region HF by the cutting line 33a can reduce the influence on the main heating area | region HF.
 主加熱領域HFを区画する切断線33a,33bを形成する位置は、誘起される渦電流の電流密度分布が安定していて、導電層30を効率良く発熱させることができる領域を主加熱領域HFとして区画できるように、誘導加熱発熱体3の大きさや形状などに応じて適宜調整することができる。 The positions where the cutting lines 33a and 33b that partition the main heating region HF are formed are regions where the current density distribution of the induced eddy current is stable and the conductive layer 30 can efficiently generate heat. It can adjust suitably according to the magnitude | size, shape, etc. of the induction heating heat generating body 3 so that it can divide as.
 また、誘起される渦電流の電流密度分布は、一般には、電磁誘導加熱コイルの半径方向に沿って均一ではなく、半径方向中央に対してやや外周寄りの位置に電流密度のピークを有し、その位置で被加熱物が強く加熱される傾向にある。このような渦電流の電流密度の分布を考慮して、本実施形態では、主加熱領域HFを径方向に複数の加熱領域HF1,HF2,HF3に区画している。
 主加熱領域HFを径方向に複数の加熱領域HF1,HF2,HF3に区画する切断線33c,33d,33eを形成する位置は、誘起される渦電流を制御して被加熱物に対する加熱の均等化を図ることができるように適宜調整することができる。例えば、主加熱領域HFを複数の領域に区画する切断線33c,33d,33eは、半径方向に均等に配置するよりも、渦電流が外周寄りに集中しないように外周寄りに密に設けるのが好ましい。
In addition, the current density distribution of the induced eddy current is generally not uniform along the radial direction of the electromagnetic induction heating coil, and has a current density peak at a position slightly closer to the outer periphery with respect to the radial center, The object to be heated tends to be strongly heated at that position. In consideration of such eddy current distribution, the main heating region HF is divided into a plurality of heating regions HF1, HF2, and HF3 in the radial direction.
The positions where the cutting lines 33c, 33d, and 33e that divide the main heating region HF into a plurality of heating regions HF1, HF2, and HF3 in the radial direction are formed to control the induced eddy current to equalize the heating of the object to be heated. It can adjust suitably so that can be aimed at. For example, the cutting lines 33c, 33d, and 33e that divide the main heating region HF into a plurality of regions are densely provided near the outer periphery so that eddy currents are not concentrated near the outer periphery, rather than being arranged uniformly in the radial direction. preferable.
 このように、本実施形態にあっては、周方向に沿って導電層30を切断する切断線33a,33bによって主加熱領域HFを区画するとともに、周方向に沿って導電層30を切断する切断線33c,33d,33eによって主加熱領域HFを複数の加熱領域HF1,HF2,HF3に区画することで、主加熱領域HFに誘起される渦電流を制御して、主加熱領域HFができるだけ均等に発熱するようにしてある。
 このようにすることで、被加熱物の加熱ムラを抑制して、水などの液状の被加熱物が局所的に急激に加熱されないようにし、突沸の発生を抑止することができる。さらに、主加熱領域HF(加熱領域HF1,HF2,HF3)における切断線33a,33b,33c,33d,33eの端縁は、水などの液状の被加熱物が沸騰して気泡が発生する際の起点となる。このため、加熱時には沸騰石を入れた時のように小さな気泡が継続的に多数生成され、突発的な大きな気泡の発生が防止されることによっても突沸の発生が抑止される。
 これにより、突沸によって飛散した被加熱物により使用者が火傷を負ってしまったり、電磁調理器周辺を汚したりするような事態を避けることができる。
Thus, in the present embodiment, the main heating region HF is partitioned by the cutting lines 33a and 33b that cut the conductive layer 30 along the circumferential direction, and the conductive layer 30 is cut along the circumferential direction. By dividing the main heating region HF into a plurality of heating regions HF1, HF2, and HF3 by the lines 33c, 33d, and 33e, the eddy current induced in the main heating region HF is controlled so that the main heating region HF is as uniform as possible. It generates heat.
By doing in this way, the heating nonuniformity of a to-be-heated material can be suppressed, liquid to-be-heated materials, such as water, can be prevented from being heated locally rapidly, and generation | occurrence | production of bumping can be suppressed. Further, the edges of the cutting lines 33a, 33b, 33c, 33d, and 33e in the main heating area HF (heating areas HF1, HF2, and HF3) are used when bubbles are generated by boiling a liquid heated object such as water. The starting point. For this reason, a large number of small bubbles are continuously generated as when boiling stones are added during heating, and the occurrence of sudden large bubbles is prevented, thereby preventing the occurrence of sudden boiling.
As a result, it is possible to avoid a situation in which the user is burned by the object to be heated scattered by bumping or the vicinity of the electromagnetic cooker is soiled.
 また、前述したように、中央部領域CFは、切断線34aによって周方向に複数の領域に区画されており、周縁部領域OFも、切断線34cによって周方向に複数の領域に区画されている。このようにして、中央部領域CFと周縁部領域OFとを複数の小さな領域に区画することで、それぞれの領域には、電磁調理器が備える電磁誘導加熱コイルの中心回りの強い渦電流は誘起されなくなり、中央部領域CFと周縁部領域OFは、それほど高温にならない。したがって、中央部領域CFと周縁部領域OFにおけるヒートシール層31でヒートシールして、誘導加熱発熱体3を容器本体2に取り付ければ、容器本体2への伝熱を抑制でき、容器本体2の損傷を防止することができる。 Further, as described above, the central region CF is partitioned into a plurality of regions in the circumferential direction by the cutting line 34a, and the peripheral region OF is also partitioned into a plurality of regions in the circumferential direction by the cutting line 34c. . In this way, by dividing the central region CF and the peripheral region OF into a plurality of small regions, a strong eddy current around the center of the electromagnetic induction heating coil included in the electromagnetic cooker is induced in each region. The central region CF and the peripheral region OF are not so hot. Therefore, if heat-sealing is performed with the heat seal layer 31 in the central region CF and the peripheral region OF and the induction heating heating element 3 is attached to the container main body 2, heat transfer to the container main body 2 can be suppressed. Damage can be prevented.
 さらに、主加熱領域HFに形成した切断線33c,33dの間の領域にあっても、切断線34bにより周方向に複数の領域に区画することで、当該領域での発熱を抑制し、当該領域におけるヒートシール層31で容器本体2とヒートシールしている。
 このように、誘導加熱発熱体3の中央部領域CFと周縁部領域OFだけでなく、主加熱領域HFの切断線33c,33dの間の領域に発熱が抑制された領域を形成し、当該領域におけるヒートシール層31でも容器本体2とヒートシールすることで、被加熱対象物の対流や流動、又は電磁誘導加熱コイルとの斥力による誘導加熱発熱体3の浮き上がり、又は波打ちを有効に抑止することができ、より安定した加熱が可能になる。
Furthermore, even in the region between the cutting lines 33c and 33d formed in the main heating region HF, by dividing into a plurality of regions in the circumferential direction by the cutting line 34b, heat generation in the region is suppressed, and the region The container body 2 is heat sealed with the heat seal layer 31 in FIG.
In this way, a region in which heat generation is suppressed is formed not only in the central region CF and the peripheral region OF of the induction heating heating element 3 but also in the region between the cutting lines 33c and 33d of the main heating region HF. The heat seal layer 31 in the case is also heat-sealed with the container main body 2 to effectively suppress the convection and flow of the object to be heated, or the lifting or undulation of the induction heating heating element 3 due to repulsion with the electromagnetic induction heating coil. And more stable heating is possible.
