WO2016145926A1 - 一种短脉冲电熔排屑冷却的智能磨削装置 - Google Patents

一种短脉冲电熔排屑冷却的智能磨削装置 Download PDF

Info

Publication number
WO2016145926A1
WO2016145926A1 PCT/CN2015/100143 CN2015100143W WO2016145926A1 WO 2016145926 A1 WO2016145926 A1 WO 2016145926A1 CN 2015100143 W CN2015100143 W CN 2015100143W WO 2016145926 A1 WO2016145926 A1 WO 2016145926A1
Authority
WO
WIPO (PCT)
Prior art keywords
grinding
pulse
discharge
grinding wheel
voltage
Prior art date
Application number
PCT/CN2015/100143
Other languages
English (en)
French (fr)
Inventor
谢晋
鲁艳军
邓振杰
游佳晖
司贤海
程剑
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to US15/300,772 priority Critical patent/US9687952B2/en
Publication of WO2016145926A1 publication Critical patent/WO2016145926A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/06Grinders for cutting-off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/06Grinders for cutting-off
    • B24B27/0683Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/10Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving electrical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/14Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation taking regard of the temperature during grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B55/00Safety devices for grinding or polishing machines; Accessories fitted to grinding or polishing machines for keeping tools or parts of the machine in good working condition
    • B24B55/02Equipment for cooling the grinding surfaces, e.g. devices for feeding coolant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B55/00Safety devices for grinding or polishing machines; Accessories fitted to grinding or polishing machines for keeping tools or parts of the machine in good working condition
    • B24B55/06Dust extraction equipment on grinding or polishing machines

