WO2016143562A1 - Rare earth complex, luminescent material and method for producing same, and luminescent sheet and method for producing same - Google Patents

Rare earth complex, luminescent material and method for producing same, and luminescent sheet and method for producing same Download PDF

Info

Publication number
WO2016143562A1
WO2016143562A1 PCT/JP2016/055916 JP2016055916W WO2016143562A1 WO 2016143562 A1 WO2016143562 A1 WO 2016143562A1 JP 2016055916 W JP2016055916 W JP 2016055916W WO 2016143562 A1 WO2016143562 A1 WO 2016143562A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
pom
atom
earth complex
cta
Prior art date
Application number
PCT/JP2016/055916
Other languages
French (fr)
Japanese (ja)
Inventor
中西 貴之
翼 岡井
長谷川 靖哉
北川 裕一
公志 伏見
Original Assignee
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学 filed Critical 国立大学法人北海道大学
Priority to JP2017504981A priority Critical patent/JP6799761B2/en
Publication of WO2016143562A1 publication Critical patent/WO2016143562A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/92Ketonic chelates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F11/00Compounds containing elements of Groups 6 or 16 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table

Definitions

  • the present invention it is possible to further improve the light emission of the rare earth complex having an inorganic ligand.
  • Infrared absorption spectra of CTA-Eu-POM, hfa and hfa-Eu-POM are shown.
  • the excitation spectra of Eu-POM, hfa-Eu-POM and Eu- (hfa) 3- (H 2 O) 2 are shown.
  • the emission spectra of Eu-POM, hfa-Eu-POM and Eu- (hfa) 3- (H 2 O) 2 are shown.
  • 2 shows the decay profile of hfa-Eu-POM emission lifetime in chloroform. The decay profile of the emission lifetime of solid hfa-Eu-POM is shown.
  • rare earth atoms include Sc, Y and lanthanoids (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu).
  • the rare earth atom may be a lanthanoid, Eu, Tb, Sm, Nd, Yb, Tm, Ce, Er or Pr, and Eu. Also good.
  • the rare earth atoms are present in the form of ions in the rare earth complex of the present embodiment.
  • the valence of the rare earth atom is not particularly limited and can be appropriately selected.
  • the organic ligand coordinated to the rare earth atom is not particularly limited, and may be an anionic ligand or a neutral ligand.
  • the organic ligand may be a ligand having a photosensitizing action capable of effectively exciting the coordinated rare earth atom in order to increase the emission intensity of the rare earth complex. Examples of such an organic ligand include organic ligands represented by formula (1), formula (2), or formula (3).
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, a halogenated alkyl group having 1 to 5 carbon atoms, an aryl group or a heteroaryl group.
  • the alkyl group may have 1 to 5 carbon atoms or 1 to 3 carbon atoms.
  • the halogenated alkyl group may have 1 to 5 carbon atoms or 1 to 3 carbon atoms.
  • Such an alkyl group may be, for example, a tertiary butyl group.
  • Examples of the halogen of the halogenated alkyl group include fluorine, chlorine, bromine, and iodine.
  • a naphthyl group or a thienyl group is mentioned, for example.
  • the organic ligand represented by the formula (1) may be a ligand in which R 1 and R 3 are trifluoromethyl groups and R 2 is a hydrogen atom, and R 1 and R 3 are methyl. It may be a ligand and R 2 is a hydrogen atom.
  • Examples of the compound that becomes the organic ligand represented by the formula (2) include salicylic acid. These compounds exhibit a high photosensitization effect especially on Eu among rare earth atoms.
  • the rare earth complex of this embodiment can have both the photosensitizing action of the organic ligand and the low vibration structure of the POM. Therefore, the rare earth complex of the present embodiment can exhibit excellent light-emitting properties among rare earth complexes having an inorganic ligand.
  • the excitation wavelength and emission wavelength of the rare earth complex are appropriately determined depending on each element (rare earth atom, organic ligand and POM) constituting the rare earth complex.
  • amphiphilic molecule having a hydrophilic group and a hydrophobic group is a molecule that functions as a micelle forming agent, also called a surfactant.
  • the amphiphilic molecule may have a cationic hydrophilic group.
  • the hydrophilic group may be, for example, an ammonium group, a pyridinium group, a carboxylate group, a sulfate group, or a sulfonate group, and may be an ammonium group or a pyridinium group from the viewpoint of being cationic.
  • An inorganic rare earth complex in which POM is coordinated to a rare earth atom can be prepared by a method that is commonly carried out by those skilled in the art.
  • a method for preparing Eu-POM complexes is described in Photo- and Electrochromism of Polymetallics and Related Materials (Yamase et al., Chem. Rev. 1998, vol 98, p 307-325).
  • the light emitting material of this embodiment is excellent in light emitting property and solubility in an organic solvent, it can be used for, for example, a light emitting film, ink, electroluminescence, and LED.
  • the luminescent film of this embodiment is obtained by removing the solvent from the applied film.
  • Examples of the method for removing the solvent include heating, drying, and freeze-drying.
  • FIG. 10 shows the excitation spectrum of each sample.
  • the excitation spectrum of hfa-Eu-POM was greatly shifted to the longer wavelength side compared to Eu-POM, and was also shifted to the longer wavelength side compared to Eu- (hfa) 3- (H 2 O) 2 .
  • FIG. 12 shows a decay profile of the emission lifetime of hfa-Eu-POM in chloroform.
  • FIG. 12 shows that since the attenuation of light emission is a straight line, hfa-Eu-POM obtained by synthesis is a single component, and its light emission lifetime was 0.89 ms. From the single component lifetime, it is inferred that the resulting compound has one Eu coordination geometry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Pyridine Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The rare earth complex according to the present invention has a rare earth atom, an organic ligand coordinated to the rare earth atom, and a polyoxometalate that contains a metal atom and an oxygen atom and that is coordinated to the rare earth atom.

