WO2016143640A1 - Electroconductive structure and method for manufacturing same - Google Patents

Electroconductive structure and method for manufacturing same Download PDF

Info

Publication number
WO2016143640A1
WO2016143640A1 PCT/JP2016/056484 JP2016056484W WO2016143640A1 WO 2016143640 A1 WO2016143640 A1 WO 2016143640A1 JP 2016056484 W JP2016056484 W JP 2016056484W WO 2016143640 A1 WO2016143640 A1 WO 2016143640A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
meth
acrylate
conductive structure
composition
Prior art date
Application number
PCT/JP2016/056484
Other languages
French (fr)
Japanese (ja)
Inventor
祐輔 岡部
宏士 山家
Original Assignee
セメダイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セメダイン株式会社 filed Critical セメダイン株式会社
Priority to KR1020177023651A priority Critical patent/KR20170126877A/en
Priority to JP2017505013A priority patent/JPWO2016143640A1/en
Priority to CN201680014123.8A priority patent/CN107408422A/en
Publication of WO2016143640A1 publication Critical patent/WO2016143640A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F292/00Macromolecular compounds obtained by polymerising monomers on to inorganic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • C08L33/26Homopolymers or copolymers of acrylamide or methacrylamide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber

Definitions

  • the present invention relates to a conductive structure and a method for manufacturing the conductive structure.
  • the present invention relates to a conductive structure that is excellent in flexibility and can maintain the desired flexibility even when pressure is repeatedly applied, and a method for manufacturing the conductive structure.
  • the conductive particles described in Patent Document 1 not only the entire particle including the inside of the particle cannot be provided with conductivity, but also the shape is limited to the particle shape, and the degree of freedom in shape design is increased. There is a limit.
  • the electroconductive particle described in patent document 1 since the electroconductive material is made to adhere to the surface of the resin particle, it may not only damage a contact target object but pressure is applied from the outside. When the shape of the conductive particles is deformed, the conductive material attached to the surface may drop and the conductivity may decrease.
  • an object of the present invention is to provide a conductive structure capable of ensuring the degree of freedom of shape design and maintaining the desired flexibility even when repeatedly used, and a method for manufacturing the conductive structure Is to provide.
  • the present invention is a conductive structure having resilience, comprising a polymerizable oligomer, a conductive filler, and an initiator that initiates a polymerization reaction of the polymerizable oligomer.
  • a conductive structure obtained by curing the composition into a predetermined shape is provided.
  • the conductive filler is preferably mixed in an amount of 2.5 parts by weight to 7.5 parts by weight with respect to 1 part by weight of the polymerizable oligomer.
  • the conductive structure can be obtained by placing the conductive composition in a predetermined region of a predetermined base material and then curing the placed conductive composition.
  • the conductive structure can also be obtained by adding a cured conductive composition to a predetermined base material.
  • the polymerizable oligomer is preferably a compound having a radical polymerizable vinyl group.
  • the present invention provides a method for producing a conductive structure having resilience, comprising a polymerizable oligomer that ensures the restorability of the conductive structure, and the restorability of the conductive structure.
  • a method for producing a conductive structure which includes a molding step for molding a conductive composition into a predetermined shape and a curing step for curing the conductive composition by heating in an oxygen-blocking atmosphere.
  • the degree of freedom in shape design can be secured, and the desired flexibility can be maintained even when used repeatedly.
  • a conductive structure and a method for manufacturing the conductive structure can be provided.
  • the conductive structure according to the present embodiment is used for a member that requires electrical conductivity.
  • the conductive structure can be used as a substitute for conductive bumps and connectors.
  • the conductive structure can be used as an anisotropic conductive film by forming the conductive structure into a sheet (or thin film). Can do.
  • the conductive structure can be formed into the shape of a bump electrode.
  • the conductive structure can be used as a contact member that repeatedly contacts / detaches from the object. Specifically, in a test apparatus and / or inspection apparatus for electronic components such as semiconductor elements, it can be used as a contact member that ensures electrical continuity by contacting an electrode of the electronic component.
  • the conductive structure according to the present embodiment has flexibility that does not substantially damage the object to be contacted, and is difficult to be plastically deformed even when repeatedly contacting / separating the object, so that it can be restored. Excellent and usable for a long time.
  • the conductive structure according to the present embodiment is formed by curing a predetermined liquid conductive composition having viscosity. Therefore, the contact member corresponding to an electronic component having narrow pitch electrodes arranged at intervals of about 50 ⁇ m, for example, by arranging and curing the droplets of the conductive composition on a predetermined substrate or the like at predetermined intervals. As described above, the conductive structure according to this embodiment can also be configured.
  • the conductive structure having restorability includes a polymerizable oligomer that ensures the restorability of the conductive structure, and a polymerizable oligomer within a range that can secure the restorability of the conductive structure. It is obtained by curing a conductive composition containing a conductive filler mixed in and an initiator for initiating a polymerization reaction of a polymerizable oligomer into a predetermined shape.
  • the conductive composition further contains a monomer (hereinafter also referred to as “monomer”) for the purpose of adjusting workability in the coating step of the conductive structure, depending on the amount added. You can also Furthermore, the conductive composition can also contain other additives such as a diluent for adjusting the viscosity of the conductive composition.
  • the conductive structure according to the present embodiment is formed using a predetermined conductive composition.
  • the conductive structure according to the present embodiment will be described together with the conductive composition.
  • the polymerizable oligomer according to the present embodiment is a compound having a radical polymerizable vinyl group.
  • the compound having a radical polymerizable vinyl group is not particularly limited, and a known compound having a radical polymerizable vinyl group can be used.
  • a compound having a (meth) acryloyl group and / or an N-vinyl compound in which a vinyl group is directly bonded to a nitrogen atom can be used as the polymerizable oligomer.
  • examples of the compound having a (meth) acryloyl group include a compound having a (meth) acryloyloxy group, a compound having a (meth) acrylamide group, or a (meth) acrylimide group.
  • the compound which has a (meth) acryloyloxy group from a viewpoint of improving storage stability. From the viewpoint of improving the reactivity, it is preferable to use a compound having a (meth) acrylamide group or a (meth) acrylimide group.
  • the oligomer and the polymer are collectively referred to as a polymer.
  • Examples of monofunctional (meth) acrylates include (meth) acrylic acid, ethyl (meth) acrylate, 1-methoxyethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and pentyl (meth) acrylate.
  • polyfunctional acrylates examples include 1,3-butylene glycol di (meth) acrylate, 1,4-butylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexane glycol di ( (Meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, ethylene oxide modified neopentyl glycol di (meth) acrylate , Propylene oxide modified neopentyl glycol di (meth) acrylate, bisphenol A di (meth) acrylate, ethylene oxide modified bisphenol A di (meth) acrylate, epichloro Dorin-modified bisphenol A di (meth) acrylate, ethylene oxide-modified bisphenol S di (meth) acrylate, hydroxypivalate ester
  • Examples of the polymer having a (meth) acryloyloxy group include an acrylic polymer, a polyester (meth) acrylate polymer, an epoxy (meth) acrylate polymer, a urethane (meth) acrylate polymer, or a polyether (meta ) Acrylate polymers and the like.
  • the acrylic polymer a polymer whose main chain is a (meth) acrylic acid ester polymer and has a (meth) acryloyloxy group can be used.
  • a polymer is preferably produced by anionic polymerization or radical polymerization, and radical polymerization is more preferable because of the versatility of the monomer or ease of control.
  • radical polymerizations it is preferably produced by living radical polymerization or radical polymerization using a chain transfer agent, more preferably a living radical polymerization method, and particularly preferably an atom transfer radical polymerization method.
  • a living radical polymerization method is used, a polymer having a (meth) acryloyloxy group at the end of the polymer chain can be produced.
  • acrylic polymer examples include poly-n-butyl acrylate having an acryloyl group at both ends described in Production Example 1 of WO2012 / 008127 and a piece described in Production Example 2 of the same publication.
  • Use poly (2-ethylhexyl acrylate) with acryloyl groups at both ends Door can be.
  • acrylic polymers examples include macromonomers AA-6, AA-714, AB-6, AJ-7, AN-6, AS-6, AW-6, and AZ manufactured by Toa Gosei Co., Ltd. -8, HA-6, HN-6, HS-6, RC-100C, RC-200C, RC-300C manufactured by Kaneka Corporation.
  • polyester (meth) acrylate polymer examples include a dehydration condensate of polyester polyol and (meth) acrylic acid.
  • examples of the polyester polyol include a reaction product of a polyol and a carboxylic acid, or an anhydride thereof.
  • Polyols include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, butylene glycol, polybutylene glycol, tetramethylene glycol, hexamethylene glycol, neo Low molecular weight polyols such as pentyl glycol, cyclohexanedimethanol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, trimethylolpropane, glycerin, pentaerythritol and dipentaerythritol, and their alkylene oxide adducts Etc.
  • Low molecular weight polyols such as pentyl glycol, cyclohexanedimethanol, 3-methyl-1,5-pentanediol, 1,6-hexanedio
  • Carboxylic acid or anhydride thereof includes dibasic acids such as orthophthalic acid, isophthalic acid, terephthalic acid, adipic acid, succinic acid, fumaric acid, maleic acid, hexahydrophthalic acid, tetrahydrophthalic acid, and trimellitic acid or the like.
  • dibasic acids such as orthophthalic acid, isophthalic acid, terephthalic acid, adipic acid, succinic acid, fumaric acid, maleic acid, hexahydrophthalic acid, tetrahydrophthalic acid, and trimellitic acid or the like.
  • An anhydride etc. are mentioned.
  • Examples of the epoxy (meth) acrylate polymer include compounds obtained by addition reaction of (meth) acrylic acid to an epoxy resin.
  • Examples of the epoxy resin include aromatic epoxy resins and aliphatic epoxy resins.
  • aromatic epoxy resin examples include resorcinol diglycidyl ether; di- or polyglycidyl ether of bisphenol A, bisphenol F, bisphenol S, bisphenol fluorene or an alkylene oxide adduct thereof; phenol novolac type epoxy resin and cresol novolac type Examples thereof include novolak-type epoxy resins such as epoxy resins; glycidyl phthalimide; o-phthalic acid diglycidyl ester and the like.
  • the document “Epoxy Resin-Recent Advances” (Shojodo, published in 1990), Chapter 2 and the document “Polymer Processing”, Vol. 9, Volume 22, Epoxy Resin [Polymer Press, Compounds published on pages 4 to 6 and 9 to 16 of "published in 1973” can be used as the aromatic epoxy resin.
  • aliphatic epoxy resin examples include diglycidyl ethers of alkylene glycols such as ethylene glycol, propylene glycol, 1,4-butanediol and 1,6-hexanediol; diglycidyl ethers of polyethylene glycol and polypropylene glycol, etc.
  • Diglycidyl ethers of polyalkylene glycols diglycidyl ethers of neopentyl glycol, dibromoneopentyl glycol and alkylene oxide adducts thereof; di- or triglycidyl ethers of trimethylolethane, trimethylolpropane, glycerin and alkylene oxide adducts thereof; And polyglycols of polyhydric alcohols such as di-, tri- or tetraglycidyl ethers of pentaerythritol and its alkylene oxide adducts.
  • Examples of the urethane (meth) acrylate polymer include a reaction product obtained by further reacting a hydroxyl group-containing (meth) acrylate with a polyol and an organic polyisocyanate reaction product.
  • examples of the polyol include a low molecular weight polyol, polyethylene glycol, polyester polyol, and polycarbonate polyol.
  • examples of the low molecular weight polyol include ethylene glycol, propylene glycol, cyclohexanedimethanol and 3-methyl-1,5-pentanediol
  • examples of the polyether polyol include polyethylene glycol and polypropylene glycol.
  • the organic polyisocyanate include tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, hexamethylene diisocyanate, and isophorone diisocyanate.
  • hydroxyl group-containing (meth) acrylate examples include hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate.
  • hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate.
  • These urethane (meth) acrylate polymers may be produced based on a known synthesis method. For example, in the presence of an addition catalyst such as dibutyltin dilaurate, an organic isocyanate and a polyol component to be used are heated and stirred to cause an addition reaction, and further, a hydroxyalkyl (meth) acrylate is added, followed by heating and stirring to cause an addition reaction.
  • Polyether (meth) acrylate polymers include polyalkylene glycol (meth) diacrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, dipropylene glycol Examples include di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, and polytetramethylene glycol di (meth) acrylate.
  • Examples of the compound having a (meth) acrylamide group include a compound represented by the following formula (1) and a compound represented by the following formula (2).
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 and R 3 represents a hydrogen atom or a hydrocarbon group having a carbon number of 1 ⁇ 20, R 2 and R 3 in one molecule, They may be the same group or different groups, and may have a cyclic structure.
  • the hydrocarbon group having 1 to 20 carbon atoms is preferably an alkyl group from the viewpoint of availability, more preferably an alkyl group having 1 to 3 carbon atoms, which may be linear or branched.
  • the alkyl group may be an alkyl group further having a hydroxyl group, an aromatic group, and a diaminoalkyl group. Specific examples of the alkyl group include a methyl group, a propyl group, a butyl group, a butyl group, and a hexyl group.
  • examples of the alkyl group having a hydroxyl group include a hydroxymethyl group, a hydroxyethyl group, and a hydroxypropyl group. And as an alkyl group which has an aromatic group, a benzyl group etc. can be mentioned. Further, examples of the dialkylaminoalkyl group include N, N-dimethylaminoethyl group and N, N-dimethylaminopropyl group.
  • R 1 is the same as R 1 of formula (1).
  • the (meth) acrylamide represented by the formula (1) include N-methyl (meth) acrylamide, Nn-propyl (meth) acrylamide, N-isopropyl (meth) acrylamide, Nn-butyl (meth) ) Acrylamide, N-sec-butyl (meth) acrylamide, Nt-butyl (meth) acrylamide, Nn-hexyl (meth) acrylamide, N-benzyl (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, N, N-dimethylaminoethyl (meth) acrylamide, N, N-dimethylaminopropyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N, N-di- n-propyl (meth) acrylamide, N, N-diisopropyl (Meth)
  • (meth) acrylimide represented by the formula (2) examples include phthalimide represented by the following formula (3).
  • a compound having a (meth) acrylimide group can be suitably used because of its excellent curability and stability.
  • N-vinyl compound examples include N-vinyl pyrrolidone and N-vinyl caprolactam.
  • Conductive filler As the conductive filler according to the present embodiment, carbon particles, metal particles such as silver, copper, nickel, gold, tin, zinc, platinum, palladium, iron, tungsten, morbden, solder, or alloy particles, or these particles Conductive particles such as particles prepared by covering the particle surface with a conductive coating such as metal can be used.
  • the shape of the conductive filler various shapes (for example, a spherical shape, an ellipse, a cylindrical shape, a flake, a needle shape, a resin shape, a whisker, a flat plate, a granule, a crystal, an acicular shape, etc.) can be adopted.
  • the conductive filler can also have a slightly rough or jagged surface.
  • the shape of the conductive filler is not particularly limited.
  • the conductive filler according to the present embodiment can be used in combination with the particle shape, size, and / or hardness of the conductive filler.
  • the conductive filler to combine is not restricted to two types, Three or more types may be sufficient.
  • the size of the conductive filler is equal to or less than the size of the conductive structure to be manufactured, or the conductive filler is placed inside the conductive structure due to the arrangement of the conductive filler inside the conductive structure. It is preferable that the shape and size are within the range (for example, when the conductive structure is a thin film and the conductive filler is needle-shaped, the length direction of the conductive filler is arranged in a direction along the surface of the thin film. As long as the length of the acicular conductive filler may be equal to or longer than the length corresponding to the film thickness of the thin film.
  • the conductive filler is used in accordance with the interval at which the plurality of contactors are arranged and / or the size of each contactor. It is preferable to have a size smaller than the size.
  • the conductive filler ensures the flexibility of the conductive structure and makes it difficult to lose the flexibility of the conductive structure even when the contact object is repeatedly contacted or detached (increases the resilience).
  • the purpose is 2.5 to 7.5 parts by mass, preferably 3.1 to 6.3 parts by mass, more preferably 3.7 to 5 parts by mass with respect to 1 part by mass of the polymerizable oligomer. .6 parts by mass or less are mixed.
  • the service life of the conductive structure can be increased by setting the mixing ratio of the conductive filler to the polymerizable oligomer to a predetermined ratio or more, and by reducing the mixing ratio to a predetermined ratio or less, the conductive structure Flexibility can be ensured, and the resilience when repeatedly contacting / leaving the object is also excellent.
  • the initiator according to the present embodiment is a radical polymerization initiator.
  • radical polymerization initiators include organic peroxides such as diacyl peroxides, ketone peroxides, hydroperoxides, dialkyl peroxides, peroxyketals, alkyl peresters, and peroxycarbonates. be able to. Moreover, you may use another radical polymerization initiator as an initiator.
  • radical polymerization initiator examples include benzoyl peroxide, methyl ethyl ketone peroxide, lauryl peroxide, dicumyl peroxide, cumene hydroperoxide and the like. Most commonly, benzoyl peroxide is used.
  • Radical polymerization initiators are generally diluted with inorganic substances such as calcium sulfate and calcium carbonate, dimethyl phthalate, dibutyl phthalate, dicyclohexyl phthalate, aliphatic hydrocarbons, aromatic hydrocarbons, silicone oil, liquid paraffin, polymerizable monomers, water, etc. Diluted with an agent.
  • the initiator is 0.05 parts by mass or more and 20 parts by mass or less, preferably 0.5 parts by mass or more and 15 parts by mass or less, more preferably 1 part by mass or more and 10 parts by mass or less with respect to 1 part by mass of the polymerizable oligomer. It is preferable to use it in an amount.
  • the conductive composition can further contain various monomers such as the monofunctional monomer and / or the polyfunctional monomer described in the polymerizable oligomer.
  • the monomer not only one type of monomer but also a mixture of a plurality of types of monomers can be used.
  • the compound which has the (meth) acryloyloxy group demonstrated in the polymerizable oligomer can be used also as a monomer, and can also be used as a polymer. From the viewpoint of reducing the viscosity of the conductive composition, it is preferable to use a monomer having a (meth) acryloyloxy group.
  • the monomer having a (meth) acryloyloxy group is not particularly limited as long as it is a compound having one or more (meth) acryloyloxy groups, and examples thereof include monofunctional (meth) acrylates and polyfunctional (meth) acrylates. Etc. can be used.
  • the amount of the monomer added with respect to the unit amount of the polymerizable oligomer is not more than a predetermined amount.
  • the addition amount of the monomer with respect to the unit amount of the polymerizable oligomer not more than a predetermined amount, the flexibility of the conductive structure can be secured, and the resilience when repeatedly contacting / leaving the object can be improved.
  • paintability and printability of an electroconductive composition can be controlled.
  • the monomer is added in an amount of 0 to 50 parts by weight, preferably 5 to 40 parts by weight, more preferably 10 to 35 parts by weight with respect to 1 part by weight of the polymerizable oligomer. It is preferable to use it in the quantity.
  • the conductive composition according to the present embodiment includes a dehydrating agent, a filler, a plasticizer, an antioxidant, an ultraviolet absorber, and an adhesion improver as necessary depending on the purpose and application of the conductive structure.
  • Various additives such as thixotropic agents, coupling agents, solvents, diluents, reactive diluents, pigments, dispersants, flame retardants, conductivity imparting agents, and / or thickeners. .
  • plasticizers include phthalate esters such as diisodecyl phthalate, diundecyl phthalate, diisoundecyl phthalate, dioctyl phthalate, dibutyl phthalate, and butyl benzyl phthalate; dimethyl adipate, dioctyl adipate, isodecyl succinate, dibutyl sebacate, etc.
  • Aliphatic dibasic acid esters such as diethylene glycol dibenzoate and pentaerythritol ester; aliphatic esters such as butyl oleate and methyl acetylricinoleate; epoxidized soybean oil, epoxidized linseed oil, and epoxy benzyl stearate Epoxy plasticizers such as; polyester-based plasticizers such as polyesters of dibasic acids and dihydric alcohols; polyethers such as polypropylene glycol and its derivatives; Poly (meth) acrylate plasticizers such as alkyl methacrylates; polystyrenes such as poly- ⁇ -methylstyrene and polystyrene; polybutadiene, butadiene-acrylonitrile copolymers, polychloroprene, polyisoprene, polyisobutene, paraffinic Hydrocarbons, naphthenic hydrocarbons, paraffin-naphthen
  • Adhesion improvers include ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropylmethyldimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- Amino group-containing silanes such as ( ⁇ -aminoethyl) - ⁇ -aminopropyltriethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane, 1,3-diaminoisopropyltrimethoxysilane; N -(1,3-dimethylbutylidene) -3- (triethoxysilyl) -1-propanamine, N- (1,3-dimethylbutylidene) -3- (trimethoxysilyl) -1-propanamine, etc
  • Ketimine type silanes ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltrie Epoxy group-containing silanes such as toxisilane, ⁇ -glycidoxypropylmethyldimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane; ⁇ -mercaptopropyltrimethoxysilane, ⁇ -mercaptopropylmethyldimethoxysilane, etc.
  • Mercapto group-containing silanes include vinyl-type unsaturated group-containing silanes such as vinyltrimethoxysilane, vinyltriethoxysilane, ⁇ -methacryloyloxypropyltrimethoxysilane, and ⁇ -acryloyloxypropylmethyldimethoxysilane; ⁇ -chloropropyltri Chlorine atom-containing silanes such as methoxysilane; Isocyanate-containing silanes such as ⁇ -isocyanatopropyltriethoxysilane and ⁇ -isocyanatopropylmethyldimethoxysilane; methyldimethoxysilane, Silane, hydrosilane and the like, such as methyl diethoxy silane can be specifically exemplified, but not limited thereto.
  • Modified amino group-containing silanes modified by reacting amino group-containing silanes with epoxy group-containing compounds containing silanes, isocyanate group-containing compounds, and (meth) acryloyl group-containing compounds may be used.
  • the adhesion improver is used, for example, to improve the adhesion to a base material (for example, a predetermined film) used when forming a conductive structure (for example, a bump electrode) from a conductive composition. Can do.
  • Fillers include reinforcing silica such as fumed silica, precipitated silica, crystalline silica, fused silica, dolomite, anhydrous silicic acid, hydrous silicic acid, and carbon black; heavy calcium carbonate, colloidal calcium carbonate, carbonic acid Magnesium, diatomaceous earth, calcined clay, clay, talc, titanium oxide, bentonite, organic bentonite, ferric oxide, flint powder, zinc oxide, activated zinc white, shirasu balloon, glass microballoon, phenol resin and vinylidene chloride resin organic Examples thereof include fillers such as resin powders such as microballoons, PVC powders, and PMMA powders; fibrous fillers such as asbestos, glass fibers, and filaments. These fillers can be used alone or in combination of two or more.
  • These fillers include fumed silica, precipitated silica, crystalline silica, fused silica, dolomite, anhydrous silicic acid, hydrous silicic acid, carbon black, surface treated fine calcium carbonate, calcined clay, clay, activated zinc white, oxidized Calcium carbonate such as titanium and heavy calcium carbonate, magnesium carbonate, talc, ferric oxide, zinc oxide, and / or shirasu balloon can be used.
  • An organic balloon and / or an inorganic balloon can be added for the purpose of improving the workability (such as sharpness) of the composition.
  • These fillers can also be subjected to a surface treatment.
  • a filler may be used only by 1 type and can also mix and use 2 or more types of fillers.
  • the balloon particle size is preferably 0.1 mm or less.
  • silica when it is intended to prevent bleed while ensuring flowability without increasing the viscosity, it is preferable to add silica to the conductive composition.
  • Silica can be subjected to a surface treatment on its surface, and may be used alone or in combination of two or more kinds of silica. From the viewpoint of preventing bleeding, it is preferable to use hydrophilic silica or hydrophobic silica hydrophobized with a specific surface treatment agent.
  • the hydrophobic silica is one or more surface treatment agents selected from the group consisting of dimethyldichlorosilane, hexamethyldisilazane, (meth) acrylsilane, octylsilane (for example, trimethoxyoctylsilane), and aminosilane. Hydrophobic silica that has been subjected to a hydrophobization treatment by is preferred.
  • a solvent and / or a diluent is blended.
  • the solvent include aromatic hydrocarbon solvents such as toluene and xylene; ester solvents such as ethyl acetate, butyl acetate, amyl acetate, and cellosolve; ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone.
  • the diluent include normal paraffin and isoparaffin.
  • a tackifier may be added to the conductive composition in order to improve the wettability to the adherend and increase the peel strength.
  • the tackifier include petroleum resin, rosin / rosin ester, acrylic resin, terpene resin, hydrogenated terpene resin and its phenol resin copolymer, phenol / phenol novolac resin, and the like.
  • the conductive composition according to the present embodiment can be a one-component type or a two-component type as required, and can be suitably used particularly as a one-component type.
  • the conductive composition according to this embodiment is a viscous liquid composition, it has excellent workability.
  • the conductive composition according to the present embodiment preferably has a viscosity at 23 ° C. in the range of 50 Pa ⁇ s to 200 Pa ⁇ s.
  • the conductive composition according to the present embodiment can have the same performance as that of a solvent system even without a solvent.
  • a solvent system even without a solvent.
  • no solvent since there is no volatile component during coating or printing, the viscosity does not change, the stability and reproducibility are excellent, and there is no variation in products. Further, when no solvent is used, there is an effect that there is little shrinkage of the cured product and stress is not substantially generated even in a large area.
  • the conductive composition according to the present embodiment has high conductivity and can be used as a bump by being applied or printed on a substrate and cured.
  • the conductive composition according to the present embodiment is suitable for use as a conductive contact member that repeatedly contacts / releases an electrode of an electronic component in a test and / or inspection of an electronic component such as a semiconductor element chip component or a discrete component. Used.
  • the conductive composition according to the present embodiment is a device such as a mesh screen plate, a stencil plate, a gravure, an offset, a flexo, an ink jet, a roller coater, a dispenser, and a dipping on an organic and / or inorganic base material. The method can be used for coating, printing, or filling.
  • composition preparing step a liquid conductive composition having viscosity according to the present embodiment is prepared (composition preparing step). That is, a predetermined amount of polymerizable oligomer, a predetermined amount of conductive filler, a predetermined amount of initiator, a predetermined amount of monomer, and / or other predetermined amount of additives are weighed and mixed to obtain a viscous liquid conductive material. A sex composition is prepared.
  • the prepared conductive composition is molded into a predetermined shape (molding process). Then, the conductive composition in a molded state is heated and cured under an oxygen-blocking atmosphere (for example, under a nitrogen atmosphere) to produce a conductive structure (curing step). For example, a mask pattern is provided on a predetermined substrate (for example, a metal mask is superimposed on the predetermined substrate or a mask pattern is formed on the substrate surface using a photoresist), and the mask opening according to the present embodiment A liquid conductive composition having viscosity is filled. Next, the mask is removed. Thereby, a conductive composition is shape
  • the conductive composition molded in an oxygen-blocking atmosphere is subjected to heat treatment.
  • the heat treatment is performed, for example, in a nitrogen atmosphere at a temperature of about 120 ° C. to 130 ° C. for a period of 30 minutes to 60 minutes.
  • the conductive structure according to the present embodiment having a desired shape is formed.
  • the shape of the conductive structure may be any of spherical, elliptical, cylindrical, flake, needle, resin, whisker, flat plate (sheet), agglomerate, or other shapes. Good.
  • FIG. 1 shows an example of the form of the conductive structure according to the present embodiment. Specifically, FIG. 1A shows an example of a sheet-like conductive structure, and FIG. 1B shows an example in which a plurality of conductive structures are provided on a predetermined substrate.
  • the sheet-shaped conductive composition is cured. Thereby, as shown to Fig.1 (a), the sheet-like electroconductive structure 20 is formed.
  • the thickness of the sheet-like conductive structure 20 can be appropriately adjusted according to the application.
  • the sheet-like conductive structure 20 can be wound into a roll shape. In this case, a release sheet can be attached to one surface of the sheet-like conductive structure 20.
  • the conductive composition is disposed in a predetermined region of a predetermined base material (for example, a polymer resin or the like).
  • the conductive composition is disposed in a predetermined region of the insulating substrate 10.
  • interval on the insulated substrate 10 can be formed.
  • the conductive structure is formed on the surface of the insulating substrate 10 or is formed so as to fill a through hole provided in the insulating substrate 10 in advance.
  • a predetermined amount of the conductive composition that has been molded and cured in a predetermined shape (for example, a particle shape, a rod shape, etc.) in advance is added to a predetermined base material (for example, insulating resin, epoxy resin, etc.).
  • a predetermined base material for example, insulating resin, epoxy resin, etc.
  • the conductive structure according to this embodiment can also be formed by curing the base material.
  • a conductive structure is formed by adding a cured conductive composition to a liquid substrate having viscosity or a substrate having a predetermined viscoelasticity (for example, an epoxy resin). .
  • FIG. 2 shows another example of the form of the conductive structure according to the present embodiment.
  • the conductive structure according to the present embodiment can be formed as a conductive structure 20 having a plurality of bump electrode shapes on the surface of the insulating substrate 14.
  • each bump electrode is electrically connected to a circuit pattern (not shown).
  • a bump electrode as the conductive structure 20 can be formed in the through hole 16 penetrating the insulating substrate 14.
  • the through hole 16 is filled with a conductive composition.
  • the electroconductive composition with which the through-hole 16 was filled is hardened. Thereby, the conductive structure filled in the through-hole 16 constitutes a bump electrode.
  • the conductive structure according to the present embodiment contains a conductive filler inside the conductive structure, and its shape can be designed freely. Therefore, according to the electroconductive structure which concerns on this Embodiment, the electroconductive structure which has a suitable shape according to the use condition can be provided. For example, even when a thin-film conductive structure is formed, the distance between the plurality of conductive fillers existing in the conductive structure is closer or closer than before the thin film is formed. The conductive structure can maintain good electrical conductivity. Furthermore, the conductive structure can maintain good electrical conductivity regardless of the position of the conductive structure even when the shape changes due to pressure applied from the outside.
  • the conductive composition according to the present embodiment is obtained by mixing a conductive filler with a polymerizable oligomer and appropriately controlling the ratio of the conductive filler to the polymerizable oligomer in this case, thereby curing the conductive structure. Flexibility and reaction force can be controlled within an optimum range. Therefore, according to the present embodiment, the conductive structure obtained by curing the conductive composition damages the contact object even when the contact object is repeatedly contacted and detached. The long-term flexibility can be maintained.
  • the shape of the conductive structure obtained by curing the conductive composition can be freely designed by forming the conductive composition into a predetermined shape. be able to. For example, a sheet-like or thin-film conductive structure can be manufactured.
  • the conductive composition is a viscous liquid
  • the conductive composition droplets can be arranged at a narrow pitch. Therefore, according to the present embodiment, for example, a plurality of bump electrodes arranged with a narrow pitch of about 50 ⁇ m can be realized.
  • Example 1 The conductive composition according to Example 1 was manufactured as follows. First, 80 parts by mass of an acrylic polymer (manufactured by Kaneka Corporation, RC200C) was weighed as a compound having a radical polymerizable vinyl group which is a polymerizable oligomer. Moreover, the filler made from Ag was weighed as a conductive filler.
  • an acrylic polymer manufactured by Kaneka Corporation, RC200C
  • the filler made from Ag was weighed as a conductive filler.
  • the obtained conductive composition was sandwiched between 100 ⁇ m-thick Teflon (registered trademark) sheets, and further sandwiched between glass plates, and then fixed by applying pressure with clips.
  • the conductive composition was cured by placing the conductive composition in this state for 60 minutes in a hot-air circulating drier whose temperature was adjusted to 120 ° C. Thereby, the conductive structure for volume resistivity measurement according to Example 1 was obtained.
  • FIG. 3 shows an outline of a sample for reaction force measurement.
  • a Kapton tape 50 (thickness: 50 ⁇ m) was pasted on both ends of the glass plate 15, and the conductive composition according to Example 1 was applied between the Kapton tapes 50. And the glass plate 15 of this state was installed in the airtight container substituted by nitrogen. Next, the inside of the sealed container was adjusted to 120 ° C., and the glass plate 15 coated with the conductive composition according to Example 1 was subjected to heat treatment for 60 minutes. Thereby, the conductive structure 1 for reaction force measurement according to Example 1 was obtained. As will be described later, the reaction force was measured by pushing a rod 60 of a push gauge into the conductive structure 1 on the glass plate 15.
  • Example 2 The conductive composition according to Example 2 was manufactured in the same process using the same components except that the conductive filler was different from that in Example 1. Therefore, a detailed description is omitted except for differences.
  • a filler made of Ag 200 parts by mass of Sylbest TCG-7 (manufactured by Tokoku Chemical Laboratories, Inc., flaky silver), 70 parts by mass of Sylbest AgS-050 (Tokuriki Chemical Research) Sokaku AgC-G (manufactured by Fukuda Metal Foil Powder Co., Ltd., microcrystalline silver) was weighed.
  • Example 3 The conductive composition according to Example 3 was manufactured in the same process using the same components except that the conductive filler was different from that in Example 1. Therefore, a detailed description is omitted except for differences.
  • Ag filler 140 parts by mass of Sylbest TCG-7 (manufactured by Tokoku Chemical Laboratories, Inc., flaky silver), 50 parts by mass of Sylbest AgS-050 (Tokuriki Chemical Research Co., Ltd.) Sokaku AgC-G (manufactured by Fukuda Metal Foil Powder Co., Ltd., microcrystalline silver) was weighed.
  • Example 4 The conductive composition according to Example 4 was manufactured in the same process using the same components except that the conductive filler was different from that in Example 1. Therefore, a detailed description is omitted except for differences.
  • a filler made of Ag 300 parts by mass of Sylbest TCG-7 (manufactured by Tokiki Chemical Laboratory Co., Ltd., flaky silver), and 200 parts by mass of Silcote AgC-G (Fukuda Metal Foil Powder Industry) Co., Ltd., microcrystalline silver was weighed.
  • Example 5 The conductive composition according to Example 5 was manufactured in the same process using the same components except that the conductive filler was different from that in Example 1. Therefore, a detailed description is omitted except for differences.
  • a filler made of Ag 300 parts by mass of Sylbest TCG-7 (manufactured by Tokoku Chemical Laboratories, Inc., flaky silver), 100 parts by weight of Sylbest AgS-050 (Tokuriki Chemical Research) Sokaku AgC-G (Fukuda Metal Foil Powder Co., Ltd., microcrystalline silver) was weighed.
  • Example 6 The conductive composition according to Example 6 was manufactured in the same process using the same components except that the conductive filler was different from that in Example 1. Therefore, a detailed description is omitted except for differences.
  • a filler made of Ag 100 parts by mass of Sylbest TCG-7 (manufactured by Tokoku Chemical Laboratories, Inc., flaky silver), 35 parts by mass of Sylbest AgS-050 (Tokuriki Chemical Research Co., Ltd.) Sokaku AgC-G (manufactured by Fukuda Metal Foil Powder Co., Ltd., microcrystalline silver) was weighed.
  • Test method volume resistivity
  • the volume resistivity was measured by a four-end needle method measurement for a conductive structure manufactured for volume resistivity measurement.
  • Lorester MCP-T360 manufactured by Mitsubishi Chemical Analytech Co., Ltd. was used.
  • each reaction force was measured.
  • a push gauge digital push-pull gauge RX-1 manufactured by Aiko Engineering Co., Ltd.
  • a rod gauge with a cylindrical attachment of 2 mm in diameter attached to the tip of a push gauge is brought into contact with the surface of the conductive member, and the strain when the rod is pushed vertically into the conductive member from this state ( That is, the measurement was performed by measuring the indentation ratio) and the reaction force against the distortion.
  • the strain was measured based on the size (that is, thickness) of the conductive member before the rod was brought into contact with the surface of the conductive member. Therefore, the strain “X%” indicates a state where the rod is pushed in by an amount corresponding to “X%” of the thickness of the conductive member before the rod contact. Further, “the rate of change in height” after repeated pushing indicates the rate of change in height after rod removal with respect to the height (that is, thickness) of the conductive member before pushing the rod. Therefore, the rate of change in height “Y%” means that the thickness of the conductive member has changed from the initial thickness by an amount corresponding to “Y%” of the thickness of the conductive member before the rod contact. Show.
  • each reaction force was measured.
  • the reaction force was measured in the same manner as “Test method: Reaction force after 10 repetitions”. However, the number of measurements of strain and reaction force against the strain was 1000.
  • each conductive member was evaluated based on the following criteria.
  • Within% ⁇ Reaction force is 2.0 g or less at 30% strain, but the rate of change in height exceeds 10%, or reaction force exceeds 4.0 g.
  • Reaction force is 2.0 g or less at 30% strain However, the rate of change in height exceeds 20%, or the reaction force exceeds 5.0 g.
  • Table 1 shows the raw material compositions of the conductive compositions according to Examples 1 to 6 and the test results of the conductive structures.
  • the conductive structures according to Examples 1 to 6 do not substantially lose flexibility even after being repeatedly pushed 1000 times with a push gauge. It was shown that. In particular, it was shown that the conductive structures according to Examples 1 to 3 substantially maintain the flexibility before the test even after 1000 times of repeated pressing. In addition, the conductive structures according to Examples 1 to 6 have a volume resistivity of 2.20 ⁇ 10 ⁇ 4 ( ⁇ ⁇ cm) or more and 1.50 ⁇ 10 ⁇ 2 ( ⁇ ⁇ cm) or less. It was shown that the conductivity is also good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided are an electroconductive structure with which it is possible to ensure a degree of freedom of shape design and to maintain a desired flexibility even under repeated use. Also provided is a method for manufacturing said structure. An electroconductive structure having recovering properties is obtained by curing in a prescribed shape an electroconductive composition containing a polymerizable oligomer, an electroconductive filler, and an initiator for starting a polymerization reaction of the polymerizable oligomer.

