WO2016143654A1 - Production method for 1,2,4-oxadiazole derivative - Google Patents

Production method for 1,2,4-oxadiazole derivative Download PDF

Info

Publication number
WO2016143654A1
WO2016143654A1 PCT/JP2016/056552 JP2016056552W WO2016143654A1 WO 2016143654 A1 WO2016143654 A1 WO 2016143654A1 JP 2016056552 W JP2016056552 W JP 2016056552W WO 2016143654 A1 WO2016143654 A1 WO 2016143654A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
compound represented
group
reaction
Prior art date
Application number
PCT/JP2016/056552
Other languages
French (fr)
Japanese (ja)
Inventor
直輝 市野川
祐 小野崎
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016012795A external-priority patent/JP2018070446A/en
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2016143654A1 publication Critical patent/WO2016143654A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond

Definitions

  • the present invention relates to a method for producing a 1,2,4-oxadiazole derivative.
  • 1,2,4-oxadiazole derivatives substituted with aromatic groups at the 3-position and 5-position are known as physiologically active substances in the pharmaceutical and agricultural fields.
  • a method for producing the derivative a method is known in which acyl chloride and aromatic N-hydroxyamidine are reacted in the presence of an organic solvent immiscible with water and an aqueous base (for example, see Patent Document 1). .
  • An object of the present invention is to provide a method for producing a 1,2,4-oxadiazole derivative that can be carried out by a simple operation method and is excellent in production efficiency.
  • a method for producing a diazole derivative A 1,2,4-oxa compound represented by the following formula (A), which comprises reacting a compound represented by the following formula (B) with a compound represented by the following formula (C):
  • Ar represents an aromatic group or an aromatic group having a substituent.
  • W, X, Y, and Z each independently represent —S—, —N ⁇ , —CH ⁇ , or —CR ⁇ . And one selected from W, X, Y and Z represents —S—, wherein R represents an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, or a haloalkyl having 1 to 3 carbon atoms.
  • a compound represented by the following formula (B) and a compound represented by the following formula (C) are reacted to obtain an intermediate product containing the compound represented by the following formula (D).
  • the intermediate product is subjected to an oxidation reaction to oxidize the compound represented by the formula (D) and convert it to a 1,2,4-oxadiazole derivative represented by the following formula (A).
  • Ar represents an aromatic group or an aromatic group having a substituent.
  • W, X, Y, and Z each independently represent —S—, —N ⁇ , —CH ⁇ , or —CR ⁇ . And one selected from W, X, Y and Z represents —S—, wherein R represents an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, or a haloalkyl having 1 to 3 carbon atoms.
  • the compound represented by the formula (B) is a compound represented by the following formula (B 1 ), and the 1,2,4-oxadiazole derivative represented by the formula (A) is represented by the following formula (The method for producing a 1,2,4-oxadiazole derivative according to any one of [1] to [6], which is a compound represented by A 1 ).
  • a method for producing a 1,2,4-oxadiazole derivative [11] The reaction according to any one of [1] to [10], wherein the reaction between the compound represented by the formula (B) and the compound represented by the formula (C) is performed while dehydrating. , 4-Oxadiazole derivative production method. [12] After obtaining the compound represented by the formula (C) by the reaction of the compound represented by the following formula (F) and hydroxylamine, the compound is reacted with the compound represented by the formula (B). [1] A process for producing a 1,2,4-oxadiazole derivative according to any one of [11].
  • a method for producing a 1,2,4-oxadiazole derivative that can be carried out by a simple operation method and is excellent in production efficiency.
  • the 1,2,4-oxadiazole derivative represented by the following formula (A) is also referred to as oxadiazole derivative A.
  • the compound represented by the following formula (B) is referred to as Compound B, and the same applies to compounds represented by other formulas.
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the “halogen atom” means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • the “alkyl group having 1 to 5 carbon atoms” means a linear or branched saturated hydrocarbon group having 1 to 5 carbon atoms, such as methyl, ethyl, propyl. Isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, 1-ethylpropyl and the like.
  • the “C 1-3 alkyl group” means a linear or branched saturated hydrocarbon group having 1 to 3 carbon atoms, for example, methyl, ethyl, propyl And isopropyl.
  • alkenyl group having 2 to 5 carbon atoms means a linear or branched unsaturated carbonization having at least one double bond and having 2 to 5 carbon atoms.
  • alkynyl group having 2 to 5 carbon atoms means a linear or branched unsaturated hydrocarbon having at least one triple bond and having 2 to 5 carbon atoms.
  • the “alkoxy group having 1 to 5 carbon atoms” means an oxy group substituted with an “alkyl group having 1 to 5 carbon atoms”, and includes, for example, methoxy, ethoxy, propoxy, isopropoxy, butoxy , Isobutoxy, sec-butoxy, tert-butoxy, pentyloxy, isopentyloxy, neopentyloxy, 1-ethylpropyloxy and the like.
  • the “alkoxy group having 1 to 3 carbon atoms” means an oxy group substituted with an “alkyl group having 1 to 3 carbon atoms”, and examples thereof include methoxy, ethoxy, propoxy and isopropoxy. It is done.
  • haloalkyl group having 1 to 5 carbon atoms means “one carbon atom having 1 carbon atom” substituted with one or more (preferably 1 to 5, more preferably 1 to 3) “halogen atoms”.
  • To 5 alkyl groups for example, fluoromethyl, difluoromethyl, trifluoromethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 1 -Fluoropropyl, 2-fluoropropyl, 3-fluoropropyl, chloromethyl, 2-chloroethyl, 3-chloropropyl, bromomethyl, 4-fluorobutyl, 5-fluoropentyl and the like.
  • haloalkyl group having 1 to 3 carbon atoms means “1 carbon atom having 1 or more carbon atoms, preferably 1 to 5, more preferably 1 to 3” substituted with “halogen atom”.
  • -3 alkyl groups ", for example, fluoromethyl, difluoromethyl, trifluoromethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 1 -Fluoropropyl, 2-fluoropropyl, 3-fluoropropyl, chloromethyl, 2-chloroethyl, 3-chloropropyl, bromomethyl and the like.
  • haloalkoxy group having 1 to 5 carbon atoms means “the number of carbon atoms substituted with one or more (preferably 1 to 5, more preferably 1 to 3)“ halogen atoms ”.
  • 1-5 alkoxy groups for example, fluoromethoxy, difluoromethoxy, trifluoromethoxy, 1-fluoroethoxy, 2-fluoroethoxy, 2,2-difluoroethoxy, 2,2,2-trifluoroethoxy, Examples thereof include 1-fluoropropoxy, 2-fluoropropoxy, 3-fluoropropoxy, chloromethoxy, 2-chloroethoxy, 3-chloropropoxy, bromomethoxy, 4-fluorobutoxy, 5-fluoropentyloxy and the like.
  • haloalkoxy group having 1 to 3 carbon atoms means “the number of carbon atoms substituted with one or more (preferably 1 to 5, more preferably 1 to 3)” halogen atoms.
  • 1 to 3 alkoxy groups for example, fluoromethoxy, difluoromethoxy, trifluoromethoxy, 1-fluoroethoxy, 2-fluoroethoxy, 2,2-difluoroethoxy, 2,2,2-trifluoroethoxy, Examples include 1-fluoropropoxy, 2-fluoropropoxy, 3-fluoropropoxy, chloromethoxy, 2-chloroethoxy, 3-chloropropoxy, bromomethoxy and the like.
  • an alkylsulfonyl group having 1 to 5 carbon atoms means a sulfonyl group to which “an alkyl group having 1 to 5 carbon atoms” is bonded.
  • methylsulfonyl, ethylsulfonyl, propylsulfonyl, isopropyl examples include sulfonyl, butylsulfonyl, isobutylsulfonyl, sec-butylsulfonyl, tert-butylsulfonyl, pentylsulfonyl, isopentylsulfonyl, neopentylsulfonyl, 1-ethylpropylsulfonyl and the like.
  • the “aryl group having 6 to 14 carbon atoms” means an aromatic hydrocarbon group having 6 to 14 carbon atoms, such as phenyl, 1-naphthyl, 2-naphthyl, 1- Anthryl, 2-anthryl, 9-anthryl, 1-phenanthryl, 2-phenanthryl, 9-phenanthryl and the like can be mentioned. Among these, “aryl groups having 6 to 10 carbon atoms” are preferable.
  • the “aryl group having 6 to 10 carbon atoms” means an aromatic hydrocarbon group having 6 to 10 carbon atoms, and examples thereof include phenyl, 1-naphthyl, 2-naphthyl and the like. It is done.
  • the “acyl group having 2 to 6 carbon atoms” means a carbonyl group to which “an alkyl group having 1 to 5 carbon atoms” or “an alkoxy group having 1 to 5 carbon atoms” is bonded.
  • An alkyl-carbonyl group having 1 to 5 carbon atoms such as acetyl, propanoyl, butanoyl, 2-methylpropanoyl, pentanoyl, 3-methylbutanoyl, 2-methylbutanoyl, 2,2-dimethylpropanoyl, hexanoyl; and methoxy Examples thereof include an alkoxy-carbonyl group having 1 to 5 carbon atoms such as carbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, sec-butoxycarbonyl, tert-butoxycarbonyl, pentyloxycarbonyl and the like.
  • the “aromatic group” means an aryl group or heteroaryl group having 6 to 14 carbon atoms.
  • the “heteroaryl group” means at least one (preferably 1 to 4) selected from the group consisting of an oxygen atom, a nitrogen atom and a sulfur atom in addition to a carbon atom as a ring-forming atom. It means a 5- to 12-membered (preferably 5- to 10-membered) aromatic heterocyclic group having a hetero atom.
  • heteroaryl group examples include thienyl, furyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,2,4-oxadiazolyl, 1,3 5- to 6-membered monocyclic aromatic heterocyclic groups such as 1,4-oxadiazolyl, 1,2,4-thiadiazolyl, 1,3,4-thiadiazolyl, triazolyl, tetrazolyl, triazinyl; Benzothienyl, benzofuranyl, benzoimidazolyl, benzoxazolyl, benzoisoxazolyl, benzothiazolyl, benzisothiazolyl, benzotriazolyl, imidazopyridinyl, thienopyridinyl, thienopyri
  • the oxadiazole derivative A is produced by selecting Compound B and Compound C as raw materials and reacting them.
  • Ar represents an aromatic group or an aromatic group having a substituent.
  • R represents an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a haloalkyl group having 1 to 3 carbon atoms, a haloalkoxy group having 1 to 3 carbon atoms, or a halogen atom.
  • Compound B is a compound that is chemically stable and excellent in handleability and can be easily produced or obtained. That is, the production method of the present invention is a method in which a chemically stable and easily available compound is used as a raw material, and the target compound can be obtained in a production process shorter than the conventional method.
  • Compound B has a structure in which a formyl group is bonded to one of the ring-forming carbon atoms of the 5-membered aromatic heterocycle.
  • a hydrogen atom or a substituent (R) is bonded to another ring-forming carbon atom of the 5-membered aromatic heterocycle, and a hydrogen atom is preferably bonded.
  • X or W is preferably —S—.
  • 5-membered aromatic heterocycle examples include the following examples.
  • Examples of the 5-membered aromatic heterocyclic group include groups obtained by removing one hydrogen atom bonded to a ring-forming carbon atom from the 5-membered aromatic heterocyclic ring.
  • the position of the bond is not particularly limited as long as it is on a ring-forming carbon atom.
  • a thienyl group is preferable.
  • the thienyl group may be either a thiophen-2-yl group or a thiophen-3-yl group, and is preferably a thiophen-2-yl group from the viewpoint of usefulness such as physiological activity of the oxadiazole derivative A.
  • R represents an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a haloalkyl group having 1 to 3 carbon atoms, a haloalkoxy group having 1 to 3 carbon atoms, or a halogen atom.
  • R is preferably an alkyl group having 1 to 3 carbon atoms, a haloalkoxy group having 1 to 3 carbon atoms or a halogen atom, more preferably a methyl group, a trifluoromethoxy group or a halogen atom.
  • Rs may be the same or different.
  • Preferred examples of compound B include thiophene-2-carbaldehyde, thiophene-3-carbaldehyde, thiazole-2-carbaldehyde, thiazole-4-carbaldehyde, thiazole-5-carbaldehyde, 2,1,3-thiadiazole -4-carbaldehyde, 1,2,3-thiadiazole-4-carbaldehyde, 1,2,3-thiadiazole-5-carbaldehyde, 1,2,4-thiadiazole-3-carbaldehyde, 1,2,4 -Thiadiazole-5-carbaldehyde, 1,3,4-thiadiazole-2-carbaldehyde and the like, among which thiophene-2-carbaldehyde is particularly preferable.
  • Compound B can be easily produced from a known compound by a known method. Moreover, it can obtain easily industrially.
  • Compound C is in an equilibrium state with the compound represented by the following formula (C ′). In the present specification, these are hereinafter collectively referred to as Compound C.
  • the wavy line in the formula (C ′) indicates that the steric configuration regarding the double bond of OH may be E or Z.
  • reaction of compound B and compound C reaction of compound B and compound C
  • reaction of compound B and compound C ′ reaction of compound B with a mixture of compound C and compound C ′
  • reaction of compound B and compound C reaction of compound B and compound C
  • Ar represents an aromatic group or an aromatic group having a substituent.
  • the substituent in the “aromatic group having a substituent” is not particularly limited as long as it is a monovalent group that does not affect the reaction of the present invention.
  • Examples of the substituent include an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkynyl group having 2 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, and an aryl having 6 to 10 carbon atoms.
  • haloalkyl group having 1 to 5 carbon atoms haloalkoxy group having 1 to 5 carbon atoms
  • acyl group having 2 to 6 carbon atoms halogen atom, hydroxy group, sulfanyl group, amino group, alkylsulfonyl having 1 to 5 carbon atoms Groups and the like.
  • substituents include an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a haloalkyl group having 1 to 3 carbon atoms, a haloalkoxy group having 1 to 3 carbon atoms, a halogen atom, and a cyano group.
  • a methyl group, a fluoromethyl group, a trifluoromethyl group, a methoxy group, a trifluoromethoxy group, a halogen atom, a cyano group and a formyl group are more preferred, and a methyl group and a halogen atom are particularly preferred.
  • the number of substituents in Ar is 2 or more, these may be the same or different.
  • the number of substituents is preferably 1 to 5, and more preferably 1 to 3. Further, the substitution position is not particularly limited.
  • the two substituents may be connected to each other to form a condensed ring together with Ar.
  • the ring formed by connecting two substituents to each other may be an aromatic ring or a non-aromatic ring, and may be a carbocyclic ring or a group consisting of an oxygen atom, a nitrogen atom and a sulfur atom. It may be a heterocycle having at least one selected heteroatom. Specific examples of such Ar include benzofuryl and the like.
  • Ar is preferably an aryl group having 6 to 14 carbon atoms or an aryl group having 6 to 14 carbon atoms having a substituent, and an aryl group having 6 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms having a substituent is preferable. More preferably, a phenyl group or a phenyl group having a substituent is more preferable, a phenyl group, or an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a haloalkyl group having 1 to 3 carbon atoms, or 1 carbon atom.
  • Preferred examples of the phenyl group having such a substituent include an o-, m- or p-fluorophenyl group, an o-, m- or p-chlorophenyl group, an o-, m- or p-tolyl group. , O-, m- or p-fluoromethylphenyl group, difluorophenyl group, trifluorophenyl group.
  • Ar is most preferably a phenyl group from the viewpoint of usefulness such as physiological activity of the oxadiazole derivative A.
  • Compound C used for the reaction with Compound B is preferably Compound C that has been dehydrated.
  • the dehydration treatment can be performed according to a known method such as an azeotropic dehydration treatment or a dehydration treatment using a dehydrating agent such as molecular sieve.
  • the water content of the compound C used for the reaction with the compound B is preferably 5% by mass or less, and more preferably 1% by mass or less.
  • Compound C is easy to obtain industrially.
  • Compound C can be produced by a method in which a compound represented by the following formula (F) is reacted with hydroxylamine.
  • Ar in the formula represents the same group as described above.
  • the reaction is preferably carried out in the presence of a solvent, and can be carried out according to the method described in the literature (for example, Organic Letters, -16 (3), 892-895; 2014).
  • Hydroxylamine may be used in the form of an aqueous solution.
  • the solvent include alcohols such as ethanol, t-butanol and t-amyl alcohol, ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, and water.
  • the amount of the solvent is preferably 1 to 5 times, particularly 1 to 3 times the volume of the compound F.
  • the lower limit of the reaction temperature is preferably 20 ° C, more preferably 30 ° C.
  • the upper limit of the reaction temperature is preferably 100 ° C, more preferably 80 ° C.
  • the reaction time depends on the reaction temperature and reaction pressure, but is preferably 1 to 10 hours.
  • the reaction pressure may be normal pressure, pressurization, or reduced pressure, but normal pressure or pressurization is preferred.
  • the reaction pressure is preferably 0.01 to 0.5 MPa (gauge pressure).
  • the reaction atmosphere may be an air atmosphere or an inert gas atmosphere such as nitrogen.
  • the reaction between Compound B and Compound C is preferably carried out under the condition that the amount of water in the reaction system is as small as possible for the reasons described later. Therefore, water is removed after the reaction between Compound F and hydroxylamine. It is preferable to obtain the compound C with as little water content as possible.
  • the removal of water includes a method of isolating compound C after the reaction and a method of performing a dehydration treatment after the reaction.
  • the reaction between Compound F and hydroxylamine is performed using water as a solvent
  • water is removed from the mixture of water and Compound C to obtain Compound C
  • Compound C is reacted with Compound B.
  • the water content of the compound C after water removal is preferably 5% by mass or less, and more preferably 1% by mass or less.
  • the removal of water can be performed by a liquid separation operation, and it is preferable to perform a dehydration treatment.
  • the reaction between Compound F and hydroxylamine is carried out in the presence of a solvent, a mixture containing Compound C and the solvent is obtained.
  • the mixture becomes a solvent solution containing the compound C.
  • the water content of the mixture after water removal is preferably 5% by mass or less, and more preferably 1% by mass or less, based on the total mass of the mixture.
  • the method for removing water include a method for isolating compound C from the mixture and a method for dehydrating the mixture. The latter method is preferred. In the latter method, the compound C can be reacted with the compound B in a mixture state without isolating the compound C from the mixture containing the compound C and the solvent, which can be an efficient production method.
  • the reaction in the next step can be carried out using the same reaction apparatus in the state of the mixture, and the production process can be greatly improved in efficiency.
  • the dehydration treatment can be performed by azeotropic dehydration treatment or dehydration treatment using a dehydrating agent such as molecular sieve.
  • the solvent used for the reaction of Compound F and hydroxylamine is preferably a solvent capable of azeotropic dehydration, that is, a solvent capable of forming an azeotrope with water.
  • the solvent include ethanol, t-butanol and t-amyl alcohol.
  • the oxadiazole derivative A which is the target compound of the production method of the present invention is a compound represented by the formula (A).
  • the meanings of Ar, W, X, Y and Z in the formula are the same as those described above, and preferred embodiments are also the same as described above.
  • the oxadiazole derivative A is preferably a compound represented by the following formula (A 1 ).
  • Ar in the formula has the same meaning as described above.
  • oxadiazole derivative A examples include the following compounds.
  • Compound D is produced by the condensation ring closure reaction of Compound B and Compound C.
  • the target oxadiazole derivative A is obtained by oxidizing the compound D.
  • the reaction in which compound B and compound C are reacted to obtain oxadiazole derivative A can be carried out by bringing compound B and compound C into contact with each other.
  • Examples of the contact include a method in which one compound is dissolved in a solvent and added to the other compound, a method in which compound B and compound C are added to the solvent and agitated, and the like.
  • the reaction may be performed batchwise or continuously. Moreover, you may carry out by 1 step reaction and you may carry out by 2 step reaction.
  • pH conditions at the time of reaction may be any of acidic conditions, basic conditions, and neutral conditions, acidic conditions or neutral conditions are preferable, and acidic conditions are more preferable.
  • neutral conditions for example, the reaction may be performed in the absence of an acidic compound or a basic compound, or may be performed in a buffer solution.
  • acidic conditions it is preferable that an acidic compound is present in the reaction system.
  • the acidic compound may be an organic acid or an inorganic acid, organic acids such as p-toluenesulfonic acid, acetic acid, trifluoroacetic acid, sulfuric acid, magnesium oxide, zinc oxide, boron trifluoride, iron chloride.
  • organic acids such as p-toluenesulfonic acid, acetic acid, trifluoroacetic acid, sulfuric acid, magnesium oxide, zinc oxide, boron trifluoride, iron chloride.
  • Inorganic acids such as
  • the upper limit of the amount of the acidic compound used is preferably 2 mol, more preferably 1.5 mol, still more preferably 1.2 mol, and particularly preferably 1.0 mol with respect to 1 mol of compound B.
  • the lower limit of the amount of the acidic compound used is preferably 0.01 mol, more preferably 0.05 mol, and still more preferably 0.1 mol with respect to 1 mol of compound B. If the usage-amount of an acidic compound is the said range, a
  • the basic compound may be an organic base or an inorganic base, an inorganic base such as potassium carbonate, sodium carbonate, potassium hydroxide or sodium hydroxide, a lower amine such as triethylamine, piperidine, pyrrolidine or morpholine, Examples thereof include basic aromatic heterocyclic compounds such as pyridine.
  • the upper limit of the amount of the basic compound used is preferably 2 mol, more preferably 1.5 mol, still more preferably 1.2 mol, and particularly preferably 1.0 mol with respect to 1 mol of compound B.
  • the lower limit of the amount of the basic compound used is preferably 0.01 mol, more preferably 0.05 mol, still more preferably 0.1 mol with respect to 1 mol of compound B. If the usage-amount of a basic compound is the said range, a side reaction will not advance easily and reaction will advance easily efficiently.
  • primary amine or secondary amine is selected as the basic compound, it reacts with compound B to become an active imine and reacts with compound C.
  • the primary amine or secondary amine piperidine, pyrrolidine, morpholine and the like are preferable.
  • the acidic compound or basic compound may be used as it is, or may be used after being dissolved in a solvent.
  • a solvent 1 or 2 or more types of solvents chosen from the reaction solvent mentioned later are mentioned.
  • the reaction between compound B and compound C is preferably carried out in the presence of a solvent.
  • Solvents include ethanol, propanol, isopropanol, butanol, t-butanol, amyl alcohol, t-amyl alcohol, hexanol, octanol and other alcohols; aromatic hydrocarbons such as toluene and anhydrous toluene; acetic acid; dimethyl sulfoxide, dimethylformamide, sulfolane Preferred are aprotic polar solvents such as dioxane and the like.
  • the solvent is more preferably at least one selected from the group consisting of alcohols, aromatic hydrocarbons and aprotic polar solvents, with alcohols being particularly preferred.
  • the solvent is preferably a solvent that can form an azeotrope with water, and can form an azeotrope with water. More preferred is alcohol.
  • the solvent used in the reaction of Compound B and Compound C may be mixed in the oxidation step of Compound BH, which will be described later. From the viewpoint of suppressing side reactions in the oxidation step, tertiary alcohol is more preferable. preferable.
  • the amount of the solvent is preferably 0.2 to 15 times the volume of the compound B, for example.
  • the amount of the compound C is preferably 0.2 to 15 times, and particularly preferably 1 to 10 times.
  • the amount of solvent is preferably determined based on the amount of Compound C.
  • Reaction conditions such as reaction temperature, reaction time, reaction pressure, reaction atmosphere and the like in the reaction between Compound B and Compound C can be appropriately changed depending on the types of Compound B, Compound C, acidic compound or basic compound, and solvent.
  • the lower limit of the reaction temperature is preferably 40 ° C, more preferably 50 ° C, still more preferably 90 ° C, particularly preferably 100 ° C.
  • the upper limit of the reaction temperature is preferably 160 ° C, more preferably 140 ° C, and particularly preferably 120 ° C. If the lower limit of the reaction temperature is the above, the reaction is likely to proceed rapidly. Moreover, if the upper limit of reaction temperature is the above, a by-product is hard to produce.
  • the reaction time depends on the reaction temperature and reaction pressure, but is preferably 1 to 30 hours.
  • the reaction pressure may be normal pressure, increased pressure, or reduced pressure.
  • the reaction atmosphere may be an air atmosphere or an inert gas atmosphere such as nitrogen.
  • the reaction between Compound B and Compound C water is generated. Removing the water produced can shift the reaction equilibrium to the product side. Moreover, when the produced
  • the dehydration method a known or well-known method can be adopted, and examples thereof include a method in which a dehydrating agent is present and a method in which water is distilled off by azeotropic distillation. Examples of the dehydrating agent include molecular sieves. Further, when the acidic compound or basic compound present in the reaction of Compound B and Compound C is a compound having a dehydrating action, dehydration can be performed without using a dehydrating agent.
  • oxadiazole derivative A is considered to be obtained by oxidation of compound D
  • an oxidizing agent in the production process of oxadiazole derivative A of the present invention.
  • the reaction between the compound B and the compound C may be performed in the presence of an oxidizing agent, or after reacting the compound B and the compound C, the intermediate product containing the compound D may be reacted with the oxidizing agent. Good.
  • the intermediate product is reacted with an oxidizing agent, it is preferable to purify the intermediate product in a two-stage reaction and then react with the oxidizing agent.
  • oxidizing agent examples include hydrogen peroxide, manganese dioxide, 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ), hypochlorous acid, potassium peroxodisulfate, oxygen, chlorine and the like.
  • the addition time of the oxidant is not limited, and the compound B and the compound C may be added to the system in which the oxidant is present, and the oxidant is added to the reaction system in which the compound B and the compound C are present. May be. In the case of a two-stage reaction, it is preferable to add an oxidizing agent to the purified intermediate product. Compound B used in the reaction can also act as an oxidizing agent.
  • the amount of the oxidizing agent can be appropriately changed according to the kind of the oxidizing agent and the like, and is preferably 1 mol or more, more preferably 1.5 mol or more with respect to 1 mol of Compound C.
  • the upper limit of the amount of the oxidizing agent is preferably 10 moles, more preferably 5 moles, and more preferably 2 moles relative to 1 mole of Compound C. Further, when oxygen in the air or other compounds in the reaction system acts as an oxidizing agent, oxidation may proceed even without using a special oxidizing agent.
  • the intermediate product contains compound D, but may further contain reaction raw materials and reaction by-products.
  • a solvent for example, a solvent used for the reaction of Compound B and Compound C
  • a solvent for example, a solvent used for the reaction of Compound B and Compound C
  • Examples of by-products include compounds represented by the following formula (E).
  • the compound E is considered to be formed by the condensation of the decomposition product of the compound C and the compound C.
  • oxadiazole derivative A In order to increase the yield of oxadiazole derivative A, it is preferable to set the reaction conditions so that the amount of compound D produced is increased and the amount of by-products is reduced.
  • compound E has a physicochemical property (for example, crystallinity) similar to that of oxadiazole derivative A, and therefore cannot be easily removed from oxadiazole derivative A. It is preferable to suppress the content of compound E in the product.
  • a method for reducing the amount of compound E produced it is preferable to add compound C continuously or sequentially to the reaction system containing compound B when reacting compound B and compound C.
  • the amount of compound E produced in the reaction varies depending on reaction conditions such as equivalent weight, reaction catalyst, temperature, solvent, and acidity (basicity) of the reaction system when reacting compound B and compound C. Therefore, the production amount of compound E can be reduced by appropriately adjusting these reaction conditions.
  • the content of Compound E in the intermediate product is preferably 10% by mass or less, more preferably 5% by mass or less, still more preferably 1% by mass or less, and particularly preferably 0.1% by mass or less with respect to Compound D.
  • the compound B and the compound C may be reacted in the presence of an oxidant, and the intermediate product obtained by reacting the compound B and the compound C You may make it react with an oxidizing agent, without refine
  • the intermediate product is subjected to an oxidation treatment continuously without being subjected to a purification treatment or the like, and the operation of the production method is substantially carried out only by mixing raw material compounds.
  • the process can be omitted and the desired oxadiazole derivative A can be efficiently produced.
  • the amount of Compound B is preferably 1.5 mol or more, preferably 1.8 mol or more, and preferably 2 mol or more with respect to 1 mol of Compound C.
  • the upper limit is preferably 10 mol, particularly preferably 5 mol, and further preferably 3 mol or less.
  • Compound B acts as an oxidizing agent
  • a reduced form of Compound B is generated.
  • Examples of the reduced form include compounds represented by the following formula (BH). W, X, Y and Z in the formula have the same meaning as described above.
  • the compound BH is preferably oxidized and used as the compound B again for the reaction between the compound B and the compound C.
  • the oxidation reaction of compound BH can be performed by contacting compound BH with an oxidizing agent.
  • the oxidizing agent include hypochlorites such as sodium hypochlorite and potassium hypochlorite, oxone, hydrogen peroxide and oxygen.
  • the oxidation reaction of compound BH may be performed in the presence of a catalyst such as iron oxide, iron sulfate, or rhodium catalyst.
  • the oxidation reaction of compound BH may be performed in the presence of a solvent.
  • the amount of the oxidizing agent can be appropriately changed according to the kind of the oxidizing agent, and is preferably 1 mol or more, more preferably 1.1 mol or more, and further preferably 1.2 mol or more with respect to 1 mol of the compound BH.
  • the upper limit of the amount of the oxidizing agent is preferably 10 mol, more preferably 5 mol, and even more preferably 2 mol with respect to 1 mol of compound BH.
  • the oxidation reaction of compound BH can be carried out in the presence of a solvent. Examples of the solvent include water, ethyl acetate, chloroform and the like.
  • the amount of the solvent is preferably 1 to 10 times, particularly preferably 3 to 8 times the volume of the compound BH.
  • the reaction temperature is preferably 0 ° C. or higher, more preferably 10 ° C. or higher. Moreover, 30 degrees C or less is preferable and 20 degrees C or less is more preferable.
  • the reaction time depends on the reaction temperature and reaction pressure, but is preferably 1 to 5 hours.
  • the reaction pressure is preferably 0.01 to 0.5 MPa (gauge pressure).
  • the reaction atmosphere may be an air atmosphere or an inert gas atmosphere such as nitrogen.
  • the compound B and the compound C are reacted to obtain an intermediate product, and then the intermediate product is purified to obtain an intermediate product after purification.
  • the lower limit of the amount of Compound C relative to 1 mol of Compound B is preferably 0.2 mol, more preferably 0.5 mol, and even more preferably 0.8 mol.
  • the upper limit of the amount of Compound C with respect to 1 mol of Compound B is preferably 2 mol, more preferably 1.5 mol, and even more preferably 1.2 mol.
  • the purified intermediate product by purifying the intermediate product, the raw material of the reaction and the by-product of the reaction are removed, and a purified intermediate product having a high content of compound D can be obtained.
  • the purification method of the intermediate product is not particularly limited, and a commonly used purification method can be applied.
  • the purification method methods such as liquid separation, filtration, distillation, recrystallization, reprecipitation, and chromatographic treatment are preferable.
  • the purified intermediate product may contain a solvent (for example, a solvent used for the reaction of compound B and compound C).
  • the yield of the compound D contained in the intermediate product after purification is preferably 50% by mass or more, preferably 70% by mass or more, particularly 90% by mass or more, based on the theoretical production amount based on the compound B. preferable.
  • Compound E which is a by-product, is difficult to separate from oxadiazole derivative A and relatively easy to separate from compound D. Therefore, it is removed as much as possible during the purification of the intermediate product, and the intermediate product after purification It is very important to keep the content of compound E in the product low. If the oxadiazole derivative A contains a large amount of the compound E, the loss in purifying the oxadiazole derivative A by removing the compound E increases, and the yield of the oxadiazole derivative A is greatly reduced. It becomes.
  • the content of compound E relative to compound D is more preferably 5% by mass or less, further preferably 1% by mass or less, and particularly preferably 0.1% by mass or less.
  • By-products such as Compound E can be removed by filtration of precipitates in the intermediate product. Further, the intermediate product may be removed by chromatography.
  • the oxadiazole derivative A having a very low content of the compound E, which is an impurity that is difficult to separate is obtained by oxidizing the purified intermediate product.
  • the intermediate product after the purification can be oxidized by a known method.
  • the oxidizing agent used in the oxidation reaction the same oxidizing agents as those described above can be used.
  • the amount of the oxidizing agent used is preferably 0.2 to 2 mol, more preferably 1 to 1.5 mol, per 1 mol of the compound D produced.
  • reaction temperature, reaction time, reaction pressure, and reaction atmosphere can be appropriately changed, but the reaction temperature is preferably 40 to 160 ° C.
  • the reaction time depends on the reaction temperature and reaction pressure, but is preferably 1 to 30 hours.
  • the reaction pressure is preferably 0.01 to 0.5 MPa (gauge pressure).
  • the reaction atmosphere may be an air atmosphere or an inert gas atmosphere such as nitrogen.
  • the oxidation reaction of the intermediate product after purification is preferably performed in the presence of a solvent.
  • Examples of the solvent include the same examples as the solvent used for the reaction of Compound B and Compound C during the above-described one-step reaction.
  • the amount of the solvent is preferably 2 to 10 times that of Compound D.
  • the oxadiazole derivative A produced by the reaction can be further purified to obtain an oxadiazole derivative A having a purity suitable for the purpose.
  • a known or well-known purification method can be applied, and examples thereof include the same method as the above-described intermediate product purification method.
  • the content of the compound E in the oxadiazole derivative A obtained by the production method by the two-step reaction is preferably 1% by mass or less, and more preferably 0.1% by mass or less with respect to the oxadiazole derivative A.
  • the lower limit of the content of Compound E is not particularly limited, and is 0% by mass or more, or 0.01% by mass or more.
  • the content of the compound E which is an impurity that is difficult to separate, can be reduced very efficiently, and the oxadiazole derivative A with high purity can be produced.
  • the oxadiazole derivative obtained by the production method of the present invention has high purity and is particularly useful as a physiologically active substance in the fields of pharmacy and agriculture.
  • the oxadiazole derivative A obtained by the production method of the present invention has a low content of impurities that are difficult to separate, has high physiological activity, and is a useful compound in the fields of medicine and agricultural chemicals.
  • Example 1 Example of one-step reaction A glass eggplant-shaped flask was charged with thiophene-2-carbaldehyde (2-formylthiophene: 1.02 g, 9.1 mmol) and ethanol (14 mL) to obtain a mixed solution. Benzamide oxime (1.25 g, 9.2 mmol) and potassium carbonate (0.13 g, 0.94 mmol) were added to the mixture, and the mixture was heated to reflux for 30.5 hours with stirring.
  • Example 2 Thiophene-2-carbaldehyde (1.02 g, 9.1 mmol) and anhydrous toluene (14 mL) were placed in a glass eggplant-shaped flask to obtain a mixed solution. Benzamide oxime (1.27 g, 9.4 mmol) and p-toluenesulfonic acid monohydrate (0.17 g, 0.89 mmol) were added to the mixture, and the mixture was heated to reflux with stirring for 6.5 hours. The formation of Compound A-1 was confirmed by HPLC.
  • Example 3 Thiophene-2-carbaldehyde (1.01 g, 9.0 mmol) and ethanol (7 mL) were placed in a glass eggplant-shaped flask to obtain a mixed solution. Benzamide oxime (1.27 g, 9.4 mmol) and p-toluenesulfonic acid monohydrate (0.17 g, 0.89 mmol) were added to the mixture, and the mixture was heated to reflux with stirring for 15 hours. The formation of Compound A-1 was confirmed by HPLC.
  • Example 4 A glass eggplant-shaped flask was charged with thiophene-2-carbaldehyde (1.00 g, 8.9 mmol) and acetic acid (7 mL) to obtain a mixed solution. Benzamide oxime (1.27 g, 9.4 mmol) was added to the mixture and heated to reflux with stirring for 15 hours. The formation of Compound A-1 was confirmed by HPLC.
  • Example 5 Thiophene-2-carbaldehyde (1.01 g, 9.0 mmol) and ethanol (7 mL) were placed in a glass eggplant-shaped flask to obtain a mixed solution. Benzamide oxime (1.27 g, 9.4 mmol) and p-toluenesulfonic acid monohydrate (0.17 g, 0.89 mmol) were added to the mixture and heated at 40 ° C. with stirring for 15 hours. Compound A-1 was obtained by HPLC.
  • Example 6 Thiophene-2-carbaldehyde (1.01 g, 9.0 mmol) and anhydrous toluene (7 mL) were placed in a glass eggplant-shaped flask to obtain a mixed solution. Benzamide oxime (1.27 g, 9.4 mmol) was added to the mixture and heated to reflux with stirring for 14 hours. The formation of Compound A-1 was confirmed by HPLC.
  • Example 7 Thiophene-2-carbaldehyde (1.01 g, 9.0 mmol) and ethanol (7 mL) were placed in a glass eggplant-shaped flask to obtain a mixed solution. Benzamide oxime (1.28 g, 9.4 mmol) and acetic acid (0.054 g, 0.90 mmol) were added to the mixture, and the mixture was heated to reflux with stirring for 15 hours. The formation of Compound A-1 was confirmed by HPLC.
  • Example 8 Thiophene-2-carbaldehyde (10.0 g, 89.2 mmol) and anhydrous toluene (70 mL) were placed in a glass eggplant-shaped flask to obtain a mixed solution. Benzamide oxime (12, 8 g, 93.6 mmol) was added to the mixture and heated to reflux with stirring for 30 hours. At that time, azeotropic dehydration was performed using a Dean-Stark apparatus. The formation of Compound A-1 was confirmed by HPLC.
  • Example 9 Thiophene-2-carbaldehyde (1.02 g, 9.1 mmol) and anhydrous toluene (14 mL) were placed in a glass eggplant-shaped flask to obtain a mixed solution. Benzamide oxime (1.27 g, 9.4 mmol) and p-toluenesulfonic acid monohydrate (0.17 g, 0.89 mmol) were added to the mixture, and the mixture was heated to reflux with stirring for 6.5 hours. As a result of quantification by HPLC, 3-phenyl-5- (thiophen-2-yl) -4,5-dihydro-1,2,4-oxadiazole was obtained in a yield of 35%.
  • Example 10 Thiophene-2-carbaldehyde (1.02 g, 9.1 mmol) and anhydrous toluene (14 mL) were placed in a glass eggplant-shaped flask to obtain a mixed solution. Benzamide oxime (1.27 g, 9.4 mmol) and p-toluenesulfonic acid monohydrate (0.17 g, 0.89 mmol) were added to the mixture, and the mixture was heated to reflux with stirring for 6.5 hours.
  • Example 12 Thiophen-2-carbaldehyde (10.0 g, 89.2 mmol), anhydrous toluene (70 mL) and p-toluenesulfonic acid monohydrate (1.76 g, 9.24 mmol) were placed in a glass eggplant-shaped flask and mixed. A liquid was obtained. Benzamide oxime (3.23 g, 23.7 mmol) was added to the mixture and heated to reflux with stirring for 1 hour. Further, benzamide oxime (3.20 g, 23.5 mmol) was added to the mixture, and the mixture was heated to reflux with stirring for 3 hours. Further, benzamide oxime (3.20 g, 23.5 mmol) was added to the mixture, and the mixture was heated to reflux for 2 hours with stirring. Compound A-1 was obtained in 21% yield by HPLC.
  • a method for producing a 1,2,4-oxadiazole derivative that can be carried out by a simple operation method and is excellent in production efficiency.

