WO2016143236A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2016143236A1
WO2016143236A1 PCT/JP2016/000076 JP2016000076W WO2016143236A1 WO 2016143236 A1 WO2016143236 A1 WO 2016143236A1 JP 2016000076 W JP2016000076 W JP 2016000076W WO 2016143236 A1 WO2016143236 A1 WO 2016143236A1
Authority
WO
WIPO (PCT)
Prior art keywords
video signal
liquid crystal
light
crystal panel
unit
Prior art date
Application number
PCT/JP2016/000076
Other languages
French (fr)
Japanese (ja)
Inventor
亮佑 中越
Original Assignee
株式会社Jvcケンウッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015235420A external-priority patent/JP2016170386A/en
Application filed by 株式会社Jvcケンウッド filed Critical 株式会社Jvcケンウッド
Publication of WO2016143236A1 publication Critical patent/WO2016143236A1/en
Priority to US15/699,866 priority Critical patent/US20170374328A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/02Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes by tracing or scanning a light beam on a screen
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]

Definitions

  • the present invention relates to a display device.
  • Patent Document 1 discloses a video display device that displays a high-contrast video.
  • the video display device described in Patent Literature 1 includes an RGB projection display device that outputs light based on three primary color signals, and a Y projection display device that modulates light from an RGB projection display device based on a luminance signal. High contrast is realized using a display device.
  • the projection display device for Y modulates the luminance of light including RGB components. For this reason, in the projection display apparatus for RGB, since it is affected by the leakage light of the R modulation element, the G modulation element, or the B modulation element, the dynamic range is reduced.
  • the dynamic range is narrowed.
  • the present invention has been made in view of the above points, and an object thereof is to provide a display device capable of realizing display with a high dynamic range.
  • the display device modulates and emits incident light according to a projection unit that emits light modulated according to a first video signal composed of three primary color signals and a second video signal composed of three primary color signals.
  • a display unit comprising a transmissive liquid crystal panel, a polarizing plate that emits light of a predetermined polarization direction among incident light, and a first screen Generating the first video signal and the second video signal for driving the transmissive liquid crystal panel, and synchronizing the first video signal and the second video signal
  • the display control unit is arranged in the order of the traveling direction of the light emitted from the projection unit, in the order of the transmissive liquid crystal panel, the polarizing plate, and the first screen. It is configured.
  • FIG. 1 is a perspective view illustrating an appearance of a display device according to a first embodiment.
  • 1 is a configuration diagram illustrating an example of an internal configuration of a display device according to a first exemplary embodiment
  • FIG. 6 is a diagram schematically illustrating a polarization state in the display device according to the first exemplary embodiment, and illustrates a polarization state of light incident on the phase difference plate.
  • FIG. 6 is a diagram schematically illustrating a polarization state in the display device according to the first exemplary embodiment, and illustrates a polarization state of light emitted from the phase difference plate. It is a figure which shows typically the polarization state in the display apparatus concerning Embodiment 1, and shows the polarization state of the light inject
  • FIG. 1 is a block diagram showing a configuration of a display device according to a first exemplary embodiment.
  • FIG. 1 is a block diagram showing a configuration of a display device according to a first exemplary embodiment.
  • 2 is a block diagram showing a configuration of a signal processing unit according to the first exemplary embodiment
  • 4 is a graph showing an example of gamma characteristics in the display device according to the first exemplary embodiment, and shows gamma characteristics of an input video signal.
  • 4 is a graph showing an example of gamma characteristics in the display device according to the first exemplary embodiment, and shows gamma characteristics of a transmissive liquid crystal panel.
  • 6 is a graph showing an example of gamma characteristics in the display device according to the first exemplary embodiment, and shows gamma characteristics of a projection unit.
  • 4 is a graph showing an example of gamma characteristics in the display device according to the first exemplary embodiment, and shows gamma characteristics of an input video signal.
  • 4 is a graph showing an example of gamma characteristics in the display device according to the first exemplary embodiment, and shows gamma characteristics of a transmissive liquid crystal panel.
  • 6 is a graph showing an example of gamma characteristics in the display device according to the first exemplary embodiment, and shows gamma characteristics of a projection unit.
  • 4 is a graph showing an example of gamma characteristics in the display device according to the first exemplary embodiment, and shows gamma characteristics of an input video signal.
  • 4 is a graph showing an example of gamma characteristics in the display device according to the first exemplary embodiment, and shows gamma characteristics of a transmissive liquid crystal panel.
  • FIG. 6 is a graph showing an example of gamma characteristics in the display device according to the first exemplary embodiment, and shows gamma characteristics of a projection unit.
  • FIG. 6 is a configuration diagram illustrating an example of an internal configuration of a display device according to a second exemplary embodiment; It is the table
  • Embodiment 1 Embodiments of the present invention will be described below with reference to the drawings.
  • FIG. 1 is a perspective view showing an appearance of the display device 1.
  • the display device 1 is a rear projection type projector (rear projector), and a display unit 30 is provided on the front surface of the housing 10. More specifically, the display device 1 is a rear projector configured using LCOS (Liquid Crystal Crystal on Silicon) which is a reflective liquid crystal display element.
  • FIG. 2 is a configuration diagram illustrating an example of the internal configuration of the housing 10 of the display device 1.
  • the display device 1 includes a projection unit 20, a display unit 30, a mirror 40, and a display control unit 50.
  • the mirror 40 reflects the light emitted from the projection unit 20 toward the display unit 30.
  • Projection unit 20 generates projection light based on the video signal in order to project an image on display unit 30. More specifically, the projection unit 20 emits linearly polarized light corresponding to a first video signal, which will be described later, composed of three primary color signals. Hereinafter, the configuration of the projection unit 20 will be described.
  • the projection unit 20 has a light source 201.
  • the light source 201 is, for example, a lamp.
  • the light emitted from the light source 201 is incident on the dichroic mirror 203 via an integrator 202 that emits the light emitted from the light source 201 with a uniform illuminance distribution in a plane perpendicular to the optical axis.
  • the dichroic mirror 203 separates the incident light into R light having a red band component, G light having a green band component, and B light having a blue band component.
  • the R light and G light separated by the dichroic mirror 203 enter the mirror 204. Further, the B light separated by the dichroic mirror 203 is incident on the mirror 205.
  • the R light and G light separated by the dichroic mirror 203 are reflected by the mirror 204 and enter the dichroic mirror 206.
  • the dichroic mirror 206 separates the incident R light and G light.
  • the R light separated by the dichroic mirror 206 passes through the R field lens 207R and enters the R polarization control element 208R inclined at 45 °.
  • the R polarization control element 208R is, for example, a wire grid type polarization beam splitter, and transmits P-polarized light and reflects S-polarized light.
  • the P-polarized R light transmitted through the R polarization control element 208R is incident on the R display element 209R.
  • the R display element 209 ⁇ / b> R is configured by LCOS, and modulates R light based on a video signal output from the display control unit 50 described later.
  • the R light incident on the R display element 209R is reflected by the R display element 209R and returns to the R polarization control element 208R.
  • the component modulated into S-polarized light by the R display element 209R is reflected toward the dichroic prism 210 by the R polarization control element 208R.
  • the R light reflected in the direction of the dichroic prism 210 is incident on the first surface of the dichroic prism 210.
  • the component not modulated by the R display element 209R is transmitted through the R polarization control element 208R and returns to the R field lens 207R.
  • the G light separated by the dichroic mirror 206 passes through the G field lens 207G and enters the G polarization control element 208G inclined by 45 °.
  • the G polarization control element 208G is, for example, a wire grid type polarization beam splitter, and transmits P-polarized light and reflects S-polarized light.
  • the P-polarized G light transmitted through the G polarization control element 208G enters the G display element 209G.
  • the G display element 209 ⁇ / b> G is configured by LCOS, and modulates the G light based on the video signal output from the display control unit 50.
  • the G light incident on the G display element 209G is reflected by the G display element 209G and returns to the G polarization control element 208G.
  • the component modulated into S-polarized light by the G display element 209G is reflected in the direction of the dichroic prism 210 by the G polarization control element 208G.
  • the G light reflected in the direction of the dichroic prism 210 is incident on the second surface of the dichroic prism 210.
  • the component not modulated by the G display element 209G is transmitted through the G polarization control element 208G and returns to the direction of the G field lens 207G.
  • the B light separated by the dichroic mirror 203 is reflected by the mirror 205, passes through the B field lens 207B, and enters the B polarization control element 208B inclined at 45 °.
  • the B polarization control element 208B is, for example, a wire grid type polarization beam splitter, and transmits P-polarized light and reflects S-polarized light.
  • the P-polarized B light transmitted through the B polarization control element 208B is incident on the B display element 209B.
  • the B display element 209 ⁇ / b> B is configured by LCOS, and modulates the B light based on the video signal output from the display control unit 50.
  • the B light incident on the B display element 209B is reflected by the B display element 209B and returns to the B polarization control element 208B.
  • the component modulated to S-polarized light by the B display element 209B is reflected by the B polarization control element 208B in the direction of the dichroic prism 210.
  • the B light reflected toward the dichroic prism 210 is incident on the third surface of the dichroic prism 210.
  • the component not modulated by the B display element 209B is transmitted through the B polarization control element 208B and returns to the B field lens 207B.
  • the R display element 209R, the G display element 209G, and the B display element 209B may be collectively referred to as a display element 209.
  • the dichroic prism 210 emits S-polarized components of R light, G light, and B light incident from three directions toward the projection lens 212. Therefore, linearly polarized light is emitted to the projection lens 212.
  • the light emitted from the dichroic prism 210 enters the projection lens 212 via the phase difference plate 211.
  • the phase difference plate 211 adjusts the polarization direction of the light emitted from the projection unit 20 to the polarization direction required as the incident light of the display unit 30.
  • the polarization direction required as the incident light of the display unit 30 is, for example, a direction obtained by rotating the polarization direction that transmits a polarizing plate 302 (to be described later) of the display unit 30 by 90 °.
  • the projection lens 212 projects the incident light onto the display unit 30 via the mirror 40 to form an image.
  • the light emitted from the projection unit 20 is linearly polarized light.
  • the linearly polarized light emitted from the projection unit 20 enters the transmissive liquid crystal panel 301 via the phase difference plate 211.
  • the retardation plate 211 is not used, if the polarization direction of the light emitted from the projection unit 20 is already the polarization direction required as the incident light of the display unit 30, the retardation plate 211 is provided. It does not have to be.
  • the phase difference plate 211 is omitted, and the light emitted from the projection unit 20 is arbitrarily adjusted by rotating the projection unit 20 around the traveling direction of the light emitted from the projection unit 20 as an axis.
  • the polarization direction may be the polarization direction required as the incident light of the display unit 30.
  • the display unit 30 includes a transmissive liquid crystal panel 301 having a predetermined resolution, a polarizing plate 302 having a size corresponding to the size of the display surface of the transmissive liquid crystal panel 301, and a transmissive liquid crystal panel.
  • a screen 303 having a size corresponding to the size of the liquid crystal panel 301 is provided.
  • the transmissive liquid crystal panel 301, the polarizing plate 302, and the screen 303 are arranged in the order of the traveling direction of the light emitted from the projection unit 20 in the order. They are arranged in a row in order.
  • the polarizing plate is not necessarily provided on the light incident side from the projection unit 20 in the transmissive liquid crystal panel 301. This is because, as described above, since the light emitted from the projection unit 20 is linearly polarized light, it is not necessary to align the plane of polarization on one plane before the light enters the transmissive liquid crystal panel 301. .
  • the transmissive liquid crystal panel 301 has a liquid crystal layer and a glass substrate (not shown), and modulates each primary color light from the projection unit 20 and changes the polarization direction in accordance with a later-described second video signal including the three primary color signals.
  • Light that has passed through the transmissive liquid crystal panel 301 enters the polarizing plate 302.
  • the polarizing plate 302 transmits light polarized in a predetermined direction.
  • the display unit 30 controls the transmission amount of each of R light, G light, and B light incident from the projection unit 20 for each pixel based on the second video signal, and displays the image. Do.
  • the resolution of the display unit 30 corresponds to the resolution of the projection unit 20, and each pixel in the projection unit 20 has a one-to-one correspondence with each pixel of the transmissive liquid crystal panel 301. Accordingly, each of R light modulated by the R display element 209R, G light modulated by the G display element 209G, and B light modulated by the B display element 209B, which corresponds to one pixel of the projection unit 20, Are modulated in the display unit 30 in accordance with the second video signal. Note that the light dots projected by the projection unit 20 and the pixels of the transmissive liquid crystal panel 301 need to be aligned with each other.
  • FIG. 3A to 3C are diagrams schematically illustrating the polarization state in the display device 1.
  • FIG. 4A to 4C are diagrams schematically showing a polarization state in the configuration of the comparative example.
  • a comparative example a configuration in which the configuration of the projection unit 20 is replaced with DLP (Digital Light Processing) is assumed. That is, in the configuration according to the comparative example, it is assumed that the configuration upstream of the phase difference plate 211 in the projection unit 20 is realized by DLP.
  • 3A and 4A show the polarization state of the light incident on the phase difference plate 211, FIGS.
  • FIGS. 3C and 4C show the display.
  • the polarization state of the light emitted from the unit 30 is shown. More specifically, FIG. 4B shows a polarization state after the light emitted from the phase difference plate 211 is transmitted through the added polarizing plate.
  • the light incident on the phase difference plate 211 is linearly polarized light (see FIG. 3A).
  • the polarization direction is adjusted by the phase difference plate 211 (see FIG. 3B).
  • the light incident on the phase difference plate 211 is in a non-polarized state (see FIG. 4A).
  • polarization required for incident light of the transmissive liquid crystal panel 301 is realized (see FIG. 4B).
  • the polarizing plate when the polarizing plate is provided in the front stage of the transmissive liquid crystal panel 301 in this way, the light amount is lost due to the polarizing plate. In addition, an increase in cost is caused by providing a polarizing plate corresponding to the size of the transmissive liquid crystal panel 301.
  • the polarization state of the light emitted from the display unit 30 varies depending on the characteristics of the screen 303. That is, when the screen 303 has the characteristic of maintaining the polarization of the incident light, the polarization of the light incident on the screen 303 is maintained, but when the screen 303 does not have the characteristic of maintaining the polarization, the screen 303 Will disappear. In the configuration shown in the comparative example, the phase difference plate 211 may be omitted.
