WO2016144144A1 - Secondary battery and method for manufacturing same - Google Patents

Secondary battery and method for manufacturing same Download PDF

Info

Publication number
WO2016144144A1
WO2016144144A1 PCT/KR2016/002486 KR2016002486W WO2016144144A1 WO 2016144144 A1 WO2016144144 A1 WO 2016144144A1 KR 2016002486 W KR2016002486 W KR 2016002486W WO 2016144144 A1 WO2016144144 A1 WO 2016144144A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
secondary battery
supports
intermediate layer
salt structure
Prior art date
Application number
PCT/KR2016/002486
Other languages
French (fr)
Korean (ko)
Inventor
윤영수
지승현
이강수
Original Assignee
가천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가천대학교 산학협력단 filed Critical 가천대학교 산학협력단
Publication of WO2016144144A1 publication Critical patent/WO2016144144A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0563Liquid materials, e.g. for Li-SOCl2 cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a secondary battery and a method for manufacturing the same, and more particularly, to a secondary battery using a liquid electrolyte and a method for manufacturing the same.
  • Power sources for portable electronic devices such as mobile phones, personal digital assistants (PDAs) and portable multimedia players (PMPs); Motor driving power supplies such as high-power hybrid vehicles and electric vehicles; And the use of secondary batteries as power sources for flexible displays, such as electronic ink (e-ink), electronic paper (e-paper), flexible liquid crystal display devices (LCDs), and flexible organic diodes (OLEDs).
  • e-ink electronic ink
  • e-paper electronic paper
  • LCDs flexible liquid crystal display devices
  • OLEDs flexible organic diodes
  • Korean Laid-Open Patent Publication No. 10-2010-0044087 (2010.04.29) or the like is a method of manufacturing an electrode, instead of the conventional slurry coating technique, the electrode for the secondary battery is thin, uniform and flat.
  • a cumbersome process for injecting a liquid electrolyte after forming and packaging the anode and the cathode, respectively, is not performed in one procedure. You have to go through.
  • Patent Document 1 Korean Patent Publication No. 10-2010-0044087
  • the present invention provides a secondary battery and a method of manufacturing the same, which can easily form a liquid electrolyte therein, can prevent electrical conduction between the positive electrode and the negative electrode with a simple structure, and are easy to package.
  • Secondary battery is a current collector to send and receive electrons; A first electrode containing a first active material and formed on the current collector; An electrolyte layer formed on the first electrode; And a second electrode formed on the electrolyte layer, wherein the electrolyte layer comprises: a plurality of supports spaced apart from each other; And it may include a liquid electrolyte provided in the spaced space between the plurality of supports.
  • the plurality of supports may be made of a solid electrolyte.
  • the liquid electrolyte may be formed by dissolving a solid salt structure having a continuous network structure provided in the separation space in a solvent.
  • the electrolyte layer may have a thickness of 1 to 200 ⁇ m.
  • a secondary battery manufacturing method comprises the steps of forming a current collector; Forming a first electrode on the current collector; Forming an intermediate layer on the first electrode, the intermediate layer including a plurality of supports spaced apart from each other and a salt structure provided in a spaced space between the plurality of supports; Forming a second electrode on the intermediate layer; And dissolving the salt structure in a solvent to form a liquid electrolyte.
  • the salt structure may be formed in a continuous network structure, and the plurality of supports may be formed in an isolated shape by the salt structure, respectively.
  • the current collector, the first electrode, the intermediate layer, and the second electrode may all be formed by a printing process.
  • any one selected from the plurality of supports and the salt structure may be formed first, and then the other one may be formed.
  • Forming the intermediate layer can be performed as a procedure.
  • the intermediate layer may be formed by 3D printing using a plurality of inks including the constituents of the plurality of supports and the constituents of the salt structure.
  • the plurality of supports may be formed of a solid electrolyte.
  • the intermediate layer may be formed to a height of 1 to 200 ⁇ m.
  • Secondary battery according to an embodiment of the present invention can easily form a liquid electrolyte therein by forming a salt structure using a salt (for example, lithium salt) and dissolving the salt structure with a solvent. Accordingly, since the salt structure can be formed by a printing technique, it is possible to form all of the current collector, the first electrode, the plurality of supports, the salt structure, and the second electrode at once by 3D printing. As a result, all manufacturing processes can be performed in an inline process, which can shorten the process time and improve productivity and process efficiency. In addition, packaging can be easily performed by packaging one stack formed at a time by 3D printing.
  • a salt for example, lithium salt
  • a plurality of supports are formed between the first electrode and the second electrode to physically block the positive electrode and the negative electrode during the 3D printing process, and to prevent the electrical conduction of the positive electrode and the negative electrode without a thick separator during charge and discharge of the secondary battery.
  • the thickness of the electrolyte layer can be increased by increasing the ratio of the positive electrode or the negative electrode per unit volume, thereby increasing the amount of the active material per unit volume, thereby improving the energy density of the separator.
  • the plurality of supports may be formed of a solid electrolyte to allow ions to move to the plurality of supports, thereby improving the overall ionic conductivity.
  • unit cells of the secondary battery may be stacked. Therefore, since a plurality of unit cells are formed to be stacked by 3D printing, the unit cells and the unit cells can be stacked during the continuous process, thereby increasing the process efficiency and reducing the process time, thereby obtaining a secondary battery having a high energy density.
  • FIG. 1 is a cross-sectional view showing a secondary battery according to an embodiment of the present invention.
  • Figure 2 is a perspective view showing a current collector formed by a secondary battery manufacturing method according to another embodiment of the present invention.
  • FIG 3 is a perspective view illustrating a first electrode formed on a current collector in a method of manufacturing a secondary battery according to another embodiment of the present invention.
  • Figure 4 is a perspective view showing an intermediate layer formed on the first electrode in a secondary battery manufacturing method according to another embodiment of the present invention.
  • FIG. 5 is a perspective view illustrating a second electrode formed on an intermediate layer in a method of manufacturing a secondary battery according to another embodiment of the present invention.
  • Figure 6 is a perspective view of a secondary battery packaged in a packaging material according to a secondary battery manufacturing method according to another embodiment of the present invention.
  • Figure 7 is a perspective view showing one embodiment of a method of forming a plurality of supports and salt structure according to another embodiment of the present invention.
  • FIG. 8 is a perspective view showing a modification of the method of forming a plurality of supports and salt structure according to another embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of a rechargeable battery according to an exemplary embodiment of the present invention.
  • a secondary battery 100 includes a current collector 110 for sending and receiving electrons; A first electrode 120 containing a first active material and formed on the current collector 110; An electrolyte layer 130 formed on the first electrode 120; And a second electrode 140 including a second active material and formed on the electrolyte layer 130.
  • the current collector 110 serves to flow an electric current in a charging / discharging process by exchanging electrons, and may use a conductive substrate having no porous structure or a conductive substrate without holes.
  • the conductive substrate ie, current collector
  • the conductive substrate may be formed using one or more selected from copper, aluminum, stainless steel, molybdenum, tungsten, tantalum, titanium, and nickel.
  • the present invention is not limited thereto, and any electrode can be used as long as the electrode can be formed to have good adhesion on the surface.
  • the current collector 110 preferably has a thin thickness, and may be metal foil, and the thickness thereof may be 1 nm to 30 ⁇ m, preferably 10 ⁇ m to 30 ⁇ m.
  • the current collector 110 is most preferably aluminum foil, and the thickness thereof is preferably 10 ⁇ m to 30 ⁇ m.
  • the current collector 110 may be formed using a printing technique, electroless plating or electrolytic plating.
  • the current collector 110 may form a concave-convex structure or the like on the surface on which the electrode is formed to control the surface roughness, and may further be subjected to UV or plasma surface treatment.
  • the surface energy of the current collector 110 may be increased to increase the uniformity of the electrode when the electrode is formed of a low viscosity ink.
  • the first electrode 120 may contain a first active material and may be formed on the current collector 110.
  • the first electrode 120 may be any one of a positive electrode and a negative electrode, and the first active material may be an active material of any one of the same positive electrode and the negative electrode as the first electrode 120.
  • the first electrode 120 may include a first active material and a conductive agent, and may further include a binder for binding the first active material. When the first electrode 120 is a positive electrode, most of the ceramic-based positive electrode active material used as the positive electrode may be used.
  • lithium-containing cobalt oxide e.g., LiCoO 2
  • lithium-containing nickel cobalt oxide e.g., LiNi 0. 8 Co 0. 2 O 2
  • lithium manganese composite oxide for example, LiM 2 O 4 , LiMnO 2
  • the conductive agent may be acetylene black, carbon black, graphite, or the like as a material for improving conductivity of the active material.
  • the binder may be polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), ethylene propylene diene copolymer (EPDM), styrene butadiene rubber (SBR), or the like.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • EPDM ethylene propylene diene copolymer
  • SBR styrene butadiene rubber
  • the electrolyte layer 130 may be formed on the first electrode 120, and may include a plurality of supports 131 and spaced apart from each other and a liquid electrolyte 132 provided in a space between the plurality of supports 131. It may include.
  • the plurality of supports 131 are formed to be spaced apart from each other, and provide a space for separating the liquid electrolyte 132 to have a continuous network structure.
  • a separator is required in the electrolyte layer in order to prevent an electrical conduction shape between the positive electrode and the negative electrode.
  • Conventional separators have a thickness of several tens of micrometers, which not only increases the thickness of the electrolyte layer but are also porous membranes. Therefore, when the second electrode is deposited on the separator in a continuous lamination process using a printing process or a thin-thick film process, Through the minute pores, the conductive material of the second electrode may be coated inside the pores of the separator, thereby causing an electrical short. For this reason, conventionally, there was a limitation in manufacturing the entire secondary battery by the printing process.
  • the second electrode 140 is formed on an intermediate layer made of a salt structure 132 provided in a space between the plurality of supports 131 and the plurality of supports 131 spaced apart from each other.
  • This intermediate layer does not contain micropores unlike conventional separators. Accordingly, when the second electrode is formed by the printing process, the conductive material may be coated inside the microcavity to solve a problem in which a short occurs. Details of the intermediate layer will be described later in the secondary battery manufacturing method according to another embodiment of the present invention.
  • ionic conductivity may be controlled through the plurality of supports 131.
  • the thickness of the electrolyte layer 130 may be reduced, and thus, the overall thickness of the secondary battery 100 may be reduced since the electrical conduction of the positive electrode and the negative electrode may be prevented without a thick separator in the electrolyte layer 130.
  • the ratio of the first electrode (or the anode) or the second electrode (or the cathode) per unit volume can be maximized, thereby increasing the amount of the active material per unit volume.
  • the present invention can improve the energy density in the present invention by solving the conventional problem of low energy density.
  • the distance between the positive electrode and the negative electrode can be kept constant by the plurality of supports 131.
  • the plurality of supports 131 may physically block the positive electrode and the negative electrode, printing of the current collector 110, the first electrode 120, the electrolyte layer (or the plurality of supports), and the second electrode 140 may be performed. It can be formed by technique. In particular, the secondary battery 100 can be manufactured easily and simply by 3D printing technique.
  • the plurality of supports 131 may be evenly distributed in the plane of the secondary battery 100 so as to make the distribution of the liquid electrolyte 132 uniform, and may be spaced apart from each other to distribute the force to the space.
  • the space between the plurality of supports 131 is arranged because the plurality of supports 131 are spaced apart from each other even when the plurality of supports 131 are made of a rigid material to support the laminated structure. Liquid electrolyte 132 may be provided. Accordingly, flexibility of the entire secondary battery 100 can be improved without sacrificing flexibility by the plurality of supports 131.
  • the plurality of supports 131 may be made of a solid electrolyte.
  • ions may also move to the plurality of supports 131, thereby improving ion conductivity of the secondary battery 100 than when forming the plurality of supports 131 with an insulating material. You can.
  • the said solid electrolyte is not restrict
  • it may be a single substance or a mixture of two or more selected from the group consisting of molybdenum oxide, titanium oxide, vanadium oxide, chromium oxide, tantalum oxide, zirconium oxide, hafnium oxide, niobium oxide and tungsten oxide.
  • the liquid electrolyte 132 may be formed to have a continuous network structure, and may be provided in a spaced space between the plurality of supports 131. Since the liquid electrolyte 132 has better overall ionic conductivity and transport rate than the solid electrolyte, the liquid electrolyte 132 may be used to improve the ionic conductivity of the secondary battery 100.
  • Examples of the material of the liquid electrolyte 132 include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), lithium hexafluoride (LiAsF 6 ), and lithium trifluoromethsulfonate ( LiCF 3 SO 3 ), lithium titanate (Li 4 Ti 5 O 12 ; LTO), lithium iron phosphate (LiFePO 4 ; LFP), bistrifluoromethylsulfonylimide lithium [LiN (CF 3 SO 2 ) 2 ], etc.
  • One or two or more selected from the lithium salts thereof may be dissolved in a solvent and used.
  • lithium borofluoride (LiBF 4 ) can suppress the gas generation during supercharge.
  • the solvent may be a nonaqueous solvent, and a known nonaqueous solvent may be used as a solvent of a lithium secondary battery.
  • PC Propylene carbonate
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • DME 1,2-dimethoxyethane
  • ⁇ -BL ⁇ -butyrolactone
  • THF tetrahydrofran
  • 2-MeTHF 2-methyltetrahydrofran
  • 1,3-dioxolane 1,3-dimethoxypropane
  • vinylene carbonate (VC) etc.
  • a mixed solvent may be used, but is not particularly limited thereto.
  • the solid salt structure is formed to have a continuous network structure, and then a solvent for dissolving the salt is injected into one place.
  • the liquid electrolyte 132 may be formed by allowing a solvent to dissolve all of the salts through a continuous network structure. Accordingly, the liquid electrolyte 132 may be simply formed in the secondary battery 100, and since the solvent may be injected only to one place, the sealing area may be reduced, and thus the sealing process may be facilitated.
  • all the laminates that is, the current collector, the first electrode, the plurality of supports, the salt structure, and the second electrode
  • the liquid electrolyte 132 may be formed by dissolving a solid salt structure having a continuous network structure provided in a spaced space between the plurality of supports 131 in a solvent.
  • the electrolyte layer 130 may have a thickness of 1 to 200 ⁇ m.
  • the thickness of the electrolyte layer 130 is thinner than 1 ⁇ m, a short may be generated without preventing the electrical conduction between the positive electrode and the negative electrode.
  • the thickness of the electrolyte layer 130 is thicker than 200 ⁇ m, the output efficiency may be reduced because the moving distance of the ions is too long and the ion transfer time is long.
  • the ratio of the first electrode (or anode) or the second electrode (or cathode) per unit volume can be maximized, and thus the energy density can be improved because the amount of the active material per unit volume increases. have.
  • the second electrode 140 may contain a second active material and may be formed on the electrolyte layer 130.
  • the second electrode 140 may be the remaining electrode corresponding to the first electrode 120 among the positive electrode and the negative electrode, and the second active material may be determined according to the polarity of the second electrode 140.
  • the second electrode 140 may include a second active material and a conductive agent, and may further include a binder for binding the second active material.
  • the second active material is a conductive polymer such as polyacetal, polyacetylene, or polypyrrole capable of doping lithium ions, coke, carbon fiber, graphite, or mesophase capable of doping lithium ions.
  • Carbon materials such as pitch-based carbon, pyrolytic gaseous materials, and resinous plastics, and carbogen compounds such as titanium disulfide, molybdenum disulfide, and niobium selenide, silicon (Si), tin (Sn), vanadium (V), and titanium (Ti) ), Metal materials such as germanium (Ge), oxides thereof, or two or more compounds can be used.
  • the carbon material may be a graphite carbon material, a carbon material in which the graphite crystal part and the amorphous part are mixed, or a carbon material having a laminated structure in which the crystal layer is irregular.
  • the conductive agent may be acetylene black, carbon black, graphite, or the like as a material for improving conductivity of the active material.
  • the binder may be polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), ethylene propylene diene copolymer (EPDM), styrene butadiene rubber (SBR), or the like.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • EPDM ethylene propylene diene copolymer
  • SBR styrene butadiene rubber
  • the first electrode 120 is a cathode and the second electrode 140 is an anode
  • the first electrode 120 and the second electrode 140 may be formed on the contrary, but the polarity of each electrode may vary.
  • the active material can be selected accordingly.
  • the current collector 110 may also be formed on the second electrode 140, and the components (that is, the current collector, the first electrode, the plurality of supports, the liquid electrolyte, and the second electrode) which are the base of the secondary battery 100 may be used. ) May be packaged into the exterior material 150.
  • unit cells of the secondary battery 100 may be stacked.
  • FIGS. 2 to 6 are perspective views sequentially showing a secondary battery manufacturing method according to another embodiment of the present invention
  • Figures 7 to 8 is a method of forming a plurality of supports and salt structure according to another embodiment of the present invention. It is a perspective view shown.
  • a secondary battery manufacturing method comprises the steps of forming a current collector; Forming a first electrode on the current collector; Forming an intermediate layer on the first electrode, the intermediate layer including a plurality of supports spaced apart from each other and a salt structure provided in a spaced space between the plurality of supports; Forming a second electrode on the intermediate layer; And dissolving the salt structure in a solvent to form a liquid electrolyte.
  • the current collector 110 serves to flow current by exchanging electrons in a charging / discharging process, and a conductive substrate having a porous structure or a conductive substrate having no hole may be used.
  • the conductive substrate ie, current collector
  • the conductive substrate may be formed using one or more selected from copper, aluminum, stainless steel, molybdenum, tungsten, tantalum, titanium, and nickel.
  • the present invention is not limited thereto, and any electrode can be used as long as the electrode can be formed to have good adhesion on the surface.
  • the current collector 110 may be formed using a printing technique (or 3D printing technique) as well as electroless plating or electrolytic plating. Meanwhile, in the forming of the current collector 110, the step of forming an uneven structure or the like on the surface of the current collector 110 on which the electrode is formed and the UV or plasma surface treatment of the current collector 110 may be further roughened. .
  • the first electrode 120 is formed on the current collector 110 (FIG. 3).
  • the first electrode 120 may include an active material and a conductive agent, and the first electrode 120 may be any one of an anode and a cathode.
  • the first electrode 120 is a positive electrode
  • most of the ceramic-based positive electrode active material used as the positive electrode may be used as the active material.
  • various oxides such as manganese dioxide, lithium manganese composite oxide, lithium-containing nickel oxide, lithium-containing cobalt compound, lithium-containing nickel cobalt oxide, lithium-containing iron oxide, and vanadium oxide containing lithium, titanium disulfide, and molybdenum disulfide And chalcogen compounds.
  • lithium-containing cobalt oxide e.g., LiCoO 2
  • lithium-containing nickel cobalt oxide e.g., LiNi 0. 8 Co 0. 2 O 2
  • lithium manganese composite oxide for example, LiM 2 O 4 , LiMnO 2
  • it may further comprise a binder for binding the active material, the conductive agent and the binder may be contained in a small amount compared to the active material.
  • the intermediate layer 130 is formed on the first electrode 120.
  • the plurality of supports 131 are formed to be spaced apart from each other, and the salt structure is provided in a spaced space between the plurality of supports 131.
  • 132 is formed (FIG. 4).
  • the salt structure 132 may be formed in a continuous network structure, a plurality of supports 131 may be formed in a shape isolated by the salt structure 132, respectively.
  • the solvent capable of dissolving the salt may move as a whole through the continuous network structure, the solvent is injected into one place to simplify the A liquid electrolyte can be formed inside.
  • the sealing area may be reduced, and thus the sealing process may be simplified, and the problem of using a liquid electrolyte in the conventional printing technique may be solved.
  • the salt since the salt may be stacked while maintaining the shape, all the laminates (ie, the current collector, the first electrode, the plurality of supports, the salt structure, and the second electrode) may be formed by a printing technique. Accordingly, it is possible to easily and simply form the laminate which is the basis of the secondary battery by 3D printing.
  • the salt structure 132 may provide a support structure on which the upper stack (eg, the second electrode) can be effectively stacked during the 3D printing process.
  • the salt may include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), bisodium hexafluoride (LiAsF 6 ), and lithium trifluoromethsulfonate (LiCF). 3 SO 3 ), lithium titanate (Li 4 Ti 5 O 12 ; LTO), lithium iron phosphate (LiFePO 4 ; LFP), bistrifluoromethylsulfonylimide lithium [LiN (CF 3 SO 2 ) 2 ], and the like. It may be one kind or two or more kinds selected from lithium salts (electrolytes).
  • the solvent may be a non-aqueous solvent, propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), 1,2-dimethoxyethane (DME), ⁇ -butyrolactone ( ⁇ -BL), tetrahydrofran (THF), 2-methyltetrahydrofran (2-MeTHF), 1,3-dioxolane, 1,3-dimethoxypropane, vinylene carbonate (VC) and the like
  • PC propylene carbonate
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • DME 1,2-dimethoxyethane
  • ⁇ -BL ⁇ -butyrolactone
  • THF tetrahydrofran
  • 2-MeTHF 2-methyltetrahydrofran
  • 1,3-dioxolane 1,3-dimethoxypropane
  • vinylene carbonate VC
  • the plurality of supports 131 are spaced apart or isolated from each other to provide a space for forming a liquid electrolyte.
  • a thick separator having a thickness of several tens of micrometers was required in order to prevent an electrical conduction shape between the positive electrode and the negative electrode.
  • the ionic conductivity can be adjusted through the plurality of supports 131, It is possible to prevent the electrical conduction between the positive electrode and the negative electrode without a separator.
  • the thickness of the intermediate layer 130 can be increased to increase the ratio of the first electrode (or anode) or the second electrode (or cathode) per unit volume, thereby increasing the amount of active material per unit volume, thereby improving energy density compared to using a separator.
  • the plurality of supports 131 together with the salt structure 132 provides a support structure on which the upper stack (eg, the second electrode) can be effectively stacked during the 3D printing process. It is possible to manufacture a secondary battery.
  • the plurality of supports 131 may be evenly distributed in the plane of the secondary battery 100 so as to make the distribution of the liquid electrolyte uniform, and may be spaced apart from each other to distribute the force to the space.
  • the plurality of supports 131 are made of a rigid material to support the stacked structure, the plurality of supports 131 are spaced apart from each other, so that the liquid electrolyte is disposed in the space between the plurality of supports 131. Since it is provided, flexibility of the entire secondary battery 100 can be improved without sacrificing flexibility by the plurality of supports 131.
  • the plurality of supports 131 may be formed of a solid electrolyte.
  • ions may also move to the plurality of supports 131, thereby improving ion conductivity of the secondary battery 100 than when forming the plurality of supports 131 with an insulating material. You can.
  • the said solid electrolyte is not restrict
  • it may be a single substance or a mixture of two or more selected from the group consisting of molybdenum oxide, titanium oxide, vanadium oxide, chromium oxide, tantalum oxide, zirconium oxide, hafnium oxide, niobium oxide and tungsten oxide.
  • any one of the plurality of supports 131 and the salt structure 132 may be formed, and the other one of the plurality of supports 131 and the salt structure 132 may be formed.
  • the salt structure 132 is first formed to provide a plurality of isolation spaces in which a plurality of supports 131 are formed, and then filled in the provided plurality of isolation spaces. Can be formed. Using this method, it is possible to form the plurality of supports 131 and the salt structure 132 using ink (or printing technique), and simply form the plurality of the supports 131 and the salt structure 132. Can be.
  • a method of providing a plurality of isolation spaces to the salt structure 132 includes a method of stacking only portions except for the plurality of isolation spaces and the method of etching all of the isolation spaces after stacking in a plane.
  • the method is not limited thereto, and the plurality of supports 131 may be formed first, and the salt structure 132 may be formed in the spaced space between the plurality of supports 131. It is sufficient if the intermediate layer 130 including the 131 and the salt structure 132 can be formed.
  • Forming the intermediate layer may be performed as one procedure.
  • the intermediate layer 130 may be formed in a single process, and when the printing technique is used, the intermediate layer 130 may be formed by moving the nozzle 10 in the shortest distance.
  • the intermediate layer 130 may be formed by a 3D printing technique using a plurality of inks including components of each of the plurality of supports 131 and the salt structure 132.
  • the intermediate layer 130 may be formed by 3D printing.
  • the plurality of supports 131 and the salt structure 132 may be formed by using a plurality of nozzles 10. It may be formed, and may have a thickness of the intermediate layer 130 at a time when the nozzle 10 passes.
  • the nozzle 10 may have a thickness of the intermediate layer 130 by stacking continuously varying the height in the z-axis, the formation method is not particularly limited.
  • the intermediate layer 130 When the intermediate layer 130 is formed by the 3D printing technique, the intermediate layer 130 may be easily and quickly formed by moving the shortest distance of the nozzle 10.
  • the intermediate layer 130 may be formed of the plurality of supports 131 and the salt structure 132 to form all the laminates that are the basis of the secondary battery by 3D printing. Accordingly, the secondary battery can be manufactured easily and quickly by 3D printing technique. Accordingly, all manufacturing processes of the secondary battery may be performed in an inline process, and thus, the process time may be shortened, and the productivity and process efficiency of the secondary battery may be improved.
  • the plurality of inks are made of powders of the constituents of the plurality of supports 131 and the constituents of the salt structure 132, and each includes a solvent in which powders of the respective constituents are dissolved or dispersed. It may further include an additive for improving the adhesion and ionic conductivity of.
  • the additive may include at least one or more of a binder, a conductive agent, a humectant, a dispersant, a thickener, and a buffer. In order to perform 3D printing, the ink must maintain an appropriate viscosity, and the additives can be added to prepare an ink having improved conductivity of the active material while maintaining the proper viscosity.
  • the solvent is a deionized water (Deionized water) as a main component, ethanol, methanol, butanol, propanol, isopropyl alcohol, isobutyl alcohol, ethylene glycol, N-methyl-2-pyrrolidone, etc. to control the drying rate
  • deionized water a deionized water as a main component
  • ethanol, methanol, butanol, propanol isopropyl alcohol, isobutyl alcohol, ethylene glycol, N-methyl-2-pyrrolidone, etc.
  • the binder serves to impart a binding force to the ink, may be a binder, polyvinyl alcohol, ethylene-propylene-diene terpolymer, styrene-butadiene rubber, polyvinylidene fluoride (PVDF), polytetrafluoro One or more selected from ethylene, tetrafluoroethylene-hexafluoropropylene copolymer, carboxymethylcellulose (CMC) can be used.
  • the conductive agent may be acetylene black, carbon black, graphite, carbon fiber, carbon nanotube, or the like as a material for improving conductivity.
  • the moisturizing agent serves to prevent the clogging of the nozzle by inhibiting the drying of the ink, glycols, glycerol, pyrrolidone and the like can be used.
  • the dispersant serves to evenly disperse the active material and the conductive agent, and include fatty acid salts, alkyl dicarboxylic acid salts, alkyl sulfate ester salts, polyhydric acid ester alcohol salts, alkylnaphthalene sulfate salts, alkylbenzene sulfate salts, alkyl naphthalene sulfate salts, and alkyl salts.
  • the thickener serves to improve the viscosity
  • ethylene-vinyl alcohol copolymer, cellulose derivative (for example, carboxymethyl cellulose, methyl cellulose) and the like can be used.
  • the buffer is a material that maintains the stability of the ink and adjusts the appropriate pH, it may be used one or more amine compounds selected from trimethylamine, triethanolamine, diethanolamine, ethanolamine or sodium hydroxide, ammonium hydroxide.
  • the stack is formed by using each ink of the stack, and each of the ink is the powder of each component of the stack and the stack It may include a solvent for dissolving or dispersing each component powder.
  • the printer for 3D printing may be a printer that can be controlled by three axes of x, y, and z, and micronozzles and bulk nozzles may be used.
  • a pneumatic controller capable of controlling the ejection speed of the inks may be used.
  • the plurality of supports 131 and the salt structure 132 may be formed to a height of 1 to 200 ⁇ m.
  • the plurality of supports 131 and the salt structure 132 forms the intermediate layer 130 by dissolving the salt structure 132 in a solvent to form a liquid electrolyte.
  • the thickness of the intermediate layer 130 becomes too thin and becomes thinner than 1 ⁇ m, a short may not occur without preventing an electric conduction phenomenon between the positive electrode and the negative electrode.
  • the output distance may be reduced because the moving distance of the ions becomes too long and the ion transfer time is long.
  • the ratio of the first electrode (or anode) or the second electrode (or cathode) per unit volume can be maximized, and the energy density can be improved because the amount of the active material per unit volume increases.
  • the second electrode 140 is formed on the intermediate layer 130 (FIG. 5).
  • the second electrode 140 may include an active material and a conductive agent, and the second electrode 140 may be a remaining electrode corresponding to the first electrode 120 among the positive electrode and the negative electrode.
  • conductive polymers such as polyacetal, polyacetylene, polypyrrole and the like, which are capable of doping lithium ions with an active material, and coke, carbon fiber, graphite, and mesophase pitch system capable of doping lithium ions
  • Carbon materials such as carbon, pyrolytic gaseous carbon materials, resinous plastics, and carbogen compounds such as titanium disulfide, molybdenum disulfide, niobium selenide, silicon (Si), tin (Sn), vanadium (V), titanium (Ti), Metal materials such as germanium (Ge), oxides thereof, or two or more compounds may be used.
  • the carbon material may be a graphite carbon material, a carbon material in which the graphite crystal part and the amorphous part are mixed, or a carbon material having a laminated structure in which the crystal layer is irregular. And it may further comprise a binder (or binder) for binding the active material, the conductive agent and the binder may be contained in a small amount compared to the active material.
  • a binder or binder for binding the active material
  • the conductive agent and the binder may be contained in a small amount compared to the active material.
  • the first electrode 120 is a cathode and the second electrode 140 is an anode
  • the first electrode 120 and the second electrode 140 may be formed on the contrary, but the polarity of each electrode may vary.
  • the active material can be selected accordingly.
  • the current collector 110, the first electrode 120, the intermediate layer 130, and the second electrode 140 may all be formed by a printing process.
  • the intermediate layer 130 is composed of the plurality of supports 131 and the salt structure 132, and the current collector 110, the first electrode 120, the intermediate layer 130, which are the basis of the secondary battery in the printing process, and All of the second electrodes 140 may be formed. Accordingly, the secondary battery can be manufactured easily and quickly by 3D printing technique. Accordingly, all manufacturing processes of the secondary battery may be performed in an inline process, and thus, the process time may be shortened, and the productivity and process efficiency of the secondary battery may be improved.
  • the salt structure 132 is dissolved in a solvent to form a liquid electrolyte.
  • the laminate which is the basis of the secondary battery, may be packaged with the exterior material 150, and a solvent for dissolving the salt structure 132 may be injected into the salt structure 132 to form a liquid electrolyte. have.
  • the injection hole used for injection of the liquid electrolyte is sealed to prevent leakage of the liquid electrolyte after the injection of the solvent.
  • the method may further include forming a current collector 110 on the second electrode 140, and stacking unit cells of the secondary battery 100 to further improve energy density. It may further comprise a step.
  • the exterior member 150 may be formed by 3D printing, or a plurality of unit cells may be formed by 3D printing to be stacked. In this case, the unit cell and the unit cell can be stacked during the continuous process, thus increasing the process efficiency and reducing the process time, and when forming the exterior material 150 by 3D printing, the laminate which is the basis of the secondary battery is sealed.
  • a hole may be formed to form an injection hole for dissolving the salt structure 132.
  • the exterior member 150 may be formed so that the injection hole of the solvent for dissolving the salt structure 132 is formed, and the injection hole is also sealed.
  • the second electrode of one unit cell and the first electrode of another unit cell may be stacked so as to be in contact with each other.
  • the second electrode and the first electrode of another unit cell may be connected. At this time, there is no particular limitation in the method of connecting the second electrode of any one unit cell and the first electrode of the other unit cell.
  • the secondary battery according to an embodiment of the present invention can easily form a liquid electrolyte therein by forming a salt structure using a salt (for example, lithium salt) and dissolving the salt structure with a solvent.
  • Salt structures can be formed by printing techniques.
  • 3D printing can form all of the current collector, the first electrode, the plurality of supports, the salt structure, and the second electrode at once.
  • all manufacturing processes can be performed in an inline process, which can shorten the process time and improve productivity and process efficiency.
  • packaging can be easily performed by packaging one stack formed at a time by 3D printing.
  • a plurality of supports are formed between the first electrode and the second electrode to physically block the positive electrode and the negative electrode during the 3D printing process, and to prevent the electrical conduction of the positive electrode and the negative electrode without a thick separator during charge and discharge of the secondary battery.
  • the thickness of the electrolyte layer can be increased by increasing the ratio of the positive electrode or the negative electrode per unit volume, thereby increasing the amount of the active material per unit volume, thereby improving the energy density of the separator.
  • the plurality of supports may be formed of a solid electrolyte to allow ions to move to the plurality of supports, thereby improving the overall ionic conductivity. Meanwhile, in order to further improve energy density, unit cells of the secondary battery may be stacked.
  • the unit cells and the unit cells can be stacked during the continuous process, thereby increasing the process efficiency and reducing the process time, thereby obtaining a secondary battery having a high energy density.

