WO2016143431A1 - 乾留炭不活性化装置および石炭改質プラントならびに不活性化乾留炭の製造方法 - Google Patents

乾留炭不活性化装置および石炭改質プラントならびに不活性化乾留炭の製造方法 Download PDF

Info

Publication number
WO2016143431A1
WO2016143431A1 PCT/JP2016/053486 JP2016053486W WO2016143431A1 WO 2016143431 A1 WO2016143431 A1 WO 2016143431A1 JP 2016053486 W JP2016053486 W JP 2016053486W WO 2016143431 A1 WO2016143431 A1 WO 2016143431A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
dry
distilled
carbonized
chemical solution
Prior art date
Application number
PCT/JP2016/053486
Other languages
English (en)
French (fr)
Inventor
本城 新太郎
清隆 国宗
基文 伊藤
淳司 浅原
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to AU2016230475A priority Critical patent/AU2016230475A1/en
Priority to JP2017504918A priority patent/JPWO2016143431A1/ja
Publication of WO2016143431A1 publication Critical patent/WO2016143431A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/26After-treatment of the shaped fuels, e.g. briquettes
    • C10L5/32Coating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/005After-treatment of coke, e.g. calcination desulfurization
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/04Raw material of mineral origin to be used; Pretreatment thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/34Other details of the shaped fuels, e.g. briquettes
    • C10L5/36Shape
    • C10L5/366Powders
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/04Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of powdered coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2250/00Structural features of fuel components or fuel compositions, either in solid, liquid or gaseous state
    • C10L2250/06Particle, bubble or droplet size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/20Coating of a fuel as a whole or of a fuel component
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/24Mixing, stirring of fuel components
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/547Filtration for separating fractions, components or impurities during preparation or upgrading of a fuel