Description

希土類錯体、発光材料及びその製造方法、並びに発光シート及びその製造方法Rare earth complex, luminescent material and method for producing the same, and luminescent sheet and method for producing the same
 本発明は、希土類錯体、発光材料及びその製造方法、並びに発光シート及びその製造方法に関する。 The present invention relates to a rare earth complex, a light emitting material and a manufacturing method thereof, and a light emitting sheet and a manufacturing method thereof.
 希土類金属は、光増幅作用、発光性等の物理的特徴を有するため、レーザー、ディスプレイ、照明材料等の様々な製品に利用されている。 Since rare earth metals have physical characteristics such as light amplification and light emission, they are used in various products such as lasers, displays, and lighting materials.
 希土類金属を用いた発光性の化合物としては、希土類錯体が知られている。良好な発光性を有する希土類錯体を得る方法としては、希土類原子の発光中心の光励起状態を多く作り出すこと、振動失活を抑止する分子環境(低振動)を作り出すこと等の方法がある。例えば、特許文献1には、効果的に希土類原子の光励起状態を作り出すことができる有機配位子を用いた、光増感作用を利用した希土類錯体が開示されている。一方、非特許文献1には、強い発光体を得るために有利とされる低振動の分子構造を有する分子として、無機配位子が配位した希土類錯体が開示されている。 Rare earth complexes are known as luminescent compounds using rare earth metals. As a method for obtaining a rare earth complex having good light-emitting properties, there are methods such as creating many photoexcited states of emission centers of rare earth atoms and creating a molecular environment (low vibration) that suppresses vibrational deactivation. For example, Patent Document 1 discloses a rare earth complex using a photosensitization effect using an organic ligand that can effectively create a photoexcited state of a rare earth atom. On the other hand, Non-Patent Document 1 discloses a rare earth complex in which an inorganic ligand is coordinated as a molecule having a low-vibration molecular structure that is advantageous for obtaining a strong luminescent material.
特開2003-81986号公報Japanese Patent Laid-Open No. 2003-81986
 しかしながら、非特許文献1に記載の希土類錯体は、低振動の分子構造を有するものの、有機配位子を用いた希土類錯体と比較すると、その発光性は低かった。そのため、無機配位子を用いた希土類錯体においても、優れた発光性を獲得することができる光増感作用を利用した希土類錯体が期待される。しかしながら、そのような希土類錯体は従来知られていなかった。 However, although the rare earth complex described in Non-Patent Document 1 has a low-vibration molecular structure, its light emitting property is low as compared with a rare earth complex using an organic ligand. For this reason, a rare earth complex using a photosensitizing action capable of obtaining excellent light-emitting properties is expected even in a rare earth complex using an inorganic ligand. However, such rare earth complexes have not been known so far.
 本発明は、上記事情に鑑み、無機配位子を有する希土類錯体に関して、発光性のさらなる改善を図ることを主な目的とする。 In view of the above circumstances, the main object of the present invention is to further improve the light-emitting property of a rare earth complex having an inorganic ligand.
 本発明者らは、両親媒性分子を利用することで、有機配位子及び無機配位子の両方を併せ持つ希土類錯体を調製でき、これが良好な発光性を示すことを見出した。本発明は、これらの知見に基づくものである。 The present inventors have found that by using an amphiphilic molecule, a rare earth complex having both an organic ligand and an inorganic ligand can be prepared, and this exhibits good light-emitting properties. The present invention is based on these findings.
 すなわち、本発明は、例えば、以下の[1]~[9]に関する。
[1]希土類原子と、希土類原子に配位している有機配位子と、金属原子及び酸素原子を含み、希土類原子に配位しているポリオキソメタレートと、を有する希土類錯体。
[2]ポリオキソメタレートが、1個の金属原子と、金属原子に配位している6個の酸素原子と、を含む八面体構造部分を有している、[1]に記載の希土類錯体。
[3]金属原子が、Mo、W、V、Si、P、Ge、Al又はAsである、[1]又は[2]に記載の希土類錯体。
[4]希土類原子が、Eu、Tb、Sm、Nd、Yb、Tm、Ce、Er又はPrである、請求項1~3のいずれか一項に記載の希土類錯体。
である、[1]~[3]のいずれかに記載の希土類錯体。
[5]有機配位子が、式(1)、式(2)又は式(3)で表される、[1]~[4]のいずれかに記載の希土類錯体。
Figure JPOXMLDOC01-appb-C000004
(式(1)中、R、R及びRは、それぞれ独立に、水素原子、炭素数1~15のアルキル基、炭素数1~5のハロゲン化アルキル基、アリール基又はヘテロアリール基を示す。)
Figure JPOXMLDOC01-appb-C000005
(式(2)中、R、R、R、R及びRは、それぞれ独立に、水素原子、炭素数1~5のアルキル基又は炭素数1~5のハロゲン化アルキル基を示す。)
Figure JPOXMLDOC01-appb-C000006
(式(3)中、R、R10、R11、R12、R13、R14、R15及びR16は、それぞれ独立に水素原子、炭素数1~3のアルキル基、炭素数6~12のアリール基、又は、RとR10、R10とR11、R11とR12、R12とR13、R13とR14、R14とR15、R15とR16若しくはR16とRがそれぞれ互いに連結して環を形成している炭化水素基を示す。)
[6][1]~[5]に記載の希土類錯体と、親水性基及び疎水性基を有する両親媒性分子と、を含む、発光材料。
[7]希土類原子にポリオキソメタレートが配位している無機希土類錯体と両親媒性分子との複合体を有機溶媒に溶解させる工程と、有機溶媒中で希土類原子に有機配位子を配位させる工程と、をこの順に備える、[6]に記載の発光材料の製造方法。
[8][6]に記載の発光材料及びポリマーを含む、発光性フィルム。
[9][6]に記載の発光材料及びポリマーと、これらが溶解している有機溶媒と、を含む膜から、有機溶媒を除去して発光性フィルムを形成する工程を備える、発光性フィルムの製造方法。
That is, the present invention relates to the following [1] to [9], for example.
[1] A rare earth complex having a rare earth atom, an organic ligand coordinated to the rare earth atom, and a polyoxometalate containing a metal atom and an oxygen atom and coordinated to the rare earth atom.
[2] The rare earth according to [1], wherein the polyoxometalate has an octahedral structure portion including one metal atom and six oxygen atoms coordinated to the metal atom. Complex.
[3] The rare earth complex according to [1] or [2], wherein the metal atom is Mo, W, V, Si, P, Ge, Al, or As.
[4] The rare earth complex according to any one of claims 1 to 3, wherein the rare earth atom is Eu, Tb, Sm, Nd, Yb, Tm, Ce, Er, or Pr.
The rare earth complex according to any one of [1] to [3], wherein
[5] The rare earth complex according to any one of [1] to [4], wherein the organic ligand is represented by formula (1), formula (2), or formula (3).
Figure JPOXMLDOC01-appb-C000004
(In the formula (1), R 1 , R 2 and R 3 are each independently a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, a halogenated alkyl group having 1 to 5 carbon atoms, an aryl group or a heteroaryl group. Is shown.)
Figure JPOXMLDOC01-appb-C000005
(In the formula (2), R 4 , R 5 , R 6 , R 7 and R 8 each independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or a halogenated alkyl group having 1 to 5 carbon atoms. Show.)
Figure JPOXMLDOC01-appb-C000006
(In the formula (3), R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 and R 16 are each independently a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or 6 carbon atoms. ~ 12 aryl groups, or R 9 and R 10 , R 10 and R 11 , R 11 and R 12 , R 12 and R 13 , R 13 and R 14 , R 14 and R 15 , R 15 and R 16 or R 16 and R 9 each represent a hydrocarbon group that is linked to each other to form a ring.)
[6] A light emitting material comprising the rare earth complex according to [1] to [5] and an amphiphilic molecule having a hydrophilic group and a hydrophobic group.
[7] Dissolving a complex of an inorganic rare earth complex in which polyoxometalate is coordinated to a rare earth atom and an amphiphilic molecule in an organic solvent, and arranging an organic ligand on the rare earth atom in the organic solvent. The method for producing a luminescent material according to [6], comprising the steps of:
[8] A light-emitting film comprising the light-emitting material and polymer according to [6].
[9] A luminescent film comprising a step of forming a luminescent film by removing an organic solvent from a film containing the luminescent material and polymer according to [6] and an organic solvent in which these are dissolved. Production method.
 本発明によれば、無機配位子を有する希土類錯体に関して、発光性のさらなる改善を図ることができる。 According to the present invention, it is possible to further improve the light emission of the rare earth complex having an inorganic ligand.
希土類錯体の一例を示す模式図である。It is a schematic diagram which shows an example of a rare earth complex. 発光材料の一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of a luminescent material. Eu-POM及びCTA-Eu-POMの回折パターンを示す。The diffraction patterns of Eu-POM and CTA-Eu-POM are shown. Eu-POM、CTA及びCTA-POMの赤外吸収スペクトルを示す。Infrared absorption spectra of Eu-POM, CTA and CTA-POM are shown. CTAの化学構造を示す。The chemical structure of CTA is shown. Eu-POM及びCTA-Eu-POMの励起スペクトルを示す。The excitation spectra of Eu-POM and CTA-Eu-POM are shown. Eu-POM及びCTA-Eu-POMの発光スペクトルを示す。The emission spectra of Eu-POM and CTA-Eu-POM are shown. CTA-Eu-POM及びhfa-Eu-POMの回折パターンを示す。The diffraction patterns of CTA-Eu-POM and hfa-Eu-POM are shown. CTA-Eu-POM、hfa、hfa-Eu-POMの赤外吸収スペクトルを示す。Infrared absorption spectra of CTA-Eu-POM, hfa and hfa-Eu-POM are shown. Eu-POM、hfa-Eu-POM及びEu-(hfa)-(HO)の励起スペクトルを示す。The excitation spectra of Eu-POM, hfa-Eu-POM and Eu- (hfa) 3- (H 2 O) 2 are shown. Eu-POM、hfa-Eu-POM及びEu-(hfa)-(HO)の発光スペクトルを示す。The emission spectra of Eu-POM, hfa-Eu-POM and Eu- (hfa) 3- (H 2 O) 2 are shown. クロロホルム中でのhfa-Eu-POMの発光寿命の衰退プロファイルを示す。2 shows the decay profile of hfa-Eu-POM emission lifetime in chloroform. 固体のhfa-Eu-POMの発光寿命の衰退プロファイルを示す。The decay profile of the emission lifetime of solid hfa-Eu-POM is shown.
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではない。 Hereinafter, a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail. In addition, this invention is not limited to the following embodiment.
<希土類錯体>
 図1は、本実施形態の希土類錯体の一例を示す模式図である。本実施形態の希土類錯体10は、希土類原子1と、希土類原子に配位している有機配位子2と、金属原子及び酸素原子を含み、希土類原子に配位しているポリオキソメタレート3と、を有する。
<Rare earth complex>
FIG. 1 is a schematic diagram showing an example of the rare earth complex of the present embodiment. The rare earth complex 10 of this embodiment includes a rare earth atom 1, an organic ligand 2 coordinated to the rare earth atom, a polyoxometalate 3 containing a metal atom and an oxygen atom and coordinated to the rare earth atom. And having.
