WO2016147327A1 - Electrical discharge machining apparatus - Google Patents

Electrical discharge machining apparatus Download PDF

Info

Publication number
WO2016147327A1
WO2016147327A1 PCT/JP2015/057963 JP2015057963W WO2016147327A1 WO 2016147327 A1 WO2016147327 A1 WO 2016147327A1 JP 2015057963 W JP2015057963 W JP 2015057963W WO 2016147327 A1 WO2016147327 A1 WO 2016147327A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
voltage
threshold value
absolute value
electrodes
Prior art date
Application number
PCT/JP2015/057963
Other languages
French (fr)
Japanese (ja)
Inventor
祐飛 佐々木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015560468A priority Critical patent/JP5968565B1/en
Priority to PCT/JP2015/057963 priority patent/WO2016147327A1/en
Publication of WO2016147327A1 publication Critical patent/WO2016147327A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/02Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges

Definitions

  • the present invention relates to an electric discharge machining apparatus for machining a workpiece by electric discharge machining in which preliminary discharge and main discharge are repeated.
  • An electric discharge machining apparatus is an apparatus that generates a pulsed discharge between an electrode and a workpiece that are disposed opposite to each other in water, and uses the thermal energy to process the workpiece.
  • Patent Document 1 relates to a wire-cut electric discharge machining power supply, including a high voltage main power supply, a low voltage main power supply, a sub power supply, a voltage detection circuit for detecting a gap voltage, and a power supply control circuit for controlling the application timing of each of the three power supplies. It is described that discharge is started by voltage application by a sub power source, and voltages having different pulse widths are applied by a high voltage main power source or a low voltage main power source according to information on a gap voltage after the discharge starts.
  • the electrical discharge machining apparatus performs electrical discharge machining by repeating preliminary discharge and main discharge executed after the preliminary discharge.
  • the workpiece is a multi-element bonding material that is a difficult-to-process material, a high resistance element and a low resistance element having different resistance values are mixed, so that the state of preliminary discharge is not uniform.
  • it is necessary to set the intensity of the discharge pulse of the main discharge in accordance with the resistance value of the element in the workpiece that has generated the preliminary discharge.
  • An object of the present invention is to obtain an electric discharge machining apparatus capable of improving the quality of a processed surface of a multi-element bonded material in electric discharge machining in which preliminary discharge and main discharge are repeated.
  • An electric discharge machining apparatus includes a power source that outputs a voltage applied between electrodes between a electrode and a workpiece, a switch that turns on or off a voltage that the power supply applies to the gap, and the gap between the electrodes.
  • a detection device that detects a discharge state and outputs a detection result; controls a switch using the detection result of the detection device to control a voltage applied between the electrodes; and a first discharge between the electrodes
  • a control device that determines a condition for generating a second discharge between the electrodes based on a change in a discharge state when the voltage is generated.
  • an electric discharge machining apparatus capable of improving the quality of the machined surface of the multi-element bonding material in the electric discharge machining in which the preliminary discharge and the main discharge are repeated.
  • the figure which shows the control apparatus with which the electric discharge machining apparatus which concerns on Embodiment 1 is provided Enlarged view of multi-element combination
  • Enlarged view of multi-element combination Timing chart of electric discharge machining executed by electric discharge machining apparatus according to Embodiment 1 The figure which shows an example of the change by the time of the voltage between electrodes between electrodes and a workpiece or current between electrodes
  • the figure which shows the example which determines main discharge time using change time The figure which shows an example of the table which described the relationship between the material of a workpiece, the 1st threshold value, the 2nd threshold value, a change time threshold value, and the main discharge time.
  • resistance refers to electric resistance
  • FIG. 1 is a diagram illustrating an electric discharge machining apparatus according to the first embodiment.
  • FIG. 2 is a diagram illustrating a control device included in the electric discharge machining apparatus according to the first embodiment.
  • the electric discharge machining apparatus 100 includes power sources 1 and 2 that output a voltage to be applied to the gap 5 that is a gap formed between the electrode 3 and the workpiece 4, and a voltage that the power sources 1 and 2 provide to the gap 5.
  • Switches 9 and 10 that are turned on or off, a detection device 6 that detects the discharge state of the gap 5 and outputs a detection result, and operates the switches 9 and 10 using the detection result of the detection device 6 to open the gap 5 For generating a main discharge as a second discharge in the gap 5 based on a change in the discharge state when a preliminary discharge as the first discharge is generated in the gap 5. And a control device 8 for determining.
  • the electric discharge machining apparatus 100 further includes a moving device 15 that moves the electrode 3 and an input device 8I that inputs control information to the control device 8.
  • the electric discharge machining apparatus 100 processes the workpiece 4 by applying a voltage between the electrode 3 and the workpiece 4 and generating electric discharge between the electrodes 5. Examples of the processing of the workpiece 4 include melt cutting or shape carving.
  • the electrode 3 is a conductor.
  • the electric discharge machining apparatus 100 melts and cuts the workpiece 4, a wire is used for the electrode 3.
  • the electric discharge machining apparatus 100 engraves the workpiece 4, a mold for engraving is used for the electrode 3.
  • the workpiece 4 is a conductor.
  • Power supplies 1 and 2 are DC power supplies.
  • the power source 1 is appropriately referred to as a first power source 1
  • the power source 2 is appropriately referred to as a second power source 2.
  • the voltage of the first power supply 1 is higher than the voltage of the second power supply 2.
  • the electric discharge machining apparatus 100 includes the first power supply 1 and the second power supply 2, but the first power supply 1 is boosted or stepped down by a DC (Direct Current) / DC converter with one power supply.
  • the second power source 2 may be used instead.
  • the switch 9 is provided between the second power source 2, the electrode 3 and the workpiece 4.
  • the switch 10 is provided between the first power source 1, the electrode 3, and the workpiece 4.
  • the switch 10 is appropriately referred to as a first switch 10
  • the switch 9 is appropriately referred to as a second switch 9.
  • the first switch 10 includes switching elements 10A and 10B.
  • the switching elements 10A and 10B are semiconductor elements such as bipolar transistors or FETs (Field Effect Transistors), but are not limited to these.
  • the switching element 10 ⁇ / b> A is provided between the positive electrode of the first power supply 1 and the electrode 3.
  • the switching element 10 ⁇ / b> B is provided between the workpiece 4 and the negative electrode of the first power supply 1.
  • the second switch 9 has switching elements 9A and 9B.
  • the switching elements 9A and 9B are the same as the switching elements 10A and 10B of the first switch 10.
  • the switching element 9 ⁇ / b> A is provided between the positive electrode of the second power supply 2 and the electrode 3.
  • the switching element 9 ⁇ / b> B is provided between the workpiece 4 and the negative electrode of the second power supply 2.
  • the detection device 6 includes a first detection device 6A and a second detection device 6B.
  • the first detection device 6A detects that the absolute value of the voltage at the gap 5 in the preliminary discharge, which is the first discharge, is lower than the absolute value of the first threshold, and outputs the detection result.
  • the second detection device 6B detects that the absolute value of the voltage at the gap 5 in the preliminary discharge is less than the absolute value of the second threshold, and outputs the detection result.
  • both the first detection device 6A and the second detection device 6B use a comparator.
  • the first detection device 6A and the second detection device 6B both detect the voltage between the electrodes 5.
  • the voltage between the electrodes 5 is appropriately referred to as an electrode voltage
  • the current flowing between the electrodes 5 is appropriately referred to as an electrode current.
  • the first detection device 6A compares the detected inter-electrode voltage with the absolute value of the first threshold value, and outputs a signal when the inter-electrode voltage falls below the absolute value of the absolute value of the first threshold value.
  • This signal is a signal indicating that the voltage between the electrodes has fallen below the absolute value of the first threshold, and will be referred to as a first signal as appropriate in the following.
  • the first signal is input to the control device 8.
  • the second detection device 6B compares the detected inter-electrode voltage with the absolute value of the second threshold value.
  • the absolute value of the second threshold value is smaller than the absolute value of the first threshold value.
  • the second detection device 6B outputs a signal when the inter-electrode voltage falls below the absolute value of the second threshold value.
  • This signal is a signal indicating that the inter-electrode voltage has fallen below the absolute value of the second threshold, and will be referred to as a second signal as appropriate hereinafter.
  • the second signal is input to the control device 8.
  • the detection device 6 includes two comparators having different thresholds, that is, the first detection device 6A and the second detection device 6B, but the detection device 6 is not limited to such a configuration.
  • the detection device 6 may switch the threshold value of one comparator.
  • the control device 8 acquires the detection result of the detection device 6 and controls the switches 9 and 10 using the acquired detection result.
  • the control device 8 applies a voltage to the gap 5 by controlling the switches 9 and 10.
  • the control device 8 controls the switches 9 and 10 using the detection result of the detection device 6 to control the interelectrode voltage.
  • the control device 8 changes the time during which the second switch 9 is turned on, so that the magnitude of the peak value of the interelectrode current in the main discharge becomes constant among the plurality of main discharges. To do.
  • control device 8 changes the distance between the electrode 3 and the workpiece 4 by moving the electrode 3 by controlling the moving device 15.
  • the control device 8 receives information necessary for controlling the switches 9 and 10 and the moving device 15 from the input device 8I.
  • the input device 8I is exemplified by a touch panel, a keyboard, a mouse, a trackball, or a combination thereof.
  • Examples of the moving device 15 include a device provided with a linear motor and a table moved by the linear motor, or a device provided with a ball screw, an electric motor for rotating the screw, and a table moved by the ball screw.
  • the control device 8 includes a processing unit 8P, a storage unit 8M, and an input / output unit 8IO.
  • the processing unit 8P is a processor such as a CPU (Central Processing Unit).
  • the storage unit 8M is a RAM (Random Access Memory), a ROM (Read Only Memory), a hard disk drive, a storage device, or a storage device that combines these.
  • the input / output unit 8IO is an interface circuit that serves as an interface between the control device 8 and an external device connected to the control device 8.
  • the detection device 6, the switches 9, 10 and the moving device 15 shown in FIG. 1 are connected to the input / output unit 8IO.
  • the storage unit 8M stores a computer program for the control device 8 to execute processing for controlling the electric discharge machining apparatus 100 according to the first embodiment.
  • the processing unit 8P reads the above-described computer program from the storage unit 8M and controls the electric discharge machining apparatus 100.
  • 3 and 4 are enlarged views of the multi-element combination.
  • 3 and FIG. 4 includes an element 51 and an element 52.
  • the resistance values of the elements 51 and 52 and the particle sizes of the elements 51 and 52 are often different.
  • the particle size of the element 52 is larger than that of the element 51.
  • the resistance values of the elements 51 and 52 are different, and as a result, the melting amount of the elements 51 and 52 is different.
  • either of the elements 51 and 52 is melted first. Large elements 52 may fall out and become vacancies.
  • a crater may be formed on the surface and the machining surface may become rough.
  • the electric discharge machining apparatus 100 determines the energy of main discharge so that both elements can be melted in a balanced manner by discriminating between a high resistance element and a low resistance element by preliminary discharge, so that the multi-element bonding material can be stabilized. While processing, improve the quality of the processed surface. Next, processing when the electric discharge machining apparatus 100 according to Embodiment 1 performs electric discharge machining will be described.
  • FIG. 5 is a timing chart of electric discharge machining executed by the electric discharge machining apparatus according to the first embodiment.
  • the electrical discharge machining apparatus 100 performs electrical discharge machining on the workpiece 4, preliminary electrical discharge and main electrical discharge are performed.
  • the preliminary discharge is a discharge for breaking the insulation between the electrode 3 and the workpiece 4 before the workpiece 4 is processed by the discharge.
  • the main discharge is a discharge after dielectric breakdown occurs between the electrode 3 and the workpiece 4 due to the preliminary discharge, and is a discharge for melting the workpiece 4.
  • the electric discharge machining apparatus 100 processes the workpiece 4 by removing a part of the surface of the workpiece 4 by repeating the preliminary discharge and the main discharge over time.
  • FIG. 5 shows the timing of the first control signal 13 for turning on (ON) or turning off (OFF) the first switch 10 in the preliminary discharge.
  • MD in FIG. 5 indicates the timing of the second control signal 14 for turning on (ON) or turning off (OFF) the second switch 9 in the main discharge.
  • V in FIG. 5 indicates an interelectrode voltage
  • I indicates an interelectrode current.
  • a change in the interelectrode voltage V is indicated by a solid line 17
  • a change in the interelectrode current I is indicated by a solid line 18.
  • Vc1 is the first threshold value Vc2 of the interelectrode voltage V
  • Ic1 is the first threshold value of the interelectrode current I
  • Ic2 is the second threshold value of the interelectrode current I. is there.
  • the absolute value of the first threshold value Vc1 is smaller than the absolute value of the second threshold value Vc2.
  • the horizontal axis in FIG. 5 is time t.
  • the control device 8 turns off the first control signal 13, thereby turning off the switching elements 10A and 10B of the first switch 10.
  • the control device 8 turns on the switching elements 9A and 9B of the second switch 9 by turning on the second control signal 14.
  • a voltage is applied between the electrode 3 and the workpiece 4 from the second power source 2 via the second switch 9.
  • the discharge after the preliminary discharge is the main discharge.
  • the inter-electrode current I of the main discharge is larger than the inter-electrode current of the preliminary discharge. Due to the main discharge, the workpiece 4 is melted, a part of the workpiece 4 is removed from the surface, and the processing proceeds.
  • the control device 8 turns off the switching elements 9A and 9B of the second switch 9 and ends the main discharge.
  • the control device 8 determines energy for generating the second discharge between the electrodes based on the change in the discharge state when the first discharge is generated between the electrodes. Specifically, the control device 8 sets the gap 5 between the main discharges based on the amount of time ⁇ tc until the gap voltage V during the preliminary discharge changes from the first threshold value Vc1 to the second threshold value Vc2. A time ⁇ tp for applying the voltage is determined.
  • the time ⁇ tc is appropriately referred to as a change time ⁇ tc
  • the time ⁇ tp is appropriately referred to as a main discharge time ⁇ tp.
  • the inter-electrode voltage V is the voltage of the second power supply 2 and is constant, so the control device 8 changes the main discharge time ⁇ tp by changing the main discharge time ⁇ tp.
  • the control device 8 can determine the magnitude of the resistance of the workpiece 4 using the change time ⁇ tc.
  • the workpiece 4 is a multi-element bonding material including a low resistance element and a high resistance element
  • the change time ⁇ tc is relatively short, that is, when the resistance is relatively low, the ratio of the low resistance element is large and changes
  • the time ⁇ tc is relatively long, that is, when the resistance is relatively high, the ratio of the high resistance element is large.
  • control device 8 can discriminate between the low resistance element ratio and the high resistance element ratio in the workpiece 4 based on the change time ⁇ tc in the preliminary discharge, the main discharge conditions such that both elements can be melted in a balanced manner, that is, The main discharge time ⁇ tp can be determined.
  • the resistivity of WC is 19.2 ⁇ 10 ⁇ 8 ⁇ ⁇ m
  • the resistivity of Co is 5.81 ⁇ 10. Since -8 ⁇ ⁇ m, WC is a high resistance element and Co is a low resistance element.
  • the control device 8 relatively shortens the main discharge time ⁇ tp when the change time ⁇ tc is relatively short, and relatively sets the main discharge time ⁇ tp when the change time ⁇ tc is relatively long. Make it longer.
  • the control device 8 can keep the peak Ip of the interelectrode current I constant between when the resistance of the workpiece 4 is relatively high and when it is relatively low. Generation
  • the electric discharge machining apparatus 100 can suppress the generation of holes in the workpiece 4 and the deterioration of the quality of the machined surface.
  • the change time ⁇ tc is t3 ⁇ t2.
  • FIG. 6 is a diagram illustrating an example of a change in the interelectrode voltage or interelectrode current between the electrode and the workpiece with time.
  • the first threshold value Vc1 of the voltage is a value lower than the interelectrode voltage Vid when the dielectric breakdown of the interelectrode 5 occurs.
  • the first voltage threshold value Vc1 is determined in the range of 80% to 90% of the interelectrode voltage Vid, but is not limited to this range.
  • the second threshold value Vc2 of the voltage is a value higher than the interelectrode voltage Vac when the arc discharge is stably generated in the interelectrode 5.
  • the second voltage threshold Vc2 is determined in the range of 110% to 120% of the interelectrode voltage Vac, but is not limited to this range.
  • the first threshold value Vc1 and the second threshold value Vc2 will be described later.
  • FIG. 7 is a diagram illustrating an example in which the main discharge time is determined using the change time.
  • the main discharge time ⁇ tp becomes longer as the change time ⁇ tc becomes longer, and becomes shorter as the change time ⁇ tc becomes shorter.
  • the change time ⁇ tc is the time during which the state of discharge between the electrodes 5 in the preliminary discharge, that is, the state of the voltage V and the current I between the electrodes in the first embodiment is changed. More specifically, the change time ⁇ tc is a time during which the interelectrode voltage V decreases during the preliminary discharge and the interelectrode current I increases.
  • the shortening of the change time ⁇ tc means that the speed at which the discharge state changes in the gap 5, more specifically, the speed at which the gap voltage V decreases and the gap current I increases decreases.
  • the longer change time ⁇ tc means that the rate of change of the discharge state in the gap 5, more specifically, the rate of decrease of the gap voltage V and increase of the gap current I is increased. .
  • the main discharge time ⁇ tp is ⁇ tph when the change time ⁇ tc is longer than the change time threshold ⁇ tcc as shown by the solid line A in FIG. 7, and the change time ⁇ tc is less than or equal to the change time threshold ⁇ tcc. In this case, ⁇ tpl.
  • the main discharge time ⁇ tph is longer than the main discharge time ⁇ tpl.
  • the change time threshold value ⁇ tcc is determined by an experiment or simulation using a computer according to the type of material of the workpiece 4. In the first embodiment, the change time threshold value ⁇ tcc is set to 100 nsec. 2 ⁇ sec. It is set between.
  • the change time ⁇ tc When the change time ⁇ tc is longer than the change time threshold value ⁇ tcc, the workpiece 4 has a high ratio of high resistance elements. When the change time ⁇ tc is less than or equal to the change time threshold value ⁇ tcc, the workpiece 4 has a low resistance element ratio. It can be judged that it is expensive. In this way, by changing the main discharge time ⁇ tp in two stages with the change time threshold value ⁇ tcc as a reference, the process of determining the main discharge time ⁇ tp by the control device 8 becomes relatively simple.
  • the main discharge time ⁇ tp is not limited to the one that changes in two steps as described above, and may change in three or more steps as shown by a one-dot chain line B in FIG. Further, the main discharge time ⁇ tp may follow a function of the change time ⁇ tc in which the main discharge time ⁇ tp increases as the change time ⁇ tc increases.
  • the function in this case may be a linear function of the change time ⁇ t as shown by a broken line C in FIG. 7, or may be a quadratic function, a cubic function or an exponential function of the change time ⁇ tc.
  • the main discharge times ⁇ tpl and ⁇ tph, the change in the main discharge time ⁇ tp indicated by the alternate long and short dash line B, or the function of the change time ⁇ tc described above can be obtained for each material of the workpiece 4 by experiments or simulations using a computer. .
  • FIG. 8 is a diagram showing an example of a table describing the relationship between the material of the workpiece, the first threshold value, the second threshold value, the change time threshold value, and the main discharge time.
  • the first threshold value Vc1, the second threshold value Vc2, the change time threshold value ⁇ tcc, and the main discharge times ⁇ tpl and ⁇ tph vary depending on the type of material of the workpiece 4.