Definitions

  • the invention relates to the field of precision grinding processing of super-hard diamond grinding wheels, in particular to a precision electric discharge grinding technology of hard and brittle materials such as die steel, engineering ceramics and hard alloy.
  • High-performance conductive hard and brittle materials such as die steel, engineering ceramics and hard alloy have wide application, high hardness, low fracture toughness, difficult to process and difficult to obtain high quality surface.
  • the traditional mechanical cutting process not only has high requirements on the comprehensive performance of the tool, but also has problems such as large cutting force, high cutting temperature and poor surface quality.
  • many new processing methods have appeared in recent years, such as EDM, laser processing, electrochemical etching, etc., but these methods have low surface processing quality, high production cost, and Intractable corrosive solution and coolant.
  • a grinding method using a short pulse discharge The pulsed electric spark discharge generated between the metal bond of the grinding wheel and the chip is used to melt the chip, so that the blown chip is discharged with the grinding wheel rotating at a high speed, reducing the accumulation and sliding of the chip in the abrasive cutting area, thereby reducing the grinding. Grinding force and grinding temperature during the cutting process to improve the processing quality of the material surface, and develop an environmentally friendly and non-polluting grinding method.
  • the object of the invention is to overcome the shortcomings of high grinding temperature, large grinding force, grinding coolant pollution environment and poor surface processing quality in the conventional grinding process, and propose a short pulse electrofusion chip cooling intelligent Grinding device It can be used for precision dry discharge grinding of high performance conductive hard and brittle materials such as die steel, engineering ceramics and hard alloy.
  • the intelligent grinding device does not require grinding fluid and is a green grinding device. It also provides an online acquisition system for discharge waveform, grinding temperature and grinding force.
  • the device can adaptively feedback and adjust the output voltage, current and other parameters of the pulse power supply through the collected discharge parameters to realize intelligent discharge grinding processing.
  • the present invention can be achieved by the following technical solutions.
  • An intelligent grinding device for short pulse electrofusion chip cooling comprising a diamond grinding wheel fixed on a grinding wheel shaft of a numerical control grinding machine, a pulse power source, a dynamometer sensor fixed on a horizontal working table of the numerical control grinding machine, and a small set on the workpiece a thermocouple, a voltage sensor, a current sensor, a temperature acquisition card, a charge amplifier, a force gauge, a digital oscilloscope, and a discharge parameter feedback adjustment system for measuring a processing temperature in the hole, wherein the diamond grinding wheel is a metal bond diamond grinding wheel, The positive pole of the pulse power source is connected to the grinding wheel, and the negative pole is connected to the workpiece to form a discharge circuit.
  • the voltage sensor and the current sensor respectively store the discharge voltage and current waveform of the collected discharge circuit on the display terminal through a digital oscilloscope, and the thermocouple is connected through a temperature acquisition card.
  • a display terminal wherein the dynamometer sensor is sequentially connected to a charge amplifier, a force gauge and a display terminal through a circuit, and the discharge parameter feedback adjustment system is configured to convert a peak current generated by the collected voltage and current waveform characteristics according to the display terminal Pulse duration parameters such as pulse duration Adaptively adjusting the power supply voltage and a current value of the pulse, thereby achieving intelligent discharge grinding.
  • the pulse power supply has an open circuit voltage of 20V-25V, a duty ratio of 40%-50%, and a frequency of 4000 Hz. -5000Hz, the discharge gap of the pulse spark discharge is 0 ⁇ 150 microns, the pulse width is 10 ⁇ 100 microseconds, and the current is 0 ⁇ 10 amps.
  • the diamond grinding wheel has a rotational speed of 20 to 50 m/s, a feed depth of 1 to 10 micrometers, and a feed rate of 100 ⁇ 500 mm / min.
  • the material of the workpiece is a conductive hard and brittle material such as a die steel, a hard alloy, a titanium alloy, or an aluminum-based silicon carbide ceramic.
  • the metal bonding agent of the diamond grinding wheel is a bronze bonding agent, and the diamond abrasive grains and the bronze bonding agent constitute a diamond grinding wheel.
  • the invention will be a diamond grinding wheel It is fixed on the grinding wheel shaft of the CNC grinding machine.
  • the conductive hard and brittle material workpiece is placed on the dynamometer sensor and fixed on the horizontal working table of the CNC grinding machine.
  • the thermocouple is placed in the small hole of the workpiece, diamond grinding wheel, workpiece and pulse.
  • the power source forms a discharge circuit, the positive pole of the pulse power source is connected to the grinding wheel, and the negative pole of the pulse power source is connected to the workpiece; the diamond grinding wheel linearly reciprocates on the surface of the conductive material, and when the diamond abrasive grain cuts the workpiece, the rolled chip will be generated between the metal bond of the grinding wheel and the grinding wheel.
  • Pulse spark discharge, spark discharge will instantaneously blow the chips (as shown 3 As shown), the blown chips are discharged with the grinding wheel rotating at a high speed, thereby reducing the accumulation and slippage of the chips in the abrasive cutting area, resulting in a decrease in the grinding force and the grinding temperature during the grinding process, and achieving the cooling of the chips.
  • the purpose is to improve the processing quality of the surface of the material; in the process of electric discharge grinding, current and voltage waveforms can be collected online by current sensor, voltage sensor and digital oscilloscope, and the grinding temperature can be collected in real time through thermocouple, temperature acquisition card and display terminal.
  • the grinding force can be collected in real time through force sensors, charge amplifiers, force gauges and display terminals.
  • the diamond grinding wheel reciprocates linearly on the surface of the conductive hard and brittle material, and performs contact discharge grinding with the conductive hard and brittle material; the speed of the diamond grinding wheel is 20 ⁇ 50 m/s, feed depth is 1 ⁇ 10 micron, feed rate is 100 ⁇ 500 mm/min, pulsed power supply open circuit voltage is 20 V -25V, duty cycle is 40 ⁇ 50% The frequency is 4000 ⁇ 5000Hz.
  • the invention has the following advantages:
  • the pulse power supply parameters can be intelligently adjusted by the discharge parameter feedback system to obtain a higher quality surface.
  • Fig. 1 is a schematic view showing the overall structure of an embodiment of the present invention.
  • Figure 2 is a schematic diagram of chip formation in mechanical grinding.
  • Figure 3 is a schematic diagram of chip formation in discharge grinding.
  • the figure shows: 1- diamond grinding wheel; 2- workpiece; 3- thermocouple; 4- dynamometer sensor; 5-level table; 6- temperature acquisition card; 7- charge amplifier; 8- dynamometer; 9- display terminal; 10-pulse power supply; 11- current sensor; 12- voltage sensor; 13- digital oscilloscope; 14- Discharge parameter feedback adjustment system; 15-diamond abrasive; 16-metal bond; 17-chip; 18-pulse spark discharge; 19- blown chip.