Abstract

 Provided is a production method for a 1,2,4-oxadiazole derivative, said production method being simple and exhibiting excellent production efficiency. The production method for a 1,2,4-oxadiazole derivative represented by formula (A) is characterized by the reaction of a compound represented by formula (B) and a compound represented by formula (C). (In the formulae, Ar represents an aromatic group or an aromatic group having a substituent group. W, X, Y and Z independently represent -S-, -N=, -CH= or -CR=, with one of W, X, Y and Z representing -S-. R represents a C1-5 alkyl group, a C1-3 alkoxy group, a C1-3 haloalkyl group, a C1-3 haloalkoxy group or a halogen atom.)

Description

1,2,4-オキサジアゾール誘導体の製造方法Method for producing 1,2,4-oxadiazole derivative
 本発明は、1,2,4-オキサジアゾール誘導体の製造方法に関する。 The present invention relates to a method for producing a 1,2,4-oxadiazole derivative.
 3位及び5位に芳香族基が置換した1,2,4-オキサジアゾール誘導体は、薬学及び農学分野において生理活性物質として知られている。該誘導体の製造方法としては、アシルクロリドと芳香族N-ヒドロキシアミジンとを、水と混和しない有機溶剤と水性塩基との存在下で反応させる方法が知られている(例えば、特許文献1参照)。
 また、チオフェン-2-カルボアルデヒドとベンズアミドオキシムとを、トルエン、モレキュラーシーブおよびピペリジンの存在下に反応させて、3-フェニル-5-(チオフェン-2-イル)-4,5-ジヒドロ-1,2,4-オキサジアゾールを得たことが記載されている(特許文献2参照)。
1,2,4-oxadiazole derivatives substituted with aromatic groups at the 3-position and 5-position are known as physiologically active substances in the pharmaceutical and agricultural fields. As a method for producing the derivative, a method is known in which acyl chloride and aromatic N-hydroxyamidine are reacted in the presence of an organic solvent immiscible with water and an aqueous base (for example, see Patent Document 1). .
Alternatively, thiophene-2-carbaldehyde and benzamide oxime are reacted in the presence of toluene, molecular sieve and piperidine to give 3-phenyl-5- (thiophen-2-yl) -4,5-dihydro-1, It is described that 2,4-oxadiazole was obtained (see Patent Document 2).
国際公開第2014/008257号International Publication No. 2014/008257 国際公開第2014/127195号International Publication No. 2014/127195
 前記方法は、原料のアシルクロリドの製造に多くの段階を要し、また、化学的に不安定なアシルクロリドを原料とする方法であった。本発明は、簡便な操作方法で実施でき、かつ生産効率にも優れる1,2,4-オキサジアゾール誘導体の製造方法の提供を課題とする。 The above-described method requires many steps in the production of the starting acyl chloride, and is a method using a chemically unstable acyl chloride as a starting material. An object of the present invention is to provide a method for producing a 1,2,4-oxadiazole derivative that can be carried out by a simple operation method and is excellent in production efficiency.
 前記課題を解決するための本発明は以下の発明である。
[1] 下式(B)で表される化合物と下式(C)で表される化合物とを反応させることを特徴とする、下式(A)で表される1,2,4-オキサジアゾール誘導体の製造方法。
The present invention for solving the above problems is as follows.
[1] A 1,2,4-oxa compound represented by the following formula (A), which comprises reacting a compound represented by the following formula (B) with a compound represented by the following formula (C): A method for producing a diazole derivative.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式中、Arは芳香族基または置換基を有する芳香族基を表す。W、X、Y及びZはそれぞれ独立して、-S-、-N=、-CH=、又は-CR=を表し、かつW、X、Y及びZから選ばれる1つは-S-を表す。Rは、炭素数1~5のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のハロアルキル基、炭素数1~3のハロアルコキシ基又はハロゲン原子を表す。)
[2] 下式(B)で表される化合物と下式(C)で表される化合物とを反応させて、下式(D)で表される化合物を含む中間生成物を得て、つぎに当該中間生成物を酸化反応に供することにより、式(D)で表される化合物を酸化して下式(A)で表される1,2,4-オキサジアゾール誘導体に変換することを特徴とする、下式(A)で表される1,2,4-オキサジアゾール誘導体の製造方法。
(In the formula, Ar represents an aromatic group or an aromatic group having a substituent. W, X, Y, and Z each independently represent —S—, —N═, —CH═, or —CR═. And one selected from W, X, Y and Z represents —S—, wherein R represents an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, or a haloalkyl having 1 to 3 carbon atoms. Group, a haloalkoxy group having 1 to 3 carbon atoms or a halogen atom.)
[2] A compound represented by the following formula (B) and a compound represented by the following formula (C) are reacted to obtain an intermediate product containing the compound represented by the following formula (D). The intermediate product is subjected to an oxidation reaction to oxidize the compound represented by the formula (D) and convert it to a 1,2,4-oxadiazole derivative represented by the following formula (A). A method for producing a 1,2,4-oxadiazole derivative represented by the following formula (A):
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式中、Arは芳香族基または置換基を有する芳香族基を表す。W、X、Y及びZはそれぞれ独立して、-S-、-N=、-CH=、又は-CR=を表し、かつW、X、Y及びZから選ばれる1つは-S-を表す。Rは、炭素数1~5のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のハロアルキル基、炭素数1~3のハロアルコキシ基又はハロゲン原子を表す。)
[3] 中間生成物を精製した後に、酸化反応を行う、[2]に記載の1,2,4-オキサジアゾール誘導体の製造方法。
[4] 中間生成物が下式(E)で表される化合物を含み、かつ精製処理により当該化合物の少なくとも一部を除去する、[3]に記載の1,2,4-オキサジアゾール誘導体の製造方法。
(In the formula, Ar represents an aromatic group or an aromatic group having a substituent. W, X, Y, and Z each independently represent —S—, —N═, —CH═, or —CR═. And one selected from W, X, Y and Z represents —S—, wherein R represents an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, or a haloalkyl having 1 to 3 carbon atoms. Group, a haloalkoxy group having 1 to 3 carbon atoms or a halogen atom.)
[3] The method for producing a 1,2,4-oxadiazole derivative according to [2], wherein the intermediate product is purified and then subjected to an oxidation reaction.
[4] The 1,2,4-oxadiazole derivative according to [3], wherein the intermediate product contains a compound represented by the following formula (E) and at least a part of the compound is removed by purification treatment Manufacturing method.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(式中、Arは[1]と同じ意味を表わす。)
[5] 精製処理後の中間生成物中の式(E)で表される化合物の含有量が、式(D)で表される化合物に対して1質量%以下である、[4]に記載の1,2,4-オキサジアゾール誘導体の製造方法。
[6] 酸化反応を、酸化剤の存在下に行う、[2]~[5]のいずれか1項に記載の製造方法。
[7] 式(B)で表される化合物が下式(B)で表される化合物であり、かつ式(A)で表される1,2,4-オキサジアゾール誘導体が下式(A)で表される化合物である、[1]~[6]のいずれか1項に記載の1,2,4-オキサジアゾール誘導体の製造方法。
(In the formula, Ar represents the same meaning as [1].)
[5] The content of the compound represented by the formula (E) in the intermediate product after the purification treatment is 1% by mass or less based on the compound represented by the formula (D). Of the 1,2,4-oxadiazole derivative.
[6] The production method according to any one of [2] to [5], wherein the oxidation reaction is performed in the presence of an oxidizing agent.
[7] The compound represented by the formula (B) is a compound represented by the following formula (B 1 ), and the 1,2,4-oxadiazole derivative represented by the formula (A) is represented by the following formula ( The method for producing a 1,2,4-oxadiazole derivative according to any one of [1] to [6], which is a compound represented by A 1 ).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式中、Arは[1]と同じ意味を表わす。)
[8] Arが、フェニル基又は置換基を有するフェニル基である、[1]~[7]のいずれか1項に記載の1,2,4-オキサジアゾール誘導体の製造方法。
[9] 式(B)で表される化合物と式(C)で表される化合物との反応を、溶媒の存在下に行う、[1]~[8]のいずれか1項に記載の1,2,4-オキサジアゾール誘導体の製造方法。
[10] 式(B)で表される化合物と式(C)で表される化合物との反応を、酸性化合物の存在下に行う、[1]~[9]のいずれか1項に記載の1,2,4-オキサジアゾール誘導体の製造方法。
[11] 式(B)で表される化合物と式(C)で表される化合物との反応を、脱水しながら行う、[1]~[10]のいずれか1項に記載の1,2,4-オキサジアゾール誘導体の製造方法。
[12] 下式(F)で表される化合物とヒドロキシルアミンとの反応により式(C)で表される化合物を得た後に、当該化合物を式(B)で表される化合物と反応させる、[1]~[11]のいずれか1項に記載の1,2,4-オキサジアゾール誘導体の製造方法。
(In the formula, Ar represents the same meaning as [1].)
[8] The process for producing a 1,2,4-oxadiazole derivative according to any one of [1] to [7], wherein Ar is a phenyl group or a phenyl group having a substituent.
[9] The reaction according to any one of [1] to [8], wherein the reaction between the compound represented by the formula (B) and the compound represented by the formula (C) is performed in the presence of a solvent. , 2,4-Oxadiazole derivative production method.
[10] The reaction according to any one of [1] to [9], wherein the reaction between the compound represented by the formula (B) and the compound represented by the formula (C) is performed in the presence of an acidic compound. A method for producing a 1,2,4-oxadiazole derivative.
[11] The reaction according to any one of [1] to [10], wherein the reaction between the compound represented by the formula (B) and the compound represented by the formula (C) is performed while dehydrating. , 4-Oxadiazole derivative production method.
[12] After obtaining the compound represented by the formula (C) by the reaction of the compound represented by the following formula (F) and hydroxylamine, the compound is reacted with the compound represented by the formula (B). [1] A process for producing a 1,2,4-oxadiazole derivative according to any one of [11].
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(式中、Arは[1]と同じ意味を表す。)
[13] 式(C)で表される化合物を脱水処理した後に、式(B)で表される化合物と反応させる、[1]~[12]のいずれか1項に記載の1,2,4-オキサジアゾール誘導体の製造方法。
[14] 式(F)で表される化合物とヒドロキシルアミンとを溶媒中で反応させて、式(C)で表される化合物と溶媒の混合物を得て、当該混合物を式(B)で表される化合物と反応させる[12]または[13]に記載の1,2,4-オキサジアゾール誘導体の製造方法。
[15] 式(B)で表される化合物と式(C)で表される化合物とを反応させる際に、式(B)で表される化合物に式(C)で表される化合物を連続添加または逐次添加する、[1]~[14]のいずれか一項に記載の1,2,4-オキサジアゾール誘導体の製造方法。
[16] 3,5-ジフェニル-1,2,4-オキサジアゾールの含有量が1質量%以下である3-フェニル-5-(チオフェン-2-イル)-1,2,4-オキサジアゾール。
(In the formula, Ar represents the same meaning as [1].)
[13] The compound represented by formula (C) is dehydrated and then reacted with the compound represented by formula (B), according to any one of [1] to [12] A method for producing a 4-oxadiazole derivative.
[14] A compound represented by formula (F) and hydroxylamine are reacted in a solvent to obtain a mixture of the compound represented by formula (C) and the solvent, and the mixture is represented by formula (B). A method for producing a 1,2,4-oxadiazole derivative according to [12] or [13], wherein the compound is reacted with a compound to be produced.
[15] When the compound represented by the formula (B) and the compound represented by the formula (C) are reacted, the compound represented by the formula (C) is continuously added to the compound represented by the formula (B). The method for producing a 1,2,4-oxadiazole derivative according to any one of [1] to [14], which is added or sequentially added.
[16] 3-phenyl-5- (thiophen-2-yl) -1,2,4-oxadi having a content of 3,5-diphenyl-1,2,4-oxadiazole of 1% by mass or less Azole.
 本発明によれば、簡便な操作方法で実施でき、かつ生産効率にも優れる1,2,4-オキサジアゾール誘導体の製造方法が提供される。 According to the present invention, there is provided a method for producing a 1,2,4-oxadiazole derivative that can be carried out by a simple operation method and is excellent in production efficiency.
 本明細書において、下式(A)で表される1,2,4-オキサジアゾール誘導体は、オキサジアゾール誘導体Aとも記す。下式(B)で表される化合物は、化合物Bと記し、他の式で表される化合物についても同様に記す。
 本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
In this specification, the 1,2,4-oxadiazole derivative represented by the following formula (A) is also referred to as oxadiazole derivative A. The compound represented by the following formula (B) is referred to as Compound B, and the same applies to compounds represented by other formulas.
In the present specification, a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
 本明細書において、「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子またはヨウ素原子を意味する。
 本明細書において、「炭素数1~5のアルキル基」とは、直鎖状または分岐鎖状の1~5個の炭素原子を有する飽和炭化水素基を意味し、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、イソペンチル、ネオペンチル、1-エチルプロピル等が挙げられる。
 本明細書において、「炭素数1~3のアルキル基」とは、直鎖状または分岐鎖状の1~3個の炭素原子を有する飽和炭化水素基を意味し、例えば、メチル、エチル、プロピルおよびイソプロピルが挙げられる。
In the present specification, the “halogen atom” means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
In the present specification, the “alkyl group having 1 to 5 carbon atoms” means a linear or branched saturated hydrocarbon group having 1 to 5 carbon atoms, such as methyl, ethyl, propyl. Isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, 1-ethylpropyl and the like.
In the present specification, the “C 1-3 alkyl group” means a linear or branched saturated hydrocarbon group having 1 to 3 carbon atoms, for example, methyl, ethyl, propyl And isopropyl.
 本明細書において、「炭素数2~5のアルケニル基」とは、少なくとも1個の二重結合を有し、かつ2~5個の炭素原子を有する直鎖状または分岐鎖状の不飽和炭化水素基を意味し、例えば、エテニル、1-プロペニル、2-プロペニル、2-メチル-1-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、3-メチル-2-ブテニル、1-ペンテニル、2-ペンテニル、3-ペンテニル、4-ペンテニル等が挙げられる。
 本明細書において、「炭素数2~5のアルキニル基」とは、少なくとも1個の三重結合を有し、かつ2~5個の炭素原子を有する直鎖状または分岐鎖状の不飽和炭化水素基を意味し、例えば、エチニル、1-プロピニル、2-プロピニル、1-ブチニル、2-ブチニル、3-ブチニル、1-ペンチニル、2-ペンチニル、3-ペンチニル、4-ペンチニル等が挙げられる。
In the present specification, the “alkenyl group having 2 to 5 carbon atoms” means a linear or branched unsaturated carbonization having at least one double bond and having 2 to 5 carbon atoms. Means a hydrogen group, for example, ethenyl, 1-propenyl, 2-propenyl, 2-methyl-1-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 3-methyl-2-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl and the like can be mentioned.
In the present specification, the “alkynyl group having 2 to 5 carbon atoms” means a linear or branched unsaturated hydrocarbon having at least one triple bond and having 2 to 5 carbon atoms. Means a group such as ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl and the like.
 本明細書において、「炭素数1~5のアルコキシ基」とは、「炭素数1~5のアルキル基」で置換されたオキシ基を意味し、例えば、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、sec-ブトキシ、tert-ブトキシ、ペンチルオキシ、イソペンチルオキシ、ネオペンチルオキシ、1-エチルプロピルオキシ等が挙げられる。
 本明細書において、「炭素数1~3のアルコキシ基」とは、「炭素数1~3のアルキル基」で置換されたオキシ基を意味し、例えば、メトキシ、エトキシ、プロポキシおよびイソプロポキシが挙げられる。
In the present specification, the “alkoxy group having 1 to 5 carbon atoms” means an oxy group substituted with an “alkyl group having 1 to 5 carbon atoms”, and includes, for example, methoxy, ethoxy, propoxy, isopropoxy, butoxy , Isobutoxy, sec-butoxy, tert-butoxy, pentyloxy, isopentyloxy, neopentyloxy, 1-ethylpropyloxy and the like.
In the present specification, the “alkoxy group having 1 to 3 carbon atoms” means an oxy group substituted with an “alkyl group having 1 to 3 carbon atoms”, and examples thereof include methoxy, ethoxy, propoxy and isopropoxy. It is done.
 本明細書において、「炭素数1~5のハロアルキル基」とは、1個以上(好ましくは1ないし5個、より好ましくは1ないし3個)の「ハロゲン原子」で置換された「炭素数1~5のアルキル基」を意味し、例えば、フルオロメチル、ジフルオロメチル、トリフルオロメチル、1-フルオロエチル、2-フルオロエチル、2,2-ジフルオロエチル、2,2,2-トリフルオロエチル、1-フルオロプロピル、2-フルオロプロピル、3-フルオロプロピル、クロロメチル、2-クロロエチル、3-クロロプロピル、ブロモメチル、4-フルオロブチル、5-フルオロペンチル等が挙げられる。
 本明細書において、「炭素数1~3のハロアルキル基」とは、1個以上(好ましくは1ないし5個、より好ましくは1ないし3個)の「ハロゲン原子」で置換された「炭素数1~3のアルキル基」を意味し、例えば、フルオロメチル、ジフルオロメチル、トリフルオロメチル、1-フルオロエチル、2-フルオロエチル、2,2-ジフルオロエチル、2,2,2-トリフルオロエチル、1-フルオロプロピル、2-フルオロプロピル、3-フルオロプロピル、クロロメチル、2-クロロエチル、3-クロロプロピル、ブロモメチル等が挙げられる。
In the present specification, the “haloalkyl group having 1 to 5 carbon atoms” means “one carbon atom having 1 carbon atom” substituted with one or more (preferably 1 to 5, more preferably 1 to 3) “halogen atoms”. To 5 alkyl groups ”, for example, fluoromethyl, difluoromethyl, trifluoromethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 1 -Fluoropropyl, 2-fluoropropyl, 3-fluoropropyl, chloromethyl, 2-chloroethyl, 3-chloropropyl, bromomethyl, 4-fluorobutyl, 5-fluoropentyl and the like.
In the present specification, the “haloalkyl group having 1 to 3 carbon atoms” means “1 carbon atom having 1 or more carbon atoms, preferably 1 to 5, more preferably 1 to 3” substituted with “halogen atom”. -3 alkyl groups ", for example, fluoromethyl, difluoromethyl, trifluoromethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 1 -Fluoropropyl, 2-fluoropropyl, 3-fluoropropyl, chloromethyl, 2-chloroethyl, 3-chloropropyl, bromomethyl and the like.
 本明細書において、「炭素数1~5のハロアルコキシ基」とは、1個以上(好ましくは1ないし5個、より好ましくは1ないし3個)の「ハロゲン原子」で置換された「炭素数1~5のアルコキシ基」を意味し、例えば、フルオロメトキシ、ジフルオロメトキシ、トリフルオロメトキシ、1-フルオロエトキシ、2-フルオロエトキシ、2,2-ジフルオロエトキシ、2,2,2-トリフルオロエトキシ、1-フルオロプロポキシ、2-フルオロプロポキシ、3-フルオロプロポキシ、クロロメトキシ、2-クロロエトキシ、3-クロロプロポキシ、ブロモメトキシ、4-フルオロブトキシ、5-フルオロペンチルオキシ等が挙げられる。
 本明細書において、「炭素数1~3のハロアルコキシ基」とは、1個以上(好ましくは1ないし5個、より好ましくは1ないし3個)の「ハロゲン原子」で置換された「炭素数1~3のアルコキシ基」を意味し、例えば、フルオロメトキシ、ジフルオロメトキシ、トリフルオロメトキシ、1-フルオロエトキシ、2-フルオロエトキシ、2,2-ジフルオロエトキシ、2,2,2-トリフルオロエトキシ、1-フルオロプロポキシ、2-フルオロプロポキシ、3-フルオロプロポキシ、クロロメトキシ、2-クロロエトキシ、3-クロロプロポキシ、ブロモメトキシ等が挙げられる。
In the present specification, the “haloalkoxy group having 1 to 5 carbon atoms” means “the number of carbon atoms substituted with one or more (preferably 1 to 5, more preferably 1 to 3)“ halogen atoms ”. 1-5 alkoxy groups ”, for example, fluoromethoxy, difluoromethoxy, trifluoromethoxy, 1-fluoroethoxy, 2-fluoroethoxy, 2,2-difluoroethoxy, 2,2,2-trifluoroethoxy, Examples thereof include 1-fluoropropoxy, 2-fluoropropoxy, 3-fluoropropoxy, chloromethoxy, 2-chloroethoxy, 3-chloropropoxy, bromomethoxy, 4-fluorobutoxy, 5-fluoropentyloxy and the like.