 希土類原子としては、Sc、Y及びランタノイド(La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)が挙げられる。これらの中でも、発光波長及び発光強度の観点から、希土類原子はランタノイドであってもよく、Eu、Tb、Sm、Nd、Yb、Tm、Ce、Er又はPrであってもよく、Euであってもよい。希土類原子は、本実施形態の希土類錯体中ではイオンの形で存在する。希土類原子の原子価は、特に制限されるものではなく、適宜選択することができる。 Examples of rare earth atoms include Sc, Y and lanthanoids (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). Among these, from the viewpoint of emission wavelength and emission intensity, the rare earth atom may be a lanthanoid, Eu, Tb, Sm, Nd, Yb, Tm, Ce, Er or Pr, and Eu. Also good. The rare earth atoms are present in the form of ions in the rare earth complex of the present embodiment. The valence of the rare earth atom is not particularly limited and can be appropriately selected.
 希土類原子に配位している有機配位子は、特に制限されるものではなく、アニオン性配位子であってもよく、中性配位子であってもよい。有機配位子は、希土類錯体の発光強度を上げるために、配位した希土類原子を効果的に励起することができる光増感作用を有する配位子であってもよい。このような有機配位子としては、例えば、式(1)、式(2)又は式(3)で表される有機配位子が挙げられる。 The organic ligand coordinated to the rare earth atom is not particularly limited, and may be an anionic ligand or a neutral ligand. The organic ligand may be a ligand having a photosensitizing action capable of effectively exciting the coordinated rare earth atom in order to increase the emission intensity of the rare earth complex. Examples of such an organic ligand include organic ligands represented by formula (1), formula (2), or formula (3).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(1)中、R、R及びRは、それぞれ独立に、水素原子、炭素数1~15のアルキル基、炭素数1~5のハロゲン化アルキル基、アリール基又はヘテロアリール基を示す。アルキル基の炭素数は1~5であってもよく、1~3であってもよい。ハロゲン化アルキル基の炭素数は1~5であってもよく、1~3であってもよい。このようなアルキル基は、例えば、ターシャリーブチル基であってもよい。ハロゲン化アルキル基のハロゲンとしては、例えば、フッ素、塩素、臭素、又はヨウ素が挙げられる。アリール基又はヘテロアリール基としては、例えば、ナフチル基、又はチエニル基が挙げられる。 In the formula (1), R 1 , R 2 and R 3 each independently represent a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, a halogenated alkyl group having 1 to 5 carbon atoms, an aryl group or a heteroaryl group. Show. The alkyl group may have 1 to 5 carbon atoms or 1 to 3 carbon atoms. The halogenated alkyl group may have 1 to 5 carbon atoms or 1 to 3 carbon atoms. Such an alkyl group may be, for example, a tertiary butyl group. Examples of the halogen of the halogenated alkyl group include fluorine, chlorine, bromine, and iodine. As an aryl group or heteroaryl group, a naphthyl group or a thienyl group is mentioned, for example.
 式(1)で表される有機配位子は、R及びRがトリフルオロメチル基であり、Rが水素原子である配位子であってもよく、R及びRがメチル基であり、Rが水素原子である配位子であってもよい。 The organic ligand represented by the formula (1) may be a ligand in which R 1 and R 3 are trifluoromethyl groups and R 2 is a hydrogen atom, and R 1 and R 3 are methyl. It may be a ligand and R 2 is a hydrogen atom.
 式(1)で表される有機配位子となる化合物としては、例えば、ヘキサフルオロアセチルアセトン、アセチルアセトン、又は4,4,4-トリフルオロ-1-(2-チエニル)-1,3-ブタンジオンが挙げられる。これらの化合物は、希土類原子の中でも特にEuに対して、高い光増感作用を示す。 Examples of the compound serving as the organic ligand represented by the formula (1) include hexafluoroacetylacetone, acetylacetone, or 4,4,4-trifluoro-1- (2-thienyl) -1,3-butanedione. Can be mentioned. These compounds exhibit a high photosensitization effect especially on Eu among rare earth atoms.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(2)中、R、R、R、R及びRは、それぞれ独立に、水素原子、炭素数1~5のアルキル基又は炭素数1~5のハロゲン化アルキル基を示す。アルキル基の炭素数は1~5であってもよく、1~3であってもよい。ハロゲン化アルキル基の炭素数は1~5であってもよく、1~3であってもよい。ハロゲン化アルキル基のハロゲンとしては、例えば、フッ素、塩素、臭素、又はヨウ素が挙げられる。 In formula (2), R 4 , R 5 , R 6 , R 7 and R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or a halogenated alkyl group having 1 to 5 carbon atoms. . The alkyl group may have 1 to 5 carbon atoms or 1 to 3 carbon atoms. The halogenated alkyl group may have 1 to 5 carbon atoms or 1 to 3 carbon atoms. Examples of the halogen of the halogenated alkyl group include fluorine, chlorine, bromine, and iodine.
 式(2)で表される有機配位子は、R、R、R、R及びRが水素原子である配位子であってもよい。 The organic ligand represented by the formula (2) may be a ligand in which R 4 , R 5 , R 6 , R 7 and R 8 are hydrogen atoms.
 式(2)で表される有機配位子となる化合物としては、例えば、サリチル酸が挙げられる。これらの化合物は、希土類原子の中でも特にEuに対して、高い光増感作用を示す。 Examples of the compound that becomes the organic ligand represented by the formula (2) include salicylic acid. These compounds exhibit a high photosensitization effect especially on Eu among rare earth atoms.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(3)中、R、R10、R11、R12、R13、R14、R15及びR16は、それぞれ独立に水素原子、炭素数1~3のアルキル基、炭素数6~12のアリール基、又は、RとR10、R10とR11、R11とR12、R12とR13、R13とR14、R14とR15、R15とR16若しくはR16とRがそれぞれ互いに連結して環を形成している炭化水素基を示す。アルキル基の炭素数は1~3であってもよく、1であってもよい。アリール基の炭素数は6~12であってもよく、6~10であってもよい。 In the formula (3), R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 and R 16 are each independently a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or 6 to 6 carbon atoms. 12 aryl groups, or R 9 and R 10 , R 10 and R 11 , R 11 and R 12 , R 12 and R 13 , R 13 and R 14 , R 14 and R 15 , R 15 and R 16 or R 16 and R 9 each represent a hydrocarbon group that is linked to each other to form a ring. The alkyl group may have 1 to 3 carbon atoms or 1 carbon atom. The aryl group may have 6 to 12 carbon atoms or 6 to 10 carbon atoms.
 式(3)で表される有機配位子は、R及びR10が互いに連結してベンゼン環を形成している式(4)で表される配位子であってもよい。式(4)中、R11、R12、R13、R14、R15及びR16は水素原子であってもよい。 The organic ligand represented by the formula (3) may be a ligand represented by the formula (4) in which R 9 and R 10 are connected to each other to form a benzene ring. In formula (4), R 11 , R 12 , R 13 , R 14 , R 15 and R 16 may be hydrogen atoms.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(3)で表される有機配位子となる化合物としては、例えば、1,10-フェナントロリン、又はビピリジンが挙げられる。これらの化合物は、希土類原子の中でも特にEuに対して、高い光増感作用を示す。 Examples of the compound to be an organic ligand represented by the formula (3) include 1,10-phenanthroline or bipyridine. These compounds exhibit a high photosensitization effect especially on Eu among rare earth atoms.
 希土類原子に配位しているポリオキソメタレート(POM)は、金属原子(M)に酸素原子(O)が複数配位することで構成される。 Polyoxometalate (POM) coordinated to rare earth atoms is constituted by coordination of a plurality of oxygen atoms (O) to metal atoms (M).
 POMは、金属原子に配位している酸素原子の数によって、例えば、MO四面体、MO五面体、又はMO八面体の構造を形成する。本実施形態に係るPOMは、1個の金属原子と、金属原子に配位している6個の酸素原子と、を含む八面体構造(MO八面体)部分を有していてもよい。POMは、一種類の金属原子と酸素原子とから構成されるイソポリオキソメタレートであってもよく、ヘテロ原子を更に含むヘテロポリオキソメタレートであってもよい。本実施形態に係るPOMは、複数の上記多面体構造部分が結合している複合体であってもよい。 POM forms, for example, an MO 4 tetrahedron, MO 5 pentahedron, or MO 6 octahedron structure depending on the number of oxygen atoms coordinated to a metal atom. The POM according to this embodiment may have an octahedral structure (MO 6 octahedron) portion including one metal atom and six oxygen atoms coordinated to the metal atom. The POM may be an isopolyoxometalate composed of one kind of metal atom and an oxygen atom, or may be a heteropolyoxometalate further containing a heteroatom. The POM according to the present embodiment may be a complex in which a plurality of the polyhedral structure parts are combined.
 POMに含まれる金属原子は、酸素原子と錯体を形成できる金属原子であれば特に制限されるものではない。金属原子は、例えば、Mo、W、V、Si、P、Ge、Al、又はAsであってもよい。これらの中でも、八面体構造部分を形成することができるという観点から、金属原子は六価の金属原子であってもよい。六価の金属原子としては、例えば、Mo、Wが挙げられる。 The metal atom contained in POM is not particularly limited as long as it is a metal atom capable of forming a complex with an oxygen atom. The metal atom may be, for example, Mo, W, V, Si, P, Ge, Al, or As. Among these, the metal atom may be a hexavalent metal atom from the viewpoint that an octahedral structure portion can be formed. Examples of the hexavalent metal atom include Mo and W.
 本実施形態に係るPOMとしては、例えば、リンドクヴィスト型又はケギン型のポリ酸が挙げられる。 As the POM according to the present embodiment, for example, a Lindkvist type or Keggin type polyacid may be mentioned.
 本実施形態の希土類錯体としては、例えば、式(5)、式(6)、式(7)、又は式(8)で表される希土類錯体を挙げることができる。ただし、本発明はこれに限定されるものではない。 As a rare earth complex of this embodiment, the rare earth complex represented by Formula (5), Formula (6), Formula (7), or Formula (8) can be mentioned, for example. However, the present invention is not limited to this.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 本実施形態の希土類錯体は、有機配位子が有する光増感作用と、POMが有する低振動な構造と、を併せ持つことができる。そのため、本実施形態の希土類錯体は、無機配位子を有する希土類錯体の中でも、優れた発光性を示すことができる。希土類錯体の励起波長及び発光波長は、希土類錯体を構成する各要素(希土類原子、有機配位子及びPOM)によって、適宜決定される。 The rare earth complex of this embodiment can have both the photosensitizing action of the organic ligand and the low vibration structure of the POM. Therefore, the rare earth complex of the present embodiment can exhibit excellent light-emitting properties among rare earth complexes having an inorganic ligand. The excitation wavelength and emission wavelength of the rare earth complex are appropriately determined depending on each element (rare earth atom, organic ligand and POM) constituting the rare earth complex.
<発光材料>
 図2は、発光材料の一実施形態を示す模式図である。本実施形態の発光材料20は、上記実施形態に係る希土類錯体10と、親水性基4a及び疎水性基4bを有する両親媒性分子4と、を含んでいてもよい。両親媒性分子4は、その親水性基4aが希土類錯体10側となる向きで、希土類錯体10の周囲に配置されており、親水性基4aと希土類錯体10とが相互作用している。発光材料20は、希土類錯体10の周辺部に両親媒性分子4が相互作用を介して存在している。発光材料を形成する希土類錯体及び両親媒性分子の質量比(希土類錯体/両親媒性分子)が1/1~1/100であってもよい。質量比は、例えば、希土類錯体/両親媒性分子が1/10であってもよく、1/4であってもよい。
<Light emitting material>
FIG. 2 is a schematic view showing an embodiment of a light emitting material. The light emitting material 20 of the present embodiment may include the rare earth complex 10 according to the above embodiment and the amphiphilic molecule 4 having the hydrophilic group 4a and the hydrophobic group 4b. The amphiphilic molecule 4 is arranged around the rare earth complex 10 such that the hydrophilic group 4a is on the rare earth complex 10 side, and the hydrophilic group 4a and the rare earth complex 10 interact with each other. In the luminescent material 20, the amphiphilic molecule 4 exists in the periphery of the rare earth complex 10 through the interaction. The mass ratio of the rare earth complex and the amphiphilic molecule (rare earth complex / amphiphilic molecule) forming the light emitting material may be 1/1 to 1/100. The mass ratio may be, for example, 1/10 of the rare earth complex / amphiphilic molecule or 1/4.
