WO2007129469A1 - Power transducing device - Google Patents

Power transducing device Download PDF

Info

Publication number
WO2007129469A1
WO2007129469A1 PCT/JP2007/000478 JP2007000478W WO2007129469A1 WO 2007129469 A1 WO2007129469 A1 WO 2007129469A1 JP 2007000478 W JP2007000478 W JP 2007000478W WO 2007129469 A1 WO2007129469 A1 WO 2007129469A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
power
sub
main
charging
Prior art date
Application number
PCT/JP2007/000478
Other languages
French (fr)
Japanese (ja)
Inventor
Yukimori Kishida
Akihiko Iwata
Shinichi Ogusa
Original Assignee
Mitsubishi Electric Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corporation filed Critical Mitsubishi Electric Corporation
Priority to JP2008514390A priority Critical patent/JP5049964B2/en
Publication of WO2007129469A1 publication Critical patent/WO2007129469A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters

Definitions

  • the present invention relates to a power conversion device, and more particularly to a converter that converts AC power into DC power.
  • a PWM converter composed of semiconductor elements with self-extinguishing capability, such as GTO, can be switched regardless of the polarity of the power supply voltage, the polarity of the current, or the size. It is possible to control the power factor to 1 for power and 1 to power for regeneration (for example, see Non-Patent Document 1).
  • Non-Patent Document 1 “Latest Electric Railway Engineering” (The Society of Electrical Engineers, Research Committee on Electric Railway 2000/9/1 1 issued by Corona) P 6 0 ⁇ 6 7
  • the present invention has been made to solve the above-mentioned problems, and is a converter that converts AC power into DC power and can control the power even during regeneration, and suppresses harmonics.
  • power conversion devices with high conversion efficiency and reduced size are provided with reduced power loss and electromagnetic noise, and power storage devices that store the DC power of such power conversion devices can be easily trusted.
  • the purpose is to perform initial charging with good quality.
  • the power conversion device has power storage units each having a different DC voltage on the DC side, converts AC power from an AC power source into DC power, and outputs the DC power to each power storage unit.
  • a main converter and a sub-converter wherein the sub-converter is arranged between the main converter and the AC power source and connected in series; and connected between the power converter and the AC power source. It has a charging resistor.
  • At the time of initial charging of each power storage unit at least the power storage unit of the sub-converter is charged in the current path from the AC power source through the charging resistor under the control of the main comparator and the sub-converter. Electricity.
  • the power conversion device has power storage units each having a different DC voltage on the DC side, converts AC power from an AC power source into DC power, and outputs the DC power to each power storage unit.
  • a main converter and a sub-converter wherein the sub-converter is arranged between the main converter and the AC power source and connected in series; and connected between the power converter and the AC power source.
  • a reactor At the time of initial charging of each of the power storage units, at least the power storage unit of the sub-converter is controlled in the current path from the AC power source through the reactor by the control of the main comparator and the sub-computer. It is to be charged.
  • a voltage is generated on the AC input side as the sum of the voltages generated at the AC input terminals of the main converter and the sub-converter. Since the voltage can be shared between the main converter and the sub-converter in this way, it is not necessary to generate high voltage pulses by switching at a high frequency, reducing power loss and electromagnetic noise. For this reason, harmonics can be suppressed and power loss and electromagnetic noise can be reduced.
  • the power converter of the sub-converter is initially charged via a charging resistor or reactor, inrush current flowing to the power storage can be prevented, making it easy and reliable. The power storage can be initially charged.
  • FIG. 1 is a configuration diagram of a power conversion device according to Embodiment 1 of the present invention.
  • FIG. 2 is a circuit diagram of a sub-converter according to Embodiment 1 of the present invention.
  • FIG. 3 is a flow chart showing initial charging of a filter capacitor according to Embodiment 1 of the present invention.
  • FIG. 4 is a circuit diagram illustrating charging of a filter condenser of a sub-converter according to Embodiment 1 of the present invention.
  • FIG. 5 is a circuit diagram illustrating charging of a filter capacitor of a main converter according to Embodiment 1 of the present invention.
  • FIG. 6 is a flowchart showing initial charging of a filter condenser according to Embodiment 2 of the present invention.
  • FIG. 7 is a flowchart showing initial charging of a filter condenser according to another example of the second embodiment of the present invention.
  • FIG. 8 is a circuit diagram illustrating charging of the filter capacitor shown in FIG.
  • FIG. 9 is a configuration diagram of a power conversion device according to another example of the second embodiment of the present invention.
  • FIG. 10 is a configuration diagram of a power conversion device according to Embodiment 3 of the present invention.
  • FIG. 11 shows the output logic and output gradation (voltage level) of each converter of the power conversion device according to embodiment 3 of the present invention.
  • FIG. 12 is a voltage waveform of each converter in the power conversion device according to embodiment 3 of the present invention.
  • FIG. 1 is a diagram showing a configuration of a power conversion device according to Embodiment 1 of the present invention. This is applied to the formation of an intermediate DC voltage of a power converter that supplies AC power to a load such as a motor or a light or an AC system.
  • This power converter is medium
  • power conversion is performed between the AC system and the DC voltage link, so switching is performed so that the same voltage as the system voltage is output to the AC system side.
  • the power conversion device connects the AC side of the single-phase sub-converter 3 in series to each phase AC input line 9 of the main converter 2 consisting of a three-phase two-level converter.
  • the power converter 7 is configured as described above.
  • the main converter 2 and each sub-converter 3 are provided with filter capacitors 4 and 5 as power storages on the DC output side.
  • the DC voltage of filter capacitor 4 of main converter 2 is assumed to be greater than the DC voltage of filter capacitor 5 of sub-converter 3.
  • the power converter 7 converts the AC power supplied from the three-phase AC system power source 1 as the AC power source through the system reactor 6 into DC power, and supplies this DC power to the filter capacitor 4 of the main converter 2.
  • 8 is, for example, a motor load and an inverter for driving the motor load or a DC load.
  • Each phase AC input line 9 has a main high-order switch 21 as a switching switch between the sub-converter 3 and the system power supply 1, and a sub-high-level switch 2 2 as a second switch and a charging resistor.
  • a series circuit in which 2 and 3 are connected in series is connected in parallel to the main upper switch 21.
  • the main converter 2 is a three-phase two-level converter composed of a plurality of self-extinguishing semiconductor switching elements such as I G B T and the like that have diodes connected in antiparallel and a filter capacitor 4. Further, as shown in FIG. 2, the sub-converter 3 is composed of a plurality of self-extinguishing semiconductor switching elements 11 such as IGBTs each having a diode 12 connected in antiparallel and a filter capacitor 5. .
  • the self-extinguishing type semiconductor switching element is not limited to I G B T but may be a forced commutation operation even with G C, G T O, transistor, M O S F E T, or a thyristor without a self-extinguishing function.
  • the ratio of the voltage of filter capacitor 4 to the voltage of filter capacitor 5 is, for example, 2: 1, 3: 1, 4: 1, 5: 1, 6: 1. Used.
  • a battery that stores power may be used for the power storage, and the same effect can be obtained.
  • the main converter 2 and the sub-compactor 3 are connected in series to form the power converter 7, and power conversion is performed by the sum of the phase voltages of the converters 2 and 3. Because the phase voltage of generator 7 is generated, it is not necessary to generate large voltage pulses at a high switching frequency, harmonics can be suppressed without increasing the reactor of the system, and power loss and electromagnetic noise can also be reduced. As a result, a power conversion device with high conversion efficiency and reduced size can be obtained.
  • main converter 2 and the sub-converter 3 may perform a pulse width modulation control output, that is, a so-called PMW output, on the voltage to be output.
  • PMW output pulse width modulation control output
  • the main converter with a high voltage reduces the number of output pulses and the sub-converter with a low voltage outputs PWM, it is possible to improve both conversion efficiency and suppress harmonics, which is effective.
  • the power converter 7 may be configured using a diode full bridge main converter instead of the main comparator 2 shown in FIG. . In this case as well, harmonics can be suppressed by PWM control of the sub-compartment 3.
  • the main upper switch 2 1, sub upper switch 2 2, and charging resistor 2 3 provided between the sub-converter 3 and the system power supply 1 in each phase AC input line 9 are connected to the main converter 2 and the sub-converter 3. Configure a resistor circuit for initial charging of filter capacitors 4 and 5.
  • the charging resistor 23 is a number, and the sub upper switch 22 is a small-capacity contactor or relay.
  • FIG. 3 is a flowchart showing the initial charging of the filter capacitors 4 and 5.
  • step s 1 when the power converter is started, the main upper switch 2 1 and the sub upper switch 2 2 are cut off, and the filter capacitors 4 and 5 are not charged (step s 1), and the sub upper switch 2 2 is turned on.
  • the filter capacitor 5 of the sub-converter 3 is charged while suppressing the inrush current.
  • the sub-converter is connected by the current path from the system power supply 1 through the charging resistor 23.