Description

導電性構造体、及び導電性構造体の製造方法Conductive structure and method for producing conductive structure
 本発明は、導電性構造体、及び導電性構造体の製造方法に関する。特に、本発明は、柔軟性に優れると共に圧力が繰り返し加わった場合でも所期の柔軟性を維持できる導電性構造体、及び導電性構造体の製造方法に関する。 The present invention relates to a conductive structure and a method for manufacturing the conductive structure. In particular, the present invention relates to a conductive structure that is excellent in flexibility and can maintain the desired flexibility even when pressure is repeatedly applied, and a method for manufacturing the conductive structure.
 従来、多官能ウレタンアクリレートとアクリル酸エステルとを含有するモノマーの重合体で構成されているアクリル樹脂からなり、最大圧縮変形率が60%以上であり、かつ、60%圧縮変形するのに必要な荷重が60mN以下である樹脂粒子の表面に導電材料が付着されている導電性粒子が知られている(例えば、特許文献1参照。)。特許文献1に記載の導電性粒子によれば、配線に導電性粒子が挟まれた場合に、小さな荷重で導電性粒子が大きく圧縮変形すると共に当該変形によっても破断しないので、導通信頼性を確保できる。 Conventionally, it is made of an acrylic resin composed of a polymer of a monomer containing a polyfunctional urethane acrylate and an acrylate ester, and has a maximum compressive deformation rate of 60% or more, and is necessary for 60% compressive deformation. Conductive particles are known in which a conductive material is attached to the surface of resin particles having a load of 60 mN or less (see, for example, Patent Document 1). According to the conductive particles described in Patent Document 1, when conductive particles are sandwiched between wirings, the conductive particles are largely compressed and deformed with a small load, and are not broken by the deformation, thus ensuring conduction reliability. it can.
特許5360798号公報Japanese Patent No. 5360798
 しかし、特許文献1に記載されている導電性粒子においては、粒子内部を含めた粒子全体に導電性を備えさせることができないだけでなく、形状も粒子状に限られ、形状設計の自由度に限界がある。また、特許文献1に記載されている導電性粒子においては、樹脂粒子の表面に導電性材料を付着させていることから接触対象物に傷をつける場合があるだけでなく、外部から圧力が加わって導電性粒子の形状が変形した際に表面に付着させた導電性材料が脱落して導電性が低下する場合がある。 However, in the conductive particles described in Patent Document 1, not only the entire particle including the inside of the particle cannot be provided with conductivity, but also the shape is limited to the particle shape, and the degree of freedom in shape design is increased. There is a limit. Moreover, in the electroconductive particle described in patent document 1, since the electroconductive material is made to adhere to the surface of the resin particle, it may not only damage a contact target object but pressure is applied from the outside. When the shape of the conductive particles is deformed, the conductive material attached to the surface may drop and the conductivity may decrease.
 したがって、本発明の目的は、形状設計の自由度を確保できると共に、繰り返し使用した場合であっても所期の柔軟性を維持することができる導電性構造体、及び導電性構造体の製造方法を提供することにある。 Accordingly, an object of the present invention is to provide a conductive structure capable of ensuring the degree of freedom of shape design and maintaining the desired flexibility even when repeatedly used, and a method for manufacturing the conductive structure Is to provide.
 本発明は、上記目的を達成するため、復元性を有する導電性構造体であって、重合性オリゴマーと、導電性フィラーと、重合性オリゴマーの重合反応を開始させる開始剤とを含有する導電性組成物を所定の形状に硬化させて得られる導電性構造体が提供される。 In order to achieve the above object, the present invention is a conductive structure having resilience, comprising a polymerizable oligomer, a conductive filler, and an initiator that initiates a polymerization reaction of the polymerizable oligomer. A conductive structure obtained by curing the composition into a predetermined shape is provided.
 また、上記導電性構造体において、導電性フィラーが、重合性オリゴマー1重量部に対し、2.5重量部以上7.5重量部以下混合されることが好ましい。 In the conductive structure, the conductive filler is preferably mixed in an amount of 2.5 parts by weight to 7.5 parts by weight with respect to 1 part by weight of the polymerizable oligomer.
 また、上記導電性構造体は、所定の基材の予め定められた領域に導電性組成物を配置した後、配置された導電性組成物を硬化させて得ることもできる。 Further, the conductive structure can be obtained by placing the conductive composition in a predetermined region of a predetermined base material and then curing the placed conductive composition.
 また、上記導電性構造体は、所定の基材に、硬化された導電性組成物を添加して得ることもできる。 The conductive structure can also be obtained by adding a cured conductive composition to a predetermined base material.
 また、上記導電性構造体において、重合性オリゴマーが、ラジカル重合性のビニル基を有する化合物であることが好ましい。 In the conductive structure, the polymerizable oligomer is preferably a compound having a radical polymerizable vinyl group.
 また、本発明は上記目的を達成するため、復元性を有する導電性構造体の製造方法であって、導電性構造体の復元性を確保する重合性オリゴマーと、導電性構造体の復元性を確保する範囲で重合性オリゴマーに混合される導電性フィラーと、重合性オリゴマーの重合反応を開始させる開始剤とを含有する粘性を有する液状の導電性組成物を準備する組成物準備工程と、導電性組成物を予め定められた形状に成形する成形工程と、酸素遮断雰囲気下で加熱することで、導電性組成物を硬化させる硬化工程とを備える導電性構造体の製造方法が提供される。 In order to achieve the above object, the present invention provides a method for producing a conductive structure having resilience, comprising a polymerizable oligomer that ensures the restorability of the conductive structure, and the restorability of the conductive structure. A composition preparing step for preparing a liquid conductive composition having a viscosity containing a conductive filler mixed with the polymerizable oligomer within a range to be secured and an initiator for initiating a polymerization reaction of the polymerizable oligomer; Provided is a method for producing a conductive structure, which includes a molding step for molding a conductive composition into a predetermined shape and a curing step for curing the conductive composition by heating in an oxygen-blocking atmosphere.
 本発明に係る導電性構造体、及び導電性構造体の製造方法によれば、形状設計の自由度を確保できると共に、繰り返し使用した場合であっても所期の柔軟性を維持することができる導電性構造体、及び導電性構造体の製造方法を提供できる。 According to the conductive structure and the manufacturing method of the conductive structure according to the present invention, the degree of freedom in shape design can be secured, and the desired flexibility can be maintained even when used repeatedly. A conductive structure and a method for manufacturing the conductive structure can be provided.
本実施の形態に係る導電性構造体の形態を示す図である。It is a figure which shows the form of the electroconductive structure which concerns on this Embodiment. 本実施の形態に係る導電性構造体の形態を示す図である。It is a figure which shows the form of the electroconductive structure which concerns on this Embodiment. 反力測定用の試料の概要図である。It is a schematic diagram of the sample for reaction force measurement.
[導電性構造体の概要]
 本実施の形態に係る導電性構造体は、電気導電性を要する部材に用いられる。例えば、導電性構造体は、導電性バンプやコネクターの代替品として用いることができ、一例として、導電性構造体をシート状(若しくは薄膜状)に形成することで異方性導電膜として用いることができる。また、導電性構造体をバンプ電極の形状にすることもでき、この場合、導電性構造体は、対象物に接触/離脱を繰り返すコンタクト部材として用いることができる。具体的に、半導体素子等の電子部品の試験装置及び/又は検査装置において、電子部品の電極に接触することで電気的導通を確保するコンタクト部材として用いることができる。なお、本実施の形態に係る導電性構造体は、接触する対象物に実質的に損傷を与えない柔軟性を有すると共に、対象物に繰り返し接触/離脱しても塑性変形しにくく、復元性に優れ、長期間使用可能である。
[Outline of conductive structure]
The conductive structure according to the present embodiment is used for a member that requires electrical conductivity. For example, the conductive structure can be used as a substitute for conductive bumps and connectors. For example, the conductive structure can be used as an anisotropic conductive film by forming the conductive structure into a sheet (or thin film). Can do. In addition, the conductive structure can be formed into the shape of a bump electrode. In this case, the conductive structure can be used as a contact member that repeatedly contacts / detaches from the object. Specifically, in a test apparatus and / or inspection apparatus for electronic components such as semiconductor elements, it can be used as a contact member that ensures electrical continuity by contacting an electrode of the electronic component. In addition, the conductive structure according to the present embodiment has flexibility that does not substantially damage the object to be contacted, and is difficult to be plastically deformed even when repeatedly contacting / separating the object, so that it can be restored. Excellent and usable for a long time.
 また、本実施の形態に係る導電性構造体は、粘性を有する液状の所定の導電性組成物を硬化させて形成される。したがって、この導電性組成物の液滴を所定の基板等に所定間隔で配置して硬化させることで、一例として、50μm程度の間隔で配置される狭ピッチ電極を有する電子部品に対応するコンタクト部材として、本実施の形態に係る導電性構造体を構成することもできる。 Also, the conductive structure according to the present embodiment is formed by curing a predetermined liquid conductive composition having viscosity. Therefore, the contact member corresponding to an electronic component having narrow pitch electrodes arranged at intervals of about 50 μm, for example, by arranging and curing the droplets of the conductive composition on a predetermined substrate or the like at predetermined intervals. As described above, the conductive structure according to this embodiment can also be configured.
 具体的に、本実施の形態に係る復元性を有する導電性構造体は、導電性構造体の復元性を確保する重合性オリゴマーと、導電性構造体の復元性を確保できる範囲で重合性オリゴマーに混合される導電性フィラーと、重合性オリゴマーの重合反応を開始させる開始剤とを含有する導電性組成物を所定の形状に硬化させて得られる。ここで、導電性組成物は、添加量に応じ、導電性構造体の塗布工程において作業性を調整することを目的として単量体(以下、「モノマー」とも称することがある。)を更に含有することもできる。更に、導電性組成物は、導電性組成物の粘度を調整する希釈剤等、その他の添加剤を含有することもできる。 Specifically, the conductive structure having restorability according to the present embodiment includes a polymerizable oligomer that ensures the restorability of the conductive structure, and a polymerizable oligomer within a range that can secure the restorability of the conductive structure. It is obtained by curing a conductive composition containing a conductive filler mixed in and an initiator for initiating a polymerization reaction of a polymerizable oligomer into a predetermined shape. Here, the conductive composition further contains a monomer (hereinafter also referred to as “monomer”) for the purpose of adjusting workability in the coating step of the conductive structure, depending on the amount added. You can also Furthermore, the conductive composition can also contain other additives such as a diluent for adjusting the viscosity of the conductive composition.
[導電性構造体の詳細]
 本実施の形態に係る導電性構造体は、所定の導電性組成物を用いて形成される。以下、本実施の形態に係る導電性構造体について、導電性組成物と共に説明する。
[Details of conductive structure]
The conductive structure according to the present embodiment is formed using a predetermined conductive composition. Hereinafter, the conductive structure according to the present embodiment will be described together with the conductive composition.
(重合性オリゴマー)
 本実施の形態に係る重合性オリゴマーは、ラジカル重合性のビニル基を有する化合物である。ラジカル重合性のビニル基を有する化合物としては特に制限はなく、公知のラジカル重合性のビニル基を有する化合物を用いることができる。例えば、重合性オリゴマーとして、(メタ)アクリロイル基を有する化合物、及び/又は窒素原子にビニル基が直接結合したN-ビニル化合物等を用いることができる。
(Polymerizable oligomer)
The polymerizable oligomer according to the present embodiment is a compound having a radical polymerizable vinyl group. The compound having a radical polymerizable vinyl group is not particularly limited, and a known compound having a radical polymerizable vinyl group can be used. For example, a compound having a (meth) acryloyl group and / or an N-vinyl compound in which a vinyl group is directly bonded to a nitrogen atom can be used as the polymerizable oligomer.
 ここで、(メタ)アクリロイル基を有する化合物としては、(メタ)アクリロイルオキシ基を有する化合物、(メタ)アクリルアミド基、若しくは(メタ)アクリルイミド基を有する化合物が挙げられる。なお、貯蔵安定性を向上させる観点からは、(メタ)アクリロイルオキシ基を有する化合物を用いることが好ましい。また、反応性を向上させる観点からは、(メタ)アクリルアミド基、若しくは(メタ)アクリルイミド基を有する化合物を用いることが好ましい。なお、本実施の形態において、オリゴマーとポリマーとを併せて重合体と称する。 Here, examples of the compound having a (meth) acryloyl group include a compound having a (meth) acryloyloxy group, a compound having a (meth) acrylamide group, or a (meth) acrylimide group. In addition, it is preferable to use the compound which has a (meth) acryloyloxy group from a viewpoint of improving storage stability. From the viewpoint of improving the reactivity, it is preferable to use a compound having a (meth) acrylamide group or a (meth) acrylimide group. In the present embodiment, the oligomer and the polymer are collectively referred to as a polymer.
 単官能(メタ)アクリレート類としては、例えば、(メタ)アクリル酸、エチル(メタ)アクリレート、1-メトキシエチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート 、テトラヒドロフルフリル(メタ)アクリレート、カプロラクトン変性テトラヒドロフルフリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシテトラエチレングリコール(メタ)アクリレート、ノニルフェノキシエチル(メタ)アクリレート、ノニルフェノキシテトラエチレングリコール(メタ)アクリレート、ジメチル(メタ)アクリルアミド、ジメチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、ブトキシトリエチレングリコール(メタ)アクリレート、2-エチルヘキシルポリエチレングリコール(メタ)アクリレート、ノニルフェニルポリプロピレングリコール(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、グリシジル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、エピクロロヒドリン変性ブチル(メタ)アクリレート、エピクロロヒドリン変性フェノキシ(メタ)アクリレート、エチレンオキサイド変性フタル酸(メタ)アクリレート、エチレンオキサイド変性コハク酸(メタ)アクリレート、カプロラクトン変性2-ヒドロキシエチル(メタ)アクリレート、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、モルホリノエチル(メタ)アクリレート、エチレンオキサイド変性リン酸(メタ)アクリレート等が挙げられる。導電性構造体に柔軟性がより要求される場合には、単官能(メタ)アクリレート類を用いることが好ましい。 Examples of monofunctional (meth) acrylates include (meth) acrylic acid, ethyl (meth) acrylate, 1-methoxyethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and pentyl (meth) acrylate. , Hexyl (meth) acrylate, cyclohexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate , Dodecyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, caprolactone modified tetrahydrofurfuryl (meth) Chlorate, cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, isobornyl (meth) acrylate, benzyl (meth) acrylate, phenyl (meth ) Acrylate, phenoxyethyl (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, phenoxytetraethylene glycol (meth) acrylate, nonylphenoxyethyl (meth) acrylate, nonylphenoxytetraethylene glycol (meth) acrylate, dimethyl (meth) acrylamide, Dimethylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylate, methoxydiethylene glycol Cole (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, butoxyethyl (meth) acrylate, butoxytriethylene glycol (meth) acrylate, 2-ethylhexyl polyethylene glycol (meth) acrylate, nonylphenyl polypropylene glycol (meth) acrylate, methoxydi Propylene glycol (meth) acrylate, glycidyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, glycerol (meth) acrylate, polyethylene glycol (meta ) Acrylate, polypropylene glycol (meth) acrylate, epichlorohydrin modified butyl (meth) acryl , Epichlorohydrin modified phenoxy (meth) acrylate, ethylene oxide modified phthalic acid (meth) acrylate, ethylene oxide modified succinic acid (meth) acrylate, caprolactone modified 2-hydroxyethyl (meth) acrylate, N, N-dimethyl Examples include aminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, morpholinoethyl (meth) acrylate, ethylene oxide-modified phosphoric acid (meth) acrylate, and the like. When flexibility is required for the conductive structure, it is preferable to use monofunctional (meth) acrylates.
 多官能アクリレート類としては、例えば、1、3-ブチレングリコールジ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレ-ト、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、エチレンオキサイド変性ネオペンチルグリコールジ(メタ)アクリレート、プロピレンオキサイド変性ネオペンチルグリコールジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、エチレンオキサイド変性ビスフェノールAジ(メタ)アクリレート、エピクロロヒドリン変性ビスフェノールAジ(メタ)アクリレート、エチレンオキサイド変性ビスフェノールSジ(メタ)アクリレート、ヒドロキシピバリン酸エステルネオペンチルグリコールジアクリレート、カプロラクトン変性ヒドロキシピバリン酸エステルネオペンチルグリコールジアクリレート、ネオペンチルグリコール変性トリメチロールプロパンジ(メタ)アクリレート、ステアリン酸変性ペンタエリスリトールジ(メタ)アクリレート、ジシクロペンテニルジアクリレート、エチレンオキサイド変性ジシクロペンテニルジ(メタ)アクリレート、ジ(メタ)アクリロイルイソシアヌレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート等が挙げられる。多官能アクリレート類は、空気中の酸素による重合阻害が生じにくい点から好ましい。 Examples of the polyfunctional acrylates include 1,3-butylene glycol di (meth) acrylate, 1,4-butylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexane glycol di ( (Meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, ethylene oxide modified neopentyl glycol di (meth) acrylate , Propylene oxide modified neopentyl glycol di (meth) acrylate, bisphenol A di (meth) acrylate, ethylene oxide modified bisphenol A di (meth) acrylate, epichloro Dorin-modified bisphenol A di (meth) acrylate, ethylene oxide-modified bisphenol S di (meth) acrylate, hydroxypivalate ester neopentyl glycol diacrylate, caprolactone-modified hydroxypivalate ester neopentyl glycol diacrylate, neopentyl glycol-modified trimethylolpropane Di (meth) acrylate, stearic acid modified pentaerythritol di (meth) acrylate, dicyclopentenyl diacrylate, ethylene oxide modified dicyclopentenyl di (meth) acrylate, di (meth) acryloyl isocyanurate, trimethylolpropane tri (meth) Acrylate, pentaerythritol tri (meth) acrylate, ditrimethylolpropane tetra (meth) Acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol monohydroxy penta (meth) acrylate. Polyfunctional acrylates are preferred from the viewpoint that polymerization inhibition due to oxygen in the air hardly occurs.