  • the first threshold value Vc1, the second threshold value Vc2, the change time threshold value ⁇ tcc, and the main discharge times ⁇ tpl and ⁇ tph are obtained and described in the table TB according to the material type of the workpiece 4. To do.
  • the table TB is stored in the storage unit 8M of the control device 8 shown in FIG.
  • the operator of the electric discharge machining apparatus 100 inputs the material type of the workpiece 4 from the input device 8I shown in FIG.
  • the processing unit 8P that has acquired the type of the input material reads the table TB from the storage unit 8M. Then, the processing unit 8P uses the material type as a search key, refers to the read table TB, and inputs the first threshold value Vc1, the second threshold value Vc2, the change time threshold value ⁇ tcc, and the main value.
  • the discharge times ⁇ tpl and ⁇ tph are retrieved and obtained from the table TB.
  • the control device 8 controls the first switch 10 and the second switch 9 by using the acquired first threshold value Vc1, second threshold value Vc2, change time threshold value ⁇ tcc, and main discharge times ⁇ tpl and ⁇ tph, to process the workpiece.
  • the object 4 is subjected to electric discharge machining.
  • the electric discharge machining apparatus 100 can perform electric discharge machining on the workpiece 4 under appropriate conditions when electric discharge machining is performed on the workpiece 4 of a plurality of different types of materials. It is possible to suppress degradation of the quality of the processed surface.
  • FIG. 9 is a flowchart showing an example of processing when the electric discharge machining apparatus according to Embodiment 1 executes electric discharge machining.
  • the control device 8 shown in FIG. 1 turns on the first switch 10 to apply the first voltage, which is the voltage of the first power supply 1, between the electrode 3 and the workpiece 4.
  • the processing unit 8P compares the interelectrode voltage V with the first threshold value Vc1.
  • step S102, No the control device 8 waits until the inter-electrode voltage V falls below the absolute value of the first threshold value Vc1.
  • the control device 8 performs the process in step S103. Proceed to In step S103, the control device 8 starts counting time from the timing when the inter-electrode voltage V falls below the absolute value of the first threshold value Vc1.
  • step S104 the processing unit 8P compares the interelectrode voltage V with the second threshold value Vc2.
  • the control device 8 waits until the inter-electrode voltage V falls below the absolute value of the second threshold value Vc2.
  • the control device 8 performs the process at step S105. Proceed to
  • step S105 the control device 8 finishes counting the time, and obtains the change time ⁇ tc using the counted time. Furthermore, the control device 8 applies a second voltage, which is the voltage of the second power supply 2, between the electrode 3 and the workpiece 4 by turning on the second switch 9. By this operation, a main discharge is generated between the electrode 3 and the workpiece 4. The control device 8 starts counting time from the timing when the second switch 9 is turned on, that is, the timing when the main discharge is started. Next, it progresses to step S106 and the control apparatus 8 calculates
  • DELTA main discharge time
  • DELTA change time
  • step S107 the control device 8 compares the elapsed time ts from the timing of starting the main discharge with the main discharge time ⁇ tp. When the elapsed time ts has not reached the main discharge time ⁇ tp (step S107, No), the control device 8 waits until the elapsed time ts reaches the main discharge time ⁇ tp. When the elapsed time ts has reached the main discharge time ⁇ tp (step S107, Yes), in step S108, the control device 8 ends the main discharge by turning off the second switch 9. When Step S101 to Step S108 are completed, the control device 8 returns to Step S101 and repeats Step S101 to Step S108 until the electrical discharge machining of the workpiece 4 is completed.
  • FIG. 10 is a diagram illustrating a second switch according to the first modification of the first embodiment.
  • the peak Ip of the interelectrode current I is made constant between different main discharges by changing the main discharge time ⁇ tp.
  • the peak Ip of the interelectrode current I is made constant between different main discharges by changing the interelectrode voltage V.
  • the second switch 9a includes a voltage adjusting device 9Aa provided between the positive electrode of the second power source 2 and the electrode 3, and a switching element 9B provided between the negative electrode of the second power source 2 and the workpiece 4. .
  • a voltage adjusting device 9Aa provided between the positive electrode of the second power source 2 and the electrode 3, and a switching element 9B provided between the negative electrode of the second power source 2 and the workpiece 4.
  • a plurality of switching elements 16TA, 16TB, 16TC, and 16TD connected in series and a plurality of resistors 16RA, 16RB, 16RC, and 16RD connected in series are connected in parallel.
  • the plurality of switching elements 16TA, 16TB, 16TC, and 16TD are turned on and off by the control device 8, respectively.
  • the switching elements 16TA, 16TB, 16TC, and 16TD are semiconductor elements such as bipolar transistors or FETs (Field Effect Transistors), but are not limited to these.
  • the voltage adjusting device 9Aa has the highest resistance when all of the plurality of switching elements 16TA, 16TB, 16TC, and 16TD are turned off. When the switching elements 16TA, 16TB, 16TC, and 16TD are turned on in this order, the resistance gradually increases. Lower.
  • the voltage regulator 9Aa has the lowest resistance when all of the plurality of switching elements 16TA, 16TB, 16TC, and 16TD are turned on.
  • the voltage regulator 9Aa can change the voltage drop between the second power supply 2 and the electrode 3 by switching on and off the plurality of switching elements 16TA, 16TB, 16TC, and 16TD. For this reason, the 2nd switch 9a provided with voltage regulator 9Aa can change the voltage V between electrodes.
  • the control device 8 When the interelectrode voltage V is applied between the electrode 3 and the workpiece 4 by the second switch 9a, the control device 8 turns on at least the switching element 9B.
  • the switching element 9B When only the switching element 9B is turned on, since all the resistors 16RA, 16RB, 16RC, and 16RD of the voltage regulator 9Aa are interposed between the second power source 2 and the electrode 3, the interpolar voltage V is the smallest. Become.
  • the switching element 9B and at least one of the plurality of switching elements 16TA, 16TB, 16TC, and 16TD are turned on, the inter-electrode voltage V becomes larger than when only the switching element 9B is turned on.
  • the control device 8 controls the voltage adjustment device 9Aa of the second switch to increase the inter-electrode voltage V.
  • the control device 8 controls the voltage adjustment device 9Aa of the second switch to decrease the interelectrode voltage V.
  • the voltage adjustment device 9Aa includes a plurality of switching elements 16TA, 16TB, 16TC, and 16TD and a plurality of resistors 16RA, 16RB, 16RC, and 16RD, but is not limited thereto.
  • the voltage adjusting device 9Aa may be a DC / DC converter, or a device having a plurality of DC power sources having different voltages and a switch for selecting a power source for supplying a voltage to the gap 5 from the plurality of DC power sources. There may be.
  • the detection device 6 shown in FIG. 1 detects the interelectrode voltage V, but may detect the interelectrode current I.
  • the first detection device 6A compares the detected interelectrode current I with the first threshold value Ic1 of the current shown in FIG. 5, and the interelectrode current I exceeds the absolute value of the first threshold value Ic1.
  • the first signal is output.
  • the second detection device 6B compares the detected interelectrode current I with the second threshold value Ic2 of the current.
  • the absolute value of the second threshold value Ic2 is larger than the absolute value of the first threshold value Ic1.
  • the second detection device 6B outputs a second signal when the interelectrode current I exceeds the absolute value of the second threshold value Ic2.
  • the first threshold value Ic1 and the second threshold value Ic2 of the current can be the current I between the electrodes when the voltage V between the electrodes is the first threshold value Vc1 and the second threshold value Vc2.
  • the control device 8 continues to turn on the first switch 10 until dielectric breakdown occurs.
  • the first switch 10 continues until dielectric breakdown occurs.
  • the voltage may be applied to the gap 5 by repeatedly turning on and off.
  • the detection device 6 determines the absolute value of the interelectrode current I, the absolute value of the first threshold value Ic1 of the current, and the second value.
  • the change time ⁇ tc is obtained using the absolute value of the threshold value Ic2. In this way, the detection device 6 can obtain the change time ⁇ tc regardless of the processing conditions.
  • the control device 8 when the control device 8 keeps turning on the first switch 10 until the dielectric breakdown occurs, the change time ⁇ tc using the inter-electrode voltage V and the first threshold value Vc1 and the second threshold value Vc2. If the first switch 10 is repeatedly turned on and off until dielectric breakdown occurs, the change time ⁇ tc may be obtained using the interelectrode current I and the first threshold value Ic1 and the second threshold value Ic2. . And the control apparatus 8 may determine the voltage given to the space
  • DELTA calculated
  • the change time ⁇ tc is the time from the timing when the interelectrode current I exceeds the absolute value of the first threshold value Ic1 to the timing when the interelectrode current I exceeds the absolute value of the second threshold value Ic2.
  • the control device 8 determines the voltage applied to the gap 5 in the main discharge based on the change time ⁇ tc in which the gap voltage V in the preliminary discharge changes, and the gap in the preliminary discharge. Based on the change time ⁇ tc during which the current I changes, the voltage applied to the gap 5 in the main discharge may be switched depending on the form of the preliminary discharge.
  • the electric discharge machining apparatus 100 can obtain the change time ⁇ tp even under various machining conditions, an appropriate main discharge time ⁇ tp can be set for the workpiece 4.
  • the electric discharge machining apparatus 100 can suppress the generation of holes in the workpiece 4 and the quality degradation of the machined surface under various machining conditions.
  • FIG. FIG. 11 is a diagram illustrating an electric discharge machining apparatus according to the second embodiment.
  • the electrical discharge machining apparatus 100b includes a switch, more specifically, the first switch 10b includes a bridge circuit and a detection device 6b, and applies positive and negative voltages from the first power supply 1 to the gap 5 to each other.
  • Other structures of the electric discharge machining apparatus 100b according to the second embodiment are the same as those of the electric discharge machining apparatus 100 according to the first embodiment.
  • the first switch 10b is provided between the first power source 1, the electrode 3, and the workpiece 4.
  • the first switch 10b forms a bridge circuit by a plurality of switching elements 10A, 10B, 10C, and 10D.
  • the switching elements 10A, 10B, 10C, and 10D are semiconductor elements such as bipolar transistors or FETs (Field Effect Transistors), but are not limited thereto.
  • Switching elements 10A and 10C form the upper arm of the bridge circuit, and switching elements 10B and 10D form the lower arm of the bridge circuit.
  • a connection part between the switching element 10A and the switching element 10D is connected to the electrode 3, and a connection part between the switching element 10C and the switching element 10B is connected to the workpiece 4.
  • the control device 8 controls the plurality of switching elements 10A, 10B, 10C, and 10D.
  • the switching element 10A and the switching element 10B When the switching element 10A and the switching element 10B are turned on, the positive electrode of the first power supply 1 and the electrode 3 are connected, and the negative electrode of the first power supply 1 and the workpiece 4 are connected. For this reason, the interelectrode current I flows from the electrode 3 toward the workpiece 4.
  • the switching element 10C and the switching element 10D When the switching element 10C and the switching element 10D are turned on, the positive electrode of the first power source 1 and the workpiece 4 are connected, and the negative electrode of the first power source 1 and the electrode 3 are connected. For this reason, the interelectrode current I flows from the workpiece 4 toward the electrode 3.
  • the detection device 6b includes a first detection device 6A, a second detection device 6B, a third detection device 6C, and a fourth detection device 6D.
  • the first detection device 6A and the second detection device 6B are the same as those described in the first embodiment.
  • Each of the third detection device 6C and the fourth detection device 6D detects the interelectrode voltage.
  • the third detection device 6C compares the detected inter-electrode voltage with the absolute value of the third threshold value, and outputs a signal when the inter-electrode voltage falls below the absolute value of the absolute value of the first threshold value. This signal is a signal indicating that the inter-electrode voltage has fallen below the absolute value of the third threshold value, and is hereinafter referred to as a third signal as appropriate.
  • the third signal is input to the control device 8.
  • the fourth detection device 6D compares the detected inter-electrode voltage with a fourth threshold value.
  • the absolute value of the fourth threshold value is smaller than the absolute value of the third threshold value.
  • the fourth detection device 6D outputs a signal when the inter-electrode voltage falls below the absolute value of the fourth threshold value.
  • This signal is a signal indicating that the inter-electrode voltage has fallen below the absolute value of the fourth threshold value, and is hereinafter referred to as a fourth signal as appropriate.
  • the fourth signal is input to the control device 8.
  • the detection device 6b includes four comparators having different thresholds, that is, the first detection device 6A, the second detection device 6B, the third detection device 6C, and the fourth detection device 6D. 6b is not limited to such a thing.
  • the detection device 6b may switch the threshold value of one comparator.
  • FIG. 12 is a timing chart of electric discharge machining executed by the electric discharge machining apparatus according to the second embodiment.
  • PD1 in FIG. 12 indicates the timing of the first control signal 27 for turning on or off the switching element 10A and the switching element 10B of the first switch 10b in the preliminary discharge.
  • PD2 in FIG. 12 indicates the timing of the first control signal 28 for turning on or off the switching element 10C and the switching element 10D of the first switch 10b in the preliminary discharge.
  • 12 indicates the timing of the second control signal 29 for turning on or off the second switch 9 in the main discharge.
  • V indicates the interelectrode voltage
  • I indicates the interelectrode current.
  • a change in the interelectrode voltage V is indicated by a solid line 36, and a change in the interelectrode current I is indicated by a solid line 39.
  • Vc1 is the first threshold value of the interelectrode voltage V
  • Vc2 is the second threshold value of the interelectrode voltage V
  • Vc3 is the third threshold value of the interelectrode voltage V
  • Vc4 is the fourth threshold value of the interelectrode voltage V. It is.
  • the third threshold value Vc3 is a negative voltage having the same absolute value as the first threshold value Vc1.
  • the fourth threshold value Vc4 is a negative voltage having the same absolute value as the second threshold value Vc2.
  • Ic1 is a first threshold value of the interelectrode current I
  • Ic2 is a second threshold value of the interelectrode current I
  • Ic3 is a third threshold value of the interelectrode current I
  • Ic4 is a fourth threshold value of the interelectrode current I. It is.
  • the absolute value of the first threshold value Ic1 is smaller than the absolute value of the second threshold value Ic2.
  • the absolute value of the first threshold value Ic1 is equal to the absolute value of the third threshold value Ic3, and the absolute value of the second threshold value Ic2 is equal to the absolute value of the fourth threshold value Ic4.
  • the horizontal axis of FIG. 12 is time t.
  • the control device 8 turns on the switching element 10A and the switching element 10B according to the control signal 27, applies the electrode 3 as positive and applies the interelectrode voltage V to the electrode 3 and the workpiece 4, and generates a preliminary discharge in the interelectrode 5
  • the control device 8 determines the main discharge time ⁇ tp1 using the change time ⁇ tc1 obtained by the preliminary discharge, and turns on the second switch 9 to generate the main discharge in the gap 5.
  • the control device 8 When the main discharge based on the preliminary discharge with the electrode 3 as positive is completed, the control device 8 turns on the switching element 10C and the switching element 10D by the control signal 28, and applies the voltage V between the electrodes with the workpiece 4 as positive. It gives to the workpiece 4 and the electrode 3 and a preliminary discharge is generated between the electrodes 5.
  • the control device 8 determines the main discharge time ⁇ tp2 using the change time ⁇ tc2 obtained by this preliminary discharge, and turns on the second switch 9 to generate the main discharge in the gap 5.
  • the change time ⁇ tc2 is the fourth threshold value Vc4 at which the absolute value of the interelectrode voltage V is the absolute value of the interelectrode voltage V from the timing when the absolute value of the interelectrode voltage V falls below the absolute value of the third threshold value Vc3 of the interelectrode voltage V This is the time until the timing when the absolute value is below.
  • the control device 8 When the main discharge based on the preliminary discharge with the workpiece 4 as positive is completed, the control device 8 turns on the switching element 10A and the switching element 10B according to the control signal 27, makes the electrode 3 positive, and sets the electrode voltage V to the electrode. 3 and the workpiece 4 and a preliminary discharge is generated between the electrodes 5.
  • the control device 8 determines the main discharge time ⁇ tp3 using the change time ⁇ tc3 obtained by this preliminary discharge, and turns on the second switch 9 to generate the main discharge in the gap 5.
  • the control device 8 causes the preliminary discharge with the electrode 3 as positive and the main discharge based on the preliminary discharge, the preliminary discharge with the workpiece 4 as positive, and this The main discharge based on the preliminary discharge is executed alternately with the elapse of time t. Since the electric discharge machining apparatus 100b alternately applies a positive voltage and a negative voltage to the electrode 3, the average voltage between the electrodes 5 can be 0 volts. As a result, in addition to the operation and effect of the electric discharge machining apparatus 100 according to the first embodiment, the electric discharge machining apparatus 100b suppresses the electric corrosion of the workpiece 4 even when the machining liquid is water, thereby reducing the quality of the machined surface. The effect
  • the detection device 6b shown in FIG. 11 detects the interelectrode voltage V, but may detect the interelectrode current I.
  • the third detection device 6C compares the detected interelectrode current I with the third threshold value Ic3 shown in FIG. 12, and the absolute value of the interelectrode current I exceeds the absolute value of the third threshold value Ic3.
  • the third signal is output.
  • the fourth detection device 6D compares the detected interelectrode current I with a fourth threshold value Ic4.
  • the absolute value of the fourth threshold value Ic4 is larger than the absolute value of the third threshold value Ic3.
  • the fourth detection device 6D outputs a fourth signal when the absolute value of the interelectrode current I exceeds the absolute value of the fourth threshold value Ic4. Since the first detection device 6A and the second detection device 6B are the same as those in the first embodiment, the description thereof is omitted.
  • the control device 8 continues to turn on the first switch 10b until dielectric breakdown occurs, as shown in FIG. 12, but depending on the processing conditions, the first switch 10b until the dielectric breakdown occurs.
  • the voltage may be applied to the gap 5 by repeatedly turning on and off.
  • the detection device 6b determines that the absolute value of the interelectrode voltage V is the absolute value of the first threshold value Vc1, the absolute value of the second threshold value Vc2, the absolute value of the third threshold value Vc3, and the fourth value. It is difficult to detect that the absolute value of the threshold value Vc4 is below the absolute value.
  • the detection device 6b detects the absolute value of the interelectrode current I, the absolute value of the first threshold Ic1 of the current, the second The change time ⁇ tc is obtained using the absolute value of the threshold value Ic2, the absolute value of the third threshold value Ic3, and the absolute value of the fourth threshold value Ic4. In this way, the detection device 6b can obtain the change time ⁇ tc regardless of the processing conditions.
  • the change time ⁇ tc is the time from the timing when the interelectrode current I exceeds the absolute value of the third threshold value Ic3 to the timing when the interelectrode current I exceeds the absolute value of the fourth threshold value Ic4. It is.
  • the control device 8 when the control device 8 continues to turn on the first switch 10 until dielectric breakdown occurs, the inter-electrode voltage V, the first threshold value Vc1, the second threshold value Vc2, the third threshold value Vc3, and the first threshold value Vc3.
  • the change time ⁇ tc is obtained using the threshold value Vc4 of 4 and the first switch 10 is repeatedly turned on and off until dielectric breakdown occurs, the interelectrode current I, the first threshold value Ic1, the second threshold value Ic2, The change time ⁇ tc may be obtained using the third threshold value Ic3 and the fourth threshold value Ic4.
  • the electric discharge machining apparatus 100b can obtain the change time ⁇ tp even under various machining conditions, so that the main discharge time ⁇ tp appropriate for the workpiece 4 can be set. As a result, the electric discharge machining apparatus 100b can suppress the generation of holes in the workpiece 4 and the deterioration of the quality of the machined surface under various machining conditions.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Abstract