  • FIG. 5 is a block diagram showing the configuration of the display device 1.
  • the display control unit 50 includes a signal processing unit 500, a first synchronization unit 511, and a second synchronization unit 512.
  • Each configuration of the display control unit 50 may be realized by software based on a program, or may be realized by any combination of hardware, firmware, and software.
  • a program for example, it is realized by executing a program stored in a memory (not shown) of the display control unit 50 by a CPU (Central Processing Unit) (not shown) of the display control unit 50.
  • a CPU Central Processing Unit
  • the input video signal and the synchronization signal are input to the signal processing unit 500.
  • the input video signal input to the signal processing unit 500 may be transmitted to the display device 1 from another device, for example, or may be stored in a storage device (not shown) of the display device 1. Good.
  • a synchronization signal for example, a synchronization signal generated by a synchronization signal generation circuit (not shown) is input to the signal processing unit 500.
  • the input video signal is a video signal composed of RGB three primary color signals.
  • the input video signal is, for example, a video signal having a higher bit than an 8-bit video signal that is generally used as a video signal. That is, for example, the input video signal is composed of an R-color 16-bit input video signal, a G-color 16-bit input video signal, and a B-color 16-bit input video signal.
  • the input video signal is a video signal that has been subjected to gamma correction of a predetermined gamma value. As an example, the gamma value of the gamma characteristic of the input video signal is 2.2.
  • the signal processing unit 500 generates a first video signal for performing display control by the projection unit 20 and a second video signal for performing display control by the display unit 30 from the input video signal. That is, the signal processing unit 500 generates a first video signal and a second video signal from the input video signal, controls the projection unit 20 based on the first video signal, and based on the second video signal. Thus, the transmissive liquid crystal panel 301 is controlled. The generation of the first video signal and the second video signal by the signal processing unit 500 will be described later.
  • the signal processing unit 500 performs processing in synchronization with the input synchronization signal.
  • the signal processing unit 500 outputs the generated first video signal to the first synchronization unit 511. Further, the signal processing unit 500 outputs the generated second video signal to the second synchronization unit 512. A synchronization signal is also output to the first synchronization unit 511 and the second synchronization unit 512.
  • the first video signal is supplied to the device driving unit 250 of the projection unit 20 via the first synchronization unit 511. Further, the second video signal is supplied to the panel driving unit 350 of the display unit 30 via the second synchronization unit 512.
  • the first synchronization unit 511 and the second synchronization unit 512 perform delay processing for adding optimal delays to the first video signal and the second video signal, respectively. Note that delay processing may be performed in either the first synchronization unit 511 or the second synchronization unit 512.
  • the first synchronization unit 511 and the second synchronization unit 512 perform delay processing based on the synchronization signal. Then, the first synchronization unit 511 outputs the first video signal to the device driving unit 250 of the projection unit 20. Further, the second synchronization unit 512 outputs the second video signal to the panel drive unit 350 of the display unit 30.
  • the device driving unit 250 generates a driving signal for driving the display element 209 according to the first video signal, and drives the display element 209 by the driving signal.
  • the panel driving unit 350 generates a drive signal for driving the transmissive liquid crystal panel 301 according to the second video signal, and drives the transmissive liquid crystal panel 301 by the drive signal.
  • FIG. 6 is a block diagram illustrating a configuration of the signal processing unit 500.
  • the signal processing unit 500 includes a first LUT (Lookup table) unit 501 and a second LUT unit 502.
  • the first LUT unit 501 and the second LUT unit 502 are realized by a storage device such as a memory (not shown) of the display control unit 50, for example.
  • the first LUT unit 501 is a lookup table that adjusts the projection unit 20 to the first output characteristic.
  • the second LUT unit 502 is a lookup table that adjusts the transmissive liquid crystal panel 301 to the second output characteristic.
  • the sum of the gamma value in the first output characteristic and the gamma value in the second output characteristic is equal to the gamma value of the input video signal.
  • a description will be given assuming that the gamma value of the input video signal is 2.2. In this case, the input video signal is correctly displayed when the gamma value of the output characteristic is 2.2.
  • the first LUT unit 501 is configured as a table adjusted so that the output characteristic of the projection unit 20 is gamma 1.1.
  • the second LUT unit 502 is configured as a table adjusted so that the output characteristic of the display unit 30 is gamma 1.1.
  • Such a table can be created, for example, by actually outputting in the projection unit 20 or the display unit 30 and measuring the illuminance at that time with an illuminometer.
  • the signal processing unit 500 provides an input video signal as an input to the first LUT unit 501 and the second LUT unit 502. Then, the signal processing unit 500 sets the output of the first LUT unit 501 for the input video signal as the first video signal, and sets the output of the second LUT unit 502 for the input video signal as the second video signal.
  • a first video signal or a second video signal is generated for each RGB signal in the input video signal. That is, an R first video signal and an R second video signal are generated from the R input video signal.
  • a G first video signal and a G second video signal are generated from the G input video signal.
  • a B first video signal and a B second video signal are generated from the B input video signal.
  • RGB may be processed independently by the LUT, and the bits of the first video signal and the second video signal may be processed.
  • the number can be any number of bits.
  • the first video signal and the second video signal may be 16-bit video signals, or the upper 8-bit signal on the MSB (most significant bit) side is used. It may be supplied as a first video signal, and a lower 8-bit signal on the LSB (least significant bit) side may be supplied as a second video signal.
  • the gamma value realized by the LUT will be further described.
  • the first output characteristic and the second output characteristic are close to linear. For this reason, the reproducibility of dark part gradation is improved.
  • the first output characteristic and the second output characteristic are 1.1 when simply divided as described above.
  • the value of 1 in 8-bit input is about 0.000005 for white (value of 255 in 8-bit input) in terms of brightness.
  • the contrast on the display surface can be displayed at 2,000,000: 1, the brightness indicated by the value of 1 (8 bits) in the theoretical gamma curve cannot be reproduced.
  • the gamma value is 1.1
  • the value of 1 in 8-bit input is about 0.0023 with respect to white (255 value in 8-bit input)
  • the contrast on the display surface is 440. : 1
  • the contrast performance required for the transmissive liquid crystal panel 301 can be suppressed. That is, an ideal gamma characteristic can be obtained by combining the transmissive liquid crystal panel 301 and the projection unit 20 that are relatively easily available.
  • RGB luminance
  • RGB luminance
  • the RGB signal of the input video signal is divided into the RGB signal of the first video signal and the RGB signal of the second video signal, so that each color is processed independently. It is easy to maintain gradation. Further, since the conversion is from RGB three-dimensional to RGB three-dimensional, the generation of the first video signal and the second video signal can be realized relatively easily.
  • the display device 1 it is possible to display an input video signal having a large gamma value of 2.2 or more as the gamma characteristic.
  • the gamma characteristic is 2.2
  • a value obtained by raising the input video signal to the power of 2.2 has a specified luminance (brightness).
  • the display device 1 since the multiplication of the output values of the projection unit 20 and the transmissive liquid crystal panel 301 is the final output value, it can be realized relatively easily.
  • the display device 1 it is possible to display an input video signal having a large gamma value of 2.2 or more as the gamma characteristic.
  • the gamma value of the gamma characteristic of the input video signal is larger, the dark portion gradation is maintained, so according to the display device 1 according to the present embodiment, the error when quantizing the image data is expressed in the floating-point format. By making it image data, it also contributes to reducing the quantization error of dark part gradation.
  • the gamma value of the first output characteristic (that is, the gamma value of the output characteristic of the projection unit 20) is 1.1
  • the gamma value of the second output characteristic (that is, the output of the display unit 30).
  • the characteristic gamma value) is 1.1, but is not limited thereto. That is, the sum of the gamma value in the first output characteristic and the gamma value in the second output characteristic may be equal to the gamma value of the input video signal. 7A to 7C, FIG. 8A to FIG. 8C, and FIG. 9A to FIG.
  • FIG. 9C show the relationship (gamma characteristic) between the input value that is the input video signal or the video signal and the light output in the display device 1 of the present embodiment. It is a graph which shows an example. 7A, 8A, and 9A show the gamma characteristics of the input video signal, FIGS. 7B, 8B, and 9B show the gamma characteristics of the transmissive liquid crystal panel 301, and FIGS. 7C, 8C, and 9C show the projections.
  • the gamma characteristic of the part 20 is shown. 7A to 7C, 8A to 8C, and 9A to 9C, the horizontal axis represents an input video signal or an input value that is a video signal, and the vertical axis represents an optical output value. That is, in FIG.
  • the horizontal axis indicates the input value that is the second video signal output from the second LUT unit 502
  • the vertical axis indicates the light output value of the transmissive liquid crystal panel 301.
  • the horizontal axis represents the input value that is the first video signal output from the first LUT unit 501
  • the vertical axis represents the light output value of the projection unit 20.
  • FIGS. 7A to 7C show the first output characteristic (output characteristic of the projection unit 20) and the second output when the gamma value of the gamma characteristic of the input video signal specified in the above description is 2.2.
  • the gamma value of the gamma characteristic of the input video signal is defined by 3.2
  • the gamma value of the first output characteristic is 2.2.
  • the gamma value of the second output characteristic is 1.
  • the projection unit 20 has a higher contrast than the transmissive liquid crystal panel 301.
  • the gamma value in the higher contrast output characteristics of the projection unit 20 and the transmissive liquid crystal panel 301 is the gamma value in the lower contrast output characteristics of the projection unit 20 and the transmissive liquid crystal panel 301. Larger adjustments may be made. Thereby, the contrast of the entire display device 1 can be improved.
  • FIGS. 9A to 9C show an example in which the modulation of the transmissive liquid crystal panel 301 is limited to a predetermined range on the dark side.
  • the gamma value of the gamma characteristic of the input video signal is defined by 2.2
  • the gamma value of the first output characteristic is 2 .2 (where the gamma value is 1.2 when the input is 0.25 or less)
  • the gamma value of the second output characteristic the output characteristic of the transmissive liquid crystal panel 301) is 1.
  • the second output characteristic when the input value is 0.25 or more, the light output amount is uniformly maximized.
  • the output characteristics of the transmissive liquid crystal panel 301 may be fixed to the maximum value when the input value is equal to or greater than a predetermined value. As a result, all the gradations of the transmissive liquid crystal panel 301 can be assigned to a gamma region having an input value of 0.25 or less, and there is an advantage that gradations on the dark side can be expressed with finer gradations. .
  • the display device 1 has been described above.
  • light that is modulated for each of RGB by the projection unit 20 is output, and each of the RGB light that is emitted from the projection unit 20 is further modulated by the transmissive liquid crystal panel 301.
  • the influence of leaking light can be suppressed and the contrast can be improved.
  • a case where only the R color is displayed will be described as an example with a comparative example.
  • G in the second modulation device is assumed. The leakage of light and B light causes a decrease in contrast.
  • both the dot of light projected by the projection unit 20 and the pixel of the transmissive liquid crystal panel 301 correspond to each other. Must be aligned.
  • moire may appear due to the projection light dots from the projection unit 20 and the pixel structure of the transmissive liquid crystal panel 301. Therefore, in the present embodiment, generation of moire is suppressed by diffusing the projection light from the projection unit 20 incident on the transmissive liquid crystal panel 301 immediately before the incident.
  • FIG. 10 is a configuration diagram illustrating an example of an internal configuration of the display device 2 according to the second embodiment.
  • the same elements as those described above are denoted by the same reference numerals, and redundant description is omitted.
  • the display device 2 is different from the display device 1 in that the display unit 30 is replaced with a display unit 31.
  • the display unit 31 includes a screen 304 having a size corresponding to the size of the transmissive liquid crystal panel 301, a transmissive liquid crystal panel 301, a polarizing plate 302, and a screen 303.
  • the screen 304, the transmissive liquid crystal panel 301, the polarizing plate 302, and the screen 303 are arranged in the order of the traveling direction of the light emitted from the projection unit 20, the screen 304, the transmissive liquid crystal panel 301, The polarizing plate 302 and the screen 303 are arranged side by side in this order.
  • the screen 304 is a screen having a characteristic of maintaining the polarization of incident light.
  • a screen having the property of maintaining polarized light for example, a blue ocean screen manufactured by Nitto Resin Co., Ltd. can be used.
  • the light emitted from the projection unit 20 is diffused by the screen 304 and then enters the transmissive liquid crystal panel 301.
  • the transmissive liquid crystal panel 301 since the projection light is not directly focused on the transmissive liquid crystal panel 301, the occurrence of moire can be reduced. Therefore, since it is not necessary to adjust the position for reducing moire, the projection unit 20 and the transmissive liquid crystal panel 301 can be easily aligned.
  • the transmissive liquid crystal panel 301 has a thickness, when the viewpoint position deviates from the front of the display unit 30, two images of an image projected on the screen 303 and an image displayed on the transmissive liquid crystal panel 301 are parallax. However, there is an advantage that the two images can be visually recognized by being shifted because the screen 304 is arranged.
  • the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention.
  • the input video signal, the first video signal, and the second video signal have been described as RGB signals, but may be signals expressed in other color spaces.
  • a signal represented by a luminance signal and two color difference signals such as a YPbPr signal may be used.
  • the projection unit 20 emits linearly polarized light.
  • the projection unit 20 emits light other than the linearly polarized light that is modulated according to the first video signal. It may be replaced with a part. That is, for example, a projection unit that emits circularly polarized light modulated according to the first video signal described above, or a projection unit that emits non-polarized light modulated according to the first video signal described above is used. May be.
  • the driving method of the transmissive liquid crystal panel 301 can be any method.
  • the transmissive liquid crystal panel 301 may be a TN (Twisted Nematic) liquid crystal panel, a VA (Vertical Alignment) liquid crystal panel, or an IPS (In-Place-Switching) method. It may be a liquid crystal panel.
  • TN Transmission Nematic
  • VA Vertical Alignment
  • IPS In-Place-Switching
  • FIG. 11 is a table summarizing the characteristics of each of the TN, VA, and IPS liquid crystal panels.