Definitions

  • the present invention relates to a dry distillation coal inactivation apparatus and a coal reforming plant that inactivate dry distillation coal so that it does not spontaneously ignite, and a method for producing inactive dry distillation coal.
  • Low-grade coals such as sub-bituminous coal and lignite have low calorific value per unit weight because they are not carbonized and have a high moisture content compared to high-grade coal.
  • low grade coal is abundant in reserves, so its effective use is desired.
  • various coal reforming technologies have been studied that increase the calorific value by dry distillation after drying low-grade coal and inactivate the reformed coal to prevent spontaneous ignition during transportation and storage. (For example, JP 2014-31462 A and International Publication No. 2013/103097).
  • JP-A-2014-31462 and International Publication No. 2013/103097 disclose that the carbonized carbon after carbonization is cooled and then oxidized by contact with oxygen to inactivate the surface of carbonized carbon. Has been. However, in order to avoid spontaneous ignition of dry-distilled coal due to rapid oxidation, it is necessary to gradually oxidize at a reduced oxidation rate, and the inactivation process takes a long time.
  • each of the above-mentioned known documents discloses that the carbonized carbon particles are collected and formed into a predetermined shape (briquette) to reduce the surface area and perform the inactivation treatment.
  • a molding apparatus for briquetting the carbonized carbon is necessary, which has been a factor in increasing costs.
  • the present invention has been made in view of such circumstances, and is a dry distillation coal inactivation apparatus, a coal reforming plant, and an inactivation that can inactivate dry distillation coal in a short time without incurring an increase in cost. It aims at providing the manufacturing method of dry distillation coal.
  • a carbonization deactivation apparatus includes a mixing apparatus that forms a slurry by mixing particulate dry distillation coal, which is coal that has been solidified with a chemical solution having an oxygen blocking function after solidification, and the mixing And a filter that filters the slurry formed by the apparatus in a state where each particle of the carbonized carbon is coated with the chemical solution.
  • each of the carbonized carbon particles can be inactivated, there is no need for a molding apparatus that collects and molds (forms briquettes) particulate carbonized coal in order to reduce the surface area, and the processing time and cost can be reduced. And since the whole surface of each particle
  • a chemical solution having an oxygen-blocking function after solidification a solution obtained by dissolving a polymer such as polyethylene oxide or starch in a solvent such as water is used, and one that solidifies at room temperature is preferably used. .
  • the carbonized carbon particles have a particle size of about 0.5 to about 5.0 mm, for example.
  • the carbonized carbon deactivation device further includes a chemical solution circulation path that guides the chemical solution separated from the carbonized coal by the filter to the mixing device.
  • the filter is a belt filter.
  • a coal reforming plant includes a carbonization device for carbonizing coal and the carbonization coal inactivation device for inactivating the carbonized carbon that has been carbonized by the carbonization device.
  • a method for producing deactivated carbonized carbon includes a mixing step of forming a slurry by mixing particles of carbonized carbon that is carbonized carbonized with a chemical solution having an oxygen-blocking function after solidification; A filtering step of filtering the slurry formed in the mixing step in a state where each particle of the carbonized carbon is coated with the chemical solution.
  • a slurry of chemical solution having an oxygen blocking function and carbonized carbon particles is formed, and this slurry is filtered through a filter to coat each particle of dry carbonized coal with a chemical solution, so that an oxygen barrier film is formed on each particle. Can be obtained.
  • filtering the slurry with a filter it is possible to produce a large amount of deactivated carbonized carbon that is uniformly coated with an oxygen barrier film.
  • the dry distillation coal is inactivated by filtering the slurry of the dry distillation coal and the chemical solution having an oxygen blocking function with a filter, the dry distillation coal can be inactivated in a short time. Further, the inactivation can be performed without using a conventional inactivation apparatus or molding apparatus by oxidation, so that the cost can be reduced.
  • FIG. 1 shows a coal reforming plant equipped with a carbonized carbon deactivation device according to an embodiment of the present invention.
  • the coal reforming plant includes a drying device (dryer) 1 that heats and dries coal, a dry distillation device (pyrolizer) 3 that heats and dry-drys the dry coal dried in the drying device 1, and a dry distillation device 3.
  • a cooling device (quencher) 5 that cools the carbonized carbonized coal
  • a carbonized coal inactivation device (finisher) that inactivates the carbonized coal that has been cooled by the cooling device 5; hereinafter simply referred to as “inactivation device”. .) 7.
  • a coal hopper 12 that receives the unmodified coal 10 is provided on the upstream side of the drying apparatus 1.
  • the coal before reforming is low-grade coal such as subbituminous coal or lignite, and the moisture content is 25 wt% or more and 60 wt% or less.
  • Coal introduced from the coal hopper 12 is pulverized to, for example, about 20 mm or less by a pulverizer 14.
  • the drying device 1 is an indirect heating type using steam, and includes a cylindrical container 16 that rotates about a central axis and a plurality of heat transfer tubes 18 that are inserted into the cylindrical container 16. Coal guided from the pulverizer 14 is supplied into the cylindrical container 16, and the coal supplied into the cylindrical container 16 is agitated in accordance with the rotation of the cylindrical container 16 (see FIG. 1 to the other end side.
  • steam of 150 ° C. or more and 200 ° C. or less (more specifically 180 ° C.) generated by a steam generation system 20 is supplied and contacts the outer periphery of each heat transfer tube 18.
  • the coal to be heated is indirectly heated.
  • the steam supplied into each heat transfer pipe 18 is condensed after giving condensation heat when heating the coal, is discharged from the drying device 1, and is returned to the steam generation system 20.
  • the carrier gas is supplied into the cylindrical container 16 through the carrier gas circulation path 22.
  • the carrier gas an inert gas is used, and specifically, nitrogen gas is used.