An electrical discharge machining apparatus (100) comprises: power sources (1, 2) for outputting voltage to be applied across an electrode gap (5) between an electrode (3) and a workpiece (4); switches (9, 10) for switching the voltage that said power sources (1, 2) apply across said electrode gap on and off; a detection device (6) for detecting the state of discharge in the electrode gap (5) and outputting the detection results; and a control device (8) for controlling the switches (9, 10) using the detection results from the detection device (6) to control the voltage applied across the electrode gap (5), and, on the basis of changes in the state of discharge when a first discharge is generated in the electrode gap (5), determining the conditions for generating a second discharge across the electrode gap (5). Obtained thereby is an electrical discharge machining apparatus (100) for repeatedly performing a preliminary discharge and a main discharge with which the quality of the machined surface of a multi-element conjugate material can be improved.

Description

放電加工装置EDM machine
 本発明は、予備放電と主放電とを繰り返す放電加工により被加工物を加工する放電加工装置に関する。 The present invention relates to an electric discharge machining apparatus for machining a workpiece by electric discharge machining in which preliminary discharge and main discharge are repeated.
 放電加工装置は、水中に対向配置した電極と被加工物との電極間にパルス状放電を発生させ、その熱エネルギーを利用して被加工物を加工する装置である。特許文献1には、ワイヤカット放電加工電源に関し、高圧主電源、低圧主電源、副電源、ギャップの電圧を検出する電圧検出回路と、3電源の夫々の印加タイミングを制御する電源制御回路とを備え、副電源による電圧印加により放電を開始させ、放電が開始した後のギャップ電圧に関する情報により、高圧主電源又は低圧主電源によって、それぞれ異なるパルス幅の電圧を印加することが記載されている。 An electric discharge machining apparatus is an apparatus that generates a pulsed discharge between an electrode and a workpiece that are disposed opposite to each other in water, and uses the thermal energy to process the workpiece. Patent Document 1 relates to a wire-cut electric discharge machining power supply, including a high voltage main power supply, a low voltage main power supply, a sub power supply, a voltage detection circuit for detecting a gap voltage, and a power supply control circuit for controlling the application timing of each of the three power supplies. It is described that discharge is started by voltage application by a sub power source, and voltages having different pulse widths are applied by a high voltage main power source or a low voltage main power source according to information on a gap voltage after the discharge starts.
特開平3-92220号公報Japanese Patent Laid-Open No. 3-92220
 放電加工装置は、予備放電及び予備放電の後に実行される主放電とを繰り返して放電加工を行う。被加工物が難加工材とされる多元素結合材料である場合、抵抗値が異なる高抵抗元素と低抵抗元素とが混合されるために、予備放電の状態が一様ではない。加工効率を向上するためには予備放電を発生させた被加工物内の元素の抵抗値に応じた主放電の放電パルスの強さを設定することが必要である。 The electrical discharge machining apparatus performs electrical discharge machining by repeating preliminary discharge and main discharge executed after the preliminary discharge. When the workpiece is a multi-element bonding material that is a difficult-to-process material, a high resistance element and a low resistance element having different resistance values are mixed, so that the state of preliminary discharge is not uniform. In order to improve the machining efficiency, it is necessary to set the intensity of the discharge pulse of the main discharge in accordance with the resistance value of the element in the workpiece that has generated the preliminary discharge.
 本発明は、予備放電と主放電とを繰り返す放電加工において、多元素結合材料の加工面の品質を向上できる放電加工装置を得ることを目的とする。 An object of the present invention is to obtain an electric discharge machining apparatus capable of improving the quality of a processed surface of a multi-element bonded material in electric discharge machining in which preliminary discharge and main discharge are repeated.
 本発明に係る放電加工装置は、電極と被加工物との間である極間に与える電圧を出力する電源と、前記電源が前記極間へ与える電圧をオン又はオフするスイッチと、前記極間の放電状態を検出して検出結果を出力する検出装置と、前記検出装置の検出結果を用いて前記スイッチを制御して前記極間に与える電圧を制御し、かつ前記極間に第1の放電を発生させたときの放電状態の変化に基づいて、前記極間に第2の放電を発生させる条件を決定する制御装置と、を含むことを特徴とする。 An electric discharge machining apparatus according to the present invention includes a power source that outputs a voltage applied between electrodes between a electrode and a workpiece, a switch that turns on or off a voltage that the power supply applies to the gap, and the gap between the electrodes. A detection device that detects a discharge state and outputs a detection result; controls a switch using the detection result of the detection device to control a voltage applied between the electrodes; and a first discharge between the electrodes And a control device that determines a condition for generating a second discharge between the electrodes based on a change in a discharge state when the voltage is generated.
 本発明によれば、予備放電と主放電とを繰り返す放電加工において、多元素結合材料の加工面の品質を向上できる放電加工装置を得ることができるという効果を奏する。 According to the present invention, it is possible to obtain an electric discharge machining apparatus capable of improving the quality of the machined surface of the multi-element bonding material in the electric discharge machining in which the preliminary discharge and the main discharge are repeated.
実施の形態1に係る放電加工装置を示す図The figure which shows the electric discharge machining apparatus which concerns on Embodiment 1. 実施の形態1に係る放電加工装置が備える制御装置を示す図The figure which shows the control apparatus with which the electric discharge machining apparatus which concerns on Embodiment 1 is provided 多元素結合体の拡大図Enlarged view of multi-element combination 多元素結合体の拡大図Enlarged view of multi-element combination 実施の形態1に係る放電加工装置が実行する放電加工のタイミングチャートTiming chart of electric discharge machining executed by electric discharge machining apparatus according to Embodiment 1 電極と被加工物との間における極間電圧又は極間電流の時間による変化の一例を示す図The figure which shows an example of the change by the time of the voltage between electrodes between electrodes and a workpiece or current between electrodes 変化時間を用いて主放電時間を決定する例を示す図The figure which shows the example which determines main discharge time using change time 被加工物の材料と、第1閾値、第2閾値、変化時間閾値及び主放電時間との関係を記述したテーブルの一例を示す図The figure which shows an example of the table which described the relationship between the material of a workpiece, the 1st threshold value, the 2nd threshold value, a change time threshold value, and the main discharge time. 実施の形態1に係る放電加工装置が放電加工を実行する際の処理の一例を示すフローチャートThe flowchart which shows an example of the process at the time of the electric discharge machining apparatus which concerns on Embodiment 1 performs an electric discharge machining 実施の形態1の変形例1に係る第2スイッチを示す図The figure which shows the 2nd switch which concerns on the modification 1 of Embodiment 1. FIG. 実施の形態2に係る放電加工装置を示す図The figure which shows the electric discharge machining apparatus which concerns on Embodiment 2. 実施の形態2に係る放電加工装置が実行する放電加工のタイミングチャートTiming chart of electric discharge machining performed by electric discharge machining apparatus according to Embodiment 2
 以下に、本発明の実施の形態に係る放電加工装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。以下において、抵抗というときには、電気抵抗をいうものとする。 Hereinafter, an electric discharge machining apparatus according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. Hereinafter, the term “resistance” refers to electric resistance.
実施の形態1.
 図1は、実施の形態1に係る放電加工装置を示す図である。図2は、実施の形態1に係る放電加工装置が備える制御装置を示す図である。放電加工装置100は、電極3と被加工物4との間に形成される隙間である極間5に与える電圧を出力する電源1,2と、電源1,2が極間5へ与える電圧をオン又はオフするスイッチ9,10と、極間5の放電状態を検出して検出結果を出力する検出装置6と、検出装置6の検出結果を用いてスイッチ9,10を操作して極間5に与える電圧を制御し、かつ極間5に第1の放電である予備放電を発生させたときの放電状態の変化に基づいて、極間5に第2の放電である主放電を発生させる条件を決定する制御装置8と、を含む。実施の形態1において、放電加工装置100は、さらに、電極3を移動させる移動装置15と、制御装置8に制御のための情報を入力する入力装置8Iとを有する。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating an electric discharge machining apparatus according to the first embodiment. FIG. 2 is a diagram illustrating a control device included in the electric discharge machining apparatus according to the first embodiment. The electric discharge machining apparatus 100 includes power sources 1 and 2 that output a voltage to be applied to the gap 5 that is a gap formed between the electrode 3 and the workpiece 4, and a voltage that the power sources 1 and 2 provide to the gap 5. Switches 9 and 10 that are turned on or off, a detection device 6 that detects the discharge state of the gap 5 and outputs a detection result, and operates the switches 9 and 10 using the detection result of the detection device 6 to open the gap 5 For generating a main discharge as a second discharge in the gap 5 based on a change in the discharge state when a preliminary discharge as the first discharge is generated in the gap 5. And a control device 8 for determining. In the first embodiment, the electric discharge machining apparatus 100 further includes a moving device 15 that moves the electrode 3 and an input device 8I that inputs control information to the control device 8.
 放電加工装置100は、電極3と被加工物4との間に電圧を与えて、極間5で放電を発生させることにより、被加工物4を加工する。被加工物4の加工は、溶融切断又は形彫り加工が例示される。電極3は、導体である。放電加工装置100が被加工物4を溶融切断する場合、電極3にはワイヤが用いられる。放電加工装置100が被加工物4を形彫り加工する場合、電極3には形彫り用の型が用いられる。放電加工は、電極3と被加工物4との間に放電を発生させるため、被加工物4は導体である。 The electric discharge machining apparatus 100 processes the workpiece 4 by applying a voltage between the electrode 3 and the workpiece 4 and generating electric discharge between the electrodes 5. Examples of the processing of the workpiece 4 include melt cutting or shape carving. The electrode 3 is a conductor. When the electric discharge machining apparatus 100 melts and cuts the workpiece 4, a wire is used for the electrode 3. When the electric discharge machining apparatus 100 engraves the workpiece 4, a mold for engraving is used for the electrode 3. In the electric discharge machining, since the electric discharge is generated between the electrode 3 and the workpiece 4, the workpiece 4 is a conductor.
 電源1,2は、直流電源である。以下において、電源1を、適宜第1電源1と称し、電源2を、適宜第2電源2と称する。第1電源1の電圧は、第2電源2の電圧よりも高い。実施の形態1において、放電加工装置100は、第1電源1及び第2電源2を備えるが、電源を1つとして、DC(Direct Current)/DCコンバータで昇圧又は降圧させて、第1電源1及び第2電源2の代わりとしてもよい。 Power supplies 1 and 2 are DC power supplies. Hereinafter, the power source 1 is appropriately referred to as a first power source 1, and the power source 2 is appropriately referred to as a second power source 2. The voltage of the first power supply 1 is higher than the voltage of the second power supply 2. In the first embodiment, the electric discharge machining apparatus 100 includes the first power supply 1 and the second power supply 2, but the first power supply 1 is boosted or stepped down by a DC (Direct Current) / DC converter with one power supply. The second power source 2 may be used instead.
 スイッチ9は、第2電源2と、電極3及び被加工物4との間に設けられる。スイッチ10は、第1電源1と電極3及び被加工物4との間に設けられる。以下において、スイッチ10を、適宜第1スイッチ10と称し、スイッチ9を、適宜第2スイッチ9と称する。第1スイッチ10は、スイッチング素子10A,10Bを有する。スイッチング素子10A,10Bは、バイポーラトランジスター又はFET(Field Effect Transistor)といった半導体素子が用いられるが、これらに限定されるものではない。スイッチング素子10Aは、第1電源1の正極と電極3との間に設けられる。スイッチング素子10Bは、被加工物4と第1電源1の負極との間に設けられる。 The switch 9 is provided between the second power source 2, the electrode 3 and the workpiece 4. The switch 10 is provided between the first power source 1, the electrode 3, and the workpiece 4. Hereinafter, the switch 10 is appropriately referred to as a first switch 10, and the switch 9 is appropriately referred to as a second switch 9. The first switch 10 includes switching elements 10A and 10B. The switching elements 10A and 10B are semiconductor elements such as bipolar transistors or FETs (Field Effect Transistors), but are not limited to these. The switching element 10 </ b> A is provided between the positive electrode of the first power supply 1 and the electrode 3. The switching element 10 </ b> B is provided between the workpiece 4 and the negative electrode of the first power supply 1.
 第2スイッチ9は、スイッチング素子9A,9Bを有する。スイッチング素子9A,9Bは、第1スイッチ10のスイッチング素子10A,10Bと同様である。スイッチング素子9Aは、第2電源2の正極と電極3との間に設けられる。スイッチング素子9Bは、被加工物4と第2電源2の負極との間に設けられる。 The second switch 9 has switching elements 9A and 9B. The switching elements 9A and 9B are the same as the switching elements 10A and 10B of the first switch 10. The switching element 9 </ b> A is provided between the positive electrode of the second power supply 2 and the electrode 3. The switching element 9 </ b> B is provided between the workpiece 4 and the negative electrode of the second power supply 2.
 検出装置6は、第1検出装置6Aと、第2検出装置6Bとを含む。第1検出装置6Aは、第1の放電である予備放電での極間5における電圧の絶対値が第1の閾値の絶対値を下回ったことを検出し、検出結果を出力する。第2検出装置6Bは、予備放電での極間5における電圧の絶対値が第2の閾値の絶対値を下回ったことを検出し、検出結果を出力する。実施の形態1において、第1検出装置6A及び第2検出装置6Bは、いずれも比較器が用いられる。 The detection device 6 includes a first detection device 6A and a second detection device 6B. The first detection device 6A detects that the absolute value of the voltage at the gap 5 in the preliminary discharge, which is the first discharge, is lower than the absolute value of the first threshold, and outputs the detection result. The second detection device 6B detects that the absolute value of the voltage at the gap 5 in the preliminary discharge is less than the absolute value of the second threshold, and outputs the detection result. In the first embodiment, both the first detection device 6A and the second detection device 6B use a comparator.
 第1検出装置6A及び第2検出装置6Bは、いずれも極間5の電圧を検出する。以下において、極間5の電圧を適宜、極間電圧と称し、極間5を流れる電流を適宜、極間電流と称する。第1検出装置6Aは、検出した極間電圧を第1の閾値の絶対値と比較し、極間電圧が第1の閾値の絶対値の絶対値を下回った場合には、信号を出力する。この信号は、極間電圧が第1の閾値の絶対値を下回ったことを示す信号であり、以下においては適宜第1信号と称する。第1信号は制御装置8に入力される。第2検出装置6Bは、検出した極間電圧を第2の閾値の絶対値と比較する。第2の閾値の絶対値は、第1の閾値の絶対値よりも小さい。第2検出装置6Bは、極間電圧が第2の閾値の絶対値を下回った場合には、信号を出力する。この信号は、極間電圧が第2の閾値の絶対値を下回ったことを示す信号であり、以下においては適宜第2信号と称する。第2信号は制御装置8に入力される。 The first detection device 6A and the second detection device 6B both detect the voltage between the electrodes 5. Hereinafter, the voltage between the electrodes 5 is appropriately referred to as an electrode voltage, and the current flowing between the electrodes 5 is appropriately referred to as an electrode current. The first detection device 6A compares the detected inter-electrode voltage with the absolute value of the first threshold value, and outputs a signal when the inter-electrode voltage falls below the absolute value of the absolute value of the first threshold value. This signal is a signal indicating that the voltage between the electrodes has fallen below the absolute value of the first threshold, and will be referred to as a first signal as appropriate in the following. The first signal is input to the control device 8. The second detection device 6B compares the detected inter-electrode voltage with the absolute value of the second threshold value. The absolute value of the second threshold value is smaller than the absolute value of the first threshold value. The second detection device 6B outputs a signal when the inter-electrode voltage falls below the absolute value of the second threshold value. This signal is a signal indicating that the inter-electrode voltage has fallen below the absolute value of the second threshold, and will be referred to as a second signal as appropriate hereinafter. The second signal is input to the control device 8.
 実施の形態1において、検出装置6は、閾値が異なる2台の比較器、すなわち第1検出装置6A及び第2検出装置6Bを含むが、検出装置6はこのようなものに限定されない。検出装置6は、1台の比較器の閾値を切り替えるものであってもよい。 In the first embodiment, the detection device 6 includes two comparators having different thresholds, that is, the first detection device 6A and the second detection device 6B, but the detection device 6 is not limited to such a configuration. The detection device 6 may switch the threshold value of one comparator.
 制御装置8は、検出装置6の検出結果を取得し、取得した検出結果を用いて、スイッチ9,10を制御する。制御装置8は、スイッチ9,10を制御することによって極間5に電圧を与える。このように、制御装置8は、検出装置6の検出結果を用いてスイッチ9,10を制御して極間電圧を制御する。具体的には、制御装置8は、第2スイッチ9をオンさせる時間を変更することにより、主放電における極間電流のピーク値の大きさが、複数の主放電の間で一定になるようにする。 The control device 8 acquires the detection result of the detection device 6 and controls the switches 9 and 10 using the acquired detection result. The control device 8 applies a voltage to the gap 5 by controlling the switches 9 and 10. Thus, the control device 8 controls the switches 9 and 10 using the detection result of the detection device 6 to control the interelectrode voltage. Specifically, the control device 8 changes the time during which the second switch 9 is turned on, so that the magnitude of the peak value of the interelectrode current in the main discharge becomes constant among the plurality of main discharges. To do.
 また、制御装置8は、移動装置15を制御して電極3を移動させることにより、電極3と被加工物4との距離を変更する。制御装置8は、入力装置8Iからスイッチ9,10及び移動装置15を制御するために必要な情報が入力される。 Also, the control device 8 changes the distance between the electrode 3 and the workpiece 4 by moving the electrode 3 by controlling the moving device 15. The control device 8 receives information necessary for controlling the switches 9 and 10 and the moving device 15 from the input device 8I.
 入力装置8Iは、タッチパネル、キーボート、マウス、トラックボール又はこれらの組合せが例示される。移動装置15は、リニアモータとリニアモータによって移動するテーブルとを備えた装置又はボールねじとこれを回転させる電動機とボールねじによって移動するテーブルとを備えた装置が例示される。 The input device 8I is exemplified by a touch panel, a keyboard, a mouse, a trackball, or a combination thereof. Examples of the moving device 15 include a device provided with a linear motor and a table moved by the linear motor, or a device provided with a ball screw, an electric motor for rotating the screw, and a table moved by the ball screw.
 制御装置8は、図2に示されるように、処理部8Pと、記憶部8Mと、入出力部8IOとを含む。処理部8Pは、CPU(Central Processing Unit)のようなプロセッサである。記憶部8Mは、RAM(Random Access Memory)、ROM(Read Only Memory)、ハードディスクドライブ、ストレージデバイス又はこれらを組み合わせた記憶装置である。入出力部8IOは、制御装置8と制御装置8に接続される外部機器とのインターフェースの役割を果たすインターフェース回路である。図1に示される検出装置6、スイッチ9,10及び移動装置15は、入出力部8IOに接続される。 2, the control device 8 includes a processing unit 8P, a storage unit 8M, and an input / output unit 8IO. The processing unit 8P is a processor such as a CPU (Central Processing Unit). The storage unit 8M is a RAM (Random Access Memory), a ROM (Read Only Memory), a hard disk drive, a storage device, or a storage device that combines these. The input / output unit 8IO is an interface circuit that serves as an interface between the control device 8 and an external device connected to the control device 8. The detection device 6, the switches 9, 10 and the moving device 15 shown in FIG. 1 are connected to the input / output unit 8IO.
 記憶部8Mは、実施の形態1に係る放電加工装置100を制御するための処理を制御装置8が実行するためのコンピュータプログラムを記憶している。処理部8Pは、前述したコンピュータプログラムを記憶部8Mから読み出して、放電加工装置100を制御する。 The storage unit 8M stores a computer program for the control device 8 to execute processing for controlling the electric discharge machining apparatus 100 according to the first embodiment. The processing unit 8P reads the above-described computer program from the storage unit 8M and controls the electric discharge machining apparatus 100.
 図3及び図4は、多元素結合体の拡大図である。図3及び図4に示される多元素結合体50は、元素51及び元素52を含む。多元素結合体50は、元素51,52の抵抗値及び元素51,52の粒径が異なることが多い。この例では、元素52の粒径の方が元素51よりも大きい。このような多元素結合体50を放電加工すると、元素51,52の抵抗値が異なることにより元素51,52の溶融量が異なる結果、元素51,52のいずれかが先に溶融し、粒径の大きい元素52が抜け落ち空孔となることがある。その結果、多元素結合体50を放電加工すると、表面にクレーターが形成されて加工面が粗くなる可能性がある。 3 and 4 are enlarged views of the multi-element combination. 3 and FIG. 4 includes an element 51 and an element 52. In the multi-element combination 50, the resistance values of the elements 51 and 52 and the particle sizes of the elements 51 and 52 are often different. In this example, the particle size of the element 52 is larger than that of the element 51. When such a multi-element combined body 50 is subjected to electric discharge machining, the resistance values of the elements 51 and 52 are different, and as a result, the melting amount of the elements 51 and 52 is different. As a result, either of the elements 51 and 52 is melted first. Large elements 52 may fall out and become vacancies. As a result, when the multi-element combined body 50 is subjected to electric discharge machining, a crater may be formed on the surface and the machining surface may become rough.