Abstract

The present invention provides a secondary battery comprising: a collector for donating or accepting electrons; a first electrode containing a first active material and formed on the collector; an electrolyte layer formed on the first electrode; and a second electrode containing a second active material and formed on the electrolyte layer, wherein the electrolyte layer comprises: a plurality of supports formed such that the supports are spaced apart from each other; and a liquid electrolyte provided in the spaced gaps between the plurality of supports.

Description

이차전지 및 그 제조방법Secondary Battery and Manufacturing Method Thereof
본 발명은 이차전지 및 그 제조방법에 관한 것으로서, 보다 상세하게는 액체 전해질을 사용하는 이차전지 및 그 제조방법에 관한 것이다.The present invention relates to a secondary battery and a method for manufacturing the same, and more particularly, to a secondary battery using a liquid electrolyte and a method for manufacturing the same.
최근 이동전화, 개인휴대용 정보단말기(PDA), 휴대형 멀티미디어 플레이어(PMP) 등의 휴대용 전자기기의 전원; 고출력용 하이브리드 자동차, 전기자동차 등의 모터 구동용 전원; 및 전자잉크(e-ink), 전자 종이(e-paper), 플렉서블 액정표시소자(LCD), 플렉서블 유기다이오드(OLED) 등의 플렉서블 디스플레이용 전원으로서 이차 전지의 사용이 급속히 증가하고 있다. 또한, 향후 인쇄회로 기판 상의 집적회로 소자용 전원으로서도 응용 가능성이 높아지고 있다.Power sources for portable electronic devices such as mobile phones, personal digital assistants (PDAs) and portable multimedia players (PMPs); Motor driving power supplies such as high-power hybrid vehicles and electric vehicles; And the use of secondary batteries as power sources for flexible displays, such as electronic ink (e-ink), electronic paper (e-paper), flexible liquid crystal display devices (LCDs), and flexible organic diodes (OLEDs). In addition, the applicability is increasing as a power supply for integrated circuit devices on a printed circuit board.
그러나, 휴대용 전자기기의 전원으로 사용될 경우 안전성을 위한 패키징으로 인해 다양한 제품 디자인에 제약이 가해진다. 모터 구동용 전원으로서 사용되는 경우에는 고출력화, 소형 및 경량화에 대한 필요성이 증가하고 있고, 플렉서블 디스플레이용 전원으로 사용하는 경우에는 얇고 가벼우면서도 구부림이 가능하도록 제조되어야 한다. 그리고 집적회로 소자용 전원으로서 사용하기 위해서는 일정한 형태로 정밀하게 패터닝되어야 한다.However, when used as a power source for portable electronic devices, packaging for safety imposes restrictions on various product designs. When used as a power source for driving motors, the need for high output, small size, and light weight is increasing, and when used as a power supply for flexible display, it should be manufactured to be thin and light while being bent. In order to use it as a power source for an integrated circuit device, it must be precisely patterned in a certain form.
이와 같은 이차전지에 요구되는 다양한 요구를 충족시키기 위해 한국공개특허 제10-2010-0044087호(2010.04.29) 등에서는 전극 제조 방법으로서 기존의 슬러리 코팅 기법 대신에 이차전지용 전극을 얇고 균일하면서도 평탄하게 제조할 수 있으며 원하는 형태의 패턴을 경제적으로 제조할 수 있는 프린팅 기법이 게재되어 있다. 하지만, 전반적인 이온 전도도(ionic conductivity)와 운반율 수치가 우수한 액체 전해질을 사용하기 위해서는 하나의 절차로 프린팅 공정을 수행하지 못하고 양극과 음극을 각각 형성하여 패키징한 후 액체 전해질을 주입하기 위한 번거로운 공정들을 거쳐야 한다. 또한, 양극과 음극의 전기적인 통전을 방지하기 위해 수십 ㎛로 두꺼운 분리막을 사용하여야 하는 문제점이 있다. 그리고 분리막을 사용하는 경우에 이차전지의 전반적인 두께가 두꺼워지고, 이에 따라 이차전지가 유연 특성을 갖기 어려워진다. 또한, 양극과 음극을 물리적으로 이격시켜 그 중간에 분리막을 위치시키고 액체 전해질을 주입해야 하기 때문에 패키징이 어렵다는 문제점도 있다.In order to meet various demands of such a secondary battery, Korean Laid-Open Patent Publication No. 10-2010-0044087 (2010.04.29) or the like is a method of manufacturing an electrode, instead of the conventional slurry coating technique, the electrode for the secondary battery is thin, uniform and flat. There are printing techniques that can be produced and that can economically produce the desired shape pattern. However, in order to use a liquid electrolyte having excellent overall ionic conductivity and transport rate, a cumbersome process for injecting a liquid electrolyte after forming and packaging the anode and the cathode, respectively, is not performed in one procedure. You have to go through. In addition, there is a problem in that a separator having a thickness of several tens of micrometers is used to prevent electrical current between the positive electrode and the negative electrode. In addition, when the separator is used, the overall thickness of the secondary battery becomes thick, and thus, the secondary battery becomes difficult to have flexible characteristics. In addition, there is a problem in that packaging is difficult because the positive electrode and the negative electrode must be physically spaced apart to place a separator in the middle and inject a liquid electrolyte.
(특허문헌 1) 한국공개특허 제10-2010-0044087호(Patent Document 1) Korean Patent Publication No. 10-2010-0044087
본 발명은 액체 전해질을 그 내부에 쉽게 형성할 수 있고, 간단한 구조로 양극과 음극의 전기적인 통전을 방지할 수 있으며, 패키징이 쉬운 이차전지 및 그 제조방법을 제공한다.The present invention provides a secondary battery and a method of manufacturing the same, which can easily form a liquid electrolyte therein, can prevent electrical conduction between the positive electrode and the negative electrode with a simple structure, and are easy to package.
본 발명의 일실시예에 따른 이차전지는 전자를 주고받는 집전체; 제1 활물질을 함유하며, 상기 집전체 상에 형성되는 제1 전극; 상기 제1 전극 상에 형성되는 전해질층; 및 제2 활물질을 함유하며, 상기 전해질층 상에 형성되는 제2 전극을 포함하고, 상기 전해질층은, 서로 이격되어 형성되는 복수의 지지체; 및 상기 복수의 지지체 사이의 이격 공간에 제공되는 액체 전해질을 포함할 수 있다.Secondary battery according to an embodiment of the present invention is a current collector to send and receive electrons; A first electrode containing a first active material and formed on the current collector; An electrolyte layer formed on the first electrode; And a second electrode formed on the electrolyte layer, wherein the electrolyte layer comprises: a plurality of supports spaced apart from each other; And it may include a liquid electrolyte provided in the spaced space between the plurality of supports.
상기 복수의 지지체는 고체 전해질로 이루어질 수 있다.The plurality of supports may be made of a solid electrolyte.
상기 액체 전해질은 상기 이격 공간에 제공된 연속적인 망 구조를 갖는 고상의 염(Salt) 구조체가 용매에 녹아 형성될 수 있다.The liquid electrolyte may be formed by dissolving a solid salt structure having a continuous network structure provided in the separation space in a solvent.
상기 전해질층은 1 내지 200 ㎛의 두께를 가질 수 있다.The electrolyte layer may have a thickness of 1 to 200 ㎛.
본 발명의 다른 실시예에 따른 이차전지 제조방법은 집전체를 형성하는 단계; 상기 집전체 상에 제1 전극을 형성하는 단계; 상기 제1 전극 상에 서로 이격된 복수의 지지체와 상기 복수의 지지체 사이의 이격 공간에 제공된 염(Salt) 구조체로 이루어진 중간층을 형성하는 단계; 상기 중간층 상에 제2 전극을 형성하는 단계; 및 상기 염 구조체를 용매에 용해시켜 액체 전해질을 형성하는 단계를 포함할 수 있다.A secondary battery manufacturing method according to another embodiment of the present invention comprises the steps of forming a current collector; Forming a first electrode on the current collector; Forming an intermediate layer on the first electrode, the intermediate layer including a plurality of supports spaced apart from each other and a salt structure provided in a spaced space between the plurality of supports; Forming a second electrode on the intermediate layer; And dissolving the salt structure in a solvent to form a liquid electrolyte.
상기 염 구조체는 연속적인 망 구조로 형성하고, 상기 복수의 지지체는 상기 염 구조체에 의해 각각 고립된 형상으로 형성할 수 있다.The salt structure may be formed in a continuous network structure, and the plurality of supports may be formed in an isolated shape by the salt structure, respectively.
상기 집전체, 상기 제1 전극, 상기 중간층 및 상기 제2 전극은 모두 프린팅 공정으로 형성할 수 있다.The current collector, the first electrode, the intermediate layer, and the second electrode may all be formed by a printing process.
상기 중간층을 형성하는 단계에서는 상기 복수의 지지체와 상기 염 구조체 중 선택된 어느 하나를 먼저 형성한 후에 나머지 다른 하나를 형성할 수 있다.In the forming of the intermediate layer, any one selected from the plurality of supports and the salt structure may be formed first, and then the other one may be formed.
상기 중간층을 형성하는 단계는 하나의 절차로서 수행될 수 있다.Forming the intermediate layer can be performed as a procedure.
상기 중간층을 형성하는 단계에서는 상기 복수의 지지체의 구성물질과 상기 염 구조체의 구성물질을 포함하는 복수의 잉크를 이용한 3D 프린팅 기법으로 상기 중간층을 형성할 수 있다.In the forming of the intermediate layer, the intermediate layer may be formed by 3D printing using a plurality of inks including the constituents of the plurality of supports and the constituents of the salt structure.
상기 복수의 지지체는 고체 전해질로 형성할 수 있다.The plurality of supports may be formed of a solid electrolyte.
상기 중간층은 1 내지 200 ㎛의 높이로 형성할 수 있다.The intermediate layer may be formed to a height of 1 to 200 ㎛.
본 발명의 일실시예에 따른 이차전지는 염(예를 들어, 리튬염)을 이용해 염 구조체를 형성하고 용매로 염 구조체를 용해시킴으로써 그 내부에 쉽게 액체 전해질을 형성할 수 있다. 이에 따라 염 구조체를 프린팅 기법으로 형성할 수 있기 때문에 3D 프린팅으로 한 번에 집전체, 제1 전극, 복수의 지지체, 염 구조체 및 제2 전극을 모두 형성할 수 있다. 이에 모든 제조 공정이 인라인 공정으로 수행될 수 있고, 이로 인해 공정 시간이 단축될 수 있으며, 생산성과 공정 효율이 향상될 수 있다. 그리고 3D 프린팅으로 한번에 형성된 하나의 적층물을 패키징하면 되기 때문에 패키징이 쉬워질 수 있다.Secondary battery according to an embodiment of the present invention can easily form a liquid electrolyte therein by forming a salt structure using a salt (for example, lithium salt) and dissolving the salt structure with a solvent. Accordingly, since the salt structure can be formed by a printing technique, it is possible to form all of the current collector, the first electrode, the plurality of supports, the salt structure, and the second electrode at once by 3D printing. As a result, all manufacturing processes can be performed in an inline process, which can shorten the process time and improve productivity and process efficiency. In addition, packaging can be easily performed by packaging one stack formed at a time by 3D printing.
또한, 제1 전극과 제2 전극 사이에 복수의 지지체가 형성되어 3D 프린팅 공정 중에 양극과 음극을 물리적으로 차단할 수 있고, 이차전지의 충방전시 두꺼운 분리막 없이도 양극과 음극의 전기적 통전 현상을 방지할 수 있다. 이에 전해질층의 두께를 얇게 하여 단위부피당 양극 또는 음극의 비율을 높일 수 있기 때문에 단위부피당 활물질의 양이 증가되어 분리막의 사용시보다 에너지 밀도를 향상시킬 수 있다. 그리고 복수의 지지체를 고체 전해질로 형성하여 복수의 지지체로도 이온이 이동할 수 있도록 할 수 있고, 이에 따라 전반적인 이온 전도도(ionic conductivity)를 향상시킬 수 있다.In addition, a plurality of supports are formed between the first electrode and the second electrode to physically block the positive electrode and the negative electrode during the 3D printing process, and to prevent the electrical conduction of the positive electrode and the negative electrode without a thick separator during charge and discharge of the secondary battery. Can be. The thickness of the electrolyte layer can be increased by increasing the ratio of the positive electrode or the negative electrode per unit volume, thereby increasing the amount of the active material per unit volume, thereby improving the energy density of the separator. In addition, the plurality of supports may be formed of a solid electrolyte to allow ions to move to the plurality of supports, thereby improving the overall ionic conductivity.
한편, 에너지 밀도를 더욱 향상시키기 위해 이차전지의 단위 셀(cell)을 스택(stack)할 수도 있다. 따라서, 복수의 단위 셀을 3D 프린팅으로 스택되도록 형성하여 연속 공정 중에 단위 셀과 단위 셀을 스택할 수 있기 때문에 공정 효율을 상승시키고 공정 시간을 줄일 수 있으면서 에너지 밀도가 높은 이차전지를 얻을 수도 있다.Meanwhile, in order to further improve energy density, unit cells of the secondary battery may be stacked. Therefore, since a plurality of unit cells are formed to be stacked by 3D printing, the unit cells and the unit cells can be stacked during the continuous process, thereby increasing the process efficiency and reducing the process time, thereby obtaining a secondary battery having a high energy density.
도 1은 본 발명의 일실시예에 따른 이차전지를 나타낸 단면도.1 is a cross-sectional view showing a secondary battery according to an embodiment of the present invention.
도 2는 본 발명의 다른 실시예에 따른 이차전지 제조방법으로 형성된 집전체를 나타낸 사시도.Figure 2 is a perspective view showing a current collector formed by a secondary battery manufacturing method according to another embodiment of the present invention.
도 3은 본 발명의 다른 실시예에 따른 이차전지 제조방법으로 집전체 상에 형성된 제1 전극을 나타낸 사시도.3 is a perspective view illustrating a first electrode formed on a current collector in a method of manufacturing a secondary battery according to another embodiment of the present invention.
도 4는 본 발명의 다른 실시예에 따른 이차전지 제조방법으로 제1 전극 상에 형성된 중간층을 나타낸 사시도.Figure 4 is a perspective view showing an intermediate layer formed on the first electrode in a secondary battery manufacturing method according to another embodiment of the present invention.
도 5는 본 발명의 다른 실시예에 따른 이차전지 제조방법으로 중간층 상에 형성된 제2 전극을 나타낸 사시도.5 is a perspective view illustrating a second electrode formed on an intermediate layer in a method of manufacturing a secondary battery according to another embodiment of the present invention.
도 6은 본 발명의 다른 실시예에 따른 이차전지 제조방법에 따라 외장재로 패키징한 이차전지를 나타낸 사시도.Figure 6 is a perspective view of a secondary battery packaged in a packaging material according to a secondary battery manufacturing method according to another embodiment of the present invention.
도 7은 본 발명의 다른 실시예에 따른 복수의 지지체와 염 구조체의 형성방법의 일실시예를 나타낸 사시도.Figure 7 is a perspective view showing one embodiment of a method of forming a plurality of supports and salt structure according to another embodiment of the present invention.
도 8은 본 발명의 다른 실시예에 따른 복수의 지지체와 염 구조체의 형성방법의 변형예를 나타낸 사시도.8 is a perspective view showing a modification of the method of forming a plurality of supports and salt structure according to another embodiment of the present invention.
이하에서는 첨부된 도면을 참조하여 본 발명의 실시예를 더욱 상세히 설명하기로 한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 설명 중, 동일 구성에 대해서는 동일한 참조부호를 부여하도록 하고, 도면은 본 발명의 실시예를 정확히 설명하기 위하여 크기가 부분적으로 과장될 수 있으며, 도면상에서 동일 부호는 동일한 요소를 지칭한다.Hereinafter, with reference to the accompanying drawings will be described an embodiment of the present invention in more detail. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms, and only the embodiments are intended to complete the disclosure of the present invention, and to those skilled in the art to the fullest extent. It is provided to inform you. In the description, like reference numerals refer to like elements, and the drawings may be partially exaggerated in size in order to accurately describe embodiments of the present invention, and like reference numerals refer to like elements in the drawings.
도 1은 본 발명의 일실시예에 따른 이차전지를 나타낸 단면도이다.1 is a cross-sectional view of a rechargeable battery according to an exemplary embodiment of the present invention.
