WO2016147319A1 - Charging/discharging system - Google Patents

Charging/discharging system Download PDF

Info

Publication number
WO2016147319A1
WO2016147319A1 PCT/JP2015/057926 JP2015057926W WO2016147319A1 WO 2016147319 A1 WO2016147319 A1 WO 2016147319A1 JP 2015057926 W JP2015057926 W JP 2015057926W WO 2016147319 A1 WO2016147319 A1 WO 2016147319A1
Authority
WO
WIPO (PCT)
Prior art keywords
charge
power
discharge
charging
discharging
Prior art date
Application number
PCT/JP2015/057926
Other languages
French (fr)
Japanese (ja)
Inventor
門田 行生
久保田 雅之
麻美 水谷
勉 丹野
小林 武則
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to PCT/JP2015/057926 priority Critical patent/WO2016147319A1/en
Priority to JP2017505925A priority patent/JP6585705B2/en
Publication of WO2016147319A1 publication Critical patent/WO2016147319A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • Embodiments of the present invention relate to a charge / discharge system.
  • charging / discharging power of the charging / discharging device is transmitted / received via the power system, and depending on conditions, there is a possibility of causing problems such as a voltage change or reverse power flow of the power system.
  • the present invention has been made in view of the above, and provides a charge / discharge system capable of performing a charge test or a discharge test of a maintenance / inspection target device or a test target device without affecting a power system. There is.
  • the charge / discharge system of the embodiment includes a power compensation charge / discharge device connected to a power system via a power line, and the charge / discharge controller is configured so that a test target device to be subjected to a charge test or a discharge test is powered via the power line.
  • the charge power of the test target device is balanced with the discharge power of the power compensation charge / discharge device, or the discharge power of the test target device is the power compensation charge / discharge device.
  • a charge / discharge command is given to the device under test and the power compensated charge / discharge device so as to be balanced with the charged power.
  • FIG. 1 is a diagram illustrating the principle of the embodiment.
  • FIG. 2 is a schematic configuration block diagram of the charge / discharge system of the first embodiment.
  • FIG. 3 is a schematic configuration block diagram of the charging / discharging device.
  • FIG. 4 is a detailed configuration explanatory diagram of the cell module, the CMU, and the BMU.
  • FIG. 5 is a schematic block diagram of the charge / discharge controller.
  • FIG. 6 is a schematic block diagram of the charge / discharge system according to the second embodiment.
  • FIG. 7 is an explanatory diagram of the third embodiment.
  • FIG. 8 is an explanatory diagram of the fourth embodiment.
  • FIG. 9 is an explanatory diagram of the fifth embodiment.
  • FIG. 10 is an explanatory diagram of the sixth embodiment.
  • FIG. 1 is a diagram illustrating the principle of the embodiment.
  • the charge / discharge system 1 controls the charge / discharge devices 3-1 to 3-n (n: natural number) connected to the power system 2 via the power line PL and the charge / discharge devices 3-1 to 3-n. And a discharge controller 4.
  • the charging / discharging devices 3-1 to 3-n charge the power from the power system 2 and discharge the power to the power system 2, thereby leveling the load of the power system 2. It is used for intended peak shift applications.
  • the power system 2 can be applied to either an AC system or a DC system.
  • charge / discharge device 5 and the power storage device 6 are newly added to the charge / discharge system 1 and the function of the charge / discharge system 1 is expanded (charge / discharge capacity expansion) will be described as an example.
  • the charging / discharging device 5 and the power storage device 6 to be added are connected to be the test target device 7.
  • the power storage device 6 a secondary battery such as a lithium battery, a large-capacity capacitor, a flywheel power storage device, or the like can be used.
  • the charge / discharge devices 3-1 to 3-n function as power compensated charge / discharge devices so that the charge / discharge power of the test target device 7 does not affect the power system 2.
  • the charging / discharging devices 3-1 to 3-n use all of the discharge power from the test target device 7 as charge / discharge devices 3-1 to 3-n. Charging is performed as charging power to the power source, or all of the power is consumed by the charging / discharging devices 3-1 to 3-n so that the discharging power does not flow into the power system 2.
  • the charge / discharge devices 3-1 to 3-n discharge all the charging power to the test target device 7 from the charge / discharge devices 3-1 to 3-n. By charging with electric power, charging power is prevented from flowing into the electric power system 2.
  • the charge / discharge controller 4 outputs to the charge / discharge device 5 a test target charge / discharge command value signal C1 corresponding to the charge power amount of the test target device 7.
  • the charge / discharge controller 4 distributes the electric power to be equal to the electric charge amount corresponding to the test target charge / discharge command value signal C1 in accordance with the discharge capacity of the charge / discharge devices 3-1 to 3-n.
  • Compensation charge / discharge command value signals CS-1 to CS-n are output to the charge / discharge devices 3-1 to 3-n.
  • the charging / discharging devices 3-1 to 3-n perform discharging with the discharging power based on the input power compensated charging / discharging command value signals CS-1 to CS-n, respectively.
  • the charging / discharging device 5 of the test target device 7 charges the power storage device 6 with charging power based on the test target charge / discharge command value signal C1.
  • the charge / discharge devices 3-1 to 3-n perform a discharging operation so as to absorb the power ripple of the test target device 7.
  • the electric power output to the electric power system 2 can be constant or zero, and the test adjustment and maintenance inspection of the test target apparatus 7 can be performed without being restricted by the conditions from the electric power system 2.
  • the charge / discharge controller 4 outputs a test target charge / discharge command value signal C ⁇ b> 1 corresponding to the discharge power amount of the test target device 7 to the charge / discharge device 5.
  • the charge / discharge controller 4 distributes the power to be equal to the discharge power corresponding to the test target charge / discharge command value signal C1 according to the charge capability of the charge / discharge devices 3-1 to 3-n.
  • Compensation charge / discharge command value signals CS-1 to CS-n are output to the charge / discharge devices 3-1 to 3-n.
  • the charge / discharge device 5 of the test target device 7 discharges the power storage device 6 with the discharge power based on the test target charge / discharge command value signal C1.
  • the charging / discharging devices 3-1 to 3-n perform charging with the charging power amount based on the input power compensated charging / discharging command value signals CS-1 to CS-n, respectively.
  • the charge / discharge devices 3-1 to 3-n perform a charging operation so as to absorb the power ripple of the test target device 7.
  • the electric power output to the electric power system 2 can be constant or zero, and the test adjustment and maintenance inspection of the test target apparatus 7 can be performed without being restricted by the conditions from the electric power system 2.
  • FIG. 2 is a schematic configuration block diagram of a charge / discharge system according to a first embodiment.
  • the charging / discharging system 1A of the first embodiment is a charging / discharging device 3-1 to 3-n (n: natural number) connected to the electric power system 2 and a charging / discharging device 3-1 to 3-n for controlling the charging / discharging devices 3-1 to 3-n.
  • a discharge controller 4 and a device under test 7 are provided.
  • the charge / discharge devices 3-1 to 3-n functioning as the power compensation charge / discharge devices are charged to accumulate energy (electric power).
  • the charging / discharging devices 3-1 to 3-n functioning as the power compensation charging / discharging devices discharge to release energy (electric power).
  • the energy capacity of the charge / discharge devices 3-1 to 3-n functioning as the power compensation charge / discharge device is larger than the energy capacity of the test target device 7.
  • the energy capacity of the charging / discharging devices 3-1 to 3-n functioning as the power compensation charging / discharging device is smaller than the energy capacity of the power storage device 2 to be tested, the shortage is transferred from the power system 2. What is necessary is just to comprise so.
  • FIG. 3 is a schematic configuration block diagram of the charging / discharging device.
  • the power system 2 will be described as an AC power system.
  • the charge / discharge device 3-1 is roughly classified into a storage battery device 8-1 for storing electric power, and direct current power supplied from the storage battery device 8-1 to AC power having a desired power quality to convert the power system 2 or A power conditioning system (PCS: Power Conditioning System) 9 that is supplied to the test target device 7 or that converts AC power supplied from the power system 2 or the test target device 7 into DC power and supplies it to the power storage device 8-1. -1.
  • PCS Power Conditioning System
  • the storage battery device 8-1 is roughly divided into a plurality of battery boards 21-1 to 21-N (N is a natural number) and a battery terminal board 22 to which the battery boards 21-1 to 21-N are connected. ing.
  • the battery boards 21-1 to 21-N include a plurality of battery units 23-1 to 23-M (M is a natural number) connected in parallel to each other, a gateway device 24, and a BMU (Battery Management Unit: battery management described later). Device) and a DC power supply device 25 for supplying a DC power supply for operation to a CMU (Cell Monitoring Unit).
  • the battery units 23-1 to 23-M are connected to an output power supply via a high potential power supply line (high potential power supply line) LH and a low potential power supply line (low potential power supply line) LL, respectively.
  • Lines (output power supply lines; bus lines) LHO and LLO are connected to supply power to the power converter 12 that is the main circuit.
  • the battery unit 23-1 is roughly divided into a plurality (24 in FIG. 1) of cell modules 31-1 to 31-24, and a plurality of (see FIG. 1) provided in each of the cell modules 31-1 to 31-24. 24) CMU 32-1 to 32-24, a service disconnect 33 provided between the cell module 31-12 and the cell module 31-13, a current sensor 34, and a contactor 35.
  • the cell modules 31-1 to 31-24, the service disconnect 33, the current sensor 34, and the contactor 35 are connected in series.
  • the cell modules 31-1 to 31-24 form a battery pack by connecting a plurality of battery cells in series and parallel.
  • a plurality of cell modules 31-1 to 31-24 connected in series constitute an assembled battery group.
  • the battery unit 23-1 includes a BMU 36, and the communication lines of the CMUs 32-1 to 32-24 and the output line of the current sensor 34 are connected to the BMU 36.
  • the BMU 36 controls the entire battery unit 23-1 under the control of the gateway device 24, and determines the communication results (voltage data and temperature data described later) and the detection results of the current sensor 34 with the CMUs 32-1 to 32-24. Based on this, the contactor 35 is controlled to open and close.
  • the battery terminal board 22 includes a plurality of panel breakers 41-1 to 41-N provided corresponding to the battery boards 21-1 to 21-N and a master configured as a microcomputer that controls the entire storage battery device 11. (Master) device 42.
  • the master device 42 is configured as a control power line 51 and an Ethernet (registered trademark) supplied via the UPS (Uninterruptible Power System) 12A of the PCS 9-1 between the PCS 9-1 and functions as a communication bus. Then, the BMU 36 exchanges control data directly with the PCS 9-1 and is electrically connected to the control communication line 52 and functions as a communication bus to directly transmit data to other BMUs 36. Are connected to a communication line 53 for performing exchanges.
  • UPS Uninterruptible Power System
  • FIG. 4 is a detailed configuration explanatory diagram of the cell module, the CMU, and the BMU.
  • Each of the cell modules 31-1 to 31-24 includes a plurality (10 in FIG. 4) of battery cells 61-1 to 61-10 connected in series.
  • CMUs 32-1 to 32-24 are voltage temperature measurement ICs (Analog Front End IC: AFE) for measuring the voltage of the battery cells constituting the corresponding cell modules 31-1 to 31-24 and the temperature of a predetermined location.
  • -IC) 62 an MPU 63 that controls the entire CMU 32-1 to 32-24, and a communication controller 64 that conforms to the CAN (Controller Area Network) standard for performing CAN communication with the BMU 36, And a memory 65 for storing voltage data and temperature data corresponding to the voltage for each cell.
  • CAN Controller Area Network
  • each of the cell modules 31-1 to 31-24 and the corresponding CMUs 32-1 to 32-24 will be referred to as battery modules 37-1 to 37-24.
  • a configuration in which the cell module 31-1 and the corresponding CMU 32-1 are combined is referred to as a battery module 37-1.
  • the BMU 36 is transmitted from the MPU 71 that controls the entire BMU 36, the communication controller 72 conforming to the CAN standard for performing CAN communication between the CMUs 32-1 to 32-24, and the CMUs 32-1 to 32-24. And a memory 73 for storing voltage data and temperature data.
  • FIG. 5 is a schematic block diagram of the charge / discharge controller.
  • the charge / discharge controller 4 has a charge / discharge command unit 4A for outputting the test target charge / discharge command value signal C1 and a gain for inverting and outputting the sign of the test target charge / discharge command value signal C1.
  • a control unit 4B and a distribution unit 4C that generates the power compensation charge / discharge command value signals CS-1 to CS-n based on the test target charge / discharge command value signal C1 whose sign is inverted are provided.
  • the gain controller 4B inverts and outputs the sign of the test target charge / discharge command value signal C1 if the test target charge / discharge command value C1 is discharged (for example, 1 kW discharge). This is because the test target charge / discharge command value C1 is a signal corresponding to charge (for example, 1 kW charge).