  • Nitrogen gas is additionally supplied from a nitrogen supply path 24 connected to the carrier gas circulation path 22.
  • the carrier gas discharge path connected to the cylindrical container 16 is accompanied by desorbed components (water vapor, pulverized coal, mercury, mercury-based substances, etc.) desorbed from the coal. It is discharged to the outside of the cylindrical container 16 through 26.
  • a cyclone (dust collector) 28 In the carrier gas discharge path 26, a cyclone (dust collector) 28, a carrier gas cooler 30, and a scrubber 32 are provided in order from the upstream side in the flow direction of the carrier gas.
  • the cyclone 28 mainly removes pulverized coal (for example, a particle size of 100 ⁇ m or less), which is a solid, from the carrier gas using centrifugal force.
  • the pulverized coal removed by the cyclone 28 is guided to the upstream side of the bag filter 34 as indicated by reference numeral A.
  • the pulverized coal separated by the cyclone 28 may be mixed with the dried coal dried by the drying device 1.
  • the carrier gas cooler 30 condenses and removes water vapor introduced together with the carrier gas as drain water by cooling the carrier gas from which the pulverized coal has been removed.
  • the carrier gas cooler 30 is an indirect heat exchanger, and industrial water at room temperature is used as a cooling medium. In addition, you may use the reclaimed water isolate
  • the drain water generated by the carrier gas cooler 30 is guided to the liquid phase part below the scrubber 32.
  • the scrubber 32 removes mercury and / or mercury-based substances (hereinafter simply referred to as “mercury etc.”) from the carrier gas from which pulverized coal and water vapor have been removed.
  • Water is used as the absorbent used for the scrubber 32, and specifically, reclaimed water separated by the wastewater treatment facility 40 is used.
  • Mercury in the carrier gas is adsorbed by the water sprayed from above the scrubber 32 and guided to the liquid phase part below the scrubber 32.
  • the scrubber 32 also removes pulverized coal that could not be removed by the cyclone 28.
  • An upstream end of the carrier gas circulation path 22 is connected above the scrubber 32, and a blower 36 is provided in the middle of the carrier gas circulation path 22.
  • the carrier gas that has been processed by the scrubber 32 by the blower 36 is returned to the drying apparatus 1.
  • a part of the carrier gas after being processed by the scrubber 32 is guided to the combustion furnace 42.
  • a drainage treatment facility 40 is connected below the scrubber 32 via a drainage path 38.
  • the wastewater treatment facility 40 throws a chelating agent into the wastewater to agglomerate and enlarge mercury and the like, and separates sludge 39, which is a solid content of pulverized coal and mercury, and reclaimed water by a sedimentation tank (not shown). Is. Reclaimed water is reused at various parts of the plant.
  • the coal (dry coal) dried by the drying device 1 passes through the dry coal supply path 44 and is guided to the dry distillation device 3 using gravity.
  • the dry distillation apparatus 3 is an externally heated rotary kiln, and includes a rotating inner cylinder 46 and an outer cylinder 48 that covers the outer peripheral side of the rotating inner cylinder 46. Nitrogen gas as a carrier gas is supplied into the rotating inner cylinder 46.
  • the combustion gas generated in the combustion furnace 42 is guided to the space between the rotating inner cylinder 46 and the outer cylinder 48 via the combustion gas introduction path 50. Thereby, the inside of the rotating inner cylinder 46 is maintained at 350 ° C. or higher and 450 ° C. or lower (for example, 400 ° C.).
  • the combustion furnace 42 is generated in the dry distillation apparatus 3, an air supply path 54 that leads combustion air pumped by the blower 52 into the furnace, a natural gas supply path 55 that guides natural gas as fuel into the furnace, and the like.
  • a dry distillation gas recovery path 56 is connected to recover the dry distillation gas together with the carrier gas and guide it into the furnace.
  • a flame 51 is formed by natural gas, dry distillation gas, and air supplied into the furnace. Since the dry distillation gas contains volatile components such as tar and has a predetermined calorific value, it is used as fuel in the combustion furnace 42.
  • the natural gas supplied from the natural gas supply path 55 is used to adjust the calorific value of the fuel input to the combustion furnace 42 so that the temperature of the combustion gas generated in the combustion furnace 42 becomes a desired value. The flow rate is adjusted.
  • a dry distillation gas discharge path 58 used in an emergency is connected to the middle of the dry distillation gas recovery path 56.
  • a flare stack 60 is installed on the downstream side of the dry distillation gas discharge path 58.
  • the flare stack 60 incinerates combustible components such as tar in the dry distillation gas, and the incinerated gas is released to the atmosphere.
  • a combustion gas discharge path 62 for discharging the combustion gas generated in the furnace is connected to the combustion furnace 42.
  • An upstream end of the combustion gas introduction path 50 that guides the combustion gas to the dry distillation apparatus 3 is connected to a middle position of the combustion gas discharge path 62.
  • a first intermediate pressure boiler 64 is provided in the combustion gas discharge path 62 on the downstream side of the connection position with the combustion gas introduction path 50.
  • a heated gas discharge path 66 for discharging the combustion gas after the rotating inner cylinder 46 is heated.
  • a second intermediate pressure boiler 68 is provided in the post-heating gas discharge path 66.
  • the post-heating gas discharge path 66 is connected to the combustion gas discharge path 62 on the downstream side.
  • a blower 70 that pumps combustion gas is provided in the combustion gas discharge path 62 on the downstream side of the connection position with the post-heating gas discharge path 66.
  • the downstream side of the combustion gas discharge path 62 is connected to the bag filter 34. The combustion exhaust gas from which the combustion ash and the like are removed by the bag filter 34 is released to the atmosphere (ATM).
  • the steam generation system 20 includes a first intermediate pressure boiler 64 and a second intermediate pressure boiler 68.
  • the supplied boiler feed water (BFW) is heated by the combustion gas flowing in the gas discharge path 66 after heating, and steam is generated.
  • the steam generated in the second intermediate pressure boiler 68 is guided, heated by the combustion exhaust gas flowing through the combustion gas discharge path 62, and further steam having a higher pressure is generated.