  • FIG. 4 shows the case where the filter capacitor 5 of the R-phase sub-converter 3 is charged by the current flowing from the R-phase to the S-phase, but the same applies to the other phases.
  • the switch state of the sub-converter 3 is changed, and the filter capacitor 5 of the sub-converter 3 is discharged by the current path shown in Fig. 4 (b).
  • the charge voltage is made close to the target value by repeating the charge mode and the discharge mode shown in the figure (step s 2).
  • step s 3 it is determined whether charging of the filter capacitor 5 of the sub-converter 3 is completed.
  • the filter capacitor 4 of the main converter 2 is charged.
  • the sub-converter 3 is switched to a state where the current does not flow to the filter capacitor 5 (hereinafter referred to as “through mode”).
  • FIG. 5 shows the case where the filter capacitor 4 of the main converter 2 is charged by the current flowing from the R phase to the S phase, but the same applies to the other phases.
  • the switch state of the main converter 2 by changing the switch state of the main converter 2 and using the discharge mode in which the filter capacitor 4 of the main converter 2 is discharged by the current path shown in Fig. 5 (b), the charge mode and the discharge mode shown in the figure are repeated. Bring the charging voltage close to the target value (Step s 4)
  • it is determined whether or not the charging of the filter capacitor 4 of the main converter 2 is completed (step s 5).
  • the sub upper switch 2 2 is shut off and the main upper switch 2 1 is turned on.
  • the operation of the power converter is started (step s 6).
  • step s6 when charging the filter capacitor 4 of the main converter 2 in steps s4 and s5 in the initial charging flow, the filter capacitor 4 is passed at a predetermined time or at a predetermined rate in step s5. As shown in step s6, when the sub upper switch 2 2 is turned off and the main upper switch 2 1 is turned on to operate the power converter, the remaining filter capacitor 4 remains. The voltage may be charged. In this case, the filter capacitor 4 is charged to the target voltage by controlling the current so as to suppress the current by the control of the sub-computer 2. In this way, the main high-order switch 21 is turned on and charging is performed without going through the charging resistor 23, so that high-speed charging is possible.
  • the sub-higher switch 22 may not be provided.
  • the filter capacitor 4 of the main converter 2 is charged after the filter capacitor 5 of the sub-converter 3 is charged.
  • the filter capacitor 5 of the sub-converter 3 is charged.
  • step ss 1 when main upper switch 21 and sub upper switch 22 are shut off and filter capacitors 4 and 5 are not charged (step ss 1), Turn on the sub-higher switch 2 2 to charge the filter capacitor 4 of the main converter 2 while suppressing the inrush current (see step ss 1, Fig. 5).
  • step s s 3 it is determined whether or not the charging of the filter capacitor 4 of the main converter 2 is completed.
  • the filter capacitor 5 of the sub-converter 3 is charged (see step s s 4 and FIG. 4).
  • step ss 5 it is determined whether or not the charging of the filter capacitor 5 of the sub-converter 3 is completed.
  • the sub-higher switch 2 2 is shut off and the main higher-level switch 2 1 is turned on. Start the converter operation (step ss 6).
  • the filter capacitors 4 and 5 of the main converter 2 and the sub-converter 3 may be charged at the same time as shown in the flowchart of FIG. 7, for example.
  • the filter capacitors 4 and 5 of the main converter 2 and the sub-converter 3 are simultaneously charged while switching between the charge mode and the discharge mode.
  • the sub upper switch 2 2 is turned on while suppressing the inrush current.
  • the filter capacitor 4 of the main converter 2 and the filter capacitor 5 of the sub-converter 3 are charged simultaneously. At this time, as shown in FIG.
  • Fig. 8 shows the case where the filter capacitor 5 of the R-phase sub-converter 3 and the filter capacitor 4 of the main converter 2 are charged by the current flowing from the R-phase to the S-phase. Is the same (step t 2).
  • step t3 it is determined whether the charging of the filter capacitor 5 of the sub-converter 3 is completed. If the charging is not completed, the charging of the filtering capacitor 5 of the main converter 2 is subsequently completed. If the charging is incomplete, the process returns to step t2, and the filter capacitor of the main converter 2 Simultaneous charging of the capacitor 4 and the filter capacitor 5 of the sub-converter 3 is continued.
  • the switch state of the sub-converter 3 is set to the through mode, and the filter capacitor 5 of the sub-converter 3 is charged by the current path shown in Fig. 8 (b). Instead, only the filter capacitor 4 of the main converter 2 is charged.
  • step t6 it is determined whether the charging of the filter capacitor 5 of the main converter 2 is completed.
  • the sub upper switch 2 2 is shut off and the main upper switch 2 1 is turned on to convert the power. Start equipment operation (step t7).
  • step t4 When charging of the filter capacitor 4 of the main converter 2 is completed at step t4, the filter capacitor 4 of the main converter 2 is charged and discharged, and the filter capacitor 5 of the sub-converter 3 is charged. At this time, the discharge mode in which the filter capacitor 4 of the main converter 2 is discharged by the current path shown in FIG. 8 (c) is used, and the charge mode shown in FIG. Move closer to the value (step t8). Then, it is determined whether or not the charging of the filter capacitor 5 of the sub-converter 3 is completed (step t 9). When the charging is completed, the process proceeds to step t 7 where the sub upper switch 2 2 is shut off and the main upper switch 2 1 is turned on. To start operation of the power converter.
  • the filter capacitors 4 and 5 of the main converter 2 and sub-converter 3 are initially charged through the current path from the system power supply 1 through the charging resistor 2 3, so that inrush flows into the filter capacitors 4 and 5. Current can be suppressed and initial charging can be performed reliably.
  • the main upper switch 21 opens the contact, and an arc voltage is generated.
  • the current is limited and cut off at the natural current zero point.
  • the current is commutated to the parallel circuit of the sub upper switch 2 2 and the charging resistor 2 3.
  • the circuit recovery voltage between the contacts of the main upper switch 21 is low.
  • the charging resistor 23 suppresses the current flowing through the sub upper switch 22 2, and the oscillation of the circuit recovery voltage at the time of disconnection can be reduced, so that the sub upper switch 22 can easily cut off the current.
  • the charging resistor 23 is provided, but as shown in FIG. 9, a reactor 23 a may be used instead of the charging resistor 23.
  • the filter capacitors 4 and 5 of the main converter 2 and the sub-converter 3 are initially charged by the same control as in the first and second embodiments through the current path from the system power supply 1 through the reactor 23 3a.
  • the inrush current flowing through the filter capacitors 4 and 5 can be suppressed, and initial charging can be performed with high reliability.
  • the sub-higher switch 2 2 is shut off and the main higher-level switch 2 1 is turned on so that the filter capacitor 4 of the main converter 2 is turned on. You may charge to a target voltage.
  • the current is controlled so as to suppress the current by controlling the sub-converter 2 without passing through the reactor 2 3 a and the filter capacitor 4 of the main converter 2 is charged to the target voltage, high-speed charging becomes possible.
  • the number of sub-converters 3 is one for each phase.
  • a plurality of single-phase sub-converters 3 are connected to each phase AC input line 9 of the main converter 2. Connect the AC side in series.
  • FIG. 10 is a diagram showing a configuration of a power conversion device according to Embodiment 3 of the present invention.
  • the main converter 2 is a three-phase three-level converter in which each phase 2 a is configured as shown in the figure, and the filter capacitor 4 uses two filter capacitors 4 a connected in series.
  • the filter converter of the main converter 2 of the power converter configured as described above.
  • the DC voltage VG of Densa 4 and the DC voltages Vb1 and Vb2 of the filter capacitors 5 of the two sub-converters 3 are different values (Vc>Vb1> Vb2), respectively, 4: 2: 1, 4: 3: 1, 5 : 3: 1, 6: 3: 1, 7: 3: 1, etc. It should be noted that other values may be used in accordance with the product specifications, and the types of components may be reduced by making the DC voltages Vb1 and Vb2 of the filter capacitors 5 of the two sub-converters 3 equal. In each case, the relationship between the output logic of each converter and the output gradation (voltage level) of the power converter connected in series is shown in the logic table of A to E in Fig. 11.
  • Vc, Vb1, and Vb2 have a 4: 2: 1 relationship.
  • the sum of these generated voltages is used to generate an 8-level phase voltage (absolute value) of 0 to 7 that is an AC input. Occurs at the terminal.
  • Figure 12 shows the voltage waveform of each comparator 2 and 3 to obtain a gradation voltage that is almost sinusoidal.
  • Fig. 1 2 (a) is the voltage waveform of the entire power converter
  • Fig. 1 2 (b) is the voltage waveform of sub-converter 3 having DC voltage Vb2
  • Fig. 1 2 (c) is the voltage waveform of sub-converter 3 having DC voltage Vb1.
  • Voltage waveform, Fig. 1 2 (d) shows the voltage waveform of main converter 2 with DC voltage VG. It can be seen that a smooth voltage gradation waveform is obtained by combining the voltages generated by converters 2 and 3.
  • an initial charging resistor comprising a main upper switch 21, a sub upper switch 22, and a charging resistor 23 is provided between the sub-converter 3 and the system power source 1 in each phase AC input line 9.
  • a circuit Provides a circuit.
  • the main converter 2 and the current path from the grid power supply 1 through the charging resistor 23 The initial charging of the filter capacitors 4 and 5 of the sub-converter 3 can be performed. Also in this case, the initial charging of the filter capacitors 4 and 5 can be performed as in the first and second embodiments, and the same effect can be obtained.
  • the reactor 2 3 a may be used instead of the charging resistor 2 3.