 また、本実施形態にあっては、誘導加熱発熱体3がほぼ円形に形成されていることから、この誘導加熱発熱体3の中心を通る径方向に沿ってヒートシール層31を所定の幅で除去し、主加熱領域HF(加熱領域HF1,HF2,HF3)と交差して径方向に延在する帯状のヒートシール層非積層部31a(導電層30)を設けてある。そして、主加熱領域HFのヒートシール層非積層部31aと交差する領域を、導電層30から成るヒューズ機能部形成領域32aとし、この領域32aに、加熱調理の際に、液状の被加熱物が沸騰し蒸発して減少したときや、容器内に被加熱物が収容されていない場合など、被加熱物への熱移動がなされない空焚きの状態となったときに、選択的に過剰に発熱して破断する平面状ヒューズ機能部32が形成されている。 Moreover, in this embodiment, since the induction heating heating element 3 is formed in a substantially circular shape, the heat seal layer 31 is formed with a predetermined width along the radial direction passing through the center of the induction heating heating element 3. A strip-shaped heat seal layer non-laminated portion 31a (conductive layer 30) extending in the radial direction intersecting with the main heating region HF (heating regions HF1, HF2, HF3) is provided. And the area | region which cross | intersects the heat seal layer non-lamination part 31a of the main heating area | region HF is made into the fuse functional part formation area 32a which consists of the conductive layer 30, and a liquid to-be-heated object is in this area | region 32a in the case of heat cooking. Excessive heat is generated selectively when the air is boiled and evaporated, or when the object to be heated is not contained in the container. Thus, a planar fuse function portion 32 that is broken is formed.
 平面状ヒューズ機能部32は、導電層30の導電性材料を折り曲げて立ち上げる立体的な加工を伴わない形状で上記した機能を呈するように、渦電流の電流密度に偏りを生じさせ、電流密度が最も高くなる部位として形成されていれば、具体的な形態は限定されない。例えば、図1、図5及び図7に示すように、主加熱領域HFの切断線33a,33c、切断線33d,33e、及び切断線33e,33bによって区画された加熱領域HF1,HF2,HF3のヒートシール層非積層部31aと交差する領域をヒューズ機能部形成領域32aとして、それぞれに、ヒートシール層非積層部31aの延在方向に沿って、導電層30の一部を残して切断するスリット35a,35b,35c,35d,35eを形成することにより、導電層30に残された当該一部を平面状ヒューズ機能部32として機能させることができる。
 このようにすることで、加熱領域HF1,HF2,HF3に誘起される渦電流の電流密度に偏りが生じ、導電層30に残された当該一部における電流密度が最も高くなる。その結果、被加熱物への熱移動がなされない空焚きの状態となったときに、導電層30に残された当該一部が、選択的に過剰に発熱して破断する平面状ヒューズ機能部32として機能する。
The planar fuse function unit 32 causes the current density of the eddy current to be biased so as to exhibit the above-described function in a shape that does not involve a three-dimensional process in which the conductive material of the conductive layer 30 is bent and started up. If it is formed as a site where the height is the highest, the specific form is not limited. For example, as shown in FIGS. 1, 5, and 7, the heating regions HF1, HF2, and HF3 defined by the cutting lines 33a and 33c, the cutting lines 33d and 33e, and the cutting lines 33e and 33b of the main heating region HF. A slit that cuts a part of the conductive layer 30 along the extending direction of the heat seal layer non-laminate portion 31a, with the region intersecting the heat seal layer non-laminate portion 31a as a fuse function portion forming region 32a. By forming 35 a, 35 b, 35 c, 35 d, and 35 e, the part left in the conductive layer 30 can function as the planar fuse function unit 32.
By doing so, the current density of eddy currents induced in the heating regions HF1, HF2, and HF3 is biased, and the current density in the part remaining in the conductive layer 30 is the highest. As a result, the planar fuse function part in which the part remaining in the conductive layer 30 selectively generates heat excessively and breaks when it is in an empty state where heat transfer to the object to be heated is not performed. 32 functions.
 平面状ヒューズ機能部32が破断すると渦電流の導通が遮断され、電磁調理器の安全装置がその異常を検知し、これによって電磁調理器が停止して加熱が終了するので、空焚きによる容器本体2の損傷を防止することができる。さらに、収容する被加熱物の量により加熱時間を制御することもできるので、誘導加熱容器1を使い捨て容器として蒸し調理に利用する場合などには、平面状ヒューズ機能部32をクッキングタイマー的に応用することもできる。
 また、誘導加熱発熱体3にヒートシール層非積層部31aを設け、このヒートシール層非積層部31aに平面状ヒューズ機能部32を形成することで、平面状ヒューズ機能部32が破断する際の熱によって、ヒートシール層31が損傷してしまうこともない。
When the planar fuse function part 32 breaks, the conduction of the eddy current is cut off, and the safety device of the electromagnetic cooker detects the abnormality, whereby the electromagnetic cooker stops and the heating ends. 2 damage can be prevented. Further, since the heating time can be controlled by the amount of the object to be heated, the planar fuse function unit 32 is applied as a cooking timer when the induction heating container 1 is used as a disposable container for steam cooking. You can also
In addition, the induction heating heating element 3 is provided with the heat seal layer non-laminate portion 31a, and the planar fuse function portion 32 is formed in the heat seal layer non-laminate portion 31a. The heat seal layer 31 is not damaged by heat.
 このような平面状ヒューズ機能部32は、図8及び図9に変形例を示すように、主加熱領域HF(加熱領域HF1,HF2,HF3)のヒートシール層非積層部31aと交差するヒューズ機能部形成領域32aに、ヒートシール層非積層部31aの延在方向に沿って、導電層30に切り込み線36a,36b,36cを刻設して形成することもできる。この場合には、切り込み線36a,36b,36cを刻設することによって厚みが薄くなった部位における電流密度が最も高くなり、被加熱物への熱移動がなされない空焚きの状態となったときに、当該部分が選択的に過剰に発熱して破断する平面状ヒューズ機能部32として機能する。 As shown in FIGS. 8 and 9, the planar fuse function part 32 has a fuse function that intersects with the heat seal layer non-lamination part 31 a in the main heating area HF (heating areas HF1, HF2, HF3). It is also possible to cut and form cut lines 36a, 36b, 36c in the conductive layer 30 along the extending direction of the heat seal layer non-laminated portion 31a in the portion forming region 32a. In this case, the current density at the portion where the thickness is reduced by engraving the cut lines 36a, 36b, and 36c is the highest, and when the air is in a state where the heat transfer to the object to be heated is not performed. In addition, the portion functions as a planar fuse function portion 32 that selectively generates excessive heat and breaks.
 さらに、平面状ヒューズ機能部32は、図10及び図11に他の変形例を示すように、主加熱領域HF(加熱領域HF1,HF2,HF3)のヒートシール層非積層部31aと交差するヒューズ機能部形成領域32aに、ヒートシール層非積層部31aの延在方向に沿って、導電層30の一部を残す円形の打ち抜き孔37a,37b,37cを穿設して形成することもできる。この場合には、打ち抜き孔37a,37b,37cが穿設されて、径方向に残った導電層30の電流密度が最も高くなり、被加熱物への熱移動がなされない空焚きの状態となったときに、当該一部が選択的に過剰に発熱して破断する平面状ヒューズ機能部32として機能する。
 尚、導電層30の一部を残す打ち抜き孔37a,37b,37cの大きさ、数は、主加熱領域HFの範囲に応じて適宜選択され、その形状も、円形の他、長円、楕円等の適宜形状を採用することができる。