  • the intermediate pressure steam generated by the first intermediate pressure boiler 64 and the intermediate pressure steam generated by the second intermediate pressure boiler 68 are respectively stored in a steam drum (not shown), and various parts of the plant such as the heat transfer pipe 18 of the drying apparatus 1. To be supplied.
  • the dry-distilled coal carbonized in the dry-distilling device 3 is guided to the cooling device 5 using the gravity via the dry-distilled coal supply path 72.
  • the cooling device 5 includes a first cooler 74 that receives dry-distilled coal from the dry distillation device 3 and a second cooler 76 that receives dry-distilled coal cooled by the first cooler 74.
  • the first cooler 74 is a shell-and-tube heat exchanger, and includes a first cylindrical container 78 that rotates about a central axis, a first sprinkling pipe 79 that is inserted into the first cylindrical container 78, And a plurality of first cooling pipes 80 inserted into one cylindrical container 78.
  • the first water sprinkling pipe 79 is installed in a stationary state with respect to the rotating first cylindrical container 78.
  • carbonized carbon of 300 ° C. or more and 500 ° C. or less (for example, about 400 ° C.) led from the carbonization apparatus 3 is supplied, and is supplied into the first cylindrical vessel 78.
  • the carbonized carbon is guided from one end side (left side in FIG.
  • the first water spray pipe 79 is supplied with industrial water having a normal temperature, and is sprayed with water on the dry-distilled coal to cool the water by directly contacting it.
  • the first sprinkling pipe 79 is provided on the upstream side (left side in FIG. 1) of the dry distillation coal moving in the first cylindrical container 78.
  • Each first cooling pipe 80 is supplied with boiler feed water at 50 ° C. or more and less than 100 ° C.
  • Each first cooling pipe 80 is provided on the downstream side (the right side in FIG. 1) of the dry distillation coal moving in the first cylindrical vessel 78, and the condensation temperature of the dry distillation coal after being cooled by the first sprinkling pipe 79 is reduced.
  • the cooling is to about 150 ° C. as described above.
  • the second cooler 76 is configured as a shell and tube heat exchanger with substantially the same configuration as the first cooler 74, and includes a second cylindrical container 81 that rotates about the central axis, and a second cylindrical container 81. And a plurality of second cooling pipes 83 inserted into the second cylindrical container 81.
  • the second water spray pipe 82 is installed in a stationary state with respect to the rotating second cylindrical container 81.
  • dry-distilled coal cooled to about 150 ° C. by the first cooler 74 is supplied, and the dry-distilled coal supplied in the second cylindrical container 81 is second It is guided from one end side (left side in FIG. 1) to the other end side while being stirred according to the rotation of the cylindrical container 81.
  • each second cooling pipe 83 Industrial water at room temperature is guided to the second water spray pipe 82, and the water content of the dry distillation coal is adjusted to a desired value (for example, 8 wt%) by spraying water on the dry distillation coal.
  • the second water spray pipe 82 is provided over substantially the entire axial direction of the second cylindrical container 81.
  • industrial water having a normal temperature is guided, and the carbonized carbon that contacts the outer periphery of each second cooling pipe 83 is indirectly cooled.
  • Each of the second cooling pipes 83 is adapted to cool the carbonized carbon to about 50 ° C. Note that reclaimed water separated by the wastewater treatment facility 40 may be used as the water supplied to each second cooling pipe 83.
  • the dry-distilled coal cooled by the cooling device 5 is guided to the deactivation device 7 through the dry-distilled coal supply path 84 after cooling.
  • the inactivation device 7 includes a mixing device 86 and a belt filter device 88.
  • the mixing device 86 is supplied with the carbonized carbon derived from the cooling device 5 and the chemical solution for performing the inactivation treatment.
  • the mixing device 86 mixes with a stirrer (not shown) to form a slurry of dry-distilled coal and chemical.
  • the dry-distilled coal led to the mixing device 86 is in the form of particles and has a particle size of about 0.5 to 5.0 mm.
  • the chemical solution has an oxygen blocking function after solidification.
  • a solution obtained by dissolving a polymer such as polyethylene oxide and starch in a solvent such as water is used. It is preferable to use a chemical that solidifies at room temperature, such as polyethylene oxide or starch.
  • the belt filter device 88 includes an endless belt filter 90 in which a mesh-like filter portion is formed on a substantially belt-like entire surface, and a pair of rollers 92 around which the belt filter 90 is wound.
  • the belt filter 90 has a mesh that does not pass particulate carbonized carbon of about 1 mm, for example.
  • the roller 92 is provided with a drive device (not shown), and is rotated about an axis as indicated by an arrow in the drawing by the power of the drive device.
  • a press that presses the belt filter 90 from above while the belt filter 90 travels substantially horizontally between the upper ends of the rollers 92, or a suction device that sucks the belt filter 90 from below. Is provided.
  • the above-described press is performed. Or it is filtered by a suction device. As a result, the slurry is separated into particulate dry-distilled charcoal coated with the drug on the entire surface and the drug after passing through the belt filter 90.
  • the coated dry carbonized carbon separated by the belt filter 90 is removed from the belt filter 90 by a scraper (not shown) or the like. Then, when the chemical solution is solidified at room temperature, an oxygen barrier film is formed on the entire surface of each particle, and inactivated dry distillation coal, that is, final modified coal 104 is obtained.
  • the chemical liquid separated by the belt filter 90 is collected from below, and sent again to the mixing device 86 through the chemical liquid circulation path 94.
  • a slurry of a chemical solution having an oxygen blocking function and particulate dry distillation coal is formed, and this slurry is filtered by a belt filter 90 to coat each chemical solution on the particulate dry distillation coal.
  • Inactivated carbonized carbon coated with an oxygen barrier film can be obtained.
  • deactivation of dry-distilled coal is achieved by coating with a chemical solution having an oxygen-blocking function, it is inactivated such that it is gradually oxidized over time by contacting with oxygen or air as in the past.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