  • the distribution unit 4C outputs the power compensated charge / discharge command value signals CS-1 to CS-n for determining the discharge amount, and the test target device 7 When performing a discharge test, power compensated charge / discharge command value signals CS-1 to CS-n for determining the charge amount are output.
  • test target device 7 supplies the power storage device 6 that is a test target storage battery device that stores power, and converts the DC power supplied from the power storage device 6 into AC power having a desired power quality, or supplies the power.
  • a power conditioning system (PCS) 5A that converts the AC power that has been converted into DC power and supplies it to the power storage device 6.
  • the charge / discharge controller 4 outputs a test target charge / discharge command value signal C1 corresponding to the charge power amount of the test target device 7 to the PCS 5A.
  • the charge / discharge controller 4 distributes the electric power to be equal to the electric charge amount corresponding to the test target charge / discharge command value signal C1 in accordance with the discharge capacity of the charge / discharge devices 3-1 to 3-n.
  • Compensation charge / discharge command value signals CS-1 to CS-n are output to PCS9-1 to PCS-n of charge / discharge devices 3-1 to 3-n.
  • the PCSs 9-1 to PCS 9-n of the charging / discharging devices 3-1 to 3-n store the power so that the discharge power is based on the input power compensation charging / discharging command value signals CS-1 to CS-n.
  • the discharge operations of the devices 8-1 to 8-n are performed, respectively.
  • the PCS 5A of the test target device 7 charges the power storage device 6 with charging power based on the test target charge / discharge command value signal C1.
  • the PCS 9 of the charge / discharge devices 3-1 to 3-n according to the power compensation charge / discharge command value signals CS-1 to CS-n. -1 to PCS 9-n perform a discharging operation of the power storage devices 8-1 to 8-n so that the power ripple of the device under test 7 is absorbed, thereby making the power output to the power system 2 constant or zero Therefore, it is possible to perform test adjustment and maintenance inspection of the test target device 7 without being restricted by the conditions from the power system 2.
  • the charge / discharge controller 4 outputs a test target charge / discharge command value signal C1 corresponding to the discharge power amount of the test target device 7 to the PCS 5A.
  • the charge / discharge controller 4 distributes the power to be equal to the discharge power corresponding to the test target charge / discharge command value signal C1 according to the charge capability of the charge / discharge devices 3-1 to 3-n.
  • Compensation charge / discharge command value signals CS-1 to CS-n are output to PCS9-1 to PCS-n of charge / discharge devices 3-1 to 3-n.
  • the PCS 5A of the test target device 7 discharges the power storage device 6 with the discharge power based on the test target charge / discharge command value signal C1.
  • the PCSs 9-1 to PCS-n of the charging / discharging devices 3-1 to 3-n store the electric power so that the charging electric energy is based on the input power compensation charging / discharging command value signals CS-1 to CS-n.
  • the charging operations of the devices 8-1 to 8-n are performed.
  • the PCSs 9-1 to 9-n of the charge / discharge devices 3-1 to 3-n absorb the power ripple of the test target device 7.
  • the power output to the power system 2 can be constant or zero, and the test is performed without being restricted by the conditions from the power system 2. Test adjustment and maintenance inspection of the target device 7 are possible.
  • FIG. 6 is a schematic configuration block diagram of a charge / discharge system according to a second embodiment.
  • the charge / discharge system 1B of the second embodiment differs from the charge / discharge system 1A of the first embodiment in that the AC power from the power receiving power system 10 is rectified instead of the power storage devices 8-1 to 8-n.
  • Discharge devices 12-1 to 12-n for consuming the discharge power of the device under test 7 input via the rectifiers 11-1 to 11-n and PCS9-1 to PCS-n. is there.
  • the charge / discharge controller 4 outputs a test target charge / discharge command value signal C1 corresponding to the charge power amount of the test target device 7 to the PCS 5A. Further, the charge / discharge controller 4 distributes the electric power to be equal to the electric charge amount corresponding to the test target charge / discharge command value signal C1 in accordance with the discharge capacity of the charge / discharge devices 3-1 to 3-n. Compensation charge / discharge command value signals CS-1 to CS-n are output to PCS9-1 to PCS-n of charge / discharge devices 3-1 to 3-n.
  • the PCSs 9-1 to PCS-n of the charging / discharging devices 3-1 to 3-n receive power so that the discharging power is based on the input power compensated charging / discharging command value signals CS-1 to CS-n.
  • the DC power rectified by the rectifiers 11-1 to 11-n from the AC power supplied from the power system 10 is converted to AC power, and the discharge operation for supplying the test target device 7 as discharge power is performed. .
  • the PCS 5A of the test target device 7 charges the power storage device 6 with charging power based on the test target charge / discharge command value signal C1.
  • the test target device 7 charges according to the test target charge / discharge command value signal C1
  • the power output to the power system 2 is constant or zero.
  • the charge / discharge controller 4 outputs a test target charge / discharge command value signal C1 corresponding to the discharge power amount of the test target device 7 to the PCS 5A.
  • the charge / discharge controller 4 distributes the power to be equal to the discharge power corresponding to the test target charge / discharge command value signal C1 according to the charge capability of the charge / discharge devices 3-1 to 3-n.
  • Compensation charge / discharge command value signals CS-1 to CS-n are output to PCS9-1 to PCS-n of charge / discharge devices 3-1 to 3-n.
  • the PCS 5A of the test target device 7 discharges the power storage device 6 with the discharge power based on the test target charge / discharge command value signal C1.
  • the PCSs 9-1 to PCS-n of the charging / discharging devices 3-1 to 3-n are input so as to have electric power amounts based on the input power compensation charging / discharging command value signals CS-1 to CS-n.
  • the discharge power of the device under test 7 is consumed via the discharge devices 12-1 to 12-n.
  • the PCSs 9-1 to 9-n of the charge / discharge devices 3-1 to 3-n absorb the power ripple of the test target device 7. In this way, by supplying the discharge power to the discharge devices 12-1 to 12-n and consuming them, the power output to the power system 2 can be made constant or zero. Test adjustment and maintenance inspection of the device under test 7 can be performed without receiving it.
  • the second embodiment it is possible to reduce power fluctuations to the power system 2 due to charging / discharging of the test target power storage device 7 without using an expensive energy storage device. This makes it possible to reduce the restrictions depending on the conditions from the power system, and to perform test adjustment and maintenance inspection of the test target device.
  • FIG. 7 is an explanatory diagram of the third embodiment.
  • the case where the PCS 9-2 to PCS 9-4, which are the tables, is a power control method ( power control group) is illustrated.
  • corresponding transformers 13-1 to 13-4 are respectively provided between the PCS 9-1 to PCS-4 and the power system 2, and between the PCS 5A and the power system 2, A transformer 14 is provided.
  • the PCS When the power compensation charging / discharging device is composed of a plurality of units (four in FIG. 7), the PCS is divided into a voltage control group and a power control group, and the charge / discharge controller 4 is tested according to the test pattern TP.
  • the PCS 9-1 constituting the voltage control group charges and discharges power only when the voltage of the power system 2 is not maintained in the proper range, the voltage of the power system 2 is maintained in the proper range. If so, charging / discharging of power will not occur.
  • the PCS 9-1 constituting the voltage control group automatically performs charging or discharging operation to return the voltage of the power system 2 to an appropriate value.
  • the PCSs 9-1 to PCS9-4 functioning as the power compensation charging / discharging devices perform charging / discharging so that the charging / discharging power of the PCS 5A of the device under test 7 is completely compensated.
  • the electric power becomes zero, and the voltage of the electric power system 2 can be maintained in an appropriate range.
  • the PCS 5A of the test target apparatus 7 can charge and discharge 2 MW of power, and the transformer 14 boosts the power of 315 V output from the PCS 5A to 6.6 kV and outputs it.
  • the apparent power 3MVA corresponds to the effective power 2MW of the PCS 5A.
  • PCS9-1 to PCS-4 can charge and discharge 500 kW of power, and transformers 13-1 to 13-4 boost the power of 315 V output from PCS9-1 to PCS-4 to 6.6 kV.
  • the apparent power 750 kVA corresponds to the effective power 500 kW of PCS 9-1 to PCS-4.
  • the test object 7 while maintaining the voltage of the power system 2 in an appropriate range, the test object 7 is tested without charging or discharging the power from the test target device 7 to the power system 2 side. It becomes possible to perform test adjustment and maintenance inspection of the equipment.
  • FIG. 8 is an explanatory diagram of the fourth embodiment.
  • the fourth embodiment differs from the third embodiment in that a switch 17 such as a relay is provided on the PCS 9-1 to 9-4 side of the power system 2.
  • the test object apparatus 7 is configured by the PCSs 9-1 to 9-4 in a state in which the switch 17 is opened and the input / output of power to the power system 2 is completely eliminated. Since the charge / discharge power of the PCS 5A can be compensated, it is possible to perform test adjustment and maintenance inspection of the test target device without charging or discharging the power from the test target device 7 to the power system 2 side more reliably. .
  • FIG. 9 is an explanatory diagram of the fifth embodiment.
  • the charging / discharging devices 3-1 to 3-n operate in a state where the original performance is exhibited.
  • the state before the test target device 7 starts the charge / discharge test is stored at a low temperature such as winter.
  • a low temperature such as winter.
  • the devices 8-1 to 8-n are completely cooled can be considered.
  • the power storage devices 8-1 to 8-n use secondary batteries, the internal resistance value increases in a low-temperature environment, and the input / output performance may not be as good as in normal use. Therefore, when the power storage devices 8-1 to 8-n are cold, the charging operation is performed between the charging / discharging devices 3-1 to 3-n as indicated by arrows A11 and A12 in FIG. By repeating the discharge operation, the power storage devices 8-1 to 8-n can be heated to recover predetermined input / output performance. As a result, even during the winter test, the power storage devices 8-1 to 8-n are heated to recover the input / output performance, and the test target device 7 can be adjusted and maintained.
  • FIG. 10 is an explanatory diagram of the sixth embodiment. Since the charge / discharge pattern of the test target device 7 is known in advance, in the sixth embodiment, the charge / discharge controller 4 calculates the amount of energy that the test target device 7 charges / discharges based on the charge / discharge pattern.
  • the charge / discharge controller 4 calculates the amount of energy charged / discharged by the charge / discharge devices 3-1 to 3 -n from the calculation result, and before the start of the test, the charge / discharge devices 3-1 to 8 -n Calculate the SOC (State Of Charge) to be satisfied.
  • the SOC of the power storage devices 8-1 to 8-n as the power compensation power storage devices is adjusted before the test target device 7 starts the charge / discharge test.
  • charging / discharging is performed in the charging / discharging devices 3-1 to 3-n so as to obtain a desired SOC as indicated by an arrow A2.
  • the charging power of the device under test 7 is balanced (cancelled) with the discharging power of the charging / discharging devices 3-1 to 3-n that are power compensating charging / discharging devices.
  • the discharge power of the test target device 7 is balanced (cancelled) with the charge power of the charge / discharge devices 3-1 to 3-n, which are power compensated charge / discharge devices.
  • the sum of the charging power and the power supplied to the power supply system 2 is balanced (cancelled) with the discharging power of the charging / discharging devices 3-1 to 3-n which are power compensating charging / discharging devices. It is also possible to configure.
  • both the charging / discharging device 5 and the power storage device 6 are used as the test target device 7, but only one of the charging / discharging device 5 and the power storage device 6 is a test target. Is also possible.
  • the charge / discharge controller of the charge / discharge system of the present embodiment includes a control device such as a CPU, a storage device such as a ROM (Read Only Memory) and a RAM, and an external storage device such as an HDD and a CD drive device as necessary.
  • the display device such as a display device and an input device such as a keyboard and a mouse are provided and has a hardware configuration using a normal computer.
  • the program executed by the charge / discharge controller is a file in an installable format or an executable format, and is a computer such as a CD-ROM, a flexible disk (FD), a CD-R, or a DVD (Digital Versatile Disk). It is recorded on a readable recording medium and provided.
  • the program executed by the charge / discharge controller of the present embodiment may be stored on a computer connected to a network such as the Internet and provided by being downloaded via the network. Further, the program may be provided or distributed through a network such as the Internet by being executed by the charge / discharge controller of the present embodiment. Moreover, you may comprise so that the program run with the charge / discharge controller of this embodiment may be provided by incorporating in ROM etc. previously.