  • a short pulse electrofusion chip cooling cooling grinding device comprising a grinding wheel fixed on a grinding wheel shaft of a numerical control grinding machine 1 , a pulse power supply 10.
  • the dynamometer sensor fixed on the horizontal table 5 of the CNC grinding machine 4.
  • the negative electrode is connected to the workpiece 2 to form a discharge circuit, and the voltage sensor 12 and the current sensor 11 respectively transmit the voltage and current waveforms of the collected discharge circuit to the display terminal through the digital oscilloscope 13
  • the thermocouple 3 is connected to the display terminal 9 via a temperature acquisition card 6, and the dynamometer sensor 4 is sequentially connected to the charge amplifier 7 , the dynamometer 8 and the display terminal through a circuit.
  • the discharge parameter feedback adjustment system 14 is configured to adaptively adjust the pulse power supply according to a pulse discharge parameter such as a peak current, a pulse duration, etc., into which the display terminal 9 converts the collected voltage and current waveform characteristics. 10 voltage and current values for intelligent discharge grinding.
  • a pulse discharge parameter such as a peak current, a pulse duration, etc.
  • the diamond grinding wheel 1 is fixed on the grinding wheel shaft of the CNC grinding machine, and the conductive hard and brittle material workpiece 2 is placed on the dynamometer sensor 4 Attached to the horizontal table 5 of the CNC grinding machine, place the thermocouple 3 in the small hole of the workpiece 2 (close to the surface of the workpiece), diamond grinding wheel 1, workpiece 2 and pulse power supply 10
  • the pulse power supply positive electrode is connected to the grinding wheel 1
  • the pulse power supply negative electrode is connected to the workpiece 2
  • the diamond grinding wheel 1 is linearly reciprocated on the surface of the conductive material 2
  • the metal bond of the diamond grinding wheel 1 is 16
  • the micron-scale space between the workpiece 2 and the workpiece 2 is 5-200 ⁇ m, and the micro-scale discharge gap between the metal bond 16 and the workpiece chip is 2-150 ⁇ m.
  • Sensor 11 , voltage sensor 12 and digital oscilloscope 13 can collect current and voltage waveforms online through the display terminal 9
  • the voltage and current waveforms are characterized as pulse current parameters such as peak current and pulse duration and input to the discharge parameter feedback adjustment system 14 , at which time the discharge parameter feedback adjustment system 14 can adaptively adjust the pulse power supply.
  • 10 discharge voltage and current parameters, intelligent control of the discharge grinding process.
  • the temperature acquisition card 6 and the display terminal 9 the grinding temperature can be collected in real time, through the force sensor 4
  • the charge amplifier 7, the load cell 8 and the display terminal 9 can acquire the grinding force in real time.
  • the diamond grinding wheel 1 reciprocates linearly on the surface of the workpiece 2, and performs contact discharge grinding with the workpiece 2; the speed of the diamond grinding wheel 1 is 2000 ⁇ 5000 rpm, the feed depth is 1 ⁇ 10 microns, the feed rate is 100 ⁇ 300mm/min, and the open circuit voltage of the pulse power supply 10 is 20 ⁇ 25V, the duty cycle is 40 ⁇ 50%, the frequency is 4000 ⁇ 5000Hz.
  • the appropriate diamond grinding wheel 1 The rotational speed, the feed depth and the feed rate, using micro-blade non-conductive diamond abrasive grains to create a micron-scale space between the metal bond 16 and the workpiece 2, in the conductive metal bond 16 and the workpiece 2 Applying a certain pulse no-load voltage between them, adjusting the no-load voltage, pulse frequency and duty ratio by the conductive properties of the metal bond 16 and the workpiece 2, thereby controlling the micro-scale discharge gap, so that the diamond grinding wheel 1 A short-pulse spark discharge occurs between the metal bond 16 and the chip 17 of the workpiece 2, and the micro-scale chip 17 is melted by the high-temperature instantaneous electrofusion, and then the diamond wheel 1 is The airflow driven by the high-speed rotation of the surface reduces the accumulation and slippage of the chips in the abrasive cutting area, thereby reducing the grinding force and the grinding temperature during the grinding process, and improving the workpiece
  • a diamond grinding wheel with a diameter of 150 mm and a thickness of 2.5 mm is mounted on a CNC precision grinding machine. (SMRART B818) on the grinding wheel shaft; workpiece 2 with a width of 50 mm and a thickness of 12 mm is fixed on the horizontal table 5 and perpendicular to the axis of the grinding wheel; diamond grinding wheel 1 , workpiece 2 and pulse power supply 5 form a discharge loop.
  • the diamond wheel 1 has a particle size of 46 mesh and a concentration of 100%, and the metal bond 16 is a bronze bond.
  • the workpiece 2 is an aluminum-based silicon carbide ceramic.
  • the diamond grinding wheel 1 reciprocates linearly on the surface of the workpiece 2, and a spark discharge is generated between the metal bond 16 and the chip 17 to chip 17 blown out.
  • the grinding wheel rotates at 25 m / s, the feed rate is 200 mm / min, the feed depth is 2 ⁇ m, the pulse power supply open circuit voltage is 25 volts, the duty cycle is 50%, and the frequency is 5000Hz.
  • the grinding and grinding temperatures during discharge grinding can be reduced by approximately 30% and 10%, respectively, and better surface quality can be achieved.
  • a diamond grinding wheel with a diameter of 150 mm and a thickness of 2.5 mm is mounted on the CNC.
  • the workpiece 2 with a width of 50 mm and a thickness of 12 mm is fixed on the horizontal table 5 and perpendicular to the axial direction of the grinding wheel; diamond grinding wheel 1
  • the workpiece 2 and the pulse power supply 5 form a discharge loop.
  • the diamond wheel 1 has a particle size of 46 mesh and a concentration of 100%.
  • the metal bond 16 is a bronze bond.
  • the workpiece 2 It is a hard alloy.
  • Diamond grinding wheel 1 makes a linear reciprocating motion on the surface of the material. A spark discharge occurs between the metal bond of the grinding wheel and the chip. Fuse out.
  • the diamond grinding wheel 1 has a speed of 25 m / s, a feed rate of 50 mm / min, a feed depth of 1 ⁇ m, a pulse power supply open circuit voltage of 25 volts, a duty cycle of 40%, and a frequency of 5000Hz.
  • the grinding force and grinding temperature during discharge grinding are significantly reduced by about 20% and 5%, and the surface roughness of the workpiece 2 surface can be reduced by about 15%. .
  • a diamond wheel 1 with a diameter of 150 mm and a thickness of 2.5 mm is mounted on the CNC.
  • the workpiece 2 with a width of 50 mm and a thickness of 12 mm is fixed on the horizontal table 5 and perpendicular to the axial direction of the grinding wheel; diamond grinding wheel 1
  • the workpiece 2 and the pulse power supply 5 form a discharge loop.
  • the diamond wheel 1 has a particle size of 46 mesh and a concentration of 100%.
  • the metal bond 16 is a bronze bond.
  • the workpiece 2 is S136H. Die steel.
  • the diamond grinding wheel 1 moves in the axial direction on the surface of the workpiece 2, the metal bond 16 and the chip 17 A spark discharge is generated between the chips 18 to be blown out.
  • Diamond grinding wheel 1 at 25 m / s, feed rate 30 mm / min, feed depth 5 ⁇ m, pulsed power supply 10
  • the open circuit voltage is 25 volts
  • the duty cycle is 40%
  • the frequency is 5000 Hz.
  • the grinding force and grinding temperature during discharge grinding are significantly reduced by approximately 25% and 15%.
  • the surface roughness of the workpiece 2 can be reduced by about 30%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