 コストの増大を招くことなく乾留炭を短時間で不活性化できる乾留炭不活性化装置を提供する。乾留炭不活性化装置は、固化した後に酸素遮断機能を有する薬液に対して乾留した石炭である粒子状の乾留炭を混ぜてスラリを形成する混合装置(86)と、混合装置(86)にて形成されたスラリを、乾留炭の各粒子に薬液がコーティングされた状態で濾過するベルトフィルタ装置(88)とを備えている。乾留炭不活性化装置は、ベルトフィルタ装置(88)によって乾留炭から分離された薬液を、混合装置(86)へと導く薬液循環経路(94)を更に備えている。

Description

乾留炭不活性化装置および石炭改質プラントならびに不活性化乾留炭の製造方法
 本発明は、乾留炭を自然発火しないように不活性化する乾留炭不活性化装置および石炭改質プラントならびに不活性化乾留炭の製造方法に関するものである。
 亜瀝青炭や褐炭のような低品位炭は、高品位炭に比べて炭化が進んでおらず水分含有率も高いため単位重量当たりの発熱量が低い。しかし、低品位炭は埋蔵量が豊富なことからその有効利用が望まれている。このため、低品位炭を乾燥させた後に乾留を行うことによって発熱量を高め、輸送中や保管中の自然発火を防ぐように改質石炭の不活性化を行う石炭改質技術が種々検討されている(例えば特開2014-31462号公報および国際公開第2013/103097号)。
特開2014-31462号公報 国際公開第2013/103097号
 上記の特開2014-31462号公報および国際公開第2013/103097号には、乾留後の乾留炭を冷却した後に酸素を接触させて酸化を行って乾留炭の表面を不活性化することが開示されている。
 しかし、急激な酸化による乾留炭の自然発火を回避するため、酸化速度を落として徐々に酸化を行う必要があり、不活性化処理に膨大な時間がかかっていた。
 また、上記の各公知文献には、乾留炭の粒子を集めて所定形状に成形(ブリケット化)することで表面積を低減し、不活性化処理を行うことが開示されている。
 しかし、乾留炭をブリケット化するための成形装置が必要となりコストを増大させる一因となっていた。
 本発明は、このような事情に鑑みてなされたものであって、コストの増大を招くことなく乾留炭を短時間で不活性化できる乾留炭不活性化装置および石炭改質プラントならびに不活性化乾留炭の製造方法を提供することを目的とする。
 上記課題を解決するために、本発明の乾留炭不活性化装置および石炭改質プラントならびに不活性化乾留炭の製造方法は以下の手段を採用する。
 本発明の一態様に係る乾留炭不活性化装置は、固化した後に酸素遮断機能を有する薬液に対して乾留した石炭である粒子状の乾留炭を混ぜてスラリを形成する混合装置と、該混合装置にて形成された前記スラリを、前記乾留炭の各粒子に前記薬液がコーティングされた状態で濾過するフィルタとを備えている。
 固化した後に酸素遮断機能を有する薬液と粒子状の乾留炭とのスラリを形成し、このスラリをフィルタにより濾過して乾留炭の各粒子に薬液をコーティングすることにより、各粒子の全体に酸素遮断膜がコーティングされた不活性化乾留炭を得ることができる。このように、スラリをフィルタで濾過することによって、均一に酸素遮断膜がコーティングされた不活性化乾留炭を大量に製造することができる。
 酸素遮断機能を有する薬液でコーティングすることによって乾留炭の不活性化が達成されるので、従来のように酸素や空気と接触させて徐々に時間をかけて表面から酸化させるといった不活性化設備が不要となり、処理時間およびコストを低減することができる。
 乾留炭の粒子のそれぞれを不活性化できるので、表面積を低減するために粒子状の乾留炭を集めて成型(ブリケット化)する成型装置が不要となり、処理時間およびコストを低減することができる。そして、粒子状の乾留炭をブリケット化し表面積を低減する不活性化方法に比べて、各粒子の表面全体を酸素遮断膜でコーティングするので確実な不活性化を実現することができる。
 固化した後に酸素遮断機能を有する薬液としては、ポリエチレンオキシド(polyethylene oxide)、スターチ(starch)等の高分子を水等の溶媒に溶かしたものが用いられ、常温で固化するものが好適に用いられる。
 乾留炭の粒子は、例えば約0.5~約5.0mm程度の粒径とされている。
 本発明の一態様に係る乾留炭不活性化装置は、前記フィルタによって前記乾留炭から分離された薬液を、前記混合装置へと導く薬液循環経路を更に備えている。
 フィルタによって乾留炭から分離された薬液を混合装置へと戻して再利用することとしたので、薬液の使用量を低減することができる。
 本発明の一態様に係る乾留炭不活性化装置では、前記フィルタは、ベルトフィルタとされている。
 フィルタとしてベルトフィルタを用いることとしたので、連続処理が可能となり不活性化乾留炭を大量に製造することができる。
 本発明の一態様に係る石炭改質プラントは、石炭を乾留する乾留装置と、該乾留装置によって乾留された乾留炭の不活性化する上記の乾留炭不活性化装置とを備えている。
 上記の乾留炭不活性化装置を用いるので、均一に酸素遮断膜がコーティングされた不活性化乾留炭を得ることができる。
 本発明の一態様に係る不活性化乾留炭の製造方法は、固化した後に酸素遮断機能を有する薬液に対して乾留した石炭である乾留炭の粒子を混ぜてスラリを形成する混合工程と、該混合工程にて形成された前記スラリを、前記乾留炭の各粒子に前記薬液がコーティングされた状態で濾過するフィルタ工程とを備えている。
 固化した後に酸素遮断機能を有する薬液と乾留炭の粒子とのスラリを形成し、このスラリをフィルタにより濾過して乾留炭の各粒子に薬液をコーティングすることにより、各粒子の全体に酸素遮断膜がコーティングされた不活性化乾留炭を得ることができる。このように、スラリをフィルタで濾過することによって、均一に酸素遮断膜がコーティングされた不活性化乾留炭を大量に製造することができる。
 乾留炭と酸素遮断機能を有する薬液とのスラリをフィルタによって濾過することで乾留炭を不活性化することとしたので、短時間で乾留炭を不活性化することができる。
 また、従来のような酸化による不活性化装置や成形装置を用いなくても不活性化が可能となるので、コストを低減することができる。
本発明の一実施形態に係る石炭改質プラントの全体構成を示した概略構成図である。 図1の不活性化装置を示した概略構成図である。
 以下に、本発明にかかる一実施形態について、図面を参照して説明する。
 図1には、本発明の一実施形態に係る乾留炭不活性化装置を備えた石炭改質プラントが示されている。石炭改質プラントは、石炭を加熱させて乾燥させる乾燥装置(dryer)1と、乾燥装置1にて乾燥された乾燥炭を加熱して乾留する乾留装置(pyrolyzer)3と、乾留装置3にて乾留された乾留炭を冷却する冷却装置(quencher)5と、冷却装置5にて冷却された乾留炭を不活性化させる乾留炭不活性化装置(finisher;以下、単に「不活性化装置」という。)7とを備えている。
 乾燥装置1の上流側には、改質前の石炭(raw coal)10を受け入れる石炭ホッパ12が設けられている。改質前の石炭は、亜瀝青炭や褐炭等の低品位炭とされ、水分含有率は25wt%以上60wt%以下とされる。石炭ホッパ12から導かれた石炭は、粉砕機(crusher)14にて例えば約20mm以下まで粉砕される。