In the present specification, the “haloalkoxy group having 1 to 3 carbon atoms” means “the number of carbon atoms substituted with one or more (preferably 1 to 5, more preferably 1 to 3)” halogen atoms. 1 to 3 alkoxy groups ”, for example, fluoromethoxy, difluoromethoxy, trifluoromethoxy, 1-fluoroethoxy, 2-fluoroethoxy, 2,2-difluoroethoxy, 2,2,2-trifluoroethoxy, Examples include 1-fluoropropoxy, 2-fluoropropoxy, 3-fluoropropoxy, chloromethoxy, 2-chloroethoxy, 3-chloropropoxy, bromomethoxy and the like.
 本明細書において、「炭素数1~5のアルキルスルホニル基」とは、「炭素数1~5のアルキル基」が結合したスルホニル基を意味し、例えば、メチルスルホニル、エチルスルホニル、プロピルスルホニル、イソプロピルスルホニル、ブチルスルホニル、イソブチルスルホニル、sec-ブチルスルホニル、tert-ブチルスルホニル、ペンチルスルホニル、イソペンチルスルホニル、ネオペンチルスルホニル、1-エチルプロピルスルホニル等が挙げられる。 In the present specification, “an alkylsulfonyl group having 1 to 5 carbon atoms” means a sulfonyl group to which “an alkyl group having 1 to 5 carbon atoms” is bonded. For example, methylsulfonyl, ethylsulfonyl, propylsulfonyl, isopropyl Examples include sulfonyl, butylsulfonyl, isobutylsulfonyl, sec-butylsulfonyl, tert-butylsulfonyl, pentylsulfonyl, isopentylsulfonyl, neopentylsulfonyl, 1-ethylpropylsulfonyl and the like.
 本明細書において、「炭素数6~14のアリール基」とは、6~14個の炭素原子を有する芳香族炭化水素基を意味し、例えば、フェニル、1-ナフチル、2-ナフチル、1-アントリル、2-アントリル、9-アントリル、1-フェナントリル、2-フェナントリル、9-フェナントリル等が挙げられる。中でも、「炭素数6~10のアリール基」が好ましい。
 本明細書において、「炭素数6~10のアリール基」とは、6~10個の炭素原子を有する芳香族炭化水素基を意味し、例えば、フェニル、1-ナフチル、2-ナフチル等が挙げられる。
In the present specification, the “aryl group having 6 to 14 carbon atoms” means an aromatic hydrocarbon group having 6 to 14 carbon atoms, such as phenyl, 1-naphthyl, 2-naphthyl, 1- Anthryl, 2-anthryl, 9-anthryl, 1-phenanthryl, 2-phenanthryl, 9-phenanthryl and the like can be mentioned. Among these, “aryl groups having 6 to 10 carbon atoms” are preferable.
In the present specification, the “aryl group having 6 to 10 carbon atoms” means an aromatic hydrocarbon group having 6 to 10 carbon atoms, and examples thereof include phenyl, 1-naphthyl, 2-naphthyl and the like. It is done.
 本明細書において、「炭素数2~6のアシル基」とは、「炭素数1~5のアルキル基」または「炭素数1~5のアルコキシ基」が結合したカルボニル基を意味し、例えば、アセチル、プロパノイル、ブタノイル、2-メチルプロパノイル、ペンタノイル、3-メチルブタノイル、2-メチルブタノイル、2,2-ジメチルプロパノイル、ヘキサノイル等の炭素数1~5のアルキル-カルボニル基;およびメトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、イソプロポキシカルボニル、ブトキシカルボニル、イソブトキシカルボニル、sec-ブトキシカルボニル、tert-ブトキシカルボニル、ペンチルオキシカルボニル等の炭素数1~5のアルコキシ-カルボニル基が挙げられる。 In the present specification, the “acyl group having 2 to 6 carbon atoms” means a carbonyl group to which “an alkyl group having 1 to 5 carbon atoms” or “an alkoxy group having 1 to 5 carbon atoms” is bonded. An alkyl-carbonyl group having 1 to 5 carbon atoms such as acetyl, propanoyl, butanoyl, 2-methylpropanoyl, pentanoyl, 3-methylbutanoyl, 2-methylbutanoyl, 2,2-dimethylpropanoyl, hexanoyl; and methoxy Examples thereof include an alkoxy-carbonyl group having 1 to 5 carbon atoms such as carbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, sec-butoxycarbonyl, tert-butoxycarbonyl, pentyloxycarbonyl and the like.
 本明細書において、「芳香族基」とは、炭素数6~14のアリール基またはヘテロアリール基を意味する。
 本明細書において、「ヘテロアリール基」とは、環形成原子として、炭素原子以外に、酸素原子、窒素原子及び硫黄原子からなる群から選択される少なくとも1つ(好ましくは1ないし4個)のヘテロ原子を有する5ないし12員(好ましくは5ないし10員)の芳香族複素環基を意味する。当該「ヘテロアリール基」の好適な例としては、チエニル、フリル、ピロリル、イミダゾリル、ピラゾリル、チアゾリル、イソチアゾリル、オキサゾリル、イソオキサゾリル、ピリジル、ピラジニル、ピリミジニル、ピリダジニル、1,2,4-オキサジアゾリル、1,3,4-オキサジアゾリル、1,2,4-チアジアゾリル、1,3,4-チアジアゾリル、トリアゾリル、テトラゾリル、トリアジニル等の5ないし6員単環式芳香族複素環基;
ベンゾチエニル、ベンゾフラニル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾイソオキサゾリル、ベンゾチアゾリル、ベンゾイソチアゾリル、ベンゾトリアゾリル、イミダゾピリジニル、チエノピリジニル、フロピリジニル、ピロロピリジニル、ピラゾロピリジニル、オキサゾロピリジニル、チアゾロピリジニル、イミダゾピラジニル、イミダゾピリミジニル、チエノピリミジニル、フロピリミジニル、ピロロピリミジニル、ピラゾロピリミジニル、オキサゾロピリミジニル、チアゾロピリミジニル、ピラゾロトリアジニル、ナフト[2,3-b]チエニル、フェノキサチイニル、インドリル、イソインドリル、1H-インダゾリル、プリニル、イソキノリル、キノリル、フタラジニル、ナフチリジニル、キノキサリニル、キナゾリニル、シンノリニル等の8ないし12員縮合多環式(好ましくは2または3環式)芳香族複素環基が挙げられる。
In the present specification, the “aromatic group” means an aryl group or heteroaryl group having 6 to 14 carbon atoms.
In the present specification, the “heteroaryl group” means at least one (preferably 1 to 4) selected from the group consisting of an oxygen atom, a nitrogen atom and a sulfur atom in addition to a carbon atom as a ring-forming atom. It means a 5- to 12-membered (preferably 5- to 10-membered) aromatic heterocyclic group having a hetero atom. Suitable examples of the “heteroaryl group” include thienyl, furyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,2,4-oxadiazolyl, 1,3 5- to 6-membered monocyclic aromatic heterocyclic groups such as 1,4-oxadiazolyl, 1,2,4-thiadiazolyl, 1,3,4-thiadiazolyl, triazolyl, tetrazolyl, triazinyl;
Benzothienyl, benzofuranyl, benzoimidazolyl, benzoxazolyl, benzoisoxazolyl, benzothiazolyl, benzisothiazolyl, benzotriazolyl, imidazopyridinyl, thienopyridinyl, furopyridinyl, pyrrolopyridinyl, pyrazolopyridinyl, oxazolopyrim Dinyl, thiazolopyridinyl, imidazopyrazinyl, imidazopyrimidinyl, thienopyrimidinyl, furopyrimidinyl, pyrrolopyrimidinyl, pyrazolopyrimidinyl, oxazolopyrimidinyl, thiazolopyrimidinyl, pyrazolotriazinyl, naphtho [2,3- b] thienyl, phenoxathiinyl, indolyl, isoindolyl, 1H-indazolyl, purinyl, isoquinolyl, quinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazoly Le, 8 to 12 membered fused polycyclic, such as a cinnolinyl (preferably 2 or tricyclic) an aromatic heterocyclic group.
 本発明では、オキサジアゾール誘導体Aの製造を、原料として化合物B及び化合物Cを選択し、これらを反応させることにより実施する。 In the present invention, the oxadiazole derivative A is produced by selecting Compound B and Compound C as raw materials and reacting them.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式中、Arは芳香族基または置換基を有する芳香族基を表す。W、X、Y及びZはそれぞれ独立して、-S-、-N=、-CH=又は-CR=を表し、かつW、X、Y及びZから選ばれる1つは-S-を表す。Rは、炭素数1~5のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のハロアルキル基、炭素数1~3のハロアルコキシ基又はハロゲン原子を表す。 In the formula, Ar represents an aromatic group or an aromatic group having a substituent. W, X, Y and Z each independently represent -S-, -N =, -CH = or -CR =, and one selected from W, X, Y and Z represents -S- . R represents an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a haloalkyl group having 1 to 3 carbon atoms, a haloalkoxy group having 1 to 3 carbon atoms, or a halogen atom.
 化合物Bは、化学的に安定であることから取扱い性に優れ、容易に製造又は入手することができる化合物である。すなわち、本発明の製造方法は、化学的に安定で入手容易な化合物を原料とする方法であり、かつ、従来方法よりも短い製造工程で目的化合物を得ることができる方法である。 Compound B is a compound that is chemically stable and excellent in handleability and can be easily produced or obtained. That is, the production method of the present invention is a method in which a chemically stable and easily available compound is used as a raw material, and the target compound can be obtained in a production process shorter than the conventional method.
[化合物B]
 式(B)において、W、X、Y及びZはそれぞれ独立して、-S-、-N=、-CH=、又は-CR=を表し、かつW、X、Y及びZから選ばれる1つは-S-を表す。即ち、化合物Bにおける5員環部分は、環形成原子として、少なくとも1個の炭素原子及び1個の硫黄原子を必須とし、かつ任意に窒素原子を含んでいてもよい5員芳香族性ヘテロ環である。化合物Bは、当該5員芳香族性ヘテロ環の環形成炭素原子の1つにホルミル基が結合した構造を有する。また、5員芳香族性ヘテロ環の他の環形成炭素原子には、水素原子又は置換基(R)が結合しており、水素原子が結合するのが好ましい。化合物Bにおいては、X又はWが-S-であることが好ましい。
[Compound B]
In the formula (B), W, X, Y and Z each independently represent -S-, -N =, -CH = or -CR = and are selected from W, X, Y and Z Represents -S-. That is, the 5-membered ring moiety in Compound B is a 5-membered aromatic heterocyclic ring that essentially contains at least one carbon atom and one sulfur atom as ring-forming atoms, and may optionally contain a nitrogen atom. It is. Compound B has a structure in which a formyl group is bonded to one of the ring-forming carbon atoms of the 5-membered aromatic heterocycle. In addition, a hydrogen atom or a substituent (R) is bonded to another ring-forming carbon atom of the 5-membered aromatic heterocycle, and a hydrogen atom is preferably bonded. In compound B, X or W is preferably —S—.
 当該5員環芳香族性ヘテロ環の具体例としては、以下の例が挙げられる。 Specific examples of the 5-membered aromatic heterocycle include the following examples.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 5員芳香族性ヘテロ環基としては、前記の5員芳香族性ヘテロ環から環形成炭素原子に結合した水素原子1個を除いた基が挙げられる。結合手の位置は環形成炭素原子上であれば特に限定されない。5員芳香族性ヘテロ環基としては、チエニル基が好ましい。チエニル基は、チオフェン-2-イル基、チオフェン-3-イル基のいずれであってもよく、オキサジアゾール誘導体Aの生理活性等の有用性の観点からチオフェン-2-イル基が好ましい。 Examples of the 5-membered aromatic heterocyclic group include groups obtained by removing one hydrogen atom bonded to a ring-forming carbon atom from the 5-membered aromatic heterocyclic ring. The position of the bond is not particularly limited as long as it is on a ring-forming carbon atom. As the 5-membered aromatic heterocyclic group, a thienyl group is preferable. The thienyl group may be either a thiophen-2-yl group or a thiophen-3-yl group, and is preferably a thiophen-2-yl group from the viewpoint of usefulness such as physiological activity of the oxadiazole derivative A.
 式(B)において、Rは、炭素数1~5のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のハロアルキル基、炭素数1~3のハロアルコキシ基又はハロゲン原子を表す。Rは、炭素数1~3のアルキル基、炭素数1~3のハロアルコキシ基又はハロゲン原子が好ましく、メチル基、トリフルオロメトキシ基またはハロゲン原子が更に好ましい。化合物B中にRが2個以上存在する場合、Rは、同一であっても異なっていてもよい。 In the formula (B), R represents an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a haloalkyl group having 1 to 3 carbon atoms, a haloalkoxy group having 1 to 3 carbon atoms, or a halogen atom. . R is preferably an alkyl group having 1 to 3 carbon atoms, a haloalkoxy group having 1 to 3 carbon atoms or a halogen atom, more preferably a methyl group, a trifluoromethoxy group or a halogen atom. When two or more Rs are present in Compound B, Rs may be the same or different.
 化合物Bの好ましい例としては、チオフェン-2-カルボアルデヒド、チオフェン-3-カルボアルデヒド、チアゾール-2-カルボアルデヒド、チアゾール-4-カルボアルデヒド、チアゾール-5-カルボアルデヒド、2,1,3-チアジアゾール-4-カルボアルデヒド、1,2,3-チアジアゾール-4-カルボアルデヒド、1,2,3-チアジアゾール-5-カルボアルデヒド、1,2,4-チアジアゾール-3-カルボアルデヒド、1,2,4-チアジアゾール-5-カルボアルデヒド、1,3,4-チアジアゾール-2-カルボアルデヒド等が挙げられ、中でも、チオフェン-2-カルボアルデヒドが特に好ましい。 Preferred examples of compound B include thiophene-2-carbaldehyde, thiophene-3-carbaldehyde, thiazole-2-carbaldehyde, thiazole-4-carbaldehyde, thiazole-5-carbaldehyde, 2,1,3-thiadiazole -4-carbaldehyde, 1,2,3-thiadiazole-4-carbaldehyde, 1,2,3-thiadiazole-5-carbaldehyde, 1,2,4-thiadiazole-3-carbaldehyde, 1,2,4 -Thiadiazole-5-carbaldehyde, 1,3,4-thiadiazole-2-carbaldehyde and the like, among which thiophene-2-carbaldehyde is particularly preferable.
 化合物Bは、公知の化合物から公知の方法で容易に製造できる。また、工業的に容易に入手することができる。 Compound B can be easily produced from a known compound by a known method. Moreover, it can obtain easily industrially.
[化合物C]
 化合物Cは、以下に示す式(C’)で表される化合物と平衡状態であるが、本明細書では、以下、これらをまとめて化合物Cと記す。なお、式(C’)中の波線は、OHの二重結合に関する立体配置がEであってもZであってもよいことを示す。
[Compound C]
Compound C is in an equilibrium state with the compound represented by the following formula (C ′). In the present specification, these are hereinafter collectively referred to as Compound C. The wavy line in the formula (C ′) indicates that the steric configuration regarding the double bond of OH may be E or Z.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 また、「化合物Bと化合物Cとの反応」、「化合物Bと化合物C’との反応」および「化合物Bと化合物C及び化合物C’の混合物との反応」も、本明細書では、以下、これらをまとめて「化合物Bと化合物Cとの反応」という。 In addition, “reaction of compound B and compound C”, “reaction of compound B and compound C ′” and “reaction of compound B with a mixture of compound C and compound C ′” are also referred to herein below. These are collectively referred to as “reaction of compound B and compound C”.
 式(C)において、Arは芳香族基または置換基を有する芳香族基を表す。
 「置換基を有する芳香族基」における置換基は、本発明の反応に影響を与えない1価の基であれば特に限定されない。置換基としては、例えば、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、炭素数2~5のアルキニル基、炭素数1~5のアルコキシ基、炭素数6~10のアリール基、炭素数1~5のハロアルキル基、炭素数1~5のハロアルコキシ基、炭素数2~6のアシル基、ハロゲン原子、ヒドロキシ基、スルファニル基、アミノ基、炭素数1~5のアルキルスルホニル基等が挙げられる。好ましい置換基としては、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のハロアルキル基、炭素数1~3のハロアルコキシ基、ハロゲン原子及びシアノ基が挙げられ、メチル基、フルオロメチル基、トリフルオロメチル基、メトキシ基、トリフルオロメトキシ基、ハロゲン原子、シアノ基及びホルミル基がより好ましく、メチル基及びハロゲン原子が特に好ましい。
In the formula (C), Ar represents an aromatic group or an aromatic group having a substituent.
The substituent in the “aromatic group having a substituent” is not particularly limited as long as it is a monovalent group that does not affect the reaction of the present invention. Examples of the substituent include an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkynyl group having 2 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, and an aryl having 6 to 10 carbon atoms. Group, haloalkyl group having 1 to 5 carbon atoms, haloalkoxy group having 1 to 5 carbon atoms, acyl group having 2 to 6 carbon atoms, halogen atom, hydroxy group, sulfanyl group, amino group, alkylsulfonyl having 1 to 5 carbon atoms Groups and the like. Preferred examples of the substituent include an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a haloalkyl group having 1 to 3 carbon atoms, a haloalkoxy group having 1 to 3 carbon atoms, a halogen atom, and a cyano group. Of these, a methyl group, a fluoromethyl group, a trifluoromethyl group, a methoxy group, a trifluoromethoxy group, a halogen atom, a cyano group and a formyl group are more preferred, and a methyl group and a halogen atom are particularly preferred.
 Ar中の置換基の数が2以上の場合、これらは同一であっても異なっていてもよい。置換基の数は、1~5が好ましく、1~3がより好ましい。また置換位置は特に制限されない。 When the number of substituents in Ar is 2 or more, these may be the same or different. The number of substituents is preferably 1 to 5, and more preferably 1 to 3. Further, the substitution position is not particularly limited.
 Arが置換基を2つ有する場合、2つの置換基が互いに連結してArとともに縮合環を形成していてもよい。2つの置換基が互いに連結して形成する環は、芳香環であっても非芳香環であってもよく、また、炭素環であっても、酸素原子、窒素原子及び硫黄原子からなる群から選択される少なくとも1つのヘテロ原子を有する複素環であってもよい。このようなArの具体例としては、ベンゾフリル等が挙げられる。 When Ar has two substituents, the two substituents may be connected to each other to form a condensed ring together with Ar. The ring formed by connecting two substituents to each other may be an aromatic ring or a non-aromatic ring, and may be a carbocyclic ring or a group consisting of an oxygen atom, a nitrogen atom and a sulfur atom. It may be a heterocycle having at least one selected heteroatom. Specific examples of such Ar include benzofuryl and the like.
 Arとしては、炭素数6~14のアリール基又は置換基を有する炭素数6~14のアリール基が好ましく、炭素数6~10のアリール基又は置換基を有する炭素数6~10のアリール基がより好ましく、フェニル基又は置換基を有するフェニル基が更に好ましく、フェニル基、又は炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のハロアルキル基、炭素数1~3のハロアルコキシ基、ハロゲン原子及びシアノ基から選択される置換基を有するフェニル基がさらにより好ましく、フェニル基、又はメチル基、フルオロメチル基、トリフルオロメチル基、メトキシ基、トリフルオロメトキシ基、ハロゲン原子、シアノ基及びホルミル基から選択される置換基を有するフェニル基がさらに一層より好ましい。このような置換基を有するフェニル基の好適な具体例としては、o-、m-またはp-フルオロフェニル基、o-、m-またはp-クロロフェニル基、o-、m-またはp-トリル基、o-、m-またはp-フルオロメチルフェニル基、ジフルオロフェニル基、トリフルオロフェニル基が挙げられる。Arとしては、オキサジアゾール誘導体Aの生理活性等の有用性の観点からフェニル基が最も好ましい。 Ar is preferably an aryl group having 6 to 14 carbon atoms or an aryl group having 6 to 14 carbon atoms having a substituent, and an aryl group having 6 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms having a substituent is preferable. More preferably, a phenyl group or a phenyl group having a substituent is more preferable, a phenyl group, or an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a haloalkyl group having 1 to 3 carbon atoms, or 1 carbon atom. More preferred is a phenyl group having a substituent selected from haloalkoxy groups of 3 to 3, a halogen atom and a cyano group, a phenyl group, or a methyl group, a fluoromethyl group, a trifluoromethyl group, a methoxy group, a trifluoromethoxy group Still more preferred is a phenyl group having a substituent selected from a halogen atom, a cyano group and a formyl group. Preferred examples of the phenyl group having such a substituent include an o-, m- or p-fluorophenyl group, an o-, m- or p-chlorophenyl group, an o-, m- or p-tolyl group. , O-, m- or p-fluoromethylphenyl group, difluorophenyl group, trifluorophenyl group. Ar is most preferably a phenyl group from the viewpoint of usefulness such as physiological activity of the oxadiazole derivative A.
 化合物Bとの反応に用いる化合物Cは、脱水処理を行った化合物Cであることが好ましい。脱水処理は、例えば共沸脱水処理、モレキュラーシーブ等の脱水剤を用いる脱水処理等の公知の方法に従って行うことができる。化合物Bとの反応に用いる化合物Cの水分含有率は、5質量%以下が好ましく、1質量%以下がより好ましい。 Compound C used for the reaction with Compound B is preferably Compound C that has been dehydrated. The dehydration treatment can be performed according to a known method such as an azeotropic dehydration treatment or a dehydration treatment using a dehydrating agent such as molecular sieve. The water content of the compound C used for the reaction with the compound B is preferably 5% by mass or less, and more preferably 1% by mass or less.