  • the TN method when the voltage applied to the liquid crystal panel is maximum, the light is blocked and the screen is displayed in black, and when the voltage is not applied to the liquid crystal panel, the screen is displayed in white. Show.
  • the VA method and the IPS method when no voltage is applied to the liquid crystal panel, the light is blocked and the screen is displayed in black, and when the voltage applied to the liquid crystal panel is maximum, the screen is displayed in white.
  • the type is shown as an example.
  • the VA method has the largest contrast
  • the TN method has the next highest contrast.
  • the IPS system is the most inferior in contrast performance among these three systems.
  • the IPS method has the largest viewing angle
  • the VA method has the next largest viewing angle.
  • the TN system is the most inferior in viewing angle performance among these three systems.
  • the numbers in the columns for contrast and viewing angle indicate that the smaller the value, the better.
  • the polarization direction of the polarizing plate 302 on the light emission side of the liquid crystal panel that is, the transmission axis of the polarizing plate 302 is used as a reference.
  • the polarization direction of light transmitted through the liquid crystal panel is incident on the liquid crystal panel. It is orthogonal to the polarization direction of the light. Therefore, when this type of TN liquid crystal panel is used, the polarization direction of light incident on the liquid crystal panel is required to be rotated by 90 ° with respect to the reference.
  • the polarization direction of the light incident on the liquid crystal panel is rotated by 90 ° with respect to the reference. It is required to do. On the other hand, there is no change in the polarization state when no voltage is applied to the liquid crystal panel.
  • the polarization direction of the light emitted from the projection unit 20 may be a direction orthogonal to the reference.
  • FIG. 12 is a table summarizing configuration examples when the display device is configured by the projection unit 20 that emits linearly polarized light as shown in the above embodiment.
  • the polarization direction of light incident on the liquid crystal panel is required to be rotated by 90 ° with respect to the reference. For this reason, as shown in configuration examples 1 and 4 in FIG. 12, when the polarization direction of the light emitted from the projection unit 20 is the same as the reference, the slow axis or the fast axis is relative to the polarization plane of the incident light.
  • a 1 / 2 ⁇ plate which is a retardation plate arranged at an azimuth angle of 90 °, is inserted between the projection unit 20 and the transmissive liquid crystal panel 301 so that the polarization direction is orthogonal to the reference.
  • the retardation plate 211 corresponds to such a retardation plate.
  • configuration examples 2 and 3 in FIG. 12 when the polarization direction of the emitted light from the projection unit 20 is orthogonal to the reference, it is necessary to change the polarization direction of the emitted light from the projection unit 20. Therefore, it is not necessary to insert a retardation plate.
  • FIG. 13 is a table summarizing configuration examples in the case where the display device is configured by a projection unit that emits circularly polarized light.
  • the above-described display device is configured using a projection unit in which the emitted light is circularly polarized light instead of the projection unit 20 that emits linearly polarized light, as shown in the configuration examples 5 and 6 in FIG.
  • a quarter-wave plate which is a retardation plate whose slow axis or fast axis is arranged at an azimuth angle of 45 degrees, is inserted between the projection unit 20 and the transmissive liquid crystal panel 301, and based on the polarization direction. Make them orthogonal.
  • FIG. 13 is a table summarizing configuration examples in the case where the display device is configured by a projection unit that emits circularly polarized light.
  • the above-described display device is configured using a projection unit in which the emitted light is circularly polarized light instead of the projection unit 20 that emits linearly polarized light, as shown in
  • Configuration Example 5 illustrates a configuration example when the projection unit emits counterclockwise or clockwise circularly polarized light when the transmission axis of the polarizing plate is in the vertical direction.
  • Configuration example 6 shows a configuration example when the projection unit emits counterclockwise or clockwise circularly polarized light when the transmission axis of the polarizing plate is in the horizontal direction.
  • the polarization direction of the light incident on the liquid crystal panel can be made orthogonal to the reference by rotating and adjusting the optical axis of the phase difference plate according to the rotation direction of the circularly polarized light.
  • FIG. 14 is a table summarizing configuration examples in the case where the display device is configured by a projection unit that emits non-polarized light.
  • the above-described display device is configured using a projection unit that emits non-polarized light instead of the projection unit 20 that emits linearly polarized light, as shown in Configuration Examples 7 and 8 in FIG.
  • a display device is configured. That is, in this display device, a polarizing plate having a transmission axis perpendicular to the transmission axis of the polarizing plate 302 on the light emission side of the liquid crystal panel is inserted between the projection unit 20 and the transmissive liquid crystal panel 301, and The polarization direction of light incident on the transmissive liquid crystal panel 301 is orthogonal to the reference. In this display device, the retardation plate is not always necessary.
  • FIGS. 12 to 14 as an example, only the case where the polarization direction of the polarizing plate 302 on the light emission side of the liquid crystal panel is the horizontal direction or the vertical direction is shown. However, it goes without saying that the display device can be appropriately configured.
  • various types of panels including the TN mode, the VA mode, and the IPS mode can be adopted as the mode of the transmissive liquid crystal panel.
  • a person who views an image on a display device, that is, a user is a liquid crystal panel
  • a VA liquid crystal panel is preferably used as the transmissive liquid crystal panel 301.
  • the liquid crystal panel having a configuration that transmits light when the polarization direction is rotated by 90 ° by the liquid crystal has been described as an example. However, for example, a configuration that blocks light when the polarization direction is rotated by 90 ° by the liquid crystal is provided.
  • the polarization direction of the light emitted from the projection unit may coincide with the reference.
  • the display device may be configured so that light having a polarization direction required as incident light of the liquid crystal panel is incident on the liquid crystal panel.
  • the present invention is applicable to display devices and has industrial applicability.

Abstract

A display device (1) that has: a projection unit (20) that emits light that corresponds to a first video signal that comprises a three-primary-color signal; a display unit (30) that is provided with a transmission-type liquid crystal panel (301) that, in accordance with a second video signal that comprises a three-primary-color signal, modifies the polarization direction of each of the three primary colors of light from the projection unit, with a polarizing plate (302), and with a screen (303); and a display control unit (50) that generates the first video signal and the second video signal from an input video signal that comprises a three-primary-color signal, that controls the projection unit (20) on the basis of the first video signal, and that outputs a video signal that is for controlling the transmission-type liquid crystal panel (301) on the basis of the second video signal. The display unit (30) is configured such that the transmission-type liquid crystal panel (301), the polarizing plate (302), and the screen (303) are arranged in that order in the advancement direction of the light emitted from the projection unit (20).

Description

表示装置Display device
 本発明は表示装置に関する。 The present invention relates to a display device.
 近年、高ダイナミックレンジ(HDR: High Dynamic Range)映像を表示する表示装置が要求されている。なお、ダイナミックレンジとは、最も明るい箇所と最も暗い箇所との比である。このような表示装置に関連し、例えば、特許文献1では、高コントラストの映像を表示する映像表示装置について開示している。 In recent years, there has been a demand for a display device that displays a high dynamic range (HDR) image. The dynamic range is the ratio between the brightest part and the darkest part. In relation to such a display device, for example, Patent Document 1 discloses a video display device that displays a high-contrast video.
 特許文献1に記載された映像表示装置は、三原色信号に基づいて光を出力するRGB用投射型表示装置と、輝度信号に基づいてRGB用投射型表示装置からの光を変調するY用投射型表示装置とを用いて、高コントラスト化を実現している。 The video display device described in Patent Literature 1 includes an RGB projection display device that outputs light based on three primary color signals, and a Y projection display device that modulates light from an RGB projection display device based on a luminance signal. High contrast is realized using a display device.
特開2007-310045号公報JP 2007-310045 A
 特許文献1に記載された技術では、上述の通り、Y用投射型表示装置は、RGB成分を含む光の輝度を変調している。このため、RGB用投射型表示装置において、R用変調素子、G用変調素子又はB用変調素子の漏れ光の影響を受けるため、ダイナミックレンジが減少してしまう。この点について理解を容易にするために、R色のみの表示を行う場合を例に説明する。例えば、R色のみの表示を行う場合、G用変調素子及びB用変調素子の漏れ光が、R用変調素子からのR光に加えてY用投射型表示装置に入射してしまう。この結果、ダイナミックレンジが狭まることになる。 In the technique described in Patent Document 1, as described above, the projection display device for Y modulates the luminance of light including RGB components. For this reason, in the projection display apparatus for RGB, since it is affected by the leakage light of the R modulation element, the G modulation element, or the B modulation element, the dynamic range is reduced. In order to facilitate understanding of this point, a case where only the R color is displayed will be described as an example. For example, when displaying only the R color, leakage light from the G modulation element and the B modulation element enters the Y projection display device in addition to the R light from the R modulation element. As a result, the dynamic range is narrowed.
 本発明は上記の点に鑑みなされたもので、高いダイナミックレンジでの表示を実現することが可能な表示装置を提供することを目的とする。 The present invention has been made in view of the above points, and an object thereof is to provide a display device capable of realizing display with a high dynamic range.
 本実施形態にかかる表示装置は、三原色信号からなる第1の映像信号に応じて変調された光を射出する投射部と、三原色信号からなる第2の映像信号に応じて入射光を変調し射出する透過型液晶パネルと、入射光のうち所定の偏光方向の光を射出する偏光板と、第1のスクリーンとを備える表示部と、三原色信号からなる入力映像信号から前記投射部を駆動するための前記第1の映像信号と前記透過型液晶パネルを駆動するための前記第2の映像信号とを生成すると共に、前記第1の映像信号と前記第2の映像信号を同期するための同期信号を生成する表示制御部とを有し、前記表示部は、前記投射部から射出された光の進行方向の順で、前記透過型液晶パネル、前記偏光板、前記第1のスクリーンの順に並んで構成されている。 The display device according to the present embodiment modulates and emits incident light according to a projection unit that emits light modulated according to a first video signal composed of three primary color signals and a second video signal composed of three primary color signals. For driving the projection unit from an input video signal composed of three primary color signals, a display unit comprising a transmissive liquid crystal panel, a polarizing plate that emits light of a predetermined polarization direction among incident light, and a first screen Generating the first video signal and the second video signal for driving the transmissive liquid crystal panel, and synchronizing the first video signal and the second video signal The display control unit is arranged in the order of the traveling direction of the light emitted from the projection unit, in the order of the transmissive liquid crystal panel, the polarizing plate, and the first screen. It is configured.
 本実施形態によれば、高いダイナミックレンジでの表示を実現することが可能な表示装置を提供することができる。 According to the present embodiment, it is possible to provide a display device capable of realizing display with a high dynamic range.
実施の形態1にかかる表示装置の外観を示す斜視図である。1 is a perspective view illustrating an appearance of a display device according to a first embodiment. 実施の形態1にかかる表示装置の内部構成の一例を示す構成図である。1 is a configuration diagram illustrating an example of an internal configuration of a display device according to a first exemplary embodiment; 実施の形態1にかかる表示装置における偏光状態を模式的に示す図であり、位相差板に入射する光の偏光状態を示す。FIG. 6 is a diagram schematically illustrating a polarization state in the display device according to the first exemplary embodiment, and illustrates a polarization state of light incident on the phase difference plate. 実施の形態1にかかる表示装置における偏光状態を模式的に示す図であり、位相差板から射出された光の偏光状態を示す。FIG. 6 is a diagram schematically illustrating a polarization state in the display device according to the first exemplary embodiment, and illustrates a polarization state of light emitted from the phase difference plate. 実施の形態1にかかる表示装置における偏光状態を模式的に示す図であり、表示部から射出された光の偏光状態を示す。It is a figure which shows typically the polarization state in the display apparatus concerning Embodiment 1, and shows the polarization state of the light inject | emitted from the display part. 比較例の構成における偏光状態を模式的に示す図であり、位相差板に入射する光の偏光状態を示す。It is a figure which shows typically the polarization state in the structure of a comparative example, and shows the polarization state of the light which injects into a phase difference plate. 比較例の構成における偏光状態を模式的に示す図であり、位相差板から射出された光の偏光状態を示す。It is a figure which shows typically the polarization state in the structure of a comparative example, and shows the polarization state of the light inject | emitted from the phase difference plate. 比較例の構成における偏光状態を模式的に示す図であり、表示部から射出された光の偏光状態を示す。It is a figure which shows typically the polarization state in the structure of a comparative example, and shows the polarization state of the light inject | emitted from the display part. 実施の形態1にかかる表示装置の構成を示すブロック図である。1 is a block diagram showing a configuration of a display device according to a first exemplary embodiment. 実施の形態1にかかる信号処理部の構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration of a signal processing unit according to the first exemplary embodiment; 実施の形態1にかかる表示装置におけるガンマ特性の例を示すグラフであり、入力映像信号のガンマ特性を示す。4 is a graph showing an example of gamma characteristics in the display device according to the first exemplary embodiment, and shows gamma characteristics of an input video signal. 実施の形態1にかかる表示装置におけるガンマ特性の例を示すグラフであり、透過型液晶パネルのガンマ特性を示す。4 is a graph showing an example of gamma characteristics in the display device according to the first exemplary embodiment, and shows gamma characteristics of a transmissive liquid crystal panel. 実施の形態1にかかる表示装置におけるガンマ特性の例を示すグラフであり、投射部のガンマ特性を示す。6 is a graph showing an example of gamma characteristics in the display device according to the first exemplary embodiment, and shows gamma characteristics of a projection unit. 実施の形態1にかかる表示装置におけるガンマ特性の例を示すグラフであり、入力映像信号のガンマ特性を示す。4 is a graph showing an example of gamma characteristics in the display device according to the first exemplary embodiment, and shows gamma characteristics of an input video signal. 実施の形態1にかかる表示装置におけるガンマ特性の例を示すグラフであり、透過型液晶パネルのガンマ特性を示す。4 is a graph showing an example of gamma characteristics in the display device according to the first exemplary embodiment, and shows gamma characteristics of a transmissive liquid crystal panel. 実施の形態1にかかる表示装置におけるガンマ特性の例を示すグラフであり、投射部のガンマ特性を示す。6 is a graph showing an example of gamma characteristics in the display device according to the first exemplary embodiment, and shows gamma characteristics of a projection unit. 実施の形態1にかかる表示装置におけるガンマ特性の例を示すグラフであり、入力映像信号のガンマ特性を示す。4 is a graph showing an example of gamma characteristics in the display device according to the first exemplary embodiment, and shows gamma characteristics of an input video signal. 実施の形態1にかかる表示装置におけるガンマ特性の例を示すグラフであり、透過型液晶パネルのガンマ特性を示す。4 is a graph showing an example of gamma characteristics in the display device according to the first exemplary embodiment, and shows gamma characteristics of a transmissive liquid crystal panel. 実施の形態1にかかる表示装置におけるガンマ特性の例を示すグラフであり、投射部のガンマ特性を示す。6 is a graph showing an example of gamma characteristics in the display device according to the first exemplary embodiment, and shows gamma characteristics of a projection unit. 実施の形態2にかかる表示装置の内部構成の一例を示す構成図である。FIG. 6 is a configuration diagram illustrating an example of an internal configuration of a display device according to a second exemplary embodiment; TN方式、VA方式、及びIPS方式の各液晶パネルの特徴をまとめた表である。It is the table | surface which put together the characteristic of each liquid crystal panel of TN system, VA system, and IPS system. 直線偏光を射出する投射部により表示装置を構成する場合の構成例についてまとめた表である。It is the table | surface summarized about the structural example in the case of comprising a display apparatus with the projection part which inject | emits a linearly polarized light. 円偏光を射出する投射部により表示装置を構成する場合の構成例についてまとめた表である。It is the table | surface summarized about the structural example in the case of comprising a display apparatus with the projection part which inject | emits circularly polarized light. 無偏光の光を射出する投射部により表示装置を構成する場合の構成例についてまとめた表である。It is the table | surface summarized about the structural example in the case of comprising a display apparatus with the projection part which inject | emits non-polarized light.