Abstract

An embodiment of a charging/discharging system according to the present invention is provided with a power compensation charging/discharging device coupled to a power system via a power line, wherein when a test object device that is the object of a charge test or a discharge test is coupled to the power compensation charging/discharging device via the power line, a charging/discharging controller provides a charge/discharge command to the test object device and the power compensation charging/discharging device such that, on the power line, the charging power of the test object device equalizes with the discharging power of the power compensation charging/discharging device or the discharging power of the test object device equalizes with the charging power of the power compensation charging/discharging device, so no effect is provided to the power system, making it possible to perform a charging test or a discharging test of a maintenance object device or the test object device.

Description

充放電システムCharge / discharge system
 本発明の実施形態は、充放電システムに関する。 Embodiments of the present invention relate to a charge / discharge system.
 自然エネルギーを利用した発電装置の変動電力抑制用途や、負荷平準化を目的としたピークシフト用途で使用する蓄電システムの大規模化(高出力、大容量化)が進んでいる。
 従来の大規模蓄電システムとしては、例えば、公知技術として、風力発電等の出力電力が変動する発電装置と蓄電池システムを組み合わせて電力系統へ出力する電力の変動を抑制していた。
Increasing scale (higher output, larger capacity) of power storage systems used in applications for suppressing variable power in power generation devices that use natural energy and peak shift applications for load leveling are in progress.
As a conventional large-scale power storage system, for example, as a known technique, a variation in power output to an electric power system is suppressed by combining a power generation device such as wind power generation and a storage battery system.
特開2008-236821号公報JP 2008-236821 A
 ところで、既設の蓄電システムにおいては、既に設置されている充放電装置の保守点検を行ったり、システム拡張に伴う拡張機器(充放電装置等)の試験調整を行ったりする必要があるが、これらの場合には、充放電装置の充放電電力が電力系統を介して授受されており、条件によっては電力系統の電圧変化や逆潮流等の問題を引き起こす虞があった。 By the way, in the existing power storage system, it is necessary to perform maintenance / inspection of the already installed charging / discharging device and to perform test adjustment of expansion equipment (charging / discharging device etc.) accompanying system expansion. In some cases, charging / discharging power of the charging / discharging device is transmitted / received via the power system, and depending on conditions, there is a possibility of causing problems such as a voltage change or reverse power flow of the power system.
 本発明は、上記に鑑みてなされたものであって、電力系統に影響を与えること無く、保守点検対象装置あるいは試験対象装置の充電試験あるいは放電試験を行うことが可能な充放電システムを提供することにある。 The present invention has been made in view of the above, and provides a charge / discharge system capable of performing a charge test or a discharge test of a maintenance / inspection target device or a test target device without affecting a power system. There is.
 実施形態の充放電システムは、電力系統と電力線を介して接続される電力補償充放電装置を備え、充放電コントローラは、充電試験あるいは放電試験の対象となる試験対象装置が、電力線を介して電力補償充放電装置に接続された場合に、電力線上で、試験対象装置の充電電力が電力補償充放電装置の放電電力と釣り合うように、あるいは、試験対象装置の放電電力が前記電力補償充放電装置の充電電力と釣り合うように、試験対象装置及び電力補償充放電装置に対して充放電指令を与える。 The charge / discharge system of the embodiment includes a power compensation charge / discharge device connected to a power system via a power line, and the charge / discharge controller is configured so that a test target device to be subjected to a charge test or a discharge test is powered via the power line. When connected to the compensation charge / discharge device, on the power line, the charge power of the test target device is balanced with the discharge power of the power compensation charge / discharge device, or the discharge power of the test target device is the power compensation charge / discharge device. A charge / discharge command is given to the device under test and the power compensated charge / discharge device so as to be balanced with the charged power.
図1は、実施形態の原理説明図である。FIG. 1 is a diagram illustrating the principle of the embodiment. 図2は、第1実施形態の充放電システムの概要構成ブロック図である。FIG. 2 is a schematic configuration block diagram of the charge / discharge system of the first embodiment. 図3は、充放電装置の概要構成ブロック図である。FIG. 3 is a schematic configuration block diagram of the charging / discharging device. 図4は、セルモジュール、CMU及びBMUの詳細構成説明図である。FIG. 4 is a detailed configuration explanatory diagram of the cell module, the CMU, and the BMU. 図5は、充放電コントローラの概要構成ブロック図である。FIG. 5 is a schematic block diagram of the charge / discharge controller. 図6は、第2実施形態の充放電システムの概要構成ブロック図である。FIG. 6 is a schematic block diagram of the charge / discharge system according to the second embodiment. 図7は、第3実施形態の説明図である。FIG. 7 is an explanatory diagram of the third embodiment. 図8は、第4実施形態の説明図である。FIG. 8 is an explanatory diagram of the fourth embodiment. 図9は、第5実施形態の説明図である。FIG. 9 is an explanatory diagram of the fifth embodiment. 図10は、第6実施形態の説明図である。FIG. 10 is an explanatory diagram of the sixth embodiment.
 次に図面を参照して実施形態について詳細に説明する。
 まず、実施形態の詳細な説明に先立ち、実施形態の原理説明を行う。
Next, embodiments will be described in detail with reference to the drawings.
First, prior to detailed description of the embodiment, the principle of the embodiment will be described.
[1]原理説明
 図1は、実施形態の原理説明図である。
 充放電システム1は、電力系統2に電力線PLを介して接続された充放電装置3-1~3-n(n:自然数)と、充放電装置3-1~3-nの制御を行う充放電コントローラ4と、を備えている。
[1] Principle Description FIG. 1 is a diagram illustrating the principle of the embodiment.
The charge / discharge system 1 controls the charge / discharge devices 3-1 to 3-n (n: natural number) connected to the power system 2 via the power line PL and the charge / discharge devices 3-1 to 3-n. And a discharge controller 4.
 ここで、充放電装置3-1~3-nは、通常運用時には、電力系統2からの電力を充電し、電力系統2に対して電力を放電することにより、電力系統2の負荷平準化を目的としたピークシフト用途等に用いられるものである。
 また、電力系統2としては、交流系統あるいは直流系統のいずれであっても適用が可能である。
Here, during normal operation, the charging / discharging devices 3-1 to 3-n charge the power from the power system 2 and discharge the power to the power system 2, thereby leveling the load of the power system 2. It is used for intended peak shift applications.
The power system 2 can be applied to either an AC system or a DC system.
 以下、このような充放電システム1に対し、新たに充放電装置5及び蓄電装置6を追加して、充放電システム1の機能拡張(充放電能力拡充)を行う場合を例として説明する。 Hereinafter, a case where the charge / discharge device 5 and the power storage device 6 are newly added to the charge / discharge system 1 and the function of the charge / discharge system 1 is expanded (charge / discharge capacity expansion) will be described as an example.
 ここで、追加される充放電装置5及び蓄電装置6を接続して試験対象装置7とするものとする。また、蓄電装置6としては、リチウム電池等の二次電池、大容量コンデンサ、フライホイール蓄電装置等を用いることが可能である。 Here, it is assumed that the charging / discharging device 5 and the power storage device 6 to be added are connected to be the test target device 7. As the power storage device 6, a secondary battery such as a lithium battery, a large-capacity capacitor, a flywheel power storage device, or the like can be used.
 上記構成において、充放電装置3-1~3-nは、電力補償充放電装置として機能し、試験対象装置7の充放電電力が電力系統2への影響を与えないようにしている。 In the above configuration, the charge / discharge devices 3-1 to 3-n function as power compensated charge / discharge devices so that the charge / discharge power of the test target device 7 does not affect the power system 2.
 具体的には、試験対象装置7が放電している場合には、充放電装置3-1~3-nは、試験対象装置7からの放電電力を全て充放電装置3-1~3-nへの充電電力として充電を行い、あるいは、全て充放電装置3-1~3-nで消費することにより電力系統2へ放電電力が流れ込まないようにしている。 Specifically, when the test target device 7 is discharged, the charging / discharging devices 3-1 to 3-n use all of the discharge power from the test target device 7 as charge / discharge devices 3-1 to 3-n. Charging is performed as charging power to the power source, or all of the power is consumed by the charging / discharging devices 3-1 to 3-n so that the discharging power does not flow into the power system 2.
 また、試験対象装置7が充電している場合には、充放電装置3-1~3-nは、試験対象装置7への充電電力を全て充放電装置3-1~3-nからの放電電力で充電することにより、電力系統2へ充電電力が流れ込まないようにしている。 Further, when the test target device 7 is charged, the charge / discharge devices 3-1 to 3-n discharge all the charging power to the test target device 7 from the charge / discharge devices 3-1 to 3-n. By charging with electric power, charging power is prevented from flowing into the electric power system 2.
 以下、具体的な動作を説明する。
 まず、試験対象蓄電装置である蓄電装置6を試験対象充放電装置である充放電装置5を介して充電する充電試験を行う場合について説明する。
A specific operation will be described below.
First, the case where the charge test which charges the electrical storage apparatus 6 which is a test object electrical storage apparatus via the charging / discharging apparatus 5 which is a test object charging / discharging apparatus is demonstrated.
 充放電コントローラ4は、試験対象装置7の充電電力量に対応する試験対象充放電指令値信号C1を充放電装置5に出力する。 The charge / discharge controller 4 outputs to the charge / discharge device 5 a test target charge / discharge command value signal C1 corresponding to the charge power amount of the test target device 7.
 さらに充放電コントローラ4は、充放電装置3-1~3-nの放電能力に応じて、試験対象充放電指令値信号C1に対応する充電電力量に等しい、放電電力量を分配するように電力補償充放電指令値信号CS-1~CS―nを充放電装置3-1~3-nに出力する。 Further, the charge / discharge controller 4 distributes the electric power to be equal to the electric charge amount corresponding to the test target charge / discharge command value signal C1 in accordance with the discharge capacity of the charge / discharge devices 3-1 to 3-n. Compensation charge / discharge command value signals CS-1 to CS-n are output to the charge / discharge devices 3-1 to 3-n.
 この結果、充放電装置3-1~3-nは、入力された電力補償充放電指令値信号CS-1~CS―nに基づく放電電力でそれぞれ放電を行う。
 一方、試験対象装置7の充放電装置5は、試験対象充放電指令値信号C1に基づく充電電力で蓄電装置6を充電する。
As a result, the charging / discharging devices 3-1 to 3-n perform discharging with the discharging power based on the input power compensated charging / discharging command value signals CS-1 to CS-n, respectively.
On the other hand, the charging / discharging device 5 of the test target device 7 charges the power storage device 6 with charging power based on the test target charge / discharge command value signal C1.
 このとき、試験対象充放電指令値信号C1に従って試験対象装置7が充電する際に、充放電装置3-1~3-nが試験対象装置7の電力リプルを吸収するよう放電動作を行うことにより、電力系統2に出力する電力を一定またはゼロとすることができ、電力系統2からの条件で制約をうけることなく試験対象装置7の試験調整や保守点検が可能となる。 At this time, when the test target device 7 is charged according to the test target charge / discharge command value signal C1, the charge / discharge devices 3-1 to 3-n perform a discharging operation so as to absorb the power ripple of the test target device 7. The electric power output to the electric power system 2 can be constant or zero, and the test adjustment and maintenance inspection of the test target apparatus 7 can be performed without being restricted by the conditions from the electric power system 2.
 次に、試験対象蓄電装置である蓄電装置6が試験対象充放電装置である充放電装置5を介して放電する放電試験を行う場合について説明する。
 まず、充放電コントローラ4は、試験対象装置7の放電電力量に対応する試験対象充放電指令値信号C1を充放電装置5に出力する。
Next, the case where the electrical storage apparatus 6 which is a test object electrical storage apparatus performs the discharge test which discharges via the charging / discharging apparatus 5 which is a test object charge / discharge apparatus is demonstrated.
First, the charge / discharge controller 4 outputs a test target charge / discharge command value signal C <b> 1 corresponding to the discharge power amount of the test target device 7 to the charge / discharge device 5.
 さらに充放電コントローラ4は、充放電装置3-1~3-nの充電能力に応じて、試験対象充放電指令値信号C1に対応する放電電力量に等しい、充電電力量を分配するように電力補償充放電指令値信号CS-1~CS―nを充放電装置3-1~3-nに出力する。 Furthermore, the charge / discharge controller 4 distributes the power to be equal to the discharge power corresponding to the test target charge / discharge command value signal C1 according to the charge capability of the charge / discharge devices 3-1 to 3-n. Compensation charge / discharge command value signals CS-1 to CS-n are output to the charge / discharge devices 3-1 to 3-n.
 この結果、試験対象装置7の充放電装置5は、試験対象充放電指令値信号C1に基づく放電電力で蓄電装置6を放電させる。
 一方、充放電装置3-1~3-nは、入力された電力補償充放電指令値信号CS-1~CS―nに基づく充電電力量でそれぞれ充電を行う。
As a result, the charge / discharge device 5 of the test target device 7 discharges the power storage device 6 with the discharge power based on the test target charge / discharge command value signal C1.
On the other hand, the charging / discharging devices 3-1 to 3-n perform charging with the charging power amount based on the input power compensated charging / discharging command value signals CS-1 to CS-n, respectively.
 このとき、試験対象充放電指令値信号C1に従って試験対象装置7が放電する際に、充放電装置3-1~3-nが試験対象装置7の電力リプルを吸収するよう充電動作を行うことにより、電力系統2に出力する電力を一定またはゼロとすることができ、電力系統2からの条件で制約をうけることなく試験対象装置7の試験調整や保守点検が可能となる。 At this time, when the test target device 7 discharges according to the test target charge / discharge command value signal C1, the charge / discharge devices 3-1 to 3-n perform a charging operation so as to absorb the power ripple of the test target device 7. The electric power output to the electric power system 2 can be constant or zero, and the test adjustment and maintenance inspection of the test target apparatus 7 can be performed without being restricted by the conditions from the electric power system 2.