도 1을 참조하면, 본 발명의 일실시예에 따른 이차전지(100)는 전자를 주고받는 집전체(110); 제1 활물질을 함유하며, 상기 집전체(110) 상에 형성되는 제1 전극(120); 상기 제1 전극(120) 상에 형성되는 전해질층(130); 및 제2 활물질을 함유하며, 상기 전해질층(130) 상에 형성되는 제2 전극(140)을 포함할 수 있다.Referring to FIG. 1, a secondary battery 100 according to an embodiment of the present invention includes a current collector 110 for sending and receiving electrons; A first electrode 120 containing a first active material and formed on the current collector 110; An electrolyte layer 130 formed on the first electrode 120; And a second electrode 140 including a second active material and formed on the electrolyte layer 130.
집전체(110)는 전자를 주고받아 충방전 과정에서 전류를 흐르게 해주는 역할을 하며, 다공질 구조의 도전성 기판이나 구멍이 없는 도전성 기판을 사용할 수 있다. 상기 도전성 기판(즉, 집전체)는 구리, 알루미늄, 스테인레스, 몰리브덴, 텅스텐, 탄탈, 티타늄, 니켈 중에서 선택된 하나 이상을 사용하여 형성할 수 있다. 하지만, 이에 한정되지 않고 표면 상에 양호한 밀착성을 갖도록 전극을 형성할 수 있는 것이라면 모두 다 사용할 수 있다. 집전체(110)는 두께가 얇은 것이 바람직하며, 금속박일 수 있고, 그 두께는 1 ㎚ 내지 30 ㎛일 수 있는데, 10 ㎛ 내지 30 ㎛인 것이 바람직하다. 두께를 10 ㎛ 미만으로 하면, 전극으로서의 강도가 얻어지지 않게 될 뿐만 아니라, 충방전 반응에 따른 활물질의 팽창·수축으로 도입된 변형을 완화할 수 없게 되거나 양극이 절단될 우려가 있다. 반면에, 두께가 30 ㎛를 초과하면, 활물질의 충전량이 감소될 뿐만 아니라 전극의 유연성이 손상되고, 내부 단락이 발생하기 쉬워질 우려가 있다. 이에 인장강도, 전기화학적인 안정성 및 감을 때의 유연성 등을 고려하면, 집전체(110)는 알루미늄박이 가장 바람직하고, 그 두께는 10 ㎛ 내지 30 ㎛인 것이 바람직하다. 그리고 집전체(110)는 프린팅 기법, 무전해 도금 또는 전해 도금을 이용하여 형성할 수 있다. 한편, 집전체(110)는 전극이 형성되는 표면에 요철구조 등을 형성하여 표면거칠기를 조절할 수도 있고, UV 또는 플라즈마 표면 처리를 더 거칠 수 있다. 이러한 표면처리를 거치게 되면, 집전체(110)의 표면에너지가 상승되어 저점도의 잉크로 전극을 형성하는 경우에 전극의 균일도가 더 높아질 수 있다.The current collector 110 serves to flow an electric current in a charging / discharging process by exchanging electrons, and may use a conductive substrate having no porous structure or a conductive substrate without holes. The conductive substrate (ie, current collector) may be formed using one or more selected from copper, aluminum, stainless steel, molybdenum, tungsten, tantalum, titanium, and nickel. However, the present invention is not limited thereto, and any electrode can be used as long as the electrode can be formed to have good adhesion on the surface. The current collector 110 preferably has a thin thickness, and may be metal foil, and the thickness thereof may be 1 nm to 30 μm, preferably 10 μm to 30 μm. When the thickness is less than 10 µm, not only the strength as the electrode can be obtained but also the strain introduced by the expansion and contraction of the active material due to the charge / discharge reaction cannot be alleviated or the anode may be cut. On the other hand, when the thickness exceeds 30 µm, not only the amount of charge of the active material is reduced, but also the flexibility of the electrode is impaired, and there is a possibility that internal short circuit is likely to occur. In consideration of tensile strength, electrochemical stability and flexibility in winding, the current collector 110 is most preferably aluminum foil, and the thickness thereof is preferably 10 μm to 30 μm. The current collector 110 may be formed using a printing technique, electroless plating or electrolytic plating. On the other hand, the current collector 110 may form a concave-convex structure or the like on the surface on which the electrode is formed to control the surface roughness, and may further be subjected to UV or plasma surface treatment. When the surface treatment is performed, the surface energy of the current collector 110 may be increased to increase the uniformity of the electrode when the electrode is formed of a low viscosity ink.
제1 전극(120)은 제1 활물질을 함유할 수 있고, 집전체(110) 상에 형성될 수 있다. 그리고 제1 전극(120)은 양극과 음극 중 어느 한 전극일 수 있고, 제1 활물질은 제1 전극(120)과 동일한 양극과 음극 중 어느 한 전극의 활물질일 수 있다. 제1 전극(120)은 제1 활물질 및 도전제를 포함할 수 있고, 제1 활물질을 결착하는 결착제를 더 포함할 수도 있다. 제1 전극(120)이 양극일 경우, 제1 활물질은 양극으로 사용되는 세라믹계 양극 활물질의 대부분을 사용할 수 있다. 예를 들어, 이산화 망간, 리튬망간 복합산화물, 리튬함유 니켈 산화물, 리튬함유 코발트 화합물, 리튬함유 니켈 코발트 산화물, 리튬함유 철산화물, 리튬을 포함하는 바나듐 산화물 등의 여러 가지 산화물이나 이황화 티탄, 이황화 몰리브덴 등의 캘코겐 화합물일 수 있다. 이 중에서 리튬 함유 코발트 산화물(예를 들어, LiCoO2), 리튬 함유 니켈 코발트 산화물(예를 들어, LiNi0 . 8Co0 . 2O2) 또는 리튬망간 복합산화물(예를 들어, LiM2O4, LiMnO2)을 사용할 경우, 고전압을 얻을 수 있다. 상기 도전제는 활물질의 전도성을 향상시키기 위한 물질로, 아세틸렌 블랙, 카본 블랙, 흑연 등을 사용할 수 있다. 그리고 상기 결착제는 활물질을 결착시키는 물질로, 폴리테트라플루오로에틸렌(PTFE), 폴리불화 비닐리덴(PVdF), 에틸렌프로필렌디엔 공중합체(EPDM), 스틸렌부타디엔고무(SBR) 등을 사용할 수 있다. 여기서, 상기 도전제와 결착제는 제1 활물질에 비해 소량이 함유된다.The first electrode 120 may contain a first active material and may be formed on the current collector 110. The first electrode 120 may be any one of a positive electrode and a negative electrode, and the first active material may be an active material of any one of the same positive electrode and the negative electrode as the first electrode 120. The first electrode 120 may include a first active material and a conductive agent, and may further include a binder for binding the first active material. When the first electrode 120 is a positive electrode, most of the ceramic-based positive electrode active material used as the positive electrode may be used. For example, various oxides such as manganese dioxide, lithium manganese composite oxide, lithium-containing nickel oxide, lithium-containing cobalt compound, lithium-containing nickel cobalt oxide, lithium-containing iron oxide, and vanadium oxide containing lithium, titanium disulfide, and molybdenum disulfide And chalcogen compounds. Among them, lithium-containing cobalt oxide (e.g., LiCoO 2), lithium-containing nickel cobalt oxide (e.g., LiNi 0. 8 Co 0. 2 O 2) or lithium manganese composite oxide (for example, LiM 2 O 4 , LiMnO 2 ) can be used to obtain a high voltage. The conductive agent may be acetylene black, carbon black, graphite, or the like as a material for improving conductivity of the active material. The binder may be polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), ethylene propylene diene copolymer (EPDM), styrene butadiene rubber (SBR), or the like. Here, the conductive agent and the binder contain a small amount compared to the first active material.
전해질층(130)은 제1 전극(120) 상에 형성될 수 있고, 서로 이격되어 형성되는 복수의 지지체(131) 및 복수의 지지체(131) 사이의 이격 공간에 제공되는 액체 전해질(132)을 포함할 수 있다. 복수의 지지체(131)는 서로 이격되어 형성되고, 액체 전해질(132)이 연속적인 망 구조를 가질 수 있도록 이격 공간을 제공한다.The electrolyte layer 130 may be formed on the first electrode 120, and may include a plurality of supports 131 and spaced apart from each other and a liquid electrolyte 132 provided in a space between the plurality of supports 131. It may include. The plurality of supports 131 are formed to be spaced apart from each other, and provide a space for separating the liquid electrolyte 132 to have a continuous network structure.
종래의 이차전지에서는 양극과 음극의 전기적 통전 형상을 방지하기 위해 전해질층에 분리막이 필요하였다. 종래의 분리막은 수십 ㎛로 두꺼워 전해질층의 두께를 증가시킬 뿐만 아니라 다공질 막이기 때문에 프린팅 공정 또는 박-후막 공정을 이용하여 연속적인 적층공정시, 분리막 상에 제2 전극을 적층할 때 분리막 내부의 미세한 공극을 통해 제2 전극의 전도성 물질이 분리막의 공극 내부에 코팅되어 전기적인 쇼트(Short)가 발생할 수 있었다. 이로 인해 종래에는 프린팅 공정으로 이차전지 전체를 제조하는데 제한이 있었다.In the conventional secondary battery, a separator is required in the electrolyte layer in order to prevent an electrical conduction shape between the positive electrode and the negative electrode. Conventional separators have a thickness of several tens of micrometers, which not only increases the thickness of the electrolyte layer but are also porous membranes. Therefore, when the second electrode is deposited on the separator in a continuous lamination process using a printing process or a thin-thick film process, Through the minute pores, the conductive material of the second electrode may be coated inside the pores of the separator, thereby causing an electrical short. For this reason, conventionally, there was a limitation in manufacturing the entire secondary battery by the printing process.
하지만, 본 발명에서는 서로 이격된 복수의 지지체(131)와 복수의 지지체(131) 사이의 이격 공간에 제공된 염(Salt) 구조체(132)로 이루어진 중간층 상에 제2 전극(140)을 형성하는데, 이러한 중간층은 종래의 분리막과 달리 미세 공극을 포함하지 않는다. 이에 따라 제2 전극을 프린팅 공정으로 형성할 때에 미세 공극 내부에 전도성 물질이 코팅되어 쇼트가 발생되었던 문제점을 해결할 수 있다. 상기 중간층에 대한 자세한 내용은 본 발명의 다른 실시예에 따른 이차전지 제조방법에서 후술하도록 한다.However, in the present invention, the second electrode 140 is formed on an intermediate layer made of a salt structure 132 provided in a space between the plurality of supports 131 and the plurality of supports 131 spaced apart from each other. This intermediate layer does not contain micropores unlike conventional separators. Accordingly, when the second electrode is formed by the printing process, the conductive material may be coated inside the microcavity to solve a problem in which a short occurs. Details of the intermediate layer will be described later in the secondary battery manufacturing method according to another embodiment of the present invention.
또한, 본 발명에서는 복수의 지지체(131)를 통해 이온 전도도(ionic conductivity)를 조절할 수 있다. 그리고 전해질층(130)에 두꺼운 분리막이 없이도 양극과 음극의 전기적 통전 현상을 방지할 수 있기 때문에 전해질층(130)의 두께를 줄일 수 있고, 이에 이차전지(100)의 전체적인 두께를 줄일 수 있다. 또한, 전해질층(130)의 두께가 얇아지면, 단위부피당 제1 전극(또는 양극) 또는 제2 전극(또는 음극)의 비율을 극대화시킬 수 있고, 이로 인해 단위부피당 활물질의 양이 늘어날 수 있다. 이에 전해질층의 두께가 두꺼워 단위부피당 활물질의 양이 적으므로 에너지 밀도가 낮았던 종래의 문제점을 해결함으로써 본 발명에서는 종래보다 에너지 밀도를 향상시킬 수 있다.In addition, in the present invention, ionic conductivity may be controlled through the plurality of supports 131. The thickness of the electrolyte layer 130 may be reduced, and thus, the overall thickness of the secondary battery 100 may be reduced since the electrical conduction of the positive electrode and the negative electrode may be prevented without a thick separator in the electrolyte layer 130. In addition, when the thickness of the electrolyte layer 130 is thin, the ratio of the first electrode (or the anode) or the second electrode (or the cathode) per unit volume can be maximized, thereby increasing the amount of the active material per unit volume. Thus, since the thickness of the electrolyte layer is small and the amount of the active material per unit volume is small, the present invention can improve the energy density in the present invention by solving the conventional problem of low energy density.
그리고 종래에는 분리막의 상부와 하부에 지지구조가 없어 양극과 음극의 거리를 일정하게 유지하기 어려웠지만, 본 발명에서는 복수의 지지체(131)에 의해 양극과 음극의 거리를 일정하게 유지할 수 있다. 또한, 복수의 지지체(131)는 양극과 음극을 물리적으로 차단할 수 있기 때문에 집전체(110), 제1 전극(120), 전해질층(또는 복수의 지지체) 및 제2 전극(140) 모두를 프린팅 기법으로 형성할 수 있게 한다. 특히, 3D 프린팅 기법으로 쉽고 간편하게 이차전지(100)를 제조할 수 있게 한다.In the related art, there is no support structure in the upper and lower portions of the separator, so that it is difficult to keep the distance between the positive electrode and the negative electrode constant. However, in the present invention, the distance between the positive electrode and the negative electrode can be kept constant by the plurality of supports 131. In addition, since the plurality of supports 131 may physically block the positive electrode and the negative electrode, printing of the current collector 110, the first electrode 120, the electrolyte layer (or the plurality of supports), and the second electrode 140 may be performed. It can be formed by technique. In particular, the secondary battery 100 can be manufactured easily and simply by 3D printing technique.
한편, 복수의 지지체(131)는 액체 전해질(132)의 분포를 균일하게 해줄 수 있도록 이차 전지(100)의 평면에 고르게 분포할 수 있고, 서로 이격되어 있어 이격 공간으로 힘을 분산시킬 수 있다. 그뿐만 아니라, 적층 구조를 지지하기 위하여 복수의 지지체(131)가 강성(rigid)한 재료로 구성되는 경우에도 복수의 지지체(131)가 서로 이격되어 배치됨으로 인해 복수의 지지체(131) 사이의 공간에 액체 전해질(132)이 제공될 수 있다. 이에 따라 복수의 지지체(131)에 의해서 유연성이 희생되지 않고 전체적인 이차전지(100)의 유연성을 향상시킬 수 있다.On the other hand, the plurality of supports 131 may be evenly distributed in the plane of the secondary battery 100 so as to make the distribution of the liquid electrolyte 132 uniform, and may be spaced apart from each other to distribute the force to the space. In addition, the space between the plurality of supports 131 is arranged because the plurality of supports 131 are spaced apart from each other even when the plurality of supports 131 are made of a rigid material to support the laminated structure. Liquid electrolyte 132 may be provided. Accordingly, flexibility of the entire secondary battery 100 can be improved without sacrificing flexibility by the plurality of supports 131.
복수의 지지체(131)는 고체 전해질로 이루어질 수 있다. 복수의 지지체(131)가 고체 전해질로 이루어지면, 복수의 지지체(131)로도 이온이 이동할 수 있기 때문에 절연물질로 복수의 지지체(131)를 형성하는 경우보다 이차전지(100)의 이온 전도도를 향상시킬 수 있다. 상기 고체 전해질은 재료에 있어서 특별히 제한되는 것은 아니지만, 산화물계 또는 황화물계인 것을 사용하는 것이 바람직하다. 예를 들어, 몰리브덴 산화물, 티타늄 산화물, 바나듐 산화물, 크롬 산화물, 탄탈 산화물, 지르코늄 산화물, 하프늄 산화물, 니오븀 산화물 및 텅스텐 산화물로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물일 수 있다.The plurality of supports 131 may be made of a solid electrolyte. When the plurality of supports 131 are made of a solid electrolyte, ions may also move to the plurality of supports 131, thereby improving ion conductivity of the secondary battery 100 than when forming the plurality of supports 131 with an insulating material. You can. Although the said solid electrolyte is not restrict | limited in particular in material, It is preferable to use an oxide type or a sulfide type. For example, it may be a single substance or a mixture of two or more selected from the group consisting of molybdenum oxide, titanium oxide, vanadium oxide, chromium oxide, tantalum oxide, zirconium oxide, hafnium oxide, niobium oxide and tungsten oxide.
액체 전해질(132)은 연속적인 망 구조를 갖도록 형성될 수 있고, 복수의 지지체(131) 사이의 이격 공간에 제공될 수 있다. 액체 전해질(132)은 고체 전해질보다 전반적인 이온 전도도와 운반율 수치가 우수하기 때문에 액체 전해질(132)을 사용하여 이차전지(100)의 이온 전도도를 향상시킬 수 있다. 액체 전해질(132)의 재료로는 과염소산 리튬(LiClO4), 육불화인산리튬(LiPF6), 붕불화리튬(LiBF4), 육불화비소리튬(LiAsF6), 트리플루오로메타설폰산리튬(LiCF3SO3), 티탄산리튬(Li4Ti5O12; LTO), 리튬인산철(LiFePO4; LFP), 비스트리플루오로메틸설포닐이미드리튬[LiN(CF3SO2)2]등의 리튬염 중에서 선택되는 1종 또는 2종 이상을 용매에 녹여 사용할 수 있다. 여기서, 붕불화리튬(LiBF4)은 초충전시에서의 가스발생을 억제할 수 있다. 상기 용매는 비수용매일 수 있고, 리튬 이차전지의 용매로서 공지된 비수용매를 사용할 수 있다. 프로필렌카보네이트(PC), 에틸렌카보네이트(EC), 디메틸카보네이트(DMC), 디에틸카보네이트(DEC), 1,2-디메톡시에탄(DME), γ-부티로락톤(γ-BL), 테트라히드로프란(THF), 2-메틸테트라히드로프란(2-MeTHF), 1,3-디옥소란, 1,3-디메톡시프로판, 비닐렌카보네이트(VC) 등의 종류 중에서 선택되는 단일용매 또는 2종 이상의 혼합용매를 사용할 수 있는데, 이에 특별히 한정되지 않는다.The liquid electrolyte 132 may be formed to have a continuous network structure, and may be provided in a spaced space between the plurality of supports 131. Since the liquid electrolyte 132 has better overall ionic conductivity and transport rate than the solid electrolyte, the liquid electrolyte 132 may be used to improve the ionic conductivity of the secondary battery 100. Examples of the material of the liquid electrolyte 132 include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), lithium hexafluoride (LiAsF 6 ), and lithium trifluoromethsulfonate ( LiCF 3 SO 3 ), lithium titanate (Li 4 Ti 5 O 12 ; LTO), lithium iron phosphate (LiFePO 4 ; LFP), bistrifluoromethylsulfonylimide lithium [LiN (CF 3 SO 2 ) 2 ], etc. One or two or more selected from the lithium salts thereof may be dissolved in a solvent and used. Here, lithium borofluoride (LiBF 4 ) can suppress the gas generation during supercharge. The solvent may be a nonaqueous solvent, and a known nonaqueous solvent may be used as a solvent of a lithium secondary battery. Propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), 1,2-dimethoxyethane (DME), γ-butyrolactone (γ-BL), tetrahydrofran (THF), 2-methyltetrahydrofran (2-MeTHF), 1,3-dioxolane, 1,3-dimethoxypropane, vinylene carbonate (VC), etc. A mixed solvent may be used, but is not particularly limited thereto.