 (メタ)アクリロイルオキシ基を有する重合体としては、アクリル系重合体、ポリエステル(メタ)アクリレート系重合体、エポキシ(メタ)アクリレート系重合体、ウレタン(メタ)アクリレート系重合体、又はポリエーテル(メタ)アクリレート系重合体等が挙げられる。 Examples of the polymer having a (meth) acryloyloxy group include an acrylic polymer, a polyester (meth) acrylate polymer, an epoxy (meth) acrylate polymer, a urethane (meth) acrylate polymer, or a polyether (meta ) Acrylate polymers and the like.
 アクリル系重合体としては、主鎖が(メタ)アクリル酸エステル系重合体であって(メタ)アクリロイルオキシ基を有する重合体を用いることができる。このような重合体はアニオン重合又はラジカル重合によって製造されることが好ましく、モノマーの汎用性あるいは制御の容易さからラジカル重合がより好ましい。ラジカル重合の中でも、リビングラジカル重合あるいは連鎖移動剤を用いたラジカル重合によって製造されることが好ましく、リビングラジカル重合法がより好ましく、原子移動ラジカル重合法が特に好ましい。リビングラジカル重合法を用いると、重合体鎖末端に(メタ)アクリロイルオキシ基を有する重合体を製造することができる。 As the acrylic polymer, a polymer whose main chain is a (meth) acrylic acid ester polymer and has a (meth) acryloyloxy group can be used. Such a polymer is preferably produced by anionic polymerization or radical polymerization, and radical polymerization is more preferable because of the versatility of the monomer or ease of control. Among radical polymerizations, it is preferably produced by living radical polymerization or radical polymerization using a chain transfer agent, more preferably a living radical polymerization method, and particularly preferably an atom transfer radical polymerization method. When the living radical polymerization method is used, a polymer having a (meth) acryloyloxy group at the end of the polymer chain can be produced.
 また、アクリル系重合体として、例えば、WO2012/008127号公報の製造例1に記載されている両末端にアクリロイル基を有するポリアクリル酸n-ブチルや同公報の製造例2に記載されている片末端にアクリロイル基を有するポリアクリル酸n-ブチル、WO2005/000927号公報の製造例1に記載されている両末端にアクリロイル基を有するポリ(アクリル酸n-ブチル/アクリル酸エチル/2-メトキシエチルアクリレート)、WO2006/112420号公報の製造例2に記載されている両末端にアクリロイル基を有するポリ(アクリル酸n-ブチル/アクリル酸2-エチルヘキシル)、同公報の製造例3に記載されている両末端にアクリロイル基を有するポリ(アクリル酸2-エチルヘキシル)等を用いることができる。 Examples of the acrylic polymer include poly-n-butyl acrylate having an acryloyl group at both ends described in Production Example 1 of WO2012 / 008127 and a piece described in Production Example 2 of the same publication. Poly (n-butyl acrylate) having an acryloyl group at the terminal, poly (n-butyl acrylate / ethyl acrylate / 2-methoxyethyl) having an acryloyl group at both terminals described in Production Example 1 of WO2005 / 000927 Acrylate), poly (n-butyl acrylate / 2-ethylhexyl acrylate) having acryloyl groups at both ends described in Production Example 2 of WO2006 / 112420, and described in Production Example 3 of the same publication Use poly (2-ethylhexyl acrylate) with acryloyl groups at both ends Door can be.
 アクリル系重合体の市販品としては、例えば、東亜合成(株)製のマクロモノマーAA-6、AA-714、AB-6、AJ-7、AN-6、AS-6、AW-6、AZ-8、HA-6、HN-6、HS-6、(株)カネカ製のRC-100C、RC-200C、RC-300C等が挙げられる。 Examples of commercially available acrylic polymers include macromonomers AA-6, AA-714, AB-6, AJ-7, AN-6, AS-6, AW-6, and AZ manufactured by Toa Gosei Co., Ltd. -8, HA-6, HN-6, HS-6, RC-100C, RC-200C, RC-300C manufactured by Kaneka Corporation.
 ポリエステル(メタ)アクリレート系重合体としては、ポリエステルポリオールと(メタ)アクリル酸との脱水縮合物等が挙げられる。ここで、ポリエステルポリオールとしては、ポリオールとカルボン酸、又はその無水物との反応物等が挙げられる。 Examples of the polyester (meth) acrylate polymer include a dehydration condensate of polyester polyol and (meth) acrylic acid. Here, examples of the polyester polyol include a reaction product of a polyol and a carboxylic acid, or an anhydride thereof.
 ポリオールとしては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール、ブチレングリコール、ポリブチレングリコール、テトラメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、シクロヘキサンジメタノール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、トリメチロールプロパン、グリセリン、ペンタエリスリトール及びジペンタエリスリトール等の低分子量ポリオール、並びにこれらのアルキレンオキサイド付加物等が挙げられる。 Polyols include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, butylene glycol, polybutylene glycol, tetramethylene glycol, hexamethylene glycol, neo Low molecular weight polyols such as pentyl glycol, cyclohexanedimethanol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, trimethylolpropane, glycerin, pentaerythritol and dipentaerythritol, and their alkylene oxide adducts Etc.
 カルボン酸又はその無水物としては、オルソフタル酸、イソフタル酸、テレフタル酸、アジピン酸、コハク酸、フマル酸、マレイン酸、ヘキサヒドロフタル酸、テトラヒドロフタル酸、及びトリメリット酸等の二塩基酸又はその無水物等が挙げられる。 Carboxylic acid or anhydride thereof includes dibasic acids such as orthophthalic acid, isophthalic acid, terephthalic acid, adipic acid, succinic acid, fumaric acid, maleic acid, hexahydrophthalic acid, tetrahydrophthalic acid, and trimellitic acid or the like. An anhydride etc. are mentioned.
 エポキシ(メタ)アクリレート系重合体としては、エポキシ樹脂に(メタ)アクリル酸を付加反応させた化合物が挙げられる。エポキシ樹脂としては、芳香族エポキシ樹脂及び脂肪族エポキシ樹脂等が挙げられる。 Examples of the epoxy (meth) acrylate polymer include compounds obtained by addition reaction of (meth) acrylic acid to an epoxy resin. Examples of the epoxy resin include aromatic epoxy resins and aliphatic epoxy resins.
 芳香族エポキシ樹脂としては、具体的には、レゾルシノールジグリシジルエーテル;ビスフェノールA、ビスフェノールF、ビスフェノールS、ビスフェノールフルオレン又はそのアルキレンオキサイド付加体のジ又はポリグリシジルエーテル;フェノールノボラック型エポキシ樹脂及びクレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;グリシジルフタルイミド;o-フタル酸ジグリシジルエステル等が挙げられる。これら以外にも、文献「エポキシ樹脂-最近の進歩-」(昭晃堂、1990年発行)2章や、文献「高分子加工」別冊9・第22巻増刊号エポキシ樹脂〔高分子刊行会、昭和48年発行〕の4~6頁、9~16頁に記載されているような化合物を芳香族エポキシ樹脂として用いることができる。 Specific examples of the aromatic epoxy resin include resorcinol diglycidyl ether; di- or polyglycidyl ether of bisphenol A, bisphenol F, bisphenol S, bisphenol fluorene or an alkylene oxide adduct thereof; phenol novolac type epoxy resin and cresol novolac type Examples thereof include novolak-type epoxy resins such as epoxy resins; glycidyl phthalimide; o-phthalic acid diglycidyl ester and the like. In addition to these, the document “Epoxy Resin-Recent Advances” (Shojodo, published in 1990), Chapter 2 and the document “Polymer Processing”, Vol. 9, Volume 22, Epoxy Resin [Polymer Press, Compounds published on pages 4 to 6 and 9 to 16 of "published in 1973" can be used as the aromatic epoxy resin.
 脂肪族エポキシ樹脂としては、具体的には、エチレングリコール、プロピレングリコール、1,4-ブタンジオール及び1,6-ヘキサンジオール等のアルキレングリコールのジグリシジルエーテル;ポリエチレングリコール及びポリプロピレングリコールのジグリシジルエーテル等のポリアルキレングリコールのジグリシジルエーテル;ネオペンチルグリコール、ジブロモネオペンチルグリコール及びそのアルキレンオキサイド付加体のジグリシジルエーテル;トリメチロールエタン、トリメチロールプロパン、グリセリン及びそのアルキレンオキサイド付加体のジ又はトリグリシジルエーテル、並びにペンタエリスリトール及びそのアルキレンオキサイド付加体のジ、トリ又はテトラグリジジルエーテル等の多価アルコールのポリグリシジルエーテル;水素添加ビスフェノールA及びそのアルキレンオキシド付加体のジ又はポリグリシジルエーテル;テトラヒドロフタル酸ジグリシジルエーテル;ハイドロキノンジグリシジルエーテル等が挙げられる。 Specific examples of the aliphatic epoxy resin include diglycidyl ethers of alkylene glycols such as ethylene glycol, propylene glycol, 1,4-butanediol and 1,6-hexanediol; diglycidyl ethers of polyethylene glycol and polypropylene glycol, etc. Diglycidyl ethers of polyalkylene glycols; diglycidyl ethers of neopentyl glycol, dibromoneopentyl glycol and alkylene oxide adducts thereof; di- or triglycidyl ethers of trimethylolethane, trimethylolpropane, glycerin and alkylene oxide adducts thereof; And polyglycols of polyhydric alcohols such as di-, tri- or tetraglycidyl ethers of pentaerythritol and its alkylene oxide adducts. Di- or polyglycidyl ethers of hydrogenated bisphenol A and alkylene oxide adducts; Jill ether tetrahydrophthalic acid diglycidyl ether; hydroquinone diglycidyl ether, and the like.
 これら以外にも、前述した文献「高分子加工」別冊エポキシ樹脂の3~6頁に記載されている化合物を挙げることができる。これら芳香族エポキシ樹脂及び脂肪族エポキシ樹脂以外にも、トリアジン核を骨格に持つエポキシ化合物、例えばTEPIC(日産化学(株))、デナコールEX-310(ナガセ化成(株))等が挙げられ、また、前述した文献「高分子加工」別冊エポキシ樹脂の289~296頁に記載されているような化合物等が挙げられる。上記において、入手の容易さ、及び/又は粘度等の調整により実現される作業性に優れている観点からアルキレンオキサイド付加物のアルキレンオキサイドとしては、エチレンオキサイド及びプロピレンオキサイド等が好ましい。 In addition to these, the compounds described on pages 3 to 6 of the above-mentioned document “Polymer Processing”, separate volume epoxy resin, can be mentioned. In addition to these aromatic epoxy resins and aliphatic epoxy resins, epoxy compounds having a triazine nucleus in the skeleton, such as TEPIC (Nissan Chemical Co., Ltd.), Denacol EX-310 (Nagase Kasei Co., Ltd.), etc. can be mentioned. And compounds described on pages 289 to 296 of the above-mentioned document “Polymer Processing”, separate volume epoxy resin. In the above description, ethylene oxide and propylene oxide are preferable as the alkylene oxide of the alkylene oxide adduct from the viewpoint of easy availability and / or excellent workability realized by adjusting viscosity and the like.
 ウレタン(メタ)アクリレート系重合体としては、ポリオールと有機ポリイソシアネート反応物に対して、更にヒドロキシル基含有(メタ)アクリレートを反応させた反応物等が挙げられる。ここで、ポリオールとしては、低分子量ポリオール、ポリエチレングリコール、ポリエステルポリオール、ポリカーボネートポリオール等がある。低分子量ポリオールとしては、エチレングリコール、プロピレングリコール、シクロヘキサンジメタノール及び3-メチル-1,5-ペンタンジオール等が挙げられ、ポリエーテルポリオールとしては、ポリエチレングリコール及びポリプロピレングリコール等が挙げられ、ポリエステルポリオールとしては、これら低分子量ポリオール又は/及びポリエーテルポリオールと、アジピン酸、コハク酸、フタル酸、ヘキサヒドロフタル酸及びテレフタル酸等の二塩基酸、又はその無水物等の酸成分との反応物が挙げられる。有機ポリイソシアネートとしては、トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、ヘキサメチレンジイソシアネート及びイソホロンジイソシアネート等が挙げられる。ヒドロキシル基含有(メタ)アクリレートとしては、2-ヒドロキシエチル(メタ)アクリレート及び2-ヒドロキシプロピル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート等が挙げられる。これらウレタン(メタ)アクリレート系重合体は、公知の合成法に基づいて製造されたものでよい。例えば、ジブチルスズジラウレート等の付加触媒存在下、使用する有機イソシアネートとポリオール成分とを加熱撹拌し付加反応させ、更にヒドロキシアルキル(メタ)アクリレートを添加し、加熱撹拌し付加反応させる方法等が挙げられる。 Examples of the urethane (meth) acrylate polymer include a reaction product obtained by further reacting a hydroxyl group-containing (meth) acrylate with a polyol and an organic polyisocyanate reaction product. Here, examples of the polyol include a low molecular weight polyol, polyethylene glycol, polyester polyol, and polycarbonate polyol. Examples of the low molecular weight polyol include ethylene glycol, propylene glycol, cyclohexanedimethanol and 3-methyl-1,5-pentanediol, and examples of the polyether polyol include polyethylene glycol and polypropylene glycol. Is a reaction product of these low molecular weight polyols and / or polyether polyols and acid components such as adipic acid, succinic acid, phthalic acid, dihydroacids such as hexahydrophthalic acid and terephthalic acid, or anhydrides thereof. It is done. Examples of the organic polyisocyanate include tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, hexamethylene diisocyanate, and isophorone diisocyanate. Examples of the hydroxyl group-containing (meth) acrylate include hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate. These urethane (meth) acrylate polymers may be produced based on a known synthesis method. For example, in the presence of an addition catalyst such as dibutyltin dilaurate, an organic isocyanate and a polyol component to be used are heated and stirred to cause an addition reaction, and further, a hydroxyalkyl (meth) acrylate is added, followed by heating and stirring to cause an addition reaction.
 ポリエーテル(メタ)アクリレート系重合体としては、ポリアルキレングリコール(メタ)ジアクリレートがあり、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート及びポリテトラメチレングリコールジ(メタ)アクリレート等が挙げられる。 Polyether (meth) acrylate polymers include polyalkylene glycol (meth) diacrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, dipropylene glycol Examples include di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, and polytetramethylene glycol di (meth) acrylate.
 (メタ)アクリルアミド基を有する化合物としては、例えば、下記式(1)で表される化合物や下記式(2)で示される化合物が挙げられる。 Examples of the compound having a (meth) acrylamide group include a compound represented by the following formula (1) and a compound represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(1)において、Rは水素原子又はメチル基を表し、R及びRは、水素原子又は炭素数1~20の炭化水素基を表し、1分子中のR及びRは、同一の基であっても、異なる基であってもよく、環状構造を有することもできる。ここで、炭素数1~20の炭化水素基としては入手の容易性からアルキル基が好ましく、炭素数1~3のアルキル基がより好ましく、直鎖状でも分岐を有していてもよい。アルキル基としては、水酸基、芳香族基及びジアミノアルキル基を更に有するアルキル基であってもよい。アルキル基の具体例としては、メチル基、プロピル基、ブチル基、ブチル基、及びヘキシル基等が挙げられる。 In formula (1), R 1 represents a hydrogen atom or a methyl group, R 2 and R 3 represents a hydrogen atom or a hydrocarbon group having a carbon number of 1 ~ 20, R 2 and R 3 in one molecule, They may be the same group or different groups, and may have a cyclic structure. Here, the hydrocarbon group having 1 to 20 carbon atoms is preferably an alkyl group from the viewpoint of availability, more preferably an alkyl group having 1 to 3 carbon atoms, which may be linear or branched. The alkyl group may be an alkyl group further having a hydroxyl group, an aromatic group, and a diaminoalkyl group. Specific examples of the alkyl group include a methyl group, a propyl group, a butyl group, a butyl group, and a hexyl group.
 また、水酸基を有するアルキル基としては、ヒドロキシメチル基、ヒドロキシエチル基及びヒドロキシプロピル基等を挙げることができる。そして、芳香族基を有するアルキル基としては、ベンジル基等を挙げることができる。更に、ジアルキルアミノアルキル基としては、N,N-ジメチルアミノエチル基及びN,N-ジメチルアミノプロピル等を挙げることができる。 In addition, examples of the alkyl group having a hydroxyl group include a hydroxymethyl group, a hydroxyethyl group, and a hydroxypropyl group. And as an alkyl group which has an aromatic group, a benzyl group etc. can be mentioned. Further, examples of the dialkylaminoalkyl group include N, N-dimethylaminoethyl group and N, N-dimethylaminopropyl group.
 なお、式(2)において、Rは式(1)のRと同様である。 Incidentally, in formula (2), R 1 is the same as R 1 of formula (1).
 式(1)で示される(メタ)アクリルアミドの具体例としては、N-メチル(メタ)アクリルアミド、N-n-プロピル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-n-ブチル(メタ)アクリルアミド、N-sec-ブチル(メタ)アクリルアミド、N-t-ブチル(メタ)アクリルアミド、N-n-ヘキシル(メタ)アクリルアミド、N-ベンジル(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、N,N-ジメチルアミノエチル(メタ)アクリルアミド、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N,N-ジ-n-プロピル(メタ)アクリルアミド、N,N-ジイソプロピル(メタ)アクリルアミド、N,N-ジ-n-ブチル(メタ)アクリルアミド、N,N-ジヘキシル(メタ)アクリルアミド、N,N-ジベンジル(メタ)アクリルアミド等の(メタ)アクリルアミド誘導体が挙げられる。 Specific examples of the (meth) acrylamide represented by the formula (1) include N-methyl (meth) acrylamide, Nn-propyl (meth) acrylamide, N-isopropyl (meth) acrylamide, Nn-butyl (meth) ) Acrylamide, N-sec-butyl (meth) acrylamide, Nt-butyl (meth) acrylamide, Nn-hexyl (meth) acrylamide, N-benzyl (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, N, N-dimethylaminoethyl (meth) acrylamide, N, N-dimethylaminopropyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N, N-di- n-propyl (meth) acrylamide, N, N-diisopropyl (Meth) acrylamide, N, N-di -n- butyl (meth) acrylamide, N, N-dihexyl (meth) acrylamide, N, N-dibenzyl (meth) (meth) acrylamide derivatives of acrylamide.
 式(2)で示される(メタ)アクリルイミドの具体例としては、下記式(3)で表されるフタルイミドが挙げられる。 Specific examples of (meth) acrylimide represented by the formula (2) include phthalimide represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 (メタ)アクリルイミド基を有する化合物は、硬化性や安定性に優れることから好適に用いることができる。 A compound having a (meth) acrylimide group can be suitably used because of its excellent curability and stability.
 N-ビニル化合物としては、例えば、N-ビニルピロリドン及びN-ビニルカプロラクタム等が挙げられる。 Examples of the N-vinyl compound include N-vinyl pyrrolidone and N-vinyl caprolactam.
(導電性フィラー)
 本実施の形態に係る導電性フィラーとしては、炭素粒子、又は銀、銅、ニッケル、金、スズ、亜鉛、白金、パラジウム、鉄、タングステン、モルブデン、はんだ等の金属粒子若しくは合金粒子、又はこれらの粒子表面を金属等の導電性コーティングで覆って調製した粒子等の導電性粒子を用いることができる。また、例えば、ポリエチレン、ポリスチレン、フェノール樹脂、エポキシ樹脂、アクリル樹脂、若しくはベンゾグアナミン樹脂から構成される非導電性粒子であるポリマー粒子、又はガラスビーズ、シリカ、黒鉛、若しくはセラミックから構成される無機粒子の表面に金属等の導電性コーティングを施して得られる導電性粒子を用いることもできる。