 次に実施形態について説明する。 Next, an embodiment will be described.
[2]第1実施形態
 図2は、第1実施形態の充放電システムの概要構成ブロック図である。
 図2において、図1と同様の部分には、同一の符号を付すものとする。
 第1実施形態の充放電システム1Aは、電力系統2に接続された充放電装置3-1~3-n(n:自然数)と、充放電装置3-1~3-nの制御を行う充放電コントローラ4と、試験対象装置7と、を備えている。
[2] First Embodiment FIG. 2 is a schematic configuration block diagram of a charge / discharge system according to a first embodiment.
In FIG. 2, the same parts as those in FIG.
The charging / discharging system 1A of the first embodiment is a charging / discharging device 3-1 to 3-n (n: natural number) connected to the electric power system 2 and a charging / discharging device 3-1 to 3-n for controlling the charging / discharging devices 3-1 to 3-n. A discharge controller 4 and a device under test 7 are provided.
 上記構成において、試験対象装置7が放電する際には、電力補償充放電装置として機能する充放電装置3-1~3-nが充電することでエネルギー(電力)を蓄積し、試験対象装置7が充電する際には電力補償充放電装置として機能する充放電装置3-1~3-nが放電することでエネルギー(電力)を放出する。 In the above configuration, when the test target device 7 is discharged, the charge / discharge devices 3-1 to 3-n functioning as the power compensation charge / discharge devices are charged to accumulate energy (electric power). When charging, the charging / discharging devices 3-1 to 3-n functioning as the power compensation charging / discharging devices discharge to release energy (electric power).
 したがって、電力補償充放電装置として機能する充放電装置3-1~3-nのエネルギー容量は、試験対象装置7のエネルギー容量よりも大きいことが望ましい。しかしながら、もし電力補償充放電装置として機能する充放電装置3-1~3-nのエネルギー容量が試験対象蓄電装置2のエネルギー容量よりも小さい場合には、不足分は電力系統2からエネルギーを授受するように構成すればよい。 Therefore, it is desirable that the energy capacity of the charge / discharge devices 3-1 to 3-n functioning as the power compensation charge / discharge device is larger than the energy capacity of the test target device 7. However, if the energy capacity of the charging / discharging devices 3-1 to 3-n functioning as the power compensation charging / discharging device is smaller than the energy capacity of the power storage device 2 to be tested, the shortage is transferred from the power system 2. What is necessary is just to comprise so.
 これにより、試験対象装置7の充放電に伴う電力系統2への電力変動を低減することができ、電力系統からの条件で制約を減らして試験対象装置の試験調整や保守点検を行うことが可能となる。 As a result, it is possible to reduce power fluctuations to the power system 2 due to charging / discharging of the test target device 7, and it is possible to perform test adjustment and maintenance inspection of the test target device by reducing restrictions under conditions from the power system. It becomes.
 次に充放電装置3-1~3-nについて説明する。
 充放電装置3-1~3-nは、同様の構成をしているので、充放電装置3-1について説明する。
 図3は、充放電装置の概要構成ブロック図である。
 以下の説明においては、電力系統2が交流電力系統であるものとして説明する。
 充放電装置3-1は、大別すると、電力を蓄える蓄電池装置8-1と、蓄電池装置8-1から供給された直流電力を所望の電力品質を有する交流電力に変換して電力系統2あるいは試験対象装置7に供給し、あるいは、電力系統2あるいは試験対象装置7から供給された交流電力を直流電力に変換して蓄電装置8-1に供給する電力調和装置(PCS:Power Conditioning System)9-1と、を備えている。
Next, the charge / discharge devices 3-1 to 3-n will be described.
Since the charge / discharge devices 3-1 to 3-n have the same configuration, the charge / discharge device 3-1 will be described.
FIG. 3 is a schematic configuration block diagram of the charging / discharging device.
In the following description, the power system 2 will be described as an AC power system.
The charge / discharge device 3-1 is roughly classified into a storage battery device 8-1 for storing electric power, and direct current power supplied from the storage battery device 8-1 to AC power having a desired power quality to convert the power system 2 or A power conditioning system (PCS: Power Conditioning System) 9 that is supplied to the test target device 7 or that converts AC power supplied from the power system 2 or the test target device 7 into DC power and supplies it to the power storage device 8-1. -1.
 蓄電池装置8-1は、大別すると、複数の電池盤21-1~21-N(Nは自然数)と、電池盤21-1~21-Nが接続された電池端子盤22と、を備えている。
 電池盤21-1~21-Nは、互いに並列に接続された複数の電池ユニット23-1~23-M(Mは自然数)と、ゲートウェイ装置24と、後述のBMU(Battery Management Unit:電池管理装置)及びCMU(Cell Monitoring Unit:セル監視装置)に動作用の直流電源を供給する直流電源装置25と、を備えている。
The storage battery device 8-1 is roughly divided into a plurality of battery boards 21-1 to 21-N (N is a natural number) and a battery terminal board 22 to which the battery boards 21-1 to 21-N are connected. ing.
The battery boards 21-1 to 21-N include a plurality of battery units 23-1 to 23-M (M is a natural number) connected in parallel to each other, a gateway device 24, and a BMU (Battery Management Unit: battery management described later). Device) and a DC power supply device 25 for supplying a DC power supply for operation to a CMU (Cell Monitoring Unit).
 ここで、電池ユニットの構成について説明する。
 電池ユニット23-1~23-Mは、それぞれ、高電位側電源供給ライン(高電位側電源供給線)LH及び低電位側電源供給ライン(低電位側電源供給線)LLを介して、出力電源ライン(出力電源線;母線)LHO、LLOに接続され、主回路である電力変換装置12に電力を供給している。
Here, the configuration of the battery unit will be described.
The battery units 23-1 to 23-M are connected to an output power supply via a high potential power supply line (high potential power supply line) LH and a low potential power supply line (low potential power supply line) LL, respectively. Lines (output power supply lines; bus lines) LHO and LLO are connected to supply power to the power converter 12 that is the main circuit.
 電池ユニット23-1~23-Mは、同一構成であるので、電池ユニット23-1を例として説明する。
 電池ユニット23-1は、大別すると、複数(図1では、24個)のセルモジュール31-1~31-24と、セルモジュール31-1~31-24にそれぞれ設けられた複数(図1では、24個)のCMU32-1~32-24と、セルモジュール31-12とセルモジュール31-13との間に設けられたサービスディスコネクト33と、電流センサ34と、コンタクタ35と、を備え、複数のセルモジュール31-1~31-24、サービスディスコネクト33、電流センサ34及びコンタクタ35は、直列に接続されている。
Since the battery units 23-1 to 23-M have the same configuration, the battery unit 23-1 will be described as an example.
The battery unit 23-1 is roughly divided into a plurality (24 in FIG. 1) of cell modules 31-1 to 31-24, and a plurality of (see FIG. 1) provided in each of the cell modules 31-1 to 31-24. 24) CMU 32-1 to 32-24, a service disconnect 33 provided between the cell module 31-12 and the cell module 31-13, a current sensor 34, and a contactor 35. The cell modules 31-1 to 31-24, the service disconnect 33, the current sensor 34, and the contactor 35 are connected in series.
 ここで、セルモジュール31-1~31-24は、電池セルを複数、直並列に接続されて組電池を構成している。そして、複数の直列接続されたセルモジュール31-1~31-24で組電池群を構成している。 Here, the cell modules 31-1 to 31-24 form a battery pack by connecting a plurality of battery cells in series and parallel. A plurality of cell modules 31-1 to 31-24 connected in series constitute an assembled battery group.
 さらに電池ユニット23-1は、BMU36を備え、各CMU32-1~32-24の通信ライン、電流センサ34の出力ラインは、BMU36に接続されている。
 BMU36は、ゲートウェイ装置24の制御下で、電池ユニット23-1全体を制御し、各CMU32-1~32-24との通信結果(後述する電圧データ及び温度データ)及び電流センサ34の検出結果に基づいてコンタクタ35の開閉制御を行う。
Further, the battery unit 23-1 includes a BMU 36, and the communication lines of the CMUs 32-1 to 32-24 and the output line of the current sensor 34 are connected to the BMU 36.
The BMU 36 controls the entire battery unit 23-1 under the control of the gateway device 24, and determines the communication results (voltage data and temperature data described later) and the detection results of the current sensor 34 with the CMUs 32-1 to 32-24. Based on this, the contactor 35 is controlled to open and close.
 次に電池端子盤の構成について説明する。
 電池端子盤22は、電池盤21-1~21-Nに対応させて設けられた複数の盤遮断器41-1~41-Nと、蓄電池装置11全体を制御するマイクロコンピュータとして構成されたマスタ(Master)装置42と、を備えている。
Next, the configuration of the battery terminal board will be described.
The battery terminal board 22 includes a plurality of panel breakers 41-1 to 41-N provided corresponding to the battery boards 21-1 to 21-N and a master configured as a microcomputer that controls the entire storage battery device 11. (Master) device 42.
 マスタ装置42には、PCS9-1との間に、PCS9-1のUPS(Uninterruptible Power System)12Aを介して供給される制御電源線51と、イーサネット(登録商標)として構成され、通信バスとして機能してBMU36がPCS9-1との間で直接制御データのやりとりを行う制御通信線52と、制御通信線52に電気的に接続され、通信バスとして機能して他のBMU36との間で直接データのやりとりを行う通信線53と、が接続されている。 The master device 42 is configured as a control power line 51 and an Ethernet (registered trademark) supplied via the UPS (Uninterruptible Power System) 12A of the PCS 9-1 between the PCS 9-1 and functions as a communication bus. Then, the BMU 36 exchanges control data directly with the PCS 9-1 and is electrically connected to the control communication line 52 and functions as a communication bus to directly transmit data to other BMUs 36. Are connected to a communication line 53 for performing exchanges.
 ここで、セルモジュール31-1~31-24、CMU32-1~32-24およびBMU36の詳細構成について説明する。 Here, detailed configurations of the cell modules 31-1 to 31-24, the CMUs 32-1 to 32-24, and the BMU 36 will be described.
 図4は、セルモジュール、CMU及びBMUの詳細構成説明図である。
 セルモジュール31-1~31-24は、それぞれ、直列接続された複数(図4では、10個)の電池セル61-1~61-10を備えている。
FIG. 4 is a detailed configuration explanatory diagram of the cell module, the CMU, and the BMU.
Each of the cell modules 31-1 to 31-24 includes a plurality (10 in FIG. 4) of battery cells 61-1 to 61-10 connected in series.
 CMU32-1~32-24は、対応するセルモジュール31-1~31-24を構成している電池セルの電圧及び所定箇所の温度を測定するための電圧温度計測IC(Analog Front End IC:AFE-IC)62と、それぞれが対応するCMU32-1~32-24全体の制御を行うMPU63と、BMU36との間でCAN通信を行うためのCAN(Controller Area Network)規格に則った通信コントローラ64と、セル毎の電圧に相当する電圧データ及び温度データを格納するメモリ65と、を備えている。 CMUs 32-1 to 32-24 are voltage temperature measurement ICs (Analog Front End IC: AFE) for measuring the voltage of the battery cells constituting the corresponding cell modules 31-1 to 31-24 and the temperature of a predetermined location. -IC) 62, an MPU 63 that controls the entire CMU 32-1 to 32-24, and a communication controller 64 that conforms to the CAN (Controller Area Network) standard for performing CAN communication with the BMU 36, And a memory 65 for storing voltage data and temperature data corresponding to the voltage for each cell.
 以下の説明において、セルモジュール31-1~31-24のそれぞれと、対応するCMU32-1~32-24と、を合わせた構成については、電池モジュール37-1~37-24と呼ぶものとする。例えば、セルモジュール31-1と対応するCMU32-1を合わせた構成を電池モジュール37-1と呼ぶものとする。 In the following description, the configuration in which each of the cell modules 31-1 to 31-24 and the corresponding CMUs 32-1 to 32-24 are combined will be referred to as battery modules 37-1 to 37-24. . For example, a configuration in which the cell module 31-1 and the corresponding CMU 32-1 are combined is referred to as a battery module 37-1.
 また、BMU36は、BMU36全体を制御するMPU71と、CMU32-1~32-24との間でCAN通信を行うためのCAN規格に則った通信コントローラ72と、CMU32-1~32-24から送信された電圧データ及び温度データを格納するメモリ73と、を備えている。 The BMU 36 is transmitted from the MPU 71 that controls the entire BMU 36, the communication controller 72 conforming to the CAN standard for performing CAN communication between the CMUs 32-1 to 32-24, and the CMUs 32-1 to 32-24. And a memory 73 for storing voltage data and temperature data.
 次に充放電コントローラ4について説明する。
 図5は、充放電コントローラの概要構成ブロック図である。
Next, the charge / discharge controller 4 will be described.
FIG. 5 is a schematic block diagram of the charge / discharge controller.
 充放電コントローラ4は、図5に示すように、試験対象充放電指令値信号C1を出力する充放電指令部4Aと、試験対象充放電指令値信号C1の符号を反転して出力するためのゲイン制御部4Bと、符号が反転された試験対象充放電指令値信号C1に基づいて、電力補償充放電指令値信号CS-1~CS-nを生成する分配部4Cと、を備えている。 As shown in FIG. 5, the charge / discharge controller 4 has a charge / discharge command unit 4A for outputting the test target charge / discharge command value signal C1 and a gain for inverting and outputting the sign of the test target charge / discharge command value signal C1. A control unit 4B and a distribution unit 4C that generates the power compensation charge / discharge command value signals CS-1 to CS-n based on the test target charge / discharge command value signal C1 whose sign is inverted are provided.
 ここで、ゲイン制御部4Bが試験対象充放電指令値信号C1の符号を反転して出力するのは、試験対象充放電指令値C1が放電(例えば、1kW放電)であれば、符号が反転された試験対象充放電指令値C1は充電(例えば、1kW充電)に相当する信号とするためである。 Here, the gain controller 4B inverts and outputs the sign of the test target charge / discharge command value signal C1 if the test target charge / discharge command value C1 is discharged (for example, 1 kW discharge). This is because the test target charge / discharge command value C1 is a signal corresponding to charge (for example, 1 kW charge).
 この結果、分配部4Cは、試験対象装置7が充電試験を行う場合には、放電量を決定するための電力補償充放電指令値信号CS-1~CS-nを出力し、試験対象装置7が放電試験を行う場合には、充電量を決定するための電力補償充放電指令値信号CS-1~CS-nを出力することとなる。 As a result, when the test target device 7 performs the charge test, the distribution unit 4C outputs the power compensated charge / discharge command value signals CS-1 to CS-n for determining the discharge amount, and the test target device 7 When performing a discharge test, power compensated charge / discharge command value signals CS-1 to CS-n for determining the charge amount are output.
 また、試験対象装置7は、電力を蓄える試験対象蓄電池装置である蓄電装置6と、蓄電装置6から供給された直流電力を所望の電力品質を有する交流電力に変換して供給し、あるいは、供給された交流電力を直流電力に変換して蓄電装置6に供給する電力調和装置(PCS:Power Conditioning System)5Aと、を備えている。 Further, the test target device 7 supplies the power storage device 6 that is a test target storage battery device that stores power, and converts the DC power supplied from the power storage device 6 into AC power having a desired power quality, or supplies the power. A power conditioning system (PCS) 5A that converts the AC power that has been converted into DC power and supplies it to the power storage device 6.
 次に第1実施形態の主要動作を説明する。
 まず、試験対象蓄電装置である蓄電装置6を試験対象充放電装置であるPCS5を介して充電する充電試験を行う場合について説明する。