Abstract

Provided is a power transducing device in a regeneratively controllable converter, which device can suppress higher harmonics and can reduce power losses and electromagnetic noises and which initially charges a DC power storage easily and reliably. A power transducer (7) is constituted by connecting the AC side of a single-phase sub-converter (3) having a DC voltage lower than the DC voltage of a three-phase main converter (2), with the AC input lines of the individual phases of the main converter (2), so that the phase voltage of the power transducer (7) is generated with the sum of the phase voltages of the individual converters (2), (3). Moreover, a charging resistor (23) is connected between a system power source (1) and the power transducer (7), so that filter condensers (4) and (5) of the main converter (2) and the sub-converter (3) are initially charged by a current passage through the charging resistor (23) from the system power source (1).

Description

明 細 書  Specification
電力変換装置  Power converter
技術分野  Technical field
[0001 ] 本発明は、 電力変換装置に関し、 特に、 交流電力を直流電力に変換するコ ンバータに関するものである。 背景技術  TECHNICAL FIELD [0001] The present invention relates to a power conversion device, and more particularly to a converter that converts AC power into DC power. Background art
[0002] 従来の電力変換装置として、 G T Oなどの自己消弧能力をもつ半導体素子 によって構成される P WMコンバータは、 電源電圧の極性、 電流の極性、 大 きさにかかわらずスイッチングが可能であり、 カ行では力率 1、 回生では力 率一 1に制御できる (例えば、 非特許文献 1参照) 。  [0002] As a conventional power conversion device, a PWM converter composed of semiconductor elements with self-extinguishing capability, such as GTO, can be switched regardless of the polarity of the power supply voltage, the polarity of the current, or the size. It is possible to control the power factor to 1 for power and 1 to power for regeneration (for example, see Non-Patent Document 1).
[0003] 非特許文献 1 : 「最新 電気鉄道工学」 (電気学会 電気鉄道における調査専 門委員会 2000/9/1 1発行 コロナ社) P 6 0 ~ 6 7  [0003] Non-Patent Document 1: “Latest Electric Railway Engineering” (The Society of Electrical Engineers, Research Committee on Electric Railway 2000/9/1 1 issued by Corona) P 6 0 ~ 6 7
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] しかしながら、 従来の P WMコンバータでは、 電圧が大きいパルスの P W M制御により交流入力端子に電圧を発生させる。 波形形成のための歪みを無 くし高調波を抑制しょうとすると、 系統のリアクトルを大きくするかスイツ チング回数を増やすことになる。 しかしながら、 リアクトルを大きくすると 装置が大型化し、 スイッチング回数を増やすと、 電力損失が増え、 電磁ノィ ズも増加する。 また、 スイッチング回数を減らすと、 電流歪みが大きくなり 、 系統に高調波電流が発生するという問題点があった。  [0004] However, in the conventional PWM converter, a voltage is generated at the AC input terminal by PWM control of a pulse with a large voltage. If we try to suppress the harmonics by eliminating distortion for waveform formation, we will either increase the reactor of the system or increase the number of switching. However, increasing the reactor increases the size of the device, and increasing the number of switching increases the power loss and electromagnetic noise. In addition, if the number of times of switching is reduced, current distortion increases and there is a problem that harmonic current is generated in the system.
[0005] この発明は、 上記のような問題点を解消するために成されたものであって 、 交流電力を直流電力に変換し回生時にも電力制御可能なコンバータであつ て、 高調波を抑制すると共に電力損失および電磁ノイズが低減された、 変換 効率が高く小型化が促進された電力変換装置を提供し、 さらにこのような電 力変換装置の直流電力を蓄積する電力貯蔵器を容易に信頼性よく初期充電す ることを目的とする。 課題を解決するための手段 [0005] The present invention has been made to solve the above-mentioned problems, and is a converter that converts AC power into DC power and can control the power even during regeneration, and suppresses harmonics. In addition, power conversion devices with high conversion efficiency and reduced size are provided with reduced power loss and electromagnetic noise, and power storage devices that store the DC power of such power conversion devices can be easily trusted. The purpose is to perform initial charging with good quality. Means for solving the problem
[0006] 第 1の発明による電力変換装置は、 それぞれ直流側に直流電圧が異なる電 力貯蔵器を有して交流電源からの交流電力を直流電力に変換し上記各電力貯 蔵器に出力するメインコンバータおよびサブコンバータを、 該サブコンバー タを上記メィンコンバータと上記交流電源との間に配置して直列接続した電 力変換器と、 上記電力変換器と上記交流電源との間に接続された充電用抵抗 とを備える。 そして、 上記各電力貯蔵器の初期充電時に、 上記メインコンパ 一夕および上記サブコンバータの制御により上記交流電源から上記充電用抵 抗を介する電流経路にて、 少なくとも上記サブコンバータの電力貯蔵器を充 電するものである。  [0006] The power conversion device according to the first aspect of the present invention has power storage units each having a different DC voltage on the DC side, converts AC power from an AC power source into DC power, and outputs the DC power to each power storage unit. A main converter and a sub-converter, wherein the sub-converter is arranged between the main converter and the AC power source and connected in series; and connected between the power converter and the AC power source. It has a charging resistor. At the time of initial charging of each power storage unit, at least the power storage unit of the sub-converter is charged in the current path from the AC power source through the charging resistor under the control of the main comparator and the sub-converter. Electricity.
[0007] 第 2の発明による電力変換装置は、 それぞれ直流側に直流電圧が異なる電 力貯蔵器を有して交流電源からの交流電力を直流電力に変換し上記各電力貯 蔵器に出力するメインコンバータおよびサブコンバータを、 該サブコンバー タを上記メィンコンバータと上記交流電源との間に配置して直列接続した電 力変換器と、 上記電力変換器と上記交流電源との間に接続されたリアクトル とを備える。 そして、 上記各電力貯蔵器の初期充電時に、 上記メインコンパ ータおよび上記サブコン /く一タの制御により上記交流電源から上記リアクト ルを介する電流経路にて、 少なくとも上記サブコンバータの電力貯蔵器を充 電するものである。  [0007] The power conversion device according to the second invention has power storage units each having a different DC voltage on the DC side, converts AC power from an AC power source into DC power, and outputs the DC power to each power storage unit. A main converter and a sub-converter, wherein the sub-converter is arranged between the main converter and the AC power source and connected in series; and connected between the power converter and the AC power source. And a reactor. At the time of initial charging of each of the power storage units, at least the power storage unit of the sub-converter is controlled in the current path from the AC power source through the reactor by the control of the main comparator and the sub-computer. It is to be charged.
発明の効果  The invention's effect
[0008] このような第 1、 第 2の発明による電力変換装置では、 メインコンバータ およびサブコンバータの各交流入力端子に発生する電圧の和で交流入力側に 電圧発生することになる。 このようにメインコンバータとサブコンバータと で電圧を分担できるため、 電圧が大きいパルスを高い周波数でスィツチング して発生させる必要が無く、 電力損失および電磁ノイズが低減される。 この ため、 高調波の抑制と電力損失および電磁ノイズの低減とが図れる。 さらに 、 充電用抵抗あるいはリアクトルを介してサブコンバータの電力貯蔵器を初 期充電するため、 電力貯蔵器に流れる突入電流が防止でき、 容易で信頼性よ く電力貯蔵器を初期充電できる。 [0008] In the power conversion devices according to the first and second inventions as described above, a voltage is generated on the AC input side as the sum of the voltages generated at the AC input terminals of the main converter and the sub-converter. Since the voltage can be shared between the main converter and the sub-converter in this way, it is not necessary to generate high voltage pulses by switching at a high frequency, reducing power loss and electromagnetic noise. For this reason, harmonics can be suppressed and power loss and electromagnetic noise can be reduced. In addition, since the power converter of the sub-converter is initially charged via a charging resistor or reactor, inrush current flowing to the power storage can be prevented, making it easy and reliable. The power storage can be initially charged.
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1 ]この発明の実施の形態 1による電力変換装置の構成図である。  FIG. 1 is a configuration diagram of a power conversion device according to Embodiment 1 of the present invention.
[図 2]この発明の実施の形態 1によるサブコンバータの回路図である。  FIG. 2 is a circuit diagram of a sub-converter according to Embodiment 1 of the present invention.
[図 3]この発明の実施の形態 1によるフィルタコンデンサの初期充電を示すフ ローチャートである。  FIG. 3 is a flow chart showing initial charging of a filter capacitor according to Embodiment 1 of the present invention.
[図 4]この発明の実施の形態 1によるサブコンバータのフィルタコンデンザの 充電を説明する回路図である。  FIG. 4 is a circuit diagram illustrating charging of a filter condenser of a sub-converter according to Embodiment 1 of the present invention.
[図 5]この発明の実施の形態 1によるメインコンバータのフィルタコンデンサ の充電を説明する回路図である。  FIG. 5 is a circuit diagram illustrating charging of a filter capacitor of a main converter according to Embodiment 1 of the present invention.
[図 6]この発明の実施の形態 2によるフィルタコンデンザの初期充電を示すフ ローチャートである。  FIG. 6 is a flowchart showing initial charging of a filter condenser according to Embodiment 2 of the present invention.
[図 7]この発明の実施の形態 2の別例によるフィルタコンデンザの初期充電を 示すフローチヤ一トである。  FIG. 7 is a flowchart showing initial charging of a filter condenser according to another example of the second embodiment of the present invention.
[図 8]図 7で示すフィルタコンデンサの充電を説明する回路図である。  FIG. 8 is a circuit diagram illustrating charging of the filter capacitor shown in FIG.
[図 9]この発明の実施の形態 2の別例による電力変換装置の構成図である。  FIG. 9 is a configuration diagram of a power conversion device according to another example of the second embodiment of the present invention.
[図 10]この発明の実施の形態 3による電力変換装置の構成図である。  FIG. 10 is a configuration diagram of a power conversion device according to Embodiment 3 of the present invention.
[図 1 1 ]この発明の実施の形態 3による電力変換装置の各コンバータの出力論 理と出力階調 (電圧レベル) とを示す図である。  FIG. 11 shows the output logic and output gradation (voltage level) of each converter of the power conversion device according to embodiment 3 of the present invention.
[図 1 2]この発明の実施の形態 3による電力変換装置の各コンバータの電圧波 形である。  FIG. 12 is a voltage waveform of each converter in the power conversion device according to embodiment 3 of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 実施の形態 1 .  [0010] Embodiment 1.