 親水性基及び疎水性基を有する両親媒性分子は、界面活性剤とも呼ばれるミセル形成剤として機能する分子である。両親媒性分子は、親水性基がカチオン系のものであってもよい。親水性基は、例えば、アンモニウム基、ピリジニウム基、カルボキシラート基、サルフェート基、又はスルホネート基であってもよく、カチオン系であるという観点から、アンモニウム基、又はピリジニウム基であってもよい。疎水性基は、例えば、炭素数6~18のアルキル基、炭素数6~16のアルキルベンゼン基、アルキルナフタレン基、炭素数4~9のペルフルオロアルキル基、ポリプロピレンオキサイド、又はポリシロキサンであってもよい。アルキル基は、直鎖アルキルであってもよく、分岐鎖アルキルであってもよい。両親媒性分子としては、例えば、セチルトリメチルアンモニウムブロマイド(CTA)、ジメチルジオクタデシルアンモニムブロマイド(DODA)、ドデシルトリメチルアンモニウムブロマイド(DDTA)、ドデシル11メタクリルオキシウンデシルジメチルアンモニウムブロマイド(DMDA)、及びジ11ヒドロキシウンデシルジメチルアンモニウムブロマイド(DODHA)が挙げられる。 An amphiphilic molecule having a hydrophilic group and a hydrophobic group is a molecule that functions as a micelle forming agent, also called a surfactant. The amphiphilic molecule may have a cationic hydrophilic group. The hydrophilic group may be, for example, an ammonium group, a pyridinium group, a carboxylate group, a sulfate group, or a sulfonate group, and may be an ammonium group or a pyridinium group from the viewpoint of being cationic. The hydrophobic group may be, for example, an alkyl group having 6 to 18 carbon atoms, an alkylbenzene group having 6 to 16 carbon atoms, an alkylnaphthalene group, a perfluoroalkyl group having 4 to 9 carbon atoms, polypropylene oxide, or polysiloxane. . The alkyl group may be straight chain alkyl or branched chain alkyl. Examples of amphiphilic molecules include cetyltrimethylammonium bromide (CTA), dimethyldioctadecylammonium bromide (DODA), dodecyltrimethylammonium bromide (DDTA), dodecyl-11 methacryloxyundecyldimethylammonium bromide (DMDA), 11 hydroxyundecyldimethylammonium bromide (DODHA).
 本実施形態に係る両親媒性分子としては、例えば、式(9)で表される分子が挙げられる。 Examples of the amphiphilic molecule according to this embodiment include a molecule represented by the formula (9).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 本実施形態の発光材料は、例えば、希土類原子にPOMが配位している無機希土類錯体と両親媒性分子との複合体を有機溶媒に溶解させる工程と、有機溶媒中で希土類原子に有機配位子を配位させる工程と、をこの順に備える方法により、得ることができる。 The light-emitting material of this embodiment includes, for example, a step of dissolving a complex of an inorganic rare earth complex in which POM is coordinated with a rare earth atom and an amphiphilic molecule in an organic solvent, and an organic arrangement on the rare earth atom in the organic solvent. The step of coordinating ligands can be obtained by a method comprising this order.
 希土類原子、POM、有機配位子及び両親媒性分子は、それぞれ上述したものを用いることができる。 As the rare earth atom, POM, organic ligand and amphiphilic molecule, those described above can be used.
 希土類原子にPOMが配位した無機希土類錯体は、当業者が通常実施する方法により調製することができる。例えば、Eu-POM錯体の調製方法が、Photo- and Electrochromism of Polyoxometalates and Related Materials(Yamaseら、Chem. Rev. 1998、vol 98、p307-325)に記載されている。 An inorganic rare earth complex in which POM is coordinated to a rare earth atom can be prepared by a method that is commonly carried out by those skilled in the art. For example, a method for preparing Eu-POM complexes is described in Photo- and Electrochromism of Polymetallics and Related Materials (Yamase et al., Chem. Rev. 1998, vol 98, p 307-325).
 反応に用いる有機溶媒は、ハロゲン系の有機溶媒であってもよい。ハロゲン系の有機溶媒としては、例えば、クロロホルム、又はジクロロメタンが挙げられる。これらの溶媒に、原料である無機希土類錯体及び生成物である発光材料が良好に溶解する。 The organic solvent used for the reaction may be a halogen-based organic solvent. Examples of the halogen-based organic solvent include chloroform and dichloromethane. In these solvents, the inorganic rare earth complex as a raw material and the light emitting material as a product dissolve well.
 以下に、本実施形態の希土類錯体を含む発光材料の製造方法の一例を説明するが、本発明はこれに限定されるものではない。 Hereinafter, an example of a method for producing a light emitting material containing the rare earth complex of the present embodiment will be described, but the present invention is not limited to this.
 ガラス容器に無機希土類錯体及び水を加え、攪拌し、無機希土類錯体を溶解させる。その後、両親媒性分子を溶解した溶媒を攪拌しながらガラス容器に滴下する。この時、加熱還流しながら無機希土類錯体と両親媒性分子との反応を進行させてもよい。反応時間及び温度は、溶媒の種類及び反応の進行の程度により適宜設定することができる。反応後、溶媒を回収し、濃縮することで無機希土類錯体と両親媒性分子との複合体を中間産物として得る。複合体は、溶媒を用いて再結晶化してもよい。 Add an inorganic rare earth complex and water to a glass container and stir to dissolve the inorganic rare earth complex. Thereafter, the solvent in which the amphiphilic molecules are dissolved is dropped into the glass container while stirring. At this time, the reaction between the inorganic rare earth complex and the amphiphilic molecule may proceed while heating under reflux. The reaction time and temperature can be appropriately set depending on the type of solvent and the degree of progress of the reaction. After the reaction, the solvent is recovered and concentrated to obtain a complex of an inorganic rare earth complex and an amphiphilic molecule as an intermediate product. The complex may be recrystallized using a solvent.
 ガラス容器に得られた中間産物及び溶媒を加え、攪拌し、中間産物を溶解させる。その後、有機配位子となる化合物を攪拌しながら、ガラス容器に滴下する。この時、加熱還流しながら中間産物と有機配位子との反応を進行させてもよい。反応時間及び温度は、溶媒の種類及び反応の進行の程度により適宜設定することができる。反応後、溶媒を回収し、濃縮することで、希土類錯体の周辺に両親媒性分子が相互作用を介して存在する発光材料を得る。発光材料は、溶媒を用いて再結晶化してもよい。 Add the intermediate product and solvent obtained in the glass container and stir to dissolve the intermediate product. Then, the compound which becomes an organic ligand is dripped at a glass container, stirring. At this time, the reaction between the intermediate product and the organic ligand may be allowed to proceed while heating under reflux. The reaction time and temperature can be appropriately set depending on the type of solvent and the degree of progress of the reaction. After the reaction, the solvent is collected and concentrated to obtain a luminescent material in which amphiphilic molecules exist around the rare earth complex through the interaction. The luminescent material may be recrystallized using a solvent.
 本実施形態の発光材料は、有機溶媒に対する溶解性を示し、溶媒中で発光性を示す。本実施形態の発光材料が溶解性を有することの詳しい原理は未だ明らかではない。例えば、両親媒性分子が希土類錯体との相互作用を介して、希土類錯体の周辺に存在することでミセルのような膜が形成されることで、発光材料が有機溶媒への溶解性を獲得したものと考えられる。 The luminescent material of the present embodiment exhibits solubility in an organic solvent and exhibits luminescence in the solvent. The detailed principle that the luminescent material of this embodiment has solubility is not yet clear. For example, a film like a micelle is formed by the presence of amphiphilic molecules around the rare earth complex through the interaction with the rare earth complex, so that the light emitting material has obtained solubility in an organic solvent. It is considered a thing.
 本実施形態の発光材料は、発光性及び有機溶媒への溶解性に優れるため、例えば、発光性のフィルム、インク、エレクトロルミネッセンス、LEDに利用することができる。 Since the light emitting material of this embodiment is excellent in light emitting property and solubility in an organic solvent, it can be used for, for example, a light emitting film, ink, electroluminescence, and LED.
<発光性フィルム>
 本実施形態の発光性フィルムは、上述した発光材料及びポリマーを含む。
<Luminescent film>
The luminescent film of this embodiment contains the luminescent material and polymer mentioned above.
 ポリマーは、発光材料の発光性に影響を与えないものであれば、特に制限されるものではない。このようなポリマーとしては、例えば、ポリメタクリル酸メチル樹脂(PMMA)等の(メタ)アクリル樹脂、ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリビニルアルコール樹脂、ポリプロピレン樹脂、エポキシ樹脂等の有機ポリマーが挙げられる。本明細書において、(メタ)アクリルとは、アクリル又はメタクリルのいずれかの意味で用いられる。 The polymer is not particularly limited as long as it does not affect the light emitting property of the light emitting material. Examples of such a polymer include organic polymers such as (meth) acrylic resins such as polymethyl methacrylate resin (PMMA), polyethylene resins, polyvinyl chloride resins, polyvinyl alcohol resins, polypropylene resins, and epoxy resins. In this specification, (meth) acryl is used in the meaning of either acrylic or methacrylic.
 本実施形態の発光性フィルムには、発光性に影響のない範囲で、種々の添加剤を添加してもよい。発光性フィルムの厚みは、0.01mm~5mmであってもよい。 Various additives may be added to the luminescent film of the present embodiment as long as the luminescent property is not affected. The thickness of the luminescent film may be 0.01 mm to 5 mm.
 本実施形態の発光性フィルムの製造方法は、発光材料及びポリマーと、これらが溶解している有機溶媒と、を含む膜から、有機溶媒を除去して発光性フィルムを形成する工程を備える。より具体的には、発光性フィルムの製造方法は、発光材料及びポリマーと、これらが溶解している有機溶媒と、必要に応じて添加される種々の添加剤と、を含む組成物を膜状に成形し、その後、膜状の組成物から有機溶媒を除去して発光性フィルムを形成する工程を備える。 The method for producing a luminescent film of this embodiment includes a step of forming a luminescent film by removing an organic solvent from a film containing a luminescent material and a polymer and an organic solvent in which the luminescent material and polymer are dissolved. More specifically, a method for producing a light-emitting film is a film-like composition comprising a light-emitting material and a polymer, an organic solvent in which these are dissolved, and various additives added as necessary. And then forming a luminescent film by removing the organic solvent from the film-like composition.