그리고 액체 전해질(132)이 연속적인 망 구조를 갖도록 형성될 경우, 고상의 염(Salt) 구조체를 연속적인 망 구조를 갖도록 형성한 후에 상기 염(Salt)을 용해시키는 용매를 한 곳으로 주입하여 상기 용매가 연속적인 망 구조를 통해 상기 염(Salt)을 모두 용해시키게 함으로써 액체 전해질(132)을 형성할 수 있다. 이에 간단하게 이차전지(100)의 내부에 액체 전해질(132)을 형성할 수 있고, 한 곳으로만 상기 용매를 주입하면 되기 때문에 실링 면적이 줄어들 수 있어 실링 공정이 용이해질 수 있다. 또한, 고상의 염 구조체를 먼저 형성할 경우 염 구조체까지 모든 적층물(즉, 집전체, 제1 전극, 복수의 지지체, 염 구조체 및 제2 전극)을 프린팅 기법으로 형성할 수 있으며, 3D 프린팅으로 쉽고 간편하게 이차전지(100)의 기본이 되는 적층물을 형성할 수 있다. 3D 프린팅을 사용하는 경우, 3D 프린팅 과정 중 효과적으로 지지구조(즉, 염 구조체)를 형성할 수 있고, 에틸렌카보네이트, 디에틸카보네이트와 같은 용매가 공급되었을 때 쉽게 용해될 수 있는 육불화인산리튬, 과염소산 리튬과 같은 리튬염을 사용하는 것이 바람직하다. 이와 같이, 액체 전해질(132)은 복수의 지지체(131) 사이의 이격 공간에 제공된 연속적인 망 구조를 갖는 고상의 염 구조체가 용매에 녹아 형성될 수 있다.When the liquid electrolyte 132 is formed to have a continuous network structure, the solid salt structure is formed to have a continuous network structure, and then a solvent for dissolving the salt is injected into one place. The liquid electrolyte 132 may be formed by allowing a solvent to dissolve all of the salts through a continuous network structure. Accordingly, the liquid electrolyte 132 may be simply formed in the secondary battery 100, and since the solvent may be injected only to one place, the sealing area may be reduced, and thus the sealing process may be facilitated. In addition, when the solid salt structure is first formed, all the laminates (that is, the current collector, the first electrode, the plurality of supports, the salt structure, and the second electrode) up to the salt structure may be formed by a printing technique. It is easy and simple to form a laminate that is the basis of the secondary battery 100. When 3D printing is used, lithium hexafluorophosphate and perchloric acid can effectively form a support structure (i.e., salt structure) during the 3D printing process and easily dissolve when a solvent such as ethylene carbonate or diethyl carbonate is supplied. Preference is given to using lithium salts such as lithium. As such, the liquid electrolyte 132 may be formed by dissolving a solid salt structure having a continuous network structure provided in a spaced space between the plurality of supports 131 in a solvent.
한편, 전해질층(130)은 1 내지 200 ㎛의 두께를 가질 수 있다. 전해질층(130)은 두께가 얇을수록 이온의 이동거리가 짧아지기 때문에 이온전달 속도가 빨라지고 최대용량이 커져서 출력량이 좋아지게 된다. 하지만, 전해질층(130)의 두께가 1 ㎛보다 얇게 되면 양극과 음극의 전기적 통전 현상을 방지하지 못하고 쇼트(Short)가 발생하게 될 수 있다. 반면에, 전해질층(130)의 두께가 200 ㎛보다 두꺼워지면, 이온의 이동거리가 너무 길어져 이온전달 시간이 오래 걸리기 때문에 출력 효율이 감소될 수 있다. 그리고 전해질층(130)의 두께가 얇아지면, 단위부피당 제1 전극(또는 양극) 또는 제2 전극(또는 음극)의 비율을 극대화시킬 수 있어 단위부피당 활물질의 양이 늘어나기 때문에 에너지 밀도를 향상시킬 수 있다.On the other hand, the electrolyte layer 130 may have a thickness of 1 to 200 ㎛. The thinner the electrolyte layer 130, the shorter the movement distance of the ions, so the ion transfer rate is faster and the maximum capacity is increased, resulting in better output. However, when the thickness of the electrolyte layer 130 is thinner than 1 μm, a short may be generated without preventing the electrical conduction between the positive electrode and the negative electrode. On the other hand, when the thickness of the electrolyte layer 130 is thicker than 200 μm, the output efficiency may be reduced because the moving distance of the ions is too long and the ion transfer time is long. In addition, when the thickness of the electrolyte layer 130 becomes thin, the ratio of the first electrode (or anode) or the second electrode (or cathode) per unit volume can be maximized, and thus the energy density can be improved because the amount of the active material per unit volume increases. have.
제2 전극(140)은 제2 활물질을 함유할 수 있고, 전해질층(130) 상에 형성될 수 있다. 그리고 제2 전극(140)은 양극과 음극 중 제1 전극(120)과 대응되는 나머지 전극일 수 있고, 제2 활물질은 제2 전극(140)의 극성에 따라 정해질 수 있다. 제2 전극(140)은 제1 전극(120)과 마찬가지로 제2 활물질 및 도전제를 포함할 수 있고, 제2 활물질을 결착하는 결착제를 더 포함할 수도 있다. 제2 전극(140)이 음극일 경우, 제2 활물질은 리튬이온을 도핑하는 것이 가능한 폴리아세탈, 폴리아세틸렌, 폴리피롤 등의 도전성 고분자, 리튬이온을 도핑하는 것이 가능한 코크스, 탄소섬유, 흑연, 메소페이즈피치계 탄소, 열분해 기상 탄소물질, 수지소성체 등의 탄소재나 이황화 티탄, 이황화 몰리브덴, 셀렌화 니오브 등의 카르코겐 화합물, 실리콘(Si), 주석(Sn), 바나듐(V), 티타늄(Ti), 게르마늄(Ge)과 같은 금속물질, 이들의 산화물 또는 2종 이상의 화합물 등을 사용할 수 있다. 여기서, 상기 탄소재의 형태는 흑연계 탄소재, 흑연 결정부와 비결정부가 혼재한 탄소재, 결정층이 불규직한 적층구조를 갖는 탄소재 등일 수 있다. 상기 도전제는 활물질의 전도성을 향상시키기 위한 물질로, 아세틸렌 블랙, 카본 블랙, 흑연 등을 사용할 수 있다. 그리고 상기 결착제는 활물질을 결착시키는 물질로, 폴리테트라플루오로에틸렌(PTFE), 폴리불화 비닐리덴(PVdF), 에틸렌프로필렌디엔 공중합체(EPDM), 스틸렌부타디엔고무(SBR) 등을 사용할 수 있다. 여기서, 상기 도전제와 결착제는 제2 활물질에 비해 소량이 함유된다.The second electrode 140 may contain a second active material and may be formed on the electrolyte layer 130. The second electrode 140 may be the remaining electrode corresponding to the first electrode 120 among the positive electrode and the negative electrode, and the second active material may be determined according to the polarity of the second electrode 140. Like the first electrode 120, the second electrode 140 may include a second active material and a conductive agent, and may further include a binder for binding the second active material. When the second electrode 140 is a negative electrode, the second active material is a conductive polymer such as polyacetal, polyacetylene, or polypyrrole capable of doping lithium ions, coke, carbon fiber, graphite, or mesophase capable of doping lithium ions. Carbon materials, such as pitch-based carbon, pyrolytic gaseous materials, and resinous plastics, and carbogen compounds such as titanium disulfide, molybdenum disulfide, and niobium selenide, silicon (Si), tin (Sn), vanadium (V), and titanium (Ti) ), Metal materials such as germanium (Ge), oxides thereof, or two or more compounds can be used. Here, the carbon material may be a graphite carbon material, a carbon material in which the graphite crystal part and the amorphous part are mixed, or a carbon material having a laminated structure in which the crystal layer is irregular. The conductive agent may be acetylene black, carbon black, graphite, or the like as a material for improving conductivity of the active material. The binder may be polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), ethylene propylene diene copolymer (EPDM), styrene butadiene rubber (SBR), or the like. Here, the conductive agent and the binder contain a small amount compared to the second active material.
한편, 제1 전극(120)이 음극이고, 제2 전극(140)이 양극일 경우에는 상기와 반대로 제1 전극(120)과 제2 전극(140)을 형성할 수 있는데, 각 전극의 극성에 따라 그 활물질을 선택할 수 있다. 그리고 제2 전극(140) 상에도 집전체(110)가 형성될 수 있고, 이차전지(100)의 기본이 되는 구성물(즉, 집전체, 제1 전극, 복수의 지지체, 액체 전해질 및 제2 전극)을 외장재(150)로 패키징할 수 있다. 또한, 에너지 밀도를 더욱 향상시키기 위해 이차전지(100)의 단위 셀(cell)을 스택(stack)할 수도 있다.On the other hand, when the first electrode 120 is a cathode and the second electrode 140 is an anode, the first electrode 120 and the second electrode 140 may be formed on the contrary, but the polarity of each electrode may vary. The active material can be selected accordingly. In addition, the current collector 110 may also be formed on the second electrode 140, and the components (that is, the current collector, the first electrode, the plurality of supports, the liquid electrolyte, and the second electrode) which are the base of the secondary battery 100 may be used. ) May be packaged into the exterior material 150. In addition, in order to further improve energy density, unit cells of the secondary battery 100 may be stacked.
도 2 내지 도 6은 본 발명의 다른 실시예에 따른 이차전지 제조방법을 순서적으로 나타낸 사시도이고, 도 7 내지 도 8은 본 발명의 다른 실시예에 따른 복수의 지지체와 염 구조체의 형성방법을 나타낸 사시도이다.2 to 6 are perspective views sequentially showing a secondary battery manufacturing method according to another embodiment of the present invention, Figures 7 to 8 is a method of forming a plurality of supports and salt structure according to another embodiment of the present invention. It is a perspective view shown.
도 2 내지 도 6 및 도 7 내지 도 8을 참조하여 본 발명의 다른 실시예에 따른 이차전지 제조방법을 보다 상세히 살펴보는데, 본 발명의 일실시예에 따른 이차전지와 관련하여 앞서 설명된 부분과 중복되는 사항들은 생략하도록 한다.With reference to Figures 2 to 6 and 7 to 8 will be described in detail a secondary battery manufacturing method according to another embodiment of the present invention, with the above-described parts related to the secondary battery according to an embodiment of the present invention Duplicate items should be omitted.
본 발명의 다른 실시예에 따른 이차전지 제조방법은 집전체를 형성하는 단계; 상기 집전체 상에 제1 전극을 형성하는 단계; 상기 제1 전극 상에 서로 이격된 복수의 지지체와 상기 복수의 지지체 사이의 이격 공간에 제공된 염(Salt) 구조체로 이루어진 중간층을 형성하는 단계; 상기 중간층 상에 제2 전극을 형성하는 단계; 및 상기 염 구조체를 용매에 용해시켜 액체 전해질을 형성하는 단계를 포함할 수 있다.A secondary battery manufacturing method according to another embodiment of the present invention comprises the steps of forming a current collector; Forming a first electrode on the current collector; Forming an intermediate layer on the first electrode, the intermediate layer including a plurality of supports spaced apart from each other and a salt structure provided in a spaced space between the plurality of supports; Forming a second electrode on the intermediate layer; And dissolving the salt structure in a solvent to form a liquid electrolyte.
먼저 집전체(110)를 형성한다(도 2). 집전체(110)는 충방전 과정에서 전자를 주고받아 전류를 흐르게 해주는 역할을 하며, 다공질 구조의 도전성 기판이나 구멍이 없는 도전성 기판을 사용할 수 있다. 상기 도전성 기판(즉, 집전체)는 구리, 알루미늄, 스테인레스, 몰리브덴, 텅스텐, 탄탈, 티타늄, 니켈 중에서 선택된 하나 이상을 사용하여 형성할 수 있다. 하지만, 이에 한정되지 않고 표면 상에 양호한 밀착성을 갖도록 전극을 형성할 수 있는 것이라면 모두 다 사용할 수 있다. 그리고 집전체(110)는 무전해 도금 또는 전해 도금뿐만 아니라 프린팅 기법(또는 3D 프린팅 기법)을 이용하여 형성할 수 있다. 한편, 집전체(110)를 형성하는 단계에서 전극이 형성되는 집전체(110)의 표면에 요철구조 등을 형성하는 단계와 집전체(110)에 UV 또는 플라즈마 표면 처리하는 단계를 더 거칠 수도 있다.First, the current collector 110 is formed (FIG. 2). The current collector 110 serves to flow current by exchanging electrons in a charging / discharging process, and a conductive substrate having a porous structure or a conductive substrate having no hole may be used. The conductive substrate (ie, current collector) may be formed using one or more selected from copper, aluminum, stainless steel, molybdenum, tungsten, tantalum, titanium, and nickel. However, the present invention is not limited thereto, and any electrode can be used as long as the electrode can be formed to have good adhesion on the surface. The current collector 110 may be formed using a printing technique (or 3D printing technique) as well as electroless plating or electrolytic plating. Meanwhile, in the forming of the current collector 110, the step of forming an uneven structure or the like on the surface of the current collector 110 on which the electrode is formed and the UV or plasma surface treatment of the current collector 110 may be further roughened. .
다음으로, 집전체(110) 상에 제1 전극(120)을 형성한다(도 3). 제1 전극(120)은 활물질 및 도전제를 포함할 수 있고, 제1 전극(120)은 양극과 음극 중 어느 한 전극일 수 있다. 제1 전극(120)이 양극일 경우, 활물질로 양극으로 사용되는 세라믹계 양극 활물질의 대부분을 사용할 수 있다. 예를 들어, 이산화 망간, 리튬망간 복합산화물, 리튬함유 니켈 산화물, 리튬함유 코발트 화합물, 리튬함유 니켈 코발트 산화물, 리튬함유 철산화물, 리튬을 포함하는 바나듐 산화물 등의 여러 가지 산화물이나 이황화 티탄, 이황화 몰리브덴 등의 캘코겐 화합물일 수 있다. 이 중에서 리튬 함유 코발트 산화물(예를 들어, LiCoO2), 리튬 함유 니켈 코발트 산화물(예를 들어, LiNi0 . 8Co0 . 2O2) 또는 리튬망간 복합산화물(예를 들어, LiM2O4, LiMnO2)을 사용할 경우, 고전압을 얻을 수 있다. 그리고 활물질을 결착하는 결착제를 더 포함할 수도 있으며, 상기 도전제와 결착제는 활물질에 비해 소량 함유될 수 있다.Next, the first electrode 120 is formed on the current collector 110 (FIG. 3). The first electrode 120 may include an active material and a conductive agent, and the first electrode 120 may be any one of an anode and a cathode. When the first electrode 120 is a positive electrode, most of the ceramic-based positive electrode active material used as the positive electrode may be used as the active material. For example, various oxides such as manganese dioxide, lithium manganese composite oxide, lithium-containing nickel oxide, lithium-containing cobalt compound, lithium-containing nickel cobalt oxide, lithium-containing iron oxide, and vanadium oxide containing lithium, titanium disulfide, and molybdenum disulfide And chalcogen compounds. Among them, lithium-containing cobalt oxide (e.g., LiCoO 2), lithium-containing nickel cobalt oxide (e.g., LiNi 0. 8 Co 0. 2 O 2) or lithium manganese composite oxide (for example, LiM 2 O 4 , LiMnO 2 ) can be used to obtain a high voltage. And it may further comprise a binder for binding the active material, the conductive agent and the binder may be contained in a small amount compared to the active material.