(Conductive filler)
As the conductive filler according to the present embodiment, carbon particles, metal particles such as silver, copper, nickel, gold, tin, zinc, platinum, palladium, iron, tungsten, morbden, solder, or alloy particles, or these particles Conductive particles such as particles prepared by covering the particle surface with a conductive coating such as metal can be used. In addition, for example, polymer particles that are non-conductive particles composed of polyethylene, polystyrene, phenol resin, epoxy resin, acrylic resin, or benzoguanamine resin, or inorganic particles composed of glass beads, silica, graphite, or ceramic. Conductive particles obtained by applying a conductive coating such as metal to the surface can also be used.
 導電性フィラーの形状としては、種々の形状(例えば、球形状、楕円、円筒形、フレーク、針状、樹脂状、ウィスカー、平板、粒塊、結晶、又はアシキュラー状等)を採用できる。導電性フィラーは、やや粗いか、またはぎざぎざの表面を有することもできる。導電性フィラーの形状は特に制限されない。導電性フィラーの粒子形状、大きさ、及び/又は硬度を組み合わせて本実施形態に係る導電性組成物で用いることができる。また、形成される導電性構造体の導電性をより向上させることを目的として、導電性フィラーの粒子形状、大きさ、及び/又は硬度が互いに異なる複数の導電性フィラーを組み合わせることが好ましい。一例として、粒状の導電性フィラーとフレーク状の導電性フィラーとを混合して用いることが好ましい。なお、組み合わせる導電性フィラーは2種類に限られず、3種類以上であってもよい。 As the shape of the conductive filler, various shapes (for example, a spherical shape, an ellipse, a cylindrical shape, a flake, a needle shape, a resin shape, a whisker, a flat plate, a granule, a crystal, an acicular shape, etc.) can be adopted. The conductive filler can also have a slightly rough or jagged surface. The shape of the conductive filler is not particularly limited. The conductive filler according to the present embodiment can be used in combination with the particle shape, size, and / or hardness of the conductive filler. In order to further improve the conductivity of the conductive structure formed, it is preferable to combine a plurality of conductive fillers having different particle shapes, sizes, and / or hardnesses of the conductive filler. As an example, it is preferable to mix and use a granular conductive filler and a flaky conductive filler. In addition, the conductive filler to combine is not restricted to two types, Three or more types may be sufficient.
 なお、導電性フィラーの大きさは、製造する導電性構造体の大きさ以下であること、又は導電性構造体の内部における導電性フィラーの配置により、導電性構造体の内部に導電性フィラーが収まる形状及び大きさであることが好ましい(一例として、導電性構造体が薄膜状であり、導電性フィラーが針状の場合、導電性フィラーの長さ方向が薄膜表面に沿った方向に配列する限り、針状の導電性フィラーの長さが薄膜の膜厚に対応する長さ以上であってもよい。)。また、導電性構造体を半導体検査装置に用いられる複数のコンタクト部材としてのコンタクタに用いる場合、複数のコンタクタが配列される間隔、及び/又は各コンタクタのサイズに応じ、導電性フィラーは、当該コンタクタの大きさより小さな大きさを有することが好ましい。 The size of the conductive filler is equal to or less than the size of the conductive structure to be manufactured, or the conductive filler is placed inside the conductive structure due to the arrangement of the conductive filler inside the conductive structure. It is preferable that the shape and size are within the range (for example, when the conductive structure is a thin film and the conductive filler is needle-shaped, the length direction of the conductive filler is arranged in a direction along the surface of the thin film. As long as the length of the acicular conductive filler may be equal to or longer than the length corresponding to the film thickness of the thin film. Further, when the conductive structure is used for a contactor as a plurality of contact members used in a semiconductor inspection apparatus, the conductive filler is used in accordance with the interval at which the plurality of contactors are arranged and / or the size of each contactor. It is preferable to have a size smaller than the size.
 また、導電性フィラーは、導電性構造体の柔軟性を確保すると共に繰り返し接触対象物に接触、離脱をした場合でも導電性構造体の柔軟性が失われにくくする(復元性を高める)ことを目的として、重合性オリゴマー1質量部に対し、2.5質量部以上7.5質量部以下、好ましくは3.1質量部以上6.3質量部以下、より好ましくは3.7質量部以上5.6質量部以下混合される。重合性オリゴマーに対する導電性フィラーの混合比を調整することにより、導電性構造体の柔軟性、及び使用寿命を確保できる。すなわち、重合性オリゴマーに対する導電性フィラーの混合比を所定比以上にすることにより導電性構造体の使用寿命を増加させることができ、当該混合比を所定比以下にすることにより導電性構造体の柔軟性を確保することができ、対象物に繰り返し接触/離脱した場合の復元性にも優れる。 In addition, the conductive filler ensures the flexibility of the conductive structure and makes it difficult to lose the flexibility of the conductive structure even when the contact object is repeatedly contacted or detached (increases the resilience). The purpose is 2.5 to 7.5 parts by mass, preferably 3.1 to 6.3 parts by mass, more preferably 3.7 to 5 parts by mass with respect to 1 part by mass of the polymerizable oligomer. .6 parts by mass or less are mixed. By adjusting the mixing ratio of the conductive filler to the polymerizable oligomer, the flexibility of the conductive structure and the service life can be ensured. That is, the service life of the conductive structure can be increased by setting the mixing ratio of the conductive filler to the polymerizable oligomer to a predetermined ratio or more, and by reducing the mixing ratio to a predetermined ratio or less, the conductive structure Flexibility can be ensured, and the resilience when repeatedly contacting / leaving the object is also excellent.
(開始剤)
 本実施の形態に係る開始剤はラジカル重合開始剤である。ラジカル重合開始剤としては、ジアシルパーオキサイド類、ケトンパーオキサイド類、ヒドロパーオキサイド類、ジアルキルパーオキサイド類、パーオキシケタール類、アルキルパーエステル類、及びパーオキシカーボネート類等の有機過酸化物を挙げることができる。また、開始剤として、他のラジカル重合開始剤を用いてもよい。
(Initiator)
The initiator according to the present embodiment is a radical polymerization initiator. Examples of radical polymerization initiators include organic peroxides such as diacyl peroxides, ketone peroxides, hydroperoxides, dialkyl peroxides, peroxyketals, alkyl peresters, and peroxycarbonates. be able to. Moreover, you may use another radical polymerization initiator as an initiator.
 ラジカル重合開始剤の具体例として、ベンゾイルパーオキサイド、メチルエチルケトンパーオキサイド、ラウリルパーオキサイド、ジクミルパーオキサイド、クメンヒドロパーオキサイド等が挙げられる。最も一般的にはベンゾイルパーオキサイドが用いられる。ラジカル重合開始剤は一般的に硫酸カルシウム、炭酸カルシウム等の無機物、ジメチルフタレート、ジブチルフタレート、ジシクロヘキシルフタレート、脂肪族炭化水素、芳香族炭化水素、シリコーンオイル、流動パラフィン、重合性モノマー、水等の希釈剤で希釈して用いられる。 Specific examples of the radical polymerization initiator include benzoyl peroxide, methyl ethyl ketone peroxide, lauryl peroxide, dicumyl peroxide, cumene hydroperoxide and the like. Most commonly, benzoyl peroxide is used. Radical polymerization initiators are generally diluted with inorganic substances such as calcium sulfate and calcium carbonate, dimethyl phthalate, dibutyl phthalate, dicyclohexyl phthalate, aliphatic hydrocarbons, aromatic hydrocarbons, silicone oil, liquid paraffin, polymerizable monomers, water, etc. Diluted with an agent.
 開始剤は、重合性オリゴマー1質量部に対して、0.05質量部以上20質量部以下、好ましくは0.5質量部以上15質量部以下、より好ましくは1質量部以上10質量部以下の量で用いることが好ましい。 The initiator is 0.05 parts by mass or more and 20 parts by mass or less, preferably 0.5 parts by mass or more and 15 parts by mass or less, more preferably 1 part by mass or more and 10 parts by mass or less with respect to 1 part by mass of the polymerizable oligomer. It is preferable to use it in an amount.
(モノマー)
 導電性組成物は、重合性オリゴマーにおいて説明した単官能モノマー及び/又は多官能モノマー等の各種モノマーを更に含有することができる。モノマーとしては、1種類のモノマーを用いることだけでなく、複数種類のモノマーを混合して用いることもできる。また、重合性オリゴマーにおいて説明した(メタ)アクリロイルオキシ基を有する化合物は、単量体としても使用可能であり、重合体としても使用可能である。導電性組成物の粘度を低下させる観点からは(メタ)アクリロイルオキシ基を有するモノマーを用いることが好ましい。更に、(メタ)アクリロイルオキシ基を有するモノマーとしては、(メタ)アクリロイルオキシ基を1個以上有する化合物であれば特に制限はなく、例えば、単官能(メタ)アクリレート類、多官能(メタ)アクリレート類等を用いることができる。
(monomer)
The conductive composition can further contain various monomers such as the monofunctional monomer and / or the polyfunctional monomer described in the polymerizable oligomer. As the monomer, not only one type of monomer but also a mixture of a plurality of types of monomers can be used. Moreover, the compound which has the (meth) acryloyloxy group demonstrated in the polymerizable oligomer can be used also as a monomer, and can also be used as a polymer. From the viewpoint of reducing the viscosity of the conductive composition, it is preferable to use a monomer having a (meth) acryloyloxy group. Furthermore, the monomer having a (meth) acryloyloxy group is not particularly limited as long as it is a compound having one or more (meth) acryloyloxy groups, and examples thereof include monofunctional (meth) acrylates and polyfunctional (meth) acrylates. Etc. can be used.
 また、重合性オリゴマーの単位量に対するモノマーの添加量は、所定量以下にすることが好ましい。重合性オリゴマーの単位量に対するモノマーの添加量を所定量以下にすることにより導電性構造体の柔軟性を確保し、対象物に繰り返し接触/離脱した場合の復元性を高めることができる。更に、導電性組成物の塗布性や印刷性を制御することができる。例えば、モノマーは、重合性オリゴマー1質量部に対し、モノマーの添加量を0質量部以上50質量部以下、好ましくは5質量部以上40質量部以下、より好ましくは10質量部以上35質量部以下の量で用いることが好ましい。 Further, it is preferable that the amount of the monomer added with respect to the unit amount of the polymerizable oligomer is not more than a predetermined amount. By making the addition amount of the monomer with respect to the unit amount of the polymerizable oligomer not more than a predetermined amount, the flexibility of the conductive structure can be secured, and the resilience when repeatedly contacting / leaving the object can be improved. Furthermore, the applicability | paintability and printability of an electroconductive composition can be controlled. For example, the monomer is added in an amount of 0 to 50 parts by weight, preferably 5 to 40 parts by weight, more preferably 10 to 35 parts by weight with respect to 1 part by weight of the polymerizable oligomer. It is preferable to use it in the quantity.
(その他の添加剤)
 本実施の形態に係る導電性組成物には、導電性構造体の使用目的、用途等に応じて必要により、脱水剤、充填剤、可塑剤、酸化防止剤、紫外線吸収剤、接着性改良剤、揺変性付与剤、カップリング剤、溶剤、希釈剤、反応性希釈剤、顔料、分散剤、難燃剤、導電性付与剤、及び/又は増粘剤等の各種添加剤を配合してもよい。
(Other additives)
The conductive composition according to the present embodiment includes a dehydrating agent, a filler, a plasticizer, an antioxidant, an ultraviolet absorber, and an adhesion improver as necessary depending on the purpose and application of the conductive structure. Various additives such as thixotropic agents, coupling agents, solvents, diluents, reactive diluents, pigments, dispersants, flame retardants, conductivity imparting agents, and / or thickeners. .
 可塑剤としては、ジイソデシルフタレート、ジウンデシルフタレート、ジイソウンデシルフタレート、ジオクチルフタレート、ジブチルフタレート、ブチルベンジルフタレート等のフタル酸エステル類;アジピン酸ジメチル、アジピン酸ジオクチル、コハク酸イソデシル、セバシン酸ジブチル等の脂肪族二塩基酸エステル類;ジエチレングリコールジベンゾエート、ペンタエリスリトールエステル等のグリコールエステル類;オレイン酸ブチル、アセチルリシノール酸メチル等の脂肪族エステル類;エポキシ化大豆油、エポキシ化アマニ油、エポキシステアリン酸ベンジル等のエポキシ可塑剤類;2塩基酸と2価アルコールとのポリエステル類等のポリエステル系可塑剤;ポリプロピレングリコールやその誘導体等のポリエーテル類;ポリ(メタ)アクリル酸アルキルエステル等のポリ(メタ)アクリル酸エステル可塑剤;ポリ-α-メチルスチレン、ポリスチレン等のポリスチレン類;ポリブタジエン、ブタジエン-アクリロニトリル共重合体、ポリクロロプレン、ポリイソプレン、ポリイソブテン、パラフィン系炭化水素、ナフテン系炭化水素、パラフィン-ナフテン系混合炭化水素、塩素化パラフィン類等を、単独又は2種類以上の混合物として用いることができる。 Examples of plasticizers include phthalate esters such as diisodecyl phthalate, diundecyl phthalate, diisoundecyl phthalate, dioctyl phthalate, dibutyl phthalate, and butyl benzyl phthalate; dimethyl adipate, dioctyl adipate, isodecyl succinate, dibutyl sebacate, etc. Aliphatic dibasic acid esters; glycol esters such as diethylene glycol dibenzoate and pentaerythritol ester; aliphatic esters such as butyl oleate and methyl acetylricinoleate; epoxidized soybean oil, epoxidized linseed oil, and epoxy benzyl stearate Epoxy plasticizers such as; polyester-based plasticizers such as polyesters of dibasic acids and dihydric alcohols; polyethers such as polypropylene glycol and its derivatives; Poly (meth) acrylate plasticizers such as alkyl methacrylates; polystyrenes such as poly-α-methylstyrene and polystyrene; polybutadiene, butadiene-acrylonitrile copolymers, polychloroprene, polyisoprene, polyisobutene, paraffinic Hydrocarbons, naphthenic hydrocarbons, paraffin-naphthene mixed hydrocarbons, chlorinated paraffins and the like can be used alone or as a mixture of two or more.
 接着性改良剤としては、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルメチルジメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリエトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、1,3-ジアミノイソプロピルトリメトキシシラン等のアミノ基含有シラン類;N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-(1,3-ジメチルブチリデン)-3-(トリメトキシシリル)-1-プロパンアミン等のケチミン型シラン類;γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ基含有シラン類;γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン等のメルカプト基含有シラン類;ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-メタクリロイルオキシプロピルトリメトキシシラン、γ-アクリロイルオキシプロピルメチルジメトキシシラン等のビニル型不飽和基含有シラン類;γ-クロロプロピルトリメトキシシラン等の塩素原子含有シラン類;γ-イソシアネートプロピルトリエトキシシラン、γ-イソシアネートプロピルメチルジメトキシシラン等のイソシアネート含有シラン類;メチルジメトキシシラン、トリメトキシシラン、メチルジエトキシシラン等のハイドロシラン類等が具体的に例示され得るが、これらに限定されるものではない。アミノ基含有シラン類とシラン類を含むエポキシ基含有化合物、イソシアネート基含有化合物、(メタ)アクリロイル基含有化合物とを反応させて、アミノ基を変性した変性アミノ基含有シラン類を用いてもよい。接着性改良剤は、例えば、導電性組成物から導電性構造体(一例として、バンプ電極)を形成する場合に用いる基材(一例として、所定のフィルム)に対する接着性を改良する場合に用いることができる。 Adhesion improvers include γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropylmethyldimethoxysilane, N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane, N- Amino group-containing silanes such as (β-aminoethyl) -γ-aminopropyltriethoxysilane, N- (β-aminoethyl) -γ-aminopropylmethyldimethoxysilane, 1,3-diaminoisopropyltrimethoxysilane; N -(1,3-dimethylbutylidene) -3- (triethoxysilyl) -1-propanamine, N- (1,3-dimethylbutylidene) -3- (trimethoxysilyl) -1-propanamine, etc. Ketimine type silanes; γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltrie Epoxy group-containing silanes such as toxisilane, γ-glycidoxypropylmethyldimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane; γ-mercaptopropyltrimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, etc. Mercapto group-containing silanes; vinyl-type unsaturated group-containing silanes such as vinyltrimethoxysilane, vinyltriethoxysilane, γ-methacryloyloxypropyltrimethoxysilane, and γ-acryloyloxypropylmethyldimethoxysilane; γ-chloropropyltri Chlorine atom-containing silanes such as methoxysilane; Isocyanate-containing silanes such as γ-isocyanatopropyltriethoxysilane and γ-isocyanatopropylmethyldimethoxysilane; methyldimethoxysilane, Silane, hydrosilane and the like, such as methyl diethoxy silane can be specifically exemplified, but not limited thereto. Modified amino group-containing silanes modified by reacting amino group-containing silanes with epoxy group-containing compounds containing silanes, isocyanate group-containing compounds, and (meth) acryloyl group-containing compounds may be used. The adhesion improver is used, for example, to improve the adhesion to a base material (for example, a predetermined film) used when forming a conductive structure (for example, a bump electrode) from a conductive composition. Can do.
 充填剤には、フュームドシリカ、沈降性シリカ、結晶性シリカ、溶融シリカ、ドロマイト、無水ケイ酸、含水ケイ酸、及びカーボンブラック等の補強性充填剤;重質炭酸カルシウム、膠質炭酸カルシウム、炭酸マグネシウム、ケイソウ土、焼成クレー、クレー、タルク、酸化チタン、ベントナイト、有機ベントナイト、酸化第二鉄、フリント粉末、酸化亜鉛、活性亜鉛華、シラスバルーン、ガラスミクロバルーン、フェノール樹脂や塩化ビニリデン樹脂の有機ミクロバルーン、PVC粉末、PMMA粉末等の樹脂粉末等の充填剤;石綿、ガラス繊維、及びフィラメント等の繊維状充填剤等が挙げられる。これら充填剤は1種類のみで用いることも、2種類以上混合して用いることもできる。 Fillers include reinforcing silica such as fumed silica, precipitated silica, crystalline silica, fused silica, dolomite, anhydrous silicic acid, hydrous silicic acid, and carbon black; heavy calcium carbonate, colloidal calcium carbonate, carbonic acid Magnesium, diatomaceous earth, calcined clay, clay, talc, titanium oxide, bentonite, organic bentonite, ferric oxide, flint powder, zinc oxide, activated zinc white, shirasu balloon, glass microballoon, phenol resin and vinylidene chloride resin organic Examples thereof include fillers such as resin powders such as microballoons, PVC powders, and PMMA powders; fibrous fillers such as asbestos, glass fibers, and filaments. These fillers can be used alone or in combination of two or more.