 発光材料の含有量は、組成物全量を基準として、0.001~20質量%であってもよく、0.001~5質量%であってもよく、0.001~1質量%であってもよい。発光材料の含有量を上記割合にすることで、良好な発光性を有する発光性フィルムが得られやすい。 The content of the luminescent material may be 0.001 to 20% by mass, 0.001 to 5% by mass, or 0.001 to 1% by mass based on the total amount of the composition. Also good. By setting the content of the light emitting material to the above ratio, a light emitting film having good light emitting properties can be easily obtained.
 ポリマーの含有量は、組成物全量を基準として、0.999~80質量%であってもよく、0.999~95質量%であってもよく、0.999~99質量%であってもよい。ポリマーの含有量を上記割合にすることで、良好な発光性及び強度を有する発光性フィルムが得られやすい。 The polymer content may be 0.999 to 80% by mass, 0.999 to 95% by mass, or 0.999 to 99% by mass based on the total amount of the composition. Good. By setting the polymer content to the above ratio, a light-emitting film having good light-emitting properties and strength can be easily obtained.
 溶媒は、発光材料及びポリマーが溶解するものであれば、特に制限されるものではない。溶媒としては、例えば、クロロホルム、ジクロロメタンが挙げられる。 The solvent is not particularly limited as long as it can dissolve the light emitting material and the polymer. Examples of the solvent include chloroform and dichloromethane.
 発光材料及びポリマーが溶解している有機溶媒を膜にするための方法としては、例えば、支持体上に発光材料及びポリマーが溶解している溶媒を膜状に塗布する方法が挙げられる。 As a method for forming an organic solvent in which a light emitting material and a polymer are dissolved into a film, for example, a method in which a solvent in which a light emitting material and a polymer are dissolved is applied on a support in a film form.
 塗布された膜から溶媒を除去することにより、本実施形態の発光性フィルムが得られる。溶媒を除去するための方法としては、例えば、加熱、乾燥、凍結乾燥が挙げられる。 The luminescent film of this embodiment is obtained by removing the solvent from the applied film. Examples of the method for removing the solvent include heating, drying, and freeze-drying.
 本実施形態の希土類錯体は発光材料に溶解性を示すことから、溶解性が低い場合に必要なナノ粒子化等の工程を必要としないため、余分なコストを抑えつつ、比較的容易に発光性フィルムを製造することができる。 Since the rare earth complex of the present embodiment exhibits solubility in the light emitting material, it does not require a step such as nanoparticulation required when the solubility is low, and thus it is relatively easy to emit light while suppressing extra cost. A film can be produced.
1:CTA-Eu-POMの合成及び構造測定
(CTA-Eu-POMの合成)
 ガラス容器に、Euにポリオキソメタレートが配位している錯体であるEu-POM(Na[EuW1036]32HO)0.3g(0.09mmol)及び蒸留水3mLを加え、攪拌した。Eu-POMが溶解した後、セチルトリメチルアンモニウムブロマイド(CTA)0.6g(0.9mmol)を溶解したクロロホルム溶液6mLを、ガラス容器に攪拌しながら滴下した。次いで、オイルバスを用いて、60℃で6時間加熱還流しながらEu-POMとCTAとの反応を進行させた。反応終了後、分液漏斗を用いて、反応液からクロロホルム層を回収し、回収したクロロホルムに硫酸マグネシウムを加え、脱水した。その後、クロロホルムから硫酸マグネシウムを除去し、エバポレーターを用いてクロロホルムを除去した。クロロホルムを除去して得られた残渣にクロロホルムを加え、再結晶化を行うことで、複合体である0.4~0.7gの白色固体(CTA-Eu-POM)を得た。
1: Synthesis and structural measurement of CTA-Eu-POM (synthesis of CTA-Eu-POM)
In a glass container, 0.3 g (0.09 mmol) of Eu-POM (Na 9 [EuW 10 O 36 ] 32H 2 O), which is a complex in which polyoxometalate is coordinated to Eu, and 3 mL of distilled water are added, Stir. After Eu-POM was dissolved, 6 mL of a chloroform solution in which 0.6 g (0.9 mmol) of cetyltrimethylammonium bromide (CTA) was dissolved was added dropwise to the glass container with stirring. Next, using an oil bath, the reaction between Eu-POM and CTA was allowed to proceed while heating at 60 ° C. for 6 hours under reflux. After completion of the reaction, the chloroform layer was recovered from the reaction solution using a separatory funnel, and magnesium sulfate was added to the recovered chloroform for dehydration. Thereafter, magnesium sulfate was removed from chloroform, and chloroform was removed using an evaporator. Chloroform was added to the residue obtained by removing chloroform and recrystallization was performed to obtain 0.4 to 0.7 g of a white solid (CTA-Eu-POM) as a complex.
(構造測定方法)
 反応前後で構造変化が起きていることを確認するため、Eu-POM、CTA及びCTA-Eu-POMに関して、XRD測定、赤外分光法による赤外吸収スペクトルの測定及び13C-NMR測定を行った。
(Structure measurement method)
In order to confirm structural changes before and after the reaction, XRD measurement, infrared absorption spectrum measurement by infrared spectroscopy and 13 C-NMR measurement were performed on Eu-POM, CTA and CTA-Eu-POM. It was.
(結果)
 Eu-POM及びCTA-Eu-POMの回折パターンを図3に示す。Eu-POMでは10°~15°の間に見られた回折ピークが反応後には消失し、10°以下の領域、22°及び25°のところに新たな回折ピークが現れた。このことから、CTA-Eu-POMの構造は、Eu-POMとは異なることが示された。
(result)
The diffraction patterns of Eu-POM and CTA-Eu-POM are shown in FIG. In Eu-POM, the diffraction peak observed between 10 ° and 15 ° disappeared after the reaction, and new diffraction peaks appeared in the region of 10 ° or less, 22 ° and 25 °. This indicates that the structure of CTA-Eu-POM is different from Eu-POM.
 Eu-POM、CTA及びCTA-Eu-POMの赤外吸収スペクトルを図4に示す。CTAにみられる2908cm-1、2840cm-1及び1465cm-1のピークはC-H伸縮振動及びCH骨格振動に帰属される。これらのピークは、CTA-Eu-POMでは、2916cm-1、2849cm-1及び1473cm-1のように、それぞれやや高波数側にシフトした。Eu-POMにみられる1653cm-1のピークはW=O伸縮振動に帰属される。このピークは、CTA-Eu-POMでは、1648cm-1のように、やや低波数側にシフトした。このことから、CTA-Eu-POMの構造は、Eu-POM及びCTAの両原料とは異なることが示された。 Infrared absorption spectra of Eu-POM, CTA and CTA-Eu-POM are shown in FIG. 2908Cm -1 seen in CTA, the peak of 2840cm -1 and 1465cm -1 are assigned to CH stretching vibration and CH 2 skeleton vibration. In CTA-Eu-POM, these peaks were shifted slightly toward higher wave numbers, such as 2916 cm −1 , 2849 cm −1 and 1473 cm −1 , respectively. The peak at 1653 cm −1 seen in Eu-POM is attributed to W═O stretching vibration. In CTA-Eu-POM, this peak shifted slightly to the lower wavenumber side as 1648 cm −1 . This indicates that the structure of CTA-Eu-POM is different from both Eu-POM and CTA raw materials.
 CTA及びCTA-Eu-POMの13C-NMR測定により得られた主な炭素のシグナル(図5に示すCTAの1~4番の炭素に由来するシグナル)を表1に示す。CTAに比べ、CTA-Eu-POMでは、1番の炭素由来のシグナルは0.057ppm高磁場側にシフトし、2番の炭素由来のシグナルは0.038ppm低磁場側にシフトした。このことから、CTA-Eu-POMでは、CTAのプラスに帯電したN部位がアニオンであるPOM配位子にクーロン的に配位したことが示唆される。 Table 1 shows the main carbon signals obtained by 13 C-NMR measurement of CTA and CTA-Eu-POM (signals derived from carbon Nos. 1 to 4 of CTA shown in FIG. 5). Compared to CTA, in CTA-Eu-POM, the signal derived from carbon No. 1 was shifted to the high magnetic field side by 0.057 ppm, and the signal derived from carbon No. 2 was shifted to the low magnetic field side by 0.038 ppm. This suggests that in CTA-Eu-POM, the positively charged N site of CTA coordinated to the anion POM ligand in a Coulomb manner.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
2:CTA-Eu-POMの溶解性及び光学的特性の測定
(溶解性試験)
 CTA-Eu-POMの溶解性を検討するため、蒸留水、アセトン、メタノール、エタノール、THF、酢酸エチル及びクロロホルムを用いて溶解性試験を行った。溶解性試験は、ガラス容器に、CTA-Eu-POM20mg及び各種溶媒50mLを加え攪拌し、10分後の混合液の状態を観察した。
2: Measurement of solubility and optical properties of CTA-Eu-POM (solubility test)
In order to examine the solubility of CTA-Eu-POM, a solubility test was performed using distilled water, acetone, methanol, ethanol, THF, ethyl acetate and chloroform. In the solubility test, 20 mg of CTA-Eu-POM and 50 mL of various solvents were added to a glass container and stirred, and the state of the mixed solution after 10 minutes was observed.
(光学的特性の測定)
 蛍光光度計を用いて、Eu-POM及びCTA-Eu-POMの励起スペクトル及び発光スペクトルを測定した。それぞれの測定には、Eu-POM10mgを蒸留水10mLに溶解したサンプル、及びCTA-Eu-POM10mgをクロロホルム10mLに溶解したサンプルを用いた。
(Measurement of optical characteristics)
The excitation spectrum and emission spectrum of Eu-POM and CTA-Eu-POM were measured using a fluorometer. For each measurement, a sample in which 10 mg of Eu-POM was dissolved in 10 mL of distilled water and a sample in which 10 mg of CTA-Eu-POM was dissolved in 10 mL of chloroform were used.
(結果)
 CTA-Eu-POMの溶解性試験の結果を表2に示す。CTA-Eu-POMは、蒸留水等の溶媒に対しては沈殿を生じたが、クロロホルム及びジクロロメタン中では高い透明性を維持し、溶解することが分かった。
(result)
The results of the solubility test of CTA-Eu-POM are shown in Table 2. CTA-Eu-POM was found to precipitate in solvents such as distilled water, but remained highly transparent and dissolved in chloroform and dichloromethane.
 Eu-POM及びCTA-Eu-POMの励起スペクトルを図6に、磁気双極子遷移(5D0→7F1)で規格化した発光スペクトルを図7に、それぞれ示す。図6に示されるように、CTA-Eu-POMの励起スペクトルはEu-POMの励起スペクトルに比べて、短波長側にシフトしていた。このことから、CTA-Eu-POMになったことで、Eu-POMの電荷移動遷移(CT遷移)が変化することが示された。また、図7に示されるように、CTA-Eu-POMの発光スペクトルは、Eu-POMの発光スペクトルに比べて、電気双極子遷移(5D0→7F2)の発光がわずかに変化することが示された。 The excitation spectra of Eu-POM and CTA-Eu-POM are shown in FIG. 6, and the emission spectrum normalized by the magnetic dipole transition (5D0 → 7F1) is shown in FIG. As shown in FIG. 6, the excitation spectrum of CTA-Eu-POM was shifted to the short wavelength side compared to the excitation spectrum of Eu-POM. From this, it was shown that the charge transfer transition (CT transition) of Eu-POM changes by becoming CTA-Eu-POM. Further, as shown in FIG. 7, the emission spectrum of CTA-Eu-POM shows that the emission of the electric dipole transition (5D0 → 7F2) slightly changes compared to the emission spectrum of Eu-POM. It was.
3:hfa-Eu-POM(発光材料)の合成及び構造測定
(hfa-Eu-POMの合成)
 ガラス容器にCTA-Eu-POM80mg及びクロロホルム5mLを加え攪拌した。CTA-Eu-POMが溶解した後、ヘキサフルオロアセチルアセトン(hfa)4.6mg(0.02mmol)をガラス容器に攪拌しながら滴下した。次いで、オイルバスを用いて、反応液を60℃で一晩加熱還流しながら、CTA-Eu-POMとhfaとの反応を進行させた。反応終了後、エバポレーターを用いて、反応液からクロロホルムを除去した。クロロホルムを除去して得られた残渣にクロロホルムを加え、再結晶化を行うことで、81.4mgの透明な結晶(hfa-Eu-POM)を得た。
3: Synthesis and structural measurement of hfa-Eu-POM (luminescent material) (synthesis of hfa-Eu-POM)
To a glass container, 80 mg of CTA-Eu-POM and 5 mL of chloroform were added and stirred. After CTA-Eu-POM was dissolved, 4.6 mg (0.02 mmol) of hexafluoroacetylacetone (hfa) was added dropwise to the glass container with stirring. Next, the reaction of CTA-Eu-POM and hfa was allowed to proceed while heating and refluxing the reaction solution at 60 ° C. overnight using an oil bath. After completion of the reaction, chloroform was removed from the reaction solution using an evaporator. Chloroform was added to the residue obtained by removing chloroform and recrystallization was performed to obtain 81.4 mg of transparent crystals (hfa-Eu-POM).