 放電加工装置100は、予備放電により高抵抗元素と低抵抗元素とを判別することにより、双方の元素がバランスよく溶融できるような主放電のエネルギーを決定して、多元素結合材料を安定して加工するとともに、加工面の品質を向上させる。次に、実施の形態1に係る放電加工装置100が放電加工を実行する際の処理を説明する。 The electric discharge machining apparatus 100 determines the energy of main discharge so that both elements can be melted in a balanced manner by discriminating between a high resistance element and a low resistance element by preliminary discharge, so that the multi-element bonding material can be stabilized. While processing, improve the quality of the processed surface. Next, processing when the electric discharge machining apparatus 100 according to Embodiment 1 performs electric discharge machining will be described.
 図5は、実施の形態1に係る放電加工装置が実行する放電加工のタイミングチャートである。放電加工装置100が被加工物4に放電加工を実行する場合、予備放電と、主放電とを実行する。予備放電は、放電によって被加工物4が加工される前に、電極3と被加工物4との間の絶縁を破壊するための放電である。主放電は、予備放電により電極3と被加工物4との間に絶縁破壊が発生した後の放電であり、被加工物4を溶融させるための放電である。放電加工装置100は、予備放電及び主放電を時間の経過とともに繰り返すことにより、被加工物4の表面の一部を除去して被加工物4を加工する。 FIG. 5 is a timing chart of electric discharge machining executed by the electric discharge machining apparatus according to the first embodiment. When the electrical discharge machining apparatus 100 performs electrical discharge machining on the workpiece 4, preliminary electrical discharge and main electrical discharge are performed. The preliminary discharge is a discharge for breaking the insulation between the electrode 3 and the workpiece 4 before the workpiece 4 is processed by the discharge. The main discharge is a discharge after dielectric breakdown occurs between the electrode 3 and the workpiece 4 due to the preliminary discharge, and is a discharge for melting the workpiece 4. The electric discharge machining apparatus 100 processes the workpiece 4 by removing a part of the surface of the workpiece 4 by repeating the preliminary discharge and the main discharge over time.
 図5のPDは予備放電において、第1スイッチ10をオン(ON)又はオフ(OFF)させる第1制御信号13のタイミングを示す。図5のMDは、主放電において第2スイッチ9をオン(ON)又はオフ(OFF)させる第2制御信号14のタイミングを示す。図5のVは極間電圧を示し、Iは極間電流を示す。極間電圧Vの変化は実線17で示されており、極間電流Iの変化は実線18で示される。図5のVc1は極間電圧Vの第1の閾値Vc2は極間電圧Vの第2の閾値、Ic1は極間電流Iの第1の閾値、Ic2は極間電流Iの第2の閾値である。第1の閾値Vc1の絶対値は、第2の閾値Vc2の絶対値よりも小さい。図5の横軸は時間tである。 5 shows the timing of the first control signal 13 for turning on (ON) or turning off (OFF) the first switch 10 in the preliminary discharge. MD in FIG. 5 indicates the timing of the second control signal 14 for turning on (ON) or turning off (OFF) the second switch 9 in the main discharge. V in FIG. 5 indicates an interelectrode voltage, and I indicates an interelectrode current. A change in the interelectrode voltage V is indicated by a solid line 17, and a change in the interelectrode current I is indicated by a solid line 18. In FIG. 5, Vc1 is the first threshold value Vc2 of the interelectrode voltage V, the second threshold value of the interelectrode voltage V, Ic1 is the first threshold value of the interelectrode current I, and Ic2 is the second threshold value of the interelectrode current I. is there. The absolute value of the first threshold value Vc1 is smaller than the absolute value of the second threshold value Vc2. The horizontal axis in FIG. 5 is time t.
 放電加工装置100が予備放電を開始する場合、制御装置8は、時間t=t1のタイミングで第1制御信号13をオンとすることにより、第1スイッチ10のスイッチング素子10A,10Bをオンさせる。すると、第1スイッチ10を介して、第1電源1から電極3と被加工物4とに電圧が与えられる。この状態で、制御装置8は、移動装置15を制御して電極3と被加工物4との距離を小さくしていく。すると、電極3と被加工物4との間に絶縁破壊が発生し、極間5に放電が発生する。この放電が予備放電である。図5に示される例では、時間t=t2のタイミングで絶縁破壊が発生している。絶縁破壊が発生すると、極間電圧Vが低下する。 When the electrical discharge machining device 100 starts preliminary discharge, the control device 8 turns on the switching elements 10A and 10B of the first switch 10 by turning on the first control signal 13 at time t = t1. Then, a voltage is applied from the first power source 1 to the electrode 3 and the workpiece 4 via the first switch 10. In this state, the control device 8 controls the moving device 15 to reduce the distance between the electrode 3 and the workpiece 4. Then, dielectric breakdown occurs between the electrode 3 and the workpiece 4, and a discharge occurs between the electrodes 5. This discharge is a preliminary discharge. In the example shown in FIG. 5, dielectric breakdown occurs at the timing of time t = t2. When dielectric breakdown occurs, the interelectrode voltage V decreases.
 極間5に予備放電が発生すると、極間5にはアーク電流、すなわち極間電流Iが流れ、極間電圧Vは降下する。実施の形態1において、放電加工装置100は、時間t=t4のタイミングで予備放電を終了させると同時に主放電を開始する。時間t=t4のタイミングで、制御装置8は、第1制御信号13をオフとすることにより、第1スイッチ10のスイッチング素子10A,10Bをオフさせる。同時に、制御装置8は、第2制御信号14をオンとすることにより、第2スイッチ9のスイッチング素子9A,9Bをオンさせる。すると、第2スイッチ9を介して、第2電源2から電極3と被加工物4との間に電圧が与えられる。予備放電の後の放電が主放電である。 When a preliminary discharge occurs between the electrodes 5, an arc current, that is, an electrode current I flows through the electrodes 5, and the voltage V between the electrodes drops. In the first embodiment, the electric discharge machining apparatus 100 ends the preliminary discharge at the timing of time t = t4 and starts the main discharge at the same time. At the timing of time t = t4, the control device 8 turns off the first control signal 13, thereby turning off the switching elements 10A and 10B of the first switch 10. At the same time, the control device 8 turns on the switching elements 9A and 9B of the second switch 9 by turning on the second control signal 14. Then, a voltage is applied between the electrode 3 and the workpiece 4 from the second power source 2 via the second switch 9. The discharge after the preliminary discharge is the main discharge.
 時間t=t4以降は、電極3と被加工物4との間に与えられる第2電源2の電圧により、極間5には主放電が発生する。図5に示されるように、主放電の極間電流Iは、予備放電の極間電流よりも大きい。主放電により、被加工物4が溶融し、表面から一部が除去されて加工が進行する。時間t=t5のタイミングで、制御装置8は、第2スイッチ9のスイッチング素子9A,9Bをオフさせて、主放電を終了させる。主放電が終了した後、制御装置8は、時間t=t6のタイミングで再び第1スイッチ10のスイッチング素子10A,10Bをオンさせて、予備放電及び主放電を繰り返す。 After time t = t4, a main discharge is generated between the electrodes 5 due to the voltage of the second power supply 2 applied between the electrode 3 and the workpiece 4. As shown in FIG. 5, the inter-electrode current I of the main discharge is larger than the inter-electrode current of the preliminary discharge. Due to the main discharge, the workpiece 4 is melted, a part of the workpiece 4 is removed from the surface, and the processing proceeds. At the timing of time t = t5, the control device 8 turns off the switching elements 9A and 9B of the second switch 9 and ends the main discharge. After the main discharge is completed, the control device 8 turns on the switching elements 10A and 10B of the first switch 10 again at time t = t6, and repeats the preliminary discharge and the main discharge.
 実施の形態1において、制御装置8は、前記極間に第1の放電を発生させたときの放電状態の変化に基づいて、前記極間に第2の放電を発生させるエネルギーを決定する。具体的には、制御装置8は、予備放電中における極間電圧Vが第1の閾値Vc1から第2の閾値Vc2に変化するまでの時間Δtcの大きさに基づき、主放電において極間5に電圧を与える時間Δtpを決定する。以下において、時間Δtcを適宜、変化時間Δtcと称し、時間Δtpを適宜、主放電時間Δtpと称する。主放電において、極間電圧Vは第2電源2の電圧であり、一定なので、制御装置8は、主放電時間Δtpを変更することにより、主放電時間Δtpを変更する。 In the first embodiment, the control device 8 determines energy for generating the second discharge between the electrodes based on the change in the discharge state when the first discharge is generated between the electrodes. Specifically, the control device 8 sets the gap 5 between the main discharges based on the amount of time Δtc until the gap voltage V during the preliminary discharge changes from the first threshold value Vc1 to the second threshold value Vc2. A time Δtp for applying the voltage is determined. Hereinafter, the time Δtc is appropriately referred to as a change time Δtc, and the time Δtp is appropriately referred to as a main discharge time Δtp. In the main discharge, the inter-electrode voltage V is the voltage of the second power supply 2 and is constant, so the control device 8 changes the main discharge time Δtp by changing the main discharge time Δtp.
 変化時間Δtcが相対的に短い場合、被加工物4の抵抗は相対的に低く、変化時間Δtcが相対的に長い場合、被加工物4の抵抗は相対的に高い。すなわち、変化時間Δtcは、被加工物4の抵抗に対応するので、制御装置8は、変化時間Δtcを用いて被加工物4の抵抗の大小を判定することができる。被加工物4が低抵抗元素と高抵抗元素とを含む多元素結合材料である場合、変化時間Δtcが相対的に短い、すなわち抵抗が相対的に低い場合は低抵抗元素の割合が多く、変化時間Δtcが相対的に長い、すなわち抵抗が相対的に高い場合は高抵抗元素の割合が多い。制御装置8は、予備放電における変化時間Δtcにより、被加工物4における低抵抗元素割合と高抵抗元素との割合を判別できるため、双方の元素がバランスよく溶融できるような主放電の条件、すなわち主放電時間Δtpを決定することができる。 When the change time Δtc is relatively short, the resistance of the workpiece 4 is relatively low, and when the change time Δtc is relatively long, the resistance of the workpiece 4 is relatively high. That is, since the change time Δtc corresponds to the resistance of the workpiece 4, the control device 8 can determine the magnitude of the resistance of the workpiece 4 using the change time Δtc. When the workpiece 4 is a multi-element bonding material including a low resistance element and a high resistance element, when the change time Δtc is relatively short, that is, when the resistance is relatively low, the ratio of the low resistance element is large and changes When the time Δtc is relatively long, that is, when the resistance is relatively high, the ratio of the high resistance element is large. Since the control device 8 can discriminate between the low resistance element ratio and the high resistance element ratio in the workpiece 4 based on the change time Δtc in the preliminary discharge, the main discharge conditions such that both elements can be melted in a balanced manner, that is, The main discharge time Δtp can be determined.
 被加工物4の材料としてWC-Coの焼結合金である超硬合金を例にすると、WCの抵抗率が19.2×10-8Ω・m、Coの抵抗率が5.81×10-8Ω・mであるため、WCが高抵抗元素、Coが低抵抗元素になる。 Taking a cemented carbide which is a sintered alloy of WC—Co as an example of the material of the workpiece 4, the resistivity of WC is 19.2 × 10 −8 Ω · m, and the resistivity of Co is 5.81 × 10. Since -8 Ω · m, WC is a high resistance element and Co is a low resistance element.
 実施の形態1において、制御装置8は、変化時間Δtcが相対的に短い場合は主放電時間Δtpを相対的に短くし、変化時間Δtcが相対的に長い場合は、主放電時間Δtpを相対的に長くする。このような処理により、制御装置8は、被加工物4の抵抗が相対的に高い場合と相対的に低い場合とで、極間電流IのピークIpを一定にすることができるので、被加工物4の空孔の発生及び加工面の品質低下を抑制することができる。 In the first embodiment, the control device 8 relatively shortens the main discharge time Δtp when the change time Δtc is relatively short, and relatively sets the main discharge time Δtp when the change time Δtc is relatively long. Make it longer. By such processing, the control device 8 can keep the peak Ip of the interelectrode current I constant between when the resistance of the workpiece 4 is relatively high and when it is relatively low. Generation | occurrence | production of the void | hole of the thing 4 and the quality fall of a processed surface can be suppressed.
 図5に示される例において、時間t=t7から始まる予備放電での時間t=t8からt9までの変化時間Δtc2は、時間t=t2から始まる予備放電での変化時間Δtc1よりも長い。このため、時間t=t7から始まる予備放電での被加工物4の状態は、時間t=t2から始まる予備放電での状態よりも高抵抗である。制御装置8は、時間t=t7から始まる予備放電の後の主放電での主放電時間Δtp2を、制御装置8は、時間t=t2から始まる予備放電の後の主放電での主放電時間Δtp1よりも長くする。時間t=t7以降において極間電流Iが上昇する速度は、時間t=t2以降よりも遅いが、主放電時間Δtp2は主放電時間Δtp1よりも長い。このため、時間t=t9からt10までの主放電における極間電流IのピークIpは、時間t=t4からt5までの主放電における値と同等になる。その結果、放電加工装置100は、被加工物4の空孔の発生及び加工面の品質低下を抑制することができる。 In the example shown in FIG. 5, the change time Δtc2 from the time t = t8 to t9 in the preliminary discharge starting from the time t = t7 is longer than the change time Δtc1 in the preliminary discharge starting from the time t = t2. For this reason, the state of the workpiece 4 in the preliminary discharge starting from time t = t7 has a higher resistance than the state in the preliminary discharge starting from time t = t2. The control device 8 sets the main discharge time Δtp2 in the main discharge after the preliminary discharge starting from time t = t7, and the control device 8 sets the main discharge time Δtp1 in the main discharge after the preliminary discharge starting from time t = t2. Longer than. The speed at which the interelectrode current I increases after time t = t7 is slower than after time t = t2, but the main discharge time Δtp2 is longer than the main discharge time Δtp1. For this reason, the peak Ip of the interelectrode current I in the main discharge from time t = t9 to t10 is equivalent to the value in the main discharge from time t = t4 to t5. As a result, the electric discharge machining apparatus 100 can suppress the generation of holes in the workpiece 4 and the deterioration of the quality of the machined surface.
 制御装置8は、第1検出装置6Aから第1信号を取得した時間、図5に示される例では時間t=t2から時間の計数を開始する。次に、制御装置8は、第2検出装置6Bから第2信号を取得した時間、図5に示される例では時間t=3のタイミングで、時間の計数を終了する。制御装置8は、第1信号を取得してから第2信号を取得するまでに計数した時間を、変化時間Δtcとする。変化時間Δtcは、t3-t2となる。 The control device 8 starts counting time from the time when the first signal is acquired from the first detection device 6A, in the example shown in FIG. 5, from time t = t2. Next, the control device 8 finishes counting the time at the time when the second signal is acquired from the second detection device 6B, that is, at the timing of time t = 3 in the example shown in FIG. The control device 8 sets the time counted from the acquisition of the first signal to the acquisition of the second signal as the change time Δtc. The change time Δtc is t3−t2.
 図6は、電極と被加工物との間における極間電圧又は極間電流の時間による変化の一例を示す図である。電極3と被加工物4との間に電圧が印加されて放電が発生する場合、極間電圧Vidで極間5の絶縁破壊が発生する。そのときの極間電流はIidである。極間5の絶縁破壊が発生すると、極間電圧Vは時間tの経過とともに低下し、極間電圧Vacで一定となる。そのときの極間電流はIacである。極間電圧Vacとなると、極間5には安定してアーク放電が発生している状態となる。 FIG. 6 is a diagram illustrating an example of a change in the interelectrode voltage or interelectrode current between the electrode and the workpiece with time. When a voltage is applied between the electrode 3 and the workpiece 4 to generate a discharge, a dielectric breakdown occurs between the electrodes 5 at the electrode voltage Vid. The current between the electrodes at that time is Iid. When dielectric breakdown occurs between the electrodes 5, the voltage V between the electrodes decreases with the lapse of time t, and becomes constant at the voltage Vac between the electrodes. The current between the electrodes is Iac. When the interelectrode voltage Vac is reached, arc discharge is stably generated in the interelectrode 5.
 電圧の第1の閾値Vc1は、極間5の絶縁破壊が発生したときの極間電圧Vidよりも低い値である。実施の形態1において、電圧の第1の閾値Vc1は、極間電圧Vidの80%から90%の範囲で定められるが、この範囲に限定されない。電圧の第2の閾値Vc2は、極間5に安定してアーク放電が発生しているときの極間電圧Vacよりも高い値である。実施の形態1において、電圧の第2の閾値Vc2は、極間電圧Vacの110%から120%の範囲で定められるが、この範囲に限定されない。電流の第1の閾値Vc1及び第2の閾値Vc2については後述する。 The first threshold value Vc1 of the voltage is a value lower than the interelectrode voltage Vid when the dielectric breakdown of the interelectrode 5 occurs. In the first embodiment, the first voltage threshold value Vc1 is determined in the range of 80% to 90% of the interelectrode voltage Vid, but is not limited to this range. The second threshold value Vc2 of the voltage is a value higher than the interelectrode voltage Vac when the arc discharge is stably generated in the interelectrode 5. In the first embodiment, the second voltage threshold Vc2 is determined in the range of 110% to 120% of the interelectrode voltage Vac, but is not limited to this range. The first threshold value Vc1 and the second threshold value Vc2 will be described later.
 図7は、変化時間を用いて主放電時間を決定する例を示す図である。実施の形態1において、主放電時間Δtpは、変化時間Δtcが長くなるにしたがって長くなり、変化時間Δtcが短くなるにしたがって短くなる。変化時間Δtcは、予備放電における極間5での放電状態、実施の形態1では極間電圧V及び極間電流Iの状態が変化する時間である。より具体的には、変化時間Δtcは、予備放電における極間電圧Vが低下し、極間電流Iが増加する時間である。したがって、変化時間Δtcが短くなるということは、極間5における放電状態の変化する速度、より具体的には極間電圧Vが低下し極間電流Iが増加する速度が遅くなることを意味する。また、変化時間Δtcが長くなるということは、極間5における放電状態の変化する速度、より具体的には極間電圧Vが低下し極間電流Iが増加する速度が速くなることを意味する。 FIG. 7 is a diagram illustrating an example in which the main discharge time is determined using the change time. In the first embodiment, the main discharge time Δtp becomes longer as the change time Δtc becomes longer, and becomes shorter as the change time Δtc becomes shorter. The change time Δtc is the time during which the state of discharge between the electrodes 5 in the preliminary discharge, that is, the state of the voltage V and the current I between the electrodes in the first embodiment is changed. More specifically, the change time Δtc is a time during which the interelectrode voltage V decreases during the preliminary discharge and the interelectrode current I increases. Therefore, the shortening of the change time Δtc means that the speed at which the discharge state changes in the gap 5, more specifically, the speed at which the gap voltage V decreases and the gap current I increases decreases. . Also, the longer change time Δtc means that the rate of change of the discharge state in the gap 5, more specifically, the rate of decrease of the gap voltage V and increase of the gap current I is increased. .
 実施の形態1において、主放電時間Δtpは、図7の実線Aで示されるように、変化時間Δtcが変化時間閾値Δtccよりも長い場合はΔtphとなり、変化時間Δtcが変化時間閾値Δtcc以下である場合はΔtplとなる。主放電時間Δtphは、主放電時間Δtplよりも長い。変化時間閾値Δtccは、被加工物4の材料の種類に応じて、実験又はコンピュータを用いたシミュレーションによって決定される。実施の形態1において、変化時間閾値Δtccは、加工条件列の中で100nsec.以上2μsec.までの間で設定される。 In the first embodiment, the main discharge time Δtp is Δtph when the change time Δtc is longer than the change time threshold Δtcc as shown by the solid line A in FIG. 7, and the change time Δtc is less than or equal to the change time threshold Δtcc. In this case, Δtpl. The main discharge time Δtph is longer than the main discharge time Δtpl. The change time threshold value Δtcc is determined by an experiment or simulation using a computer according to the type of material of the workpiece 4. In the first embodiment, the change time threshold value Δtcc is set to 100 nsec. 2 μsec. It is set between.
 変化時間Δtcが変化時間閾値Δtccよりも長い場合、被加工物4は高抵抗元素の割合が高く、変化時間Δtcが変化時間閾値Δtcc以下である場合、被加工物4は低抵抗元素の割合が高いと判断できる。このように、変化時間閾値Δtccを基準として主放電時間Δtpを2段階で変化させることにより、制御装置8による主放電時間Δtpを決定する処理が比較的簡単になる。 When the change time Δtc is longer than the change time threshold value Δtcc, the workpiece 4 has a high ratio of high resistance elements. When the change time Δtc is less than or equal to the change time threshold value Δtcc, the workpiece 4 has a low resistance element ratio. It can be judged that it is expensive. In this way, by changing the main discharge time Δtp in two stages with the change time threshold value Δtcc as a reference, the process of determining the main discharge time Δtp by the control device 8 becomes relatively simple.
 主放電時間Δtpは、前述したように2段階で変化するものに限定されず、図7の一点鎖線Bで示されるように3段階以上で変化してもよい。また、主放電時間Δtpは、変化時間Δtcが増加するにしたがって主放電時間Δtpが増加する、変化時間Δtcの関数にしたがってもよい。この場合の関数は、図7の破線Cで示されるような、変化時間Δtの一次関数であってもよいし、変化時間Δtcの二次関数、三次関数又は指数関数であってもよい。このようにすることで、放電加工装置100は、被加工物4の抵抗の状態に対応して、主放電時間Δtpをより細かく設定できるので、被加工物4の空孔の発生及び加工面の品質低下をさらに抑制することができる。 The main discharge time Δtp is not limited to the one that changes in two steps as described above, and may change in three or more steps as shown by a one-dot chain line B in FIG. Further, the main discharge time Δtp may follow a function of the change time Δtc in which the main discharge time Δtp increases as the change time Δtc increases. The function in this case may be a linear function of the change time Δt as shown by a broken line C in FIG. 7, or may be a quadratic function, a cubic function or an exponential function of the change time Δtc. By doing in this way, since the electric discharge machining apparatus 100 can set the main discharge time Δtp more finely in accordance with the resistance state of the workpiece 4, the generation of holes in the workpiece 4 and the machining surface Quality degradation can be further suppressed.