Further, as shown in FIGS. 10 and 11, the planar fuse functional unit 32 is a fuse that intersects the heat seal layer non-laminated portion 31a in the main heating region HF (heating regions HF1, HF2, and HF3). Circular punching holes 37a, 37b, and 37c that leave a part of the conductive layer 30 along the extending direction of the heat seal layer non-laminated portion 31a can also be formed in the functional portion forming region 32a. In this case, the punched holes 37a, 37b, and 37c are formed, and the current density of the conductive layer 30 that remains in the radial direction is the highest, and the punched state in which heat transfer to the object to be heated is not performed. When this occurs, the part functions as a planar fuse function part 32 that selectively generates excessive heat and breaks.
Note that the size and number of the punched holes 37a, 37b, and 37c that leave a part of the conductive layer 30 are appropriately selected according to the range of the main heating region HF. The appropriate shape can be adopted.
 このようにすることで、平面状ヒューズ機能部32は、導電層30を折り曲げて立ち上げたりすることなく形成され、調理する際や、図12に示すように容器を重ねて保管、搬送する際に、損傷を受けやすい立ち上げた部位を有さずに形成することができる。 By doing so, the planar fuse function part 32 is formed without bending and raising the conductive layer 30, and when cooking or when storing and transporting the containers as shown in FIG. In addition, it can be formed without having a raised portion that is easily damaged.
 尚、上記した例では、主加熱領域HFの切断線33a,33c、切断線33d,33e、及び切断線33e,33bによって区画された加熱領域HF1,HF2,HF3のヒートシール層非積層部31aと交差する領域をヒューズ機能部形成領域32aとして、それぞれにヒューズ機能部32が形成されるようにしているが、これに限定されない。主加熱領域HFを複数の領域に区画した場合には、区画された主加熱領域HFの少なくとも一つの領域のヒートシール層非積層部31aと交差する領域をヒューズ機能部形成領域32aとして、平面状ヒューズ機能部32を形成すればよい。
 また、上記した例では、誘導加熱発熱体3を円形に形成し、誘導加熱発熱体3の中心を通る径方向に沿ってヒートシール層非積層部31aを設けているが、ヒートシール層非積層部31aは、主加熱領域HFと交差して帯状に延在して設けられていれば、これに限定されない。
In the above-described example, the heat sealing layer non-lamination portion 31a of the heating regions HF1, HF2, and HF3 defined by the cutting lines 33a and 33c, the cutting lines 33d and 33e, and the cutting lines 33e and 33b of the main heating region HF Although the intersecting regions are defined as fuse function portion formation regions 32a, the fuse function portions 32 are formed in the respective regions. However, the present invention is not limited to this. When the main heating region HF is partitioned into a plurality of regions, a region that intersects the heat seal layer non-stacked portion 31a of at least one region of the partitioned main heating region HF is defined as a fuse function portion forming region 32a in a planar shape. The fuse function unit 32 may be formed.
Further, in the above-described example, the induction heating heating element 3 is formed in a circular shape, and the heat seal layer non-stacking portion 31a is provided along the radial direction passing through the center of the induction heating heating element 3, but the heat seal layer non-stacking is performed. The part 31a is not limited to this as long as the part 31a is provided so as to cross the main heating region HF and extend in a strip shape.
 このような誘導加熱発熱体3を容器本体2に取り付けるにあたり、誘導加熱発熱体3は、容器本体2の内底面21から離間させて取り付けるのが好ましい。
 誘導加熱発熱体3を容器本体2の内底面21から離間させて取り付けることで、容器本体2に収容された水などの液状の被加熱物が、誘導加熱発熱体3と容器本体2の内底面21との間にも行き渡るようになる。これによって、被加熱物に対する加熱効率を高めるとともに、誘導加熱発熱体3からの熱によって容器本体2が損傷するのを有効に回避することができる。さらに、容器本体2の損傷を防止するため、誘導加熱発熱体3の裏面側に被加熱物が停滞せずに対流を促すように、導加熱発熱体3を貫通する抜き孔やスリット38などを形成することができる。
In attaching the induction heating heating element 3 to the container main body 2, it is preferable that the induction heating heating element 3 is attached separately from the inner bottom surface 21 of the container main body 2.
By attaching the induction heating heating element 3 away from the inner bottom surface 21 of the container main body 2, a liquid heated object such as water accommodated in the container main body 2 is allowed to move to the inner bottom surface of the induction heating heating element 3 and the container main body 2. It will come to and from 21. As a result, the heating efficiency for the object to be heated can be increased, and the container main body 2 can be effectively avoided from being damaged by the heat from the induction heating heating element 3. Further, in order to prevent the container body 2 from being damaged, a hole or slit 38 that penetrates the conductive heating heating element 3 is provided on the back side of the induction heating heating element 3 so as to promote convection without stagnation of the heated object. Can be formed.
 本実施形態にあっては、図4に示すように、容器本体2の内底面21の中央付近に突出して設けた第一支持部22aと、その外周側に突出して設けた第二支持部22bと、さらにその外周側に突出して設けた第三支持部22cに、誘導加熱発熱体3をヒートシールすることによって、誘導加熱発熱体3を容器本体2の内底面21から離間させて取り付けている。これらの支持部22a,22b,22cと誘導加熱発熱体3とのヒートシール部を図3に斜線で示す。 In the present embodiment, as shown in FIG. 4, a first support portion 22 a provided protruding near the center of the inner bottom surface 21 of the container body 2 and a second support portion 22 b provided protruding toward the outer peripheral side thereof. Further, the induction heating heating element 3 is heat-sealed to the third support portion 22c provided so as to protrude from the outer peripheral side thereof, thereby attaching the induction heating heating element 3 away from the inner bottom surface 21 of the container body 2. . A heat seal portion between these support portions 22a, 22b, 22c and the induction heating heating element 3 is shown by hatching in FIG.
 また、誘導加熱発熱体3を容器本体2の内底面21から離間させて取り付ける際に、支持部22a,22b,22cの高さを、第一支持部22a、第二支持部22b、第三支持部22cの順に、外周側に向かって順に低くし、容器本体2に取り付けられた誘導加熱発熱体3の内底面21に対する高さが、中央側が高く、周縁に向かって低くなるように傾斜した状態とするのが好ましい。このような形態とすることにより、被加熱物が水等の場合、容器内の水が所定量よりも少なくなると、被加熱物が誘導加熱発熱体3の中央からその周囲に流動し、誘導加熱発熱体3の周縁部領域OFの容器本体2との未ヒートシール部分から、容器本体2の内底面と誘導加熱発熱体3のヒートシール層31の間隙に滞留する。このように、被加熱物を滞留させることにより、被加熱物の減少によって生じる誘導加熱発熱体3の過加熱による容器1の損傷を、被加熱物を介して防止することができる。 Further, when the induction heating heating element 3 is attached to be separated from the inner bottom surface 21 of the container body 2, the height of the support portions 22a, 22b, and 22c is set to the first support portion 22a, the second support portion 22b, and the third support. In a state where the height of the induction heating heating element 3 attached to the container main body 2 with respect to the inner bottom surface 21 is increased toward the outer peripheral side in order of the portion 22c, the center side is higher and the height is lower toward the peripheral edge. It is preferable that By adopting such a configuration, when the object to be heated is water or the like, when the amount of water in the container is less than a predetermined amount, the object to be heated flows from the center of the induction heating heating element 3 to the periphery thereof, and induction heating is performed. It stays in the gap between the inner bottom surface of the container body 2 and the heat seal layer 31 of the induction heating element 3 from the unheat-sealed portion of the peripheral region OF of the heating element 3 with the container body 2. In this way, by retaining the object to be heated, damage to the container 1 due to overheating of the induction heating heating element 3 caused by the decrease in the object to be heated can be prevented via the object to be heated.