(構造測定方法)
 反応前後で構造変化が起きていることを確認するため、CTA-Eu-POM、hfa及びhfa-Eu-POMを用いて、XRD測定、赤外分光法による赤外吸収スペクトルの測定、13C-NMR測定及びXRF測定を行った。
(Structure measurement method)
In order to confirm that structural change occurred before and after the reaction, XRD measurement, measurement of infrared absorption spectrum by infrared spectroscopy using CTA-Eu-POM, hfa and hfa-Eu-POM, 13 C- NMR measurement and XRF measurement were performed.
(結果)
 hfa-Eu-POMはクロロホルムに溶解することが示された。CTA-Eu-POM及びhfa-Eu-POMの回折パターンを図8に示す。CTA-Eu-POMでは10°以下の領域、22°及び25°のところに見られた回折ピークが反応後には消失し、hfa-Eu-POMでは10°及び20°のところに新たな回折ピークが現れた。このことからhfa-Eu-POMの構造は、CTA-Eu-POMとは異なることが示された。
(result)
hfa-Eu-POM was shown to dissolve in chloroform. The diffraction patterns of CTA-Eu-POM and hfa-Eu-POM are shown in FIG. In CTA-Eu-POM, the diffraction peaks seen in the region of 10 ° or less, 22 ° and 25 ° disappear after the reaction, and in hfa-Eu-POM, new diffraction peaks are found at 10 ° and 20 °. Appeared. This shows that the structure of hfa-Eu-POM is different from that of CTA-Eu-POM.
 CTA-Eu-POM、hfa及びhfa-Eu-POMの赤外吸収スペクトルを図9に示す。CTA-Eu-POMにみられる2849cm-1、2916cm-1及び1473cm-1のピークはC-H伸縮振動及びCH骨格振動に帰属される。これらのピークは、hfa-Eu-POMでは2852cm-1、2919cm-1及び1469cm-1にそれぞれシフトした。CTA-Eu-POMでは1648cm-1にみられるW=O伸縮振動のピークは、hfa-Eu-POMでは1653cm-1にシフトした。hfaでは1670cm-1にみられるC=O伸縮振動のピークは、hfa-Eu-POMでは1683cm-1にシフトした。このことから、hfa-Eu-POMの構造は、CTA-Eu-POM及びfhaの両原料とは異なることが示された。 Infrared absorption spectra of CTA-Eu-POM, hfa and hfa-Eu-POM are shown in FIG. 2849Cm -1 seen in CTA-Eu-POM, peaks of 2916cm -1 and 1473cm -1 are assigned to CH stretching vibration and CH 2 skeleton vibration. These peaks were shifted to 2852 cm −1 , 2919 cm −1 and 1469 cm −1 for hfa-Eu-POM, respectively. The peak of W = O stretching vibration observed at 1648 cm-1 in CTA-Eu-POM shifted to 1653 cm-1 in hfa-Eu-POM. The peak of C═O stretching vibration observed at 1670 cm −1 for hfa shifted to 1683 cm −1 for hfa-Eu-POM. This shows that the structure of hfa-Eu-POM is different from both CTA-Eu-POM and fha raw materials.
 CTA-Eu-POM及びhfa-Eu-POMの13C-NMR測定により得られた主な炭素のシグナル(図5に示すCTAの1~4番の炭素に由来するシグナル)を表3に示す。CTAに比べ、hfa-Eu-POMでは、1番の炭素由来のシグナルは0.544ppm低磁場側へシフトし、2番の炭素由来のシグナルは0.553ppm低磁場側へシフトした。このことから、希土類錯体がCTAと複合体を形成していること、及び、hfa-Eu-POMにおけるCTAの炭素の配位環境はCTA-Eu-POMと異なることが示された。 Table 3 shows main carbon signals obtained by 13 C-NMR measurement of CTA-Eu-POM and hfa-Eu-POM (signals derived from carbon Nos. 1 to 4 of CTA shown in FIG. 5). Compared with CTA, in hfa-Eu-POM, the signal derived from the first carbon shifted to the low magnetic field side by 0.544 ppm, and the signal derived from the second carbon shifted to the low magnetic field side by 0.553 ppm. This indicates that the rare earth complex forms a complex with CTA and that the carbon coordination environment of CTA in hfa-Eu-POM is different from that of CTA-Eu-POM.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 反応に用いたhfaは一般的に酸であるため、POM中のWの配位が外れている可能性が考えられた。そのため、XRF測定による錯体中のEu及びWの存在比の測定を行った。Eu-POM、CTA-Eu-POM及びhfa-Eu-POMを用いたXRF測定の結果を表4に示す。表4から、それぞれの錯体におけるEu及びWの存在比はあまり変わらないことが示された。 Since hfa used in the reaction is generally an acid, it is considered that the coordination of W in POM may be off. Therefore, the abundance ratio of Eu and W in the complex was measured by XRF measurement. Table 4 shows the results of XRF measurement using Eu-POM, CTA-Eu-POM and hfa-Eu-POM. Table 4 shows that the abundance ratio of Eu and W in each complex does not change much.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
4:hfa-Eu-POMの光学的特性の測定
(光学的特性の測定)
 Eu-POM、hfa-Eu-POM、及び既存の錯体であるEu-(hfa)-(HO)を用いて励起スペクトル及び発光スペクトルを測定した。それぞれの測定には、Eu-POM10mgを蒸留水10mLに溶解したサンプル、hfa-Eu-POM10mgをクロロホルム10mLに溶解したサンプル、及びEu-(hfa)-(HO)10mgをクロロホルム10mLに溶解したサンプルを用いた。
4: Measurement of optical characteristics of hfa-Eu-POM (measurement of optical characteristics)
Excitation spectra and emission spectra were measured using Eu-POM, hfa-Eu-POM, and the existing complex Eu- (hfa) 3- (H 2 O) 2 . For each measurement, a sample in which 10 mg of Eu-POM was dissolved in 10 mL of distilled water, a sample in which 10 mg of hfa-Eu-POM was dissolved in 10 mL of chloroform, and 10 mg of Eu- (hfa) 3- (H 2 O) 2 in 10 mL of chloroform were used. A dissolved sample was used.
(発光量子収率φLn、放射速度定数k、無放射速度定数knrの算出)
 発光量子収率φLn、放射速度定数k、無放射速度定数knrは、式(1)~(3)に基づき算出した。
(Calculation of luminescence quantum yield φ Ln , radiation rate constant k r , non-radiation rate constant knr )
The emission quantum yield φ Ln , the radiation rate constant k r , and the non-radiation rate constant k nr were calculated based on the equations (1) to (3).
φLn=k/(k+knr)=τobs/τrad    ・・・(1)
1/τrad=AMD,0(Itot/IMD)   ・・・(2)
=1/τrad   ・・・(3)
τobs:観測された発光寿命
τrad:失活過程のない理想的な発光寿命
MD,0:定数 14.65s-1
n:溶媒の屈折率
tot/IMD:磁気双極子遷移の面積/発光スペクトルの全体の面積
φ Ln = k r / (k r + k nr ) = τ obs / τ rad (1)
1 / τ rad = A MD, 0 n 3 (I tot / I MD) ··· (2)
k r = 1 / τ rad (3)
τ obs : Observed emission lifetime τ rad : Ideal emission lifetime without deactivation process AMD , 0 : Constant 14.65 s −1
n: refractive index of solvent I tot / IMD : area of magnetic dipole transition / total area of emission spectrum
(結果)
 図10には、それぞれのサンプルの励起スペクトルを示す。hfa-Eu-POMの励起スペクトルは、Eu-POMと比較すると大きく長波長側にシフトし、Eu-(hfa)-(HO)と比較しても長波長側にシフトしていた。
(result)
FIG. 10 shows the excitation spectrum of each sample. The excitation spectrum of hfa-Eu-POM was greatly shifted to the longer wavelength side compared to Eu-POM, and was also shifted to the longer wavelength side compared to Eu- (hfa) 3- (H 2 O) 2 .
 図11には、磁気双極子遷移()で規格化したそれぞれの発光スペクトルを示す。hfa-Eu-POMの発光スペクトルは、Eu-POMと比較して、電気双極子遷移()が大幅に変化したことから、Eu周辺の環境が非対称化したことが考えられる。また、hfa-Eu-POMの発光スペクトルは、Eu-(hfa)-(HO)と比較すると電気双極子遷移()がシャープになっていた。そのため、hfa-Eu-POMは、従来とは異なる新規のEu錯体であることが示された。 FIG. 11 shows the respective emission spectra normalized by the magnetic dipole transition ( 5 D 07 F 1 ). The emission spectrum of hfa-Eu-POM is considered to be asymmetrical environment around Eu because the electric dipole transition ( 5 D 07 F 2 ) has changed significantly compared to Eu-POM. It is done. In addition, in the emission spectrum of hfa-Eu-POM, the electric dipole transition ( 5 D 07 F 2 ) was sharper than that of Eu- (hfa) 3- (H 2 O) 2 . Therefore, it was shown that hfa-Eu-POM is a novel Eu complex different from the conventional one.
 図12には、クロロホルム中でのhfa-Eu-POMの発光寿命の衰退プロファイルを示す。図12から、発光の減衰が直線であるため、合成して得られたhfa-Eu-POMは単成分であることが示され、その発光寿命は0.89msだった。単成分寿命から、得られた化合物のEu配位幾何学構造は1つであると推測される。 FIG. 12 shows a decay profile of the emission lifetime of hfa-Eu-POM in chloroform. FIG. 12 shows that since the attenuation of light emission is a straight line, hfa-Eu-POM obtained by synthesis is a single component, and its light emission lifetime was 0.89 ms. From the single component lifetime, it is inferred that the resulting compound has one Eu coordination geometry.
 発光寿命測定及び発光スペクトルの解析により、発光量子収率φLn、放射速度定数k、無放射速度定数knrを算出した結果を表5に示す。hfa-Eu-POMは、Eu-POMと比較すると、非対称性の尺度でもあるkが大きく増加した。hfa-Eu-POMは、Eu-POMと比較すると、分子の振動構造を反映するknrの値が増加した。 Table 5 shows the results of calculating the emission quantum yield φLn, the emission rate constant k r , and the non-emission rate constant k nr by the emission lifetime measurement and emission spectrum analysis. hfa-Eu-POM, when compared with Eu-POM, also the asymmetric measure k r is greatly increased. hfa-Eu-POM, when compared with Eu-POM, the value of k nr reflecting the vibrating structure of the molecule is increased.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 図13には、固体のhfa-Eu-POMの発光寿命の衰退プロファイルを示す。個体のhfa-Eu-POMの発光寿命は1.5msだった。表6には、固体の各希土類錯体の発光量子収率φLn、放射速度定数k、無放射速度定数knr及び発光寿命τを示す。表中、Eu-(hfa)-(tppo)は、配位子に有機配位子のみを持つ希土類錯体である。これらの結果から、hfa-Eu-POMは、配位子に有機配位子のみを有するEu-(hfa)-(tppo)に比べ、発光量子収率、分子の振動構造を反映する無放射速度定数(knr)及び発光寿命が改善されたことが示された。また、hfa-Eu-POMは、配位子に無機配位子のみを有するEu-POMに比べ、発光量子収率及び分子の非対称性を反映する放射速度定数(k)が改善されたことも示された。 FIG. 13 shows a decay profile of the emission lifetime of solid hfa-Eu-POM. The luminescence lifetime of the individual hfa-Eu-POM was 1.5 ms. Table 6 shows the emission quantum yield φLn, the emission rate constant k r , the non-emission rate constant k nr, and the emission lifetime τ of each solid rare earth complex. In the table, Eu- (hfa) 3- (tppo) 2 is a rare earth complex having only an organic ligand as a ligand. From these results, hfa-Eu-POM reflects the emission quantum yield and molecular vibrational structure compared to Eu- (hfa) 3- (tppo) 2 having only an organic ligand as a ligand. It was shown that the emission rate constant ( knr ) and emission lifetime were improved. In addition, hfa-Eu-POM has an improved emission rate constant ( kr ) reflecting the emission quantum yield and molecular asymmetry compared to Eu-POM having only an inorganic ligand as a ligand. Was also shown.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
1…希土類原子、2…有機配位子、3…ポリオキソメタレート、4…両親媒性分子、4a…親水性基、4b…疎水性基、10…希土類錯体、20…発光材料 DESCRIPTION OF SYMBOLS 1 ... Rare earth atom, 2 ... Organic ligand, 3 ... Polyoxometalate, 4 ... Amphiphilic molecule, 4a ... Hydrophilic group, 4b ... Hydrophobic group, 10 ... Rare earth complex, 20 ... Luminescent material