一种短脉冲电熔排屑冷却的智能磨削装置,其包括金刚石砂轮(1)、脉冲电源(10)、测力仪传感器(4)、设置于工件的小孔内的热电偶(3)、电压传感器(12)、电流传感器(11)、温度采集卡(6)、电荷放大器(7)、测力仪(8)、数字示波器(13)、放电参数反馈调节系统(14),脉冲电源(10)正极接金刚石砂轮(1),负极接工件(2),电压传感器(12)和电流传感器(11)分别将采集的放电电压、电流波形经数字示波器(13)输送并存储在显示终端(9),再通过放电参数反馈调节系统(14)智能调节脉冲电源(10)的输出电压和电流值,所述热电偶(3)通过温度采集卡(6)连接显示终端(9)。该装置无需额外冷却媒介,直接在空气中进行排屑和排热,在干磨削中通过施加短脉冲电压降低磨削温度、减小磨削功率和提高磨削质量,环保无污染。

Description

一种短脉冲电熔排屑冷却的智能磨削装置
技术领域
本发明涉及超硬金刚石砂轮的精密磨削加工领域,具体涉及一种模具钢、工程陶瓷、硬质合金等硬脆性材料的精密放电磨削加工技术。
背景技术
模具钢、工程陶瓷、硬质合金等高性能导电硬脆材料具有广泛的应用,其硬度较高,断裂韧性低,难以加工且不易获得高质量的表面。传统的机械切削加工不仅对刀具的综合性能要求很高,还存在着切削力大、切削温度高、加工表面质量差等问题。针对这些导电硬脆性材料,近年来出现了许多新的加工方法,如电火花放电加工、激光加工、电化学腐蚀加工整等方法,但这些加工方法的表面加工质量低,生产成本高,而且有难处理的腐蚀液和冷却液。
因此, 采用一种短脉冲放电的磨削方法 ,利用砂轮的金属结合剂与切屑之间产生的脉冲电火花放电将切屑熔断,使得熔断的切屑随高速旋转的砂轮排出,减小切屑在磨粒切削区域的堆积和滑擦,从而减小磨削加工过程中的磨削力和磨削温度,从而提高材料表面的加工质量,开发一种环保无污染的磨削加工方法。
发明内容
本发明的目的在于克服传统的磨削加工过程中磨削温度高、磨削力大、磨削冷却液污染环境,表面加工质量较差等缺点,提出 一种短脉冲电熔排屑冷却的智能磨削装置 ,可以用来对模具钢、工程陶瓷、硬质合金等高性能导电硬脆材料进行精密干放电磨削加工。该智能磨削装置不需要磨削液,是一种绿色环保的磨削加工装置,同时也提供了一种放电波形、磨削温度和磨削力在线采集系统。该装置能够通过采集的放电参数自适应反馈调节脉冲电源的输出电压、电流等参数,实现智能的放电磨削加工。
本发明可通过如下技术方案实现。
一种短脉冲电熔排屑冷却的智能磨削装置,包括固定在数控磨床的砂轮轴上金刚石砂轮、脉冲电源、固定在数控磨床的水平工作台上的测力仪传感器、设置于工件的小孔内用于测量加工温度的热电偶、电压传感器、电流传感器、温度采集卡、电荷放大器、测力仪、数字示波器、放电参数反馈调节系统,所述金刚石砂轮为金属结合剂金刚石砂轮,所述脉冲电源正极接砂轮,负极接工件,形成放电回路,所述电压传感器和电流传感器分别将采集的放电回路的放电电压、电流波形经数字示波器储存于显示终端,所述热电偶通过温度采集卡连接显示终端,所述测力仪传感器通过电路依次连接电荷放大器、测力仪和显示终端,所述放电参数反馈调节系统用于根据显示终端将所采集的电压、电流波形特征转化而成的峰值电流、脉冲持续时间等脉冲放电参数来自适应地调节脉冲电源的电压及电流值,从而实现智能的放电磨削加工。
进一步地,所述脉冲电源的开路电压为 20V-25V ,占空比为 40%-50% ,频率为 4000 Hz -5000Hz ,脉冲火花放电的放电间隙为 0~150 微米,脉宽为 10~100 微秒,电流为 0~10 安。
进一步地,所述金刚石砂轮的转速为 20~50米/ 秒,进给深度为 1~10 微米,进给速度为 100~500毫米/ 分。
进一步地,所述的工件的材料为模具钢、硬质合金、钛合金、铝基碳化硅陶瓷等导电硬脆材料。
进一步地,所述金刚石砂轮的金属结合剂为青铜结合剂,金刚石磨粒和青铜结合剂组成金刚石砂轮。
本发明将金刚石砂轮 固定在数控磨床的砂轮轴上,导电硬脆材料工件放置在测力仪传感器上并一起固定在数控磨床的水平工作台上,将热电偶放置在工件的小孔内,金刚石砂轮、工件和脉冲电源形成放电回路,脉冲电源正极接砂轮,脉冲电源负极接工件;金刚石砂轮在导电材料表面作直线往复运动,当金刚石磨粒切削工件时,卷起的切屑会与砂轮的金属结合剂之间产生脉冲电火花放电,电火花放电会瞬间熔断切屑(如图 3 所示),熔断的切屑会随高速旋转的砂轮排出,从而减少切屑在磨粒切削区域的堆积和滑擦,导致磨削加工过程中磨削力和磨削温度的下降,达到排屑冷却的目的,提高材料表面的加工质量;在放电磨削过程中,通过电流传感器、电压传感器和数字示波器可以在线采集电流和电压波形,通过热电偶、温度采集卡和显示终端可以实时采集磨削温度,通过力传感器、电荷放大器、测力仪和显示终端可以实时采集磨削力。
金刚石砂轮在导电硬脆材料表面作直线往复运动,与导电硬脆材料进行接触放电磨削;金刚石砂轮速度为 20~50米/ 秒,进给深度为 1~10 微米,进给速度为 100~500毫米/ 分,脉冲电源的开路电压为 20 V -25V ,占空比为 40~50% ,频率为 4000~5000Hz 。
本发明与现有技术相比具有如下优点:
( 1 )在 20~25V 开路电压下,金刚石砂轮与导电硬脆材料之间能够产生均匀持续的脉冲电火花放电,使得切屑迅速熔断随高速旋转的砂轮排出,与传统的机械磨削方法相比,可以减小磨削力和磨削温度。
( 2 )与传统的机械磨削方法相比,不需要外加冷却液,是一种成本较低且绿色环保的磨削方法。
( 3 )与传统的机械磨削方法相比,能够通过放电参数反馈系统智能调节脉冲电源参数,从而获得更高质量的表面。
附图说明
图 1 为 本发明实施例的整体结构示意图 。
图 2 为机械磨削中切屑形成示意图。
图 3 为放电磨削中切屑形成示意图。
图中所示为: 1- 金刚石砂轮; 2- 工件; 3- 热电偶; 4- 测力仪传感器; 5- 水平工作台; 6- 温度采集卡; 7- 电荷放大器; 8- 测力仪; 9- 显示终端; 10- 脉冲电源; 11- 电流传感器; 12- 电压传感器; 13- 数字示波器; 14- 放电参数反馈调节系统; 15- 金刚石磨粒; 16- 金属结合剂; 17- 切屑; 18- 脉冲电火花放电; 19- 熔断的切屑。
具体实施方式
为更好理解本发明,下面结合附图和实施例对本发明做进一步的说明,但是本发明要求保护的范围并不局限于实施例表示的范围。