 化合物Cは工業的に入手することが容易である。また、化合物Cは、下式(F)で表される化合物とヒドロキシルアミンとを反応させる方法により製造できる。式中のArは前記と同じ基を表す。 Compound C is easy to obtain industrially. Compound C can be produced by a method in which a compound represented by the following formula (F) is reacted with hydroxylamine. Ar in the formula represents the same group as described above.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 当該反応は、溶媒の存在下に実施するのが好ましく、文献(例えばOrganic Letters, -16(3), 892-895; 2014)記載方法に従って実施できる。ヒドロキシルアミンは水溶液の状態で使用してもよい。溶媒としては、エタノール、t-ブタノール、t-アミルアルコール等のアルコール、テトラヒドロフラン、2-メチルテトラヒドロフラン等のエーテル、水等を挙げることができる。溶媒の量は、化合物Fの体積に対して、1~5倍量が好ましく、特に1~3倍量が好ましい。反応温度の下限は20℃が好ましく、30℃がより好ましい。また反応温度の上限は、100℃が好ましく、80℃がより好ましい。反応温度が下限以上であれば反応が速やかに反応しやすく、反応温度が上限以下であれば副生成物の生成を抑制しやすい。反応時間は、反応温度や反応圧力に依存するが、1~10時間が好ましい。反応圧力は、常圧、加圧、減圧のいずれでもよいが、常圧または加圧が好ましい。反応圧力は、0.01~0.5MPa(ゲージ圧)が好ましい。反応雰囲気は、大気雰囲気でも、窒素等の不活性ガス雰囲気でもよい。 The reaction is preferably carried out in the presence of a solvent, and can be carried out according to the method described in the literature (for example, Organic Letters, -16 (3), 892-895; 2014). Hydroxylamine may be used in the form of an aqueous solution. Examples of the solvent include alcohols such as ethanol, t-butanol and t-amyl alcohol, ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, and water. The amount of the solvent is preferably 1 to 5 times, particularly 1 to 3 times the volume of the compound F. The lower limit of the reaction temperature is preferably 20 ° C, more preferably 30 ° C. The upper limit of the reaction temperature is preferably 100 ° C, more preferably 80 ° C. If the reaction temperature is equal to or higher than the lower limit, the reaction is likely to react quickly, and if the reaction temperature is equal to or lower than the upper limit, generation of by-products is likely to be suppressed. The reaction time depends on the reaction temperature and reaction pressure, but is preferably 1 to 10 hours. The reaction pressure may be normal pressure, pressurization, or reduced pressure, but normal pressure or pressurization is preferred. The reaction pressure is preferably 0.01 to 0.5 MPa (gauge pressure). The reaction atmosphere may be an air atmosphere or an inert gas atmosphere such as nitrogen.
 本発明における化合物Bと化合物Cとの反応は、後述する理由により、反応系中の水の量ができるだけ少ない条件で実施するのが好ましいことから、化合物Fとヒドロキシルアミンとの反応後に水を除去する操作を行い、できるだけ含水量の少ない化合物Cを得るのが好ましい。
 水の除去は、反応後に化合物Cを単離する方法、反応後に脱水処理を行う方法が挙げられる。
In the present invention, the reaction between Compound B and Compound C is preferably carried out under the condition that the amount of water in the reaction system is as small as possible for the reasons described later. Therefore, water is removed after the reaction between Compound F and hydroxylamine. It is preferable to obtain the compound C with as little water content as possible.
The removal of water includes a method of isolating compound C after the reaction and a method of performing a dehydration treatment after the reaction.
 たとえば、化合物Fとヒドロキシルアミンとの反応を、溶媒に水を用いて行った場合は、水と化合物Cの混合物から水を除去して化合物Cを得て、該化合物Cを化合物Bと反応させるのが好ましい。ここで、水除去後の化合物Cの水分含有率は、5質量%以下が好ましく、1質量%以下がより好ましい。水の除去は分液操作により行うことができ、さらに、脱水処理を行うことが好ましい。 For example, when the reaction between Compound F and hydroxylamine is performed using water as a solvent, water is removed from the mixture of water and Compound C to obtain Compound C, and Compound C is reacted with Compound B. Is preferred. Here, the water content of the compound C after water removal is preferably 5% by mass or less, and more preferably 1% by mass or less. The removal of water can be performed by a liquid separation operation, and it is preferable to perform a dehydration treatment.
 化合物Fとヒドロキシルアミンとの反応を、溶媒の存在下に実施した場合には、化合物Cと溶媒とを含む混合物が得られる。該混合物は、化合物Cが溶媒に溶解する場合は、化合物Cを含む溶媒溶液になる。ここで、水除去後の混合物の含水量は、混合物の総質量に対して、5質量%以下が好ましく、1質量%以下がより好ましい。水を除去する方法としては、該混合物から化合物Cを単離する方法、該混合物の脱水処理を行う方法が挙げられ、後者の方法が好ましい。後者の方法である場合、化合物Cと溶媒を含む混合物から、化合物Cを単離することなく、混合物の状態で化合物Bと反応させることができ、効率的な製造方法になりうる。すなわち、化合物Fとヒドロキシルアミンとを溶媒中で反応させて化合物Cと溶媒との混合物を得て、得られた化合物Cを溶媒との混合物のまま、化合物Bと反応させることが好ましく、化合物Cの溶媒との混合物の脱水処理を行った後に、化合物Cを溶媒との混合物のまま、化合物Bと反応させるのがより好ましい。当該製造方法によれば、混合物の状態で、同じ反応装置を用いて次の工程の反応を実施でき、製造工程を大幅に効率化できる。 When the reaction between Compound F and hydroxylamine is carried out in the presence of a solvent, a mixture containing Compound C and the solvent is obtained. When the compound C is dissolved in the solvent, the mixture becomes a solvent solution containing the compound C. Here, the water content of the mixture after water removal is preferably 5% by mass or less, and more preferably 1% by mass or less, based on the total mass of the mixture. Examples of the method for removing water include a method for isolating compound C from the mixture and a method for dehydrating the mixture. The latter method is preferred. In the latter method, the compound C can be reacted with the compound B in a mixture state without isolating the compound C from the mixture containing the compound C and the solvent, which can be an efficient production method. That is, it is preferable to react compound F and hydroxylamine in a solvent to obtain a mixture of compound C and solvent, and to react the obtained compound C with compound B in the form of a mixture with the solvent. More preferably, the compound C is reacted with the compound B in the mixture with the solvent after the dehydration treatment of the mixture with the solvent. According to the production method, the reaction in the next step can be carried out using the same reaction apparatus in the state of the mixture, and the production process can be greatly improved in efficiency.
 脱水処理は、共沸脱水処理、またはモレキュラーシーブ等の脱水剤を用いる脱水処理により行うことができる。脱水処理を共沸脱水処理で行う場合に備えて、化合物Fとヒドロキシルアミンとの反応に用いる溶媒は、共沸脱水可能な溶媒、すなわち水と共沸混合物を形成できる溶媒が好ましい。該溶媒としては、エタノール、t-ブタノール及びt-アミルアルコール等が挙げられる。 The dehydration treatment can be performed by azeotropic dehydration treatment or dehydration treatment using a dehydrating agent such as molecular sieve. In preparation for the case where the dehydration is carried out by azeotropic dehydration, the solvent used for the reaction of Compound F and hydroxylamine is preferably a solvent capable of azeotropic dehydration, that is, a solvent capable of forming an azeotrope with water. Examples of the solvent include ethanol, t-butanol and t-amyl alcohol.
[オキサジアゾール誘導体A]
 本発明の製造方法の目的化合物であるオキサジアゾール誘導体Aは、式(A)で表される化合物である。式中のAr、W、X、Y及びZの意味は前記と同じ意味であり、好ましい態様も前記と同様である。
 オキサジアゾール誘導体Aは、下式(A)で表される化合物が好ましい。式中のArは前記と同じ意味である。
[Oxadiazole derivative A]
The oxadiazole derivative A which is the target compound of the production method of the present invention is a compound represented by the formula (A). The meanings of Ar, W, X, Y and Z in the formula are the same as those described above, and preferred embodiments are also the same as described above.
The oxadiazole derivative A is preferably a compound represented by the following formula (A 1 ). Ar in the formula has the same meaning as described above.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 また、オキサジアゾール誘導体Aの具体例としては、下記化合物が挙げられる。 Further, specific examples of the oxadiazole derivative A include the following compounds.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
[本発明の製造方法]
 本発明の製造方法は、化合物Bと化合物Cとを反応させてオキサジアゾール誘導体Aを製造する。あるいは、化合物Bと化合物Cを反応させて、下式(D)で表される化合物を含む中間生成物を得て、さらに当該中間生成物を酸化反応に供することにより、化合物Dを酸化してオキサジアゾール誘導体Aを得てもよい。当該酸化反応は、中間生成物を精製することなく行ってもよい(以下、「1段階反応」とも記載する。)が、中間生成物を精製した後に行う(以下、「2段階反応」とも記載する。)ことが好ましい。2段階反応とすることで、中間生成物に含まれる分離が困難な不純物(例えば後述する化合物E等)の含有量を非常に効率よく低減することができる。当該2段階反応は、化合物Bと化合物Cとの反応を、酸性条件下または中性条件下(特に酸性条件下)で行う場合に有効である。
[Production method of the present invention]
In the production method of the present invention, compound B and compound C are reacted to produce oxadiazole derivative A. Alternatively, compound B is reacted with compound C to obtain an intermediate product containing a compound represented by the following formula (D), and the intermediate product is further subjected to an oxidation reaction to oxidize compound D. Oxadiazole derivative A may be obtained. The oxidation reaction may be performed without purifying the intermediate product (hereinafter also referred to as “one-step reaction”), but is performed after the intermediate product is purified (hereinafter also referred to as “two-step reaction”). Is preferable. By setting it as a two-stage reaction, content of impurities (for example, the compound E etc. mentioned later) which are difficult to isolate | separate contained in an intermediate product can be reduced very efficiently. The two-step reaction is effective when the reaction between Compound B and Compound C is performed under acidic conditions or neutral conditions (particularly acidic conditions).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 以下の本発明のオキサジアゾール誘導体Aの反応の概念を示す。化合物Dは、化合物Dを含有する中間生成物として得られる。 The concept of the reaction of the oxadiazole derivative A of the present invention is shown below. Compound D is obtained as an intermediate product containing compound D.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 化合物Dは、化合物Bと化合物Cの縮合閉環反応により生成する。化合物Dを酸化することで、目的とするオキサジアゾール誘導体Aが得られる。 Compound D is produced by the condensation ring closure reaction of Compound B and Compound C. The target oxadiazole derivative A is obtained by oxidizing the compound D.
 化合物Bと化合物Cとを反応させてオキサジアゾール誘導体Aを得る反応は、化合物Bと化合物Cとを接触させることで行うことができる。接触は、一方の化合物を溶媒中に溶解させ、もう一方の化合物に添加する方法、溶媒中に化合物Bと化合物Cを添加して撹拌する方法等が挙げられる。また反応はバッチ式で行ってもよく、連続式で行ってもよい。また、1段階反応で行ってもよく、2段階反応で行ってもよい。 The reaction in which compound B and compound C are reacted to obtain oxadiazole derivative A can be carried out by bringing compound B and compound C into contact with each other. Examples of the contact include a method in which one compound is dissolved in a solvent and added to the other compound, a method in which compound B and compound C are added to the solvent and agitated, and the like. In addition, the reaction may be performed batchwise or continuously. Moreover, you may carry out by 1 step reaction and you may carry out by 2 step reaction.
 化合物Bと化合物Cとの反応には、化合物B及び化合物Cの種類に応じて最適な条件を適用するのが好ましい。
 反応時のpH条件は、酸性条件、塩基性条件及び中性条件のいずれであってもよいが、酸性条件または中性条件が好ましく、酸性条件がより好ましい。中性条件にする場合、例えば、酸性化合物又は塩基性化合物の非存在下で反応を行えばよく、緩衝液中で行ってもよい。酸性条件にする場合、酸性化合物を反応系中に存在させるのが好ましい。酸性化合物としては、有機酸であっても無機酸であってもよく、p-トルエンスルホン酸、酢酸、トリフルオロ酢酸等の有機酸、硫酸、酸化マグネシウム、酸化亜鉛、三フッ化ホウ素、塩化鉄等の無機酸等を挙げることができる。酸性化合物の使用量の上限は、化合物Bの1モルに対して2モルが好ましく、1.5モルがより好ましく、1.2モルがさらに好ましく、1.0モルが特に好ましい。酸性化合物の使用量の下限は、化合物Bの1モルに対して0.01モルが好ましく、0.05モルがより好ましく、0.1モルがさらに好ましい。酸性化合物の使用量が上記範囲であれば、副反応が進行しにくく、また効率的に反応が進行しやすい。
In the reaction between Compound B and Compound C, it is preferable to apply optimum conditions depending on the types of Compound B and Compound C.
Although pH conditions at the time of reaction may be any of acidic conditions, basic conditions, and neutral conditions, acidic conditions or neutral conditions are preferable, and acidic conditions are more preferable. When neutral conditions are used, for example, the reaction may be performed in the absence of an acidic compound or a basic compound, or may be performed in a buffer solution. When acidic conditions are used, it is preferable that an acidic compound is present in the reaction system. The acidic compound may be an organic acid or an inorganic acid, organic acids such as p-toluenesulfonic acid, acetic acid, trifluoroacetic acid, sulfuric acid, magnesium oxide, zinc oxide, boron trifluoride, iron chloride. Inorganic acids such as The upper limit of the amount of the acidic compound used is preferably 2 mol, more preferably 1.5 mol, still more preferably 1.2 mol, and particularly preferably 1.0 mol with respect to 1 mol of compound B. The lower limit of the amount of the acidic compound used is preferably 0.01 mol, more preferably 0.05 mol, and still more preferably 0.1 mol with respect to 1 mol of compound B. If the usage-amount of an acidic compound is the said range, a side reaction will not advance easily and reaction will advance easily.
 塩基性条件にする場合、塩基性化合物を反応系中に存在させるのが好ましい。塩基性化合物としては、有機塩基であっても無機塩基であってもよく、炭酸カリウム、炭酸ナトリウム、水酸化カリウム、水酸化ナトリウム等の無機塩基、トリエチルアミン、ピペリジン、ピロリジン、モルホリン等の低級アミン、ピリジン等の塩基性芳香族複素環化合物等を挙げることができる。塩基性化合物の使用量の上限は、化合物Bの1モルに対して2モルが好ましく、1.5モルがより好ましく、1.2モルがさらに好ましく、1.0モルが特に好ましい。塩基性化合物の使用量の下限は、化合物Bの1モルに対して0.01モルが好ましく、0.05モルがより好ましく、0.1モルがさらに好ましい。塩基性化合物の使用量が上記範囲であれば、副反応が進行しにくく、また効率的に反応が進行しやすい。
 塩基性化合物として1級アミンまたは2級アミンを選択した場合は、化合物Bと反応して活性イミンとなって、化合物Cと反応する。1級アミンまたは2級アミンとしては、ピペリジン、ピロリジン、モルホリン等が好ましい。
In the case of basic conditions, it is preferable that a basic compound is present in the reaction system. The basic compound may be an organic base or an inorganic base, an inorganic base such as potassium carbonate, sodium carbonate, potassium hydroxide or sodium hydroxide, a lower amine such as triethylamine, piperidine, pyrrolidine or morpholine, Examples thereof include basic aromatic heterocyclic compounds such as pyridine. The upper limit of the amount of the basic compound used is preferably 2 mol, more preferably 1.5 mol, still more preferably 1.2 mol, and particularly preferably 1.0 mol with respect to 1 mol of compound B. The lower limit of the amount of the basic compound used is preferably 0.01 mol, more preferably 0.05 mol, still more preferably 0.1 mol with respect to 1 mol of compound B. If the usage-amount of a basic compound is the said range, a side reaction will not advance easily and reaction will advance easily efficiently.
When primary amine or secondary amine is selected as the basic compound, it reacts with compound B to become an active imine and reacts with compound C. As the primary amine or secondary amine, piperidine, pyrrolidine, morpholine and the like are preferable.
 酸性化合物又は塩基性化合物は、そのままを用いてもよく、溶媒に溶解させて用いてもよい。該溶媒としては、後述する反応溶媒から選ばれる1又は2種以上の溶媒が挙げられる。 The acidic compound or basic compound may be used as it is, or may be used after being dissolved in a solvent. As this solvent, 1 or 2 or more types of solvents chosen from the reaction solvent mentioned later are mentioned.
 化合物Bと化合物Cとの反応は、溶媒の存在下に行うのが好ましい。溶媒としてはエタノール、プロパノール、イソプロパノール、ブタノール、t-ブタノール、アミルアルコール、t-アミルアルコール、ヘキサノール、オクタノール等のアルコール;トルエン、無水トルエン等の芳香族炭化水素;酢酸;ジメチルスルホキシド、ジメチルホルムアミド、スルホラン、ジオキサン等の非プロトン性極性溶剤等が好ましく挙げられる。溶媒としては、アルコール、芳香族炭化水素および非プロトン性極性溶剤からなる群から選択される少なくとも1種がより好ましく、アルコールが特に好ましい。
 化合物Bと化合物Cとの反応で生成する水は、後述する理由から除去することが好ましいため、溶媒は水と共沸混合物を形成できる溶媒であることが好ましく、水と共沸混合物を形成できるアルコールであることがより好ましい。
 また、後述する化合物BHの酸化工程に、化合物Bと化合物Cとの反応で使用する溶媒が混入する可能性があるが、当該酸化工程での副反応を抑制する観点から、3級アルコールがより好ましい。
 溶媒の量は、例えば、化合物Bの体積に対して、0.2~15倍量が好ましい。また化合物Cの体積に対して0.2~15倍量が好ましく、1~10倍量が特に好ましい。化合物Bと化合物Cの体積が異なる場合には、溶媒の量は化合物Cの量を基準に決定することが好ましい。
The reaction between compound B and compound C is preferably carried out in the presence of a solvent. Solvents include ethanol, propanol, isopropanol, butanol, t-butanol, amyl alcohol, t-amyl alcohol, hexanol, octanol and other alcohols; aromatic hydrocarbons such as toluene and anhydrous toluene; acetic acid; dimethyl sulfoxide, dimethylformamide, sulfolane Preferred are aprotic polar solvents such as dioxane and the like. The solvent is more preferably at least one selected from the group consisting of alcohols, aromatic hydrocarbons and aprotic polar solvents, with alcohols being particularly preferred.
Since it is preferable to remove the water produced by the reaction of Compound B and Compound C for the reasons described later, the solvent is preferably a solvent that can form an azeotrope with water, and can form an azeotrope with water. More preferred is alcohol.
In addition, the solvent used in the reaction of Compound B and Compound C may be mixed in the oxidation step of Compound BH, which will be described later. From the viewpoint of suppressing side reactions in the oxidation step, tertiary alcohol is more preferable. preferable.
The amount of the solvent is preferably 0.2 to 15 times the volume of the compound B, for example. The amount of the compound C is preferably 0.2 to 15 times, and particularly preferably 1 to 10 times. When the volumes of Compound B and Compound C are different, the amount of solvent is preferably determined based on the amount of Compound C.
 化合物Bと化合物Cとの反応における反応温度、反応時間、反応圧力、反応雰囲気等の反応条件は、化合物B、化合物C、酸性化合物もしくは塩基性化合物及び溶媒の種類等により適宜変更されうる。通常の場合、反応温度の下限は40℃が好ましく、50℃がより好ましく、90℃が更に好ましく、100℃が特に好ましい。また反応温度の上限は160℃が好ましく、140℃がより好ましく、120℃が特に好ましい。