 さらに、本実施形態にあっては、例えば、図4に示すように、容器本体2の開口部周縁に段部23を設けて、食材が載置されるトレイ4を支持又は嵌合できるようにすることができる。 Furthermore, in this embodiment, for example, as shown in FIG. 4, a step portion 23 is provided at the periphery of the opening of the container body 2 so that the tray 4 on which the food is placed can be supported or fitted. can do.
[第二実施形態]
 次に、本発明の第二実施形態について説明する。
 前述した第一実施形態では、導電層30を、周方向に沿う複数の切断線33a,33bによって、中央部領域CFと、主加熱領域HFと、周縁部領域OFとに区画し、ヒートシール層非積層部31aを、主加熱領域HFと交差して帯状に延在して設け、交差する領域をヒューズ機能部形成領域32aとした。
 本実施形態では、導電層30をこれらの領域に区画することなく、ヒートシール層31が非積層とされたヒートシール層非積層部31aの導電層30から成るヒューズ機能部形成領域32aに、平面状ヒューズ機能部32を形成した点が第一実施形態と異なっている。
[Second Embodiment]
Next, a second embodiment of the present invention will be described.
In the first embodiment described above, the conductive layer 30 is partitioned into the central region CF, the main heating region HF, and the peripheral region OF by a plurality of cutting lines 33a and 33b along the circumferential direction, and the heat seal layer The non-stacked portion 31a is provided extending in a strip shape so as to intersect with the main heating region HF, and the intersecting region is defined as a fuse function portion forming region 32a.
In this embodiment, the conductive layer 30 is not divided into these regions, and the fuse function portion forming region 32a composed of the conductive layer 30 of the heat seal layer non-laminated portion 31a in which the heat seal layer 31 is non-laminated is planar. The point which formed the fuse function part 32 differs from 1st embodiment.
 具体的には、図13及び14に示すように、本実施形態では、誘導加熱発熱体3の周縁に内接する円形状のヒートシール層非積層部31aを設けている。そして、かかるヒートシール層非積層部31aの導電層30から成るヒューズ機能部形成領域32aに、その周囲に導電層30を残して円形の抜き孔38を形成する。このように、ヒューズ機能部形成領域32aの導電層30に抜き孔38を形成することにより、誘導加熱発熱体3に誘起される渦電流の電流密度に偏りが生じ、誘導加熱発熱体3の周縁と抜き孔38との間に残存する導電層30の電流密度が最も高くなる。その結果、被加熱物への熱移動がなされない空焚きの状態となったときに、当該部位が、選択的に過剰に発熱して破断する平面状ヒューズ機能部32として機能する。 Specifically, as shown in FIGS. 13 and 14, in the present embodiment, a circular heat seal layer non-laminate portion 31 a inscribed in the periphery of the induction heating heating element 3 is provided. Then, a circular hole 38 is formed in the fuse function part forming region 32a composed of the conductive layer 30 of the heat seal layer non-laminated part 31a, leaving the conductive layer 30 around the fuse functional part forming region 32a. As described above, by forming the hole 38 in the conductive layer 30 of the fuse function part formation region 32a, the current density of the eddy current induced in the induction heating element 3 is biased, and the periphery of the induction heating element 3 is increased. The current density of the conductive layer 30 remaining between the hole 38 and the hole 38 becomes the highest. As a result, when it is in an empty state where heat transfer to the object to be heated is not performed, the part functions as a planar fuse function part 32 that selectively generates excessive heat and breaks.
 このように、本実施形態の平面状ヒューズ機能部32は、前述した第一実施形態と同様に導電層30を折り曲げ立ち上げて形成することなく、調理や、図12に示すように容器を重ねて保管、搬送する際に、平面状ヒューズ機能部32が損傷することがない。
 本実施形態では、他の構成については第一実施形態と同様であり、その説明は省略する。
As described above, the planar fuse function unit 32 of the present embodiment does not form the conductive layer 30 by bending up and stacks containers as shown in FIG. Therefore, the planar fuse function unit 32 is not damaged when stored and transported.
In the present embodiment, other configurations are the same as those in the first embodiment, and the description thereof is omitted.
[第三実施形態]
 次に、本発明の第三実施形態について説明する。
 なお、図15は、本実施形態に係る誘導加熱容器の概略を示す平面図であり、その側面図は第一実施形態の側面図(図2)と同一にあらわれ、底面図は第一実施形態の底面図(図3)と同一にあらわれる。また、図15のG-G断面を示す断面図は、図1のA-A断面を示す断面図(図4)と同一にあらわれる。
[Third embodiment]
Next, a third embodiment of the present invention will be described.
FIG. 15 is a plan view schematically showing the induction heating container according to the present embodiment, the side view of which is the same as the side view (FIG. 2) of the first embodiment, and the bottom view is the first embodiment. It appears the same as the bottom view (FIG. 3). 15 is the same as the cross-sectional view (FIG. 4) showing the AA cross section of FIG.
 本実施形態では、前述した第一実施形態と同様に、導電層30を、周方向に沿う複数の切断線33a,33bによって、中央部領域CFと、主加熱領域HFと、周縁部領域OFとに区画し、ヒートシール層非積層部31aを、主加熱領域HFと交差して帯状に延在して設け、交差する領域をヒューズ機能部形成領域32aとしているが、ヒューズ機能部形成領域32aに形成する平面状ヒューズ機能部32の形態が、第一実施形態と異なっている。 In the present embodiment, as in the first embodiment described above, the conductive layer 30 is divided into a central region CF, a main heating region HF, and a peripheral region OF by a plurality of cutting lines 33a and 33b along the circumferential direction. The heat seal layer non-laminated portion 31a is provided so as to extend in a band shape intersecting with the main heating region HF, and the intersecting region is defined as a fuse function portion forming region 32a. The form of the planar fuse function part 32 to be formed is different from that of the first embodiment.