 充放電コントローラ4は、試験対象装置7の充電電力量に対応する試験対象充放電指令値信号C1をPCS5Aに出力する。
Next, main operations of the first embodiment will be described.
First, the case where the charge test which charges the electrical storage apparatus 6 which is a test object electrical storage apparatus via PCS5 which is a test object charging / discharging apparatus is demonstrated.
The charge / discharge controller 4 outputs a test target charge / discharge command value signal C1 corresponding to the charge power amount of the test target device 7 to the PCS 5A.
 さらに充放電コントローラ4は、充放電装置3-1~3-nの放電能力に応じて、試験対象充放電指令値信号C1に対応する充電電力量に等しい、放電電力量を分配するように電力補償充放電指令値信号CS-1~CS―nを充放電装置3-1~3-nのPCS9-1~PCS-nに出力する。 Further, the charge / discharge controller 4 distributes the electric power to be equal to the electric charge amount corresponding to the test target charge / discharge command value signal C1 in accordance with the discharge capacity of the charge / discharge devices 3-1 to 3-n. Compensation charge / discharge command value signals CS-1 to CS-n are output to PCS9-1 to PCS-n of charge / discharge devices 3-1 to 3-n.
 この結果、充放電装置3-1~3-nのPCS9-1~PCS9-nは、入力された電力補償充放電指令値信号CS-1~CS―nに基づく放電電力となるように、蓄電装置8-1~8-nの放電動作をそれぞれ行わせる。 As a result, the PCSs 9-1 to PCS 9-n of the charging / discharging devices 3-1 to 3-n store the power so that the discharge power is based on the input power compensation charging / discharging command value signals CS-1 to CS-n. The discharge operations of the devices 8-1 to 8-n are performed, respectively.
 一方、試験対象装置7のPCS5Aは、試験対象充放電指令値信号C1に基づく充電電力で蓄電装置6を充電する。 Meanwhile, the PCS 5A of the test target device 7 charges the power storage device 6 with charging power based on the test target charge / discharge command value signal C1.
 このとき、試験対象充放電指令値信号C1に従って試験対象装置7が充電する際に、電力補償充放電指令値信号CS-1~CS-nに従って、充放電装置3-1~3-nのPCS9-1~PCS9-nが試験対象装置7の電力リプルを吸収するように蓄電装置8-1~8-nの放電動作を行わせることにより、電力系統2に出力する電力を一定またはゼロとすることができ、電力系統2からの条件で制約をうけることなく試験対象装置7の試験調整や保守点検が可能となる。 At this time, when the test target device 7 charges according to the test target charge / discharge command value signal C1, the PCS 9 of the charge / discharge devices 3-1 to 3-n according to the power compensation charge / discharge command value signals CS-1 to CS-n. -1 to PCS 9-n perform a discharging operation of the power storage devices 8-1 to 8-n so that the power ripple of the device under test 7 is absorbed, thereby making the power output to the power system 2 constant or zero Therefore, it is possible to perform test adjustment and maintenance inspection of the test target device 7 without being restricted by the conditions from the power system 2.
 次に、試験対象蓄電装置である蓄電装置6が試験対象充放電装置であるPCS5Aを介して放電する放電試験を行う場合について説明する。
 まず、充放電コントローラ4は、試験対象装置7の放電電力量に対応する試験対象充放電指令値信号C1をPCS5Aに出力する。
Next, a description will be given of a case where a power storage device 6 that is a test target power storage device performs a discharge test in which discharge is performed via the PCS 5A that is a test target charge / discharge device.
First, the charge / discharge controller 4 outputs a test target charge / discharge command value signal C1 corresponding to the discharge power amount of the test target device 7 to the PCS 5A.
 さらに充放電コントローラ4は、充放電装置3-1~3-nの充電能力に応じて、試験対象充放電指令値信号C1に対応する放電電力量に等しい、充電電力量を分配するように電力補償充放電指令値信号CS-1~CS―nを充放電装置3-1~3-nのPCS9-1~PCS-nに出力する。 Furthermore, the charge / discharge controller 4 distributes the power to be equal to the discharge power corresponding to the test target charge / discharge command value signal C1 according to the charge capability of the charge / discharge devices 3-1 to 3-n. Compensation charge / discharge command value signals CS-1 to CS-n are output to PCS9-1 to PCS-n of charge / discharge devices 3-1 to 3-n.
 この結果、試験対象装置7のPCS5Aは、試験対象充放電指令値信号C1に基づく放電電力で蓄電装置6を放電させる。
 一方、充放電装置3-1~3-nのPCS9-1~PCS-nは、入力された電力補償充放電指令値信号CS-1~CS―nに基づく充電電力量となるように、蓄電装置8-1~8-nの充電動作をそれぞれ行わせる。
As a result, the PCS 5A of the test target device 7 discharges the power storage device 6 with the discharge power based on the test target charge / discharge command value signal C1.
On the other hand, the PCSs 9-1 to PCS-n of the charging / discharging devices 3-1 to 3-n store the electric power so that the charging electric energy is based on the input power compensation charging / discharging command value signals CS-1 to CS-n. The charging operations of the devices 8-1 to 8-n are performed.
 このとき、試験対象充放電指令値信号C1に従って試験対象装置7が放電する際に、充放電装置3-1~3-nのPCS9-1~9-nが試験対象装置7の電力リプルを吸収するように蓄電装置8-1~8-nの充電動作を行うことにより、電力系統2に出力する電力を一定またはゼロとすることができ、電力系統2からの条件で制約をうけることなく試験対象装置7の試験調整や保守点検が可能となる。 At this time, when the test target device 7 discharges according to the test target charge / discharge command value signal C1, the PCSs 9-1 to 9-n of the charge / discharge devices 3-1 to 3-n absorb the power ripple of the test target device 7. Thus, by performing the charging operation of the power storage devices 8-1 to 8-n, the power output to the power system 2 can be constant or zero, and the test is performed without being restricted by the conditions from the power system 2. Test adjustment and maintenance inspection of the target device 7 are possible.
[3]第2実施形態
 図6は、第2実施形態の充放電システムの概要構成ブロック図である。
 図6において、図2と同様の部分には、同一の符号を付すものとする。
 第2実施形態の充放電システム1Bが、第1実施形態の充放電システム1Aと異なる点は、蓄電装置8-1~8-nに代えて、受電用電力系統10からの交流電力を整流する整流器11-1~11-n及びPCS9-1~PCS-nを介して入力された試験対象装置7の放電電力を消費するための放電装置12-1~12-nと、を備えた点である。
[3] Second Embodiment FIG. 6 is a schematic configuration block diagram of a charge / discharge system according to a second embodiment.
In FIG. 6, the same parts as those in FIG. 2 are denoted by the same reference numerals.
The charge / discharge system 1B of the second embodiment differs from the charge / discharge system 1A of the first embodiment in that the AC power from the power receiving power system 10 is rectified instead of the power storage devices 8-1 to 8-n. Discharge devices 12-1 to 12-n for consuming the discharge power of the device under test 7 input via the rectifiers 11-1 to 11-n and PCS9-1 to PCS-n. is there.
 次に第2実施形態の主要動作を説明する。
 まず、試験対象蓄電装置である蓄電装置6を試験対象充放電装置であるPCS5Aを介して充電する充電試験を行う場合について説明する。
Next, main operations of the second embodiment will be described.
First, the case where the charge test which charges the electrical storage apparatus 6 which is a test object electrical storage apparatus via PCS5A which is a test object charging / discharging apparatus is demonstrated.
 充放電コントローラ4は、試験対象装置7の充電電力量に対応する試験対象充放電指令値信号C1をPCS5Aに出力する。
 さらに充放電コントローラ4は、充放電装置3-1~3-nの放電能力に応じて、試験対象充放電指令値信号C1に対応する充電電力量に等しい、放電電力量を分配するように電力補償充放電指令値信号CS-1~CS―nを充放電装置3-1~3-nのPCS9-1~PCS-nに出力する。
The charge / discharge controller 4 outputs a test target charge / discharge command value signal C1 corresponding to the charge power amount of the test target device 7 to the PCS 5A.
Further, the charge / discharge controller 4 distributes the electric power to be equal to the electric charge amount corresponding to the test target charge / discharge command value signal C1 in accordance with the discharge capacity of the charge / discharge devices 3-1 to 3-n. Compensation charge / discharge command value signals CS-1 to CS-n are output to PCS9-1 to PCS-n of charge / discharge devices 3-1 to 3-n.
 この結果、充放電装置3-1~3-nのPCS9-1~PCS-nは、入力された電力補償充放電指令値信号CS-1~CS―nに基づく放電電力となるように、受電用電力系統10から供給された交流電力を整流器11-1~11-nにより整流された直流電力を交流電力に変換して試験対象装置7に対して放電電力として供給する放電動作をそれぞれ行わせる。 As a result, the PCSs 9-1 to PCS-n of the charging / discharging devices 3-1 to 3-n receive power so that the discharging power is based on the input power compensated charging / discharging command value signals CS-1 to CS-n. The DC power rectified by the rectifiers 11-1 to 11-n from the AC power supplied from the power system 10 is converted to AC power, and the discharge operation for supplying the test target device 7 as discharge power is performed. .
 一方、試験対象装置7のPCS5Aは、試験対象充放電指令値信号C1に基づく充電電力で蓄電装置6を充電する。 Meanwhile, the PCS 5A of the test target device 7 charges the power storage device 6 with charging power based on the test target charge / discharge command value signal C1.
 このときにおいても、試験対象充放電指令値信号C1に従って試験対象装置7が充電する際に、電力補償充放電指令値信号CS-1~CS-nに従って、充放電装置3-1~3-nのPCS9-1~9-nが試験対象装置7の電力リプルを吸収するように蓄電装置8-1~8-nの放電動作を行わせることにより、電力系統2に出力する電力を一定またはゼロとすることができ、電力系統2からの条件で制約をうけることなく試験対象装置7の試験調整や保守点検が可能となる。 Also at this time, when the test target device 7 charges according to the test target charge / discharge command value signal C1, the charge / discharge devices 3-1 to 3-n according to the power compensation charge / discharge command value signals CS-1 to CS-n. By causing the power storage devices 8-1 to 8-n to discharge so that the PCSs 9-1 to 9-n absorb the power ripple of the test target device 7, the power output to the power system 2 is constant or zero. Thus, it is possible to perform test adjustment and maintenance inspection of the test target device 7 without being restricted by the conditions from the power system 2.
 次に、試験対象蓄電装置である蓄電装置6が試験対象充放電装置であるPCS5Aを介して放電する放電試験を行う場合について説明する。
 まず、充放電コントローラ4は、試験対象装置7の放電電力量に対応する試験対象充放電指令値信号C1をPCS5Aに出力する。
Next, a description will be given of a case where a power storage device 6 that is a test target power storage device performs a discharge test in which discharge is performed via the PCS 5A that is a test target charge / discharge device.
First, the charge / discharge controller 4 outputs a test target charge / discharge command value signal C1 corresponding to the discharge power amount of the test target device 7 to the PCS 5A.
 さらに充放電コントローラ4は、充放電装置3-1~3-nの充電能力に応じて、試験対象充放電指令値信号C1に対応する放電電力量に等しい、充電電力量を分配するように電力補償充放電指令値信号CS-1~CS―nを充放電装置3-1~3-nのPCS9-1~PCS-nに出力する。 Furthermore, the charge / discharge controller 4 distributes the power to be equal to the discharge power corresponding to the test target charge / discharge command value signal C1 according to the charge capability of the charge / discharge devices 3-1 to 3-n. Compensation charge / discharge command value signals CS-1 to CS-n are output to PCS9-1 to PCS-n of charge / discharge devices 3-1 to 3-n.
 この結果、試験対象装置7のPCS5Aは、試験対象充放電指令値信号C1に基づく放電電力で蓄電装置6を放電させる。
 一方、充放電装置3-1~3-nのPCS9-1~PCS-nは、入力された電力補償充放電指令値信号CS-1~CS―nに基づく電力量となるように、入力された試験対象装置7の放電電力を放電装置12-1~12-nを介して消費する。
As a result, the PCS 5A of the test target device 7 discharges the power storage device 6 with the discharge power based on the test target charge / discharge command value signal C1.
On the other hand, the PCSs 9-1 to PCS-n of the charging / discharging devices 3-1 to 3-n are input so as to have electric power amounts based on the input power compensation charging / discharging command value signals CS-1 to CS-n. The discharge power of the device under test 7 is consumed via the discharge devices 12-1 to 12-n.
 このとき、試験対象充放電指令値信号C1に従って試験対象装置7が放電する際に、充放電装置3-1~3-nのPCS9-1~9-nが試験対象装置7の電力リプルを吸収するように放電装置12-1~12-nへ放電電力を供給して消費させることにより、電力系統2に出力する電力を一定またはゼロとすることができ、電力系統2からの条件で制約をうけることなく試験対象装置7の試験調整や保守点検が可能となる。 At this time, when the test target device 7 discharges according to the test target charge / discharge command value signal C1, the PCSs 9-1 to 9-n of the charge / discharge devices 3-1 to 3-n absorb the power ripple of the test target device 7. In this way, by supplying the discharge power to the discharge devices 12-1 to 12-n and consuming them, the power output to the power system 2 can be made constant or zero. Test adjustment and maintenance inspection of the device under test 7 can be performed without receiving it.
 以上の説明のように、本第2実施形態によれば、高価なエネルギー蓄積装置を使用することなく、試験対象蓄電装置7の充放電に伴う電力系統2への電力変動を低減することができ、電力系統からの条件で制約を減らして試験対象装置の試験調整や保守点検を行うことが可能となる。 As described above, according to the second embodiment, it is possible to reduce power fluctuations to the power system 2 due to charging / discharging of the test target power storage device 7 without using an expensive energy storage device. This makes it possible to reduce the restrictions depending on the conditions from the power system, and to perform test adjustment and maintenance inspection of the test target device.
[4]第3実施形態
 次に第3実施形態について説明する。
 上記各実施形態については、充放電装置3-1~3-nのPCS9-1~9-nの制御方式について詳細に述べていなかったが、本第3実施形態は、PCSPCS9-1~9-nの制御方式として、電圧制御方式と電力制御方式とを混在させた場合の実施形態である。
[4] Third Embodiment Next, a third embodiment will be described.
In each of the above embodiments, the control system of the PCSs 9-1 to 9-n of the charge / discharge devices 3-1 to 3-n has not been described in detail. However, the third embodiment is not limited to the PCSPCSs 9-1 to 9- In this embodiment, the voltage control method and the power control method are mixed as the control method of n.
 図7は、第3実施形態の説明図である。
 図7においては、理解の容易のため、PCSとして、PCS9-1~PCS9-4の4台を備え、そのうちの1台であるPCS9-1が電圧制御方式(=電圧制御群)、他の3台であるPCS9-2~PCS9-4が電力制御方式(=電力制御群)である場合について図示している。
FIG. 7 is an explanatory diagram of the third embodiment.
In FIG. 7, for ease of understanding, four PCSs 9-1 to PCS9-4 are provided as PCSs, one of which is the PCS 9-1, the voltage control method (= voltage control group), and the other three. The case where the PCS 9-2 to PCS 9-4, which are the tables, is a power control method (= power control group) is illustrated.