 実施の形態1
 以下、図面を参照して本発明の実施の形態について説明する。
Embodiment 1
Embodiments of the present invention will be described below with reference to the drawings.
 図1は、表示装置1の外観を示す斜視図である。表示装置1は、背面投射型のプロジェクタ(リアプロジェクタ)であり、筐体10の前面に表示部30が設けられている。より具体的には、表示装置1は、反射型液晶表示素子であるLCOS(Liquid Crystal on Silicon)を用いて構成されたリアプロジェクタである。図2は、表示装置1の筐体10の内部構成の一例を示す構成図である。 FIG. 1 is a perspective view showing an appearance of the display device 1. The display device 1 is a rear projection type projector (rear projector), and a display unit 30 is provided on the front surface of the housing 10. More specifically, the display device 1 is a rear projector configured using LCOS (Liquid Crystal Crystal on Silicon) which is a reflective liquid crystal display element. FIG. 2 is a configuration diagram illustrating an example of the internal configuration of the housing 10 of the display device 1.
 図2に示されるように、表示装置1は、投射部20と、表示部30と、ミラー40と、表示制御部50とを有する。ミラー40は、投射部20から射出された光を表示部30の方向へと反射させる。 2, the display device 1 includes a projection unit 20, a display unit 30, a mirror 40, and a display control unit 50. The mirror 40 reflects the light emitted from the projection unit 20 toward the display unit 30.
 投射部20は、表示部30に映像を投射するため、映像信号に基づく投射光を生成する。より具体的には、投射部20は、三原色信号からなる後述する第1の映像信号に応じた直線偏光を射出する。以下、投射部20の構成について説明する。 Projection unit 20 generates projection light based on the video signal in order to project an image on display unit 30. More specifically, the projection unit 20 emits linearly polarized light corresponding to a first video signal, which will be described later, composed of three primary color signals. Hereinafter, the configuration of the projection unit 20 will be described.
 投射部20は光源201を有する。光源201は、例えば、ランプである。光源201から発せられた光は、光源201が発する光を光軸に垂直な面内の照度分布を均一にして射出するインテグレータ202を介して、ダイクロイックミラー203に入射される。ダイクロイックミラー203は、入射された光を赤色帯域成分のR光及び緑色帯域成分のG光と、青色帯域成分のB光とに分離する。ダイクロイックミラー203により分離されたR光及びG光は、ミラー204に入射する。また、ダイクロイックミラー203により分離されたB光は、ミラー205に入射する。 The projection unit 20 has a light source 201. The light source 201 is, for example, a lamp. The light emitted from the light source 201 is incident on the dichroic mirror 203 via an integrator 202 that emits the light emitted from the light source 201 with a uniform illuminance distribution in a plane perpendicular to the optical axis. The dichroic mirror 203 separates the incident light into R light having a red band component, G light having a green band component, and B light having a blue band component. The R light and G light separated by the dichroic mirror 203 enter the mirror 204. Further, the B light separated by the dichroic mirror 203 is incident on the mirror 205.
 ダイクロイックミラー203により分離されたR光及びG光は、ミラー204で反射され、ダイクロイックミラー206に入射する。ダイクロイックミラー206は、入射されたR光とG光とを分離する。ダイクロイックミラー206により分離されたR光は、R用フィールドレンズ207Rを経て、45°に傾斜されたR用偏光制御素子208Rに入射する。 The R light and G light separated by the dichroic mirror 203 are reflected by the mirror 204 and enter the dichroic mirror 206. The dichroic mirror 206 separates the incident R light and G light. The R light separated by the dichroic mirror 206 passes through the R field lens 207R and enters the R polarization control element 208R inclined at 45 °.
 R用偏光制御素子208Rは、例えばワイヤグリッド型偏光ビームスプリッタであり、P偏光を透過させ、S偏光を反射する。R用偏光制御素子208Rを透過したP偏光のR光は、R用表示素子209Rに入射する。R用表示素子209Rは、LCOSにより構成されており、後述する表示制御部50から出力される映像信号に基づいてR光を変調する。R用表示素子209Rに入射したR光は、R用表示素子209Rにより反射され、R用偏光制御素子208Rに戻る。このとき、R用表示素子209RによりS偏光に変調された成分は、R用偏光制御素子208Rによりダイクロイックプリズム210の方向へと反射される。ダイクロイックプリズム210の方向へと反射されたR光は、ダイクロイックプリズム210の第1の面に入射する。これに対し、R用表示素子209Rにより変調されなかった成分は、R用偏光制御素子208Rを透過し、R用フィールドレンズ207Rの方向へと戻る。 The R polarization control element 208R is, for example, a wire grid type polarization beam splitter, and transmits P-polarized light and reflects S-polarized light. The P-polarized R light transmitted through the R polarization control element 208R is incident on the R display element 209R. The R display element 209 </ b> R is configured by LCOS, and modulates R light based on a video signal output from the display control unit 50 described later. The R light incident on the R display element 209R is reflected by the R display element 209R and returns to the R polarization control element 208R. At this time, the component modulated into S-polarized light by the R display element 209R is reflected toward the dichroic prism 210 by the R polarization control element 208R. The R light reflected in the direction of the dichroic prism 210 is incident on the first surface of the dichroic prism 210. On the other hand, the component not modulated by the R display element 209R is transmitted through the R polarization control element 208R and returns to the R field lens 207R.
 ダイクロイックミラー206により分離されたG光は、G用フィールドレンズ207Gを経て、45°に傾斜されたG用偏光制御素子208Gに入射する。G用偏光制御素子208Gは、例えばワイヤグリッド型偏光ビームスプリッタであり、P偏光を透過させ、S偏光を反射する。G用偏光制御素子208Gを透過したP偏光のG光は、G用表示素子209Gに入射する。G用表示素子209Gは、LCOSにより構成されており、表示制御部50から出力される映像信号に基づいてG光を変調する。G用表示素子209Gに入射したG光は、G用表示素子209Gにより反射され、G用偏光制御素子208Gに戻る。このとき、G用表示素子209GによりS偏光に変調された成分は、G用偏光制御素子208Gによりダイクロイックプリズム210の方向へと反射される。ダイクロイックプリズム210の方向へと反射されたG光は、ダイクロイックプリズム210の第2の面に入射する。これに対し、G用表示素子209Gにより変調されなかった成分は、G用偏光制御素子208Gを透過し、G用フィールドレンズ207Gの方向へと戻る。 G light separated by the dichroic mirror 206 passes through the G field lens 207G and enters the G polarization control element 208G inclined by 45 °. The G polarization control element 208G is, for example, a wire grid type polarization beam splitter, and transmits P-polarized light and reflects S-polarized light. The P-polarized G light transmitted through the G polarization control element 208G enters the G display element 209G. The G display element 209 </ b> G is configured by LCOS, and modulates the G light based on the video signal output from the display control unit 50. The G light incident on the G display element 209G is reflected by the G display element 209G and returns to the G polarization control element 208G. At this time, the component modulated into S-polarized light by the G display element 209G is reflected in the direction of the dichroic prism 210 by the G polarization control element 208G. The G light reflected in the direction of the dichroic prism 210 is incident on the second surface of the dichroic prism 210. On the other hand, the component not modulated by the G display element 209G is transmitted through the G polarization control element 208G and returns to the direction of the G field lens 207G.
 ダイクロイックミラー203により分離されたB光は、ミラー205で反射され、B用フィールドレンズ207Bを経て、45°に傾斜されたB用偏光制御素子208Bに入射する。B用偏光制御素子208Bは、例えばワイヤグリッド型偏光ビームスプリッタであり、P偏光を透過させ、S偏光を反射する。B用偏光制御素子208Bを透過したP偏光のB光は、B用表示素子209Bに入射する。B用表示素子209Bは、LCOSにより構成されており、表示制御部50から出力される映像信号に基づいてB光を変調する。B用表示素子209Bに入射したB光は、B用表示素子209Bにより反射され、B用偏光制御素子208Bに戻る。このとき、B用表示素子209BによりS偏光に変調された成分は、B用偏光制御素子208Bによりダイクロイックプリズム210の方向へと反射される。ダイクロイックプリズム210の方向へと反射されたB光は、ダイクロイックプリズム210の第3の面に入射する。これに対し、B用表示素子209Bにより変調されなかった成分は、B用偏光制御素子208Bを透過し、B用フィールドレンズ207Bの方向へと戻る。なお、以下の説明において、R用表示素子209R、G用表示素子209G及びB用表示素子209Bの総称として表示素子209ということがある。 The B light separated by the dichroic mirror 203 is reflected by the mirror 205, passes through the B field lens 207B, and enters the B polarization control element 208B inclined at 45 °. The B polarization control element 208B is, for example, a wire grid type polarization beam splitter, and transmits P-polarized light and reflects S-polarized light. The P-polarized B light transmitted through the B polarization control element 208B is incident on the B display element 209B. The B display element 209 </ b> B is configured by LCOS, and modulates the B light based on the video signal output from the display control unit 50. The B light incident on the B display element 209B is reflected by the B display element 209B and returns to the B polarization control element 208B. At this time, the component modulated to S-polarized light by the B display element 209B is reflected by the B polarization control element 208B in the direction of the dichroic prism 210. The B light reflected toward the dichroic prism 210 is incident on the third surface of the dichroic prism 210. On the other hand, the component not modulated by the B display element 209B is transmitted through the B polarization control element 208B and returns to the B field lens 207B. In the following description, the R display element 209R, the G display element 209G, and the B display element 209B may be collectively referred to as a display element 209.
 ダイクロイックプリズム210は、3方向から入射されたR光、G光及びB光の各S偏光成分を、投射レンズ212に向けて射出する。したがって、投射レンズ212には直線偏光が射出される。ダイクロイックプリズム210から射出された光は、位相差板211を介して投射レンズ212に入射する。位相差板211は、投射部20からの射出光の偏光方向を、表示部30の入射光として要求される偏光方向にあわせる。なお、表示部30の入射光として要求される偏光方向は、例えば、表示部30の後述する偏光板302を透過する偏光方向を90°回転させた方向である。投射レンズ212は、入射された光を、ミラー40を介して表示部30に投射し、結像させる。このように、投射部20から射出される光は、直線偏光である。なお、上述の通り、本実施の形態では、投射部20から射出される直線偏光は、位相差板211を介して、透過型液晶パネル301に入射する。しかし、位相差板211を用いなくても、投射部20からの射出光の偏光方向が表示部30の入射光として要求される偏光方向に既になっている場合には、位相差板211は設けなくてもよい。例えば、位相差板211を省略し、投射部20を、投射部20から射出される光の進行方向を軸として回転させることにより偏光方向を任意に調整することで、投射部20からの射出光の偏光方向を表示部30の入射光として要求される偏光方向としてもよい。 The dichroic prism 210 emits S-polarized components of R light, G light, and B light incident from three directions toward the projection lens 212. Therefore, linearly polarized light is emitted to the projection lens 212. The light emitted from the dichroic prism 210 enters the projection lens 212 via the phase difference plate 211. The phase difference plate 211 adjusts the polarization direction of the light emitted from the projection unit 20 to the polarization direction required as the incident light of the display unit 30. Note that the polarization direction required as the incident light of the display unit 30 is, for example, a direction obtained by rotating the polarization direction that transmits a polarizing plate 302 (to be described later) of the display unit 30 by 90 °. The projection lens 212 projects the incident light onto the display unit 30 via the mirror 40 to form an image. Thus, the light emitted from the projection unit 20 is linearly polarized light. As described above, in the present embodiment, the linearly polarized light emitted from the projection unit 20 enters the transmissive liquid crystal panel 301 via the phase difference plate 211. However, even if the retardation plate 211 is not used, if the polarization direction of the light emitted from the projection unit 20 is already the polarization direction required as the incident light of the display unit 30, the retardation plate 211 is provided. It does not have to be. For example, the phase difference plate 211 is omitted, and the light emitted from the projection unit 20 is arbitrarily adjusted by rotating the projection unit 20 around the traveling direction of the light emitted from the projection unit 20 as an axis. The polarization direction may be the polarization direction required as the incident light of the display unit 30.
 次に、表示部30について説明する。図2に示されるように、表示部30は、予め定められた解像度の透過型液晶パネル301と、透過型液晶パネル301の表示面の大きさに対応する大きさの偏光板302と、透過型液晶パネル301の大きさに対応する大きさのスクリーン303を有する。 Next, the display unit 30 will be described. As shown in FIG. 2, the display unit 30 includes a transmissive liquid crystal panel 301 having a predetermined resolution, a polarizing plate 302 having a size corresponding to the size of the display surface of the transmissive liquid crystal panel 301, and a transmissive liquid crystal panel. A screen 303 having a size corresponding to the size of the liquid crystal panel 301 is provided.