 すなわち、本実施形態では、図15、及び図16に示すように、主加熱領域HFの切断線33a,33c、切断線33d,33e、及び切断線33e,33bによって区画された加熱領域HF1,HF2,HF3のヒートシール層非積層部31aと交差する領域をヒューズ機能部形成領域32aとして、それぞれに、ヒートシール層非積層部31aを跨いで導電層30を切断して成り、これらの加熱領域HF1,HF2,HF3を区画する内周側に位置する一方の切断線33a,33d,33eに、ヒートシール層31上で両端が接する円弧状のスリット39a,39b,39cを形成してある。そして、加熱領域HF1,HF2,HF3を区画する外周側に位置する他方の切断線33c,33e,33bと、スリット39a,39b,39cとの間の幅を狭くして、この部分(スリット39a,39b,39cに対して、当該スリット39a,39b,39cの両端が接する切断線33a,33d,33e側とは反対側の部位)が平面状ヒューズ機能部32として機能するようにしてある。 That is, in this embodiment, as shown in FIGS. 15 and 16, the heating regions HF1 and HF2 defined by the cutting lines 33a and 33c, the cutting lines 33d and 33e, and the cutting lines 33e and 33b of the main heating region HF. , HF3 that intersect with the heat seal layer non-laminated portion 31a is defined as a fuse function portion forming region 32a, and the conductive layer 30 is cut across the heat seal layer non-laminated portion 31a. , HF2, and HF3, arc-shaped slits 39a, 39b, and 39c that are in contact with each other on the heat seal layer 31 are formed on one of the cutting lines 33a, 33d, and 33e located on the inner peripheral side. And the width | variety between the other cutting line 33c, 33e, 33b located in the outer peripheral side which divides heating area | region HF1, HF2, HF3, and slit 39a, 39b, 39c is made narrow, and this part (slit 39a, The portions of the slits 39a, 39b, and 39c that are in contact with both ends of the slits 39a, 39b, and 39c are located on the side opposite to the cutting lines 33a, 33d, and 33e) to function as the planar fuse function portion 32.
 このようにすることで、加熱領域HF1,HF2,HF3に誘起される渦電流の電流密度に偏りが生じ、切断線33c,33e,33bとスリット39a,39b,39cとの間にそれぞれ形成される平面状ヒューズ機能部32における電流密度が最も高くなる。その結果、被加熱物への熱移動がなされない空焚きの状態となったときに、当該平面状ヒューズ機能部32が選択的に過剰に発熱して破断する。
 また、かかる平面状ヒューズ機能部32にあっても、導電層30を折り曲げて立ち上げたりすることなく平面状に形成されるため、調理する際や、図12に示すように容器を重ねて保管、搬送する際に、平面状ヒューズ機能部32の損傷が防止される。
By doing so, the current density of eddy currents induced in the heating regions HF1, HF2, and HF3 is biased and formed between the cutting lines 33c, 33e, and 33b and the slits 39a, 39b, and 39c, respectively. The current density in the planar fuse function unit 32 is the highest. As a result, the planar fuse function part 32 selectively generates heat excessively and breaks when it is in an empty state where heat transfer to the object to be heated is not performed.
Further, even in such a planar fuse function section 32, the conductive layer 30 is formed in a planar shape without being bent and raised, so that when cooking, as shown in FIG. When transported, the planar fuse function part 32 is prevented from being damaged.
 誘起される渦電流に乱れが生じ難くする上で、スリット39a,39b,39cは円弧状に形成するのが特に好ましいが、これに限定されない。スリット39a,39b,39cは、対向する外周側に位置する他方の切断線33c,33e,33bとの間の幅を狭くして、平面状ヒューズ機能部32として機能する部分を形成できれば良く、好ましくは、スリット39a,39b,39cの両端が接する内周側に位置する一方の切断線33a,33d,33eから離間する方向に突出するように形成する。 The slits 39a, 39b, and 39c are particularly preferably formed in an arc shape in order to make it difficult for the induced eddy current to be disturbed, but the invention is not limited to this. The slits 39a, 39b, and 39c only need to be able to form a portion that functions as the planar fuse functional portion 32 by narrowing the width between the other cutting lines 33c, 33e, and 33b located on the opposite outer peripheral side. Is formed so as to protrude in a direction away from one cutting line 33a, 33d, 33e located on the inner peripheral side where both ends of the slits 39a, 39b, 39c are in contact.
 また、スリット39a,39b,39cは、図20(a)に示すように、ヒートシール層非積層部31aを跨いで導電層30を切断して成り、加熱領域HF1,HF2,HF3を区画する外周側に位置する一方の切断線33c,33e,33bに、ヒートシール層31上で両端が接する円弧状のスリット39a,39b,39cとして形成して、加熱領域HF1,HF2,HF3を区画する内周側に位置する他方の切断線33a,33d,33eと、スリット39a,39b,39cとの間の幅を狭くして、この部分を平面状ヒューズ機能部32としても良い。
 尚、図20は、図15中鎖線で囲む部分を拡大して、スリット39aの変形例を示している。
Further, as shown in FIG. 20A, the slits 39a, 39b, and 39c are formed by cutting the conductive layer 30 across the heat seal layer non-laminated portion 31a, and the outer periphery that partitions the heating regions HF1, HF2, and HF3. One of the cutting lines 33c, 33e, 33b positioned on the side is formed as arc-shaped slits 39a, 39b, 39c whose both ends are in contact with each other on the heat seal layer 31, and the inner circumference that defines the heating regions HF1, HF2, HF3 The width between the other cutting lines 33a, 33d, and 33e located on the side and the slits 39a, 39b, and 39c may be narrowed, and this portion may be used as the planar fuse function portion 32.
FIG. 20 shows a modified example of the slit 39a by enlarging the portion surrounded by the chain line in FIG.
 さらに、スリット39a,39b,39cは、図20(b)に示すように、ヒートシール層非積層部31aを跨いで導電層30を切断して成り、加熱領域HF1,HF2,HF3を区画する内周側に位置する一方の切断線33a,33d,33eと、外周側に位置する他方の切断線33c,33e,33bの両方に、それぞれヒートシール層31上で両端が接する円弧状のスリット39a,39b,39cとして形成して、このスリット39a,39b,39c同士間の幅狭部を平面状ヒューズ機能部32としても良い。 Furthermore, as shown in FIG. 20B, the slits 39a, 39b, 39c are formed by cutting the conductive layer 30 across the heat seal layer non-laminated portion 31a, and partition the heating regions HF1, HF2, HF3. Arc-shaped slits 39a, both ends of which are in contact with each other on the heat seal layer 31, respectively, on one cutting line 33a, 33d, 33e located on the circumferential side and the other cutting line 33c, 33e, 33b located on the outer circumferential side. 39b and 39c may be formed, and the narrow portion between the slits 39a, 39b and 39c may be used as the planar fuse function portion 32.
 すなわち、平面状ヒューズ機能部32は、ヒートシール層非積層部31aを跨いで導電層30を切断して成り、加熱領域HF1,HF2,HF3を区画する内周側又は外周側の少なくとも一方の切断線に両端が接するスリット39a,39b,39cを形成することにより、内周側の切断線33a,33d,33eと外周側の切断線33c,33e,33bとの間に平面状に形成されていれば良い。
 尚、市販の家庭用電磁調理器が備える一般的な電磁誘導加熱コイルは、内径5cm程度、外径20cm程度で加熱コイル径が小さく、このような場合は、渦電流を外周側の切断線33c,33e,33bとスリット39a,39b,39cとの間に流すことにより、ヒューズ機能部32がより安全に作動して容器本体2の損傷が防止される。
That is, the planar fuse functional unit 32 is formed by cutting the conductive layer 30 across the heat seal layer non-laminated portion 31a, and cutting at least one of the inner peripheral side and the outer peripheral side that partitions the heating regions HF1, HF2, and HF3. By forming slits 39a, 39b, and 39c whose ends are in contact with the line, the slits 39a, 33d, and 33e on the inner circumferential side are formed in a planar shape between the cutting lines 33c, 33e, and 33b on the outer circumferential side. It ’s fine.
Note that a general electromagnetic induction heating coil provided in a commercially available home-use electromagnetic cooker has an inner diameter of about 5 cm and an outer diameter of about 20 cm, and the heating coil diameter is small. In such a case, the eddy current is cut off on the outer peripheral cutting line 33c. , 33e, 33b and the slits 39a, 39b, 39c, the fuse function unit 32 operates more safely and the container body 2 is prevented from being damaged.
 また、本実施形態では、スリット39a,39b,39cの両端を、ヒートシール層非積層部31aを跨ぎ、ヒートシール層31上で内周側の切断線33a,33d,33eに接するように形成することで、導電層30が切り取られて脱落することがない。これに対し、スリット39a,39b,39cの両端を、ヒートシール層非積層部31aを跨がずに、ヒートシール層非積層部31a内で内周側の切断線33a,33d,33eに接するように形成すると、かかるスリット39a,39b,39cによって導電層30が切り取られて脱落してしまう。誘導加熱発熱体3を製造する際に、導電層30が切り取られて脱落した脱落片は、切断屑として処理しなければならず、その処理に手間を要するが、本実施形態によれば、このような手間を要することなく誘導加熱発熱体3を製造することができる。