如图 1 所示,一种短脉冲电熔排屑冷却的磨削装置,包括固定在数控磨床的砂轮轴上金刚石砂轮 1 、 脉冲电源 10 、固定在数控磨床的水平工作台 5 上的测力仪传感器 4 、设置于工件 2 的小孔内用于测量加工温度的热电偶 3 、电压传感器 12 、电流传感器 11 、温度采集卡 6 、电荷放大器 7 、测力仪 8 、数字示波器 13 ,所述金刚石砂轮 1 为金属结合剂金刚石砂轮,所述 脉冲电源 10 正极接砂轮 1 ,负极接工件 2 ,形成放电回路,所述电压传感器 12 电流传感器 11 分别将采集的放电回路的电压、电流波形经数字示波器 13 输送并储存在显示终端 9 ,所述热电偶 3 通过温度采集卡 6 连接显示终端 9 ,所述测力仪传感器 4 通过电路依次连接电荷放大器 7 、测力仪 8 和显示终端 9 ,所述放电参数反馈调节系统 14 用于 根据显示终端 9 将所 采集的电压、电流波形特征转化成的峰值电流、脉冲持续时间等脉冲放电参数来自适应地调节脉冲电源 10 的电压及电流值 ,从而实现智能的放电磨削加工。
操作过程中, 将金刚石砂轮1 固定在数控磨床的砂轮轴上,导电硬脆材料工件 2 放置在测力仪传感器 4 上并一起固定在数控磨床的水平工作台 5 上,将热电偶 3 放置在工件 2 的小孔内(贴近工件表面),金刚石砂轮 1 、工件 2 和脉冲电源 10 形成放电回路,脉冲电源正极接砂轮 1 ,脉冲电源负极接工件 2 ;金刚石砂轮 1 在导电材料 2 表面作直线往复运动, 金刚石砂轮1的 金属结合剂 16 与工件 2 间的微米尺度空间为 5-200 微米,所述金属结合剂 16 与工件切屑间微米尺度的放电间隙为 2-150 微米。
当金刚石磨粒 15 切削工件 2 时(如图 2 所示),卷起的切屑 17 会与金刚石砂轮 1 的金属结合剂 16 之间产生脉冲电火花放电 18 ,电火花放电会瞬间熔断切屑 17 (如图 3 所示),熔断的切屑 19 会随高速旋转的砂轮 1 排出,从而减少切屑 17 在磨粒切削区域的堆积和滑擦,导致磨削加工过程中磨削力和磨削温度的下降,达到排屑冷却的目的,提高材料表面的加工质量;在放电磨削过程中,通过电流传感器 11 、电压传感器 12 和数字示波器 13 可以在线采集电流和电压波形,通过显示终端 9 将电压、电流波形特征化为峰值电流、脉冲持续时间等脉冲放电参数并输入到放电参数反馈调节系统 14 ,此时放电参数反馈调节系统 14 即可自适应地调节脉冲电源 10 的电压、电流等放电 参数,智能控制放电磨削加工过程。通过热电偶 3 、温度采集卡 6 和显示终端 9 可以实时采集磨削温度,通过力传感器 4 、电荷放大器 7 、测力仪 8 和显示终端 9 可以实时采集磨削力。
金刚石砂轮 1 在工件 2 表面作直线往复运动,与工件 2 进行接触放电磨削;金刚石砂轮 1 转速为 2000~5000 转 / 分,进给深度为 1~10 微米,进给速度为 100~300毫米/ 分,脉冲电源 10 的开路电压为 20~25V ,占空比为 40~50% ,频率为 4000~5000Hz 。
在短脉冲接触放电磨削过程中,如果采用合适的脉冲开路电压、占空比和频率,使用适当的金刚石砂轮 1 转速、进给深度和进给速度,利用微出刃的不导电金刚石磨粒在金属结合剂 16 与工件 2 间产生微米尺度的空间,在导电的金属结合剂 16 与工件 2 之间施加一定的脉冲空载电压,利用金属结合剂 16 和工件 2 的导电属性调节空载电压、脉冲频率和占空比的大小,从而控制微米尺度的放电间隙,使得金刚石砂轮 1 的金属结合剂 16 与工件 2 的切屑 17 之间发生短脉冲火花放电,利用高温的瞬间电熔将微米尺度的切屑 17 熔断,然后被金刚石砂轮 1 表面高速旋转带动的气流排出,减少切屑 17 在磨粒切削区域的堆积和滑擦,从而减小磨削过程中的磨削力和磨削温度,提高工件 2 表面加工质量,是一种环保无污染的磨削加工方法。
在一个实施例中,采用直径 150 毫米 、厚度 2.5 毫米 的金刚石砂轮 1 被安装在 CNC 精密磨床 (SMRART B818) 的砂轮轴上;宽度 50 毫米 、厚度 12 毫米 的工件 2 被固定在水平工作台 5 上且与砂轮轴向垂直;金刚石砂轮 1 、工件 2 和脉冲电源 5 形成放电回路。金刚石砂轮 1 的粒度为 46 目,浓度为 100% ,金属结合剂 16 为青铜结合剂。工件 2 为铝基碳化硅陶瓷。
金刚石砂轮 1 在工件 2 表面作直线往复运动,金属结合剂 16 与切屑 17 之间会产生电火花放电将切屑 17 熔断排出。砂轮转速为 25 米 / 秒,进给速度 200 毫米 / 分,进给深度 2 微米,脉冲电源开路电压为 25 伏,占空比为 50% ,频率为 5000Hz 。与传统的机械磨削相比,放电磨削过程中的磨削力和磨削温度可以分别减少约 30% 和 10% ,而且能够获得更好的表面质量。
在另一个实施例中,采用 直径 150 毫米 、厚度 2.5 毫米 的金刚石砂轮 1 被安装在 CNC 精密磨床 (SMRART B818) 的砂轮轴上;宽度 50 毫米 、厚度 12 毫米 的工件 2 被固定在水平工作台 5 上且与砂轮轴向垂直;金刚石砂轮 1 、工件 2 和脉冲电源 5 形成放电回路。金刚石砂轮 1 的粒度为 46 目,浓度为 100% ,金属结合剂 16 为青铜结合剂 ,工件 2 为硬质合金。
金刚石砂轮 1 在材料表面作直线往复运动,砂轮金属结合剂与切屑之间会产生电火花放电将切屑 17 熔断排出。金刚石砂轮 1 转速为 25 米 / 秒,进给速度 50 毫米 / 分,进给深度 1 微米,脉冲电源开路电压为 25 伏,占空比为 40% ,频率为 5000Hz 。与传统的机械磨削相比,放电磨削过程中的磨削力和磨削温度明显减小约 20% 和 5% ,而且工件 2 表面的表面粗糙度可以减少约 15% 。
在另一个实施例中, 采用直径 150 毫米 、厚度 2.5 毫米 的金刚石砂轮 1 被安装在 CNC 精密磨床 (SMRART B818) 的砂轮轴上;宽度 50 毫米 、厚度 12 毫米 的工件 2 被固定在水平工作台 5 上且与砂轮轴向垂直;金刚石砂轮 1 、工件 2 和脉冲电源 5 形成放电回路。金刚石砂轮 1 的粒度为 46 目,浓度为 100% ,金属结合剂 16 为青铜结合剂 ,工件 2 为 S136H 模具钢。
采用轴向进给方式,金刚石砂轮 1 沿轴向方向在工件 2 表面作平面运动,金属结合剂 16 与切屑 17 之间会产生电火花放电将切屑 18 熔断排出。金刚石砂轮 1 转速为 25 米 / 秒,进给速度 30 毫米 / 分,进给深度 5 微米,脉冲电源 10 开路电压为 25 伏,占空比为 40% ,频率为 5000Hz 。与传统的机械磨削相比,放电磨削过程中的磨削力和磨削温度明显减小约 25% 和 15% ,而且工件 2 的表面粗糙度可以减少约 30% 。
本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (5)