 主放電時間Δtpl,Δtph、一点鎖線Bで示される主放電時間Δtpの変化又は前述した変化時間Δtcの関数は、被加工物4の材料毎に、実験又はコンピュータを用いたシミュレーションによって求めることができる。 The main discharge times Δtpl and Δtph, the change in the main discharge time Δtp indicated by the alternate long and short dash line B, or the function of the change time Δtc described above can be obtained for each material of the workpiece 4 by experiments or simulations using a computer. .
 図8は、被加工物の材料と、第1閾値、第2閾値、変化時間閾値及び主放電時間との関係を記述したテーブルの一例を示す図である。被加工物4の材料の種類によって、第1の閾値Vc1、第2の閾値Vc2、変化時間閾値Δtcc及び主放電時間Δtpl,Δtphは変化する。実施の形態1においては、被加工物4の材料の種類に応じて、第1の閾値Vc1、第2の閾値Vc2、変化時間閾値Δtcc及び主放電時間Δtpl,Δtphを求めて、テーブルTBに記述する。テーブルTBは、図1に示される制御装置8の記憶部8Mに記憶されている。 FIG. 8 is a diagram showing an example of a table describing the relationship between the material of the workpiece, the first threshold value, the second threshold value, the change time threshold value, and the main discharge time. The first threshold value Vc1, the second threshold value Vc2, the change time threshold value Δtcc, and the main discharge times Δtpl and Δtph vary depending on the type of material of the workpiece 4. In the first embodiment, the first threshold value Vc1, the second threshold value Vc2, the change time threshold value Δtcc, and the main discharge times Δtpl and Δtph are obtained and described in the table TB according to the material type of the workpiece 4. To do. The table TB is stored in the storage unit 8M of the control device 8 shown in FIG.
 放電加工装置100が被加工物4を放電加工する場合、放電加工装置100のオペレータは、図1に示される入力装置8Iから制御装置8に被加工物4の材料の種類を入力する。入力された材料の種類を取得した処理部8Pは、記憶部8MからテーブルTBを読み出す。そして、処理部8Pは、材料の種類を検索キーとして、読み出したテーブルTBを参照して入力された材料の種類に対応する第1の閾値Vc1、第2の閾値Vc2、変化時間閾値Δtcc及び主放電時間Δtpl,Δtphを検索し、テーブルTBから取得する。制御装置8は、取得した第1の閾値Vc1、第2の閾値Vc2、変化時間閾値Δtcc及び主放電時間Δtpl,Δtphを用いて、第1スイッチ10及び第2スイッチ9を制御して、被加工物4を放電加工する。このようにすることで、放電加工装置100は、複数の異なる種類の材料の被加工物4を放電加工する際に、適切な条件で被加工物4を放電加工できるので、空孔の発生及び加工面の品質低下を抑制することができる。また、オペレータは、被加工物4の種類を入力するのみで放電加工の条件が設定されるので、操作が容易になるという利点もある。 When the electric discharge machining apparatus 100 performs electric discharge machining on the workpiece 4, the operator of the electric discharge machining apparatus 100 inputs the material type of the workpiece 4 from the input device 8I shown in FIG. The processing unit 8P that has acquired the type of the input material reads the table TB from the storage unit 8M. Then, the processing unit 8P uses the material type as a search key, refers to the read table TB, and inputs the first threshold value Vc1, the second threshold value Vc2, the change time threshold value Δtcc, and the main value. The discharge times Δtpl and Δtph are retrieved and obtained from the table TB. The control device 8 controls the first switch 10 and the second switch 9 by using the acquired first threshold value Vc1, second threshold value Vc2, change time threshold value Δtcc, and main discharge times Δtpl and Δtph, to process the workpiece. The object 4 is subjected to electric discharge machining. By doing so, the electric discharge machining apparatus 100 can perform electric discharge machining on the workpiece 4 under appropriate conditions when electric discharge machining is performed on the workpiece 4 of a plurality of different types of materials. It is possible to suppress degradation of the quality of the processed surface. In addition, since the operator sets the conditions for electric discharge machining only by inputting the type of the workpiece 4, there is an advantage that the operation becomes easy.
 図9は、実施の形態1に係る放電加工装置が放電加工を実行する際の処理の一例を示すフローチャートである。ステップS101において、図1に示される制御装置8は、第1スイッチ10をオンすることにより、第1電源1の電圧である第1の電圧を電極3と被加工物4との間に与える。次に、ステップS102において、処理部8Pは、極間電圧Vを第1の閾値Vc1と比較する。 FIG. 9 is a flowchart showing an example of processing when the electric discharge machining apparatus according to Embodiment 1 executes electric discharge machining. In step S <b> 101, the control device 8 shown in FIG. 1 turns on the first switch 10 to apply the first voltage, which is the voltage of the first power supply 1, between the electrode 3 and the workpiece 4. Next, in step S102, the processing unit 8P compares the interelectrode voltage V with the first threshold value Vc1.
 極間電圧Vが第1の閾値Vc1以上である場合(ステップS102、No)、制御装置8は、極間電圧Vが第1の閾値Vc1の絶対値を下回るまで待機する。極間電圧Vが第1の閾値Vc1の絶対値を下回った場合、すなわち極間電圧Vが第1の閾値Vc1未満になった場合(ステップS102、Yes)、制御装置8は、処理をステップS103に進める。ステップS103において、制御装置8は、極間電圧Vが第1の閾値Vc1の絶対値を下回ったタイミングから時間の計数を開始する。 When the inter-electrode voltage V is equal to or higher than the first threshold value Vc1 (step S102, No), the control device 8 waits until the inter-electrode voltage V falls below the absolute value of the first threshold value Vc1. When the inter-electrode voltage V is lower than the absolute value of the first threshold value Vc1, that is, when the inter-electrode voltage V becomes less than the first threshold value Vc1 (step S102, Yes), the control device 8 performs the process in step S103. Proceed to In step S103, the control device 8 starts counting time from the timing when the inter-electrode voltage V falls below the absolute value of the first threshold value Vc1.
 次に、ステップS104において、処理部8Pは、極間電圧Vを第2の閾値Vc2と比較する。極間電圧Vが第2の閾値Vc2以上である場合(ステップS104、No)、制御装置8は、極間電圧Vが第2の閾値Vc2の絶対値を下回るまで待機する。極間電圧Vが第2の閾値Vc2の絶対値を下回った場合、すなわち極間電圧Vが第2の閾値Vc2未満になった場合(ステップS104、Yes)、制御装置8は、処理をステップS105に進める。 Next, in step S104, the processing unit 8P compares the interelectrode voltage V with the second threshold value Vc2. When the inter-electrode voltage V is greater than or equal to the second threshold value Vc2 (step S104, No), the control device 8 waits until the inter-electrode voltage V falls below the absolute value of the second threshold value Vc2. When the inter-electrode voltage V falls below the absolute value of the second threshold value Vc2, that is, when the inter-electrode voltage V becomes less than the second threshold value Vc2 (step S104, Yes), the control device 8 performs the process at step S105. Proceed to
 ステップS105において、制御装置8は、時間の計数を終了し、計数した時間を用いて変化時間Δtcを求める。さらに、制御装置8は、第2スイッチ9をオンすることにより、第2電源2の電圧である第2の電圧を電極3と被加工物4との間に与える。この操作により、電極3と被加工物4との間には主放電が発生する。制御装置8は、第2スイッチ9をオンしたタイミング、すなわち主放電が開始したタイミングから時間の計数を開始する。次に、ステップS106に進み、制御装置8は、変化時間Δtcから主放電時間Δtpを求める。 In step S105, the control device 8 finishes counting the time, and obtains the change time Δtc using the counted time. Furthermore, the control device 8 applies a second voltage, which is the voltage of the second power supply 2, between the electrode 3 and the workpiece 4 by turning on the second switch 9. By this operation, a main discharge is generated between the electrode 3 and the workpiece 4. The control device 8 starts counting time from the timing when the second switch 9 is turned on, that is, the timing when the main discharge is started. Next, it progresses to step S106 and the control apparatus 8 calculates | requires main discharge time (DELTA) tp from change time (DELTA) tp.
 ステップS107に進み、制御装置8は、主放電を開始したタイミングからの経過時間tsと主放電時間Δtpとを比較する。経過時間tsが主放電時間Δtpに達していない場合(ステップS107、No)、制御装置8は、経過時間tsが主放電時間Δtpに達するまで待機する。経過時間tsが主放電時間Δtpに達した場合(ステップS107、Yes)、ステップS108において、制御装置8は、第2スイッチ9をオフすることにより主放電を終了させる。ステップS101からステップS108が終了したら、制御装置8はステップS101に戻り、被加工物4の放電加工が終了するまで、ステップS101からステップS108を繰り返す。 In step S107, the control device 8 compares the elapsed time ts from the timing of starting the main discharge with the main discharge time Δtp. When the elapsed time ts has not reached the main discharge time Δtp (step S107, No), the control device 8 waits until the elapsed time ts reaches the main discharge time Δtp. When the elapsed time ts has reached the main discharge time Δtp (step S107, Yes), in step S108, the control device 8 ends the main discharge by turning off the second switch 9. When Step S101 to Step S108 are completed, the control device 8 returns to Step S101 and repeats Step S101 to Step S108 until the electrical discharge machining of the workpiece 4 is completed.
変形例1.
 図10は、実施の形態1の変形例1に係る第2スイッチを示す図である。前述した実施の形態において、主放電時間Δtpを変更することによって、異なる主放電間において極間電流IのピークIpを一定とした。変形例1では、極間電圧Vを変更することにより、異なる主放電間において極間電流IのピークIpを一定する。
Modification 1
FIG. 10 is a diagram illustrating a second switch according to the first modification of the first embodiment. In the embodiment described above, the peak Ip of the interelectrode current I is made constant between different main discharges by changing the main discharge time Δtp. In the first modification, the peak Ip of the interelectrode current I is made constant between different main discharges by changing the interelectrode voltage V.
 第2スイッチ9aは、第2電源2の正極と電極3との間に設けられる電圧調整装置9Aaと、第2電源2の負極と被加工物4との間に設けられるスイッチング素子9Bとを含む。電圧調整装置9Aaは、直列接続された複数のスイッチング素子16TA,16TB,16TC,16TDと、直列接続された複数の抵抗16RA,16RB,16RC,16RDと、を並列接続してある。複数のスイッチング素子16TA,16TB,16TC,16TDは、制御装置8がそれぞれオンとオフとを制御する。スイッチング素子16TA,16TB,16TC,16TDは、バイポーラトランジスター又はFET(Field Effect Transistor)といった半導体素子が用いられるが、これらに限定されるものではない。 The second switch 9a includes a voltage adjusting device 9Aa provided between the positive electrode of the second power source 2 and the electrode 3, and a switching element 9B provided between the negative electrode of the second power source 2 and the workpiece 4. . In the voltage regulator 9Aa, a plurality of switching elements 16TA, 16TB, 16TC, and 16TD connected in series and a plurality of resistors 16RA, 16RB, 16RC, and 16RD connected in series are connected in parallel. The plurality of switching elements 16TA, 16TB, 16TC, and 16TD are turned on and off by the control device 8, respectively. The switching elements 16TA, 16TB, 16TC, and 16TD are semiconductor elements such as bipolar transistors or FETs (Field Effect Transistors), but are not limited to these.
 電圧調整装置9Aaは、複数のスイッチング素子16TA,16TB,16TC,16TDをすべてオフしたときの抵抗が最も高くなり、スイッチング素子16TA,16TB,16TC,16TDの順にオンしていくと抵抗が段階的に低くなる。そして、電圧調整装置9Aaは、複数のスイッチング素子16TA,16TB,16TC,16TDをすべてオンしたときの抵抗が最も低くなる。電圧調整装置9Aaは、複数のスイッチング素子16TA,16TB,16TC,16TDのオンとオフとを切り替えることにより、第2電源2と電極3との間の電圧降下を変更することができる。このため、電圧調整装置9Aaを備える第2スイッチ9aは、極間電圧Vを変更することができる。 The voltage adjusting device 9Aa has the highest resistance when all of the plurality of switching elements 16TA, 16TB, 16TC, and 16TD are turned off. When the switching elements 16TA, 16TB, 16TC, and 16TD are turned on in this order, the resistance gradually increases. Lower. The voltage regulator 9Aa has the lowest resistance when all of the plurality of switching elements 16TA, 16TB, 16TC, and 16TD are turned on. The voltage regulator 9Aa can change the voltage drop between the second power supply 2 and the electrode 3 by switching on and off the plurality of switching elements 16TA, 16TB, 16TC, and 16TD. For this reason, the 2nd switch 9a provided with voltage regulator 9Aa can change the voltage V between electrodes.
 第2スイッチ9aによって電極3と被加工物4との間に極間電圧Vを与える場合、制御装置8は、少なくともスイッチング素子9Bをオンする。スイッチング素子9BのみがONされた場合、第2電源2と電極3との間には、電圧調整装置9Aaのすべての抵抗16RA,16RB,16RC,16RDが介在するので、極間電圧Vは最も小さくなる。スイッチング素子9Bと、複数のスイッチング素子16TA,16TB,16TC,16TDのうち少なくとも1つとをONにすると、スイッチング素子9BのみがONされた場合よりも極間電圧Vは大きくなる。 When the interelectrode voltage V is applied between the electrode 3 and the workpiece 4 by the second switch 9a, the control device 8 turns on at least the switching element 9B. When only the switching element 9B is turned on, since all the resistors 16RA, 16RB, 16RC, and 16RD of the voltage regulator 9Aa are interposed between the second power source 2 and the electrode 3, the interpolar voltage V is the smallest. Become. When the switching element 9B and at least one of the plurality of switching elements 16TA, 16TB, 16TC, and 16TD are turned on, the inter-electrode voltage V becomes larger than when only the switching element 9B is turned on.
 変形例1において、変化時間Δtcが相対的に長い場合、高抵抗元素との放電であるため、制御装置8は第2スイッチの電圧調整装置9Aaを制御して、極間電圧Vを上昇させる。変化時間Δtcが相対的に短い場合、低抵抗元素との放電であるため、制御装置8は第2スイッチの電圧調整装置9Aaを制御して、極間電圧Vを低下させる。このようにすることで、制御装置8は、主放電時間Δtpが同一であっても、極間電流Iが上昇する変化率を変更できるので、高抵抗元素と低抵抗元素との間で、極間電流IのピークIpを同一にすることができる。その結果、放電加工装置100は、被加工物4の空孔の発生及び加工面の品質低下を抑制することができる。 In the first modification, when the change time Δtc is relatively long, since the discharge is performed with the high resistance element, the control device 8 controls the voltage adjustment device 9Aa of the second switch to increase the inter-electrode voltage V. When the change time Δtc is relatively short, the discharge is performed with the low resistance element. Therefore, the control device 8 controls the voltage adjustment device 9Aa of the second switch to decrease the interelectrode voltage V. By doing in this way, even if the main discharge time Δtp is the same, the control device 8 can change the rate of change in which the interelectrode current I increases, so that the polarities can be changed between the high resistance element and the low resistance element. The peak Ip of the intercurrent I can be made the same. As a result, the electric discharge machining apparatus 100 can suppress the generation of holes in the workpiece 4 and the deterioration of the quality of the machined surface.
 変形例1において、電圧調整装置9Aaは、複数のスイッチング素子16TA,16TB,16TC,16TD及び複数の抵抗16RA,16RB,16RC,16RDを有するが、このようなものに限定されない。電圧調整装置9Aaは、DC/DCコンバータであってもよいし、電圧の異なる複数の直流電源と、極間5へ電圧を与える電源を複数の直流電源の中から選択するスイッチとを有する装置であってもよい。 In the first modification, the voltage adjustment device 9Aa includes a plurality of switching elements 16TA, 16TB, 16TC, and 16TD and a plurality of resistors 16RA, 16RB, 16RC, and 16RD, but is not limited thereto. The voltage adjusting device 9Aa may be a DC / DC converter, or a device having a plurality of DC power sources having different voltages and a switch for selecting a power source for supplying a voltage to the gap 5 from the plurality of DC power sources. There may be.
変形例2.
 前述した実施の形態1において、図1に示される検出装置6は、極間電圧Vを検出するが、極間電流Iを検出してもよい。この場合、第1検出装置6Aは、検出した極間電流Iを、図5に示される電流の第1の閾値Ic1と比較し、極間電流Iが第1の閾値Ic1の絶対値を上回った場合には、第1信号を出力する。第2検出装置6Bは、検出した極間電流Iを、電流の第2の閾値Ic2と比較する。第2の閾値Ic2の絶対値は、第1の閾値Ic1の絶対値よりも大きい。第2検出装置6Bは、極間電流Iが第2の閾値Ic2の絶対値を上回った場合には、第2信号を出力する。電流の第1の閾値Ic1及び第2の閾値Ic2は、極間電圧Vが電圧の第1の閾値Vc1及び第2の閾値Vc2であるときの極間電流Iとすることができる。
Modification 2
In the first embodiment described above, the detection device 6 shown in FIG. 1 detects the interelectrode voltage V, but may detect the interelectrode current I. In this case, the first detection device 6A compares the detected interelectrode current I with the first threshold value Ic1 of the current shown in FIG. 5, and the interelectrode current I exceeds the absolute value of the first threshold value Ic1. In the case, the first signal is output. The second detection device 6B compares the detected interelectrode current I with the second threshold value Ic2 of the current. The absolute value of the second threshold value Ic2 is larger than the absolute value of the first threshold value Ic1. The second detection device 6B outputs a second signal when the interelectrode current I exceeds the absolute value of the second threshold value Ic2. The first threshold value Ic1 and the second threshold value Ic2 of the current can be the current I between the electrodes when the voltage V between the electrodes is the first threshold value Vc1 and the second threshold value Vc2.
 実施の形態1において、制御装置8は、図5に示されるように、絶縁破壊が発生するまで第1スイッチ10をオンし続けるが、加工条件によっては、絶縁破壊が発生するまで第1スイッチ10のオンとオフとを繰り返して電圧を極間5に与えることがある。後者を用いた場合、検出装置6は、極間電圧Vの絶対値が電圧の第1の閾値Vc1の絶対値及び第2の閾値Vc2の絶対値を下回ったことを検出することが困難である。このため、絶縁破壊が発生するまで第1スイッチ10のオンとオフとを繰り返す場合、検出装置6は、極間電流Iの絶対値と、電流の第1の閾値Ic1の絶対値及び第2の閾値Ic2の絶対値とを用いて変化時間Δtcを求める。このようにすれば、検出装置6は、加工条件によらず変化時間Δtcを求めることができる。 In the first embodiment, as shown in FIG. 5, the control device 8 continues to turn on the first switch 10 until dielectric breakdown occurs. However, depending on the processing conditions, the first switch 10 continues until dielectric breakdown occurs. The voltage may be applied to the gap 5 by repeatedly turning on and off. When the latter is used, it is difficult for the detection device 6 to detect that the absolute value of the interelectrode voltage V is lower than the absolute value of the first threshold value Vc1 and the absolute value of the second threshold value Vc2. . Therefore, when the first switch 10 is repeatedly turned on and off until dielectric breakdown occurs, the detection device 6 determines the absolute value of the interelectrode current I, the absolute value of the first threshold value Ic1 of the current, and the second value. The change time Δtc is obtained using the absolute value of the threshold value Ic2. In this way, the detection device 6 can obtain the change time Δtc regardless of the processing conditions.
 変形例2において、制御装置8は、絶縁破壊が発生するまで第1スイッチ10をオンし続ける場合は、極間電圧Vと第1の閾値Vc1及び第2の閾値Vc2とを用いて変化時間Δtc求め、絶縁破壊が発生するまで第1スイッチ10のオンとオフとを繰り返す場合は、極間電流Iと第1の閾値Ic1及び第2の閾値Ic2とを用いて変化時間Δtcを求めてもよい。そして、制御装置8は、求めた変化時間Δtcを用いて主放電で極間5に与えられる電圧、より具体的には電圧を与える時間又は電圧の大きさを決定してもよい。極間電流Iが用いられる場合、変化時間Δtcは、極間電流Iが第1の閾値Ic1の絶対値を上回ったタイミングから第2の閾値Ic2の絶対値を上回ったタイミングまでの時間である。 In the second modification, when the control device 8 keeps turning on the first switch 10 until the dielectric breakdown occurs, the change time Δtc using the inter-electrode voltage V and the first threshold value Vc1 and the second threshold value Vc2. If the first switch 10 is repeatedly turned on and off until dielectric breakdown occurs, the change time Δtc may be obtained using the interelectrode current I and the first threshold value Ic1 and the second threshold value Ic2. . And the control apparatus 8 may determine the voltage given to the space | interval 5 by main discharge using the calculated | required change time (DELTA) tc, more specifically, the time which gives a voltage, or the magnitude | size of a voltage. When the interelectrode current I is used, the change time Δtc is the time from the timing when the interelectrode current I exceeds the absolute value of the first threshold value Ic1 to the timing when the interelectrode current I exceeds the absolute value of the second threshold value Ic2.
 前述したように、制御装置8は、予備放電での極間電圧Vが変化する変化時間Δtcに基づいて、主放電で極間5に与えられる電圧を決定することと、予備放電での極間電流Iが変化する変化時間Δtcに基づいて、主放電で極間5に与えられる電圧を決定することとを、予備放電の形態によって切り替えてもよい。このようにすることで、放電加工装置100は、様々な加工条件であっても変化時間Δtcを求めることができるので、被加工物4に適切な主放電時間Δtpを設定できる。その結果、放電加工装置100は、様々な加工条件において、被加工物4の空孔の発生及び加工面の品質低下を抑制することができる。 As described above, the control device 8 determines the voltage applied to the gap 5 in the main discharge based on the change time Δtc in which the gap voltage V in the preliminary discharge changes, and the gap in the preliminary discharge. Based on the change time Δtc during which the current I changes, the voltage applied to the gap 5 in the main discharge may be switched depending on the form of the preliminary discharge. By doing in this way, since the electric discharge machining apparatus 100 can obtain the change time Δtp even under various machining conditions, an appropriate main discharge time Δtp can be set for the workpiece 4. As a result, the electric discharge machining apparatus 100 can suppress the generation of holes in the workpiece 4 and the quality degradation of the machined surface under various machining conditions.