그 다음 제1 전극(120) 상에 중간층(130)을 형성하는데, 복수의 지지체(131)를 서로 이격하여 형성하고, 상기 복수의 지지체(131) 사이의 이격 공간에 제공되도록 염(Salt) 구조체(132)를 형성한다(도 4). 이때, 염 구조체(132)는 연속적인 망 구조로 형성하고, 복수의 지지체(131)는 염 구조체(132)에 의해 각각 고립된 형상으로 형성할 수 있다. 염 구조체(132)를 연속적인 망 구조로 형성하면, 상기 염(Salt)을 용해시킬 수 있는 용매가 연속적인 망 구조를 통해 전체적으로 이동할 수 있기 때문에 상기 용매를 한 곳으로 주입하여 간단하게 이차전지의 내부에 액체 전해질을 형성할 수 있다. 또한, 한 곳으로만 상기 용매를 주입하면 되기 때문에 실링 면적이 줄어들어 실링 공정이 간단해질 수 있으며, 종래에 프린팅 기법 사용시 액체 전해질을 사용하기 어려웠던 문제를 해결할 수 있다. 그리고 상기 염(Salt)은 형상을 유지하며 적층될 수 있기 때문에 모든 적층물(즉, 집전체, 제1 전극, 복수의 지지체, 염 구조체 및 제2 전극)을 프린팅 기법으로 형성할 수 있다. 이에 따라 3D 프린팅으로 쉽고 간편하게 이차전지의 기본이 되는 상기 적층물을 형성할 수 있다. 한편, 3D 프린팅을 사용하는 경우, 염 구조체(132)는 3D 프린팅 과정 중 효과적으로 상부 적층물(예를 들어, 제2 전극)이 적층될 수 있는 지지구조를 제공할 수도 있다. 여기서, 상기 염(Salt)은 과염소산 리튬(LiClO4), 육불화인산리튬(LiPF6), 붕불화리튬(LiBF4), 육불화비소리튬(LiAsF6), 트리플루오로메타설폰산리튬(LiCF3SO3), 티탄산리튬(Li4Ti5O12; LTO), 리튬인산철(LiFePO4; LFP), 비스트리플루오로메틸설포닐이미드리튬[LiN(CF3SO2)2]등의 리튬염(전해질) 중에서 선택되는 1종 또는 2종 이상일 수 있다. 그리고 상기 용매는 비수용매일 수 있으며, 프로필렌카보네이트(PC), 에틸렌카보네이트(EC), 디메틸카보네이트(DMC), 디에틸카보네이트(DEC), 1,2-디메톡시에탄(DME), γ-부티로락톤(γ-BL), 테트라히드로프란(THF), 2-메틸테트라히드로프란(2-MeTHF), 1,3-디옥소란, 1,3-디메톡시프로판, 비닐렌카보네이트(VC) 등의 종류 중에서 선택되는 단일용매 또는 2종 이상의 혼합용매를 사용할 수 있다.Next, the intermediate layer 130 is formed on the first electrode 120. The plurality of supports 131 are formed to be spaced apart from each other, and the salt structure is provided in a spaced space between the plurality of supports 131. 132 is formed (FIG. 4). At this time, the salt structure 132 may be formed in a continuous network structure, a plurality of supports 131 may be formed in a shape isolated by the salt structure 132, respectively. When the salt structure 132 is formed in a continuous network structure, since the solvent capable of dissolving the salt may move as a whole through the continuous network structure, the solvent is injected into one place to simplify the A liquid electrolyte can be formed inside. In addition, since the solvent needs only to be injected into one place, the sealing area may be reduced, and thus the sealing process may be simplified, and the problem of using a liquid electrolyte in the conventional printing technique may be solved. In addition, since the salt may be stacked while maintaining the shape, all the laminates (ie, the current collector, the first electrode, the plurality of supports, the salt structure, and the second electrode) may be formed by a printing technique. Accordingly, it is possible to easily and simply form the laminate which is the basis of the secondary battery by 3D printing. On the other hand, when using 3D printing, the salt structure 132 may provide a support structure on which the upper stack (eg, the second electrode) can be effectively stacked during the 3D printing process. The salt may include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), bisodium hexafluoride (LiAsF 6 ), and lithium trifluoromethsulfonate (LiCF). 3 SO 3 ), lithium titanate (Li 4 Ti 5 O 12 ; LTO), lithium iron phosphate (LiFePO 4 ; LFP), bistrifluoromethylsulfonylimide lithium [LiN (CF 3 SO 2 ) 2 ], and the like. It may be one kind or two or more kinds selected from lithium salts (electrolytes). And the solvent may be a non-aqueous solvent, propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), 1,2-dimethoxyethane (DME), γ-butyrolactone (γ-BL), tetrahydrofran (THF), 2-methyltetrahydrofran (2-MeTHF), 1,3-dioxolane, 1,3-dimethoxypropane, vinylene carbonate (VC) and the like A single solvent or two or more mixed solvents selected from among them can be used.
복수의 지지체(131)는 서로 이격 또는 고립되어 액체 전해질이 형성될 이격 공간을 제공한다. 종래에는 액체 전해질을 사용할 경우에 양극과 음극의 전기적 통전 형상을 방지하기 위해 수십 ㎛로 두꺼운 분리막이 필요하였지만, 본 발명에서는 복수의 지지체(131)를 통해 이온 전도도(ionic conductivity)를 조절할 수 있으므로 두꺼운 분리막이 없이도 양극과 음극의 전기적 통전 현상을 방지할 수 있다. 이에 중간층(130)의 두께를 얇게 하여 단위부피당 제1 전극(또는 양극) 또는 제2 전극(또는 음극)의 비율을 높일 수 있기 때문에 단위부피당 활물질의 양이 증가되어 분리막의 사용시보다 에너지 밀도를 향상시킬 수 있다. 또한, 복수의 지지체(131)는 염 구조체(132)와 함께 3D 프린팅 과정 중 효과적으로 상부 적층물(예를 들어, 제2 전극)이 적층될 수 있는 지지구조를 제공하기 때문에 3D 프린팅 기법으로 쉽고 간편하게 이차전지를 제조할 수 있게 한다.The plurality of supports 131 are spaced apart or isolated from each other to provide a space for forming a liquid electrolyte. Conventionally, in the case of using a liquid electrolyte, a thick separator having a thickness of several tens of micrometers was required in order to prevent an electrical conduction shape between the positive electrode and the negative electrode. However, in the present invention, since the ionic conductivity can be adjusted through the plurality of supports 131, It is possible to prevent the electrical conduction between the positive electrode and the negative electrode without a separator. Accordingly, the thickness of the intermediate layer 130 can be increased to increase the ratio of the first electrode (or anode) or the second electrode (or cathode) per unit volume, thereby increasing the amount of active material per unit volume, thereby improving energy density compared to using a separator. You can. In addition, the plurality of supports 131 together with the salt structure 132 provides a support structure on which the upper stack (eg, the second electrode) can be effectively stacked during the 3D printing process. It is possible to manufacture a secondary battery.
한편, 복수의 지지체(131)는 액체 전해질의 분포를 균일하게 해줄 수 있도록 이차 전지(100)의 평면에 고르게 분포할 수 있고, 서로 이격되어 있어 이격 공간으로 힘을 분산시킬 수 있다. 그뿐만 아니라, 적층 구조를 지지하기 위하여 복수의 지지체(131)가 강성한 재료로 구성되는 경우에도 복수의 지지체(131)가 서로 이격되어 배치됨으로 인해 복수의 지지체(131) 사이의 공간에 액체 전해질이 제공되기 때문에 복수의 지지체(131)에 의해서 유연성이 희생되지 않고 전체적인 이차전지(100)의 유연성을 향상시킬 수 있다.On the other hand, the plurality of supports 131 may be evenly distributed in the plane of the secondary battery 100 so as to make the distribution of the liquid electrolyte uniform, and may be spaced apart from each other to distribute the force to the space. In addition, even when the plurality of supports 131 are made of a rigid material to support the stacked structure, the plurality of supports 131 are spaced apart from each other, so that the liquid electrolyte is disposed in the space between the plurality of supports 131. Since it is provided, flexibility of the entire secondary battery 100 can be improved without sacrificing flexibility by the plurality of supports 131.
그리고 복수의 지지체(131)는 고체 전해질로 형성할 수 있다. 복수의 지지체(131)가 고체 전해질로 이루어지면, 복수의 지지체(131)로도 이온이 이동할 수 있기 때문에 절연물질로 복수의 지지체(131)를 형성하는 경우보다 이차전지(100)의 이온 전도도를 향상시킬 수 있다. 상기 고체 전해질은 재료에 있어서 특별히 제한되는 것은 아니지만, 산화물계 또는 황화물계인 것을 사용하는 것이 바람직하다. 예를 들어, 몰리브덴 산화물, 티타늄 산화물, 바나듐 산화물, 크롬 산화물, 탄탈 산화물, 지르코늄 산화물, 하프늄 산화물, 니오븀 산화물 및 텅스텐 산화물로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물일 수 있다.The plurality of supports 131 may be formed of a solid electrolyte. When the plurality of supports 131 are made of a solid electrolyte, ions may also move to the plurality of supports 131, thereby improving ion conductivity of the secondary battery 100 than when forming the plurality of supports 131 with an insulating material. You can. Although the said solid electrolyte is not restrict | limited in particular in material, It is preferable to use an oxide type or a sulfide type. For example, it may be a single substance or a mixture of two or more selected from the group consisting of molybdenum oxide, titanium oxide, vanadium oxide, chromium oxide, tantalum oxide, zirconium oxide, hafnium oxide, niobium oxide and tungsten oxide.
상기 중간층을 형성하는 단계에서는 복수의 지지체(131)와 염 구조체(132) 중 어느 하나를 형성하고, 복수의 지지체(131)와 염 구조체(132) 중 나머지 다른 하나를 형성할 수 있다. 일실시예로, 도 7과 같이 복수의 지지체(131)가 형성되는 복수의 격리 공간이 제공되도록 염 구조체(132)를 먼저 형성하고, 제공된 복수의 격리 공간에 채우는 방식으로 복수의 지지체(131)를 형성할 수 있다. 이러한 방법을 사용하면, 잉크(또는 프린팅 기법)를 이용하여 복수의 지지체(131)와 염 구조체(132)를 형성할 수 있고, 간단하게 복수의 지지체(131)와 염 구조체(132)를 형성할 수 있다. 한편, 염 구조체(132)에 복수의 격리 공간이 제공되도록 하는 방법은 복수의 격리 공간을 제외한 부분만을 적층하는 방법과 평면으로 모두 적층한 후 복수의 격리 공간을 식각하는 방법이 있다. 그리고 상기의 방법은 일실시예로서 이에 한정되지 않으며, 복수의 지지체(131)를 먼저 형성하고 복수의 지지체(131) 사이의 이격 공간에 염 구조체(132)를 형성할 수도 있는데, 복수의 지지체(131)와 염 구조체(132)로 이루어진 중간층(130)을 형성할 수 있으면 족하다.In the forming of the intermediate layer, any one of the plurality of supports 131 and the salt structure 132 may be formed, and the other one of the plurality of supports 131 and the salt structure 132 may be formed. In one embodiment, as shown in FIG. 7, the salt structure 132 is first formed to provide a plurality of isolation spaces in which a plurality of supports 131 are formed, and then filled in the provided plurality of isolation spaces. Can be formed. Using this method, it is possible to form the plurality of supports 131 and the salt structure 132 using ink (or printing technique), and simply form the plurality of the supports 131 and the salt structure 132. Can be. On the other hand, a method of providing a plurality of isolation spaces to the salt structure 132 includes a method of stacking only portions except for the plurality of isolation spaces and the method of etching all of the isolation spaces after stacking in a plane. In addition, the method is not limited thereto, and the plurality of supports 131 may be formed first, and the salt structure 132 may be formed in the spaced space between the plurality of supports 131. It is sufficient if the intermediate layer 130 including the 131 and the salt structure 132 can be formed.
상기 중간층을 형성하는 단계는 하나의 절차로서 수행될 수도 있다. 이러한 경우, 단일 공정으로 중간층(130)을 형성할 수 있고, 프린팅 기법을 사용시 노즐(Nozzle, 10)의 최단 거리 이동으로 중간층(130)을 형성할 수 있다.Forming the intermediate layer may be performed as one procedure. In this case, the intermediate layer 130 may be formed in a single process, and when the printing technique is used, the intermediate layer 130 may be formed by moving the nozzle 10 in the shortest distance.
상기 중간층을 형성하는 단계는 복수의 지지체(131)와 염 구조체(132) 각각의 구성물질을 포함하는 복수의 잉크를 이용한 3D 프린팅 기법으로 중간층(130)을 형성할 수 있다. 3D 프린팅 기법으로 중간층(130)을 형성하는 방법은 일실시예로, 도 8과 같이 복수의 노즐(10)을 이용해 위치에 따라 복수의 지지체(131)와 염 구조체(132)를 각각의 노즐이 형성할 수 있고, 노즐(10)이 지날 때 한 번에 중간층(130)의 두께를 가질 수 있다. 한편, 노즐(10)이 z-축으로 높이를 변화하며 연속 적층되어 중간층(130)의 두께를 가질 수도 있는데, 그 형성방법에 특별한 제한은 없다. 3D 프린팅 기법으로 중간층(130)을 형성할 경우, 노즐(10)의 최단 거리 이동으로 쉽고 빠르게 중간층(130)을 형성할 수 있다. 또한, 본 발명에서는 복수의 지지체(131)와 염 구조체(132)로 중간층(130)을 구성하여 3D 프린팅으로 이차전지의 기본이 되는 적층물을 모두 형성할 수 있다. 이에 따라 3D 프린팅 기법으로 쉽고 빠르게 이차전지를 제조할 수 있다. 이에 이차전지의 모든 제조 공정이 인라인 공정으로 수행될 수 있고, 이로 인해 공정 시간이 단축될 수 있으며, 이차전지의 생산성과 공정 효율이 향상될 수 있다.In the forming of the intermediate layer, the intermediate layer 130 may be formed by a 3D printing technique using a plurality of inks including components of each of the plurality of supports 131 and the salt structure 132. In one embodiment, the intermediate layer 130 may be formed by 3D printing. As shown in FIG. 8, the plurality of supports 131 and the salt structure 132 may be formed by using a plurality of nozzles 10. It may be formed, and may have a thickness of the intermediate layer 130 at a time when the nozzle 10 passes. On the other hand, the nozzle 10 may have a thickness of the intermediate layer 130 by stacking continuously varying the height in the z-axis, the formation method is not particularly limited. When the intermediate layer 130 is formed by the 3D printing technique, the intermediate layer 130 may be easily and quickly formed by moving the shortest distance of the nozzle 10. In addition, in the present invention, the intermediate layer 130 may be formed of the plurality of supports 131 and the salt structure 132 to form all the laminates that are the basis of the secondary battery by 3D printing. Accordingly, the secondary battery can be manufactured easily and quickly by 3D printing technique. Accordingly, all manufacturing processes of the secondary battery may be performed in an inline process, and thus, the process time may be shortened, and the productivity and process efficiency of the secondary battery may be improved.
상기 복수의 잉크는 복수의 지지체(131)의 구성물질과 염 구조체(132)의 구성물질의 분말로 제조되고, 각각의 구성물질의 분말이 용해 또는 분산되는 용매를 각각 포함하며, 상기 복수의 잉크의 점착력과 이온 전도도를 향상시키기 위한 첨가제를 더 포함할 수 있다. 상기 첨가제는 바인더, 도전제, 보습제, 분산제, 증점제 및 완충제 중 적어도 하나 이상을 포함할 수 있다. 3D 프린팅을 하기 위해서는 잉크가 적정한 점도를 유지하여야 하는데, 상기 첨가제들을 첨가하여 적정한 점도를 유지하면서 활물질의 전도성이 향상된 잉크를 제조할 수 있다. 상기 용매는 탈이온수(Deionized water)를 주성분으로 하며, 건조속도를 조절하기 위해 에탄올, 메탄올, 부탄올, 프로판올, 이소프로필알코올, 이소부틸알코올, 에틸렌글리콜, N-메틸-2-피롤리돈 등의 알코올계를 혼합한 용매를 사용할 수 있다.The plurality of inks are made of powders of the constituents of the plurality of supports 131 and the constituents of the salt structure 132, and each includes a solvent in which powders of the respective constituents are dissolved or dispersed. It may further include an additive for improving the adhesion and ionic conductivity of. The additive may include at least one or more of a binder, a conductive agent, a humectant, a dispersant, a thickener, and a buffer. In order to perform 3D printing, the ink must maintain an appropriate viscosity, and the additives can be added to prepare an ink having improved conductivity of the active material while maintaining the proper viscosity. The solvent is a deionized water (Deionized water) as a main component, ethanol, methanol, butanol, propanol, isopropyl alcohol, isobutyl alcohol, ethylene glycol, N-methyl-2-pyrrolidone, etc. to control the drying rate The solvent which mixed alcohol type can be used.
상기 바인더는 잉크에 결착력을 부여하는 역할을 하며, 결착제일 수 있는데, 폴리비닐알콜, 에틸렌-프로필렌-디엔 3원 공중합체, 스틸렌-부타디엔 고무, 폴리불화비닐리덴(PVDF), 폴리테드라플루오로에틸렌, 테트라플루오루에틸렌-헥사플루오로프로필렌 공중합체, 카르복시메틸셀룰로오즈(CMC) 중에서 선택된 하나 이상을 사용할 수 있다. 그리고 상기 도전제는 전도성을 향상시키기 위한 물질로, 아세틸렌 블랙, 카본블랙, 그래파이트, 탄소섬유, 카본나노튜브 등을 사용할 수 있다. 또한, 상기 보습제는 잉크의 건조를 억제하여 노즐 막힘을 방지하는 역할을 하며, 글리콜류, 글리세롤, 피롤리돈 등을 사용할 수 있다.The binder serves to impart a binding force to the ink, may be a binder, polyvinyl alcohol, ethylene-propylene-diene terpolymer, styrene-butadiene rubber, polyvinylidene fluoride (PVDF), polytetrafluoro One or more selected from ethylene, tetrafluoroethylene-hexafluoropropylene copolymer, carboxymethylcellulose (CMC) can be used. The conductive agent may be acetylene black, carbon black, graphite, carbon fiber, carbon nanotube, or the like as a material for improving conductivity. In addition, the moisturizing agent serves to prevent the clogging of the nozzle by inhibiting the drying of the ink, glycols, glycerol, pyrrolidone and the like can be used.