  1. 一种短脉冲电熔排屑冷却的智能磨削装置,其特征在于,包括固定在数控磨床的砂轮轴上金刚石砂轮(1)、脉冲电源(10)、固定在数控磨床的水平工作台(5)上的测力仪传感器(4)、设置于工件(2)的小孔内用于测量加工温度的热电偶(3)、电压传感器(12)、电流传感器(11)、温度采集卡(6)、电荷放大器(7)、测力仪(8)、数字示波器(13) 、放电参数反馈调节系统(14),所述金刚石砂轮(1)为金属结合剂金刚石砂轮,所述脉冲电源(10)正极接砂轮(1),负极接工件(2),形成放电回路,所述电压传感器(12)和电流传感器(11)分别将采集的放电回路的放电电压、电流波形经数字示波器(13)储存于显示终端(9),所述热电偶(3)通过温度采集卡(6)连接显示终端(9),所述测力仪传感器(4)通过电路依次连接电荷放大器(7)、测力仪(8)和显示终端(9),所述放电参数反馈调节系统(14)用于根据显示终端(9)将所采集的电压、电流波形特征转化成的峰值电流、脉冲持续时间等脉冲放电参数来自适应地调节脉冲电源(10)的输出电压及电流值,从而实现智能的放电磨削加工。
  2. 根据权利要求1所述的短脉冲电熔排屑冷却的智能磨削装置,其特征在于:所述脉冲电源(10)的开路电压为20V-25V,占空比为40%-50%,频率为4000 Hz -5000Hz,脉冲火花放电的放电间隙为0~150微米,脉宽为10~100微秒,电流为0~10安。
  3. 根据权利要求1所述的短脉冲电熔排屑冷却的智能磨削装置,其特征在于:所述金刚石砂轮(1)的转速为20~50米/秒,进给深度为1~10微米,进给速度为100~500毫米/分。
  4. 根据权利要求1所述的短脉冲电熔排屑冷却的智能磨削装置,其特征在于:所述的工件(2)的材料为模具钢、硬质合金、钛合金、铝基碳化硅陶瓷。
  5. 根据权利要求1所述的短脉冲电熔排屑冷却的智能磨削装置,其特征在于:所述金刚石砂轮(1)的金属结合剂为青铜结合剂。
PCT/CN2015/100143 2015-03-19 2015-12-31 一种短脉冲电熔排屑冷却的智能磨削装置 WO2016145926A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/300,772 US9687952B2 (en) 2015-03-19 2015-12-31 Intelligent grinding device for short pulse electrical melt chip removal cooling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510122468.2 2015-03-19
CN201510122468.2A CN104742002B (zh) 2015-03-19 2015-03-19 一种短脉冲电熔排屑冷却的智能磨削装置