 これら充填剤としては、フュームドシリカ、沈降性シリカ、結晶性シリカ、溶融シリカ、ドロマイト、無水ケイ酸、含水ケイ酸、カーボンブラック、表面処理微細炭酸カルシウム、焼成クレー、クレー、活性亜鉛華、酸化チタン、重質炭酸カルシウム等の炭酸カルシウム、炭酸マグネシウム、タルク、酸化第二鉄、酸化亜鉛、及び/又はシラスバルーン等を用いることができる。 These fillers include fumed silica, precipitated silica, crystalline silica, fused silica, dolomite, anhydrous silicic acid, hydrous silicic acid, carbon black, surface treated fine calcium carbonate, calcined clay, clay, activated zinc white, oxidized Calcium carbonate such as titanium and heavy calcium carbonate, magnesium carbonate, talc, ferric oxide, zinc oxide, and / or shirasu balloon can be used.
 組成物の作業性(キレなど)向上を目的として、有機バルーン、及び/又は無機バルーンを添加することもできる。これらの充填剤には表面処理を施すこともできる。また、充填剤は、1種類のみで使用してもよいし、2種類以上の充填剤を混合して用いることもできる。作業性(キレなど)向上を目的とする場合、バルーンの粒径は0.1mm以下であることが好ましい。 An organic balloon and / or an inorganic balloon can be added for the purpose of improving the workability (such as sharpness) of the composition. These fillers can also be subjected to a surface treatment. Moreover, a filler may be used only by 1 type and can also mix and use 2 or more types of fillers. For the purpose of improving workability (such as sharpness), the balloon particle size is preferably 0.1 mm or less.
 本実施の形態において、粘度を増加させずにフロー性を確保しながらブリードを防止することを目的とする場合、導電性組成物にシリカを添加することが好ましい。シリカは、その表面に表面処理を施すこともでき、1種類のみで使用しても良いし、2種類以上のシリカを混合して用いることもできる。ブリード防止の観点からは、親水性シリカや特定の表面処理剤で疎水化処理された疎水性シリカを用いることが好ましい。疎水性シリカとしては、ジメチルジクロロシラン、ヘキサメチルジシラザン、(メタ)アクリルシラン、オクチルシラン(例えば、トリメトキシオクチルシラン等)、及びアミノシランからなる群から選択される1種以上である表面処理剤により疎水化処理された疎水性シリカが好ましい。 In the present embodiment, when it is intended to prevent bleed while ensuring flowability without increasing the viscosity, it is preferable to add silica to the conductive composition. Silica can be subjected to a surface treatment on its surface, and may be used alone or in combination of two or more kinds of silica. From the viewpoint of preventing bleeding, it is preferable to use hydrophilic silica or hydrophobic silica hydrophobized with a specific surface treatment agent. The hydrophobic silica is one or more surface treatment agents selected from the group consisting of dimethyldichlorosilane, hexamethyldisilazane, (meth) acrylsilane, octylsilane (for example, trimethoxyoctylsilane), and aminosilane. Hydrophobic silica that has been subjected to a hydrophobization treatment by is preferred.
 本実施の形態に係る導電性組成物の目的が達成される範囲で、作業性の改善、及び/又は導電性組成物の粘度を低下させることを目的として、溶剤、及び/又は希釈剤を配合してもよい。溶剤の例としては、トルエン、キシレン等の芳香族炭化水素系溶剤;酢酸エチル、酢酸ブチル、酢酸アミル、酢酸セロソルブ等のエステル系溶剤;メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤等が挙げられる。希釈剤の例としてはノルマルパラフィン、イソパラフィン等が挙げられる。 For the purpose of improving workability and / or reducing the viscosity of the conductive composition within a range in which the purpose of the conductive composition according to the present embodiment is achieved, a solvent and / or a diluent is blended. May be. Examples of the solvent include aromatic hydrocarbon solvents such as toluene and xylene; ester solvents such as ethyl acetate, butyl acetate, amyl acetate, and cellosolve; ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone. Examples of the diluent include normal paraffin and isoparaffin.
 また、導電性組成物に、被着体へのぬれ性の改善や、はく離強度を高めるため粘着付与剤を添加してもよい。粘着付与剤としては、石油樹脂系、ロジン・ロジンエステル系、アクリル樹脂系、テルペン樹脂、水添テルペン樹脂やそのフェノール樹脂共重合体、フェノール・フェノールノボラック樹脂系等が挙げられる。 Further, a tackifier may be added to the conductive composition in order to improve the wettability to the adherend and increase the peel strength. Examples of the tackifier include petroleum resin, rosin / rosin ester, acrylic resin, terpene resin, hydrogenated terpene resin and its phenol resin copolymer, phenol / phenol novolac resin, and the like.
 本実施の形態に係る導電性組成物は、必要に応じて1液型とすることもできるし、2液型とすることもできるが、特に1液型として好適に用いることができる。 The conductive composition according to the present embodiment can be a one-component type or a two-component type as required, and can be suitably used particularly as a one-component type.
 本実施の形態に係る導電性組成物は、粘性を有する液状の組成物であるので、作業性に優れている。本実施の形態に係る導電性組成物は、23℃における粘度が50Pa・s以上200Pa・s以下の範囲にあることが好ましい。 Since the conductive composition according to this embodiment is a viscous liquid composition, it has excellent workability. The conductive composition according to the present embodiment preferably has a viscosity at 23 ° C. in the range of 50 Pa · s to 200 Pa · s.
 本実施の形態に係る導電性組成物は、無溶剤でも溶剤系と同様の性能とすることができる。無溶剤とした場合や希釈剤を用いない場合、塗布又は印刷時に揮発成分がないので、粘度が変わらずにすみ、安定性や再現性に優れ、製品にばらつきがでないといった効果がある。また、無溶剤とした場合、硬化物の収縮が少なく、大面積でも応力が実質的に発生しないといった効果を奏する。 The conductive composition according to the present embodiment can have the same performance as that of a solvent system even without a solvent. When no solvent is used or a diluent is not used, since there is no volatile component during coating or printing, the viscosity does not change, the stability and reproducibility are excellent, and there is no variation in products. Further, when no solvent is used, there is an effect that there is little shrinkage of the cured product and stress is not substantially generated even in a large area.
 本実施の形態に係る導電性組成物は、基材に塗布又は印刷して硬化させることにより、高い導電性を有し、バンプとして用いることができる。本実施の形態に係る導電性組成物は、半導体素子チップ部品、ディスクリート部品等の電子部品の試験及び/又は検査において、電子部品の電極に繰り返し接触/離脱する導電性コンタクト部材の用途に好適に用いられる。本実施の形態に係る導電性組成物は、有機系及び/又は無機系の基材上に、メッシュスクリーン版、ステンシル版、グラビア、オフセット、フレキソ、インクジェット、ローラーコーター、ディスペンサー、ディッピング等の装置や方法を用いて、塗布、印刷、若しくは充填して用いることができる。 The conductive composition according to the present embodiment has high conductivity and can be used as a bump by being applied or printed on a substrate and cured. The conductive composition according to the present embodiment is suitable for use as a conductive contact member that repeatedly contacts / releases an electrode of an electronic component in a test and / or inspection of an electronic component such as a semiconductor element chip component or a discrete component. Used. The conductive composition according to the present embodiment is a device such as a mesh screen plate, a stencil plate, a gravure, an offset, a flexo, an ink jet, a roller coater, a dispenser, and a dipping on an organic and / or inorganic base material. The method can be used for coating, printing, or filling.
[導電性構造体の製造]
 本実施の形態に係る復元性を有する導電性構造体は、上記において説明した導電性組成物を用いて製造される。まず、本実施の形態に係る粘性を有する液状の導電性組成物を準備する(組成物準備工程)。すなわち、所定量の重合性オリゴマー、所定量の導電性フィラー、所定量の開始剤、所定量のモノマー、及び/又はその他の所定量の添加剤を秤量、混合することで粘性を有する液状の導電性組成物を準備する。
[Manufacture of conductive structure]
The conductive structure having resilience according to the present embodiment is manufactured using the conductive composition described above. First, a liquid conductive composition having viscosity according to the present embodiment is prepared (composition preparing step). That is, a predetermined amount of polymerizable oligomer, a predetermined amount of conductive filler, a predetermined amount of initiator, a predetermined amount of monomer, and / or other predetermined amount of additives are weighed and mixed to obtain a viscous liquid conductive material. A sex composition is prepared.
 次に、準備した導電性組成物を予め定められた形状に成形する(成形工程)。そして、成形した状態の導電性組成物を酸素遮断雰囲気下(例えば、窒素雰囲気下)で加熱して硬化させることで導電性構造体を製造する(硬化工程)。例えば、所定の基板上にマスクパターンを設け(例えば、メタルマスクを所定の基板に重ねるか、フォトレジストを用いてマスクパターンを基板表面に形成する)、マスクの開口部分に本実施の形態に係る粘性を有する液状の導電性組成物を充填する。次に、マスクを取り外す。これにより、マスクの開口形状に応じた形状に導電性組成物は成形される。そして、酸素遮断雰囲気下で成形された導電性組成物に熱処理を施す。熱処理は、例えば、窒素雰囲気下、120℃以上130℃以下程度の温度で30分以上60分以下程度の時間実施する。これにより、所望の形状を有する本実施の形態に係る導電性構造体が形成される。なお、導電性構造体の形状は、球状、楕円形状、円筒形状、フレーク状、針状、樹脂状、ウィスカー状、平板状(シート状)、粒塊状、又はその他の形状のいずれであってもよい。 Next, the prepared conductive composition is molded into a predetermined shape (molding process). Then, the conductive composition in a molded state is heated and cured under an oxygen-blocking atmosphere (for example, under a nitrogen atmosphere) to produce a conductive structure (curing step). For example, a mask pattern is provided on a predetermined substrate (for example, a metal mask is superimposed on the predetermined substrate or a mask pattern is formed on the substrate surface using a photoresist), and the mask opening according to the present embodiment A liquid conductive composition having viscosity is filled. Next, the mask is removed. Thereby, a conductive composition is shape | molded by the shape according to the opening shape of a mask. Then, the conductive composition molded in an oxygen-blocking atmosphere is subjected to heat treatment. The heat treatment is performed, for example, in a nitrogen atmosphere at a temperature of about 120 ° C. to 130 ° C. for a period of 30 minutes to 60 minutes. Thereby, the conductive structure according to the present embodiment having a desired shape is formed. The shape of the conductive structure may be any of spherical, elliptical, cylindrical, flake, needle, resin, whisker, flat plate (sheet), agglomerate, or other shapes. Good.
 図1は、本実施の形態に係る導電性構造体の形態の一例を示す。具体的に図1(a)は、シート状の導電性構造体の例を示し、図1(b)は、所定の基板に複数の導電性構造体が設けられている例を示す。 FIG. 1 shows an example of the form of the conductive structure according to the present embodiment. Specifically, FIG. 1A shows an example of a sheet-like conductive structure, and FIG. 1B shows an example in which a plurality of conductive structures are provided on a predetermined substrate.
 例えば、本実施の形態に係る導電性組成物をシート状に成形した後、このシート状の導電性組成物を硬化させる。これにより、図1(a)に示すように、シート状の導電性構造体20が形成される。シート状の導電性構造体20の厚さは用途に応じ、適宜調整できる。また、シート状の導電性構造体20を巻き取り、ロール状にすることもできる。この場合、シート状の導電性構造体20の一方の面に離型シートを貼り付けることができる。 For example, after forming the conductive composition according to the present embodiment into a sheet shape, the sheet-shaped conductive composition is cured. Thereby, as shown to Fig.1 (a), the sheet-like electroconductive structure 20 is formed. The thickness of the sheet-like conductive structure 20 can be appropriately adjusted according to the application. Alternatively, the sheet-like conductive structure 20 can be wound into a roll shape. In this case, a release sheet can be attached to one surface of the sheet-like conductive structure 20.
 また、所定の基材(例えば、高分子樹脂等)の予め定められた領域に導電性組成物を配置する。例えば、絶縁基板10の予め定められた領域に導電性組成物を配置する。そして、配置された導電性組成物を硬化させることで、図1(b)に示すように、絶縁基板10に予め定められた間隔で配列する複数の導電性構造体を形成できる。なお、この場合において導電性構造体は、絶縁基板10の表面に形成されるか、又は絶縁基板10に予め設けられる貫通穴を充填する態様で形成される。 Further, the conductive composition is disposed in a predetermined region of a predetermined base material (for example, a polymer resin or the like). For example, the conductive composition is disposed in a predetermined region of the insulating substrate 10. And by hardening the arrange | positioned electrically conductive composition, as shown in FIG.1 (b), the some electroconductive structure arranged in the predetermined space | interval on the insulated substrate 10 can be formed. In this case, the conductive structure is formed on the surface of the insulating substrate 10 or is formed so as to fill a through hole provided in the insulating substrate 10 in advance.
 更に、所定の基材(例えば、絶縁性の樹脂、エポキシ樹脂等)に、予め所定の形状(例えば、粒子状、棒状等)に成形して硬化させた所定量の導電性組成物を添加したのち、当該基材を硬化させることで、本実施の形態に係る導電性構造体を形成することもできる。例えば、粘性を有する液体状の基材、若しくは所定の粘弾性を有する基材(一例として、エポキシ樹脂等)に硬化させた導電性組成物を添加することで、導電性構造体が形成される。 Further, a predetermined amount of the conductive composition that has been molded and cured in a predetermined shape (for example, a particle shape, a rod shape, etc.) in advance is added to a predetermined base material (for example, insulating resin, epoxy resin, etc.). After that, the conductive structure according to this embodiment can also be formed by curing the base material. For example, a conductive structure is formed by adding a cured conductive composition to a liquid substrate having viscosity or a substrate having a predetermined viscoelasticity (for example, an epoxy resin). .
 図2は、本実施の形態に係る導電性構造体の形態の他の例を示す。 FIG. 2 shows another example of the form of the conductive structure according to the present embodiment.
 図2(a)に示すように、本実施の形態に係る導電性構造体は、絶縁基板14の表面に複数のバンプ電極の形状を有する導電性構造体20として形成できる。この場合、各バンプ電極は、図示しない回路パターンにそれぞれ電気的に接続される。また、図2(b)に示すように、絶縁基板14を貫通する貫通孔16に導電性構造体20としてのバンプ電極を形成することもできる。例えば、絶縁基板14に貫通孔16を形成した後、この貫通孔16に導電性組成物を充填する。そして、貫通孔16に充填した導電性組成物を硬化させる。これにより、貫通孔16に充填された導電性構造体が、バンプ電極を構成することになる。 As shown in FIG. 2A, the conductive structure according to the present embodiment can be formed as a conductive structure 20 having a plurality of bump electrode shapes on the surface of the insulating substrate 14. In this case, each bump electrode is electrically connected to a circuit pattern (not shown). Further, as shown in FIG. 2B, a bump electrode as the conductive structure 20 can be formed in the through hole 16 penetrating the insulating substrate 14. For example, after the through hole 16 is formed in the insulating substrate 14, the through hole 16 is filled with a conductive composition. And the electroconductive composition with which the through-hole 16 was filled is hardened. Thereby, the conductive structure filled in the through-hole 16 constitutes a bump electrode.
(実施の形態の効果)
 本実施の形態に係る導電性構造体は、導電性構造体内部に導電性フィラーを含有しており、その形状を自在に設計できる。したがって、本実施の形態に係る導電性構造体によれば、その使用状態に応じた適切な形状を有する導電性構造体を提供できる。そして、例えば薄膜状の導電性構造体を形成した場合であっても、導電性構造体内に存在する複数の導電性フィラー間の距離が薄膜状にする前よりも接近若しくは密着するので、この導電性構造体は良好な電気導電性を維持できる。更に、導電性構造体は、外部から圧力が加わってその形状が変化した場合であっても、当該導電性構造体の位置によらず良好な電気導電性を維持できる。
(Effect of embodiment)
The conductive structure according to the present embodiment contains a conductive filler inside the conductive structure, and its shape can be designed freely. Therefore, according to the electroconductive structure which concerns on this Embodiment, the electroconductive structure which has a suitable shape according to the use condition can be provided. For example, even when a thin-film conductive structure is formed, the distance between the plurality of conductive fillers existing in the conductive structure is closer or closer than before the thin film is formed. The conductive structure can maintain good electrical conductivity. Furthermore, the conductive structure can maintain good electrical conductivity regardless of the position of the conductive structure even when the shape changes due to pressure applied from the outside.
 本実施の形態に係る導電性組成物は、重合性オリゴマーに導電性フィラーを混合させると共に、この場合における重合性オリゴマーに対する導電性フィラーの比率を適切に制御することで、硬化した導電性構造体の柔軟性、及び反力を最適な範囲に制御できる。よって、本実施の形態によれば、導電性組成物を硬化させて得られる導電性構造体は、接触対象物に接触と離脱とを繰り返した場合であっても、接触対象物に傷をつけることのない柔軟性を長期間保持できる。 The conductive composition according to the present embodiment is obtained by mixing a conductive filler with a polymerizable oligomer and appropriately controlling the ratio of the conductive filler to the polymerizable oligomer in this case, thereby curing the conductive structure. Flexibility and reaction force can be controlled within an optimum range. Therefore, according to the present embodiment, the conductive structure obtained by curing the conductive composition damages the contact object even when the contact object is repeatedly contacted and detached. The long-term flexibility can be maintained.
 また、導電性組成物は粘性を有する液状であるので、導電性組成物を所定の形状に成形することで、導電性組成物を硬化して得られる導電性構造物の形状を自由に設計することができる。例えば、シート状、薄膜状の導電性構造物を製造することができる。 In addition, since the conductive composition is a viscous liquid, the shape of the conductive structure obtained by curing the conductive composition can be freely designed by forming the conductive composition into a predetermined shape. be able to. For example, a sheet-like or thin-film conductive structure can be manufactured.