 ただし、製造時に切断屑の処理が特に問題にならなければ、スリット39a,39b,39cは、前述したように、その両端を、ヒートシール層非積層部31aを跨がずに、ヒートシール層非積層部31a内で内周側の切断線33a,33d,33eに接するように形成しても良く、他方の外周側の切断線33c,33e,33bとの間にヒューズ機能部32が形成されていれば、上記態様に限定されない。
Further, in the present embodiment, both ends of the slits 39a, 39b, and 39c are formed so as to straddle the heat seal layer non-stacked portion 31a and contact the inner peripheral cutting lines 33a, 33d, and 33e on the heat seal layer 31. Thus, the conductive layer 30 is not cut off and dropped off. On the other hand, both ends of the slits 39a, 39b, and 39c do not straddle the heat seal layer non-laminate portion 31a, and come into contact with the inner peripheral cutting lines 33a, 33d, and 33e in the heat seal layer non-laminate portion 31a. If formed, the conductive layer 30 is cut off by the slits 39a, 39b, and 39c and falls off. When the induction heating heating element 3 is manufactured, the falling pieces that have been cut off due to the conductive layer 30 must be processed as cutting waste, which requires time and effort. According to this embodiment, The induction heating heating element 3 can be manufactured without requiring such labor.
However, as long as the processing of cutting waste does not become a problem at the time of manufacture, the slits 39a, 39b, and 39c do not straddle the heat seal layer non-laminated portion 31a at both ends as described above. The laminated portion 31a may be formed so as to be in contact with the inner peripheral cutting lines 33a, 33d, and 33e, and the fuse functional portion 32 is formed between the other outer peripheral cutting lines 33c, 33e, and 33b. If it is, it will not be limited to the said aspect.
 また、主加熱領域HFを複数の領域に区画した場合には、区画された主加熱領域HFの少なくとも一つの領域のヒートシール層非積層部31aと交差する領域をヒューズ機能部形成領域32aとして、平面状ヒューズ機能部32を形成すればよいのは第一実施形態と同様であるが、誘導加熱発熱体3の大きさや形状などに応じて、主加熱領域HFは、一つの加熱領域として区画してもよい。
 換言すれば、主加熱領域HFを複数の加熱領域HF1,HF2,HF3に区画する切断線33c,33d,33eを省略してもよい。このような場合には、主加熱領域HFを区画する内周側の切断線33a又は外周側の切断線33bの少なくとも一方に、その両端が接するようにスリットを形成して、内周側の切断線33aと外周側の切断線33bとの間に、平面状ヒューズ機能部32を形成すれば良い。
Further, when the main heating region HF is partitioned into a plurality of regions, a region intersecting with the heat seal layer non-laminated portion 31a of at least one region of the partitioned main heating region HF is defined as a fuse function portion forming region 32a. The planar fuse functional unit 32 may be formed in the same manner as in the first embodiment, but the main heating region HF is divided as one heating region according to the size and shape of the induction heating heating element 3. May be.
In other words, the cutting lines 33c, 33d, and 33e that divide the main heating region HF into a plurality of heating regions HF1, HF2, and HF3 may be omitted. In such a case, a slit is formed so that both ends thereof are in contact with at least one of the inner peripheral cutting line 33a or the outer peripheral cutting line 33b that defines the main heating region HF, and the inner peripheral cutting is performed. The planar fuse function part 32 may be formed between the line 33a and the outer peripheral cutting line 33b.
 さらに、本実施形態では、中央部領域CFと主加熱領域HFとを区画する切断線33aが、第一実施形態に比べて外周側に位置しており、中央部領域CFは、誘導加熱発熱体3の中心側から外周縁側に向かって放射状に導電層30を切断する複数の切断線34aによって周方向に複数の領域に区画されるとともに、切断線33aと同心円状に周方向に沿って導電層30を切断する切断線33fによって径方向にも複数の領域に区画されている。
 図示する例において、中央部領域CFは、放射状切断線34aによって周方向に八つの領域に区画されるとともに、切断線33fによって径方向に二つの領域に区画して、中央部領域CFを十六分割して発熱を抑制しているが、これに限定されない。中央部領域CFの発熱を抑制できれば、誘導加熱発熱体3の大きさや形状などに応じて、中央部領域CFを周方向に複数の領域に区画する放射状切断線34aの数を増減したり、中央部領域CFを径方向に区画する切断線33fを省略、又は増減したりしてもよい。
Furthermore, in the present embodiment, the cutting line 33a that divides the central region CF and the main heating region HF is located on the outer peripheral side compared to the first embodiment, and the central region CF is an induction heating heating element. 3 is divided into a plurality of regions in the circumferential direction by a plurality of cutting lines 34a that radially cut the conductive layer 30 from the center side toward the outer peripheral edge side, and the conductive layer concentrically with the cutting lines 33a along the circumferential direction. It is also divided into a plurality of regions in the radial direction by a cutting line 33 f that cuts 30.
In the example shown in the drawing, the central region CF is divided into eight regions in the circumferential direction by the radial cutting lines 34a, and is divided into two regions in the radial direction by the cutting lines 33f. Although heat generation is suppressed by dividing, it is not limited to this. If the heat generation in the central region CF can be suppressed, the number of radial cutting lines 34a that divide the central region CF into a plurality of regions in the circumferential direction is increased or decreased according to the size and shape of the induction heating heating element 3, The cutting line 33f that divides the partial region CF in the radial direction may be omitted or increased or decreased.
 本実施形態は、以上の点で第一実施形態と異なっているが、他の構成については第一実施形態と同様であり、その説明は省略する。 This embodiment is different from the first embodiment in the above points, but the other configurations are the same as those of the first embodiment, and the description thereof is omitted.
 以上、本発明について、好ましい実施形態を示して説明したが、本発明は、前述した実施形態に限定されるものではなく、本発明の範囲で種々の変更実施が可能であることは言うまでもない。 Although the present invention has been described with reference to the preferred embodiment, the present invention is not limited to the above-described embodiment, and it goes without saying that various modifications can be made within the scope of the present invention.
 この明細書に記載の文献及び本願のパリ優先権の基礎となる日本出願明細書の内容を全てここに援用する。 All the contents of the documents described in this specification and the content of the Japanese application that forms the basis of the Paris priority of the present application are incorporated herein.
 以上説明したように、本発明は、市販の電磁調理器により、安全、かつ、手軽に、被加熱物を加熱することができる誘導加熱容器を提供する。 As described above, the present invention provides an induction heating container that can heat an object to be heated safely and easily with a commercially available electromagnetic cooker.
 1     誘導加熱容器
 2     容器本体
 3     誘導加熱発熱体
 30    導電層
 31     ヒートシール層
 31a     ヒートシール層非積層部
 32     平面状ヒューズ機能部
 32a     ヒューズ機能部形成領域
 33a~f     切断線
 34a~c     切断線
 35a~e     スリット
 36a~c     切り込み線
 37a~c     打ち抜き孔
 38a~c     スリット
 CF     中央部領域
 HF     主加熱領域
 HF1~3     加熱領域
 OF     周縁部領域
 