 ここで、表示部30において、透過型液晶パネル301、偏光板302、及びスクリーン303は、投射部20から射出された光の進行方向の順で、透過型液晶パネル301、偏光板302、スクリーン303の順に並んで一体に配置されている。ここで、図2に示されるように、透過型液晶パネル301における、投射部20からの光の入射側には、偏光板は必ずしも設ける必要がない。これは、上述の通り、投射部20から射出される光が直線偏光となっているため、透過型液晶パネル301に光が入射する前段で偏光面を一つの平面に揃える必要がないからである。 Here, in the display unit 30, the transmissive liquid crystal panel 301, the polarizing plate 302, and the screen 303 are arranged in the order of the traveling direction of the light emitted from the projection unit 20 in the order. They are arranged in a row in order. Here, as shown in FIG. 2, the polarizing plate is not necessarily provided on the light incident side from the projection unit 20 in the transmissive liquid crystal panel 301. This is because, as described above, since the light emitted from the projection unit 20 is linearly polarized light, it is not necessary to align the plane of polarization on one plane before the light enters the transmissive liquid crystal panel 301. .
 透過型液晶パネル301は、図示しない液晶層及びガラス基板を有し、三原色信号からなる後述する第2の映像信号に応じて投射部20からの三原色の各光を変調し偏光方向を変更する。透過型液晶パネル301を介した光は、偏光板302に入射される。偏光板302は、所定の方向に偏光した光を透過させる。このような構成により、表示部30は、第2の映像信号に基づいて、投射部20から入射されたR光、G光、B光のそれぞれの透過量を画素ごとに制御して、表示を行う。なお、表示部30の解像度は、投射部20の解像度に対応しており、透過型液晶パネル301の各画素には、投射部20における各画素が1対1の対応をしている。よって、投射部20の1画素に相当する、R用表示素子209Rにより変調されたR光、G用表示素子209Gにより変調されたG光、及びB用表示素子209Bにより変調されたB光のそれぞれは、第2の映像信号に従って表示部30においてそれぞれ変調される。なお、投射部20により投射される光のドットと、透過型液晶パネル301の画素とが対応するよう両者は位置合わせされている必要がある。 The transmissive liquid crystal panel 301 has a liquid crystal layer and a glass substrate (not shown), and modulates each primary color light from the projection unit 20 and changes the polarization direction in accordance with a later-described second video signal including the three primary color signals. Light that has passed through the transmissive liquid crystal panel 301 enters the polarizing plate 302. The polarizing plate 302 transmits light polarized in a predetermined direction. With such a configuration, the display unit 30 controls the transmission amount of each of R light, G light, and B light incident from the projection unit 20 for each pixel based on the second video signal, and displays the image. Do. The resolution of the display unit 30 corresponds to the resolution of the projection unit 20, and each pixel in the projection unit 20 has a one-to-one correspondence with each pixel of the transmissive liquid crystal panel 301. Accordingly, each of R light modulated by the R display element 209R, G light modulated by the G display element 209G, and B light modulated by the B display element 209B, which corresponds to one pixel of the projection unit 20, Are modulated in the display unit 30 in accordance with the second video signal. Note that the light dots projected by the projection unit 20 and the pixels of the transmissive liquid crystal panel 301 need to be aligned with each other.
 ここで、表示装置1における偏光状態について説明する。図3A~図3Cは、表示装置1における偏光状態を模式的に示す図である。また、図4A~図4Cは、比較例の構成における偏光状態を模式的に示す図である。ここでは、比較例として、投射部20の構成をDLP(Digital Light Processing)に置き換えた構成を想定する。すなわち、比較例にかかる構成では、投射部20における位相差板211よりも前段の構成がDLPにより実現されているものとする。なお、図3A及び図4Aは位相差板211に入射する光の偏光状態を示し、図3B及び図4Bは位相差板211から射出された光の偏光状態を示し、図3C及び図4Cは表示部30から射出された光の偏光状態を示す。ただし、より具体的には、図4Bは、位相差板211から射出された光が、追加された偏光板を透過した後の偏光状態を示している。 Here, the polarization state in the display device 1 will be described. 3A to 3C are diagrams schematically illustrating the polarization state in the display device 1. FIG. 4A to 4C are diagrams schematically showing a polarization state in the configuration of the comparative example. Here, as a comparative example, a configuration in which the configuration of the projection unit 20 is replaced with DLP (Digital Light Processing) is assumed. That is, in the configuration according to the comparative example, it is assumed that the configuration upstream of the phase difference plate 211 in the projection unit 20 is realized by DLP. 3A and 4A show the polarization state of the light incident on the phase difference plate 211, FIGS. 3B and 4B show the polarization state of the light emitted from the phase difference plate 211, and FIGS. 3C and 4C show the display. The polarization state of the light emitted from the unit 30 is shown. More specifically, FIG. 4B shows a polarization state after the light emitted from the phase difference plate 211 is transmitted through the added polarizing plate.
 上述の通り、本実施の形態では、位相差板211に入射する光は直線偏光である(図3A参照)。また、本実施の形態では、位相差板211により偏光方向が調整される(図3B参照)。これに対し、比較例にかかる構成の場合、位相差板211に入射する光は無偏光の状態である(図4A参照)。このため、比較例にかかる構成の場合、偏光板を透過型液晶パネル301の前段に設けることが必要となる。このように偏光板を透過型液晶パネル301の前段に設けることにより、透過型液晶パネル301の入射光に要求される偏光が実現される(図4B参照)。しかし、このように偏光板を透過型液晶パネル301の前段に設けた場合、偏光板により光量にロスが生じてしまう。また、透過型液晶パネル301の大きさに相当する偏光板を設けることによるコストの上昇を招く。なお、表示部30から射出された光の偏光状態は、スクリーン303の特性により異なる。すなわち、スクリーン303が入射した光の偏光を維持する特性を有する場合、スクリーン303に入射する光の偏光が維持されるが、スクリーン303が偏光を維持する特性を有さない場合、スクリーン303により偏光はなくなる。なお、比較例で示した構成において、位相差板211は省略されてもよい。 As described above, in the present embodiment, the light incident on the phase difference plate 211 is linearly polarized light (see FIG. 3A). In this embodiment, the polarization direction is adjusted by the phase difference plate 211 (see FIG. 3B). On the other hand, in the configuration according to the comparative example, the light incident on the phase difference plate 211 is in a non-polarized state (see FIG. 4A). For this reason, in the case of the configuration according to the comparative example, it is necessary to provide a polarizing plate in front of the transmissive liquid crystal panel 301. By providing the polarizing plate in the previous stage of the transmissive liquid crystal panel 301 in this manner, polarization required for incident light of the transmissive liquid crystal panel 301 is realized (see FIG. 4B). However, when the polarizing plate is provided in the front stage of the transmissive liquid crystal panel 301 in this way, the light amount is lost due to the polarizing plate. In addition, an increase in cost is caused by providing a polarizing plate corresponding to the size of the transmissive liquid crystal panel 301. Note that the polarization state of the light emitted from the display unit 30 varies depending on the characteristics of the screen 303. That is, when the screen 303 has the characteristic of maintaining the polarization of the incident light, the polarization of the light incident on the screen 303 is maintained, but when the screen 303 does not have the characteristic of maintaining the polarization, the screen 303 Will disappear. In the configuration shown in the comparative example, the phase difference plate 211 may be omitted.
 図5は、表示装置1の構成を示すブロック図である。図5に示されるように、表示制御部50は、信号処理部500と第1の同期部511と、第2の同期部512とを有する。なお、表示制御部50の各構成は、プログラムによるソフトウェアで実現されてもよいし、ハードウェア、ファームウェア、及びソフトウェアのうちのいずれかの組み合わせ等により実現されてもよい。プログラムにより実現される場合、例えば表示制御部50の図示しないメモリに格納されたプログラムを表示制御部50の図示しないCPU(Central Processing Unit)により、実行することにより実現される。 FIG. 5 is a block diagram showing the configuration of the display device 1. As illustrated in FIG. 5, the display control unit 50 includes a signal processing unit 500, a first synchronization unit 511, and a second synchronization unit 512. Each configuration of the display control unit 50 may be realized by software based on a program, or may be realized by any combination of hardware, firmware, and software. When realized by a program, for example, it is realized by executing a program stored in a memory (not shown) of the display control unit 50 by a CPU (Central Processing Unit) (not shown) of the display control unit 50.
 信号処理部500には、入力映像信号と同期信号が入力される。信号処理部500に入力される入力映像信号は、例えば他の装置から表示装置1に伝送されたものであってもよいし、表示装置1の図示しない記憶装置に記憶されたものであってもよい。同期信号は、例えば図示しない同期信号生成回路により生成された同期信号が信号処理部500に入力される。 The input video signal and the synchronization signal are input to the signal processing unit 500. The input video signal input to the signal processing unit 500 may be transmitted to the display device 1 from another device, for example, or may be stored in a storage device (not shown) of the display device 1. Good. As the synchronization signal, for example, a synchronization signal generated by a synchronization signal generation circuit (not shown) is input to the signal processing unit 500.
 入力映像信号は、RGBの三原色信号からなる映像信号である。入力映像信号は、例えば、映像信号として一般的である8ビットの映像信号よりも高ビットの映像信号である。すなわち、例えば、入力映像信号は、R色の16ビットの入力映像信号と、G色の16ビットの入力映像信号と、B色の16ビットの入力映像信号から構成される。また、入力映像信号は、所定のガンマ値のガンマ補正がかけられている映像信号である。一例として、入力映像信号のガンマ特性のガンマ値は、2.2である。 The input video signal is a video signal composed of RGB three primary color signals. The input video signal is, for example, a video signal having a higher bit than an 8-bit video signal that is generally used as a video signal. That is, for example, the input video signal is composed of an R-color 16-bit input video signal, a G-color 16-bit input video signal, and a B-color 16-bit input video signal. The input video signal is a video signal that has been subjected to gamma correction of a predetermined gamma value. As an example, the gamma value of the gamma characteristic of the input video signal is 2.2.
 信号処理部500は、入力映像信号から、投射部20による表示制御を行うための第1の映像信号と、表示部30による表示制御を行うための第2の映像信号とを生成する。つまり、信号処理部500は、入力映像信号から第1の映像信号と第2の映像信号とを生成し、第1の映像信号に基づいて投射部20を制御し、第2の映像信号に基づいて透過型液晶パネル301を制御する。なお、信号処理部500による第1の映像信号及び第2の映像信号の生成については、後述する。信号処理部500は、入力された同期信号に同期して処理を行う。 The signal processing unit 500 generates a first video signal for performing display control by the projection unit 20 and a second video signal for performing display control by the display unit 30 from the input video signal. That is, the signal processing unit 500 generates a first video signal and a second video signal from the input video signal, controls the projection unit 20 based on the first video signal, and based on the second video signal. Thus, the transmissive liquid crystal panel 301 is controlled. The generation of the first video signal and the second video signal by the signal processing unit 500 will be described later. The signal processing unit 500 performs processing in synchronization with the input synchronization signal.
 信号処理部500は、生成した第1の映像信号を第1の同期部511に出力する。また、信号処理部500は、生成した第2の映像信号を第2の同期部512に出力する。なお、第1の同期部511及び第2の同期部512には、同期信号も出力される。 The signal processing unit 500 outputs the generated first video signal to the first synchronization unit 511. Further, the signal processing unit 500 outputs the generated second video signal to the second synchronization unit 512. A synchronization signal is also output to the first synchronization unit 511 and the second synchronization unit 512.
 第1の映像信号は、第1の同期部511を介して、投射部20のデバイス駆動部250に供給される。また、第2の映像信号は、第2の同期部512を介して、表示部30のパネル駆動部350に供給される。 The first video signal is supplied to the device driving unit 250 of the projection unit 20 via the first synchronization unit 511. Further, the second video signal is supplied to the panel driving unit 350 of the display unit 30 via the second synchronization unit 512.
 投射部20及び透過型液晶パネル301において映像信号が入力されてから出画されるまでには種々の信号処理(駆動等)が行われる。このため、出画までにある程度の時間がかかることになる。ここで、投射部20において出画に要する時間と、透過型液晶パネル301において出画に要する時間とが異なるため、両者の出画タイミングをそろえるために同期をとる必要がある。このため、第1の同期部511及び第2の同期部512では、第1の映像信号及び第2の映像信号にそれぞれ最適な遅延をつける遅延処理を行う。なお、第1の同期部511又は第2の同期部512のいずれか一方において遅延処理がなされてもよい。第1の同期部511及び第2の同期部512は、同期信号に基づいて遅延処理を行う。そして、第1の同期部511は、第1の映像信号を投射部20のデバイス駆動部250に出力する。また、第2の同期部512は、第2の映像信号を表示部30のパネル駆動部350に出力する。 In the projection unit 20 and the transmissive liquid crystal panel 301, various signal processing (driving, etc.) is performed from when a video signal is input until it is output. For this reason, a certain amount of time is required until the image is output. Here, since the time required for image output in the projection unit 20 and the time required for image output in the transmissive liquid crystal panel 301 are different, it is necessary to synchronize in order to align the image output timing of both. For this reason, the first synchronization unit 511 and the second synchronization unit 512 perform delay processing for adding optimal delays to the first video signal and the second video signal, respectively. Note that delay processing may be performed in either the first synchronization unit 511 or the second synchronization unit 512. The first synchronization unit 511 and the second synchronization unit 512 perform delay processing based on the synchronization signal. Then, the first synchronization unit 511 outputs the first video signal to the device driving unit 250 of the projection unit 20. Further, the second synchronization unit 512 outputs the second video signal to the panel drive unit 350 of the display unit 30.
 デバイス駆動部250は、第1の映像信号にしたがって、表示素子209を駆動するための駆動信号を生成し、駆動信号により表示素子209を駆動する。また、パネル駆動部350は、第2の映像信号にしたがって、透過型液晶パネル301を駆動するための駆動信号を生成し、駆動信号により透過型液晶パネル301を駆動する。 The device driving unit 250 generates a driving signal for driving the display element 209 according to the first video signal, and drives the display element 209 by the driving signal. In addition, the panel driving unit 350 generates a drive signal for driving the transmissive liquid crystal panel 301 according to the second video signal, and drives the transmissive liquid crystal panel 301 by the drive signal.