 また、導電性組成物は粘性を有する液状であるので、狭ピッチで導電性組成物の液滴を配置できる。よって、本実施の形態によれば、例えば、50μm程度の狭ピッチで配列する複数のバンプ電極を実現できる。 Also, since the conductive composition is a viscous liquid, the conductive composition droplets can be arranged at a narrow pitch. Therefore, according to the present embodiment, for example, a plurality of bump electrodes arranged with a narrow pitch of about 50 μm can be realized.
 以下、本実施の形態に係る導電性組成物、及び導電性構造体について、実施例を用いて説明する。 Hereinafter, the conductive composition and the conductive structure according to the present embodiment will be described using examples.
[実施例1]
 実施例1に係る導電性組成物は、以下のようにして製造した。まず、重合性オリゴマーであるラジカル重合性のビニル基を有する化合物として、80質量部のアクリル系重合体((株)カネカ製、RC200C)を秤量した。また、導電性フィラーとして、Ag製のフィラーを秤量した。具体的に、160質量部のシルベスト TCG-7((株)徳力化学研究所製、フレーク状銀)、100質量部のシルベスト AgS-050((株)徳力化学研究所製、球状銀)、及び110質量部のシルコート AgC-G(福田金属箔粉工業(株)製、微結晶状銀)を秤量した。そして、ラジカル開始剤として4質量部のパーキュアHO(日本油脂(株)製)を秤量した。
[Example 1]
The conductive composition according to Example 1 was manufactured as follows. First, 80 parts by mass of an acrylic polymer (manufactured by Kaneka Corporation, RC200C) was weighed as a compound having a radical polymerizable vinyl group which is a polymerizable oligomer. Moreover, the filler made from Ag was weighed as a conductive filler. Specifically, 160 parts by mass of Sylbest TCG-7 (manufactured by Tokoku Chemical Laboratory Co., Ltd., flaky silver), 100 parts by mass of Sylbest AgS-050 (manufactured by Tokiki Chemical Laboratory Co., Ltd., spherical silver), and 110 parts by mass of Silcote AgC-G (manufactured by Fukuda Metal Foil Powder Co., Ltd., microcrystalline silver) was weighed. Then, 4 parts by mass of Percure HO (manufactured by NOF Corporation) was weighed as a radical initiator.
 更に、モノマーとして、10質量部のKAYARAD DPHA(日本化薬(株)製、ジペンタエリスリトールヘキサアクリレート)と、5質量部のライトアクリレートL(共栄社化学(株)製、ラウリルアクリレート)と、5質量部のアロニックスM-140(東亞合成(株)製、N-アクリロイルオキシエチルヘキサヒドロフタルイミド)とを秤量した。また、希釈剤として、5質量部のノルマルパラフィン N-11(JX日鉱日石エネルギー(株)製)を秤量した。そして、秤量した各原料を混合することにより、実施例1に係る導電性組成物を製造した。 Furthermore, as a monomer, 10 parts by mass of KAYARAD DPHA (manufactured by Nippon Kayaku Co., Ltd., dipentaerythritol hexaacrylate), 5 parts by mass of light acrylate L (manufactured by Kyoeisha Chemical Co., Ltd., lauryl acrylate), and 5 parts by mass Part of Aronix M-140 (manufactured by Toagosei Co., Ltd., N-acryloyloxyethyl hexahydrophthalimide) was weighed. Further, 5 parts by mass of normal paraffin N-11 (manufactured by JX Nippon Oil & Energy Corporation) was weighed as a diluent. And the electrically conductive composition which concerns on Example 1 was manufactured by mixing each measured raw material.
 続いて、得られた導電性組成物を厚さ100μmのテフロン(登録商標)シートで挟み、更にこれをガラス板で挟んだ後、クリップで圧力を加えて固定した。この状態の導電性組成物を、温度を120℃に調整した熱風循環式乾燥機内に60分間設置することで、導電性組成物を硬化させた。これにより、実施例1に係る体積抵抗率測定用の導電性構造体が得られた。 Subsequently, the obtained conductive composition was sandwiched between 100 μm-thick Teflon (registered trademark) sheets, and further sandwiched between glass plates, and then fixed by applying pressure with clips. The conductive composition was cured by placing the conductive composition in this state for 60 minutes in a hot-air circulating drier whose temperature was adjusted to 120 ° C. Thereby, the conductive structure for volume resistivity measurement according to Example 1 was obtained.
 図3は、反力測定用の試料の概要を示す。 FIG. 3 shows an outline of a sample for reaction force measurement.
 ガラス板15上の両端にカプトンテープ50(厚さ:50μm)を貼り、カプトンテープ50間に実施例1に係る導電性組成物を塗布した。そして、この状態のガラス板15を窒素置換した密閉容器内に設置した。次に、この密閉容器内を120℃に調整し、実施例1に係る導電性組成物が塗布されたガラス板15に60分間の熱処理を施した。これにより、実施例1に係る反力測定用の導電性構造体1が得られた。なお、後述するように反力の測定は、ガラス板15上の導電性構造体1にプッシュゲージのロッド60を押し込むことにより実施した。 A Kapton tape 50 (thickness: 50 μm) was pasted on both ends of the glass plate 15, and the conductive composition according to Example 1 was applied between the Kapton tapes 50. And the glass plate 15 of this state was installed in the airtight container substituted by nitrogen. Next, the inside of the sealed container was adjusted to 120 ° C., and the glass plate 15 coated with the conductive composition according to Example 1 was subjected to heat treatment for 60 minutes. Thereby, the conductive structure 1 for reaction force measurement according to Example 1 was obtained. As will be described later, the reaction force was measured by pushing a rod 60 of a push gauge into the conductive structure 1 on the glass plate 15.
[実施例2]
 実施例2に係る導電性組成物は、実施例1とは導電性フィラーの構成が異なる点を除き、同一の成分を採用し、同一の工程で製造した。したがって、相違点を除き詳細な説明は省略する。実施例2においては、Ag製のフィラーとして、200質量部のシルベスト TCG-7((株)徳力化学研究所製、フレーク状銀)、70質量部のシルベスト AgS-050((株)徳力化学研究所製、球状銀)、及び140質量部のシルコート AgC-G(福田金属箔粉工業(株)製、微結晶状銀)を秤量した。
[Example 2]
The conductive composition according to Example 2 was manufactured in the same process using the same components except that the conductive filler was different from that in Example 1. Therefore, a detailed description is omitted except for differences. In Example 2, as a filler made of Ag, 200 parts by mass of Sylbest TCG-7 (manufactured by Tokoku Chemical Laboratories, Inc., flaky silver), 70 parts by mass of Sylbest AgS-050 (Tokuriki Chemical Research) Sokaku AgC-G (manufactured by Fukuda Metal Foil Powder Co., Ltd., microcrystalline silver) was weighed.
[実施例3]
 実施例3に係る導電性組成物は、実施例1とは導電性フィラーの構成が異なる点を除き、同一の成分を採用し、同一の工程で製造した。したがって、相違点を除き詳細な説明は省略する。実施例3においては、Ag製のフィラーとして、140質量部のシルベスト TCG-7((株)徳力化学研究所製、フレーク状銀)、50質量部のシルベスト AgS-050((株)徳力化学研究所製、球状銀)、及び100質量部のシルコート AgC-G(福田金属箔粉工業(株)製、微結晶状銀)を秤量した。
[Example 3]
The conductive composition according to Example 3 was manufactured in the same process using the same components except that the conductive filler was different from that in Example 1. Therefore, a detailed description is omitted except for differences. In Example 3, as Ag filler, 140 parts by mass of Sylbest TCG-7 (manufactured by Tokoku Chemical Laboratories, Inc., flaky silver), 50 parts by mass of Sylbest AgS-050 (Tokuriki Chemical Research Co., Ltd.) Sokaku AgC-G (manufactured by Fukuda Metal Foil Powder Co., Ltd., microcrystalline silver) was weighed.
[実施例4]
 実施例4に係る導電性組成物は、実施例1とは導電性フィラーの構成が異なる点を除き、同一の成分を採用し、同一の工程で製造した。したがって、相違点を除き詳細な説明は省略する。実施例4においては、Ag製のフィラーとして、300質量部のシルベスト TCG-7((株)徳力化学研究所製、フレーク状銀)、及び200質量部のシルコート AgC-G(福田金属箔粉工業(株)製、微結晶状銀)を秤量した。
[Example 4]
The conductive composition according to Example 4 was manufactured in the same process using the same components except that the conductive filler was different from that in Example 1. Therefore, a detailed description is omitted except for differences. In Example 4, as a filler made of Ag, 300 parts by mass of Sylbest TCG-7 (manufactured by Tokiki Chemical Laboratory Co., Ltd., flaky silver), and 200 parts by mass of Silcote AgC-G (Fukuda Metal Foil Powder Industry) Co., Ltd., microcrystalline silver) was weighed.
[実施例5]
 実施例5に係る導電性組成物は、実施例1とは導電性フィラーの構成が異なる点を除き、同一の成分を採用し、同一の工程で製造した。したがって、相違点を除き詳細な説明は省略する。実施例5においては、Ag製のフィラーとして、300質量部のシルベスト TCG-7((株)徳力化学研究所製、フレーク状銀)、100質量部のシルベスト AgS-050((株)徳力化学研究所製、球状銀)、及び200質量部のシルコート AgC-G(福田金属箔粉工業(株)製、微結晶状銀)を秤量した。
[Example 5]
The conductive composition according to Example 5 was manufactured in the same process using the same components except that the conductive filler was different from that in Example 1. Therefore, a detailed description is omitted except for differences. In Example 5, as a filler made of Ag, 300 parts by mass of Sylbest TCG-7 (manufactured by Tokoku Chemical Laboratories, Inc., flaky silver), 100 parts by weight of Sylbest AgS-050 (Tokuriki Chemical Research) Sokaku AgC-G (Fukuda Metal Foil Powder Co., Ltd., microcrystalline silver) was weighed.
[実施例6]
 実施例6に係る導電性組成物は、実施例1とは導電性フィラーの構成が異なる点を除き、同一の成分を採用し、同一の工程で製造した。したがって、相違点を除き詳細な説明は省略する。実施例6においては、Ag製のフィラーとして、100質量部のシルベスト TCG-7((株)徳力化学研究所製、フレーク状銀)、35質量部のシルベスト AgS-050((株)徳力化学研究所製、球状銀)、及び70質量部のシルコート AgC-G(福田金属箔粉工業(株)製、微結晶状銀)を秤量した。
[Example 6]
The conductive composition according to Example 6 was manufactured in the same process using the same components except that the conductive filler was different from that in Example 1. Therefore, a detailed description is omitted except for differences. In Example 6, as a filler made of Ag, 100 parts by mass of Sylbest TCG-7 (manufactured by Tokoku Chemical Laboratories, Inc., flaky silver), 35 parts by mass of Sylbest AgS-050 (Tokuriki Chemical Research Co., Ltd.) Sokaku AgC-G (manufactured by Fukuda Metal Foil Powder Co., Ltd., microcrystalline silver) was weighed.
(試験方法:体積抵抗率)
 実施例1乃至実施例6に係る体積抵抗率測定用の導電性構造体を用い、それぞれの体積抵抗率を測定した。体積抵抗率は、体積抵抗率測定用として製造した導電性構造体について4端針法測定により測定した。体積抵抗率の測定には、三菱化学アナリテック(株)製のロレスターMCP-T360を用いた。
(Test method: volume resistivity)
Using the conductive structures for volume resistivity measurement according to Examples 1 to 6, each volume resistivity was measured. The volume resistivity was measured by a four-end needle method measurement for a conductive structure manufactured for volume resistivity measurement. For the measurement of volume resistivity, Lorester MCP-T360 manufactured by Mitsubishi Chemical Analytech Co., Ltd. was used.
(試験方法:10回繰り返し後の反力)
 実施例1乃至実施例6に係る反力測定用の導電性部材を用い、それぞれの反力を測定した。反力の測定には、プッシュゲージ(アイコーエンジニアリング(株)製、デジタルプッシュプルゲージRX-1)のロッドの先端に直径2mmの円柱状のアタッチメントを取り付けたものを用いた。具体的に、プッシュゲージが有するロッドの先端に直径2mmの円柱状のアタッチメントを取り付けたものを導電性部材の表面に接触させ、この状態からロッドを導電性部材に垂直に押し込んだ場合における歪み(つまり、押し込み割合)と、当該歪みに対する反力とを測定することにより実施した。ここで、歪みは、ロッドを導電性部材の表面に接触させる前の導電性部材の大きさ(つまり、厚さ)を基準にして測定した。したがって、歪み「X%」とは、ロッド接触前の導電性部材の厚さの「X%」に相当する分だけ、ロッドが押し込まれた状態を示す。また、繰り返し押し込み後の「高さの変化率」とは、ロッド押し込み前の導電性部材の高さ(つまり、厚さ)に対するロッド離脱後の高さの変化率を示す。したがって、高さの変化率「Y%」とは、ロッド接触前の導電性部材の厚さの「Y%」に相当するだけ、導電性部材の厚さが初期の厚さから変化したことを示す。なお、導電性部材の高さの変化率が小さいほど、導電性部材が復元性に優れていることを示す。また、歪みに対する反力が小さいほど、導電性部材の柔軟性が優れていることを示す。この歪み、及び歪みに対する反力の測定を10回繰り返した。そして、以下の基準に基づいて各導電性部材について評価した。
 ◎:歪み30%において反力が2.0g以下で高さの変化率が10%以内
 〇:歪み30%において反力が2.0gを超え、4.0g以下で高さの変化率が10%以内
 △:歪み30%において反力が2.0g以下だが、高さの変化率が10%を超える、又は反力が4.0gを超える
 ×:歪み30%において反力が2.0g以下だが、高さの変化率が20%を超える、又は反力が5.0gを超える
(Test method: reaction force after 10 repetitions)
Using the reaction force measuring conductive members according to Examples 1 to 6, each reaction force was measured. For measuring the reaction force, a push gauge (digital push-pull gauge RX-1 manufactured by Aiko Engineering Co., Ltd.) having a cylindrical attachment with a diameter of 2 mm attached to the tip of the rod was used. Specifically, a rod gauge with a cylindrical attachment of 2 mm in diameter attached to the tip of a push gauge is brought into contact with the surface of the conductive member, and the strain when the rod is pushed vertically into the conductive member from this state ( That is, the measurement was performed by measuring the indentation ratio) and the reaction force against the distortion. Here, the strain was measured based on the size (that is, thickness) of the conductive member before the rod was brought into contact with the surface of the conductive member. Therefore, the strain “X%” indicates a state where the rod is pushed in by an amount corresponding to “X%” of the thickness of the conductive member before the rod contact. Further, “the rate of change in height” after repeated pushing indicates the rate of change in height after rod removal with respect to the height (that is, thickness) of the conductive member before pushing the rod. Therefore, the rate of change in height “Y%” means that the thickness of the conductive member has changed from the initial thickness by an amount corresponding to “Y%” of the thickness of the conductive member before the rod contact. Show. In addition, it shows that an electroconductive member is excellent in restoring property, so that the rate of change of the height of an electroconductive member is small. Moreover, it shows that the softness | flexibility of an electroconductive member is excellent, so that the reaction force with respect to distortion is small. The measurement of the strain and the reaction force against the strain was repeated 10 times. And each conductive member was evaluated based on the following criteria.
A: Reaction force is 2.0 g or less at 30% strain and the rate of change in height is within 10%. O: Reaction force exceeds 2.0 g at 30% strain and the rate of change in height is 10 at 4.0 g or less. Within% Δ: Reaction force is 2.0 g or less at 30% strain, but the rate of change in height exceeds 10%, or reaction force exceeds 4.0 g. ×: Reaction force is 2.0 g or less at 30% strain However, the rate of change in height exceeds 20%, or the reaction force exceeds 5.0 g.
(試験方法:1000回繰り返し後の反力)
 実施例1乃至実施例6に係る反力測定用の導電性部材を用い、それぞれの反力を測定した。反力の測定は、「試験方法:10回繰り返し後の反力」と同様に実施した。ただし、歪み、及び歪みに対する反力の測定回数を1000回にした。そして、以下の基準に基づいて各導電性部材について評価した。
 ◎:歪み30%において反力が2.0g以下で高さの変化率が10%以内
 〇:歪み30%において反力が2.0gを超え、4.0g以下で高さの変化率が10%以内
 △:歪み30%において反力が2.0g以下だが、高さの変化率が10%を超える、又は反力が4.0gを超える
 ×:歪み30%において反力が2.0g以下だが、高さの変化率が20%を超える、又は反力が5.0gを超える
(Test method: Reaction force after 1000 repetitions)
Using the reaction force measuring conductive members according to Examples 1 to 6, each reaction force was measured. The reaction force was measured in the same manner as “Test method: Reaction force after 10 repetitions”. However, the number of measurements of strain and reaction force against the strain was 1000. And each conductive member was evaluated based on the following criteria.
A: Reaction force is 2.0 g or less at 30% strain and the rate of change in height is within 10%. O: Reaction force exceeds 2.0 g at 30% strain and the rate of change in height is 10 at 4.0 g or less. Within% Δ: Reaction force is 2.0 g or less at 30% strain, but the rate of change in height exceeds 10%, or reaction force exceeds 4.0 g. ×: Reaction force is 2.0 g or less at 30% strain However, the rate of change in height exceeds 20%, or the reaction force exceeds 5.0 g.
 実施例1乃至実施例6に係る導電性組成物の原料組成、並びに導電性構造体の各試験結果について表1に示す。 Table 1 shows the raw material compositions of the conductive compositions according to Examples 1 to 6 and the test results of the conductive structures.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1を参照すると分かるように、実施例1乃至実施例6に係る導電性構造体はいずれも、プッシュゲージによる1000回の繰り返し押し込みをした後であっても、柔軟性を実質的に失わないことが示された。特に、実施例1乃至実施例3に係る導電性構造体は、1000回の繰り返し押し込み後であっても、試験前の柔軟性を実質的に維持していることが示された。また、実施例1乃至実施例6に係る導電性構造体は、2.20×10-4(Ω・cm)以上1.50×10-2(Ω・cm)以下の体積抵抗率を有しており、導電性も良好であることが示された。 As can be seen with reference to Table 1, the conductive structures according to Examples 1 to 6 do not substantially lose flexibility even after being repeatedly pushed 1000 times with a push gauge. It was shown that. In particular, it was shown that the conductive structures according to Examples 1 to 3 substantially maintain the flexibility before the test even after 1000 times of repeated pressing. In addition, the conductive structures according to Examples 1 to 6 have a volume resistivity of 2.20 × 10 −4 (Ω · cm) or more and 1.50 × 10 −2 (Ω · cm) or less. It was shown that the conductivity is also good.
 以上、本発明の実施の形態及び実施例を説明したが、上記に記載した実施の形態及び実施例は特許請求の範囲に係る発明を限定するものではない。また、実施の形態及び実施例の中で説明した特徴の組合せのすべてが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。 The embodiments and examples of the present invention have been described above. However, the embodiments and examples described above do not limit the invention according to the claims. In addition, it should be noted that not all the combinations of features described in the embodiments and examples are essential to the means for solving the problems of the invention.
 1 導電性構造体
 10、14 絶縁基板
 15 ガラス板
 16 貫通孔
 20 導電性構造体
 50 カプトンテープ
 60 ロッド
DESCRIPTION OF SYMBOLS 1 Conductive structure 10, 14 Insulating substrate 15 Glass plate 16 Through-hole 20 Conductive structure 50 Kapton tape 60 Rod