 
DESCRIPTION OF SYMBOLS 1 Induction heating container 2 Container body 3 Induction heating heating element 30 Conductive layer 31 Heat seal layer 31a Heat seal layer non-lamination part 32 Planar fuse function part 32a Fuse function part formation area 33a to f Cut line 34a to c Cut line 35a to e Slit 36a to c Cut line 37a to c Punching hole 38a to c Slit CF Central region HF Main heating region HF1 to 3 Heating region OF Peripheral region

Claims (14)

  1.  高周波磁界により渦電流が誘起されて発熱する導電層に、ヒートシール層を積層した積層体から成る誘導加熱発熱体であって、
     前記ヒートシール層が非積層とされたヒートシール層非積層部を設け、前記ヒートシール層非積層部の前記導電層から成るヒューズ機能部形成領域に、平面状ヒューズ機能部を形成したことを特徴とする誘導加熱発熱体。
    An induction heating heating element comprising a laminate in which a heat seal layer is laminated on a conductive layer that generates heat when an eddy current is induced by a high-frequency magnetic field,
    A heat seal layer non-laminated portion in which the heat seal layer is not laminated is provided, and a planar fuse function portion is formed in a fuse function portion forming region formed of the conductive layer of the heat seal layer non-laminated portion. Induction heating heating element.
  2.  前記導電層が、前記導電層を周方向に沿って切断する切断線によって、中央部領域と、一又は複数の加熱領域と、周縁部領域とに区画され、
     前記ヒートシール層非積層部を、前記加熱領域と交差して帯状に延在して設け、少なくとも一つの前記加熱領域の前記ヒートシール層非積層部と交差する領域を前記ヒューズ機能部形成領域とした請求項1に記載の誘導加熱発熱体。
    The conductive layer is partitioned into a central region, one or a plurality of heating regions, and a peripheral region by a cutting line that cuts the conductive layer along a circumferential direction,
    The heat seal layer non-laminated portion is provided extending in a belt shape so as to intersect with the heating region, and a region intersecting the heat seal layer non-laminated portion of at least one of the heating regions is defined as the fuse function portion forming region. The induction heating heating element according to claim 1.
  3.  前記ヒューズ機能部形成領域の前記導電層に、前記ヒートシール層非積層部の延在方向に沿った一部を残して前記導電層を切断して成るスリットを形成し、前記導電層に残された当該一部を前記平面状ヒューズ機能部とした請求項2に記載の誘導加熱発熱体。 A slit formed by cutting the conductive layer is formed in the conductive layer in the fuse function portion formation region, leaving a part along the extending direction of the heat seal layer non-laminated portion, and is left in the conductive layer. The induction heating heating element according to claim 2, wherein the part is the planar fuse function unit.
  4.  前記ヒューズ機能部形成領域の前記導電層に、前記ヒートシール層非積層部の延在方向に沿って切り込み線を刻設し、前記導電層の厚みが薄くなった部位を前記平面状ヒューズ機能部とした請求項2に記載の誘導加熱発熱体。 A cut line is engraved along the extending direction of the heat seal layer non-lamination portion in the conductive layer in the fuse function portion forming region, and a portion where the thickness of the conductive layer is reduced is defined as the planar fuse function portion. The induction heating heating element according to claim 2.
  5.  前記ヒューズ機能部形成領域の前記導電層に、前記ヒートシール層非積層部の延在方向に沿った一部を残して打ち抜き孔を穿設し、前記導電層に残された当該一部を前記平面状ヒューズ機能部とした請求項2に記載の誘導加熱発熱体。 A punched hole is formed in the conductive layer in the fuse function portion formation region leaving a part along the extending direction of the heat seal layer non-laminated portion, and the part left in the conductive layer is The induction heating heating element according to claim 2, wherein the induction heating heating element is a planar fuse functional part.
  6.  少なくとも前記ヒューズ機能部形成領域の前記導電層を切断して成り、前記加熱領域を区画する内周側又は外周側の少なくとも一方の前記切断線に両端が接するスリットを形成し、前記スリットに対して前記スリットの両端が接する前記切断線側とは反対側の部位を平面状ヒューズ機能部とした請求項2に記載の誘導加熱発熱体。 Cutting at least the conductive layer in the fuse function part formation region, forming a slit whose both ends are in contact with at least one of the cutting lines on the inner peripheral side or the outer peripheral side defining the heating region; The induction heating heating element according to claim 2, wherein a portion opposite to the cutting line side where both ends of the slit are in contact with each other is a planar fuse function part.
  7.  前記加熱領域を区画する内周側の前記切断線に両端が接するスリットを形成した請求項6に記載の誘導加熱発熱体。 The induction heating heating element according to claim 6, wherein a slit whose both ends are in contact with the cutting line on the inner peripheral side that divides the heating region is formed.
  8.  前記スリットが前記ヒートシール層非積層部を跨いで前記導電層を切断し、前記スリットの両端が前記ヒートシール層上で前記切断線に接する請求項6又は7に記載の誘導加熱発熱体。 The induction heating heating element according to claim 6 or 7, wherein the slit cuts the conductive layer across the heat seal layer non-laminated portion, and both ends of the slit are in contact with the cutting line on the heat seal layer.
  9.  前記スリットが、前記スリットの両端が接する前記切断線から離間する方向に突出する請求項6乃至8のいずれか一項に記載の誘導加熱発熱体。 The induction heating heating element according to any one of claims 6 to 8, wherein the slit protrudes in a direction away from the cutting line where both ends of the slit are in contact.
  10.  前記スリットが、円弧状に形成された請求項9に記載の誘導加熱発熱体。 The induction heating heating element according to claim 9, wherein the slit is formed in an arc shape.
  11.  前記加熱領域が、周方向に沿って前記導電層を切断する複数の切断線によって複数の領域に区画されるとともに、前記加熱領域を複数の領域に区画する当該切断線が外周寄りに密に設けられている請求項1乃至10のいずれか一項に記載の誘導加熱発熱体。 The heating region is partitioned into a plurality of regions by a plurality of cutting lines that cut the conductive layer along a circumferential direction, and the cutting lines that partition the heating region into a plurality of regions are provided close to the outer periphery. The induction heating heating element according to any one of claims 1 to 10.
  12.  前記中央部領域が、中心側から外周縁側に向かって放射状に前記導電層を切断する複数の放射状切断線によって複数の領域に区画された請求項1乃至11のいずれか一項に記載の誘導加熱発熱体。 The induction heating according to any one of claims 1 to 11, wherein the central region is partitioned into a plurality of regions by a plurality of radial cutting lines that radially cut the conductive layer from a center side toward an outer peripheral edge side. Heating element.
  13.  前記中央部領域が、周方向に沿って前記導電層を切断する一又は複数の切断線によって複数の領域に区画された請求項1乃至12のいずれか一項に記載の誘導加熱発熱体。 The induction heating element according to any one of claims 1 to 12, wherein the central region is divided into a plurality of regions by one or a plurality of cutting lines that cut the conductive layer along a circumferential direction.
  14.  請求項1乃至13のいずれか一項に記載の誘導加熱発熱体を、非導電性材料からなる容器本体に取り付けたことを特徴とする誘導加熱容器。 An induction heating container, wherein the induction heating heating element according to any one of claims 1 to 13 is attached to a container body made of a non-conductive material.
PCT/JP2016/000576 2015-03-16 2016-02-04 Induction heating element and induction heating vessel WO2016147534A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680011267.8A CN107249405A (en) 2015-03-16 2016-02-04 Induction heating body and induction heating vessel