 反応温度の下限が上記であれば、反応が速やかに進行しやすい。また、反応温度の上限が上記であれば、副生成物が生じにくい。
 反応時間は、反応温度や反応圧力に依存するが、1~30時間が好ましい。反応圧力は、常圧、加圧、減圧のいずれでもよい。反応雰囲気は、大気雰囲気でも、窒素等の不活性ガス雰囲気でもよい。
Reaction conditions such as reaction temperature, reaction time, reaction pressure, reaction atmosphere and the like in the reaction between Compound B and Compound C can be appropriately changed depending on the types of Compound B, Compound C, acidic compound or basic compound, and solvent. In the usual case, the lower limit of the reaction temperature is preferably 40 ° C, more preferably 50 ° C, still more preferably 90 ° C, particularly preferably 100 ° C. The upper limit of the reaction temperature is preferably 160 ° C, more preferably 140 ° C, and particularly preferably 120 ° C.
If the lower limit of the reaction temperature is the above, the reaction is likely to proceed rapidly. Moreover, if the upper limit of reaction temperature is the above, a by-product is hard to produce.
The reaction time depends on the reaction temperature and reaction pressure, but is preferably 1 to 30 hours. The reaction pressure may be normal pressure, increased pressure, or reduced pressure. The reaction atmosphere may be an air atmosphere or an inert gas atmosphere such as nitrogen.
 化合物Bと化合物Cとの反応では、水が生成する。生成した水を除去すると、反応の平衡を生成物側に移動させることができる。また、生成した水を除去すると、後述する中間生成物である化合物Dの加水分解反応等を抑制する効果もある。従って、本発明では、化合物Bと化合物Cとの反応を脱水しながら行うことが好ましい。脱水方法としては、公知ないしは周知の方法が採用でき、脱水剤を存在させる方法、共沸等により水を留去する方法が挙げられる。脱水剤としては、モレキュラーシーブ等を挙げることができる。また、化合物Bと化合物Cの反応において存在させる酸性化合物又は塩基性化合物が脱水作用を有する化合物である場合には、脱水剤を用いずとも脱水を行える。 In the reaction between Compound B and Compound C, water is generated. Removing the water produced can shift the reaction equilibrium to the product side. Moreover, when the produced | generated water is removed, there also exists an effect which suppresses the hydrolysis reaction etc. of the compound D which is an intermediate product mentioned later. Therefore, in the present invention, it is preferable to carry out the reaction between Compound B and Compound C while dehydrating. As the dehydration method, a known or well-known method can be adopted, and examples thereof include a method in which a dehydrating agent is present and a method in which water is distilled off by azeotropic distillation. Examples of the dehydrating agent include molecular sieves. Further, when the acidic compound or basic compound present in the reaction of Compound B and Compound C is a compound having a dehydrating action, dehydration can be performed without using a dehydrating agent.
 オキサジアゾール誘導体Aは、化合物Dが酸化されることにより得られると考えられるので、本発明のオキサジアゾール誘導体Aの製造工程において酸化剤を用いることが好ましい。この場合、化合物Bと化合物Cとの反応を、酸化剤の存在下に行ってもよく、化合物Bと化合物Cを反応させた後、化合物Dを含む中間生成物を酸化剤と反応させてもよい。中間生成物を酸化剤と反応させる場合には、2段階反応において中間生成物を精製した後に酸化剤と反応させることが好ましい。酸化剤としては、過酸化水素、二酸化マンガン、2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン(DDQ)、次亜塩素酸、ペルオキソ二硫酸カリウム、酸素、塩素等を挙げることができる。酸化剤の添加時期は限定されず、酸化剤が存在する系中に、化合物Bと化合物Cとを添加してもよく、化合物Bと化合物Cとが存在する反応系中に酸化剤を添加してもよい。2段階反応の場合には、精製した中間生成物に酸化剤を加えることが好ましい。
 反応に用いる化合物Bも酸化剤として作用しうる。しかし、化合物Bのみの酸化剤では酸化作用が不十分である場合もあるため、化合物B以外の酸化剤を使用することがより好ましい。
 酸化剤の量は、酸化剤の種類等に応じて適宜変更でき、化合物Cの1モルに対して1モル以上が好ましく、1.5モル以上が好ましい。酸化剤の量の上限は、化合物Cの1モルに対して10モルが好ましく、5モルが特に好ましく、2モルがより好ましい。
 また、空気中の酸素や反応系中の他の化合物が酸化剤として作用するなどの場合には、特段酸化剤を使用しなくても酸化が進行する場合がある。
Since oxadiazole derivative A is considered to be obtained by oxidation of compound D, it is preferable to use an oxidizing agent in the production process of oxadiazole derivative A of the present invention. In this case, the reaction between the compound B and the compound C may be performed in the presence of an oxidizing agent, or after reacting the compound B and the compound C, the intermediate product containing the compound D may be reacted with the oxidizing agent. Good. When the intermediate product is reacted with an oxidizing agent, it is preferable to purify the intermediate product in a two-stage reaction and then react with the oxidizing agent. Examples of the oxidizing agent include hydrogen peroxide, manganese dioxide, 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ), hypochlorous acid, potassium peroxodisulfate, oxygen, chlorine and the like. . The addition time of the oxidant is not limited, and the compound B and the compound C may be added to the system in which the oxidant is present, and the oxidant is added to the reaction system in which the compound B and the compound C are present. May be. In the case of a two-stage reaction, it is preferable to add an oxidizing agent to the purified intermediate product.
Compound B used in the reaction can also act as an oxidizing agent. However, since the oxidizing effect of only the compound B may be insufficient, it is more preferable to use an oxidizing agent other than the compound B.
The amount of the oxidizing agent can be appropriately changed according to the kind of the oxidizing agent and the like, and is preferably 1 mol or more, more preferably 1.5 mol or more with respect to 1 mol of Compound C. The upper limit of the amount of the oxidizing agent is preferably 10 moles, more preferably 5 moles, and more preferably 2 moles relative to 1 mole of Compound C.
Further, when oxygen in the air or other compounds in the reaction system acts as an oxidizing agent, oxidation may proceed even without using a special oxidizing agent.
 中間生成物は化合物Dを含むが、さらに、反応の原料、及び反応の副生物が含まれうる。また、溶媒(例えば、化合物Bと化合物Cの反応に使用した溶媒等)が含まれていてもよい。 The intermediate product contains compound D, but may further contain reaction raw materials and reaction by-products. In addition, a solvent (for example, a solvent used for the reaction of Compound B and Compound C) may be contained.
 副生物としては、例えば、下式(E)で表される化合物等を挙げることができる。該化合物Eは、化合物Cの分解物と化合物Cが縮合して生成すると考えられる。 Examples of by-products include compounds represented by the following formula (E). The compound E is considered to be formed by the condensation of the decomposition product of the compound C and the compound C.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 オキサジアゾール誘導体Aの収率を高くするためには、化合物Dの生成量を多く、副生成物の量が少なくなるように、反応条件を設定するのが好ましい。特に副生成物のうち化合物Eはその物理化学的特性(例えば結晶性等)がオキサジアゾール誘導体Aと類似しているため、オキサジアゾール誘導体Aから除去することが容易ではないので、中間生成物中の化合物Eの含有量を抑制することが好ましい。
 化合物Eの生成量を低減する方法としては、化合物Bと化合物Cを反応させる際に、化合物Cを化合物Bを含む反応系に連続添加または逐次添加するのが好ましい。
In order to increase the yield of oxadiazole derivative A, it is preferable to set the reaction conditions so that the amount of compound D produced is increased and the amount of by-products is reduced. In particular, among the by-products, compound E has a physicochemical property (for example, crystallinity) similar to that of oxadiazole derivative A, and therefore cannot be easily removed from oxadiazole derivative A. It is preferable to suppress the content of compound E in the product.
As a method for reducing the amount of compound E produced, it is preferable to add compound C continuously or sequentially to the reaction system containing compound B when reacting compound B and compound C.
 反応における化合物Eの生成量は、化合物Bと化合物Cを反応させる際に、当量、反応触媒、温度、溶媒、反応系の酸性度(塩基性度)等の反応条件により変化する。よって、これらの反応条件を適宜調整することで、化合物Eの生成量を減少させうる。中間生成物における化合物Eの含有量は、化合物Dに対して10質量%以下が好ましく、5質量%以下がより好ましく、1質量%以下が更に好ましく、0.1質量%以下が特に好ましい。 The amount of compound E produced in the reaction varies depending on reaction conditions such as equivalent weight, reaction catalyst, temperature, solvent, and acidity (basicity) of the reaction system when reacting compound B and compound C. Therefore, the production amount of compound E can be reduced by appropriately adjusting these reaction conditions. The content of Compound E in the intermediate product is preferably 10% by mass or less, more preferably 5% by mass or less, still more preferably 1% by mass or less, and particularly preferably 0.1% by mass or less with respect to Compound D.
 1段階反応によりオキサジアゾール誘導体Aを製造する場合、酸化剤の存在下に化合物Bと化合物Cとを反応させてもよく、化合物Bと化合物Cを反応させて、得られた中間生成物を精製せずに酸化剤と反応させてもよい。1段階反応では、中間生成物には精製処理等が行われることなく、連続的に酸化処理が行われ、製造方法の操作上は実質的に原料化合物の混合のみで実施されることが好ましい。
 1段階反応は、中間生成物をそのままで酸化するため、工程が省略でき、所望のオキサジアゾール誘導体Aを効率的に製造することができる。より効率的に行うには、化合物Bと化合物Cとの反応から酸化反応までを1つの反応容器内で行うのが好ましい。
When the oxadiazole derivative A is produced by a one-step reaction, the compound B and the compound C may be reacted in the presence of an oxidant, and the intermediate product obtained by reacting the compound B and the compound C You may make it react with an oxidizing agent, without refine | purifying. In the one-step reaction, it is preferable that the intermediate product is subjected to an oxidation treatment continuously without being subjected to a purification treatment or the like, and the operation of the production method is substantially carried out only by mixing raw material compounds.
In the one-step reaction, since the intermediate product is oxidized as it is, the process can be omitted and the desired oxadiazole derivative A can be efficiently produced. In order to carry out more efficiently, it is preferable to carry out from the reaction of Compound B and Compound C to the oxidation reaction in one reaction vessel.
 1段階反応を行う場合において、化合物Cに対して過剰量の化合物Bを反応させると、過剰量の化合物Bが酸化剤として作用することから好ましい。さらに、過剰量の化合物Bを用い、かつ(化合物B以外の)酸化剤を存在させずに反応をさせるのが好ましい。この場合の化合物Bの量は、化合物Cの1モルに対して1.5モル以上が好ましく、1.8モル以上が好ましく、2モル以上が好ましい。またその上限は、10モルが好ましく、5モルが特に好ましく、3モル以下がさらに好ましい。 In the case of carrying out a one-step reaction, it is preferable to react an excessive amount of Compound B with Compound C because the excessive amount of Compound B acts as an oxidizing agent. Further, it is preferable to carry out the reaction using an excessive amount of Compound B and without the presence of an oxidizing agent (other than Compound B). In this case, the amount of Compound B is preferably 1.5 mol or more, preferably 1.8 mol or more, and preferably 2 mol or more with respect to 1 mol of Compound C. The upper limit is preferably 10 mol, particularly preferably 5 mol, and further preferably 3 mol or less.
 化合物Bが酸化剤として作用した場合は、化合物Bの還元体が生成する。該還元体としては、下式(BH)で表される化合物が挙げられる。式中のW、X、Y及びZは、前記と同じ意味である。化合物BHは、酸化して化合物Bとして、再び化合物Bと化合物Cとの反応に用いるのが好ましい。 When Compound B acts as an oxidizing agent, a reduced form of Compound B is generated. Examples of the reduced form include compounds represented by the following formula (BH). W, X, Y and Z in the formula have the same meaning as described above. The compound BH is preferably oxidized and used as the compound B again for the reaction between the compound B and the compound C.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 化合物BHの酸化反応は、例えばOrganic Process Reserch & Development, 16(5),1082-1089,2012を参照することができる。化合物BHの酸化反応は、化合物BHと酸化剤とを接触させることで行うことができる。具体的に酸化剤としては、次亜塩素酸ナトリウム、次亜塩素酸カリウム等の次亜塩素酸塩、オキソン、過酸化水素、酸素等を挙げることができる。化合物BHの酸化反応は、酸化鉄、硫酸鉄やロジウム触媒等の触媒の存在下で行なってもよい。化合物BHの酸化反応は、溶媒の存在下で行なってもよい。酸化剤の量は、酸化剤の種類等に応じて適宜変更でき、化合物BHの1モルに対して1モル以上が好ましく、1.1モル以上がより好ましく、1.2モル以上がさらに好ましい。酸化剤の量の上限は、化合物BHの1モルに対して10モルが好ましく、5モルがより好ましく、2モルがさらに好ましい。化合物BHの酸化反応は溶媒の存在下で行なうことができる。溶媒としては、水、酢酸エチル、クロロホルム等を挙げることができる。溶媒量は、化合物BHの体積に対して1~10倍量が好ましく、特に3~8倍量が好ましい。反応温度は0℃以上が好ましく、10℃以上がより好ましい。また30℃以下が好ましく、20℃以下がより好ましい。反応時間は、反応温度や反応圧力に依存するが、1~5時間が好ましい。反応圧力は、0.01~0.5MPa(ゲージ圧)が好ましい。反応雰囲気は、大気雰囲気でも、窒素等の不活性ガス雰囲気でもよい。 For the oxidation reaction of the compound BH, for example, Organic Process Research & Development, 16 (5), 1082-1089, 2012 can be referred to. The oxidation reaction of compound BH can be performed by contacting compound BH with an oxidizing agent. Specific examples of the oxidizing agent include hypochlorites such as sodium hypochlorite and potassium hypochlorite, oxone, hydrogen peroxide and oxygen. The oxidation reaction of compound BH may be performed in the presence of a catalyst such as iron oxide, iron sulfate, or rhodium catalyst. The oxidation reaction of compound BH may be performed in the presence of a solvent. The amount of the oxidizing agent can be appropriately changed according to the kind of the oxidizing agent, and is preferably 1 mol or more, more preferably 1.1 mol or more, and further preferably 1.2 mol or more with respect to 1 mol of the compound BH. The upper limit of the amount of the oxidizing agent is preferably 10 mol, more preferably 5 mol, and even more preferably 2 mol with respect to 1 mol of compound BH. The oxidation reaction of compound BH can be carried out in the presence of a solvent. Examples of the solvent include water, ethyl acetate, chloroform and the like. The amount of the solvent is preferably 1 to 10 times, particularly preferably 3 to 8 times the volume of the compound BH. The reaction temperature is preferably 0 ° C. or higher, more preferably 10 ° C. or higher. Moreover, 30 degrees C or less is preferable and 20 degrees C or less is more preferable. The reaction time depends on the reaction temperature and reaction pressure, but is preferably 1 to 5 hours. The reaction pressure is preferably 0.01 to 0.5 MPa (gauge pressure). The reaction atmosphere may be an air atmosphere or an inert gas atmosphere such as nitrogen.
 2段階反応によりオキサジアゾール誘導体Aを製造する場合、化合物Bと化合物Cとを反応させて中間生成物を得て、次に、該中間生成物を精製処理して、精製後の中間生成物を酸化する。
 2段階反応において、化合物Bの1モルに対して化合物Cの量の下限は0.2モルが好ましく、0.5モルがより好ましく、0.8モルがさらに好ましい。化合物Bの1モルに対して化合物Cの量の上限は2モルが好ましく、1.5モルがより好ましく、1.2モルがさらに好ましい。
When the oxadiazole derivative A is produced by a two-step reaction, the compound B and the compound C are reacted to obtain an intermediate product, and then the intermediate product is purified to obtain an intermediate product after purification. Oxidize.
In the two-stage reaction, the lower limit of the amount of Compound C relative to 1 mol of Compound B is preferably 0.2 mol, more preferably 0.5 mol, and even more preferably 0.8 mol. The upper limit of the amount of Compound C with respect to 1 mol of Compound B is preferably 2 mol, more preferably 1.5 mol, and even more preferably 1.2 mol.
 2段階反応においては、中間生成物を精製処理することにより、反応の原料、及び反応の副生物が除去され、化合物Dの含有割合が高い精製後の中間生成物を得ることができ、次いで当該中間生成物に酸化反応を行うことにより、より高い純度でオキサジアゾール誘導体Aを得ることができる。中間生成物の精製方法は特に制限されず、通常用いられる精製方法が適用できる。精製方法としては、分液、濾別、蒸留、再結晶、再沈殿、クロマト処理等の方法が好ましい。精製後の中間生成物には、化合物Dに加えて、溶媒(例えば、化合物Bと化合物Cの反応に使用した溶媒等)が含まれていてもよい。 In the two-step reaction, by purifying the intermediate product, the raw material of the reaction and the by-product of the reaction are removed, and a purified intermediate product having a high content of compound D can be obtained. By performing an oxidation reaction on the intermediate product, the oxadiazole derivative A can be obtained with higher purity. The purification method of the intermediate product is not particularly limited, and a commonly used purification method can be applied. As the purification method, methods such as liquid separation, filtration, distillation, recrystallization, reprecipitation, and chromatographic treatment are preferable. In addition to compound D, the purified intermediate product may contain a solvent (for example, a solvent used for the reaction of compound B and compound C).
 精製後の中間生成物中に含まれる化合物Dの収率は、化合物Bを基準とした理論生成量に対して、50質量%以上が好ましく、70質量%以上が好ましく、特に90質量%以上が好ましい。副生成物である化合物Eは、オキサジアゾール誘導体Aからの分離が困難であり、化合物Dからの分離が比較的容易であるため、中間生成物の精製時に極力除去して、精製後の中間生成物中の化合物Eの含有量を少なくしておくことが非常に重要である。オキサジアゾール誘導体Aに化合物Eが多く含まれていると、化合物Eを除去してオキサジアゾール誘導体Aを精製する際のロスが多くなり、オキサジアゾール誘導体Aの収率が大きく低下する原因となる。
 精製後の中間生成物においては、化合物Dに対する化合物Eの含有量は、5質量%以下がより好ましく、1質量%以下がさらに好ましく、0.1質量%以下が特に好ましい。
 化合物E等の副生成物は、中間生成物中の析出物を濾過により除去されうる。また、中間生成物をクロマト処理して除去してもよい。
The yield of the compound D contained in the intermediate product after purification is preferably 50% by mass or more, preferably 70% by mass or more, particularly 90% by mass or more, based on the theoretical production amount based on the compound B. preferable. Compound E, which is a by-product, is difficult to separate from oxadiazole derivative A and relatively easy to separate from compound D. Therefore, it is removed as much as possible during the purification of the intermediate product, and the intermediate product after purification It is very important to keep the content of compound E in the product low. If the oxadiazole derivative A contains a large amount of the compound E, the loss in purifying the oxadiazole derivative A by removing the compound E increases, and the yield of the oxadiazole derivative A is greatly reduced. It becomes.