以下、 この発明の実施の形態 1による電力変換装置を図に基づいて説明す る。  Hereinafter, a power converter according to Embodiment 1 of the present invention will be described with reference to the drawings.
図 1は、 この発明の実施の形態 1による電力変換装置の構成を示す図であ る。 これは、 モータ、 電灯などの負荷又は交流系統などに交流電力を供給す る電力変換装置の中間直流電圧の形成に適用される。 この電力変換装置は中 間直流電圧としてのフィルタコンデンサの直流電圧を維持するため、 交流系 統と直流電圧リンク間で電力変換を行い、 そのため交流系統側に系統電圧と 同じ電圧を出力するようにスィツチングする。 FIG. 1 is a diagram showing a configuration of a power conversion device according to Embodiment 1 of the present invention. This is applied to the formation of an intermediate DC voltage of a power converter that supplies AC power to a load such as a motor or a light or an AC system. This power converter is medium In order to maintain the DC voltage of the filter capacitor as the DC voltage between the AC systems, power conversion is performed between the AC system and the DC voltage link, so switching is performed so that the same voltage as the system voltage is output to the AC system side.
[001 1 ] 図 1に示すように、 電力変換装置は、 三相 2レベルコンバータから成るメ ィンコンバータ 2の各相交流入力線 9に単相のサブコンバータ 3の交流側を それぞれ直列接続して構成した電力変換器 7にて構成される。 メインコンパ ータ 2および各サブコンバータ 3は直流出力側に電力貯蔵器としてのフィル タコンデンサ 4、 5を備える。 メインコンバータ 2のフィルタコンデンサ 4 の直流電圧は、 サブコンバータ 3のフィルタコンデンサ 5の直流電圧より大 きいものとする。 電力変換器 7は、 交流電源としての三相交流の系統電源 1 から系統のリアクトル 6を通して供給された交流電力を直流電力に変換し、 この直流電力をメインコンバータ 2のフィルタコンデンサ 4に供給する。 8 は、 例えばモータ負荷とそれを駆動するインバータ、 あるいは直流負荷であ る。  [001 1] As shown in Fig. 1, the power conversion device connects the AC side of the single-phase sub-converter 3 in series to each phase AC input line 9 of the main converter 2 consisting of a three-phase two-level converter. The power converter 7 is configured as described above. The main converter 2 and each sub-converter 3 are provided with filter capacitors 4 and 5 as power storages on the DC output side. The DC voltage of filter capacitor 4 of main converter 2 is assumed to be greater than the DC voltage of filter capacitor 5 of sub-converter 3. The power converter 7 converts the AC power supplied from the three-phase AC system power source 1 as the AC power source through the system reactor 6 into DC power, and supplies this DC power to the filter capacitor 4 of the main converter 2. 8 is, for example, a motor load and an inverter for driving the motor load or a DC load.
また、 各相交流入力線 9におけるサブコンバータ 3と系統電源 1 との間に は、 切り換えスィッチとしてのメイン上位スィッチ 2 1を備え、 第 2のスィ ツチとしてのサブ上位スィツチ 2 2と充電用抵抗 2 3とを直列接続した直列 回路がメイン上位スィッチ 2 1に並列に接続される。  Each phase AC input line 9 has a main high-order switch 21 as a switching switch between the sub-converter 3 and the system power supply 1, and a sub-high-level switch 2 2 as a second switch and a charging resistor. A series circuit in which 2 and 3 are connected in series is connected in parallel to the main upper switch 21.
[0012] メインコンバータ 2は、 ダイオードを逆並列に接続した複数個の I G B T 等の自己消弧型半導体スィッチング素子とフィルタコンデンサ 4とで構成さ れた三相 2レベルコンバータである。 また、 サブコンバータ 3は、 図 2に示 すように、 ダイオード 1 2を逆並列に接続した複数個の I G B T等の自己消 弧型半導体スイッチング素子 1 1のフルブリッジとフィルタコンデンサ 5で 構成される。 自己消弧型半導体スイッチング素子は I G B T以外にも、 G C 丁、 G T O、 トランジスタ、 M O S F E T等でも、 また自己消弧機能がない サイリスタ等でも強制転流動作が可能であればよい。 The main converter 2 is a three-phase two-level converter composed of a plurality of self-extinguishing semiconductor switching elements such as I G B T and the like that have diodes connected in antiparallel and a filter capacitor 4. Further, as shown in FIG. 2, the sub-converter 3 is composed of a plurality of self-extinguishing semiconductor switching elements 11 such as IGBTs each having a diode 12 connected in antiparallel and a filter capacitor 5. . The self-extinguishing type semiconductor switching element is not limited to I G B T but may be a forced commutation operation even with G C, G T O, transistor, M O S F E T, or a thyristor without a self-extinguishing function.
フィルタコンデンサ 4の電圧とフィルタコンデンサ 5の電圧の比は、 例え ば、 2 : 1、 3 : 1、 4 : 1、 5 : 1、 6 : 1であり、 製品仕様に合わせて 用いられる。 The ratio of the voltage of filter capacitor 4 to the voltage of filter capacitor 5 is, for example, 2: 1, 3: 1, 4: 1, 5: 1, 6: 1. Used.
フィルタコンデンサ 4、 5の代わりに電力を貯蔵する電池等を電力貯蔵器 に用いても良く、 同様な効果が得られる。  Instead of the filter capacitors 4 and 5, a battery that stores power may be used for the power storage, and the same effect can be obtained.
[0013] このように構成される電力変換装置は、 メインコンバータ 2とサブコンパ ータ 3とを直列接続して電力変換器 7を構成して各コンバータ 2、 3の相電 圧の和で電力変換器 7の相電圧を発生するため、 大きな電圧のパルスを高い スイッチング周波数で発生させる必要がなく、 系統のリアクトルを大きくす ることなく高調波を抑制でき、 電力損失および電磁ノイズも低減できる。 こ のため、 変換効率が高く小型化が促進された電力変換装置が得られる。 [0013] In the power conversion device configured as described above, the main converter 2 and the sub-compactor 3 are connected in series to form the power converter 7, and power conversion is performed by the sum of the phase voltages of the converters 2 and 3. Because the phase voltage of generator 7 is generated, it is not necessary to generate large voltage pulses at a high switching frequency, harmonics can be suppressed without increasing the reactor of the system, and power loss and electromagnetic noise can also be reduced. As a result, a power conversion device with high conversion efficiency and reduced size can be obtained.
なお、 メインコンバータ 2とサブコンバータ 3は出力したい電圧に対して パルス幅の変調制御出力、 いわゆる、 P WM出力を行っても良い。 出力に小 さなフィルタをおくことで、 電圧出力の精度が向上させることが出来、 電圧 や電流の高調波を抑制できる。  Note that the main converter 2 and the sub-converter 3 may perform a pulse width modulation control output, that is, a so-called PMW output, on the voltage to be output. By placing a small filter at the output, the accuracy of the voltage output can be improved and harmonics of voltage and current can be suppressed.
特に電圧が高いメインコンバータは出力パルス数を少なくし、 電圧が低い サブコンバータは P WM出力すると、 変換効率の向上と高調波抑制の両立が 出来、 効果的である。  In particular, if the main converter with a high voltage reduces the number of output pulses and the sub-converter with a low voltage outputs PWM, it is possible to improve both conversion efficiency and suppress harmonics, which is effective.
また、 電力変換器 7が回生運転をしない場合、 図 1で示すメインコンパ一 タ 2に替わってダイォードのフルブリッジ構成のメインコンバータを用いて 電力変換器を構成してもよく、 安価を実現できる。 この場合も、 サブコンパ 一夕 3を P WM制御することで、 高調波の抑制ができる。  If the power converter 7 does not perform regenerative operation, the power converter may be configured using a diode full bridge main converter instead of the main comparator 2 shown in FIG. . In this case as well, harmonics can be suppressed by PWM control of the sub-compartment 3.
[0014] 次に、 電力変換装置の起動時におけるフィルタコンデンサ 4、 5の初期充 電について以下に示す。 [0014] Next, initial charging of the filter capacitors 4 and 5 at the time of starting up the power conversion device will be described below.
各相交流入力線 9におけるサブコンバータ 3と系統電源 1 との間に設けら れた、 メイン上位スィッチ 2 1、 サブ上位スィッチ 2 2および充電用抵抗 2 3は、 メインコンバータ 2とサブコンバータ 3のフィルタコンデンサ 4、 5 の初期充電用抵抗回路を構成する。 充電用抵抗 2 3は、 数 であり、 サブ上 位スィッチ 2 2は小容量のコンタクタ又はリレーである。  The main upper switch 2 1, sub upper switch 2 2, and charging resistor 2 3 provided between the sub-converter 3 and the system power supply 1 in each phase AC input line 9 are connected to the main converter 2 and the sub-converter 3. Configure a resistor circuit for initial charging of filter capacitors 4 and 5. The charging resistor 23 is a number, and the sub upper switch 22 is a small-capacity contactor or relay.
[0015] 図 3は、 フィルタコンデンサ 4、 5の初期充電を示すフローチャートであ る。 FIG. 3 is a flowchart showing the initial charging of the filter capacitors 4 and 5. The
まず、 電力変換装置の起動時に、 メイン上位スィッチ 2 1およびサブ上位 スィッチ 2 2が遮断され、 フィルタコンデンサ 4、 5が充電されていない状 態で (ステップ s 1 ) 、 サブ上位スィッチ 2 2を投入し、 突入電流を抑えな がらサブコンバータ 3のフィルタコンデンサ 5を充電する。 このとき、 メイ ンコンバータ 2の全ての上部アームのみまたは全ての下部アームのみをオン にして、 図 4 ( a ) に示すように、 系統電源 1から充電用抵抗 2 3を介する 電流経路によりサブコンバータ 3のフィルタコンデンサ 5を充電する。 なお 、 便宜上、 図 4では、 R相から S相に流れる電流で R相のサブコンバータ 3 のフィルタコンデンサ 5が充電される場合を示すが、 他の相の場合も同様で ある。 サブコンバータ 3のフィルタコンデンサ 5の充電電圧が目標値を越え ると、 サブコンバータ 3のスィッチ状態を変えて、 図 4 ( b ) に示す電流経 路によりサブコンバータ 3のフィルタコンデンサ 5を放電し、 図に示す充電 モードと放電モードと繰り返して充電電圧を目標値に近づける (ステップ s 2 ) 。  First, when the power converter is started, the main upper switch 2 1 and the sub upper switch 2 2 are cut off, and the filter capacitors 4 and 5 are not charged (step s 1), and the sub upper switch 2 2 is turned on. The filter capacitor 5 of the sub-converter 3 is charged while suppressing the inrush current. At this time, only all the upper arms or only all the lower arms of the main converter 2 are turned on, and as shown in FIG. 4 (a), the sub-converter is connected by the current path from the system power supply 1 through the charging resistor 23. Charge filter capacitor 5 of 3. For convenience, FIG. 4 shows the case where the filter capacitor 5 of the R-phase sub-converter 3 is charged by the current flowing from the R-phase to the S-phase, but the same applies to the other phases. When the charging voltage of the filter capacitor 5 of the sub-converter 3 exceeds the target value, the switch state of the sub-converter 3 is changed, and the filter capacitor 5 of the sub-converter 3 is discharged by the current path shown in Fig. 4 (b). The charge voltage is made close to the target value by repeating the charge mode and the discharge mode shown in the figure (step s 2).
次に、 サブコンバータ 3のフィルタコンデンサ 5の充電が完了したか判定 し (ステップ s 3 ) 、 充電が完了するとメインコンバータ 2のフィルタコン デンサ 4を充電する。 このとき、 サブコンバータ 3においてフィルタコンデ ンサ 5に電流が流れないスィッチ状態 (以下、 スルーモード) にして、 図 5 Next, it is determined whether charging of the filter capacitor 5 of the sub-converter 3 is completed (step s 3). When charging is completed, the filter capacitor 4 of the main converter 2 is charged. At this time, the sub-converter 3 is switched to a state where the current does not flow to the filter capacitor 5 (hereinafter referred to as “through mode”).