 図7に示すように、PCS9-1~PCS-4と電力系統2との間には、それぞれ対応するトランス13-1~13-4が設けられ、PCS5Aと電力系統2との間には、トランス14が設けられている。 As shown in FIG. 7, corresponding transformers 13-1 to 13-4 are respectively provided between the PCS 9-1 to PCS-4 and the power system 2, and between the PCS 5A and the power system 2, A transformer 14 is provided.
 電力補償充放電装置を複数台(図7では、4台)で構成したときに、PCSを電圧制御群と電力制御群とに組分けし、試験パターンTPに従って、充放電コントローラ4は、試験対象充放電指令値信号C1と、電力制御群を構成するPCS9-2~PCS9-4に対し、電力補償充放電指令値信号CS-2(=PB)、CS-3(=PC)、CS-4(=PD)を出力し、電力補償充放電指令値信号C1(=P0)をPCS5Aに送信する。 When the power compensation charging / discharging device is composed of a plurality of units (four in FIG. 7), the PCS is divided into a voltage control group and a power control group, and the charge / discharge controller 4 is tested according to the test pattern TP. For charge / discharge command value signal C1 and PCS 9-2 to PCS 9-4 constituting the power control group, power compensated charge / discharge command value signals CS-2 (= PB), CS-3 (= PC), CS-4 (= PD) is output, and the power compensation charge / discharge command value signal C1 (= P0) is transmitted to the PCS 5A.
 ところで、電圧制御群を構成するPCS9-1は、電力系統2の電圧が適正な範囲に維持されていない場合にのみ、電力の充放電を行うため、電力系統2の電圧が適正範囲に維持されていれば電力の充放電が発生することはない。 By the way, since the PCS 9-1 constituting the voltage control group charges and discharges power only when the voltage of the power system 2 is not maintained in the proper range, the voltage of the power system 2 is maintained in the proper range. If so, charging / discharging of power will not occur.
 しかしながら、電力系統2の電圧が適正範囲から外れると、電圧制御群を構成するPCS9-1は、電力系統2の電圧を適正値に戻すため充電もしくは放電の動作を自動的に行う。 However, when the voltage of the power system 2 is out of the appropriate range, the PCS 9-1 constituting the voltage control group automatically performs charging or discharging operation to return the voltage of the power system 2 to an appropriate value.
 一方、電力制御群を構成するPCS9-2~PCS9-4は、電力補償充放電指令値信号CS-2(=PB)、CS-3(=PC)、CS-4(=PD)に従って充放電を行う。 On the other hand, the PCS 9-2 to PCS 9-4 constituting the power control group charge / discharge according to the power compensation charge / discharge command value signals CS-2 (= PB), CS-3 (= PC), CS-4 (= PD). I do.
 このように、試験対象装置7のPCS5Aの充放電電力を完全に補償するように、電力補償充放電装置として機能するPCS9-1~PCS9-4が充放電を行うので、電力系統2に入出する電力は零となり、電力系統2の電圧を適正範囲に維持することができる。 As described above, the PCSs 9-1 to PCS9-4 functioning as the power compensation charging / discharging devices perform charging / discharging so that the charging / discharging power of the PCS 5A of the device under test 7 is completely compensated. The electric power becomes zero, and the voltage of the electric power system 2 can be maintained in an appropriate range.
 より詳細には、図7の例の場合、試験対象装置7のPCS5Aは、2MWの電力を充放電可能であり、トランス14は、PCS5Aが出力する315Vの電力を6.6kVに昇圧して出力するものであり、皮相電力3MVAでPCS5Aの有効電力2MWに対応するものとなっている。 More specifically, in the example of FIG. 7, the PCS 5A of the test target apparatus 7 can charge and discharge 2 MW of power, and the transformer 14 boosts the power of 315 V output from the PCS 5A to 6.6 kV and outputs it. The apparent power 3MVA corresponds to the effective power 2MW of the PCS 5A.
 一方、PCS9-1~PCS-4は、500kWの電力を充放電可能であり、トランス13-1~13-4は、PCS9-1~PCS-4が出力する315Vの電力を6.6kVに昇圧して出力するものであり、皮相電力750kVAでPCS9-1~PCS-4の有効電力500kWに対応するものとなっている。 On the other hand, PCS9-1 to PCS-4 can charge and discharge 500 kW of power, and transformers 13-1 to 13-4 boost the power of 315 V output from PCS9-1 to PCS-4 to 6.6 kV. The apparent power 750 kVA corresponds to the effective power 500 kW of PCS 9-1 to PCS-4.
 以上の説明のように、本第3実施形態によれば、電力系統2の電圧を適正範囲に維持しつつ、試験対象装置7からの電力を電力系統2側に充電もしくは放電することなく試験対象装置の試験調整や保守点検を行うことが可能となる。 As described above, according to the third embodiment, while maintaining the voltage of the power system 2 in an appropriate range, the test object 7 is tested without charging or discharging the power from the test target device 7 to the power system 2 side. It becomes possible to perform test adjustment and maintenance inspection of the equipment.
[5]第4実施形態
 次に第4実施形態について説明する。
 図8は、第4実施形態の説明図である。
 第4実施形態が第3実施形態と異なる点は、電力系統2のPCS9-1~9-4側にリレーなどのスイッチ17を設けた点である。
[5] Fourth Embodiment Next, a fourth embodiment will be described.
FIG. 8 is an explanatory diagram of the fourth embodiment.
The fourth embodiment differs from the third embodiment in that a switch 17 such as a relay is provided on the PCS 9-1 to 9-4 side of the power system 2.
 本第4実施形態によれば、スイッチ17を開状態として、電力系統2への電力の入出力を完全になくした状態で、PCS9-1~9-4により、試験対象装置7を構成しているPCS5Aの充放電電力を補償できるので、より一層確実に試験対象装置7からの電力を電力系統2側に充電もしくは放電することなく試験対象装置の試験調整や保守点検を行うことが可能となる。 According to the fourth embodiment, the test object apparatus 7 is configured by the PCSs 9-1 to 9-4 in a state in which the switch 17 is opened and the input / output of power to the power system 2 is completely eliminated. Since the charge / discharge power of the PCS 5A can be compensated, it is possible to perform test adjustment and maintenance inspection of the test target device without charging or discharging the power from the test target device 7 to the power system 2 side more reliably. .
[6]第5実施形態
 次に第5実施形態について説明する。
 図9は、第5実施形態の説明図である。
 以上の各実施形態においては、充放電装置3-1~3-nが本来の性能を発揮した状態で動作することを前提としていたが、例えば、図2の第1実施形態で示したように、充放電装置3-1~3-nが蓄電装置8-1~8-nを備えている場合等、試験対象装置7が充放電試験を開始する前の状態として、冬等の低温時には蓄電装置8-1~8-nが冷え切っているケースが考えられる。
[6] Fifth Embodiment Next, a fifth embodiment will be described.
FIG. 9 is an explanatory diagram of the fifth embodiment.
In each of the above embodiments, it is assumed that the charging / discharging devices 3-1 to 3-n operate in a state where the original performance is exhibited. For example, as shown in the first embodiment of FIG. When the charge / discharge devices 3-1 to 3-n are provided with the power storage devices 8-1 to 8-n, the state before the test target device 7 starts the charge / discharge test is stored at a low temperature such as winter. A case where the devices 8-1 to 8-n are completely cooled can be considered.
 特に蓄電装置8-1~8-nが、二次電池を使用している場合は、低温環境下では内部抵抗値が大きくなり、入出力性能が通常使用に比べて出ないことがある。そこで、蓄電装置8-1~8-nが冷え切っているような場合には、図9中、矢印A11、A12で示すように、充放電装置3-1~3-n間で互いに充電動作と放電動作を繰り返すことで、蓄電装置8-1~8-nを昇温して所定の入出力性能を回復することができる。
 これにより、冬の試験であっても蓄電装置8-1~8-nを昇温して入出力性能を回復させ、試験対象装置7の試験調整や保守点検を行うことが可能となる。
In particular, when the power storage devices 8-1 to 8-n use secondary batteries, the internal resistance value increases in a low-temperature environment, and the input / output performance may not be as good as in normal use. Therefore, when the power storage devices 8-1 to 8-n are cold, the charging operation is performed between the charging / discharging devices 3-1 to 3-n as indicated by arrows A11 and A12 in FIG. By repeating the discharge operation, the power storage devices 8-1 to 8-n can be heated to recover predetermined input / output performance.
As a result, even during the winter test, the power storage devices 8-1 to 8-n are heated to recover the input / output performance, and the test target device 7 can be adjusted and maintained.
[7]第6実施形態
 次に第6実施形態について説明する。
 図10は、第6実施形態の説明図である。
 試験対象装置7の充放電パターンは予めわかっているので、第6実施形態において充放電コントローラ4は、充放電パターンに基づいて試験対象装置7が充放電するエネルギー量を演算する。
[7] Sixth Embodiment Next, a sixth embodiment will be described.
FIG. 10 is an explanatory diagram of the sixth embodiment.
Since the charge / discharge pattern of the test target device 7 is known in advance, in the sixth embodiment, the charge / discharge controller 4 calculates the amount of energy that the test target device 7 charges / discharges based on the charge / discharge pattern.
 さらに充放電コントローラ4は、演算結果から充放電装置3-1~3-nが充放電するエネルギー量を計算し、試験開始前に電力補償蓄電装置としての蓄電装置8-1~8-nの満たすべきSOC(State Of Charge)を算出する。 Further, the charge / discharge controller 4 calculates the amount of energy charged / discharged by the charge / discharge devices 3-1 to 3 -n from the calculation result, and before the start of the test, the charge / discharge devices 3-1 to 8 -n Calculate the SOC (State Of Charge) to be satisfied.
 そして、試験開始前に、算出したSOCを満足しない場合は、試験対象装置7が充放電試験を開始する前に電力補償蓄電装置としての蓄電装置8-1~8-nのSOCを調整して、図10中、矢印A2で示すように所望のSOCとなるように充放電装置3-1~3-nにおいて充放電を行う。 If the calculated SOC is not satisfied before the test is started, the SOC of the power storage devices 8-1 to 8-n as the power compensation power storage devices is adjusted before the test target device 7 starts the charge / discharge test. In FIG. 10, charging / discharging is performed in the charging / discharging devices 3-1 to 3-n so as to obtain a desired SOC as indicated by an arrow A2.
 これにより、充放電装置3-1~3-nが試験対象装置7の放電試験あるいは充電試験中に、蓄電装置8-1~8-nが満充電または完全放電に到達して試験が中止されてしまうのを無くし、試験対象装置7の試験調整や保守点検を行うことが可能となる。 As a result, while the charge / discharge devices 3-1 to 3-n are in the discharge test or the charge test of the test target device 7, the power storage devices 8-1 to 8-n reach full charge or complete discharge and the test is stopped. This makes it possible to perform test adjustment and maintenance inspection of the test target apparatus 7.
[8]実施形態の効果
 以上の説明のように、各実施形態によれば、電力系統に影響を与えること無く、保守点検対象装置あるいは試験対象装置の充電試験あるいは放電試験を確実に行うことが可能となる。
[8] Effects of Embodiments As described above, according to each embodiment, it is possible to reliably perform a charge test or a discharge test on a maintenance / inspection target device or a test target device without affecting the power system. It becomes possible.
[9]実施形態の変形例
 以上の説明においては、試験対象装置7の充電電力が電力補償充放電装置である充放電装置3-1~3-nの放電電力と釣り合う(相殺する)ように、あるいは、試験対象装置7の放電電力が電力補償充放電装置である充放電装置3-1~3-nの充電電力と釣り合う(相殺する)ようにしていたが、試験対象装置7が充電試験を行っている場合には、充電電力に電源系統2に供給する電力との和が電力補償充放電装置である充放電装置3-1~3-nの放電電力と釣り合う(相殺する)ように構成することも可能である。
[9] Modification of Embodiment In the above description, the charging power of the device under test 7 is balanced (cancelled) with the discharging power of the charging / discharging devices 3-1 to 3-n that are power compensating charging / discharging devices. Alternatively, the discharge power of the test target device 7 is balanced (cancelled) with the charge power of the charge / discharge devices 3-1 to 3-n, which are power compensated charge / discharge devices. When the charging is performed, the sum of the charging power and the power supplied to the power supply system 2 is balanced (cancelled) with the discharging power of the charging / discharging devices 3-1 to 3-n which are power compensating charging / discharging devices. It is also possible to configure.
 これは、試験対象装置7の電力が電力系統2側に流れ込む虞が無いためである。一方、試験対象装置7が放電試験を行っている場合には、試験対象装置7の電力が電力系統2側に流れ込む虞があるため同様の取り扱いはできない。 This is because there is no possibility that the power of the test target apparatus 7 flows into the power system 2 side. On the other hand, when the test target device 7 is performing a discharge test, the same handling cannot be performed because the power of the test target device 7 may flow into the power system 2 side.
 以上の説明においては、試験対象装置7として、充放電装置5及び蓄電装置6の双方としていたが、充放電装置5及び蓄電装置6のうち、いずれか一方のみが試験対象であるようにすることも可能である。 In the above description, both the charging / discharging device 5 and the power storage device 6 are used as the test target device 7, but only one of the charging / discharging device 5 and the power storage device 6 is a test target. Is also possible.
 本実施形態の充放電システムの充放電コントローラは、CPUなどの制御装置と、ROM(Read Only Memory)やRAMなどの記憶装置と、必要に応じてHDD、CDドライブ装置などの外部記憶装置と、ディスプレイ装置などの表示装置と、キーボードやマウスなどの入力装置を備え、通常のコンピュータを利用したハードウェア構成となっている。 The charge / discharge controller of the charge / discharge system of the present embodiment includes a control device such as a CPU, a storage device such as a ROM (Read Only Memory) and a RAM, and an external storage device such as an HDD and a CD drive device as necessary. The display device such as a display device and an input device such as a keyboard and a mouse are provided and has a hardware configuration using a normal computer.
 本実施形態の充放電コントローラで実行されるプログラムは、インストール可能な形式又は実行可能な形式のファイルでCD-ROM、フレキシブルディスク(FD)、CD-R、DVD(Digital Versatile Disk)等のコンピュータで読み取り可能な記録媒体に記録されて提供される。 The program executed by the charge / discharge controller according to the present embodiment is a file in an installable format or an executable format, and is a computer such as a CD-ROM, a flexible disk (FD), a CD-R, or a DVD (Digital Versatile Disk). It is recorded on a readable recording medium and provided.
 また、本実施形態の充放電コントローラで実行されるプログラムを、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成しても良い。また、本実施形態の充放電コントローラで実行されるでプログラムをインターネット等のネットワーク経由で提供または配布するように構成しても良い。
 また、本実施形態の充放電コントローラで実行されるプログラムを、ROM等に予め組み込んで提供するように構成してもよい。
The program executed by the charge / discharge controller of the present embodiment may be stored on a computer connected to a network such as the Internet and provided by being downloaded via the network. Further, the program may be provided or distributed through a network such as the Internet by being executed by the charge / discharge controller of the present embodiment.
Moreover, you may comprise so that the program run with the charge / discharge controller of this embodiment may be provided by incorporating in ROM etc. previously.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