In the intermediate product after purification, the content of compound E relative to compound D is more preferably 5% by mass or less, further preferably 1% by mass or less, and particularly preferably 0.1% by mass or less.
By-products such as Compound E can be removed by filtration of precipitates in the intermediate product. Further, the intermediate product may be removed by chromatography.
 2段階反応においては、精製後の中間生成物を酸化することで、分離が困難な不純物である化合物Eの含有量が非常に少ないオキサジアゾール誘導体Aが得られる。精製後の中間生成物の酸化は公知の方法により行うことができる。酸化反応に使用する酸化剤は、前述の酸化剤と同様のものを使用することができる。酸化剤の使用量は、化合物Dの生成量1モルに対して0.2~2モルが好ましく、1~1.5モルがより好ましい。例えば、精製後の中間生成物から化合物Dを単離することなく当該中間生成物のまま酸化反応を行う場合など、精製後の中間生成物中の化合物Dの含有量が不明な場合は、化合物Dの理論生成量に対応する酸化剤を使用すればよい。反応温度、反応時間、反応圧力、反応雰囲気は、適宜変更されうるが、反応温度は40~160℃が好ましい。反応時間は、反応温度や反応圧力に依存するが、1~30時間が好ましい。反応圧力は、0.01~0.5MPa(ゲージ圧)が好ましい。反応雰囲気は、大気雰囲気でも、窒素等の不活性ガス雰囲気でもよい。
 また、精製後の中間生成物の酸化反応は溶媒の存在下に行うのが好ましい。溶媒の例は、前述の1段階反応時の化合物Bと化合物Cの反応に使用する溶媒と同様の例が挙げられる。また溶媒の量は、化合物Dに対して2~10倍量が好ましい。精製後の中間生成物から化合物Dを単離することなく当該中間生成物のまま酸化反応を行う際、精製後の中間生成物に溶媒(例えば、化合物Bと化合物Cの反応に使用した溶媒等)が含まれている場合は、新たな溶媒の添加なしでそのまま酸化反応に供することもできる。
In the two-step reaction, the oxadiazole derivative A having a very low content of the compound E, which is an impurity that is difficult to separate, is obtained by oxidizing the purified intermediate product. The intermediate product after the purification can be oxidized by a known method. As the oxidizing agent used in the oxidation reaction, the same oxidizing agents as those described above can be used. The amount of the oxidizing agent used is preferably 0.2 to 2 mol, more preferably 1 to 1.5 mol, per 1 mol of the compound D produced. For example, when the content of compound D in the intermediate product after purification is unknown, such as when an oxidation reaction is performed with the intermediate product without isolating compound D from the intermediate product after purification, An oxidizing agent corresponding to the theoretical production amount of D may be used. The reaction temperature, reaction time, reaction pressure, and reaction atmosphere can be appropriately changed, but the reaction temperature is preferably 40 to 160 ° C. The reaction time depends on the reaction temperature and reaction pressure, but is preferably 1 to 30 hours. The reaction pressure is preferably 0.01 to 0.5 MPa (gauge pressure). The reaction atmosphere may be an air atmosphere or an inert gas atmosphere such as nitrogen.
Further, the oxidation reaction of the intermediate product after purification is preferably performed in the presence of a solvent. Examples of the solvent include the same examples as the solvent used for the reaction of Compound B and Compound C during the above-described one-step reaction. The amount of the solvent is preferably 2 to 10 times that of Compound D. When an oxidation reaction is performed with the intermediate product as it is without isolating compound D from the purified intermediate product, a solvent (for example, a solvent used for the reaction of compound B and compound C, etc.) is used as the intermediate product after purification. ) Is included, it can be directly subjected to an oxidation reaction without the addition of a new solvent.
 前記反応により生成したオキサジアゾール誘導体Aは、さらに精製処理して目的に応じた純度のオキサジアゾール誘導体Aとすることができる。該精製処理の手法としては、公知ないしは周知の精製方法が適用でき、たとえば、既述の中間生成物の精製方法と同様の方法が挙げられる。
 2段階反応による製造方法で得られたオキサジアゾール誘導体A中の化合物Eの含有量は、オキサジアゾール誘導体Aに対して、1質量%以下が好ましく、0.1質量%以下がより好ましい。化合物Eの含有量の下限値は、特に限定されず、0質量%以上、もしくは0.01質量%以上である。2段階反応による製造方法によれば、分離が困難な不純物である化合物Eの含有量を非常に効率よく低減することができ、純度の高いオキサジアゾール誘導体Aを製造することができる。本発明の製造方法により得られるオキサジアゾール誘導体は、純度が高く、薬学及び農学分野における生理活性物質として特に有用である。   
The oxadiazole derivative A produced by the reaction can be further purified to obtain an oxadiazole derivative A having a purity suitable for the purpose. As the method of the purification treatment, a known or well-known purification method can be applied, and examples thereof include the same method as the above-described intermediate product purification method.
The content of the compound E in the oxadiazole derivative A obtained by the production method by the two-step reaction is preferably 1% by mass or less, and more preferably 0.1% by mass or less with respect to the oxadiazole derivative A. The lower limit of the content of Compound E is not particularly limited, and is 0% by mass or more, or 0.01% by mass or more. According to the production method based on the two-stage reaction, the content of the compound E, which is an impurity that is difficult to separate, can be reduced very efficiently, and the oxadiazole derivative A with high purity can be produced. The oxadiazole derivative obtained by the production method of the present invention has high purity and is particularly useful as a physiologically active substance in the fields of pharmacy and agriculture.
 本発明の製造方法で得られるオキサジアゾール誘導体Aは、分離が困難な不純物の含有量が少なく、生理活性が高く、医薬、農薬分野において有用な化合物である。 The oxadiazole derivative A obtained by the production method of the present invention has a low content of impurities that are difficult to separate, has high physiological activity, and is a useful compound in the fields of medicine and agricultural chemicals.
 以下、本発明を実施例を挙げてより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例中の%は、特に記載のない限り、mol%を意味する。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples. In addition,% in an Example means mol% unless there is particular description.
[定量方法]
 各実施例において、高速液体クロマトグラフィー(HPLC)を用いた分析は、以下の条件により行った。
 HPLCによる定量は以下の条件で行った。
 装置:Agilent Technologies 1260 Infinity
 カラム:YMC-Pack ODS-AM AM12S05-1546WT(150×4.6mmI.D.,S-5μm,12nm)
 流量:0.6ml/min
 溶離液:0.1%リン酸緩衝液(0.1%NEt+HPOaq):CHCN=50:50~20:80(0-20min)、20:80(20-30min)
 検出器:ダイオードアレイ検出器、測定波長:254nm
 以下では、ベンズアミドオキシムの量を基準として収率を求めた。
[Quantitative method]
In each Example, analysis using high performance liquid chromatography (HPLC) was performed under the following conditions.
Quantification by HPLC was performed under the following conditions.
Equipment: Agilent Technologies 1260 Infinity
Column: YMC-Pack ODS-AM AM12S05-1546WT (150 × 4.6 mm ID, S-5 μm, 12 nm)
Flow rate: 0.6ml / min
Eluent: 0.1% phosphate buffer (0.1% NEt 3 + H 3 PO 4 aq): CH 3 CN = 50: 50 to 20:80 (0-20 min), 20:80 (20-30 min)
Detector: Diode array detector, Measurement wavelength: 254 nm
Below, the yield was determined based on the amount of benzamide oxime.
[実施例1]1段階反応の例
 ガラス製ナス型フラスコにチオフェン-2-カルボアルデヒド(2-ホルミルチオフェン:1.02g、9.1mmol)及びエタノール(14mL)を入れて混合液を得た。混合液にベンズアミドオキシム(1.25g、9.2mmol)及び炭酸カリウム(0.13g、0.94mmol)を加え、撹拌しながら30.5時間加熱還流した。析出した固体を濾取し、エタノールと水で洗浄することで、下式で表される3-フェニル-5-(チオフェン-2-イル)-1,2,4-オキサジアゾール(以下、化合物A-1と記す。)を収率33%で得た。
[Example 1] Example of one-step reaction A glass eggplant-shaped flask was charged with thiophene-2-carbaldehyde (2-formylthiophene: 1.02 g, 9.1 mmol) and ethanol (14 mL) to obtain a mixed solution. Benzamide oxime (1.25 g, 9.2 mmol) and potassium carbonate (0.13 g, 0.94 mmol) were added to the mixture, and the mixture was heated to reflux for 30.5 hours with stirring. The precipitated solid was collected by filtration and washed with ethanol and water to give 3-phenyl-5- (thiophen-2-yl) -1,2,4-oxadiazole (hereinafter referred to as compound) represented by the following formula: A-1) was obtained in a yield of 33%.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
[実施例2]
 ガラス製ナス型フラスコにチオフェン-2-カルボアルデヒド(1.02g、9.1mmol)及び無水トルエン(14mL)を入れて混合液を得た。混合液にベンズアミドオキシム(1.27g、9.4mmol)及びp-トルエンスルホン酸一水和物(0.17g、0.89mmol)を加え、撹拌しながら6.5時間加熱還流した。HPLCにより、化合物A-1の生成を確認した。
[Example 2]
Thiophene-2-carbaldehyde (1.02 g, 9.1 mmol) and anhydrous toluene (14 mL) were placed in a glass eggplant-shaped flask to obtain a mixed solution. Benzamide oxime (1.27 g, 9.4 mmol) and p-toluenesulfonic acid monohydrate (0.17 g, 0.89 mmol) were added to the mixture, and the mixture was heated to reflux with stirring for 6.5 hours. The formation of Compound A-1 was confirmed by HPLC.
[実施例3]
 ガラス製ナス型フラスコにチオフェン-2-カルボアルデヒド(1.01g、9.0mmol)及びエタノール(7mL)を入れて混合液を得た。混合液にベンズアミドオキシム(1.27g、9.4mmol)及びp-トルエンスルホン酸一水和物(0.17g、0.89mmol)を加え、撹拌しながら15時間加熱還流した。HPLCにより、化合物A-1の生成を確認した。
[Example 3]
Thiophene-2-carbaldehyde (1.01 g, 9.0 mmol) and ethanol (7 mL) were placed in a glass eggplant-shaped flask to obtain a mixed solution. Benzamide oxime (1.27 g, 9.4 mmol) and p-toluenesulfonic acid monohydrate (0.17 g, 0.89 mmol) were added to the mixture, and the mixture was heated to reflux with stirring for 15 hours. The formation of Compound A-1 was confirmed by HPLC.
[実施例4]
 ガラス製ナス型フラスコにチオフェン-2-カルボアルデヒド(1.00g、8.9mmol)及び酢酸(7mL)を入れて混合液を得た。混合液にベンズアミドオキシム(1.27g、9.4mmol)を入れ、撹拌しながら15時間加熱還流した。HPLCにより、化合物A-1の生成を確認した。
[Example 4]
A glass eggplant-shaped flask was charged with thiophene-2-carbaldehyde (1.00 g, 8.9 mmol) and acetic acid (7 mL) to obtain a mixed solution. Benzamide oxime (1.27 g, 9.4 mmol) was added to the mixture and heated to reflux with stirring for 15 hours. The formation of Compound A-1 was confirmed by HPLC.
[実施例5]
 ガラス製ナス型フラスコにチオフェン-2-カルボアルデヒド(1.01g、9.0mmol)及びエタノール(7mL)を入れて混合液を得た。混合液にベンズアミドオキシム(1.27g、9.4mmol)及びp-トルエンスルホン酸一水和物(0.17g、0.89mmol)を加え、撹拌しながら40℃で15時間加熱した。HPLCにより、化合物A-1を得た。
[Example 5]
Thiophene-2-carbaldehyde (1.01 g, 9.0 mmol) and ethanol (7 mL) were placed in a glass eggplant-shaped flask to obtain a mixed solution. Benzamide oxime (1.27 g, 9.4 mmol) and p-toluenesulfonic acid monohydrate (0.17 g, 0.89 mmol) were added to the mixture and heated at 40 ° C. with stirring for 15 hours. Compound A-1 was obtained by HPLC.
[実施例6]
 ガラス製ナス型フラスコにチオフェン-2-カルボアルデヒド(1.01g、9.0mmol)及び無水トルエン(7mL)を入れて混合液を得た。混合液にベンズアミドオキシム(1.27g、9.4mmol)を入れ、撹拌しながら14時間加熱還流した。HPLCにより、化合物A-1の生成を確認した。
[Example 6]
Thiophene-2-carbaldehyde (1.01 g, 9.0 mmol) and anhydrous toluene (7 mL) were placed in a glass eggplant-shaped flask to obtain a mixed solution. Benzamide oxime (1.27 g, 9.4 mmol) was added to the mixture and heated to reflux with stirring for 14 hours. The formation of Compound A-1 was confirmed by HPLC.
[実施例7]
 ガラス製ナス型フラスコにチオフェン-2-カルボアルデヒド(1.01g、9.0mmol)及びエタノール(7mL)を入れて混合液を得た。混合液にベンズアミドオキシム(1.28g、9.4mmol)及び酢酸(0.054g、0.90mmol)を加え、撹拌しながら15時間加熱還流した。HPLCにより、化合物A-1の生成を確認した。
[Example 7]
Thiophene-2-carbaldehyde (1.01 g, 9.0 mmol) and ethanol (7 mL) were placed in a glass eggplant-shaped flask to obtain a mixed solution. Benzamide oxime (1.28 g, 9.4 mmol) and acetic acid (0.054 g, 0.90 mmol) were added to the mixture, and the mixture was heated to reflux with stirring for 15 hours. The formation of Compound A-1 was confirmed by HPLC.
[実施例8]
 ガラス製ナス型フラスコにチオフェン-2-カルボアルデヒド(10.0g、89.2mmol)及び無水トルエン(70mL)を入れて混合液を得た。混合液にベンズアミドオキシム(12、8g、93.6mmol)を入れ、撹拌しながら30時間加熱還流した。その際、Dean-Stark装置による共沸脱水を行った。HPLCにより、化合物A-1の生成を確認した。
[Example 8]
Thiophene-2-carbaldehyde (10.0 g, 89.2 mmol) and anhydrous toluene (70 mL) were placed in a glass eggplant-shaped flask to obtain a mixed solution. Benzamide oxime (12, 8 g, 93.6 mmol) was added to the mixture and heated to reflux with stirring for 30 hours. At that time, azeotropic dehydration was performed using a Dean-Stark apparatus. The formation of Compound A-1 was confirmed by HPLC.
[実施例9]
 ガラス製ナス型フラスコにチオフェン-2-カルボアルデヒド(1.02g、9.1mmol)及び無水トルエン(14mL)を入れて混合液を得た。混合液にベンズアミドオキシム(1.27g、9.4mmol)及びp-トルエンスルホン酸一水和物(0.17g、0.89mmol)を加え、撹拌しながら6.5時間加熱還流した。HPLCによる定量の結果、3-フェニル-5-(チオフェン-2-イル)-4,5-ジヒドロ-1,2,4-オキサジアゾールが収率35%で得られた。
 得られた3-フェニル-5-(チオフェン-2-イル)-4,5-ジヒドロ-1,2,4-オキサジアゾールに含まれる3,5-ジフェニル-1,2,4-オキサジアゾールの含有率は31%であった。シリカゲルカラムクロマトグラフィーによる分離を行い、3,5-ジフェニル-1,2,4-オキサジアゾールの含有量を0.1質量%以下まで減らした。
 ガラス製ナス型フラスコに得られた3-フェニル-5-(チオフェン-2-イル)-4,5-ジヒドロ-1,2,4-オキサジアゾール(0.23g、0.99mmol)及びエタノール(2.8mL)を入れて混合液を得た。混合液にチオフェン-2-カルボアルデヒド(0.13g、1.13mmol、酸化剤)及び炭酸カリウム(0.14g、1.0mmol)を加え、撹拌しながら7.5時間加熱還流した。HPLCによる定量の結果、化合物A-1を収率63%で得た。
[Example 9]
Thiophene-2-carbaldehyde (1.02 g, 9.1 mmol) and anhydrous toluene (14 mL) were placed in a glass eggplant-shaped flask to obtain a mixed solution. Benzamide oxime (1.27 g, 9.4 mmol) and p-toluenesulfonic acid monohydrate (0.17 g, 0.89 mmol) were added to the mixture, and the mixture was heated to reflux with stirring for 6.5 hours. As a result of quantification by HPLC, 3-phenyl-5- (thiophen-2-yl) -4,5-dihydro-1,2,4-oxadiazole was obtained in a yield of 35%.
3,5-Diphenyl-1,2,4-oxadiazole contained in the obtained 3-phenyl-5- (thiophen-2-yl) -4,5-dihydro-1,2,4-oxadiazole The content of was 31%. Separation by silica gel column chromatography was performed, and the content of 3,5-diphenyl-1,2,4-oxadiazole was reduced to 0.1 mass% or less.
3-Phenyl-5- (thiophen-2-yl) -4,5-dihydro-1,2,4-oxadiazole (0.23 g, 0.99 mmol) and ethanol (0.23 g, 0.99 mmol) obtained in a glass eggplant-shaped flask 2.8 mL) was added to obtain a mixture. To the mixture were added thiophene-2-carbaldehyde (0.13 g, 1.13 mmol, oxidizing agent) and potassium carbonate (0.14 g, 1.0 mmol), and the mixture was heated to reflux with stirring for 7.5 hours. As a result of quantification by HPLC, Compound A-1 was obtained in a yield of 63%.
[実施例10]
 ガラス製ナス型フラスコにチオフェン-2-カルボアルデヒド(1.02g、9.1mmol)及び無水トルエン(14mL)を入れて混合液を得た。混合液にベンズアミドオキシム(1.27g、9.4mmol)及びp-トルエンスルホン酸一水和物(0.17g、0.89mmol)を加え、撹拌しながら6.5時間加熱還流した。副生物として生じた3,5-ジフェニル-1,2,4-オキサジアゾールを濾別し、溶媒を留去して3-フェニル-5-(チオフェン-2-イル)-4,5-ジヒドロ-1,2,4-オキサジアゾールを得た。得られた3-フェニル-5-(チオフェン-2-イル)-4,5-ジヒドロ-1,2,4-オキサジアゾールにDDQ(2.48g、10.9mmol)を作用させることで、化合物A-1を得た。
[Example 10]
Thiophene-2-carbaldehyde (1.02 g, 9.1 mmol) and anhydrous toluene (14 mL) were placed in a glass eggplant-shaped flask to obtain a mixed solution. Benzamide oxime (1.27 g, 9.4 mmol) and p-toluenesulfonic acid monohydrate (0.17 g, 0.89 mmol) were added to the mixture, and the mixture was heated to reflux with stirring for 6.5 hours. The 3,5-diphenyl-1,2,4-oxadiazole produced as a by-product was filtered off and the solvent was distilled off to remove 3-phenyl-5- (thiophen-2-yl) -4,5-dihydro -1,2,4-oxadiazole was obtained. By allowing DDQ (2.48 g, 10.9 mmol) to act on the obtained 3-phenyl-5- (thiophen-2-yl) -4,5-dihydro-1,2,4-oxadiazole, a compound was obtained. A-1 was obtained.
[実施例11]
 ガラス製ナス型フラスコにチオフェン-2-カルボアルデヒド(2.12g、18.9mmol)及びジメチルスルホキシド(9mL)を入れて混合液を得た。混合液にベンズアミドオキシム(1.23g、9.03mmol)及び水酸化カリウム(0.058g、1.03mmol)を加え、撹拌しながら78℃で30時間加熱した。HPLCによる定量の結果、化合物A-1が収率66%で得られた。得られた化合物A-1中に3,5-ジフェニル-1,2,4-オキサジアゾール(化合物Eに相当)は検出されなかった。
[Example 11]
Thiophene-2-carbaldehyde (2.12 g, 18.9 mmol) and dimethyl sulfoxide (9 mL) were placed in a glass eggplant-shaped flask to obtain a mixed solution. Benzamide oxime (1.23 g, 9.03 mmol) and potassium hydroxide (0.058 g, 1.03 mmol) were added to the mixture and heated at 78 ° C. for 30 hours with stirring. As a result of quantification by HPLC, Compound A-1 was obtained in a yield of 66%. In the resulting compound A-1, 3,5-diphenyl-1,2,4-oxadiazole (corresponding to compound E) was not detected.
[実施例12]
 ガラス製ナス型フラスコにチオフェン-2-カルボアルデヒド(10.0g、89.2mmol)及び無水トルエン(70mL)、p-トルエンスルホン酸一水和物(1.76g、9.24mmol)を入れて混合液を得た。混合液にベンズアミドオキシム(3.23g、23.7mmol)を入れ、撹拌しながら1時間加熱還流した。さらに混合液にベンズアミドオキシム(3.20g、23.5mmol)を入れ、撹拌しながら3時間加熱還流した。さらに混合液にベンズアミドオキシム(3.20g、23.5mmol)を入れ、撹拌しながら2時間加熱還流した。HPLCにより、化合物A-1が収率21%で得られた。
[Example 12]
Thiophen-2-carbaldehyde (10.0 g, 89.2 mmol), anhydrous toluene (70 mL) and p-toluenesulfonic acid monohydrate (1.76 g, 9.24 mmol) were placed in a glass eggplant-shaped flask and mixed. A liquid was obtained. Benzamide oxime (3.23 g, 23.7 mmol) was added to the mixture and heated to reflux with stirring for 1 hour. Further, benzamide oxime (3.20 g, 23.5 mmol) was added to the mixture, and the mixture was heated to reflux with stirring for 3 hours. Further, benzamide oxime (3.20 g, 23.5 mmol) was added to the mixture, and the mixture was heated to reflux for 2 hours with stirring. Compound A-1 was obtained in 21% yield by HPLC.
 本発明によれば、簡便な操作方法で実施でき、かつ生産効率にも優れる1,2,4-オキサジアゾール誘導体の製造方法が提供される。 According to the present invention, there is provided a method for producing a 1,2,4-oxadiazole derivative that can be carried out by a simple operation method and is excellent in production efficiency.
 本出願は、日本で2015年3月6日に出願された特願2015-044489号および2016年1月26日に出願された特願2016-012795号を基礎としており、その内容は本明細書にすべて包含される。 This application is based on Japanese Patent Application No. 2015-044489 filed on March 6, 2015 in Japan and Japanese Patent Application No. 2016-012795 filed on January 26, 2016, the contents of which are described in this specification. Are all included.