 図6は、信号処理部500の構成を示すブロック図である。信号処理部500は、図6に示すように第1のLUT(Lookup table:ルックアップテーブル)部501と、第2のLUT部502とを有している。第1のLUT部501及び第2のLUT部502は、例えば、表示制御部50の図示しないメモリなどの記憶装置により実現される。 FIG. 6 is a block diagram illustrating a configuration of the signal processing unit 500. As shown in FIG. 6, the signal processing unit 500 includes a first LUT (Lookup table) unit 501 and a second LUT unit 502. The first LUT unit 501 and the second LUT unit 502 are realized by a storage device such as a memory (not shown) of the display control unit 50, for example.
 第1のLUT部501は、投射部20を第1の出力特性に調整するルックアップテーブルである。また、第2のLUT部502は、透過型液晶パネル301を第2の出力特性に調整するルックアップテーブルである。ただし、第1の出力特性におけるガンマ値と第2の出力特性におけるガンマ値との和は、入力映像信号のガンマ値に等しい。ここでは、入力映像信号のガンマ値が、2.2であるものとして説明する。この場合、出力特性のガンマ値が2.2であるときに、入力映像信号は正しく表示される。したがって、投射部20による出力及び表示部30による出力の全体で、出力特性としてガンマ値が2.2である表示装置を実現する必要がある。このため、例えば、第1のLUT部501を、投射部20の出力特性がガンマ1.1となるように調整されたテーブルとして構成する。また、第2のLUT部502を、表示部30の出力特性がガンマ1.1となるように調整されたテーブルとして構成する。このようなテーブルは、例えば、実際に投射部20又は表示部30において出力を行い、その際の照度を照度計により測定することにより作成することができる。その結果、表示装置1としては、ガンマ値2.2(=1.1+1.1)の出力特性を有することができる。 The first LUT unit 501 is a lookup table that adjusts the projection unit 20 to the first output characteristic. The second LUT unit 502 is a lookup table that adjusts the transmissive liquid crystal panel 301 to the second output characteristic. However, the sum of the gamma value in the first output characteristic and the gamma value in the second output characteristic is equal to the gamma value of the input video signal. Here, a description will be given assuming that the gamma value of the input video signal is 2.2. In this case, the input video signal is correctly displayed when the gamma value of the output characteristic is 2.2. Therefore, it is necessary to realize a display device having a gamma value of 2.2 as an output characteristic for the output from the projection unit 20 and the output from the display unit 30 as a whole. Therefore, for example, the first LUT unit 501 is configured as a table adjusted so that the output characteristic of the projection unit 20 is gamma 1.1. The second LUT unit 502 is configured as a table adjusted so that the output characteristic of the display unit 30 is gamma 1.1. Such a table can be created, for example, by actually outputting in the projection unit 20 or the display unit 30 and measuring the illuminance at that time with an illuminometer. As a result, the display device 1 can have output characteristics with a gamma value of 2.2 (= 1.1 + 1.1).
 信号処理部500は、第1のLUT部501及び第2のLUT部502の入力として、入力映像信号を与える。そして、信号処理部500は、入力映像信号に対する第1のLUT部501の出力を第1の映像信号とし、入力映像信号に対する第2のLUT部502の出力を第2の映像信号とする。なお、このとき、入力映像信号におけるRGBの各信号に対し、第1の映像信号又は第2の映像信号が生成される。すなわち、Rの入力映像信号から、Rの第1の映像信号及びRの第2の映像信号が生成される。また、Gの入力映像信号から、Gの第1の映像信号及びGの第2の映像信号が生成される。さらに、Bの入力映像信号から、Bの第1の映像信号及びBの第2の映像信号が生成される。ここで、第1の映像信号及び第2の映像信号の生成では、上述のように、LUTによりRGBがそれぞれ独立して処理されればよく、第1の映像信号及び第2の映像信号のビット数は、任意のビット数が可能である。例えば、入力映像信号が16ビットである場合、第1の映像信号及び第2の映像信号が16ビットの映像信号であってもよいし、MSB(most significant bit)側の上位8ビットの信号を第1の映像信号として供給し、LSB(least significant bit)側の下位8ビットの信号を第2の映像信号として供給してもよい。 The signal processing unit 500 provides an input video signal as an input to the first LUT unit 501 and the second LUT unit 502. Then, the signal processing unit 500 sets the output of the first LUT unit 501 for the input video signal as the first video signal, and sets the output of the second LUT unit 502 for the input video signal as the second video signal. At this time, a first video signal or a second video signal is generated for each RGB signal in the input video signal. That is, an R first video signal and an R second video signal are generated from the R input video signal. A G first video signal and a G second video signal are generated from the G input video signal. Further, a B first video signal and a B second video signal are generated from the B input video signal. Here, in the generation of the first video signal and the second video signal, as described above, RGB may be processed independently by the LUT, and the bits of the first video signal and the second video signal may be processed. The number can be any number of bits. For example, when the input video signal is 16 bits, the first video signal and the second video signal may be 16-bit video signals, or the upper 8-bit signal on the MSB (most significant bit) side is used. It may be supplied as a first video signal, and a lower 8-bit signal on the LSB (least significant bit) side may be supplied as a second video signal.
 ここで、LUTにより実現されるガンマ値に関し、さらに説明する。本実施の形態では、上述の通り、入力映像信号のガンマ特性を2つに分割しているため、第1の出力特性及び第2の出力特性がリニアに近くなる。このため、暗部階調の再現性が向上する。例えば、入力映像信号のガンマ特性のガンマ値が2.2で規定されていた場合、上述のように単純に分割すると、第1の出力特性及び第2の出力特性は、1.1となる。8ビット入力における1の値は、ガンマ値が2.2の場合においては明るさでいうと、白(8ビット入力における255の値)に対し、約0.000005となる。このため、表示面におけるコントラストが2,000,000:1で表示可能でないと、理論上のガンマカーブにおける1(8ビット)という値が示す明るさを再現することができない。これに対し、ガンマ値が1.1である場合には、8ビット入力における1の値は、白(8ビット入力における255の値)に対し、約0.0023となり、表示面におけるコントラストが440:1で表示可能であればよい。よって、透過型液晶パネル301に要求されるコントラストの性能を抑制することが可能である。すなわち、比較的容易に入手可能な透過型液晶パネル301と、投射部20の組み合わせで、理想のガンマ特性とすることが可能となる。 Here, the gamma value realized by the LUT will be further described. In the present embodiment, as described above, since the gamma characteristic of the input video signal is divided into two, the first output characteristic and the second output characteristic are close to linear. For this reason, the reproducibility of dark part gradation is improved. For example, when the gamma value of the gamma characteristic of the input video signal is defined by 2.2, the first output characteristic and the second output characteristic are 1.1 when simply divided as described above. When the gamma value is 2.2, the value of 1 in 8-bit input is about 0.000005 for white (value of 255 in 8-bit input) in terms of brightness. Therefore, unless the contrast on the display surface can be displayed at 2,000,000: 1, the brightness indicated by the value of 1 (8 bits) in the theoretical gamma curve cannot be reproduced. On the other hand, when the gamma value is 1.1, the value of 1 in 8-bit input is about 0.0023 with respect to white (255 value in 8-bit input), and the contrast on the display surface is 440. : 1 can be displayed. Therefore, the contrast performance required for the transmissive liquid crystal panel 301 can be suppressed. That is, an ideal gamma characteristic can be obtained by combining the transmissive liquid crystal panel 301 and the projection unit 20 that are relatively easily available.
 また、上述の通り、入力映像信号から第1の映像信号及び第2の映像信号を生成する際、RGBが独立しているので、ガンマ調整の実現が容易である。例えば、特開2007-310045号公報に記載されているように、輝度を変調する場合、入力映像信号のRGBからY(輝度)信号を生成するため、RGBが混色された色における階調性を保つのが容易ではない。これは、Y信号を生成するために1次元増えることとなり、RGBの3次元からRGBYの4次元への変換が必要とされるためである。これに対し、本実施の形態では、入力映像信号のRGB信号を、第1の映像信号のRGB信号と、第2の映像信号のRGB信号に分割するため、それぞれの色が独立して処理され、階調性を保つことが容易となる。また、RGBの3次元からRGBの3次元への変換であるため、第1の映像信号及び第2の映像信号の生成が、比較的容易に実現される。 Also, as described above, when the first video signal and the second video signal are generated from the input video signal, since RGB is independent, it is easy to realize gamma adjustment. For example, as described in Japanese Patent Application Laid-Open No. 2007-310045, when luminance is modulated, a Y (luminance) signal is generated from RGB of an input video signal. Not easy to keep. This is because one dimension is added to generate the Y signal, and conversion from the three-dimensional RGB to the four-dimensional RGBY is required. In contrast, in the present embodiment, the RGB signal of the input video signal is divided into the RGB signal of the first video signal and the RGB signal of the second video signal, so that each color is processed independently. It is easy to maintain gradation. Further, since the conversion is from RGB three-dimensional to RGB three-dimensional, the generation of the first video signal and the second video signal can be realized relatively easily.
 さらに、本実施の形態による表示装置1によれば、ガンマ特性として2.2乗以上の大きなガンマ値をとる入力映像信号を表示することが可能である。これは次のような理由による。例えばガンマ特性が2.2の場合は、入力映像信号に2.2乗した値が規定した輝度(明るさ)になる。例えば、8ビット信号の1という値は、1/255=0.003921…であるが、輝度(明るさ)としては、(1/255)^2.2=0.000005077….となる。そのため、ガンマ特性を2.2乗より大きな値にすることは、入力映像信号としては同じであっても輝度は2.2乗の場合よりも小さい値(つまり暗くなる)になる。このため、入力映像信号のガンマ特性が2.2乗よりも大きくなるに従い、従来のディスプレイでは規定した輝度の表示が困難な領域になっていく。これに対し、本実施の形態においては、投射部20と透過型液晶パネル301の出力値の掛け算が最終的な出力値であるため、比較的容易に実現できる。このように、表示装置1によれば、ガンマ特性として2.2乗以上の大きなガンマ値をとる入力映像信号を表示することが可能である。入力映像信号のガンマ特性のガンマ値が大きいほど暗部階調性が保たれることから、本実施の形態にかかる表示装置1によれば、画像データを量子化した際の誤差を浮動小数点フォーマットの画像データとすることで暗部階調の量子化誤差を低減することにも寄与する。 Furthermore, according to the display device 1 according to the present embodiment, it is possible to display an input video signal having a large gamma value of 2.2 or more as the gamma characteristic. This is due to the following reason. For example, when the gamma characteristic is 2.2, a value obtained by raising the input video signal to the power of 2.2 has a specified luminance (brightness). For example, the value of 1 of the 8-bit signal is 1/255 = 0.39221... But the luminance (brightness) is (1/255) ^ 2.2 = 0.00000000077. Therefore, when the gamma characteristic is set to a value larger than 2.2, the luminance is smaller (that is, darker) than that when the input video signal is the same as that of the second power. For this reason, as the gamma characteristic of the input video signal becomes larger than the power of 2.2, it becomes a region where it is difficult to display the specified luminance on the conventional display. On the other hand, in the present embodiment, since the multiplication of the output values of the projection unit 20 and the transmissive liquid crystal panel 301 is the final output value, it can be realized relatively easily. Thus, according to the display device 1, it is possible to display an input video signal having a large gamma value of 2.2 or more as the gamma characteristic. As the gamma value of the gamma characteristic of the input video signal is larger, the dark portion gradation is maintained, so according to the display device 1 according to the present embodiment, the error when quantizing the image data is expressed in the floating-point format. By making it image data, it also contributes to reducing the quantization error of dark part gradation.
 ところで、上記説明では、一例として、第1の出力特性のガンマ値(すなわち投射部20の出力特性のガンマ値)を1.1とし、第2の出力特性のガンマ値(すなわち表示部30の出力特性のガンマ値)を1.1としているが、これらに限られない。すなわち、第1の出力特性におけるガンマ値と第2の出力特性におけるガンマ値との和が、入力映像信号のガンマ値に等しければよい。図7A~図7C、図8A~図8C、及び図9A~図9Cは、本実施の形態の表示装置1において入力映像信号または映像信号である入力値と光出力との関係(ガンマ特性)の例を示すグラフである。なお、図7A、図8A及び図9Aは入力映像信号のガンマ特性を示し、図7B、図8B及び図9Bは透過型液晶パネル301のガンマ特性を示し、図7C、図8C及び図9Cは投射部20のガンマ特性を示す。また、図7A~図7C、図8A~図8C、及び図9A~図9Cにおいて、横軸は入力映像信号または映像信号である入力値を示し、縦軸は光出力値を示す。つまり、図7B、図8B及び図9Bにおいて、横軸は第2のLUT部502から出力される第2の映像信号である入力値を示し、縦軸は透過型液晶パネル301の光出力値を示す。また、図7C、図8C及び図9Cにおいて、横軸は第1のLUT部501から出力される第1の映像信号である入力値を示し、縦軸は投射部20の光出力値を示す。 In the above description, as an example, the gamma value of the first output characteristic (that is, the gamma value of the output characteristic of the projection unit 20) is 1.1, and the gamma value of the second output characteristic (that is, the output of the display unit 30). The characteristic gamma value) is 1.1, but is not limited thereto. That is, the sum of the gamma value in the first output characteristic and the gamma value in the second output characteristic may be equal to the gamma value of the input video signal. 7A to 7C, FIG. 8A to FIG. 8C, and FIG. 9A to FIG. 9C show the relationship (gamma characteristic) between the input value that is the input video signal or the video signal and the light output in the display device 1 of the present embodiment. It is a graph which shows an example. 7A, 8A, and 9A show the gamma characteristics of the input video signal, FIGS. 7B, 8B, and 9B show the gamma characteristics of the transmissive liquid crystal panel 301, and FIGS. 7C, 8C, and 9C show the projections. The gamma characteristic of the part 20 is shown. 7A to 7C, 8A to 8C, and 9A to 9C, the horizontal axis represents an input video signal or an input value that is a video signal, and the vertical axis represents an optical output value. That is, in FIG. 7B, FIG. 8B, and FIG. 9B, the horizontal axis indicates the input value that is the second video signal output from the second LUT unit 502, and the vertical axis indicates the light output value of the transmissive liquid crystal panel 301. Show. 7C, FIG. 8C, and FIG. 9C, the horizontal axis represents the input value that is the first video signal output from the first LUT unit 501, and the vertical axis represents the light output value of the projection unit 20.