Claims (6)

  1.  復元性を有する導電性構造体であって、
     重合性オリゴマーと、
     導電性フィラーと、
     前記重合性オリゴマーの重合反応を開始させる開始剤と
    を含有する導電性組成物を所定の形状に硬化させて得られる導電性構造体。
    A conductive structure having resilience,
    A polymerizable oligomer;
    A conductive filler;
    A conductive structure obtained by curing a conductive composition containing an initiator for initiating a polymerization reaction of the polymerizable oligomer into a predetermined shape.
  2.  前記導電性フィラーが、前記重合性オリゴマー1重量部に対し、2.5重量部以上7.5重量部以下混合される請求項1に記載の導電性構造体。 The conductive structure according to claim 1, wherein the conductive filler is mixed in an amount of 2.5 parts by weight to 7.5 parts by weight with respect to 1 part by weight of the polymerizable oligomer.
  3.  所定の基材の予め定められた領域に前記導電性組成物を配置した後、配置された前記導電性組成物を硬化させて得られる請求項1又は2のいずれか1項に記載の導電性構造体。 The conductivity according to claim 1, which is obtained by arranging the conductive composition in a predetermined region of a predetermined substrate and then curing the arranged conductive composition. Structure.
  4.  所定の基材に、硬化された前記導電性組成物を添加して得られる請求項1又は2のいずれか1項に記載の導電性構造体。 The conductive structure according to any one of claims 1 and 2, obtained by adding the cured conductive composition to a predetermined substrate.
  5.  前記重合性オリゴマーが、ラジカル重合性のビニル基を有する化合物である請求項1~4のいずれか1項に記載の導電性構造体。 The conductive structure according to any one of claims 1 to 4, wherein the polymerizable oligomer is a compound having a radical polymerizable vinyl group.
  6.  復元性を有する導電性構造体の製造方法であって、
     前記導電性構造体の復元性を確保する重合性オリゴマーと、前記導電性構造体の復元性を確保する範囲で前記重合性オリゴマーに混合される導電性フィラーと、前記重合性オリゴマーの重合反応を開始させる開始剤とを含有する粘性を有する液状の導電性組成物を準備する組成物準備工程と、
     前記導電性組成物を予め定められた形状に成形する成形工程と、
     酸素遮断雰囲気下で加熱することで、前記導電性組成物を硬化させる硬化工程と
    を備える導電性構造体の製造方法。
    A method for producing a conductive structure having resilience,
    A polymerizable oligomer that ensures the restorability of the conductive structure, a conductive filler mixed with the polymerizable oligomer within a range that secures the restorability of the conductive structure, and a polymerization reaction of the polymerizable oligomer A composition preparing step of preparing a liquid conductive composition having a viscosity containing an initiator to be started;
    A molding step of molding the conductive composition into a predetermined shape;
    The manufacturing method of an electroconductive structure provided with the hardening process which hardens the said electroconductive composition by heating in oxygen interruption atmosphere.
PCT/JP2016/056484 2015-03-11 2016-03-02 Electroconductive structure and method for manufacturing same WO2016143640A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177023651A KR20170126877A (en) 2015-03-11 2016-03-02 Conductive structure and method for manufacturing conductive structure
JP2017505013A JPWO2016143640A1 (en) 2015-03-11 2016-03-02 Conductive structure and method for producing conductive structure
CN201680014123.8A CN107408422A (en) 2015-03-11 2016-03-02 The manufacture method of conductive structure and conductive structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015048601 2015-03-11
JP2015-048601 2015-03-11