Claims (16)

  1.  下式(B)で表される化合物と下式(C)で表される化合物とを反応させることを特徴とする、下式(A)で表される1,2,4-オキサジアゾール誘導体の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Arは芳香族基または置換基を有する芳香族基を表す。W、X、Y及びZはそれぞれ独立して、-S-、-N=、-CH=、又は-CR=を表し、かつW、X、Y及びZから選ばれる1つは-S-を表す。Rは、炭素数1~5のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のハロアルキル基、炭素数1~3のハロアルコキシ基又はハロゲン原子を表す。)
    A 1,2,4-oxadiazole derivative represented by the following formula (A), characterized by reacting a compound represented by the following formula (B) with a compound represented by the following formula (C) Manufacturing method.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, Ar represents an aromatic group or an aromatic group having a substituent. W, X, Y, and Z each independently represent —S—, —N═, —CH═, or —CR═. And one selected from W, X, Y and Z represents —S—, wherein R represents an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, or a haloalkyl having 1 to 3 carbon atoms. Group, a haloalkoxy group having 1 to 3 carbon atoms or a halogen atom.)
  2.  下式(B)で表される化合物と下式(C)で表される化合物とを反応させて、下式(D)で表される化合物を含む中間生成物を得て、つぎに当該中間生成物を酸化反応に供することにより、式(D)で表される化合物を酸化して下式(A)で表される1,2,4-オキサジアゾール誘導体に変換することを特徴とする、下式(A)で表される1,2,4-オキサジアゾール誘導体の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Arは芳香族基または置換基を有する芳香族基を表す。W、X、Y及びZはそれぞれ独立して、-S-、-N=、-CH=、又は-CR=を表し、かつW、X、Y及びZから選ばれる1つは-S-を表す。Rは、炭素数1~5のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のハロアルキル基、炭素数1~3のハロアルコキシ基又はハロゲン原子を表す。)
    The compound represented by the following formula (B) and the compound represented by the following formula (C) are reacted to obtain an intermediate product containing the compound represented by the following formula (D), and then the intermediate By subjecting the product to an oxidation reaction, the compound represented by the formula (D) is oxidized and converted into a 1,2,4-oxadiazole derivative represented by the following formula (A). A process for producing a 1,2,4-oxadiazole derivative represented by the following formula (A):
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, Ar represents an aromatic group or an aromatic group having a substituent. W, X, Y, and Z each independently represent —S—, —N═, —CH═, or —CR═. And one selected from W, X, Y and Z represents —S—, wherein R represents an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, or a haloalkyl having 1 to 3 carbon atoms. Group, a haloalkoxy group having 1 to 3 carbon atoms or a halogen atom.)
  3.  中間生成物を精製した後に、酸化反応を行う、請求項2に記載の1,2,4-オキサジアゾール誘導体の製造方法。 The method for producing a 1,2,4-oxadiazole derivative according to claim 2, wherein the oxidation reaction is carried out after the intermediate product is purified.
  4.  中間生成物が下式(E)で表される化合物を含み、かつ精製処理により当該化合物の少なくとも一部を除去する、請求項3に記載の1,2,4-オキサジアゾール誘導体の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    (式中、Arは請求項1と同じ意味を表わす。)
    The method for producing a 1,2,4-oxadiazole derivative according to claim 3, wherein the intermediate product contains a compound represented by the following formula (E), and at least a part of the compound is removed by purification treatment. .
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, Ar represents the same meaning as in claim 1.)
  5.  精製処理後の中間生成物中の式(E)で表される化合物の含有量が、式(D)で表される化合物に対して1質量%以下である、請求項4に記載の1,2,4-オキサジアゾール誘導体の製造方法。 The content of the compound represented by the formula (E) in the intermediate product after the purification treatment is 1% by mass or less based on the compound represented by the formula (D). A method for producing a 2,4-oxadiazole derivative.
  6.  酸化反応を、酸化剤の存在下に行う、請求項2~5のいずれか1項に記載の製造方法。 The production method according to any one of claims 2 to 5, wherein the oxidation reaction is carried out in the presence of an oxidizing agent.
  7.  式(B)で表される化合物が下式(B)で表される化合物であり、かつ式(A)で表される1,2,4-オキサジアゾール誘導体が下式(A)で表される化合物である、請求項1~6のいずれか1項に記載の1,2,4-オキサジアゾール誘導体の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    (式中、Arは請求項1と同じ意味を表わす。)
    The compound represented by the formula (B) is a compound represented by the following formula (B 1 ), and the 1,2,4-oxadiazole derivative represented by the formula (A) is represented by the following formula (A 1 ) The method for producing a 1,2,4-oxadiazole derivative according to any one of claims 1 to 6, which is a compound represented by the formula:
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, Ar represents the same meaning as in claim 1.)
  8.  Arが、フェニル基又は置換基を有するフェニル基である、請求項1~7のいずれか1項に記載の1,2,4-オキサジアゾール誘導体の製造方法。 The method for producing a 1,2,4-oxadiazole derivative according to any one of claims 1 to 7, wherein Ar is a phenyl group or a phenyl group having a substituent.
  9.  式(B)で表される化合物と式(C)で表される化合物との反応を、溶媒の存在下に行う、請求項1~8のいずれか1項に記載の1,2,4-オキサジアゾール誘導体の製造方法。 The 1,2,4- of any one of claims 1 to 8, wherein the reaction of the compound represented by formula (B) and the compound represented by formula (C) is carried out in the presence of a solvent. A method for producing an oxadiazole derivative.
  10.  式(B)で表される化合物と式(C)で表される化合物との反応を、酸性化合物の存在下に行う、請求項1~9のいずれか1項に記載の1,2,4-オキサジアゾール誘導体の製造方法。 The 1,2,4 according to any one of claims 1 to 9, wherein the reaction between the compound represented by formula (B) and the compound represented by formula (C) is carried out in the presence of an acidic compound. A process for producing oxadiazole derivatives.
  11.  式(B)で表される化合物と式(C)で表される化合物との反応を、脱水しながら行う、請求項1~10のいずれか1項に記載の1,2,4-オキサジアゾール誘導体の製造方法。 The 1,2,4-oxadidioxide according to any one of claims 1 to 10, wherein the reaction between the compound represented by the formula (B) and the compound represented by the formula (C) is performed while dehydrating. A method for producing an azole derivative.
  12.  下式(F)で表される化合物とヒドロキシルアミンとの反応により式(C)で表される化合物を得た後に、当該化合物を式(B)で表される化合物と反応させる、請求項1~11のいずれか1項に記載の1,2,4-オキサジアゾール誘導体の製造方法。
    Figure JPOXMLDOC01-appb-C000005
    (式中、Arは請求項1と同じ意味を表す。)
    The compound represented by the formula (C) is obtained by reacting the compound represented by the following formula (F) with hydroxylamine, and then the compound is reacted with the compound represented by the formula (B). 12. A process for producing a 1,2,4-oxadiazole derivative according to any one of 1 to 11.
    Figure JPOXMLDOC01-appb-C000005
    (In the formula, Ar represents the same meaning as in claim 1.)
  13.  式(C)で表される化合物を脱水処理した後に、式(B)で表される化合物と反応させる、請求項1~12のいずれか1項に記載の1,2,4-オキサジアゾール誘導体の製造方法。 The 1,2,4-oxadiazole according to any one of claims 1 to 12, wherein the compound represented by the formula (C) is dehydrated and then reacted with the compound represented by the formula (B). A method for producing a derivative.
  14.  式(F)で表される化合物とヒドロキシルアミンとを溶媒中で反応させて、式(C)で表される化合物と溶媒の混合物を得て、当該混合物を式(B)で表される化合物と反応させる、請求項12または13に記載の1,2,4-オキサジアゾール誘導体の製造方法。 The compound represented by Formula (F) and hydroxylamine are reacted in a solvent to obtain a mixture of the compound represented by Formula (C) and the solvent, and the mixture is represented by Formula (B). The method for producing a 1,2,4-oxadiazole derivative according to claim 12 or 13, wherein the compound is reacted with.
  15.  式(B)で表される化合物と式(C)で表される化合物とを反応させる際に、式(B)で表される化合物に式(C)で表される化合物を連続添加または逐次添加する、請求項1~14のいずれか一項に記載の1,2,4-オキサジアゾール誘導体の製造方法。 When the compound represented by the formula (B) and the compound represented by the formula (C) are reacted, the compound represented by the formula (C) is continuously added or sequentially added to the compound represented by the formula (B). The method for producing a 1,2,4-oxadiazole derivative according to any one of claims 1 to 14, which is added.
  16.  3,5-ジフェニル-1,2,4-オキサジアゾールの含有量が1質量%以下である3-フェニル-5-(チオフェン-2-イル)-1,2,4-オキサジアゾール。 3-phenyl-5- (thiophen-2-yl) -1,2,4-oxadiazole having a content of 3,5-diphenyl-1,2,4-oxadiazole of 1% by mass or less.
PCT/JP2016/056552 2015-03-06 2016-03-03 Production method for 1,2,4-oxadiazole derivative WO2016143654A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015044489 2015-03-06
JP2015-044489 2015-03-06
JP2016012795A JP2018070446A (en) 2015-03-06 2016-01-26 Method for producing 1,2,4-oxadiazole derivative
JP2016-012795 2016-01-26