 粉砕機14にて粉砕された石炭は、乾燥装置1へと導かれる。乾燥装置1は、蒸気による間接加熱式とされており、中心軸回りに回転する円筒容器16と、円筒容器16内に挿入された複数の伝熱管18とを備えている。円筒容器16内には粉砕機14から導かれた石炭が供給されるようになっており、円筒容器16内に供給された石炭は、円筒容器16の回転に応じて攪拌されながら一端側(図1において左側)から他端側へと導かれる。各伝熱管18内には、蒸気生成システム(steam system)20にて生成された150℃以上200℃以下(より具体的には180℃)の蒸気が供給され、各伝熱管18の外周に接触する石炭を間接的に加熱するようになっている。各伝熱管18内に供給された蒸気は、石炭を加熱する際に凝縮熱を与えた後に凝縮し、乾燥装置1から排出されて蒸気生成システム20へと返送される。
 円筒容器16の内部には、キャリアガス循環経路22を介してキャリアガスが供給されるようになっている。キャリアガスとしては、不活性ガスが用いられ、具体的には窒素ガスが用いられる。窒素ガスは、キャリアガス循環経路22に接続された窒素供給経路24から不足分が追加供給されるようになっている。キャリアガスは、円筒容器16内を通過する際に、石炭から脱離した脱離成分(水蒸気、微粉炭、水銀、水銀系物質等)を伴いつつ、円筒容器16に接続されたキャリアガス排出経路26を介して円筒容器16の外部へと排出される。
 キャリアガス排出経路26には、キャリアガスの流れ方向の上流側から順に、サイクロン(集塵機)28と、キャリアガス冷却器30と、スクラバ32とが設けられている。
 サイクロン28は、遠心力を利用してキャリアガスから固形物である微粉炭(例えば粒径100μm以下)を主として取り除く。サイクロン28にて取り除かれた微粉炭は、符号Aにて示されているように、バグフィルタ34の上流側へと導かれる。なお、サイクロン28にて分離された微粉炭を、乾燥装置1にて乾燥された乾燥炭に混合することとしても良い。
 キャリアガス冷却器30は、微粉炭が取り除かれたキャリアガスを冷却することによってキャリアガスとともに導かれた水蒸気を凝縮してドレン水として取り除く。キャリアガス冷却器30は、間接式熱交換器とされており、冷却媒体としては常温とされた工業用水が用いられる。なお、冷却媒体として、排水処理設備40にて分離された再生水を用いてもよい。キャリアガス冷却器30にて生成したドレン水は、スクラバ32下方の液相部へと導かれる。
 スクラバ32は、微粉炭及び水蒸気が除去されたキャリアガスから水銀および/または水銀系物質(以下、単に「水銀等」という。)を除去する。スクラバ32に用いる吸収液としては水が用いられ、具体的には排水処理設備40にて分離された再生水が用いられる。スクラバ32の上方から散布された水によってキャリアガス中の水銀等が吸着され、スクラバ32下方の液相部へと導かれる。また、スクラバ32では、サイクロン28にて除去しきれなかった微粉炭も除去される。
 スクラバ32の上方には、キャリアガス循環経路22の上流端が接続されており、キャリアガス循環経路22の途中位置にはブロワ36が設けられている。ブロワ36によってスクラバ32にて処理された後のキャリアガスが乾燥装置1へと戻される。また、図示されていないが、スクラバ32にて処理された後のキャリアガスの一部は、燃焼炉42へと導かれるようになっている。
 スクラバ32の下方には、排水経路38を介して排水処理設備40が接続されている。排水処理設備40は、キレート剤を排水に投入して水銀等を凝集肥大化させた上で、図示しない沈降槽によって、微粉炭及び水銀等の固形分であるスラッジ39と、再生水とを分離するものである。再生水は、プラントの各所にて再利用される。
 乾燥装置1にて乾燥された石炭(乾燥炭)は、乾燥炭供給経路44を通り、重力を利用して乾留装置3へと導かれる。乾留装置3は、外熱式ロータリキルンとされており、回転内筒46と、回転内筒46の外周側を覆う外筒48とを備えている。回転内筒46内には、キャリアガスとしての窒素ガスが供給されるようになっている。
 回転内筒46と外筒48との間の空間には、燃焼炉42にて生成された燃焼ガスが燃焼ガス導入経路50を介して導かれるようになっている。これにより、回転内筒46内が350℃以上450℃以下(例えば400℃)に維持される。
 燃焼炉42には、ブロワ52によって圧送される燃焼用空気を炉内に導く空気供給経路54と、燃料としての天然ガスを炉内に導く天然ガス供給経路55と、乾留装置3内で発生した乾留ガスをキャリアガスとともに回収して炉内に導く乾留ガス回収経路56とが接続されている。燃焼炉42内では、炉内に供給された天然ガス、乾留ガス及び空気によって火炎51が形成される。乾留ガスはタール等の揮発分を含んでおり所定の発熱量を有するので、燃焼炉42にて燃料として用いられる。天然ガス供給経路55から供給される天然ガスは、燃焼炉42に投入される燃料の発熱量調整のために用いられ、燃焼炉42にて生成された燃焼ガスの温度が所望値となるように流量が調整される。
 乾留ガス回収経路56の途中位置には、緊急時に使用する乾留ガス排出経路58が接続されている。乾留ガス排出経路58の下流側には、フレアスタック60が設置されており、このフレアスタック60によって乾留ガス中のタール等の可燃成分が焼却処理され、焼却処理後のガスは大気へと放出される。
 燃焼炉42には、炉内で生成された燃焼ガスを排出する燃焼ガス排出経路62が接続されている。燃焼ガス排出経路62の途中位置には、乾留装置3に燃焼ガスを導く燃焼ガス導入経路50の上流端が接続されている。燃焼ガス導入経路50との接続位置よりも下流側の燃焼ガス排出経路62には、第1中圧ボイラ64が設けられている。
 乾留装置3の外筒48には、回転内筒46を加熱した後の燃焼ガスを排出する加熱後ガス排出経路66が接続されている。加熱後ガス排出経路66には、第2中圧ボイラ68が設けられている。加熱後ガス排出経路66は、下流側にて燃焼ガス排出経路62に接続されている。加熱後ガス排出経路66との接続位置よりも下流側の燃焼ガス排出経路62には、燃焼ガスを圧送するブロワ70が設けられている。
 燃焼ガス排出経路62の下流側は、バグフィルタ34に接続されている。バグフィルタ34にて燃焼灰等が除去された燃焼排ガスは、大気(ATM)へと放出される。
 蒸気生成システム20は、第1中圧ボイラ64と第2中圧ボイラ68とを備えている。第2中圧ボイラ68では、供給されたボイラ給水(BFW)が、加熱後ガス排出経路66を流れる燃焼ガスによって加熱され、蒸気が生成される。第1中圧ボイラ64では、第2中圧ボイラ68にて生成された蒸気が導かれ、燃焼ガス排出経路62を流れる燃焼排ガスによって加熱され、さらに高圧とされた蒸気が生成される。第1中圧ボイラ64で生成された中圧蒸気と、第2中圧ボイラ68で生成された中圧蒸気は、それぞれ図示しない蒸気ドラムに貯留され、乾燥装置1の伝熱管18といったプラントの各所に供給される。
 乾留装置3で乾留された乾留炭は、乾留炭供給経路72を介して、重力を利用して冷却装置5へと導かれる。冷却装置5は、乾留装置3からの乾留炭を受け入れる第1冷却器74と、第1冷却器74によって冷却された乾留炭を受け入れる第2冷却器76とを備えている。