Claims (9)

  1.  希土類原子と、前記希土類原子に配位している有機配位子と、金属原子及び酸素原子を含み、前記希土類原子に配位しているポリオキソメタレートと、を有する希土類錯体。 A rare earth complex comprising a rare earth atom, an organic ligand coordinated to the rare earth atom, and a polyoxometalate containing a metal atom and an oxygen atom and coordinated to the rare earth atom.
  2.  前記ポリオキソメタレートが、1個の前記金属原子と、該金属原子に配位している6個の前記酸素原子と、を含む八面体構造部分を有している、請求項1に記載の希土類錯体。 2. The polyoxometalate according to claim 1, having an octahedral structure portion including one of the metal atoms and six of the oxygen atoms coordinated with the metal atom. Rare earth complex.
  3.  前記金属原子が、Mo、W、V、Si、P、Ge、Al又はAsである、請求項1又は2に記載の希土類錯体。 The rare earth complex according to claim 1 or 2, wherein the metal atom is Mo, W, V, Si, P, Ge, Al or As.
  4.  前記希土類原子が、Eu、Tb、Sm、Nd、Yb、Tm、Ce、Er又はPrである、請求項1~3のいずれか一項に記載の希土類錯体。 The rare earth complex according to any one of claims 1 to 3, wherein the rare earth atom is Eu, Tb, Sm, Nd, Yb, Tm, Ce, Er, or Pr.
  5.  前記有機配位子が、式(1)、式(2)又は式(3)で表される、請求項1~4のいずれか一項に記載の希土類錯体。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R、R及びRは、それぞれ独立に、水素原子、炭素数1~15のアルキル基、炭素数1~5のハロゲン化アルキル基、アリール基又はヘテロアリール基を示す。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、R、R、R、R及びRは、それぞれ独立に、水素原子、炭素数1~5のアルキル基又は炭素数1~5のハロゲン化アルキル基を示す。)
    Figure JPOXMLDOC01-appb-C000003
    (式(3)中、R、R10、R11、R12、R13、R14、R15及びR16は、それぞれ独立に水素原子、炭素数1~3のアルキル基、炭素数6~12のアリール基、又は、RとR10、R10とR11、R11とR12、R12とR13、R13とR14、R14とR15、R15とR16若しくはR16とRがそれぞれ互いに連結して環を形成している炭化水素基を示す。)
    The rare earth complex according to any one of claims 1 to 4, wherein the organic ligand is represented by formula (1), formula (2), or formula (3).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), R 1 , R 2 and R 3 are each independently a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, a halogenated alkyl group having 1 to 5 carbon atoms, an aryl group or a heteroaryl group. Is shown.)
    Figure JPOXMLDOC01-appb-C000002
    (In the formula (2), R 4 , R 5 , R 6 , R 7 and R 8 each independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or a halogenated alkyl group having 1 to 5 carbon atoms. Show.)
    Figure JPOXMLDOC01-appb-C000003
    (In the formula (3), R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 and R 16 are each independently a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or 6 carbon atoms. ~ 12 aryl groups, or R 9 and R 10 , R 10 and R 11 , R 11 and R 12 , R 12 and R 13 , R 13 and R 14 , R 14 and R 15 , R 15 and R 16 or R 16 and R 9 each represent a hydrocarbon group that is linked to each other to form a ring.)
  6.  請求項1~5のいずれか一項に記載の希土類錯体と、親水性基及び疎水性基を有する両親媒性分子と、を含む、発光材料。 A luminescent material comprising the rare earth complex according to any one of claims 1 to 5 and an amphiphilic molecule having a hydrophilic group and a hydrophobic group.
  7.  希土類原子にポリオキソメタレートが配位している無機希土類錯体と両親媒性分子との複合体を有機溶媒に溶解させる工程と、
     前記有機溶媒中で前記希土類原子に有機配位子を配位させる工程と、をこの順に備える、請求項6に記載の発光材料の製造方法。
    Dissolving a complex of an inorganic rare earth complex in which polyoxometalate is coordinated to a rare earth atom and an amphiphilic molecule in an organic solvent;
    The method for producing a luminescent material according to claim 6, comprising the step of coordinating an organic ligand to the rare earth atom in the organic solvent in this order.
  8.  請求項6に記載の発光材料及びポリマーを含む、発光性フィルム。 A light-emitting film comprising the light-emitting material and the polymer according to claim 6.
  9.  請求項6に記載の発光材料及びポリマーと、これらが溶解している有機溶媒と、を含む膜から、前記有機溶媒を除去して発光性フィルムを形成する工程を備える、発光性フィルムの製造方法。 A method for producing a luminescent film, comprising a step of forming the luminescent film by removing the organic solvent from a film comprising the luminescent material and polymer according to claim 6 and an organic solvent in which the luminescent material and polymer are dissolved. .
PCT/JP2016/055916 2015-03-09 2016-02-26 Rare earth complex, luminescent material and method for producing same, and luminescent sheet and method for producing same WO2016143562A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017504981A JP6799761B2 (en) 2015-03-09 2016-02-26 Rare earth complex, luminescent material and its manufacturing method, and luminescent sheet and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-046202 2015-03-09
JP2015046202 2015-03-09