Publications (1)

Publication Number Publication Date
WO2016143654A1 true WO2016143654A1 (en) 2016-09-15

Family

ID=56879426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056552 WO2016143654A1 (en) 2015-03-06 2016-03-03 Production method for 1,2,4-oxadiazole derivative

Country Status (1)

Country Link
WO (1) WO2016143654A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665881A (en) * 1979-11-01 1981-06-03 Sumitomo Chem Co Ltd Novel 1,2,4-oxadiazole derivative and its acid addition salt
WO2014008257A2 (en) * 2012-07-02 2014-01-09 Monsanto Technology Llc Processes for the preparation of 3,5-disubstituted-1,2,4-oxadiazoles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665881A (en) * 1979-11-01 1981-06-03 Sumitomo Chem Co Ltd Novel 1,2,4-oxadiazole derivative and its acid addition salt
WO2014008257A2 (en) * 2012-07-02 2014-01-09 Monsanto Technology Llc Processes for the preparation of 3,5-disubstituted-1,2,4-oxadiazoles

Similar Documents

Publication Publication Date Title
KR102187608B1 (en) SSAO inhibitor
RU2647851C2 (en) Methods of producing some 2-(pyridin-3-yl)thiazoles
JP2022529006A (en) Method for preparing microbial killing oxadiazole derivative
KR20080072738A (en) Chemical process for the preparation of an amido-phenoxybenzoic acid compound
WO2014017938A2 (en) Process for the synthesis of substituted urea compounds
WO1994010157A1 (en) Styrene derivative and salts thereof
CN109503485A (en) The method for producing carboxylic acid amides
CN102414201B (en) solvate crystal
UA67720C2 (en) Processes for the preparation of phenyl imidazolidine derivatives
EP2643306B1 (en) Process for the preparation of deferasirox
JP5167242B2 (en) Process for producing heterocyclic derivatives
KR102027388B1 (en) Process for preparing high purity ilaprazole crystalline form B
WO2016143654A1 (en) Production method for 1,2,4-oxadiazole derivative
KR102541668B1 (en) Method for producing 1,2,4-oxadiazole derivative
WO2007117027A1 (en) Process for the production of organic oxides
JPWO2017026119A1 (en) Method for purifying 5- (thiazol-4-yl) indoline-2-one derivatives
WO2001017947A1 (en) Process for the preparation of 2,3-dihydroazepine compounds
CN109280050B (en) Preparation method of medical compound avanafil
JP2018070446A (en) Method for producing 1,2,4-oxadiazole derivative
JP2011105691A (en) Method for producing trifluoromethylcyclopropane compound
WO1998041520A1 (en) A process for the preparation of furazidin
MX2011005981A (en) A new process for preparing 4- [4-methyl-5- (cl- 10alkylthio/c5-10aryl-cl-6alkylthio) -4h-1, 2, 4-triazol-3- yl] pyridines.
JP2012036161A (en) Method for producing optically active trifluoromethylcyclopropane compound
CN109896989A (en) A kind of synthetic method of 5- oxo -2H- aromatic ring simultaneously [g] indoles -1- oxide
EP1471058A1 (en) Process for producing 1,2,3-triazole compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16761624

Country of ref document: EP

Kind code of ref document: A1