( a ) に示すように、 メインコンバータ 2のスィッチ状態を全オフにして系 統電源 1から充電用抵抗 2 3を介する電流経路によりメインコンバータ 2の フィルタコンデンサ 4を充電する。 なお、 便宜上、 図 5では、 R相から S相 に流れる電流でメインコンバータ 2のフィルタコンデンサ 4が充電される場 合を示すが、 他の相の場合も同様である。 この場合、 メインコンバータ 2の スィッチ状態を変えて、 図 5 ( b ) に示す電流経路によりメインコンバータ 2のフィルタコンデンサ 4を放電する放電モードを用い、 図に示す充電モー ドと放電モードと繰り返して充電電圧を目標値に近づける (ステップ s 4 ) 次に、 メインコンバータ 2のフィルタコンデンサ 4の充電が完了したか判 定し (ステップ s 5 ) 、 充電が完了すると、 サブ上位スィッチ 2 2を遮断す ると共にメイン上位スィッチ 2 1を投入して、 電力変換装置の運転を開始す る (ステップ s 6 ) 。 As shown in (a), the switch state of the main converter 2 is fully turned off, and the filter capacitor 4 of the main converter 2 is charged from the system power supply 1 through the charging resistor 23. For convenience, FIG. 5 shows the case where the filter capacitor 4 of the main converter 2 is charged by the current flowing from the R phase to the S phase, but the same applies to the other phases. In this case, by changing the switch state of the main converter 2 and using the discharge mode in which the filter capacitor 4 of the main converter 2 is discharged by the current path shown in Fig. 5 (b), the charge mode and the discharge mode shown in the figure are repeated. Bring the charging voltage close to the target value (Step s 4) Next, it is determined whether or not the charging of the filter capacitor 4 of the main converter 2 is completed (step s 5). When charging is completed, the sub upper switch 2 2 is shut off and the main upper switch 2 1 is turned on. The operation of the power converter is started (step s 6).
[001 7] このように、 メインコンバータ 2およびサブコンバータ 3の制御により、 系統電源 1から充電用抵抗 2 3を介する電流経路にてメインコンバータ 2と サブコンバータ 3のフィルタコンデンサ 4、 5の初期充電を行うため、 各フ ィルタコンデンサ 4、 5に流れる突入電流を抑制でき、 信頼性よく初期充電 できる。 [001 7] In this way, the initial charging of the filter capacitors 4 and 5 of the main converter 2 and the subconverter 3 through the current path from the system power supply 1 through the charging resistor 2 3 by the control of the main converter 2 and the subconverter 3 As a result, the inrush current flowing through the filter capacitors 4 and 5 can be suppressed, and initial charging can be performed with high reliability.
[0018] なお、 上記初期充電のフローにおいて、 ステップ s 4、 s 5にてメインコ ンバータ 2のフィルタコンデンサ 4を充電する際、 ステップ s 5において、 所定の時間経過、 あるいは所定の割合でフィルタコンデンサ 4の電圧が充電 されると、 ステップ s 6に示すように、 サブ上位スィッチ 2 2を遮断すると 共にメイン上位スィッチ 2 1を投入して電力変換装置を運転させることによ り、 フィルタコンデンサ 4の残りの電圧を充電してもよい。 この場合、 サブ コン /く一タ 2の制御により電流を抑えるよう電流制御してフィルタコンデン サ 4を目標電圧まで充電する。 このようにメイン上位スィッチ 2 1を投入し て充電用抵抗 2 3を介することなく充電するため、 高速充電が可能になる。  [0018] It should be noted that when charging the filter capacitor 4 of the main converter 2 in steps s4 and s5 in the initial charging flow, the filter capacitor 4 is passed at a predetermined time or at a predetermined rate in step s5. As shown in step s6, when the sub upper switch 2 2 is turned off and the main upper switch 2 1 is turned on to operate the power converter, the remaining filter capacitor 4 remains. The voltage may be charged. In this case, the filter capacitor 4 is charged to the target voltage by controlling the current so as to suppress the current by the control of the sub-computer 2. In this way, the main high-order switch 21 is turned on and charging is performed without going through the charging resistor 23, so that high-speed charging is possible.
[0019] また、 回路断路がさらに上位のスィッチによりなされる場合は、 サブ上位 スィツチ 2 2は無くても良い。  [0019] When the circuit disconnection is performed by a higher-order switch, the sub-higher switch 22 may not be provided.
[0020] 実施の形態 2 .  [0020] Embodiment 2.
上記実施の形態 1では、 サブコンバータ 3のフィルタコンデンサ 5を充電 した後、 メインコンバータ 2のフィルタコンデンサ 4を充電することを説明 したが、 この実施の形態 2では、 図 6のフローチャートに示すようにメイン コンバータ 2のフィルタコンデンサ 4を充電した後、 サブコンバータ 3のフ ィルタコンデンサ 5を充電する。  In the first embodiment, it has been described that the filter capacitor 4 of the main converter 2 is charged after the filter capacitor 5 of the sub-converter 3 is charged. In the second embodiment, as shown in the flowchart of FIG. After charging the filter capacitor 4 of the main converter 2, the filter capacitor 5 of the sub-converter 3 is charged.
まず、 メイン上位スィッチ 2 1およびサブ上位スィッチ 2 2が遮断され、 フィルタコンデンサ 4、 5が充電されていない状態で (ステップ s s 1 ) 、 サブ上位スィッチ 2 2を投入し、 突入電流を抑えながらメインコンバータ 2 のフィルタコンデンサ 4を充電する (ステップ s s 1、 図 5参照) 。 First, when main upper switch 21 and sub upper switch 22 are shut off and filter capacitors 4 and 5 are not charged (step ss 1), Turn on the sub-higher switch 2 2 to charge the filter capacitor 4 of the main converter 2 while suppressing the inrush current (see step ss 1, Fig. 5).
次に、 メインコンバータ 2のフィルタコンデンサ 4の充電が完了したか判 定し (ステップ s s 3 ) 、 充電が完了するとサブコンバータ 3のフィルタコ ンデンサ 5を充電する (ステップ s s 4、 図 4参照) 。  Next, it is determined whether or not the charging of the filter capacitor 4 of the main converter 2 is completed (step s s 3). When the charging is completed, the filter capacitor 5 of the sub-converter 3 is charged (see step s s 4 and FIG. 4).
次に、 サブコンバータ 3のフィルタコンデンサ 5の充電が完了したか判定 し (ステップ s s 5 ) 、 充電が完了すると、 サブ上位スィッチ 2 2を遮断す ると共にメイン上位スィッチ 2 1を投入して、 電力変換装置の運転を開始す る (ステップ s s 6 ) 。  Next, it is determined whether or not the charging of the filter capacitor 5 of the sub-converter 3 is completed (step ss 5). When the charging is completed, the sub-higher switch 2 2 is shut off and the main higher-level switch 2 1 is turned on. Start the converter operation (step ss 6).
[0021 ] さらに、 メインコンバータ 2、 サブコンバータ 3のフィルタコンデンサ 4 、 5を、 例えば図 7のフローチャートに示すように同時に充電しても良い。 この場合も、 充電モードと放電モードを切り替えながらメインコンバータ 2 とサブコンバータ 3のフィルタコンデンサ 4、 5の充電を同時に行う。 まず、 メイン上位スィッチ 2 1およびサブ上位スィッチ 2 2が遮断され、 フィルタコンデンサ 4、 5が充電されていない状態で (ステップ t 1 ) 、 サ ブ上位スィッチ 2 2を投入し、 突入電流を抑えながらメインコンバータ 2の フィルタコンデンサ 4とサブコンバータ 3のフィルタコンデンサ 5を同時に 充電する。 このとき、 図 8 ( a ) に示すように、 メインコンバータ 2のスィ ツチ状態を全オフにして系統電源 1から充電用抵抗 2 3を介する電流経路に より、 サブコンバータ 3のフィルタコンデンサ 5およびメインコンバータ 2 のフィルタコンデンサ 4を充電する。 なお、 便宜上、 図 8では、 R相から S 相に流れる電流で R相のサブコンバータ 3のフィルタコンデンサ 5とメイン コンバータ 2のフィルタコンデンサ 4とが充電される場合を示すが、 他の相 の場合も同様である (ステップ t 2 ) 。 Furthermore, the filter capacitors 4 and 5 of the main converter 2 and the sub-converter 3 may be charged at the same time as shown in the flowchart of FIG. 7, for example. In this case, the filter capacitors 4 and 5 of the main converter 2 and the sub-converter 3 are simultaneously charged while switching between the charge mode and the discharge mode. First, with the main upper switch 2 1 and sub upper switch 2 2 shut off and the filter capacitors 4 and 5 are not charged (step t 1), the sub upper switch 2 2 is turned on while suppressing the inrush current. The filter capacitor 4 of the main converter 2 and the filter capacitor 5 of the sub-converter 3 are charged simultaneously. At this time, as shown in FIG. 8 (a), the switch state of the main converter 2 is completely turned off, and the filter capacitor 5 and the main converter 3 of the sub-converter 3 are connected by the current path from the system power supply 1 to the charging resistor 23. Charge filter capacitor 4 of converter 2. For convenience, Fig. 8 shows the case where the filter capacitor 5 of the R-phase sub-converter 3 and the filter capacitor 4 of the main converter 2 are charged by the current flowing from the R-phase to the S-phase. Is the same (step t 2).
[0022] 次に、 サブコンバータ 3のフィルタコンデンサ 5の充電が完了したか判定 し (ステップ t 3 ) 、 充電が未完了の場合、 続いてメインコンバータ 2のフ ィルタコンデンサ 5の充電が完了したか判定し (ステップ t 4 ) 、 充電が未 完了であるとステップ t 2に戻り、 メインコンバータ 2のフィルタコンデン サ 4とサブコンバータ 3のフィルタコンデンサ 5との同時充電を継続する。 ステップ t 3において、 サブコンバータ 3のフィルタコンデンサ 5の充電 が完了すると、 サブコンバータ 3のスィッチ状態をスルーモードにし、 図 8 ( b ) に示す電流経路により、 サブコンバータ 3のフィルタコンデンサ 5は 充電せずにメインコンバータ 2のフィルタコンデンサ 4のみ充電する。 次に メインコンバータ 2のフィルタコンデンサ 5の充電が完了したか判定し (ス テツプ t 6 ) 、 充電が完了すると、 サブ上位スィッチ 2 2を遮断すると共に メイン上位スィッチ 2 1を投入して、 電力変換装置の運転を開始する (ス亍 ップ t 7 ) 。 [0022] Next, it is determined whether the charging of the filter capacitor 5 of the sub-converter 3 is completed (step t3). If the charging is not completed, the charging of the filtering capacitor 5 of the main converter 2 is subsequently completed. If the charging is incomplete, the process returns to step t2, and the filter capacitor of the main converter 2 Simultaneous charging of the capacitor 4 and the filter capacitor 5 of the sub-converter 3 is continued. When charging of the filter capacitor 5 of the sub-converter 3 is completed at step t3, the switch state of the sub-converter 3 is set to the through mode, and the filter capacitor 5 of the sub-converter 3 is charged by the current path shown in Fig. 8 (b). Instead, only the filter capacitor 4 of the main converter 2 is charged. Next, it is determined whether the charging of the filter capacitor 5 of the main converter 2 is completed (step t6). When charging is completed, the sub upper switch 2 2 is shut off and the main upper switch 2 1 is turned on to convert the power. Start equipment operation (step t7).
ステップ t 4において、 メインコンバータ 2のフィルタコンデンサ 4の充 電が完了した場合、 メインコンバータ 2のフィルタコンデンサ 4は充電、 放 電を繰り返しながら、 サブコンバータ 3のフィルタコンデンサ 5を充電する 。 このとき、 図 8 ( c ) に示す電流経路によりメインコンバータ 2のフィル タコンデンサ 4を放電する放電モードを用い、 図 8 ( a ) に示す充電モード と該放電モードとを繰り返して充電電圧を目標値に近づける (ステップ t 8 ) 。 そして、 サブコンバータ 3のフィルタコンデンサ 5の充電が完了したか 判定し (ステップ t 9 ) 、 充電が完了すると、 ステップ t 7に移り、 サブ上 位スィッチ 2 2を遮断すると共にメイン上位スィッチ 2 1を投入して、 電力 変換装置の運転を開始する。  When charging of the filter capacitor 4 of the main converter 2 is completed at step t4, the filter capacitor 4 of the main converter 2 is charged and discharged, and the filter capacitor 5 of the sub-converter 3 is charged. At this time, the discharge mode in which the filter capacitor 4 of the main converter 2 is discharged by the current path shown in FIG. 8 (c) is used, and the charge mode shown in FIG. Move closer to the value (step t8). Then, it is determined whether or not the charging of the filter capacitor 5 of the sub-converter 3 is completed (step t 9). When the charging is completed, the process proceeds to step t 7 where the sub upper switch 2 2 is shut off and the main upper switch 2 1 is turned on. To start operation of the power converter.