 第1冷却器74は、シェルアンドチューブ型熱交換器とされており、中心軸回りに回転する第1円筒容器78と、第1円筒容器78内に挿入された第1散水管79と、第1円筒容器78内に挿入された複数の第1冷却管80とを備えている。第1散水管79は、回転する第1円筒容器78に対して静止した状態で設置されている。第1円筒容器78内には乾留装置3から導かれた300℃以上500℃以下(例えば約400℃)の乾留炭が供給されるようになっており、第1円筒容器78内に供給された乾留炭は、第1円筒容器78の回転に応じて攪拌されながら一端側(図1において左側)から他端側へと導かれる。
 第1散水管79には、常温とされた工業用水が導かれ、乾留炭に対して水を散布することによって水を直接接触させて冷却する。第1散水管79は、第1円筒容器78内を移動する乾留炭の上流側(図1において左側)に設けられる。なお、第1散水管79に供給する水として、排水処理設備40にて分離された再生水を用いてもよい。
 各第1冷却管80内には、50℃以上100℃未満(例えば約60℃)のボイラ給水が供給され、各第1冷却管80の外周に接触する乾留炭を間接的に冷却するようになっている。各第1冷却管80は、第1円筒容器78内を移動する乾留炭の下流側(図1において右側)に設けられ、第1散水管79によって冷却された後の乾留炭を水の凝縮温度以上である約150℃まで冷却するようになっている。
 第2冷却器76は、第1冷却器74とほぼ同様の構成で、シェルアンドチューブ型熱交換器とされており、中心軸回りに回転する第2円筒容器81と、第2円筒容器81内に挿入された第2散水管82と、第2円筒容器81内に挿入された複数の第2冷却管83とを備えている。第2散水管82は、回転する第2円筒容器81に対して静止した状態で設置されている。第2円筒容器81内には第1冷却器74にて約150℃まで冷却された乾留炭が供給されるようになっており、第2円筒容器81内に供給された乾留炭は、第2円筒容器81の回転に応じて攪拌されながら一端側(図1において左側)から他端側へと導かれる。
 第2散水管82には、常温とされた工業用水が導かれ、乾留炭に対して水を散布することによって乾留炭の水分含有率を所望値(例えば8wt%)になるように調整する。第2散水管82は、第2円筒容器81の軸線方向の略全体にわたって設けられる。なお、第2散水管82に供給する水として、排水処理設備40にて分離された再生水を用いてもよい。
 各第2冷却管83内には、常温とされた工業用水が導かれ、各第2冷却管83の外周に接触する乾留炭を間接的に冷却するようになっている。各第2冷却管83は、乾留炭を約50℃まで冷却するようになっている。なお、各第2冷却管83に供給する水として、排水処理設備40にて分離された再生水を用いてもよい。
 冷却装置5にて冷却された乾留炭は、冷却後乾留炭供給経路84を介して、不活性化装置7へと導かれる。
 不活性化装置7は、図2に示されているように、混合装置86と、ベルトフィルタ装置88とを備えている。
 混合装置86には、冷却装置5から導かれた乾留炭と、不活性化処理を行う薬液とが導かれる。混合装置86は、図示しない攪拌機によって混合して乾留炭と薬液とのスラリを形成する。
 混合装置86に導かれる乾留炭は、粒子状とされており、約0.5~5.0mm程度の粒径とされている。
 薬液は、固化した後に酸素遮断機能を有するものであり、例えばポリエチレンオキシド(polyethelene oxide)、スターチ(starch)等の高分子を水等の溶媒に溶かしたものが用いられる。ポリエチレンオキシドやスターチのように常温で固化する薬剤を用いると好適である。
 ベルトフィルタ装置88は、帯状の略全面に網目状のフィルタ部が形成された無端状のベルトフィルタ90と、ベルトフィルタ90が掛け回される一対のローラ92とを備えている。ベルトフィルタ90は、例えば約1mmとされた粒子状の乾留炭を通さない程度のメッシュとされている。ローラ92には図示しない駆動装置が設けられており、この駆動装置の動力によって図中の矢印で示すように軸線回りに回転するようになっている。
 図示されていないが、ベルトフィルタ90が各ローラ92の上端間を略水平に走行する間に、上方からベルトフィルタ90側に向かって押圧するプレス、または、下方からベルトフィルタ90を吸引する吸引装置が設けられている。混合装置86からスラリ供給経路87によってベルトフィルタ90の上方の一端(図において左側)に供給されたスラリは、ベルトフィルタ90の略水平方向の走行と共に他端側に送られる間に、上述したプレスまたは吸引装置によって濾過される。これにより、スラリは、薬剤が全面にコーティングされた粒子状の乾留炭と、ベルトフィルタ90を通過した後の薬剤とに分離される。
 ベルトフィルタ90によって分離されたコーティング後の粒子状の乾留炭は、図示しないスクレーパ等によってベルトフィルタ90から取り除かれる。そして、薬液が常温で固化することにより各粒子の全面に酸素遮断膜が形成され、不活性化乾留炭すなわち最終的な改質炭104が得られる。
 ベルトフィルタ90によって分離された薬液は下方から回収され、薬液循環経路94を通り再び混合装置86へと送られる。
 本実施形態によれば、以下の作用効果を奏する。
 固化した後に酸素遮断機能を有する薬液と粒子状の乾留炭とのスラリを形成し、このスラリをベルトフィルタ90により濾過して粒子状の各乾留炭に薬液をコーティングすることにより、各粒子の全体に酸素遮断膜がコーティングされた不活性化乾留炭を得ることができる。このように、スラリをベルトフィルタ90で濾過することによって、均一に酸素遮断膜がコーティングされた不活性化乾留炭を大量に製造することができる。
 また、酸素遮断機能を有する薬液でコーティングすることによって乾留炭の不活性化が達成されるので、従来のように酸素や空気と接触させて徐々に時間をかけて表面から酸化させるといった不活性化設備が不要となり、処理時間およびコストを低減することができる。
 また、粒子状の乾留炭のそれぞれを不活性化できるので、粒子状の乾留炭を集めて成型(ブリケット化)し表面積を低減する成型装置が不要となり、処理時間およびコストを低減することができる。そして、表面積を低減するために粒子状の乾留炭をブリケット化する不活性化方法に比べて、各粒子の表面全体を酸素遮断膜でコーティングするので確実な不活性化を実現することができる。
 また、ベルトフィルタ装置88によって乾留炭から分離された薬液を、薬液循環経路94を介して混合装置86へと戻して再利用することとしたので、薬液の使用量を低減することができる。
 また、ベルトフィルタ90を用いることとしたので、連続処理が可能となり不活性化乾留炭を大量に製造することができる。
1 乾燥装置
3 乾留装置
5 冷却装置
7 不活性化装置
9 成形装置
10 改質前の石炭
12 石炭ホッパ
14 粉砕機
16 円筒容器
18 伝熱管
20 蒸気生成システム
22 キャリアガス循環経路
28 サイクロン
30 キャリアガス冷却器
32 スクラバ
34 バグフィルタ
40 排水処理設備
42 燃焼炉
46 回転内筒
48 外筒
50 燃焼ガス導入経路
74 第1冷却器
76 第2冷却器
78 第1円筒容器
79 第1散水管
80 第1冷却管
81 第2円筒容器
82 第2散水管
83 第2冷却管
86 混合装置
87 スラリ供給経路
88 ベルトフィルタ装置
90 ベルトフィルタ
92 ローラ
94 薬液循環経路
104 改質炭