Publications (1)

Publication Number Publication Date
WO2016145926A1 true WO2016145926A1 (zh) 2016-09-22

Family

ID=53582558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/100143 WO2016145926A1 (zh) 2015-03-19 2015-12-31 一种短脉冲电熔排屑冷却的智能磨削装置

Country Status (3)

Country Link
US (1) US9687952B2 (zh)
CN (1) CN104742002B (zh)
WO (1) WO2016145926A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104547248A (zh) * 2015-01-02 2015-04-29 袁福德 一种治疗骨科疾病的药物及其制法与检测方法及其应用
CN104678897B (zh) * 2015-01-27 2017-10-27 合肥京东方光电科技有限公司 监控装置及方法、显示基板切割及磨边装置
CN104742002B (zh) 2015-03-19 2017-03-08 华南理工大学 一种短脉冲电熔排屑冷却的智能磨削装置
JP6406238B2 (ja) * 2015-12-18 2018-10-17 株式会社Sumco ウェーハ研磨方法および研磨装置
CN105522237B (zh) * 2016-02-04 2018-01-30 哈尔滨工业大学 一种反应烧结SiC陶瓷磨削过程中的金属基砂轮在线电火花修锐方法
CN106919142B (zh) * 2017-04-27 2023-05-23 华南理工大学 一种砂轮工具放电在线修复的网络远程监控系统
US10780549B2 (en) * 2017-12-26 2020-09-22 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Polishing device
CN108177030A (zh) * 2018-01-30 2018-06-19 华南理工大学 一种粗金刚石砂轮的镜面磨削方法
CN109407516A (zh) * 2018-12-19 2019-03-01 哈尔滨理工大学 Cfrp加工用自适应反馈排屑系统
CN109909885A (zh) * 2019-04-25 2019-06-21 北京工业大学 一种磨削温度的闭环控制系统
CN110328614A (zh) * 2019-07-08 2019-10-15 湖南科技大学 一种内圆磨削温度测量方法
CN111015370B (zh) * 2019-11-11 2021-07-02 华侨大学 基于热力耦合的磨削监控方法
CN113798927A (zh) * 2020-06-15 2021-12-17 重庆大学 一种电场辅助砂带磨削方法
CN112643548B (zh) * 2020-12-17 2022-05-27 湖南大学 一种干式磨床自适应除尘冷却砂轮装置的除尘冷却方法
CN115229697A (zh) * 2022-08-04 2022-10-25 上海交通大学 用于高温合金蜂窝磨削的砂轮及高温合金蜂窝的加工系统
CN116713518B (zh) * 2023-08-10 2023-10-13 江苏凯达重工股份有限公司 一种合金铸钢轧辊生产用铣床