 図7A~図7Cは、上記説明で挙げた、入力映像信号のガンマ特性のガンマ値が2.2で規定されていた場合において、第1の出力特性(投射部20の出力特性)及び第2の出力特性(透過型液晶パネル301の出力特性)のガンマ値を1.1とした例である。 FIGS. 7A to 7C show the first output characteristic (output characteristic of the projection unit 20) and the second output when the gamma value of the gamma characteristic of the input video signal specified in the above description is 2.2. This is an example in which the gamma value of the output characteristics (output characteristics of the transmissive liquid crystal panel 301) is 1.1.
 図8A~図8Cは、入力映像信号のガンマ特性のガンマ値が3.2で規定されていた場合において、第1の出力特性(投射部20の出力特性)のガンマ値を2.2とし、第2の出力特性(透過型液晶パネル301の出力特性)のガンマ値を1とした例である。なお、ここでは、投射部20は、透過型液晶パネル301よりも高いコントラストであるとする。このように、投射部20と透過型液晶パネル301のうちより高いコントラストの方の出力特性におけるガンマ値が、投射部20と透過型液晶パネル301のうちより低いコントラストの方の出力特性におけるガンマ値より大きく調整されてもよい。これにより、表示装置1全体のコントラストを向上することが可能となる。 8A to 8C, when the gamma value of the gamma characteristic of the input video signal is defined by 3.2, the gamma value of the first output characteristic (output characteristic of the projection unit 20) is 2.2. This is an example in which the gamma value of the second output characteristic (output characteristic of the transmissive liquid crystal panel 301) is 1. Here, it is assumed that the projection unit 20 has a higher contrast than the transmissive liquid crystal panel 301. Thus, the gamma value in the higher contrast output characteristics of the projection unit 20 and the transmissive liquid crystal panel 301 is the gamma value in the lower contrast output characteristics of the projection unit 20 and the transmissive liquid crystal panel 301. Larger adjustments may be made. Thereby, the contrast of the entire display device 1 can be improved.
 図9A~図9Cは、透過型液晶パネル301の変調を暗部側の所定範囲に限定した場合の一例を示している。図9A~図9Cに示した例では、入力映像信号のガンマ特性のガンマ値が2.2で規定されていた場合において、第1の出力特性(投射部20の出力特性)のガンマ値を2.2(ただし、入力が0.25以下の場合のガンマ値は1.2)とし、第2の出力特性(透過型液晶パネル301の出力特性)のガンマ値を1とした例である。また、第2の出力特性では、入力値が0.25以上の場合、光出力量が一律に最大となっている。このように、透過型液晶パネル301の出力特性は、入力値が予め定められた値以上である場合、出力が最大値に固定されてもよい。これにより、透過型液晶パネル301の全階調を入力値が0.25以下のガンマの領域に割り当てることができるようになり、暗部側の階調をより細かい階調で表現できるという利点がある。 9A to 9C show an example in which the modulation of the transmissive liquid crystal panel 301 is limited to a predetermined range on the dark side. In the example shown in FIGS. 9A to 9C, when the gamma value of the gamma characteristic of the input video signal is defined by 2.2, the gamma value of the first output characteristic (output characteristic of the projection unit 20) is 2 .2 (where the gamma value is 1.2 when the input is 0.25 or less) and the gamma value of the second output characteristic (the output characteristic of the transmissive liquid crystal panel 301) is 1. In the second output characteristic, when the input value is 0.25 or more, the light output amount is uniformly maximized. As described above, the output characteristics of the transmissive liquid crystal panel 301 may be fixed to the maximum value when the input value is equal to or greater than a predetermined value. As a result, all the gradations of the transmissive liquid crystal panel 301 can be assigned to a gamma region having an input value of 0.25 or less, and there is an advantage that gradations on the dark side can be expressed with finer gradations. .
 以上、本実施の形態にかかる表示装置1について説明した。表示装置1では、上述の通り、投射部20によりRGBのそれぞれについて変調された光が出力され、投射部20から射出されたRGBの光のそれぞれは、さらに透過型液晶パネル301において変調される。これにより、漏れ光の影響を抑えることができ、コントラストを向上することができる。ここで、R色のみの表示を行う場合を例に、比較例を交えて説明する。例えば、比較例として、1つ目の変調がバックライトなどの制御により行われ、2つ目の変調がバックライトの光に対し行われる液晶ディスプレイを想定した場合、2つ目の変調デバイスにおけるG光及びB光の漏れ光により、コントラストの低下を招く。また、G光及びB光の漏れ光の影響により、本来の色からずれた色、すなわち色度図において白色方向の点にずれた色が表示されることとなる。また、例えば、比較例として、特開2007-310045号公報に記載されているように、2つ目の変調デバイスにより輝度を変調する場合も、上記液晶ディスプレイの比較例に比べると改善されるものの、同様の事態が生じる。これに対し、本実施の形態にかかる表示装置1では、R光、G光及びB光のそれぞれに対し2重で変調がかかるため、漏れ光を抑制することができる。このため、コントラストの低下及び色ずれを抑制することができ、特に有彩色においても、ダイナミックレンジの拡大が可能となる。 The display device 1 according to the present embodiment has been described above. In the display device 1, as described above, light that is modulated for each of RGB by the projection unit 20 is output, and each of the RGB light that is emitted from the projection unit 20 is further modulated by the transmissive liquid crystal panel 301. Thereby, the influence of leaking light can be suppressed and the contrast can be improved. Here, a case where only the R color is displayed will be described as an example with a comparative example. For example, as a comparative example, assuming a liquid crystal display in which the first modulation is performed by control of the backlight and the second modulation is performed on the light of the backlight, G in the second modulation device is assumed. The leakage of light and B light causes a decrease in contrast. Further, due to the influence of leakage light of G light and B light, a color shifted from the original color, that is, a color shifted to a point in the white direction in the chromaticity diagram is displayed. Further, for example, as described in Japanese Patent Application Laid-Open No. 2007-310045 as a comparative example, even when the luminance is modulated by the second modulation device, it is improved as compared with the comparative example of the liquid crystal display. A similar situation occurs. On the other hand, in the display device 1 according to the present embodiment, the R light, the G light, and the B light are each modulated in a double manner, so that leakage light can be suppressed. For this reason, it is possible to suppress a decrease in contrast and color misregistration, and in particular, it is possible to expand the dynamic range even for chromatic colors.
 実施の形態2
 次に、本発明の実施の形態2について説明する。実施の形態1にかかる表示装置1及び本実施の形態にかかる表示装置2において、上述の通り、投射部20により投射される光のドットと、透過型液晶パネル301の画素とが対応するよう両者は位置合わせされている必要がある。ここで、投射部20からの投射光を透過型液晶パネル301に正確にフォーカスさせると、投射部20からの投射光のドットと透過型液晶パネル301の画素構造とによってモアレが現れる恐れがある。そこで、本実施の形態では、透過型液晶パネル301に入射する投射部20からの投射光を入射直前に拡散させることで、モアレの発生を抑制する。
Embodiment 2
Next, a second embodiment of the present invention will be described. In the display device 1 according to the first embodiment and the display device 2 according to the present embodiment, as described above, both the dot of light projected by the projection unit 20 and the pixel of the transmissive liquid crystal panel 301 correspond to each other. Must be aligned. Here, when the projection light from the projection unit 20 is accurately focused on the transmissive liquid crystal panel 301, moire may appear due to the projection light dots from the projection unit 20 and the pixel structure of the transmissive liquid crystal panel 301. Therefore, in the present embodiment, generation of moire is suppressed by diffusing the projection light from the projection unit 20 incident on the transmissive liquid crystal panel 301 immediately before the incident.
 図10は、実施の形態2にかかる表示装置2の内部構成の一例を示す構成図である。なお、以下の説明では、上述した要素と同一の要素には、同一の符号を付し、重複する説明は省略する。図10に示されるように、表示装置2は、表示部30が表示部31に置き換えられた点で表示装置1と異なる。 FIG. 10 is a configuration diagram illustrating an example of an internal configuration of the display device 2 according to the second embodiment. In the following description, the same elements as those described above are denoted by the same reference numerals, and redundant description is omitted. As shown in FIG. 10, the display device 2 is different from the display device 1 in that the display unit 30 is replaced with a display unit 31.
 表示部31は、透過型液晶パネル301の大きさに対応する大きさのスクリーン304と、透過型液晶パネル301と、偏光板302と、スクリーン303を有する。ここで、表示部31において、スクリーン304、透過型液晶パネル301、偏光板302、及びスクリーン303は、投射部20から射出された光の進行方向の順で、スクリーン304、透過型液晶パネル301、偏光板302、スクリーン303の順に並んで一体に配置されている。なお、スクリーン304は、入射した光の偏光を維持する特性を有するスクリーンである。偏光を維持する特性を有するスクリーンとしては、例えば、日東樹脂株式会社製のブルーオーシャンスクリーンを用いることができる。 The display unit 31 includes a screen 304 having a size corresponding to the size of the transmissive liquid crystal panel 301, a transmissive liquid crystal panel 301, a polarizing plate 302, and a screen 303. Here, in the display unit 31, the screen 304, the transmissive liquid crystal panel 301, the polarizing plate 302, and the screen 303 are arranged in the order of the traveling direction of the light emitted from the projection unit 20, the screen 304, the transmissive liquid crystal panel 301, The polarizing plate 302 and the screen 303 are arranged side by side in this order. The screen 304 is a screen having a characteristic of maintaining the polarization of incident light. As a screen having the property of maintaining polarized light, for example, a blue ocean screen manufactured by Nitto Resin Co., Ltd. can be used.
 このような構成により、本実施の形態においては、投射部20から射出された光はスクリーン304により拡散した上で、透過型液晶パネル301に入射する。このため、投射光を透過型液晶パネル301に直接合焦させないため、モアレの発生を低減できる。よって、モアレを低減するための位置の調整を行わなくもよいため、投射部20と透過型液晶パネル301の位置合わせが容易になる。また、例えば、透過型液晶パネル301は厚みを有するため、視点位置が表示部30の正面から外れると、スクリーン303に投射された画像と透過型液晶パネル301が表示する画像の2つの画像が視差によってわずかにずれて視認されるという問題が起こりうるが、スクリーン304が配置されていることで2つの画像がずれて視認されることが緩和されるという利点もある。 With this configuration, in the present embodiment, the light emitted from the projection unit 20 is diffused by the screen 304 and then enters the transmissive liquid crystal panel 301. For this reason, since the projection light is not directly focused on the transmissive liquid crystal panel 301, the occurrence of moire can be reduced. Therefore, since it is not necessary to adjust the position for reducing moire, the projection unit 20 and the transmissive liquid crystal panel 301 can be easily aligned. Further, for example, since the transmissive liquid crystal panel 301 has a thickness, when the viewpoint position deviates from the front of the display unit 30, two images of an image projected on the screen 303 and an image displayed on the transmissive liquid crystal panel 301 are parallax. However, there is an advantage that the two images can be visually recognized by being shifted because the screen 304 is arranged.
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、上記実施の形態では、入力映像信号、第1の映像信号、及び第2の映像信号について、RGB信号として説明したが、他の色空間で表された信号であってもよい。例えば、YPbPr信号などのように輝度信号と2つの色差信号により表された信号が用いられてもよい。 Note that the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention. For example, in the above embodiment, the input video signal, the first video signal, and the second video signal have been described as RGB signals, but may be signals expressed in other color spaces. For example, a signal represented by a luminance signal and two color difference signals such as a YPbPr signal may be used.
 また、上記実施の形態では、投射部20により直線偏光を射出する構成としたが、投射部20が、上述の第1の映像信号に応じて変調された、直線偏光以外の光を射出する投射部に置き換えられてもよい。すなわち、例えば、上述の第1の映像信号に応じて変調された円偏光を射出する投射部、又は上述の第1の映像信号に応じて変調された無偏光の光を射出する投射部が用いられてもよい。また、透過型液晶パネル301の駆動方式は、任意の方式が可能である。例えば、透過型液晶パネル301は、TN(Twisted Nematic)方式の液晶パネルであってもよいし、VA(Vertical Alignment)方式の液晶パネルであってもよいし、IPS(In-Place-Switching)方式の液晶パネルであってもよい。 In the above embodiment, the projection unit 20 emits linearly polarized light. However, the projection unit 20 emits light other than the linearly polarized light that is modulated according to the first video signal. It may be replaced with a part. That is, for example, a projection unit that emits circularly polarized light modulated according to the first video signal described above, or a projection unit that emits non-polarized light modulated according to the first video signal described above is used. May be. Further, the driving method of the transmissive liquid crystal panel 301 can be any method. For example, the transmissive liquid crystal panel 301 may be a TN (Twisted Nematic) liquid crystal panel, a VA (Vertical Alignment) liquid crystal panel, or an IPS (In-Place-Switching) method. It may be a liquid crystal panel.
 ここで、液晶にかける電圧によって入射光の偏光方向を制御するTN方式、VA方式、及びIPS方式の各液晶パネルについて説明する。図11は、TN方式、VA方式、及びIPS方式の各液晶パネルの特徴をまとめた表である。ここで、TN方式については、液晶パネルにかかる電圧が最大の時に、光が遮断され画面は黒の表示となり、液晶パネルに電圧をかけていない時に、画面は白の表示となるタイプを一例として示す。これに対し、VA方式及びIPS方式については、液晶パネルに電圧をかけていない時に、光が遮断され画面は黒の表示となり、液晶パネルにかかる電圧が最大の時に、画面は白の表示となるタイプを一例として示す。 Here, TN, VA, and IPS liquid crystal panels that control the polarization direction of incident light by the voltage applied to the liquid crystal will be described. FIG. 11 is a table summarizing the characteristics of each of the TN, VA, and IPS liquid crystal panels. Here, as an example of the TN method, when the voltage applied to the liquid crystal panel is maximum, the light is blocked and the screen is displayed in black, and when the voltage is not applied to the liquid crystal panel, the screen is displayed in white. Show. On the other hand, in the VA method and the IPS method, when no voltage is applied to the liquid crystal panel, the light is blocked and the screen is displayed in black, and when the voltage applied to the liquid crystal panel is maximum, the screen is displayed in white. The type is shown as an example.