Claims (5)

  1.  固化した後に酸素遮断機能を有する薬液に対して乾留した石炭である粒子状の乾留炭を混ぜてスラリを形成する混合装置と、
     該混合装置にて形成された前記スラリを、前記乾留炭の各粒子に前記薬液がコーティングされた状態で濾過するフィルタと、
     を備えている乾留炭不活性化装置。
  2.  前記フィルタによって前記乾留炭から分離された薬液を、前記混合装置へと導く薬液循環経路を備えている請求項1に記載の乾留炭不活性化装置。
  3.  前記フィルタは、ベルトフィルタとされている請求項1に記載の乾留炭不活性化装置。
  4.  石炭を乾留する乾留装置と、
     該乾留装置によって乾留された乾留炭の不活性化する請求項1に記載の乾留炭不活性化装置と、
     を備えている石炭改質プラント。
  5.  固化した後に酸素遮断機能を有する薬液に対して乾留した石炭である乾留炭の粒子を混ぜてスラリを形成する混合工程と、
     該混合工程にて形成された前記スラリを、前記乾留炭の各粒子に前記薬液がコーティングされた状態で濾過するフィルタ工程と、
     を備えている不活性化乾留炭の製造方法。
PCT/JP2016/053486 2015-03-09 2016-02-05 乾留炭不活性化装置および石炭改質プラントならびに不活性化乾留炭の製造方法 WO2016143431A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2016230475A AU2016230475A1 (en) 2015-03-09 2016-02-05 Dry-distilled coal inactivation device, coal upgrading plant, and production method for inactivated dry-distilled coal
JP2017504918A JPWO2016143431A1 (ja) 2015-03-09 2016-02-05 乾留炭不活性化装置および石炭改質プラントならびに不活性化乾留炭の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/641801 2015-03-09
US14/641,801 US20160264894A1 (en) 2015-03-09 2015-03-09 Pyrolyzed coal finisher, coal upgrade plant, and method for manufacturing deactivated pyrolyzed coal

Publications (1)

Publication Number Publication Date
WO2016143431A1 true WO2016143431A1 (ja) 2016-09-15

Family

ID=56879523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053486 WO2016143431A1 (ja) 2015-03-09 2016-02-05 乾留炭不活性化装置および石炭改質プラントならびに不活性化乾留炭の製造方法

Country Status (4)

Country Link
US (1) US20160264894A1 (ja)
JP (1) JPWO2016143431A1 (ja)
AU (1) AU2016230475A1 (ja)
WO (1) WO2016143431A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005105029A (ja) * 2003-09-29 2005-04-21 Kurita Water Ind Ltd 石炭の自然発火防止方法
WO2013125476A1 (ja) * 2012-02-24 2013-08-29 三菱重工業株式会社 改質石炭製造設備
JP2014031462A (ja) * 2012-08-06 2014-02-20 Mitsubishi Heavy Ind Ltd 石炭乾留装置及びこれを利用する改質石炭製造設備

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4173530A (en) * 1974-01-14 1979-11-06 Otisca Industries, Ltd. Methods of and apparatus for cleaning coal
US4421520A (en) * 1981-12-21 1983-12-20 Atlantic Richfield Company Reducing the tendency of dried coal to spontaneously ignite
JPS58142982A (ja) * 1982-02-22 1983-08-25 Nippon Steel Corp 成型炭の製造方法
US4705533A (en) * 1986-04-04 1987-11-10 Simmons John J Utilization of low rank coal and peat
US5322530A (en) * 1992-10-20 1994-06-21 Western Research Institute Process for clean-burning fuel from low-rank coal
CN103007614A (zh) * 2012-12-30 2013-04-03 陆汉克 高效节能带式压滤机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005105029A (ja) * 2003-09-29 2005-04-21 Kurita Water Ind Ltd 石炭の自然発火防止方法
WO2013125476A1 (ja) * 2012-02-24 2013-08-29 三菱重工業株式会社 改質石炭製造設備
JP2014031462A (ja) * 2012-08-06 2014-02-20 Mitsubishi Heavy Ind Ltd 石炭乾留装置及びこれを利用する改質石炭製造設備

Also Published As

Publication number Publication date
JPWO2016143431A1 (ja) 2017-10-26
US20160264894A1 (en) 2016-09-15
AU2016230475A1 (en) 2017-07-20

Similar Documents

Publication Publication Date Title
JP6469840B2 (ja) 石炭改質プラントおよび改質石炭の製造方法
JP5506841B2 (ja) 石炭乾留装置
AU2018282459B2 (en) Dry-distilled coal cooling device, coal upgrading plant, and dry-distilled coal cooling method
CN108911473B (zh) 直接加热型污泥烘干炭化机构
JP6426270B2 (ja) 石炭改質プラント及び改質石炭の製造方法
JP6426271B2 (ja) 石炭改質プラントならびに改質石炭の製造方法
WO2017049153A1 (en) Combustible pellet drying system
WO2016143431A1 (ja) 乾留炭不活性化装置および石炭改質プラントならびに不活性化乾留炭の製造方法
JP5820358B2 (ja) 粒状物の間接加熱乾燥方法、改質石炭の製造方法、間接加熱型乾燥装置及び改質石炭製造装置
JP6147679B2 (ja) 石炭乾留装置
CN205974357U (zh) 一种高温多管回转耦合直立炭化炉热解系统
JP5714142B2 (ja) 石炭乾留装置
JP2012241110A (ja) 汚泥の炭化処理方法
CARBON Applications of New Concepts of Physical-Chemical

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761403

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017504918

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016230475

Country of ref document: AU

Date of ref document: 20160205

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761403

Country of ref document: EP

Kind code of ref document: A1