実施の形態2.
 図11は、実施の形態2に係る放電加工装置を示す図である。実施の形態2において、放電加工装置100bは、スイッチ、より具体的には第1スイッチ10bがブリッジ回路及び検出装置6bを備え、第1電源1から極間5へ正負の電圧を与える。実施の形態2に係る放電加工装置100bの他の構造は、実施の形態1に係る放電加工装置100と同様である。
Embodiment 2. FIG.
FIG. 11 is a diagram illustrating an electric discharge machining apparatus according to the second embodiment. In the second embodiment, the electrical discharge machining apparatus 100b includes a switch, more specifically, the first switch 10b includes a bridge circuit and a detection device 6b, and applies positive and negative voltages from the first power supply 1 to the gap 5 to each other. Other structures of the electric discharge machining apparatus 100b according to the second embodiment are the same as those of the electric discharge machining apparatus 100 according to the first embodiment.
 第1スイッチ10bは、第1電源1と電極3及び被加工物4との間に設けられる。第1スイッチ10bは、複数のスイッチング素子10A,10B,10C,10Dによってブリッジ回路を形成している。スイッチング素子10A,10B,10C,10Dは、バイポーラトランジスター又はFET(Field Effect Transistor)といった半導体素子が用いられるが、これらに限定されるものではない。スイッチング素子10A,10Cがブリッジ回路の上アームを形成し、スイッチング素子10B,10Dがブリッジ回路の下アームを形成する。スイッチング素子10Aとスイッチング素子10Dとの接続部が電極3に接続され、スイッチング素子10Cとスイッチング素子10Bとの接続部が被加工物4に接続される。複数のスイッチング素子10A,10B,10C,10Dは、制御装置8が制御する。 The first switch 10b is provided between the first power source 1, the electrode 3, and the workpiece 4. The first switch 10b forms a bridge circuit by a plurality of switching elements 10A, 10B, 10C, and 10D. The switching elements 10A, 10B, 10C, and 10D are semiconductor elements such as bipolar transistors or FETs (Field Effect Transistors), but are not limited thereto. Switching elements 10A and 10C form the upper arm of the bridge circuit, and switching elements 10B and 10D form the lower arm of the bridge circuit. A connection part between the switching element 10A and the switching element 10D is connected to the electrode 3, and a connection part between the switching element 10C and the switching element 10B is connected to the workpiece 4. The control device 8 controls the plurality of switching elements 10A, 10B, 10C, and 10D.
 スイッチング素子10A及びスイッチング素子10Bがオンになると、第1電源1の正極と電極3とが接続され、第1電源1の負極と被加工物4とが接続される。このため、極間電流Iは電極3から被加工物4に向かって流れる。スイッチング素子10C及びスイッチング素子10Dがオンになると、第1電源1の正極と被加工物4とが接続され、第1電源1の負極と電極3とが接続される。このため、極間電流Iは被加工物4から電極3に向かって流れる。このように、スイッチング素子10A及びスイッチング素子10Bと、スイッチング素子10C及びスイッチング素子10Dとを交互にオン、オフすると、電極3と被加工物4との極性を反転させて極間電圧Vを与えることができる。 When the switching element 10A and the switching element 10B are turned on, the positive electrode of the first power supply 1 and the electrode 3 are connected, and the negative electrode of the first power supply 1 and the workpiece 4 are connected. For this reason, the interelectrode current I flows from the electrode 3 toward the workpiece 4. When the switching element 10C and the switching element 10D are turned on, the positive electrode of the first power source 1 and the workpiece 4 are connected, and the negative electrode of the first power source 1 and the electrode 3 are connected. For this reason, the interelectrode current I flows from the workpiece 4 toward the electrode 3. As described above, when the switching element 10A and the switching element 10B and the switching element 10C and the switching element 10D are alternately turned on and off, the polarities of the electrode 3 and the workpiece 4 are reversed to give the interelectrode voltage V. Can do.
 検出装置6bは、第1検出装置6A、第2検出装置6B、第3検出装置6C及び第4検出装置6Dを含む。第1検出装置6A及び第2検出装置6Bは、実施の形態1で説明したものと同様である。第3検出装置6C及び第4検出装置6Dは、いずれも極間電圧を検出する。第3検出装置6Cは、検出した極間電圧を第3の閾値の絶対値と比較し、極間電圧が第1の閾値の絶対値の絶対値を下回った場合には、信号を出力する。この信号は、極間電圧が第3の閾値の絶対値を下回ったことを示す信号であり、以下においては適宜第3信号と称する。第3信号は制御装置8に入力される。第4検出装置6Dは、検出した極間電圧を第4の閾値と比較する。第4の閾値の絶対値は、第3の閾値の絶対値よりも小さい。第4検出装置6Dは、極間電圧が第4の閾値の絶対値を下回った場合には、信号を出力する。この信号は、極間電圧が第4の閾値の絶対値を下回ったことを示す信号であり、以下においては適宜第4信号と称する。第4信号は制御装置8に入力される。 The detection device 6b includes a first detection device 6A, a second detection device 6B, a third detection device 6C, and a fourth detection device 6D. The first detection device 6A and the second detection device 6B are the same as those described in the first embodiment. Each of the third detection device 6C and the fourth detection device 6D detects the interelectrode voltage. The third detection device 6C compares the detected inter-electrode voltage with the absolute value of the third threshold value, and outputs a signal when the inter-electrode voltage falls below the absolute value of the absolute value of the first threshold value. This signal is a signal indicating that the inter-electrode voltage has fallen below the absolute value of the third threshold value, and is hereinafter referred to as a third signal as appropriate. The third signal is input to the control device 8. The fourth detection device 6D compares the detected inter-electrode voltage with a fourth threshold value. The absolute value of the fourth threshold value is smaller than the absolute value of the third threshold value. The fourth detection device 6D outputs a signal when the inter-electrode voltage falls below the absolute value of the fourth threshold value. This signal is a signal indicating that the inter-electrode voltage has fallen below the absolute value of the fourth threshold value, and is hereinafter referred to as a fourth signal as appropriate. The fourth signal is input to the control device 8.
 実施の形態2において、検出装置6bは、閾値が異なる4台の比較器、すなわち第1検出装置6A、第2検出装置6B、第3検出装置6C及び第4検出装置6Dを含むが、検出装置6bはこのようなものに限定されない。検出装置6bは、1台の比較器の閾値を切り替えるものであってもよい。 In the second embodiment, the detection device 6b includes four comparators having different thresholds, that is, the first detection device 6A, the second detection device 6B, the third detection device 6C, and the fourth detection device 6D. 6b is not limited to such a thing. The detection device 6b may switch the threshold value of one comparator.
 図12は、実施の形態2に係る放電加工装置が実行する放電加工のタイミングチャートである。図12のPD1は予備放電において、第1スイッチ10bのスイッチング素子10A及びスイッチング素子10Bをオン又はオフさせる第1制御信号27のタイミングを示す。図12のPD2は予備放電において、第1スイッチ10bのスイッチング素子10C及びスイッチング素子10Dをオン又はオフさせる第1制御信号28のタイミングを示す。図12のMDは、主放電において第2スイッチ9をオン又はオフさせる第2制御信号29のタイミングを示す。図12のVは極間電圧を示し、Iは極間電流を示す。極間電圧Vの変化は実線36で示されており、極間電流Iの変化は実線39で示される。図12のVc1は極間電圧Vの第1の閾値、Vc2は極間電圧Vの第2の閾値、Vc3は極間電圧Vの第3の閾値、Vc4は極間電圧Vの第4の閾値である。第3の閾値Vc3は、第1閾値Vc1と絶対値が等しく、負の電圧である。第4の閾値Vc4は、第2の閾値Vc2と絶対値が等しく、負の電圧である。図12のIc1は極間電流Iの第1の閾値、Ic2は極間電流Iの第2の閾値、Ic3は極間電流Iの第3の閾値、Ic4は極間電流Iの第4の閾値である。第1の閾値Ic1の絶対値は第2の閾値Ic2の絶対値よりも小さい。第1の閾値Ic1の絶対値と第3の閾値Ic3の絶対値とは等しく、第2の閾値Ic2の絶対値と第4の閾値Ic4の絶対値とは等しい。図12の横軸は時間tである。 FIG. 12 is a timing chart of electric discharge machining executed by the electric discharge machining apparatus according to the second embodiment. PD1 in FIG. 12 indicates the timing of the first control signal 27 for turning on or off the switching element 10A and the switching element 10B of the first switch 10b in the preliminary discharge. PD2 in FIG. 12 indicates the timing of the first control signal 28 for turning on or off the switching element 10C and the switching element 10D of the first switch 10b in the preliminary discharge. 12 indicates the timing of the second control signal 29 for turning on or off the second switch 9 in the main discharge. In FIG. 12, V indicates the interelectrode voltage, and I indicates the interelectrode current. A change in the interelectrode voltage V is indicated by a solid line 36, and a change in the interelectrode current I is indicated by a solid line 39. In FIG. 12, Vc1 is the first threshold value of the interelectrode voltage V, Vc2 is the second threshold value of the interelectrode voltage V, Vc3 is the third threshold value of the interelectrode voltage V, and Vc4 is the fourth threshold value of the interelectrode voltage V. It is. The third threshold value Vc3 is a negative voltage having the same absolute value as the first threshold value Vc1. The fourth threshold value Vc4 is a negative voltage having the same absolute value as the second threshold value Vc2. In FIG. 12, Ic1 is a first threshold value of the interelectrode current I, Ic2 is a second threshold value of the interelectrode current I, Ic3 is a third threshold value of the interelectrode current I, and Ic4 is a fourth threshold value of the interelectrode current I. It is. The absolute value of the first threshold value Ic1 is smaller than the absolute value of the second threshold value Ic2. The absolute value of the first threshold value Ic1 is equal to the absolute value of the third threshold value Ic3, and the absolute value of the second threshold value Ic2 is equal to the absolute value of the fourth threshold value Ic4. The horizontal axis of FIG. 12 is time t.
 制御装置8は、制御信号27によりスイッチング素子10A及びスイッチング素子10Bをオンにして、電極3を正として極間電圧Vを電極3と被加工物4とに与え、極間5に予備放電を発生させる。制御装置8は、この予備放電により得られた変化時間Δtc1を用いて主放電時間Δtp1を決定し、第2スイッチ9をオンすることにより、極間5に主放電を発生させる。 The control device 8 turns on the switching element 10A and the switching element 10B according to the control signal 27, applies the electrode 3 as positive and applies the interelectrode voltage V to the electrode 3 and the workpiece 4, and generates a preliminary discharge in the interelectrode 5 Let The control device 8 determines the main discharge time Δtp1 using the change time Δtc1 obtained by the preliminary discharge, and turns on the second switch 9 to generate the main discharge in the gap 5.
 電極3を正とした予備放電に基づく主放電が終了したら、制御装置8は、制御信号28によりスイッチング素子10C及びスイッチング素子10Dをオンにして、被加工物4を正として極間電圧Vを被加工物4と電極3とに与え、極間5に予備放電を発生させる。制御装置8は、この予備放電により得られた変化時間Δtc2を用いて主放電時間Δtp2を決定し、第2スイッチ9をオンすることにより、極間5に主放電を発生させる。変化時間Δtc2は、極間電圧Vの絶対値が極間電圧Vの第3の閾値Vc3の絶対値を下回ったタイミングから、極間電圧Vの絶対値が極間電圧Vの第4の閾値Vc4の絶対値を下回ったタイミングまでの時間である。 When the main discharge based on the preliminary discharge with the electrode 3 as positive is completed, the control device 8 turns on the switching element 10C and the switching element 10D by the control signal 28, and applies the voltage V between the electrodes with the workpiece 4 as positive. It gives to the workpiece 4 and the electrode 3 and a preliminary discharge is generated between the electrodes 5. The control device 8 determines the main discharge time Δtp2 using the change time Δtc2 obtained by this preliminary discharge, and turns on the second switch 9 to generate the main discharge in the gap 5. The change time Δtc2 is the fourth threshold value Vc4 at which the absolute value of the interelectrode voltage V is the absolute value of the interelectrode voltage V from the timing when the absolute value of the interelectrode voltage V falls below the absolute value of the third threshold value Vc3 of the interelectrode voltage V This is the time until the timing when the absolute value is below.
 被加工物4を正とした予備放電に基づく主放電が終了したら、制御装置8は、制御信号27によりスイッチング素子10A及びスイッチング素子10Bをオンにして、電極3を正として極間電圧Vを電極3と被加工物4とに与え、極間5に予備放電を発生させる。制御装置8は、この予備放電により得られた変化時間Δtc3を用いて主放電時間Δtp3を決定し、第2スイッチ9をオンすることにより、極間5に主放電を発生させる。 When the main discharge based on the preliminary discharge with the workpiece 4 as positive is completed, the control device 8 turns on the switching element 10A and the switching element 10B according to the control signal 27, makes the electrode 3 positive, and sets the electrode voltage V to the electrode. 3 and the workpiece 4 and a preliminary discharge is generated between the electrodes 5. The control device 8 determines the main discharge time Δtp3 using the change time Δtc3 obtained by this preliminary discharge, and turns on the second switch 9 to generate the main discharge in the gap 5.
 放電加工装置100bが被加工物4を放電加工する場合、制御装置8は、電極3を正とした予備放電及びこの予備放電に基づく主放電と、被加工物4を正とした予備放電及びこの予備放電に基づく主放電とを、時間tの経過とともに交互に実行する。放電加工装置100bは、電極3に正の電圧と負の電圧とを交互に与えるので、極間5の平均電圧を0ボルトにすることができる。その結果、放電加工装置100bは、実施の形態1に係る放電加工装置100の奏する作用及び効果に加え、加工液が水の場合でも被加工物4の電蝕を抑制して加工面の品質低下を抑制できるという作用及び効果を奏する。 When the electric discharge machining apparatus 100b performs the electric discharge machining on the workpiece 4, the control device 8 causes the preliminary discharge with the electrode 3 as positive and the main discharge based on the preliminary discharge, the preliminary discharge with the workpiece 4 as positive, and this The main discharge based on the preliminary discharge is executed alternately with the elapse of time t. Since the electric discharge machining apparatus 100b alternately applies a positive voltage and a negative voltage to the electrode 3, the average voltage between the electrodes 5 can be 0 volts. As a result, in addition to the operation and effect of the electric discharge machining apparatus 100 according to the first embodiment, the electric discharge machining apparatus 100b suppresses the electric corrosion of the workpiece 4 even when the machining liquid is water, thereby reducing the quality of the machined surface. The effect | action and effect that can be suppressed are produced.
変形例.
 前述した実施の形態2において、図11に示される検出装置6bは、極間電圧Vを検出するが、極間電流Iを検出してもよい。この場合、第3検出装置6Cは、検出した極間電流Iを図12に示される第3の閾値Ic3と比較し、極間電流Iの絶対値が第3の閾値Ic3の絶対値を上回った場合には、第3信号を出力する。第4検出装置6Dは、検出した極間電流Iを、第4の閾値Ic4と比較する。第4の閾値Ic4の絶対値は、第3の閾値Ic3の絶対値よりも大きい。第4検出装置6Dは、極間電流Iの絶対値が第4の閾値Ic4の絶対値を上回った場合には、第4信号を出力する。第1検出装置6A及び第2検出装置6Bは、実施の形態1と同様なので説明を省略する。
Modified example.
In the second embodiment described above, the detection device 6b shown in FIG. 11 detects the interelectrode voltage V, but may detect the interelectrode current I. In this case, the third detection device 6C compares the detected interelectrode current I with the third threshold value Ic3 shown in FIG. 12, and the absolute value of the interelectrode current I exceeds the absolute value of the third threshold value Ic3. In the case, the third signal is output. The fourth detection device 6D compares the detected interelectrode current I with a fourth threshold value Ic4. The absolute value of the fourth threshold value Ic4 is larger than the absolute value of the third threshold value Ic3. The fourth detection device 6D outputs a fourth signal when the absolute value of the interelectrode current I exceeds the absolute value of the fourth threshold value Ic4. Since the first detection device 6A and the second detection device 6B are the same as those in the first embodiment, the description thereof is omitted.
 実施の形態2において、制御装置8は、図12に示されるように、絶縁破壊が発生するまで第1スイッチ10bをオンにし続けるが、加工条件によっては、絶縁破壊が発生するまで第1スイッチ10bのオンとオフとを繰り返して、電圧を極間5に与えることがある。後者を用いた場合、検出装置6bは、極間電圧Vの絶対値が電圧の第1の閾値Vc1の絶対値、第2の閾値Vc2の絶対値、第3の閾値Vc3の絶対値及び第4の閾値Vc4の絶対値を下回ったことを検出することが困難である。このため、絶縁破壊が発生するまで第1スイッチ10bのオンとオフとを繰り返す場合、検出装置6bは、極間電流Iの絶対値と、電流の第1の閾値Ic1の絶対値、第2の閾値Ic2の絶対値、第3の閾値Ic3の絶対値及び第4の閾値Ic4の絶対値とを用いて変化時間Δtcを求める。このようにすれば、検出装置6bは、加工条件によらず変化時間Δtcを求めることができる。極間電流Iが負の値をとる場合、変化時間Δtcは、極間電流Iが第3の閾値Ic3の絶対値を上回ったタイミングから第4の閾値Ic4の絶対値を上回ったタイミングまでの時間である。 In the second embodiment, the control device 8 continues to turn on the first switch 10b until dielectric breakdown occurs, as shown in FIG. 12, but depending on the processing conditions, the first switch 10b until the dielectric breakdown occurs. The voltage may be applied to the gap 5 by repeatedly turning on and off. When the latter is used, the detection device 6b determines that the absolute value of the interelectrode voltage V is the absolute value of the first threshold value Vc1, the absolute value of the second threshold value Vc2, the absolute value of the third threshold value Vc3, and the fourth value. It is difficult to detect that the absolute value of the threshold value Vc4 is below the absolute value. Therefore, when the first switch 10b is repeatedly turned on and off until dielectric breakdown occurs, the detection device 6b detects the absolute value of the interelectrode current I, the absolute value of the first threshold Ic1 of the current, the second The change time Δtc is obtained using the absolute value of the threshold value Ic2, the absolute value of the third threshold value Ic3, and the absolute value of the fourth threshold value Ic4. In this way, the detection device 6b can obtain the change time Δtc regardless of the processing conditions. When the interelectrode current I takes a negative value, the change time Δtc is the time from the timing when the interelectrode current I exceeds the absolute value of the third threshold value Ic3 to the timing when the interelectrode current I exceeds the absolute value of the fourth threshold value Ic4. It is.
 変形例において、制御装置8は、絶縁破壊が発生するまで第1スイッチ10をオンし続ける場合は、極間電圧Vと第1の閾値Vc1、第2の閾値Vc2、第3の閾値Vc3及び第4の閾値Vc4とを用いて変化時間Δtc求め、絶縁破壊が発生するまで第1スイッチ10のオンとオフとを繰り返す場合は、極間電流Iと第1の閾値Ic1、第2の閾値Ic2、第3の閾値Ic3及び第4の閾値Ic4とを用いて変化時間Δtc求めてもよい。このようにすることで、放電加工装置100bは、様々な加工条件であっても変化時間Δtcを求めることができるので、被加工物4に適切な主放電時間Δtpを設定できる。その結果、放電加工装置100bは、様々な加工条件において、被加工物4の空孔の発生及び加工面の品質低下を抑制することができる。 In the modification, when the control device 8 continues to turn on the first switch 10 until dielectric breakdown occurs, the inter-electrode voltage V, the first threshold value Vc1, the second threshold value Vc2, the third threshold value Vc3, and the first threshold value Vc3. When the change time Δtc is obtained using the threshold value Vc4 of 4 and the first switch 10 is repeatedly turned on and off until dielectric breakdown occurs, the interelectrode current I, the first threshold value Ic1, the second threshold value Ic2, The change time Δtc may be obtained using the third threshold value Ic3 and the fourth threshold value Ic4. By doing so, the electric discharge machining apparatus 100b can obtain the change time Δtp even under various machining conditions, so that the main discharge time Δtp appropriate for the workpiece 4 can be set. As a result, the electric discharge machining apparatus 100b can suppress the generation of holes in the workpiece 4 and the deterioration of the quality of the machined surface under various machining conditions.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 電源(第1電源)、2 電源(第2電源)、3 電極、4 被加工物、5 極間、6,6b 検出装置、6A 第1検出装置、6B 第2検出装置、6C 第3検出装置、6D 第4検出装置、8 制御装置、8IO 入出力部、8M 記憶部、8P 処理部、8I 入力装置、9,9a スイッチ(第2スイッチ)、9A,9B,10A,10B,10C,10D,16TA,16TB,16TC,16TD スイッチング素子、9Aa 電圧調整装置、10,10b スイッチ(第1スイッチ)、16RA,16RB,16RC,16RD 抵抗、100,100b 放電加工装置、I 極間電流、Ic1,Vc1 第1の閾値、Ic2,Vc2 第2の閾値、Ic3,Vc3 第3の閾値、Ic4,Vc4 第4の閾値、TB テーブル、V,Vac,Vic 極間電圧、Δtc 変化時間、Δtcc 変化時間閾値、Δtp 主放電時間。 1 power supply (first power supply), 2 power supply (second power supply), 3 electrodes, 4 workpieces, 5 poles, 6, 6b detection device, 6A 1st detection device, 6B 2nd detection device, 6C 3rd detection Device, 6D fourth detection device, 8 control device, 8IO input / output unit, 8M storage unit, 8P processing unit, 8I input device, 9, 9a switch (second switch), 9A, 9B, 10A, 10B, 10C, 10D , 16TA, 16TB, 16TC, 16TD switching element, 9Aa voltage regulator, 10, 10b switch (first switch), 16RA, 16RB, 16RC, 16RD resistance, 100, 100b electric discharge machine, I interelectrode current, Ic1, Vc1 1st threshold, Ic2, Vc2, 2nd threshold, Ic3, Vc3, 3rd threshold, Ic4, Vc4, 4th threshold, TB Buru, V, Vac, Vic inter-electrode voltage, .DELTA.tc change time, Derutatcc change time threshold, [Delta] tp main discharge time.