[0023] この実施の形態 2においても、 メインコンバータ 2およびサブコンバータ  [0023] Also in the second embodiment, the main converter 2 and the sub-converter
3の制御により、 系統電源 1から充電用抵抗 2 3を介する電流経路にてメイ ンコンバータ 2とサブコンバータ 3のフィルタコンデンサ 4、 5の初期充電 を行うため、 各フィルタコンデンサ 4、 5に流れる突入電流を抑制でき、 信 頼性よく初期充電できる。  Under the control of 3, the filter capacitors 4 and 5 of the main converter 2 and sub-converter 3 are initially charged through the current path from the system power supply 1 through the charging resistor 2 3, so that inrush flows into the filter capacitors 4 and 5. Current can be suppressed and initial charging can be performed reliably.
[0024] 次に、 通常の運転停止や事故■過負荷運転での電力変換装置の停止動作に ついて説明する。 最初にメイン上位スィッチ 2 1は接点開極し、 アーク電圧 は発生する。 そして電流は限流され、 自然電流零点で遮断される。 その後、 電流はサブ上位スィッチ 2 2と充電用抵抗 2 3の並列回路に転流されるので 、 メイン上位スィッチ 2 1の接点間にかかる回路回復電圧は低くなる。 そし て充電用抵抗 2 3によりサブ上位スィッチ 2 2に流れる電流は抑えられ、 遮 断時の回路回復電圧の振動を小さくできるので、 容易にサブ上位スィツチ 2 2は電流遮断ができる。 [0024] Next, the stop operation of the power converter in a normal operation stop or accident (2) overload operation will be described. First, the main upper switch 21 opens the contact, and an arc voltage is generated. The current is limited and cut off at the natural current zero point. After that, the current is commutated to the parallel circuit of the sub upper switch 2 2 and the charging resistor 2 3. The circuit recovery voltage between the contacts of the main upper switch 21 is low. The charging resistor 23 suppresses the current flowing through the sub upper switch 22 2, and the oscillation of the circuit recovery voltage at the time of disconnection can be reduced, so that the sub upper switch 22 can easily cut off the current.
このように回路遮断の性能が大幅に向上する他、 遮断時の断路サージを充 電用抵抗 2 3により抑制することが出来る。  In this way, the circuit breaking performance is greatly improved, and the disconnecting surge at the time of breaking can be suppressed by the charging resistor 23.
[0025] なお、 上記実施の形態 1、 2では充電用抵抗 2 3を設けたが、 図 9に示す ように、 充電用抵抗 2 3の代わりにリアクトル 2 3 aを用いても良い。 この 場合、 系統電源 1からリアクトル 2 3 aを介する電流経路にて、 上記実施の 形態 1、 2と同様の制御によりメインコンバータ 2およびサブコンバータ 3 のフィルタコンデンサ 4、 5の初期充電を行う。 これにより、 各フィルタコ ンデンサ 4、 5に流れる突入電流を抑制でき、 信頼性よく初期充電できる。 またこの場合も、 リアクトル 2 3 aを介してサブコンバータ 3のフィルタ コンデンサ 5を充電した後、 サブ上位スィッチ 2 2を遮断すると共にメイン 上位スィッチ 2 1を投入してメインコンバータ 2のフィルタコンデンサ 4を 目標電圧まで充電しても良い。 その際、 リアクトル 2 3 aを介することなく 、 サブコンバータ 2の制御により電流を抑えるよう電流制御してメインコン バータ 2のフィルタコンデンサ 4を目標電圧まで充電するため、 高速充電が 可能になる。  In the first and second embodiments, the charging resistor 23 is provided, but as shown in FIG. 9, a reactor 23 a may be used instead of the charging resistor 23. In this case, the filter capacitors 4 and 5 of the main converter 2 and the sub-converter 3 are initially charged by the same control as in the first and second embodiments through the current path from the system power supply 1 through the reactor 23 3a. As a result, the inrush current flowing through the filter capacitors 4 and 5 can be suppressed, and initial charging can be performed with high reliability. Also in this case, after charging the filter capacitor 5 of the sub-converter 3 through the reactor 2 3 a, the sub-higher switch 2 2 is shut off and the main higher-level switch 2 1 is turned on so that the filter capacitor 4 of the main converter 2 is turned on. You may charge to a target voltage. At this time, since the current is controlled so as to suppress the current by controlling the sub-converter 2 without passing through the reactor 2 3 a and the filter capacitor 4 of the main converter 2 is charged to the target voltage, high-speed charging becomes possible.
[0026] 実施の形態 3 .  Embodiment 3
上記実施の形態 1、 2では、 サブコンバータ 3は各相で 1台としたが、 こ の実施の形態 3では、 メインコンバータ 2の各相交流入力線 9に複数台の単 相サブコンバータ 3の交流側をそれぞれ直列接続する。 図 1 0は、 この発明 の実施の形態 3による電力変換装置の構成を示す図である。 この場合、 メイ ンコンバータ 2は、 各相 2 aが図に示すように構成された三相 3レベルコン バータで、 フィルタコンデンサ 4は 2つのフィルタコンデンサ 4 aを直列接 続して用いる。  In the first and second embodiments, the number of sub-converters 3 is one for each phase. However, in this third embodiment, a plurality of single-phase sub-converters 3 are connected to each phase AC input line 9 of the main converter 2. Connect the AC side in series. FIG. 10 is a diagram showing a configuration of a power conversion device according to Embodiment 3 of the present invention. In this case, the main converter 2 is a three-phase three-level converter in which each phase 2 a is configured as shown in the figure, and the filter capacitor 4 uses two filter capacitors 4 a connected in series.
このように構成される電力変換装置のメインコンバータ 2のフィルタコン デンサ 4の DC電圧 VGと 2台のサブコンバータ 3のフィルタコンデンサ 5の DC電圧 Vb1、 Vb2は、 それぞれ異なる値 (Vc>Vb1>Vb2) で、 4 : 2 : 1、 4 : 3 : 1、 5 : 3 : 1、 6 : 3 : 1、 7 : 3 : 1等の関係を有する。 なお 、 製品仕様に合わしてこれ以外の値でも良く、 2台のサブコンバータ 3のフ ィルタコンデンサ 5の D C電圧 Vb1、 Vb2を等しい電圧にして部品の種類を低 減しても良い。 それぞれの場合について、 各コンバータの出力論理とそれら を直列接続した電力変換器の出力階調 (電圧レベル) との関係を図 1 1の A 〜Eの論理表に示す。 The filter converter of the main converter 2 of the power converter configured as described above. The DC voltage VG of Densa 4 and the DC voltages Vb1 and Vb2 of the filter capacitors 5 of the two sub-converters 3 are different values (Vc>Vb1> Vb2), respectively, 4: 2: 1, 4: 3: 1, 5 : 3: 1, 6: 3: 1, 7: 3: 1, etc. It should be noted that other values may be used in accordance with the product specifications, and the types of components may be reduced by making the DC voltages Vb1 and Vb2 of the filter capacitors 5 of the two sub-converters 3 equal. In each case, the relationship between the output logic of each converter and the output gradation (voltage level) of the power converter connected in series is shown in the logic table of A to E in Fig. 11.
[0027] ここでは、 表 Aの場合について、 以下に説明する。  [0027] Here, the case of Table A will be described below.
Vc、 Vb1、 Vb2は 4 : 2 : 1の関係で、 3つのコンバータ 2、 3の組み合わ せにより、 これらの発生電圧の総和で 0〜 7の 8階調の相電圧 (絶対値) が 交流入力端子に発生する。 ほぼ正弦波となる階調電圧を得るための各コンパ 一夕 2、 3の電圧波形を、 図 1 2に示す。 図 1 2 (a) は電力変換器全体の 電圧波形、 図 1 2 (b) は DC電圧 Vb2を有するサブコンバータ 3の電圧波形 、 図 1 2 (c) は DC電圧 Vb1を有するサブコンバータ 3の電圧波形、 図 1 2 (d) は DC電圧 VGを有するメインコンバータ 2の電圧波形を示す。 各コン バータ 2、 3の発生電圧の組み合わせにより、 滑らかな電圧階調波形が得ら れていることがわかる。  Vc, Vb1, and Vb2 have a 4: 2: 1 relationship. By combining the three converters 2 and 3, the sum of these generated voltages is used to generate an 8-level phase voltage (absolute value) of 0 to 7 that is an AC input. Occurs at the terminal. Figure 12 shows the voltage waveform of each comparator 2 and 3 to obtain a gradation voltage that is almost sinusoidal. Fig. 1 2 (a) is the voltage waveform of the entire power converter, Fig. 1 2 (b) is the voltage waveform of sub-converter 3 having DC voltage Vb2, and Fig. 1 2 (c) is the voltage waveform of sub-converter 3 having DC voltage Vb1. Voltage waveform, Fig. 1 2 (d) shows the voltage waveform of main converter 2 with DC voltage VG. It can be seen that a smooth voltage gradation waveform is obtained by combining the voltages generated by converters 2 and 3.
[0028] このように異なる D C電圧を有するメインコンバータ 2と複数台のサブコ ンバータ 3との直列接続構成で、 交流入力端子に発生する電圧は、 多レベル 化して滑らかな電圧階調波形となるため、 高調波を抑制することができる。 また、 電圧の高いメインコンバータ 2のスイッチング回数を抑えることによ り、 スイッチング損失を抑えることが出来、 電力変換装置の効率は向上し、 さらに電磁ノイズも減らすことが出来る。  [0028] In such a serial connection configuration of the main converter 2 having different DC voltages and the plurality of sub-converters 3, the voltage generated at the AC input terminal is multi-leveled and becomes a smooth voltage gradation waveform. Harmonics can be suppressed. In addition, by suppressing the number of switching times of the main converter 2 having a high voltage, switching loss can be suppressed, the efficiency of the power converter can be improved, and electromagnetic noise can be reduced.
また、 図 1 0に示すように各相交流入力線 9におけるサブコンバータ 3と 系統電源 1 との間に、 メィン上位スィツチ 21、 サブ上位スィツチ 22およ び充電用抵抗 23から成る初期充電用抵抗回路を設ける。 これにより、 系統 電源 1から充電用抵抗 23を介する電流経路にてメインコンバータ 2および サブコンバータ 3のフィルタコンデンサ 4、 5の初期充電を行うことができ る。 この場合も、 上記実施の形態 1、 2と同様にフィルタコンデンサ 4、 5 の初期充電ができ、 同様の効果が得られる。 In addition, as shown in FIG. 10, an initial charging resistor comprising a main upper switch 21, a sub upper switch 22, and a charging resistor 23 is provided between the sub-converter 3 and the system power source 1 in each phase AC input line 9. Provide a circuit. As a result, the main converter 2 and the current path from the grid power supply 1 through the charging resistor 23 The initial charging of the filter capacitors 4 and 5 of the sub-converter 3 can be performed. Also in this case, the initial charging of the filter capacitors 4 and 5 can be performed as in the first and second embodiments, and the same effect can be obtained.
また、 この場合も、 充電用抵抗 2 3の代わりにリアク トル 2 3 aを用いて も良い。  In this case as well, the reactor 2 3 a may be used instead of the charging resistor 2 3.
産業上の利用可能性 Industrial applicability
初期充電が必要な電力貯蔵器を直流側に備えて、 交流から直流に電力変換 し回生時にも電力制御可能な電力変換装置に広く適用できる。  It can be widely applied to power converters that are equipped with a power storage that requires initial charging on the DC side and that convert power from AC to DC and can control power even during regeneration.