상기 분산제는 활물질과 도전제를 골고루 분산시켜 주는 역할을 하며, 지방산염, 알킬디카르복시산염, 알킬황산에스테르염, 다가황산에스테르알콜염, 알킬나프탈렌황산염, 알킬벤젠황산염, 알킬나프탈렌황산에스테르염, 알킬술폰숙신산염, 나프텐산염, 알킬에테르카르복시산염, 아실레이티드펩티드, 알파올레핀황산염, N-아실메틸타우린염, 알킬에테르황산염, 2차다가알콜에톡시설페이트, 폴리옥시에틸렌알킬퍼밀에테르황산염, 모노글리설페이트, 알킬에테르인산에스테르염, 알킬인산에스테르염, 알킬아민염, 알킬피리듐염, 알킬이미다졸륨염, 불소계- 또는 실리콘계-아크릴산 중합체, 폴리옥시에틸렌알킬에테르, 폴리옥시에틸렌스테롤에테르, 폴리옥시에틸렌의 라놀린 유도체, 폴리옥시에틸렌/폴리옥시프로필렌 공중합체, 폴리옥시에틸렌솔비탄지방산에스테르, 모노글리세라이드지방산에스테르, 수크로스지방산에스테르, 알칸올아미드지방산, 폴리옥시에틸렌지방산 아미드, 폴리옥시에틸렌알킬아민, 폴리비닐알코올, 폴리비닐피리돈, 폴리아크릴아미드, 카르복시기-함유 수용성 폴리에스테르, 수산기-함유 셀룰로오스계 수지, 아크릴 수지, 부타디엔 수지, 아크릴산계, 스티렌아크릴계, 폴리에스테르계, 폴리아미드계, 폴리우레탄계, 알킬베타민, 알킬아민옥사이드, 포스파티딜콜린 중 1종 또는 2종 이상의 혼합물을 사용할 수 있다. 그리고 상기 증점제는 점도를 증진시키는 역할을 하며, 에틸렌-비닐알코올 공중합체, 셀룰로오스 유도체(예를 들어, 카르복시메틸셀룰로오스, 메틸셀룰로오스) 등을 사용할 수 있다. 또한, 상기 완충제는 잉크의 안정성을 유지하며 적정 pH를 조절하는 물질로, 트리메틸아민, 트리에탄올아민, 디에탄올아민, 에탄올아민 또는 수산화나트륨, 수산화암모늄 중에서 선택된 하나 이상의 아민계 화합물을 사용할 수 있다.The dispersant serves to evenly disperse the active material and the conductive agent, and include fatty acid salts, alkyl dicarboxylic acid salts, alkyl sulfate ester salts, polyhydric acid ester alcohol salts, alkylnaphthalene sulfate salts, alkylbenzene sulfate salts, alkyl naphthalene sulfate salts, and alkyl salts. Sulfonic succinate, naphthenate, alkyl ether carboxylate, acylated peptide, alpha olefin sulfate, N-acylmethyl taurine salt, alkyl ether sulfate, secondary polyhydric alcohol ethoxy sulfate, polyoxyethylene alkyl permil ether sulfate, mono Glysulfate, alkyl ether phosphate ester salt, alkyl phosphate ester salt, alkyl amine salt, alkyl pyridium salt, alkyl imidazolium salt, fluorine- or silicone-acrylic acid polymer, polyoxyethylene alkyl ether, polyoxyethylene sterol ether, poly Lanolin derivatives of oxyethylene, polyoxyethylene / polyoxypropylene copolymer, polyoxyethylene sorbitan Fatty acid ester, monoglyceride fatty acid ester, sucrose fatty acid ester, alkanolamide fatty acid, polyoxyethylene fatty acid amide, polyoxyethylene alkylamine, polyvinyl alcohol, polyvinylpyridone, polyacrylamide, carboxyl group-containing water-soluble polyester , One or a mixture of two or more of hydroxyl group-containing cellulose resins, acrylic resins, butadiene resins, acrylic acids, styrene acrylics, polyesters, polyamides, polyurethanes, alkylbetamins, alkylamine oxides and phosphatidylcholines can be used. Can be. And the thickener serves to improve the viscosity, ethylene-vinyl alcohol copolymer, cellulose derivative (for example, carboxymethyl cellulose, methyl cellulose) and the like can be used. In addition, the buffer is a material that maintains the stability of the ink and adjusts the appropriate pH, it may be used one or more amine compounds selected from trimethylamine, triethanolamine, diethanolamine, ethanolamine or sodium hydroxide, ammonium hydroxide.
한편, 3D 프린팅 기법으로 이차전지의 기본이 되는 모든 적층물을 형성할 경우, 적층물 각각의 잉크를 이용하여 적층물을 각각 형성하고, 상기 각각의 잉크는 적층물 각각의 구성물질분말 및 적층물 각각의 구성물질분말을 용해시키거나 분산시키는 용매를 포함할 수 있다. 그리고 3D 프린팅을 위한 프린터는 x, y, z의 세 축으로 제어가 가능한 프린터일 수 있고, 마이크로 노즐(Micronozzle) 및 벌크 노즐(Bulk nozzle)이 사용될 수 있다. 그리고 상기 잉크들의 분사 속도를 제어할 수 있는 공압식 컨트롤러를 사용할 수도 있다.On the other hand, in the case of forming all the stacks that are the basis of the secondary battery by the 3D printing technique, the stack is formed by using each ink of the stack, and each of the ink is the powder of each component of the stack and the stack It may include a solvent for dissolving or dispersing each component powder. The printer for 3D printing may be a printer that can be controlled by three axes of x, y, and z, and micronozzles and bulk nozzles may be used. In addition, a pneumatic controller capable of controlling the ejection speed of the inks may be used.
복수의 지지체(131)와 염 구조체(132)는 1 내지 200 ㎛의 높이로 형성할 수 있다. 복수의 지지체(131)와 염 구조체(132)는 염 구조체(132)가 용매에 용해되어 액체 전해질이 됨으로써 중간층(130)을 이루게 되는데, 중간층(130)은 두께가 얇을수록 이온의 이동거리가 짧아지기 때문에 이온전달 속도가 빨라지고 최대용량이 커져서 출력량이 좋아지게 된다. 하지만, 중간층(130)의 두께가 너무 얇아져서 1 ㎛보다 얇아지게 되면 양극과 음극의 전기적 통전 현상을 방지하지 못하고 쇼트(Short)가 발생하게 될 수 있다. 반면에, 중간층(130)의 두께가 200 ㎛보다 두꺼워지면, 이온의 이동거리가 너무 길어져 이온전달 시간이 오래 걸리기 때문에 출력 효율이 감소될 수 있다. 그리고 중간층(130)의 두께가 얇아지면, 단위부피당 제1 전극(또는 양극) 또는 제2 전극(또는 음극)의 비율을 극대화시킬 수 있어 단위부피당 활물질의 양이 늘어나기 때문에 에너지 밀도를 향상시킬 수 있다.The plurality of supports 131 and the salt structure 132 may be formed to a height of 1 to 200 ㎛. The plurality of supports 131 and the salt structure 132 forms the intermediate layer 130 by dissolving the salt structure 132 in a solvent to form a liquid electrolyte. The thinner the intermediate layer 130 is, the shorter the movement distance of ions becomes. As a result, the ion transfer rate is faster and the maximum capacity is increased, resulting in better output. However, if the thickness of the intermediate layer 130 becomes too thin and becomes thinner than 1 μm, a short may not occur without preventing an electric conduction phenomenon between the positive electrode and the negative electrode. On the other hand, when the thickness of the intermediate layer 130 is thicker than 200 μm, the output distance may be reduced because the moving distance of the ions becomes too long and the ion transfer time is long. When the thickness of the intermediate layer 130 is thin, the ratio of the first electrode (or anode) or the second electrode (or cathode) per unit volume can be maximized, and the energy density can be improved because the amount of the active material per unit volume increases. .
그리고 중간층(130) 상에 제2 전극(140)을 형성한다(도 5). 제2 전극(140)은 활물질 및 도전제를 포함할 수 있고, 제2 전극(140)은 양극과 음극 중 제1 전극(120)과 대응되는 나머지 전극일 수 있다. 제2 전극(140)이 음극일 경우, 활물질로 리튬이온을 도핑하는 것이 가능한 폴리아세탈, 폴리아세틸렌, 폴리피롤 등의 도전성 고분자, 리튬이온을 도핑하는 것이 가능한 코크스, 탄소섬유, 흑연, 메소페이즈피치계 탄소, 열분해 기상 탄소물질, 수지소성체 등의 탄소재나 이황화 티탄, 이황화 몰리브덴, 셀렌화 니오브 등의 카르코겐 화합물, 실리콘(Si), 주석(Sn), 바나듐(V), 티타늄(Ti), 게르마늄(Ge)과 같은 금속물질, 이들의 산화물 또는 2종 이상의 화합물 등을 사용할 수 있다. 여기서, 상기 탄소재의 형태는 흑연계 탄소재, 흑연 결정부와 비결정부가 혼재한 탄소재, 결정층이 불규직한 적층구조를 갖는 탄소재 등일 수 있다. 그리고 활물질을 결착하는 결착제(또는 바인더)를 더 포함할 수도 있으며, 상기 도전제와 결착제는 활물질에 비해 소량 함유될 수 있다. 한편, 제1 전극(120)이 음극이고, 제2 전극(140)이 양극일 경우에는 상기와 반대로 제1 전극(120)과 제2 전극(140)을 형성할 수 있는데, 각 전극의 극성에 따라 그 활물질을 선택할 수 있다.The second electrode 140 is formed on the intermediate layer 130 (FIG. 5). The second electrode 140 may include an active material and a conductive agent, and the second electrode 140 may be a remaining electrode corresponding to the first electrode 120 among the positive electrode and the negative electrode. When the second electrode 140 is a negative electrode, conductive polymers such as polyacetal, polyacetylene, polypyrrole and the like, which are capable of doping lithium ions with an active material, and coke, carbon fiber, graphite, and mesophase pitch system capable of doping lithium ions Carbon materials such as carbon, pyrolytic gaseous carbon materials, resinous plastics, and carbogen compounds such as titanium disulfide, molybdenum disulfide, niobium selenide, silicon (Si), tin (Sn), vanadium (V), titanium (Ti), Metal materials such as germanium (Ge), oxides thereof, or two or more compounds may be used. Here, the carbon material may be a graphite carbon material, a carbon material in which the graphite crystal part and the amorphous part are mixed, or a carbon material having a laminated structure in which the crystal layer is irregular. And it may further comprise a binder (or binder) for binding the active material, the conductive agent and the binder may be contained in a small amount compared to the active material. On the other hand, when the first electrode 120 is a cathode and the second electrode 140 is an anode, the first electrode 120 and the second electrode 140 may be formed on the contrary, but the polarity of each electrode may vary. The active material can be selected accordingly.
집전체(110), 제1 전극(120), 중간층(130) 및 제2 전극(140)은 모두 프린팅 공정으로 형성할 수 있다. 본 발명에서는 복수의 지지체(131)와 염 구조체(132)로 중간층(130)을 구성하여 프린팅 공정으로 이차전지의 기본이 되는 집전체(110), 제1 전극(120), 중간층(130) 및 제2 전극(140)을 모두 형성할 수 있다. 이에 따라 3D 프린팅 기법으로 쉽고 빠르게 이차전지를 제조할 수도 있다. 이에 이차전지의 모든 제조 공정이 인라인 공정으로 수행될 수 있고, 이로 인해 공정 시간이 단축될 수 있으며, 이차전지의 생산성과 공정 효율이 향상될 수 있다.The current collector 110, the first electrode 120, the intermediate layer 130, and the second electrode 140 may all be formed by a printing process. In the present invention, the intermediate layer 130 is composed of the plurality of supports 131 and the salt structure 132, and the current collector 110, the first electrode 120, the intermediate layer 130, which are the basis of the secondary battery in the printing process, and All of the second electrodes 140 may be formed. Accordingly, the secondary battery can be manufactured easily and quickly by 3D printing technique. Accordingly, all manufacturing processes of the secondary battery may be performed in an inline process, and thus, the process time may be shortened, and the productivity and process efficiency of the secondary battery may be improved.
다음으로, 염 구조체(132)를 용매에 용해시켜 액체 전해질을 형성한다. 이때, 도 6과 같이 이차전지의 기본이 되는 적층물을 외장재(150)로 패키징하고, 염 구조체(132)를 용해시키는 용매를 한 곳으로 염 구조체(132)에 주입하여 액체 전해질을 형성할 수 있다. 이러한 경우, 상기 용매를 주입한 후 액체 전해질이 누수되지 않도록 액체 전해질의 주입에 사용된 주입구를 실링하여 준다.Next, the salt structure 132 is dissolved in a solvent to form a liquid electrolyte. In this case, as shown in FIG. 6, the laminate, which is the basis of the secondary battery, may be packaged with the exterior material 150, and a solvent for dissolving the salt structure 132 may be injected into the salt structure 132 to form a liquid electrolyte. have. In this case, the injection hole used for injection of the liquid electrolyte is sealed to prevent leakage of the liquid electrolyte after the injection of the solvent.
한편, 제2 전극(140) 상에 집전체(110)를 형성하는 단계를 더 포함할 수 있고, 에너지 밀도를 더욱 향상시키기 위해 이차전지(100)의 단위 셀(cell)을 스택(stack)하는 단계를 더 포함할 수도 있다. 그리고 외장재(150)까지 3D 프린팅으로 형성할 수도 있으며, 복수의 단위 셀을 3D 프린팅으로 형성하여 스택되도록 할 수도 있다. 이러한 경우 연속 공정 중에 단위 셀과 단위 셀을 스택할 수 있어 공정 효율을 높이고 공정 시간을 줄여주는 장점을 가지며, 3D 프린팅으로 외장재(150)까지 형성할 경우 이차전지의 기본이 되는 적층물이 밀봉되도록 외장재(150)를 형성한 후 구멍을 뚫어 염 구조체(132)를 용해시키는 용매의 주입구를 형성할 수도 있다. 한편, 염 구조체(132)를 용해시키는 용매의 주입구가 형성되도록 외장재(150)를 형성할 수도 있는데, 이때도 상기 주입구는 실링하여 준다. 그리고 이차전지(100)의 단위 셀(cell)을 스택할 때 어느 하나의 단위 셀의 제2 전극과 다른 단위 셀의 제1 전극이 접촉되도록 스택할 수도 있고, 전선 등으로 어느 하나의 단위 셀의 제2 전극과 다른 단위 셀의 제1 전극이 연결되도록 할 수도 있다. 이때, 어느 하나의 단위 셀의 제2 전극과 다른 단위 셀의 제1 전극을 연결하는 방법에 있어서 특별한 제한은 없다.Meanwhile, the method may further include forming a current collector 110 on the second electrode 140, and stacking unit cells of the secondary battery 100 to further improve energy density. It may further comprise a step. In addition, the exterior member 150 may be formed by 3D printing, or a plurality of unit cells may be formed by 3D printing to be stacked. In this case, the unit cell and the unit cell can be stacked during the continuous process, thus increasing the process efficiency and reducing the process time, and when forming the exterior material 150 by 3D printing, the laminate which is the basis of the secondary battery is sealed. After forming the exterior material 150, a hole may be formed to form an injection hole for dissolving the salt structure 132. On the other hand, the exterior member 150 may be formed so that the injection hole of the solvent for dissolving the salt structure 132 is formed, and the injection hole is also sealed. In addition, when stacking unit cells of the secondary battery 100, the second electrode of one unit cell and the first electrode of another unit cell may be stacked so as to be in contact with each other. The second electrode and the first electrode of another unit cell may be connected. At this time, there is no particular limitation in the method of connecting the second electrode of any one unit cell and the first electrode of the other unit cell.
이처럼, 본 발명의 일실시예에 따른 이차전지는 염(예를 들어, 리튬염)을 이용해 염 구조체를 형성하고 용매로 염 구조체를 용해시킴으로써 그 내부에 쉽게 액체 전해질을 형성할 수 있으며, 이에 따라 염 구조체를 프린팅 기법으로 형성할 수 있다. 따라서, 3D 프린팅으로 한 번에 집전체, 제1 전극, 복수의 지지체, 염 구조체 및 제2 전극을 모두 형성할 수 있다. 이에 모든 제조 공정이 인라인 공정으로 수행될 수 있고, 이로 인해 공정 시간이 단축될 수 있으며, 생산성과 공정 효율이 향상될 수 있다. 그리고 3D 프린팅으로 한번에 형성된 하나의 적층물을 패키징하면 되기 때문에 패키징이 쉬워질 수 있다. 또한, 제1 전극과 제2 전극 사이에 복수의 지지체가 형성되어 3D 프린팅 공정 중에 양극과 음극을 물리적으로 차단할 수 있고, 이차전지의 충방전시 두꺼운 분리막 없이도 양극과 음극의 전기적 통전 현상을 방지할 수 있다. 이에 전해질층의 두께를 얇게 하여 단위부피당 양극 또는 음극의 비율을 높일 수 있기 때문에 단위부피당 활물질의 양이 증가되어 분리막의 사용시보다 에너지 밀도를 향상시킬 수 있다. 그리고 복수의 지지체를 고체 전해질로 형성하여 복수의 지지체로도 이온이 이동할 수 있도록 할 수 있고, 이에 따라 전반적인 이온 전도도(ionic conductivity)를 향상시킬 수 있다. 한편, 에너지 밀도를 더욱 향상시키기 위해 이차전지의 단위 셀(cell)을 스택(stack)할 수도 있다. 따라서, 복수의 단위 셀을 3D 프린팅으로 스택되도록 형성하여 연속 공정 중에 단위 셀과 단위 셀을 스택할 수 있으므로, 공정 효율을 상승시키고 공정 시간을 줄일 수 있으면서 에너지 밀도가 높은 이차전지를 얻을 수 있다.As such, the secondary battery according to an embodiment of the present invention can easily form a liquid electrolyte therein by forming a salt structure using a salt (for example, lithium salt) and dissolving the salt structure with a solvent. Salt structures can be formed by printing techniques. Thus, 3D printing can form all of the current collector, the first electrode, the plurality of supports, the salt structure, and the second electrode at once. As a result, all manufacturing processes can be performed in an inline process, which can shorten the process time and improve productivity and process efficiency. In addition, packaging can be easily performed by packaging one stack formed at a time by 3D printing. In addition, a plurality of supports are formed between the first electrode and the second electrode to physically block the positive electrode and the negative electrode during the 3D printing process, and to prevent the electrical conduction of the positive electrode and the negative electrode without a thick separator during charge and discharge of the secondary battery. Can be. The thickness of the electrolyte layer can be increased by increasing the ratio of the positive electrode or the negative electrode per unit volume, thereby increasing the amount of the active material per unit volume, thereby improving the energy density of the separator. In addition, the plurality of supports may be formed of a solid electrolyte to allow ions to move to the plurality of supports, thereby improving the overall ionic conductivity. Meanwhile, in order to further improve energy density, unit cells of the secondary battery may be stacked. Accordingly, since a plurality of unit cells are formed to be stacked by 3D printing, the unit cells and the unit cells can be stacked during the continuous process, thereby increasing the process efficiency and reducing the process time, thereby obtaining a secondary battery having a high energy density.
이상에서 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 기술적 보호범위는 아래의 특허청구범위에 의해서 정하여져야 할 것이다.Although the preferred embodiments of the present invention have been shown and described above, the present invention is not limited to the above-described embodiments, and the general knowledge in the field of the present invention belongs without departing from the gist of the present invention as claimed in the claims. Those skilled in the art will appreciate that various modifications and equivalent other embodiments are possible therefrom. Therefore, the technical protection scope of the present invention will be defined by the claims below.