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015052503 2015-03-16
JP2015-052503 2015-03-16
JP2015101034A JP2016171979A (en) 2015-03-16 2015-05-18 Induction heating exothermic body and induction heating container
JP2015-101034 2015-05-18
JP2015-207317 2015-10-21
JP2015207317A JP5954482B1 (en) 2015-10-21 2015-10-21 Induction heating heating element and induction heating container

Publications (1)

Publication Number Publication Date
WO2016147534A1 true WO2016147534A1 (en) 2016-09-22

Family

ID=56920241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000576 WO2016147534A1 (en) 2015-03-16 2016-02-04 Induction heating element and induction heating vessel

Country Status (1)

Country Link
WO (1) WO2016147534A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003339529A (en) * 2002-05-31 2003-12-02 Fuji Seal Inc Container for induction heating cooking
WO2014050029A1 (en) * 2012-09-28 2014-04-03 東洋製罐グループホールディングス株式会社 Induction heating container
JP2014198231A (en) * 2013-03-11 2014-10-23 東洋製罐グループホールディングス株式会社 Induction heating heat dissipation element and induction heating container

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003339529A (en) * 2002-05-31 2003-12-02 Fuji Seal Inc Container for induction heating cooking
WO2014050029A1 (en) * 2012-09-28 2014-04-03 東洋製罐グループホールディングス株式会社 Induction heating container
JP2014198231A (en) * 2013-03-11 2014-10-23 東洋製罐グループホールディングス株式会社 Induction heating heat dissipation element and induction heating container

Similar Documents

Publication Publication Date Title
JP5070870B2 (en) Induction heating heating element and induction heating container
JP6127593B2 (en) Induction heating vessel
JP5788557B2 (en) Heat generation sheet for IH cooker and cooking set for IH cooker
JP6260286B2 (en) Induction heating heating element and induction heating container
JP5954482B1 (en) Induction heating heating element and induction heating container
JP4826345B2 (en) Packaging container
JP5102508B2 (en) Induction heating cooking container
WO2016147534A1 (en) Induction heating element and induction heating vessel
JP5737360B2 (en) Induction heating heating element and induction heating container
JP2016171979A (en) Induction heating exothermic body and induction heating container
WO2015059900A1 (en) Induction-heating heating element, and induction heating vessel
JP6481470B2 (en) Induction heating heating element and induction heating container
JP6260434B2 (en) Induction heating heating element and induction heating container
WO2018116704A1 (en) Heat generating sheet for ih cooking equipment
JP5253938B2 (en) Induction heating vessel
JP2007222402A (en) Heating container and inner tray, and heating method using electromagnetic cooker
TW201703699A (en) Induction heating element and induction heating vessel
JP6150029B1 (en) Laminated heating sheet for IH cooker
WO2017119297A1 (en) Laminated heat-generating sheet for ih cooker
JP6052335B2 (en) Induction heating heating element
JP2010119557A (en) Container for electromagnetic cooker
JP2007260213A (en) Cooking vessel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764368

Country of ref document: EP

Kind code of ref document: A1