Publications (1)

Publication Number Publication Date
WO2016143562A1 true WO2016143562A1 (en) 2016-09-15

Family

ID=56880055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055916 WO2016143562A1 (en) 2015-03-09 2016-02-26 Rare earth complex, luminescent material and method for producing same, and luminescent sheet and method for producing same

Country Status (2)

Country Link
JP (1) JP6799761B2 (en)
WO (1) WO2016143562A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047951A1 (en) * 2016-09-09 2018-03-15 国立大学法人北海道大学 Light emitting material, ink and light emitting device
KR20210028679A (en) * 2018-08-17 2021-03-12 나노코 2디 매테리얼 리미티드 Polyoxometalate compound exhibiting bright emission and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125627A1 (en) * 2010-04-01 2011-10-13 日立化成工業株式会社 Rare-earth metal complex
WO2011158918A1 (en) * 2010-06-17 2011-12-22 株式会社日本触媒 Polynuclear metal compound
EP2754706A1 (en) * 2013-01-15 2014-07-16 Universite de Rennes 1 Hybrid polymer with high cluster content

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125627A1 (en) * 2010-04-01 2011-10-13 日立化成工業株式会社 Rare-earth metal complex
WO2011158918A1 (en) * 2010-06-17 2011-12-22 株式会社日本触媒 Polynuclear metal compound
EP2754706A1 (en) * 2013-01-15 2014-07-16 Universite de Rennes 1 Hybrid polymer with high cluster content

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047951A1 (en) * 2016-09-09 2018-03-15 国立大学法人北海道大学 Light emitting material, ink and light emitting device
KR20210028679A (en) * 2018-08-17 2021-03-12 나노코 2디 매테리얼 리미티드 Polyoxometalate compound exhibiting bright emission and method for producing same
CN112533934A (en) * 2018-08-17 2021-03-19 纳米2D材料有限公司 Polyoxometallate compounds exhibiting bright emission and methods of making the same
JP2021534297A (en) * 2018-08-17 2021-12-09 ナノコ 2ディー マテリアルズ リミテッドNanoco 2D Materials Limited Polyoxometallate compounds exhibiting high-intensity emission and methods for producing them
JP7343216B2 (en) 2018-08-17 2023-09-12 ナノコ 2ディー マテリアルズ リミテッド Polyoxometalate compound exhibiting high luminance luminescence and method for producing the same
KR102657054B1 (en) 2018-08-17 2024-04-15 나노코 2디 매테리얼 리미티드 Polyoxometalate compound exhibiting bright emission and method for producing the same

Also Published As

Publication number Publication date
JP6799761B2 (en) 2020-12-16
JPWO2016143562A1 (en) 2017-12-28

Similar Documents

Publication Publication Date Title
Xie et al. Stable luminescent metal–organic frameworks as dual-functional materials to encapsulate Ln3+ ions for white-light emission and to detect nitroaromatic explosives
Zhou et al. Imparting tunable and white-light luminescence to a nanosized metal–organic framework by controlled encapsulation of lanthanide cations
Singh et al. Structural, Thermal, and Fluorescence Properties of Eu (DBM) 3Phen x Complex Doped in PMMA
CN110218220B (en) Functionalized metal-organic framework compound, complex formed by functionalized metal-organic framework compound, and preparation method and application of functionalized metal-organic framework compound
He et al. Visible-light excitable europium (III) complexes with 2, 7-positional substituted carbazole group-containing ligands
Shestopalov et al. Cluster core controlled reactions of substitution of terminal bromide ligands by triphenylphosphine in octahedral rhenium chalcobromide complexes
JP2003081986A (en) Rare earth complex, optically functional material using the same and emission device
Campbell et al. Highly luminescent and color‐tunable salicylate ionic liquids
Ivanov et al. A family of octahedral rhenium cluster complexes trans-[{Re6Q8}(PPh3) 4X2](Q= S or Se, X= Cl, Br or I): Preparation and halide-dependent luminescence properties
Garcia-Torres et al. Highly efficient luminescent materials: influence of the matrix on the photophysical properties of Eu (III) complex/polymer hybrids
Silva et al. Highly luminescent Eu3+-doped benzenetricarboxylate based materials
De Silva et al. Highly luminescent Eu (III) complexes with 2, 4, 6-tri (2-pyridyl)-1, 3, 5-triazine ligand: Synthesis, structural characterization, and photoluminescence studies
Martín-Ramos et al. Highly fluorinated erbium (III) complexes for emission in the C-band
Francis et al. Achieving visible light excitation in carbazole-based Eu 3+–β-diketonate complexes via molecular engineering
Martín-Ramos et al. An erbium (III)-based NIR emitter with a highly conjugated β-diketonate for blue-region sensitization
WO2016143562A1 (en) Rare earth complex, luminescent material and method for producing same, and luminescent sheet and method for producing same
Jiménez et al. Structural analysis of an europium-sodium complex containing 2-thenoyltrifluoroacetone and succinimide as ligands, a highly photoluminescent material
Xu et al. Assembly, stabilities, and photophysical behaviors of highly efficient luminescent materials fabricated from a terbium complex doped silica/polymer hybrids
JP5747247B2 (en) Organic / fluorescent metal hybrid polymer and its ligand
JP5849255B2 (en) Circularly polarized light-emitting rare earth complex
Rodríguez et al. Mechanochemical synthesis of an Eu (III) complex. preparation and luminescence properties of PMMA:[C42H38N5O19Eu] hybrid films
Wang et al. Ternary luminescent lanthanide-centered hybrids with organically modified titania and polymer units
Rawat et al. Luminescent properties of K2SbF5: Ln (Ln= Eu3+, Tb3+, Er3+) obtained by a facile room temperature mechanochemical synthesis
Jaroszewski et al. Photoluminescence properties of Pr3+ doped Bi2ZnOB2O6 microcrystals and PMMA-based composites
Yu et al. Near-infrared (NIR) luminescent PMMA-based hybrid materials doped with Ln-β-diketonate (Ln= Nd or Yb) complexes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761533

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2017504981

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761533

Country of ref document: EP

Kind code of ref document: A1