Claims (12)

  1. 전자를 주고받는 집전체;A current collector for sending and receiving electrons;
    제1 활물질을 함유하며, 상기 집전체 상에 형성되는 제1 전극;A first electrode containing a first active material and formed on the current collector;
    상기 제1 전극 상에 형성되는 전해질층; 및An electrolyte layer formed on the first electrode; And
    제2 활물질을 함유하며, 상기 전해질층 상에 형성되는 제2 전극을 포함하고,A second electrode formed on the electrolyte layer, containing a second active material,
    상기 전해질층은,The electrolyte layer,
    서로 이격되어 형성되는 복수의 지지체; 및A plurality of supports formed spaced apart from each other; And
    상기 복수의 지지체 사이의 이격 공간에 제공되는 액체 전해질을 포함하는 이차전지.Secondary battery comprising a liquid electrolyte provided in the spaced space between the plurality of supports.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 복수의 지지체는 고체 전해질로 이루어지는 이차전지.The plurality of supports are secondary batteries made of a solid electrolyte.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 액체 전해질은 상기 이격 공간에 제공된 연속적인 망 구조를 갖는 고상의 염(Salt) 구조체가 용매에 녹아 형성되는 이차전지.The liquid electrolyte is a secondary battery in which a solid salt structure having a continuous network structure provided in the separation space is dissolved in a solvent.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 전해질층은 1 내지 200 ㎛의 두께를 갖는 이차전지.The electrolyte layer is a secondary battery having a thickness of 1 to 200 ㎛.
  5. 집전체를 형성하는 단계;Forming a current collector;
    상기 집전체 상에 제1 전극을 형성하는 단계;Forming a first electrode on the current collector;
    상기 제1 전극 상에 서로 이격된 복수의 지지체와 상기 복수의 지지체 사이의 이격 공간에 제공된 염(Salt) 구조체로 이루어진 중간층을 형성하는 단계;Forming an intermediate layer on the first electrode, the intermediate layer including a plurality of supports spaced apart from each other and a salt structure provided in a spaced space between the plurality of supports;
    상기 중간층 상에 제2 전극을 형성하는 단계; 및Forming a second electrode on the intermediate layer; And
    상기 염 구조체를 용매에 용해시켜 액체 전해질을 형성하는 단계를 포함하는 이차전지 제조방법.A secondary battery manufacturing method comprising the step of dissolving the salt structure in a solvent to form a liquid electrolyte.
  6. 청구항 5에 있어서,The method according to claim 5,
    상기 염 구조체는 연속적인 망 구조로 형성하고,The salt structure is formed into a continuous network structure,
    상기 복수의 지지체는 상기 염 구조체에 의해 각각 고립된 형상으로 형성하는 이차전지 제조방법.The plurality of supports are secondary battery manufacturing method to form a shape each isolated by the salt structure.
  7. 청구항 5에 있어서,The method according to claim 5,
    상기 집전체, 상기 제1 전극, 상기 중간층 및 상기 제2 전극은 모두 프린팅 공정으로 형성하는 이차전지 제조방법.The current collector, the first electrode, the intermediate layer and the second electrode are all secondary battery manufacturing method is formed by a printing process.
  8. 청구항 5에 있어서,The method according to claim 5,
    상기 중간층을 형성하는 단계에서는, 상기 복수의 지지체와 상기 염 구조체 중 선택된 어느 하나를 먼저 형성한 후에 나머지 다른 하나를 형성하는 이차전지 제조방법.In the forming of the intermediate layer, the secondary battery manufacturing method of forming any one of the plurality of the support and the salt structure selected first and then the other.
  9. 청구항 5에 있어서,The method according to claim 5,
    상기 중간층을 형성하는 단계는, 하나의 절차로서 수행되는 이차전지 제조방법.Forming the intermediate layer, secondary battery manufacturing method is performed as a procedure.
  10. 청구항 5에 있어서,The method according to claim 5,
    상기 중간층을 형성하는 단계에서는 상기 복수의 지지체의 구성물질과 상기 염 구조체의 구성물질을 포함하는 복수의 잉크를 이용한 3D 프린팅 기법으로 상기 중간층을 형성하는 이차전지 제조방법.In the forming of the intermediate layer, the secondary battery manufacturing method of forming the intermediate layer by a 3D printing method using a plurality of inks including the constituents of the plurality of supports and the constituents of the salt structure.
  11. 청구항 5에 있어서,The method according to claim 5,
    상기 복수의 지지체는 고체 전해질로 형성하는 이차전지 제조방법.The plurality of supports are secondary battery manufacturing method to form a solid electrolyte.
  12. 청구항 5에 있어서,The method according to claim 5,
    상기 중간층은 1 내지 200 ㎛의 높이로 형성하는 이차전지 제조방법.The intermediate layer is a secondary battery manufacturing method to form a height of 1 to 200 ㎛.
PCT/KR2016/002486 2015-03-12 2016-03-11 Secondary battery and method for manufacturing same WO2016144144A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150034409A KR101642871B1 (en) 2015-03-12 2015-03-12 Secondary battery and Method for manufacturing the same
KR10-2015-0034409 2015-03-12