Publications (1)

Publication Number Publication Date
WO2016143640A1 true WO2016143640A1 (en) 2016-09-15

Family

ID=56879386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056484 WO2016143640A1 (en) 2015-03-11 2016-03-02 Electroconductive structure and method for manufacturing same

Country Status (4)

Country Link
JP (1) JPWO2016143640A1 (en)
KR (1) KR20170126877A (en)
CN (1) CN107408422A (en)
WO (1) WO2016143640A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024009895A1 (en) * 2022-07-08 2024-01-11 株式会社レゾナック Composition containing (meth)acrylic polymer and metal particles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216487A (en) * 2010-04-01 2011-10-27 Bayer Materialscience Ag Polymer material containing polymer and silver nanoparticles dispersed in this polymer
JP2013035974A (en) * 2011-08-10 2013-02-21 Tokai Rubber Ind Ltd Flexible conductive material
WO2013146107A1 (en) * 2012-03-28 2013-10-03 東レ株式会社 Photosensitive conductive paste and method for producing conductive pattern
JP2014142587A (en) * 2012-12-28 2014-08-07 Toyo Ink Sc Holdings Co Ltd Photosensitive conductive ink and cured product of the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5616070B2 (en) * 2010-01-21 2014-10-29 株式会社フジクラ Electron beam curing conductive paste and circuit board manufacturing method using the same
JP5521848B2 (en) * 2010-07-21 2014-06-18 デクセリアルズ株式会社 Anisotropic conductive film, connection structure and manufacturing method thereof
KR102329065B1 (en) * 2012-04-25 2021-11-18 쇼와덴코머티리얼즈가부시끼가이샤 Circuit connection material, circuit connection structure, adhesive film, and wound body
CN103515025B (en) * 2013-09-30 2016-04-06 无锡晶睿光电新材料有限公司 A kind of low temperature curing type conductive photoreceptor slurry and the method with its making conducting wire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216487A (en) * 2010-04-01 2011-10-27 Bayer Materialscience Ag Polymer material containing polymer and silver nanoparticles dispersed in this polymer
JP2013035974A (en) * 2011-08-10 2013-02-21 Tokai Rubber Ind Ltd Flexible conductive material
WO2013146107A1 (en) * 2012-03-28 2013-10-03 東レ株式会社 Photosensitive conductive paste and method for producing conductive pattern
JP2014142587A (en) * 2012-12-28 2014-08-07 Toyo Ink Sc Holdings Co Ltd Photosensitive conductive ink and cured product of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024009895A1 (en) * 2022-07-08 2024-01-11 株式会社レゾナック Composition containing (meth)acrylic polymer and metal particles

Also Published As

Publication number Publication date
KR20170126877A (en) 2017-11-20
JPWO2016143640A1 (en) 2017-12-28
CN107408422A (en) 2017-11-28

Similar Documents

Publication Publication Date Title
JP5886957B2 (en) Conductive adhesive composition, conductive adhesive film, adhesion method, and circuit board
US8163835B2 (en) Anisotropic conductive adhesive composition, anisotropic conductive film comprising the same, and associated methods
EP0647251A1 (en) Surface mount conductive adhesives
TW201534673A (en) Adhesive-agent composition and adhesive film using the same
CN109312200B (en) Heat-curable conductive adhesive
TW201520259A (en) Photosensitive electroconductive paste, electroconductive thin film, magnetic circuit, and touch panel
CN112955481B (en) Conductive resin composition, conductive adhesive, and semiconductor device
KR101065870B1 (en) Circuit connection material, circuit member connecting structure and method of connecting circuit member
JP2018188602A (en) Two-liquid type curable composition, and product
WO2015151892A1 (en) Photosensitive conductive paste, conductive thin film, electrical circuit and touch panel
WO2016143640A1 (en) Electroconductive structure and method for manufacturing same
CN111886292A (en) Conductive composition and conductive structure using same
WO2023195398A1 (en) Adhesive composition, adhesive film for circuit connection, circuit connection structure, and method of producing same
JP2016167450A (en) Conductive member, manufacturing method of conductive member and conductive composition
JP6084145B2 (en) Anisotropic conductive adhesive composition and anisotropic conductive adhesive film using the same
JPWO2019131311A1 (en) Wiring board, manufacturing method of wiring board, and curable composition having conductivity
TWI592948B (en) Anisotropic conductive film and display device using the same
KR20140018901A (en) Resin paste composition for bonding semiconductor element, and semiconductor device
CN113168055A (en) Sealing agent for display element, cured product, vertical conduction material, and display element
JP2010222452A (en) Resin paste composition, and semiconductor device using the same
JP2016071173A (en) Photosensitive conductive paste, conductive thin film, electric circuit and touch panel
CN111479892A (en) Curable resin composition, cured body, electronic component, and assembled component
WO2022075227A1 (en) Composition, cured body, and metal base substrate
JP2019012631A (en) Conductive wiring sheet and method for producing wiring sheet
JP2005290569A (en) Glass fiber-treating agent, method for producing the same and glass paper

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761610

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017505013

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177023651

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761610

Country of ref document: EP

Kind code of ref document: A1