Claims

請求の範囲 The scope of the claims
[1 ] それぞれ直流側に直流電圧が異なる電力貯蔵器を有して交流電源からの交 流電力を直流電力に変換し上記各電力貯蔵器に出力するメインコンバータお よびサブコンバータを、 該サブコンバータを上記メィンコンバータと上記交 流電源との間に配置して直列接続した電力変換器と、 上記電力変換器と上記 交流電源との間に接続された充電用抵抗とを備え、  [1] A main converter and a sub-converter, each having a power storage unit having a different DC voltage on the DC side, converting the AC power from an AC power source into DC power and outputting the DC power to the power storage unit. A power converter arranged in series between the main converter and the AC power supply, and a charging resistor connected between the power converter and the AC power supply,
上記各電力貯蔵器の初期充電時に、 上記メインコンバータおよび上記サブ コンバータの制御により上記交流電源から上記充電用抵抗を介する電流経路 にて、 少なくとも上記サブコンバータの電力貯蔵器を充電することを特徴と する電力変換装置。  At the time of initial charging of each power storage unit, at least the power storage unit of the sub-converter is charged from the AC power source through the charging resistor under the control of the main converter and the sub-converter. Power converter.
[2] 上記充電用抵抗をバイパスさせる切り換えスィッチを上記充電用抵抗に並 列接続して配置したことを特徴とする請求項 1に記載の電力変換装置。  [2] The power conversion device according to [1], wherein a switching switch for bypassing the charging resistor is arranged in parallel with the charging resistor.
[3] 上記充電用抵抗に第 2のスィッチを直列接続して直列回路を構成し、 該直 列回路と上記切り換えスィッチを並列接続としたことを特徴とする請求項 2 に記載の電力変換装置。  3. The power conversion device according to claim 2, wherein a second circuit is connected in series to the charging resistor to form a series circuit, and the series circuit and the switching switch are connected in parallel. .
[4] 上記各電力貯蔵器の初期充電時に、 上記メインコンバータおよび上記サブ コンバータの制御により上記交流電源から上記充電用抵抗を介する電流経路 にて、 上記メィンコンバータおよび上記サブコンバータの各電力貯蔵器を充 電することを特徴とする請求項 1〜 3のいずれか 1項に記載の電力変換装置  [4] At the time of initial charging of each of the power storage units, each power storage unit of the main converter and the sub-converter in a current path from the AC power source through the charging resistor under the control of the main converter and the sub-converter The power conversion device according to any one of claims 1 to 3, wherein the power conversion device is charged.
[5] 上記各電力貯蔵器の初期充電時に、 上記メインコンバータおよび上記サブ コンバータの制御により上記交流電源から上記充電用抵抗を介する電流経路 にて上記サブコンバータの電力貯蔵器を充電し、 その後、 上記交流電源から 上記充電用抵抗をバイパスする電流経路にて上記サブコンバータで電流制御 しつつ上記メインコンバータの電力貯蔵器を充電することを特徴とする請求 項 2または 3に記載の電力変換装置。 [5] At the time of initial charging of each power storage unit, the power storage unit of the sub-converter is charged from the AC power source through the charging resistor by the control of the main converter and the sub-converter, The power converter according to claim 2 or 3, wherein the power storage of the main converter is charged from the AC power source through a current path bypassing the charging resistor with the sub-converter.
[6] 上記サブコンバータは、 複数段の直列接続とすることを特徴とする請求項  [6] The sub-converter is characterized in that a plurality of stages are connected in series.
1 ~ 3のいずれか 1項に記載の電力変換装置。 The power conversion device according to any one of 1 to 3.
[7] それぞれ直流側に直流電圧が異なる電力貯蔵器を有して交流電源からの交 流電力を直流電力に変換し上記各電力貯蔵器に出力するメインコンバータお よびサブコンバータを、 該サブコンバータを上記メィンコンバータと上記交 流電源との間に配置して直列接続した電力変換器と、 上記電力変換器と上記 交流電源との間に接続されたリアクトルとを備え、 [7] A main converter and a sub-converter, each having a power storage unit having a different DC voltage on the DC side, converting the AC power from the AC power source to DC power and outputting the DC power to the power storage unit. A power converter arranged in series between the main converter and the AC power supply, and a reactor connected between the power converter and the AC power supply,
上記各電力貯蔵器の初期充電時に、 上記メインコンバータおよび上記サブ コンバータの制御により上記交流電源から上記リアクトルを介する電流経路 にて、 少なくとも上記サブコンバータの電力貯蔵器を充電することを特徴と する電力変換装置。  At the time of initial charging of each power storage unit, at least the power storage unit of the sub-converter is charged in a current path from the AC power source through the reactor under the control of the main converter and the sub-converter. Conversion device.
[8] 上記リアクトルをバイパスさせる切り換えスィッチを上記リアクトルに並 列接続して配置したことを特徴とする請求項 7に記載の電力変換装置。  8. The power conversion device according to claim 7, wherein a switching switch for bypassing the reactor is arranged in parallel with the reactor.
[9] 上記リアクトルに第 2のスィッチを直列接続して直列回路を構成し、 該直 列回路と上記切り換えスィッチを並列接続としたことを特徴とする請求項 8 に記載の電力変換装置。  9. The power converter according to claim 8, wherein a series circuit is configured by connecting a second switch in series with the reactor, and the series circuit and the switching switch are connected in parallel.
[10] 上記各電力貯蔵器の初期充電時に、 上記メインコンバータおよび上記サブ コンバータの制御により上記交流電源から上記リアクトルを介する電流経路 にて、 上記メィンコンバータおよび上記サブコンバータの各電力貯蔵器を充 電することを特徴とする請求項 7 ~ 9のいずれか 1項に記載の電力変換装置  [10] At the time of initial charging of each of the power storage units, the main power storage unit and the sub-converter are charged in a current path from the AC power source through the reactor under the control of the main converter and the sub-converter. The power conversion device according to any one of claims 7 to 9, wherein the power conversion device is charged.
[1 1 ] 上記各電力貯蔵器の初期充電時に、 上記メインコンバータおよび上記サブ コンバータの制御により上記交流電源から上記リアクトルを介する電流経路 にて上記サブコンバータの電力貯蔵器を充電し、 その後、 上記交流電源から 上記リアクトルをバイパスする電流経路にて上記サブコンバータで電流制御 しつつ上記メインコンバータの電力貯蔵器を充電することを特徴とする請求 項 8または 9に記載の電力変換装置。 [1 1] During initial charging of each power storage unit, the power storage unit of the sub-converter is charged from the AC power source through a current path through the reactor under the control of the main converter and the sub-converter. 10. The power conversion device according to claim 8, wherein the power storage device of the main converter is charged while current is controlled by the sub-converter through a current path that bypasses the reactor from an AC power source.
[12] 上記サブコンバータは、 複数段の直列接続とすることを特徴とする請求項 7〜 9のいずれか 1項に記載の電力変換装置。  [12] The power converter according to any one of claims 7 to 9, wherein the sub-converter has a plurality of stages connected in series.
PCT/JP2007/000478 2006-05-08 2007-05-07 Power transducing device WO2007129469A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008514390A JP5049964B2 (en) 2006-05-08 2007-05-07 Power converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006128891 2006-05-08
JP2006-128891 2006-05-08

Publications (1)