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090186558A1 (en) * 2008-01-23 2009-07-23 Fujifilm Corporation Grinding method, grinding device and electrode therefor
CN102490121A (zh) * 2011-11-24 2012-06-13 华南理工大学 一种气中放电对磨的金属基金刚石砂轮v形尖角修整方法
CN103395002A (zh) * 2013-07-24 2013-11-20 华南理工大学 一种大颗粒金刚石砂轮的气中放电修锐修齐方法
CN104742002A (zh) * 2015-03-19 2015-07-01 华南理工大学 一种短脉冲电熔排屑冷却的智能磨削装置
CN204584931U (zh) * 2015-03-19 2015-08-26 华南理工大学 一种短脉冲电熔排屑冷却的智能磨削装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3886695A (en) * 1973-05-17 1975-06-03 Colorant Schmuckstein Gmbh Method for grinding a gem stone
US3916573A (en) * 1973-05-17 1975-11-04 Colorant Schmuckstein Gmbh Apparatus for grinding a gem stone
CN1557608A (zh) * 2004-01-19 2004-12-29 上海交通大学 基于气中放电辅助在线修整金刚石砂轮方法
CN100408241C (zh) * 2005-12-21 2008-08-06 湖南大学 金属结合剂超硬磨料砂轮的电火花-机械复合整形方法
US20100012628A1 (en) * 2006-06-30 2010-01-21 Mcmaster University Abrasion assisted wire electrical discharge machining process
US20080153402A1 (en) * 2006-12-20 2008-06-26 Christopher Arcona Roadway grinding/cutting apparatus and monitoring system
CN101722474A (zh) * 2009-12-24 2010-06-09 天津大学 Elid磨削电解电流的控制装置和方法
CN103203688B (zh) * 2013-03-12 2015-06-10 苏州科技学院 一种微尺度磨削在线电解修整装置及其方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090186558A1 (en) * 2008-01-23 2009-07-23 Fujifilm Corporation Grinding method, grinding device and electrode therefor
CN102490121A (zh) * 2011-11-24 2012-06-13 华南理工大学 一种气中放电对磨的金属基金刚石砂轮v形尖角修整方法
CN103395002A (zh) * 2013-07-24 2013-11-20 华南理工大学 一种大颗粒金刚石砂轮的气中放电修锐修齐方法
CN104742002A (zh) * 2015-03-19 2015-07-01 华南理工大学 一种短脉冲电熔排屑冷却的智能磨削装置
CN204584931U (zh) * 2015-03-19 2015-08-26 华南理工大学 一种短脉冲电熔排屑冷却的智能磨削装置

Also Published As

Publication number Publication date
CN104742002A (zh) 2015-07-01
US20170014967A1 (en) 2017-01-19
US9687952B2 (en) 2017-06-27
CN104742002B (zh) 2017-03-08

Similar Documents

Publication Publication Date Title
WO2016145926A1 (zh) 一种短脉冲电熔排屑冷却的智能磨削装置
Liu et al. Fabrication of micro-scale textured grooves on green ZrO2 ceramics by pulsed laser ablation
CN105215487A (zh) 一种面向非导电硬脆材料的微细高效加工方法及装置
CN110328607B (zh) 一种利用电场效应增强加工区域酸碱度的锗平面镜化学抛光方法
Feng et al. Investigation on machining performance of micro-holes EDM in ZrB 2-SiC ceramics using a magnetic suspension spindle system
Feng et al. Micro-holes EDM of superalloy Inconel 718 based on a magnetic suspension spindle system
CN105269284A (zh) 一种内凹形复杂轮廓pcd刀具的超精密高效制备工艺方法
CN111376396A (zh) 一种多刃超硬刀具铣削加工硬脆材料的加工方法
Wu et al. Laser induced oxidation of cemented carbide during micro milling
CN204584931U (zh) 一种短脉冲电熔排屑冷却的智能磨削装置
CN205129105U (zh) 一种面向非导电硬脆材料的微细高效加工装置
CN106825808A (zh) 双单向电火花线切割方法
CN108177030A (zh) 一种粗金刚石砂轮的镜面磨削方法
Liu et al. High speed abrasive electrical discharge machining of particulate reinforced metal matrix composites
CN112475491B (zh) 一种适用于绝缘硬脆性材料的双极性电极电火花加工装置及方法
GONG et al. Micro-grinding temperature simulation for nickel-based single crystal superalloy
CN104177088A (zh) 一种Ti-Si-N纳米晶-非晶复合陶瓷材料及其制备方法
CN104032252A (zh) 一种Al85Ni10La5非晶合金涂层的制备方法
CN103801992A (zh) 工程陶瓷激光诱导变质湿式磨削加工方法
Singh et al. Design and development of electro-discharge drilling process
CN102433423A (zh) 一种膜片弹簧压淬工艺及设备
CN105522237A (zh) 一种反应烧结SiC陶瓷磨削过程中的金属基砂轮在线电火花修锐方法
Choudhary et al. Blind hole drilling of hybrid aluminium-rice husk ash (ARHA) composite using rotary electro-discharge drilling
CN208051076U (zh) 一种电火花电极
Shehata et al. Optimization of EDM process parameters for Al–SiC reinforced metal matrix composite

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15300772

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885294

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15885294

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A SENT 15.01.18)

122 Ep: pct application non-entry in european phase

Ref document number: 15885294

Country of ref document: EP

Kind code of ref document: A1