Claims (6)

  1.  電極と被加工物との間である極間に与える電圧を出力する電源と、
     前記電源が前記極間へ与える電圧をオン又はオフするスイッチと、
     前記極間の放電状態を検出して検出結果を出力する検出装置と、
     前記検出装置の検出結果を用いて前記スイッチを制御して前記極間に与える電圧を制御し、かつ前記極間に第1の放電を発生させたときの放電状態の変化に基づいて、前記極間に第2の放電を発生させる条件を決定する制御装置と、
     を含むことを特徴とする、放電加工装置。
    A power supply that outputs a voltage applied between the electrode and the workpiece,
    A switch that turns on or off a voltage that the power source applies to the electrodes;
    A detection device for detecting a discharge state between the electrodes and outputting a detection result;
    Based on the change in the discharge state when the first discharge is generated between the electrodes by controlling the switch using the detection result of the detection device to control the voltage applied between the electrodes. A control device for determining a condition for generating a second discharge in between;
    An electrical discharge machining apparatus comprising:
  2.  前記制御装置は、
     前記第1の放電での放電状態が変化する速度が遅くなるにしたがって、前記第2の放電の時間を長くする又は前記第2の放電において前記極間に与えられる電圧を大きくすることを特徴とする、請求項1に記載の放電加工装置。
    The controller is
    As the rate of change of the discharge state in the first discharge becomes slower, the time of the second discharge is lengthened or the voltage applied between the electrodes in the second discharge is increased. The electric discharge machining apparatus according to claim 1.
  3.  前記制御装置は、
     前記第1の放電での前記極間における電圧が変化する時間に基づいて、前記第2の放電で前記極間に与えられる電圧を決定することと、
     前記第1の放電での前記極間における電流が変化する時間に基づいて、前記第2の放電で前記極間に与えられる電圧を決定することと、
     を切り替えることを特徴とする、請求項1に記載の放電加工装置。
    The controller is
    Determining a voltage applied between the electrodes in the second discharge based on a time during which a voltage between the electrodes in the first discharge changes;
    Determining a voltage applied between the electrodes in the second discharge based on a time during which a current between the electrodes in the first discharge changes;
    The electric discharge machining apparatus according to claim 1, wherein the EDM is switched.
  4.  前記検出装置は、
     前記第1の放電での前記極間における電圧の絶対値が第1の閾値の絶対値を下回ったことを検出する第1の検出装置と、
     前記第1の放電での前記極間における電圧の絶対値が、前記第1の閾値の絶対値よりも絶対値が小さい第2の閾値の絶対値を下回ったことを検出する第2の検出装置と、を含み、
     前記制御装置は、
     前記第1の閾値の絶対値を下回ったタイミングから前記第2の閾値の絶対値を下回ったタイミングまでの時間に基づいて、前記第2の放電で前記極間に与えられる電圧を決定することを特徴とする、請求項1に記載の放電加工装置。
    The detection device includes:
    A first detection device for detecting that an absolute value of a voltage between the electrodes in the first discharge is lower than an absolute value of a first threshold;
    A second detection device that detects that the absolute value of the voltage between the electrodes in the first discharge is less than the absolute value of a second threshold value that is smaller than the absolute value of the first threshold value. And including
    The controller is
    Determining a voltage applied between the electrodes in the second discharge based on a time from a timing when the absolute value of the first threshold value is reduced to a timing when the absolute value of the second threshold value is reduced. The electrical discharge machining apparatus according to claim 1, wherein the electrical discharge machining apparatus is characterized.
  5.  前記検出装置は、
     前記第1の放電での前記極間における電流の絶対値が第1の閾値の絶対値を上回ったことを検出する第1の検出装置と、
     前記第1の放電での前記極間における電流の絶対値が、前記第1の閾値の絶対値よりも絶対値が大きい第2の閾値の絶対値を上回ったことを検出する第2の検出装置と、を含み、
     前記制御装置は、
     前記第1の閾値の絶対値を上回ったタイミングから前記第2の閾値の絶対値を上回ったタイミングまでの時間に基づいて、前記第2の放電で前記極間に与えられる電圧を決定することを特徴とする、請求項1に記載の放電加工装置。
    The detection device includes:
    A first detection device that detects that an absolute value of a current between the electrodes in the first discharge exceeds an absolute value of a first threshold;
    A second detection device that detects that the absolute value of the current between the electrodes in the first discharge exceeds the absolute value of a second threshold value that is larger than the absolute value of the first threshold value. And including
    The controller is
    Determining a voltage applied between the electrodes in the second discharge based on a time from a timing at which the absolute value of the first threshold is exceeded to a timing at which the absolute value of the second threshold is exceeded. The electrical discharge machining apparatus according to claim 1, wherein the electrical discharge machining apparatus is characterized.
  6.  前記スイッチは、ブリッジ回路を備え、前記第1の放電を発生させるときに前記極間へ正負の電圧を与えることを特徴とする、請求項1から請求項5のいずれか1項に記載の放電加工装置。 The discharge according to any one of claims 1 to 5, wherein the switch includes a bridge circuit and applies a positive / negative voltage between the electrodes when the first discharge is generated. Processing equipment.
PCT/JP2015/057963 2015-03-17 2015-03-17 Electrical discharge machining apparatus WO2016147327A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015560468A JP5968565B1 (en) 2015-03-17 2015-03-17 EDM machine
PCT/JP2015/057963 WO2016147327A1 (en) 2015-03-17 2015-03-17 Electrical discharge machining apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/057963 WO2016147327A1 (en) 2015-03-17 2015-03-17 Electrical discharge machining apparatus