Claims (10)

  1.  電力系統と電力線を介して接続される電力補償充放電装置と、
     充電試験あるいは放電試験の対象となる試験対象装置が、前記電力線を介して前記電力補償充放電装置に接続された場合に、前記電力線上で、前記試験対象装置の充電電力が前記電力補償充放電装置の放電電力と釣り合うように、あるいは、前記試験対象装置の放電電力が前記電力補償充放電装置の充電電力と釣り合うように、前記試験対象装置及び前記電力補償充放電装置に対して充放電指令を与える充放電コントローラと、
     を備えた充放電システム。
    A power compensation charge / discharge device connected to the power system via a power line;
    When a test target device to be charged or discharged is connected to the power compensated charge / discharge device via the power line, the charge power of the test target device is the power compensated charge / discharge on the power line. Charge / discharge command to the test target device and the power compensated charge / discharge device so that the discharge power of the device is balanced or the discharge power of the test target device is balanced with the charge power of the power compensated charge / discharge device Giving charge / discharge controller,
    Charge / discharge system with
  2.  前記電力補償充放電装置は、前記電力線に複数台接続され、
     前記充放電コントローラは、前記複数台の前記電力補償充放電装置のうち少なくとも一部に前記充放電指令を与える、
     請求項1記載の充放電システム。
    A plurality of the power compensation charge / discharge devices are connected to the power line,
    The charge / discharge controller gives the charge / discharge command to at least a part of the plurality of the power compensation charge / discharge devices;
    The charge / discharge system according to claim 1.
  3.  前記充放電コントローラは、前記放電電力あるいは前記充電電力が釣り合うように制御するに際し、前記試験対象装置の電力リプルを吸収するように前記充放電指令を与える、
     請求項1又は請求項2記載の充放電システム。
    The charge / discharge controller gives the charge / discharge command to absorb the power ripple of the device under test when controlling the discharge power or the charge power to be balanced.
    The charge / discharge system according to claim 1 or 2.
  4.  前記電力補償充放電装置は、前記放電電力を供給し、あるいは、前記充電電力を受け入れる充放電可能な蓄電池装置を備えている、
     請求項1乃至請求項3のいずれか一項記載の充放電システム。
    The power compensation charging / discharging device includes the storage battery device capable of supplying or discharging the charging power or receiving the charging power,
    The charge / discharge system according to any one of claims 1 to 3.
  5.  前記充放電コントローラは、前記試験対象装置の充放電パターンに基づいて、前記蓄電装置において充放電に必要なSOCを計算し、SOCの調整を行う、
     請求項4記載の充放電システム
    The charge / discharge controller calculates an SOC required for charge / discharge in the power storage device based on a charge / discharge pattern of the device under test, and adjusts the SOC.
    The charge / discharge system according to claim 4.
  6.  前記電力補償充放電装置は、受電用電力系統からの電力を前記放電電力として供給するとともに、前記試験対象装置の放電電力を消費する放電装置を備えた、
     請求項1乃至請求項3のいずれか一項記載の充放電システム。
    The power compensation charging / discharging device includes a discharging device that supplies power from a power receiving power system as the discharging power and consumes the discharging power of the test target device.
    The charge / discharge system according to any one of claims 1 to 3.
  7.  前記複数の電力補償充放電装置は、電圧制御群に属する電力補償充放電装置及び電力制御群に属する電力補償充放電装置を含み、
     前記充放電コントローラは、前記試験対象装置及び前記電力制御群に属する電力補償充放電装置に対して充放電指令を与える、
     請求項2記載の充放電システム。
    The plurality of power compensation charging / discharging devices include a power compensation charging / discharging device belonging to a voltage control group and a power compensation charging / discharging device belonging to a power control group,
    The charge / discharge controller gives a charge / discharge command to a power compensation charge / discharge device belonging to the device under test and the power control group,
    The charge / discharge system according to claim 2.
  8.  前記充電試験あるいは前記放電試験を行うに際し、前記電力補償充放電装置及び前記試験対象装置を、前記電力系統と切り離すスイッチを備えた、
     請求項1乃至請求項7のいずれか一項記載の充放電システム。
    When performing the charge test or the discharge test, the power compensation charging / discharging device and the test target device are provided with a switch for disconnecting from the power system,
    The charge / discharge system according to any one of claims 1 to 7.
  9.  前記充電試験あるいは前記放電試験を行うのに先だって、前記電力補償充放電装置において充放電動作を行わせることにより、前記電力諸相充放電装置の動作温度を高くする、
     請求項1乃至請求項8のいずれか一項記載の充放電システム。
    Prior to performing the charge test or the discharge test, by performing a charge / discharge operation in the power compensated charge / discharge device, increase the operating temperature of the power phase charge / discharge device,
    The charge / discharge system according to any one of claims 1 to 8.
  10.  前記充放電コントローラは、試験対象装置に出力する前記充放電指令の指令値の符号に対して、前記電力補償充放電装置に出力する前記充放電指令の指令値の合計値の符号が逆になるように設定する、
     請求項1乃至請求項9のいずれか一項記載の充放電システム。
    In the charge / discharge controller, the sign of the command value of the charge / discharge command output to the power compensation charge / discharge apparatus is reversed with respect to the sign of the command value of the charge / discharge command output to the apparatus to be tested. Set as
    The charge / discharge system according to any one of claims 1 to 9.
PCT/JP2015/057926 2015-03-17 2015-03-17 Charging/discharging system WO2016147319A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/057926 WO2016147319A1 (en) 2015-03-17 2015-03-17 Charging/discharging system
JP2017505925A JP6585705B2 (en) 2015-03-17 2015-03-17 Charge / discharge system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/057926 WO2016147319A1 (en) 2015-03-17 2015-03-17 Charging/discharging system