Publication Number Publication Date
WO2007129469A1 true WO2007129469A1 (en) 2007-11-15

Family

ID=38667581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/000478 WO2007129469A1 (en) 2006-05-08 2007-05-07 Power transducing device

Country Status (2)

Country Link
JP (1) JP5049964B2 (en)
WO (1) WO2007129469A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008289216A (en) * 2007-05-15 2008-11-27 Mitsubishi Electric Corp Power converter
JP2011147198A (en) * 2010-01-12 2011-07-28 Mitsubishi Electric Corp Power conversion apparatus
JP2011523335A (en) * 2008-07-03 2011-08-04 シニテク フェルトリーブシュゲセルシャフト エムベーハー Circuit arrangement and control circuit for power supply unit, computer power supply unit, and switching method of power supply unit
WO2012121207A1 (en) * 2011-03-04 2012-09-13 国立大学法人徳島大学 Waveform compensation method and waveform compensation circuit
WO2013005457A1 (en) * 2011-07-06 2013-01-10 三菱電機株式会社 Power conversion device
CN102918758A (en) * 2010-05-28 2013-02-06 三菱电机株式会社 Power conversion device
WO2013175644A1 (en) 2012-05-24 2013-11-28 三菱電機株式会社 Power conversion device
JP2014011831A (en) * 2012-06-28 2014-01-20 Mitsubishi Electric Corp Ac/dc power conversion device, and uninterruptible power supply device comprising the same
EP2701274A1 (en) * 2011-04-18 2014-02-26 Shao, Zehua Electric automobile pwm rectification and voltage current transformation pulse charging system
US8885367B2 (en) 2009-08-18 2014-11-11 Fujitsu Technology Solutions Intellectual Property Gmbh Input circuit for an electrical device, use of an input circuit and electrical device
WO2015097868A1 (en) 2013-12-27 2015-07-02 三菱電機株式会社 Power conversion device
WO2015114823A1 (en) * 2014-02-03 2015-08-06 株式会社日立製作所 Power conversion device and method for controlling power conversion device
WO2018092240A1 (en) * 2016-11-17 2018-05-24 東芝三菱電機産業システム株式会社 Power conversion device
WO2018235257A1 (en) * 2017-06-23 2018-12-27 東芝三菱電機産業システム株式会社 Power conversion device
JP7472831B2 (en) 2021-03-16 2024-04-23 株式会社豊田中央研究所 Power Conversion Equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5968565B1 (en) * 2015-03-17 2016-08-10 三菱電機株式会社 EDM machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62293901A (en) * 1986-06-12 1987-12-21 Mitsubishi Electric Corp Main circuit device for electric rolling stock
JPH07123722A (en) * 1993-10-20 1995-05-12 Toyo Electric Mfg Co Ltd Pwm converter
JPH08331870A (en) * 1995-05-30 1996-12-13 Shinko Electric Co Ltd Discharge circuit of main circuit capacitor in sine wave converter with regenerative function
JP2000078753A (en) * 1998-08-26 2000-03-14 Mitsubishi Electric Corp Power phase modifying equipment and transmission system applying the power phase modifying equipment
JP2000354361A (en) * 1999-06-10 2000-12-19 Meidensha Corp Active filter
JP2006014497A (en) * 2004-06-25 2006-01-12 Daikin Ind Ltd Active converter and its control method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3424539B2 (en) * 1997-06-23 2003-07-07 三菱電機株式会社 Power harmonic suppression device
JP4247357B2 (en) * 2001-05-30 2009-04-02 国立大学法人東京工業大学 Filter device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62293901A (en) * 1986-06-12 1987-12-21 Mitsubishi Electric Corp Main circuit device for electric rolling stock
JPH07123722A (en) * 1993-10-20 1995-05-12 Toyo Electric Mfg Co Ltd Pwm converter
JPH08331870A (en) * 1995-05-30 1996-12-13 Shinko Electric Co Ltd Discharge circuit of main circuit capacitor in sine wave converter with regenerative function
JP2000078753A (en) * 1998-08-26 2000-03-14 Mitsubishi Electric Corp Power phase modifying equipment and transmission system applying the power phase modifying equipment
JP2000354361A (en) * 1999-06-10 2000-12-19 Meidensha Corp Active filter
JP2006014497A (en) * 2004-06-25 2006-01-12 Daikin Ind Ltd Active converter and its control method

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008289216A (en) * 2007-05-15 2008-11-27 Mitsubishi Electric Corp Power converter
US8653700B2 (en) 2008-07-03 2014-02-18 Fujitsu Technology Solutions Intellectual Property Gmbh Circuit arrangement with a power input and an operating method for controlling a power input circuit
JP2011523335A (en) * 2008-07-03 2011-08-04 シニテク フェルトリーブシュゲセルシャフト エムベーハー Circuit arrangement and control circuit for power supply unit, computer power supply unit, and switching method of power supply unit
US8885367B2 (en) 2009-08-18 2014-11-11 Fujitsu Technology Solutions Intellectual Property Gmbh Input circuit for an electrical device, use of an input circuit and electrical device
JP2011147198A (en) * 2010-01-12 2011-07-28 Mitsubishi Electric Corp Power conversion apparatus
CN102918758A (en) * 2010-05-28 2013-02-06 三菱电机株式会社 Power conversion device
WO2012121207A1 (en) * 2011-03-04 2012-09-13 国立大学法人徳島大学 Waveform compensation method and waveform compensation circuit
EP2701274A4 (en) * 2011-04-18 2015-01-14 Zehua Shao Electric automobile pwm rectification and voltage current transformation pulse charging system
EP2701274A1 (en) * 2011-04-18 2014-02-26 Shao, Zehua Electric automobile pwm rectification and voltage current transformation pulse charging system
WO2013005457A1 (en) * 2011-07-06 2013-01-10 三菱電機株式会社 Power conversion device
US9634574B2 (en) 2011-07-06 2017-04-25 Mitsubishi Electric Corporation Electric-power conversion system having inrush current prevention circuit
CN103493353A (en) * 2011-07-06 2014-01-01 三菱电机株式会社 Power conversion device
JP2013017346A (en) * 2011-07-06 2013-01-24 Mitsubishi Electric Corp Power conversion device
US9484831B2 (en) 2011-07-06 2016-11-01 Mitsubishi Electric Corporation Electric-power conversion system
US9608535B2 (en) 2011-07-06 2017-03-28 Mitsubishi Electric Corporation Electric-power conversion system having plurality of single-phase inverter circuits
US9608536B2 (en) 2011-07-06 2017-03-28 Mitsubishi Electric Corporation Electric-power conversion system including single-phase inverter
EP2731248A4 (en) * 2011-07-06 2015-10-07 Mitsubishi Electric Corp Power conversion device
WO2013175644A1 (en) 2012-05-24 2013-11-28 三菱電機株式会社 Power conversion device
US9515546B2 (en) 2012-05-24 2016-12-06 Mitsubishi Electric Corporation Power conversion device having initial charging circuit
JP2014011831A (en) * 2012-06-28 2014-01-20 Mitsubishi Electric Corp Ac/dc power conversion device, and uninterruptible power supply device comprising the same
WO2015097868A1 (en) 2013-12-27 2015-07-02 三菱電機株式会社 Power conversion device
US9787214B2 (en) 2013-12-27 2017-10-10 Mitsubishi Electric Corporation Power conversion device with overvoltage suppression
JPWO2015114823A1 (en) * 2014-02-03 2017-03-23 株式会社日立製作所 Power converter and control method of power converter
WO2015114823A1 (en) * 2014-02-03 2015-08-06 株式会社日立製作所 Power conversion device and method for controlling power conversion device
WO2018092240A1 (en) * 2016-11-17 2018-05-24 東芝三菱電機産業システム株式会社 Power conversion device
KR20190038888A (en) * 2016-11-17 2019-04-09 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Power conversion device
JPWO2018092240A1 (en) * 2016-11-17 2019-06-24 東芝三菱電機産業システム株式会社 Power converter
KR102266020B1 (en) 2016-11-17 2021-06-16 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 power converter
WO2018235257A1 (en) * 2017-06-23 2018-12-27 東芝三菱電機産業システム株式会社 Power conversion device
JPWO2018235257A1 (en) * 2017-06-23 2019-11-07 東芝三菱電機産業システム株式会社 Power converter
JP7472831B2 (en) 2021-03-16 2024-04-23 株式会社豊田中央研究所 Power Conversion Equipment

Also Published As

Publication number Publication date
JP5049964B2 (en) 2012-10-17
JPWO2007129469A1 (en) 2009-09-17

Similar Documents

Publication Publication Date Title
WO2007129469A1 (en) Power transducing device
US11201565B2 (en) Conversion circuit, control method, and power supply device
Debnath et al. Operation, control, and applications of the modular multilevel converter: A review
Adam et al. Modular multilevel inverter: Pulse width modulation and capacitor balancing technique
Nami et al. Five level cross connected cell for cascaded converters
Pires et al. Fault-tolerant multilevel topology based on three-phase H-bridge inverters for open-end winding induction motor drives
JP5417641B2 (en) Power converter
WO2013105156A1 (en) Multilevel power conversion circuit
WO2015119708A1 (en) Multi-phase ac/ac step-down converter for distribution systems
JP2014108000A (en) Power conversion device
JP5680764B2 (en) Power converter
US20120163044A1 (en) Multilevel power converter or inverter arrangement using h bridges
KR100970566B1 (en) H-bridge type multi-level converter with power regeneration capability
JP2012182974A (en) Five-level power conversion apparatus
US10270328B2 (en) Multilevel converter with energy storage
EP2779403B1 (en) Power conversion system and method
JP6943184B2 (en) Modular multi-level cascade converter
US11962250B2 (en) Hybrid modular multilevel converter (HMMC) based on a neutral point clamped (NPC) topology
KR20200129980A (en) Apparatus and Method for DPWM Switching of Multi Level Inverter with Neutral Point Controllable
Routray et al. Reduced voltage stress thirteen-level extendable switched capacitor multilevel inverter
JP5881362B2 (en) Power converter
JP7446932B2 (en) Power conversion equipment and switching equipment
JP2012239309A (en) Electric power conversion apparatus
CN108604797B (en) Multilevel power converter and method for controlling multilevel power converter
US11962251B2 (en) Hybrid modular multilevel converter (HMMC) based on a neutral point pilot (NPP) topology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07737134

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008514390

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07737134

Country of ref document: EP

Kind code of ref document: A1