Publications (1)

Publication Number Publication Date
WO2016144144A1 true WO2016144144A1 (en) 2016-09-15

Family

ID=56681062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/002486 WO2016144144A1 (en) 2015-03-12 2016-03-11 Secondary battery and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR101642871B1 (en)
WO (1) WO2016144144A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114530605A (en) * 2022-04-11 2022-05-24 江苏东科新能源材料有限公司 High-surface-energy masking liquid for current collector and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102205542B1 (en) * 2019-09-05 2021-01-20 경희대학교 산학협력단 A manufacturing method of a lithium ion secondary battery for smart wearable electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012212A (en) * 1996-06-18 1998-01-16 Yuasa Corp Sealed lead acid battery
JP2005339825A (en) * 2004-05-24 2005-12-08 Nissan Motor Co Ltd Battery-incorporated circuit device
JP2007257863A (en) * 2006-03-20 2007-10-04 Nissan Motor Co Ltd Electrolyte layer for lithium ion secondary battery
JP2008103260A (en) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd Solid electrolyte sheet, electrode sheet, and all-solid secondary battery using it
KR20100017919A (en) * 2007-05-25 2010-02-16 메사추세츠 인스티튜트 오브 테크놀로지 Batteries and electrodes for use thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100044087A (en) 2008-10-20 2010-04-29 삼성전자주식회사 Electrode composition for inkjet print, electrode and secondary battery prepared using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012212A (en) * 1996-06-18 1998-01-16 Yuasa Corp Sealed lead acid battery
JP2005339825A (en) * 2004-05-24 2005-12-08 Nissan Motor Co Ltd Battery-incorporated circuit device
JP2007257863A (en) * 2006-03-20 2007-10-04 Nissan Motor Co Ltd Electrolyte layer for lithium ion secondary battery
JP2008103260A (en) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd Solid electrolyte sheet, electrode sheet, and all-solid secondary battery using it
KR20100017919A (en) * 2007-05-25 2010-02-16 메사추세츠 인스티튜트 오브 테크놀로지 Batteries and electrodes for use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114530605A (en) * 2022-04-11 2022-05-24 江苏东科新能源材料有限公司 High-surface-energy masking liquid for current collector and application thereof

Also Published As

Publication number Publication date
KR101642871B1 (en) 2016-07-26

Similar Documents

Publication Publication Date Title
US9742000B2 (en) Electrode having a dual layer structure, method for manufacturing thereof, and lithium secondary battery comprising the same
WO2016048002A1 (en) Prismatic battery cell comprising two or more case members
WO2015037867A1 (en) Lithium electrode and lithium secondary battery comprising same
WO2014185750A1 (en) Non-aqueous electrolytic solution and lithium secondary battery comprising same
WO2013002497A2 (en) Secondary battery having superior productivity and safety
CN111712949B (en) Lithium electrode and lithium secondary battery comprising same
KR101840494B1 (en) Electrode for a secondary battery, preparation method thereof and secondary battery including the same
WO2013157855A1 (en) Electrolyte for secondary battery and lithium secondary battery including same
WO2013157867A1 (en) Lithium secondary battery having improved rate characteristics
US20240120498A1 (en) Electrode assembly and lithium battery comprising same
KR20160004737A (en) Battery Cell Having Hole for Electrolyte Wetting
WO2013157857A1 (en) Electrolyte for secondary battery and lithium secondary battery including same
KR20160040020A (en) Electrode assembly and lithium secondary battery comprising thereof
CN112335073A (en) Negative electrode for lithium secondary battery, method of pre-lithiating the negative electrode, and lithium secondary battery including the negative electrode
US20230282949A1 (en) Three-tab laminated composite battery
US20230335799A1 (en) Electrolyte, secondary battery including such electrolyte, and preparation method of such secondary battery
WO2020153790A1 (en) Method for manufacturing anode for secondary battery
CN111712950B (en) Lithium electrode and lithium secondary battery comprising same
WO2021045580A1 (en) Method for pre-sodiation of negative electrode, pre-sodiated negative electrode, and lithium secondary battery comprising same
EP3316380B1 (en) Battery cell in which gelation electrolyte solution component is included in pore of separator configuring electrode assembly
US20210280859A1 (en) Method for manufacturing negative electrode for lithium secondary battery
WO2016144144A1 (en) Secondary battery and method for manufacturing same
WO2019221410A1 (en) Negative electrode including electrode protective layer, and lithium secondary battery employing same
KR20210120686A (en) Method for manufacturing negative electrode
WO2018034463A1 (en) Battery cell comprising insulator assembly for preventing needle-shaped conductor from causing short circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16762031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16762031

Country of ref document: EP

Kind code of ref document: A1