Publications (1)

Publication Number Publication Date
WO2016147319A1 true WO2016147319A1 (en) 2016-09-22

Family

ID=56919878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057926 WO2016147319A1 (en) 2015-03-17 2015-03-17 Charging/discharging system

Country Status (2)

Country Link
JP (1) JP6585705B2 (en)
WO (1) WO2016147319A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018152201A (en) * 2017-03-10 2018-09-27 本田技研工業株式会社 Charge and discharge control device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008060047A (en) * 2006-09-04 2008-03-13 Toyota Motor Corp Power supply system and vehicle equipped with it, and temperature elevation control method of power storage device, as well as recording medium readable by computer recording program in order to carry out temperature elevation control of power storage device
JP2012043623A (en) * 2010-08-18 2012-03-01 Toshiba Corp Battery capacity acquisition device
JP2014110692A (en) * 2012-12-03 2014-06-12 Sumitomo Electric Ind Ltd Power storage system, and deterioration diagnostic method for storage battery
JP2014154437A (en) * 2013-02-12 2014-08-25 Toshiba Corp Testing system and testing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5433368B2 (en) * 2009-10-09 2014-03-05 東芝Itコントロールシステム株式会社 Battery pack inspection device
JP6279229B2 (en) * 2013-05-07 2018-02-14 東芝Itコントロールシステム株式会社 Charge / discharge control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008060047A (en) * 2006-09-04 2008-03-13 Toyota Motor Corp Power supply system and vehicle equipped with it, and temperature elevation control method of power storage device, as well as recording medium readable by computer recording program in order to carry out temperature elevation control of power storage device
JP2012043623A (en) * 2010-08-18 2012-03-01 Toshiba Corp Battery capacity acquisition device
JP2014110692A (en) * 2012-12-03 2014-06-12 Sumitomo Electric Ind Ltd Power storage system, and deterioration diagnostic method for storage battery
JP2014154437A (en) * 2013-02-12 2014-08-25 Toshiba Corp Testing system and testing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018152201A (en) * 2017-03-10 2018-09-27 本田技研工業株式会社 Charge and discharge control device
US10630081B2 (en) 2017-03-10 2020-04-21 Honda Motor Co., Ltd. Charge and discharge control device

Also Published As

Publication number Publication date
JP6585705B2 (en) 2019-10-02
JPWO2016147319A1 (en) 2017-11-30

Similar Documents

Publication Publication Date Title
US9257860B2 (en) Battery pack, cell balancing method of the same, and energy storage system including the battery pack
EP3141983B1 (en) Power supply method and apparatus
KR101523300B1 (en) Efficiency test system and method for power conditioning system
JP6174154B2 (en) Storage battery management apparatus, method and program
WO2016147311A1 (en) Storage-battery management device, method, and program
CN110417081B (en) Power supply circuit and uninterrupted power supply UPS system
JP6104626B2 (en) Test system and test method
EP3514557B1 (en) Electric storage capacity estimation device, method and program
JP6419977B2 (en) Voltage fluctuation suppressing apparatus and method
WO2017154115A1 (en) Storage battery apparatus, storage battery system, method, and control program
JP2011083060A (en) Apparatus for optimizing power supply of electric power supply system
JP6419941B2 (en) Storage battery management apparatus, method and program
JP6585705B2 (en) Charge / discharge system
WO2017154170A1 (en) Storage cell device and method
WO2016147322A1 (en) Storage cell management device, method, and program
WO2017043109A1 (en) Storage battery device and storage battery system
WO2017042973A1 (en) Storage battery system, method, and program
WO2016147326A1 (en) Storage-battery management device, method, and program
WO2016147321A1 (en) Storage battery management device and method
WO2016147323A1 (en) Storage battery system
JP2020018140A (en) Dc power feeding system
CN117526383A (en) Multi-stage modularized energy storage system and testing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885415

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017505925

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15885415

Country of ref document: EP

Kind code of ref document: A1