Publications (1)

Publication Number Publication Date
WO2016147327A1 true WO2016147327A1 (en) 2016-09-22

Family

ID=56692791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057963 WO2016147327A1 (en) 2015-03-17 2015-03-17 Electrical discharge machining apparatus

Country Status (2)

Country Link
JP (1) JP5968565B1 (en)
WO (1) WO2016147327A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019181617A (en) * 2018-04-09 2019-10-24 ファナック株式会社 Wire electric discharge machine and wire electric discharge machining method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113618179B (en) * 2021-09-03 2023-02-28 牧野机床(中国)有限公司 Wire cut electric discharge machine and control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49108697A (en) * 1973-02-19 1974-10-16
US4078163A (en) * 1975-06-04 1978-03-07 Bell Jr Oliver A Programmable current control system for wire electrode electrical discharge machining apparatus
JP5409964B1 (en) * 2012-10-30 2014-02-05 三菱電機株式会社 Wire electrical discharge machine
US20140083980A1 (en) * 2012-09-25 2014-03-27 Industrial Technology Research Institute Apparatus and method for electrical discharge machining modulation control

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007129469A1 (en) * 2006-05-08 2007-11-15 Mitsubishi Electric Corporation Power transducing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49108697A (en) * 1973-02-19 1974-10-16
US4078163A (en) * 1975-06-04 1978-03-07 Bell Jr Oliver A Programmable current control system for wire electrode electrical discharge machining apparatus
US20140083980A1 (en) * 2012-09-25 2014-03-27 Industrial Technology Research Institute Apparatus and method for electrical discharge machining modulation control
JP5409964B1 (en) * 2012-10-30 2014-02-05 三菱電機株式会社 Wire electrical discharge machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019181617A (en) * 2018-04-09 2019-10-24 ファナック株式会社 Wire electric discharge machine and wire electric discharge machining method
JP7128014B2 (en) 2018-04-09 2022-08-30 ファナック株式会社 Wire electric discharge machine and wire electric discharge machining method

Also Published As

Publication number Publication date
JPWO2016147327A1 (en) 2017-04-27
JP5968565B1 (en) 2016-08-10

Similar Documents

Publication Publication Date Title
US8168914B2 (en) Electric-discharge-machining power supply apparatus and electric discharge machining method
JP4850318B1 (en) Power supply device for electric discharge machine and control method thereof
EP1806197B1 (en) Electric discharge machining power supply apparatus, and small-hole drilling electric discharge machining
JP5414864B1 (en) Machining power supply for wire-cut electrical discharge machining equipment
JP5183827B1 (en) Electric discharge machine power supply
WO2010098424A1 (en) Power supply apparatus for die-sinking electric discharge
JP2010280046A (en) Wire cut electric discharge working machine with machining state determination function
Hoang et al. A new approach for micro-WEDM control based on real-time estimation of material removal rate
JP2016510264A (en) Pulse and gap control for electrical discharge machining equipment
Fu et al. A novel micro-EDM—piezoelectric self-adaptive micro-EDM
JP5968565B1 (en) EDM machine
JP5642810B2 (en) Power supply for electric discharge machining
KR101717609B1 (en) Electric discharge machining apparatus
US10493547B2 (en) Wire electrical discharge machining device
JP6097900B2 (en) Electric discharge machining method and electric discharge machine for sintered diamond
JP5044898B2 (en) Power supply device for electric discharge machine and wire electric discharge machine
WO2002034444A1 (en) Power supply for wire electric discharge machining
JP3938044B2 (en) Power supply for electric discharge machining
JP2005531417A (en) Method and apparatus for electrochemical machining
JP6541287B1 (en) Electric discharge machine
Blatnik et al. Percentage of harmful discharges for surface current density monitoring in electrical discharge machining process
KR101121531B1 (en) Electric circuit for electrical discharge machining
Ramua et al. Experimental Investigations on Powder Mixed Electric Discharge Machining
JP3884362B2 (en) Wire electrical discharge machine
JPH01234115A (en) Power supply device for spark erosion machining

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015560468

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885423

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15885423

Country of ref document: EP

Kind code of ref document: A1