 また、各方式のコントラストを比較すると、VA方式が最もコントラストが大きく、次にTN方式のコントラストが大きい。このため、IPS方式は、これら3つの方式で、最もコントラストの性能が劣っている。また、各方式の視野角を比較すると、IPS方式が最も視野角が大きく、次にVA方式の視野角が大きい。このため、TN方式は、これら3つの方式で、最も視野角の性能が劣っている。なお、図11において、コントラスト及び視野角の欄の数字は、値が小さいほど優れていることを示している。 Also, comparing the contrast of each method, the VA method has the largest contrast, and the TN method has the next highest contrast. For this reason, the IPS system is the most inferior in contrast performance among these three systems. Further, when comparing the viewing angle of each method, the IPS method has the largest viewing angle, and the VA method has the next largest viewing angle. For this reason, the TN system is the most inferior in viewing angle performance among these three systems. In FIG. 11, the numbers in the columns for contrast and viewing angle indicate that the smaller the value, the better.
 以下、透過型液晶パネル301として上述した各方式の透過型液晶パネルを用いた場合の表示装置の構成例について具体的に説明する。 Hereinafter, a configuration example of the display device when the above-described transmission type liquid crystal panel is used as the transmission type liquid crystal panel 301 will be described in detail.
 ここで、液晶パネルの光の出射側にある偏光板302の偏光方向、すなわち偏光板302の透過軸、を基準とする。ここで、液晶パネルに電圧をかけていない状態で、光の位相が1/2λ変化するタイプのTN方式の液晶パネルを用いる場合、液晶パネルを透過した光の偏光方向は、液晶パネルに入射する光の偏光方向に対して直交する。したがって、このタイプのTN方式の液晶パネルを使用する場合には、液晶パネルに入射する光の偏光方向が、基準に対して90°回転していることが求められる。 Here, the polarization direction of the polarizing plate 302 on the light emission side of the liquid crystal panel, that is, the transmission axis of the polarizing plate 302 is used as a reference. Here, when a TN type liquid crystal panel in which the phase of light changes by 1 / 2λ without using a voltage is applied to the liquid crystal panel, the polarization direction of light transmitted through the liquid crystal panel is incident on the liquid crystal panel. It is orthogonal to the polarization direction of the light. Therefore, when this type of TN liquid crystal panel is used, the polarization direction of light incident on the liquid crystal panel is required to be rotated by 90 ° with respect to the reference.
 また、液晶パネルに最大電圧をかけた状態で、光の位相が1/2λ変化するタイプのVA方式及びIPS方式の場合、液晶パネルに入射する光の偏光方向が、基準に対して90°回転していることが求められる。一方、液晶パネルに電圧をかけていない状態では、偏光状態に変化はない。 In the case of the VA method and IPS method in which the phase of light changes by 1 / 2λ with the maximum voltage applied to the liquid crystal panel, the polarization direction of the light incident on the liquid crystal panel is rotated by 90 ° with respect to the reference. It is required to do. On the other hand, there is no change in the polarization state when no voltage is applied to the liquid crystal panel.
 したがって、上記のようなTN、VA及びIPSのうちいずれの方式の液晶パネルが用いられるとしても、投射部20が射出する光の偏光方向は、基準に対して直交した方向であればよい。 Therefore, even if a liquid crystal panel of any type of TN, VA, and IPS as described above is used, the polarization direction of the light emitted from the projection unit 20 may be a direction orthogonal to the reference.
 図12は、上記実施形態に示されるように、直線偏光を射出する投射部20により表示装置を構成する場合の構成例についてまとめた表である。上述の通り、液晶パネルに入射する光の偏光方向は、基準に対して90°回転していることが求められる。このため、図12の構成例1及び4に示すように、投射部20の射出光の偏光方向が基準と同じ方向の場合には、入射光の偏光面に対し遅相軸又は進相軸が90°の方位角に配置された位相差板である1/2λ板を、投射部20と透過型液晶パネル301との間に挿入して、偏光方向を基準に対して直交させる。上記位相差板211は、このような位相差板に相当する。なお、図12の構成例2及び3に示されるように、投射部20の射出光の偏光方向が基準と直交している場合には、投射部20の射出光の偏光方向を変更する必要がないため、位相差板の挿入は不要である。 FIG. 12 is a table summarizing configuration examples when the display device is configured by the projection unit 20 that emits linearly polarized light as shown in the above embodiment. As described above, the polarization direction of light incident on the liquid crystal panel is required to be rotated by 90 ° with respect to the reference. For this reason, as shown in configuration examples 1 and 4 in FIG. 12, when the polarization direction of the light emitted from the projection unit 20 is the same as the reference, the slow axis or the fast axis is relative to the polarization plane of the incident light. A 1 / 2λ plate, which is a retardation plate arranged at an azimuth angle of 90 °, is inserted between the projection unit 20 and the transmissive liquid crystal panel 301 so that the polarization direction is orthogonal to the reference. The retardation plate 211 corresponds to such a retardation plate. As shown in configuration examples 2 and 3 in FIG. 12, when the polarization direction of the emitted light from the projection unit 20 is orthogonal to the reference, it is necessary to change the polarization direction of the emitted light from the projection unit 20. Therefore, it is not necessary to insert a retardation plate.
 図13は、円偏光を射出する投射部により表示装置を構成する場合の構成例についてまとめた表である。直線偏光を射出する投射部20の代わりに、射出光が円偏光である投射部を用いて上述の表示装置を構成する場合、図13の構成例5及び6に示されるように、基準に対し遅相軸又は進相軸が45度の方位角に配置された位相差板である1/4λ板を、投射部20と透過型液晶パネル301との間に挿入して、偏光方向を基準に対して直交させる。なお、図13において、構成例5は、偏光板の透過軸が垂直方向である場合に、投射部が左回り又は右回りの円偏光を射出するときの構成例を示している。また、構成例6は、偏光板の透過軸が水平方向である場合に、投射部が左回り又は右回りの円偏光を射出するときの構成例を示している。いずれの構成例においても、円偏光の回転方向に応じて位相差板の光学軸を回転させて調整することにより、液晶パネルに入射する光の偏光方向を基準に対して直交させることができる。 FIG. 13 is a table summarizing configuration examples in the case where the display device is configured by a projection unit that emits circularly polarized light. In the case where the above-described display device is configured using a projection unit in which the emitted light is circularly polarized light instead of the projection unit 20 that emits linearly polarized light, as shown in the configuration examples 5 and 6 in FIG. A quarter-wave plate, which is a retardation plate whose slow axis or fast axis is arranged at an azimuth angle of 45 degrees, is inserted between the projection unit 20 and the transmissive liquid crystal panel 301, and based on the polarization direction. Make them orthogonal. In FIG. 13, Configuration Example 5 illustrates a configuration example when the projection unit emits counterclockwise or clockwise circularly polarized light when the transmission axis of the polarizing plate is in the vertical direction. Configuration example 6 shows a configuration example when the projection unit emits counterclockwise or clockwise circularly polarized light when the transmission axis of the polarizing plate is in the horizontal direction. In any configuration example, the polarization direction of the light incident on the liquid crystal panel can be made orthogonal to the reference by rotating and adjusting the optical axis of the phase difference plate according to the rotation direction of the circularly polarized light.
 図14は、無偏光の光を射出する投射部により表示装置を構成する場合の構成例についてまとめた表である。直線偏光を射出する投射部20の代わりに、射出光が無偏光である投射部を用いて上述の表示装置を構成する場合、図14の構成例7及び8に示されるように、次のように表示装置を構成する。すなわち、この表示装置では、液晶パネルの光の出射側にある偏光板302の透過軸と直交する透過軸を有する偏光板を、投射部20と透過型液晶パネル301との間に挿入して、透過型液晶パネル301に入射する光の偏光方向を基準に対して直交させる。なお、この表示装置では、位相差板は必ずしも必要ではない。 FIG. 14 is a table summarizing configuration examples in the case where the display device is configured by a projection unit that emits non-polarized light. When the above-described display device is configured using a projection unit that emits non-polarized light instead of the projection unit 20 that emits linearly polarized light, as shown in Configuration Examples 7 and 8 in FIG. A display device is configured. That is, in this display device, a polarizing plate having a transmission axis perpendicular to the transmission axis of the polarizing plate 302 on the light emission side of the liquid crystal panel is inserted between the projection unit 20 and the transmissive liquid crystal panel 301, and The polarization direction of light incident on the transmissive liquid crystal panel 301 is orthogonal to the reference. In this display device, the retardation plate is not always necessary.
 以上説明した通り、投射部として、様々な種類のものが採用可能である。なお、図12から図14では、一例として、液晶パネルの光の出射側にある偏光板302の偏光方向が水平方向又は垂直方向である場合についてのみ示したが、これら以外の方向に回転していても、表示装置を適宜構成可能であることは言うまでもない。 As described above, various types of projection units can be used. In FIGS. 12 to 14, as an example, only the case where the polarization direction of the polarizing plate 302 on the light emission side of the liquid crystal panel is the horizontal direction or the vertical direction is shown. However, it goes without saying that the display device can be appropriately configured.
 また、以上説明した通り、透過型液晶パネルの方式は、TN方式、VA方式、及びIPS方式を含む様々な方式のパネルが採用可能である。なお、表示装置において映像を見る者、すなわちユーザが、見る対象が液晶パネルである場合、視野角がTN方式及びVA方式よりも優れているIPS方式を用いることが好ましい。しかしながら上記実施の形態では、ユーザが見る対象は、スクリーン303であるため、液晶パネルの方式による視野角の性能よりもコントラストの性能が重要となる。このため、透過型液晶パネル301として、VA方式の液晶パネルが用いられることが好ましい。 As described above, various types of panels including the TN mode, the VA mode, and the IPS mode can be adopted as the mode of the transmissive liquid crystal panel. In addition, when a person who views an image on a display device, that is, a user is a liquid crystal panel, it is preferable to use an IPS method in which a viewing angle is superior to that of the TN method and the VA method. However, in the above-described embodiment, since the object to be viewed by the user is the screen 303, the contrast performance is more important than the viewing angle performance by the liquid crystal panel method. Therefore, a VA liquid crystal panel is preferably used as the transmissive liquid crystal panel 301.
 また、液晶により偏光方向が90°回転した場合に光を透過する構成を備えた液晶パネルを例に説明したが、例えば、液晶により偏光方向が90°回転した場合に光を遮断する構成を備えた液晶パネルが用いられる場合には、投射部の射出光の偏光方向と上記基準とが一致していてもよい。このように、液晶パネルの入射光として要求される偏光方向を有する光が液晶パネルに入射するように表示装置が構成されていればよい。 In addition, the liquid crystal panel having a configuration that transmits light when the polarization direction is rotated by 90 ° by the liquid crystal has been described as an example. However, for example, a configuration that blocks light when the polarization direction is rotated by 90 ° by the liquid crystal is provided. When a liquid crystal panel is used, the polarization direction of the light emitted from the projection unit may coincide with the reference. Thus, the display device may be configured so that light having a polarization direction required as incident light of the liquid crystal panel is incident on the liquid crystal panel.
 この出願は、2015年3月10日に出願された日本出願特願2015-047096及び2015年12月2日に出願された日本出願特願2015-235420を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2015-047096 filed on Mar. 10, 2015 and Japanese Application No. 2015-235420 filed on Dec. 2, 2015. The entire disclosure is incorporated herein.
 本発明は、表示装置に適用可能であり、産業上の利用可能性を有する。 The present invention is applicable to display devices and has industrial applicability.
1、2 表示装置
10 筐体
20 投射部
30、31 表示部
40、204、205 ミラー
50 表示制御部
201 光源
202 インテグレータ
203、206 ダイクロイックミラー
207B B用フィールドレンズ
207G G用フィールドレンズ
207R R用フィールドレンズ
208B B用偏光制御素子
208G G用偏光制御素子
208R R用偏光制御素子
209B B用表示素子
209G G用表示素子
209R R用表示素子
210 ダイクロイックプリズム
211 位相差板
212 投射レンズ
250 デバイス駆動部
301 透過型液晶パネル
302 偏光板
303、304 スクリーン
350 パネル駆動部
500 信号処理部
501 第1のLUT部
502 第2のLUT部
511 第1の同期部
512 第2の同期部
DESCRIPTION OF SYMBOLS 1, 2 Display apparatus 10 Case 20 Projection part 30, 31 Display part 40, 204, 205 Mirror 50 Display control part 201 Light source 202 Integrator 203, 206 Dichroic mirror 207B B field lens 207GG G field lens 207RR R field lens 208B B polarization control element 208G G polarization control element 208R R polarization control element 209B B display element 209G G display element 209R R display element 210 Dichroic prism 211 Phase difference plate 212 Projection lens 250 Device driver 301 Transmission type Liquid crystal panel 302 Polarizing plate 303, 304 Screen 350 Panel drive unit 500 Signal processing unit 501 First LUT unit 502 Second LUT unit 511 First synchronization unit 512 Second synchronization unit

Claims (8)

  1.  三原色信号からなる第1の映像信号に応じて変調された光を射出する投射部と、
     三原色信号からなる第2の映像信号に応じて前記投射部から射出された三原色の各光を変調し射出する透過型液晶パネルと、入射光のうち所定の偏光方向の光を射出する偏光板と、第1のスクリーンとを備える表示部と、
     三原色信号からなる入力映像信号から前記投射部を駆動するための前記第1の映像信号と前記透過型液晶パネルを駆動するための前記第2の映像信号とを生成すると共に、前記第1の映像信号と前記第2の映像信号を同期するための同期信号を生成する表示制御部と
     を有し、
     前記表示部は、前記投射部から射出された光の進行方向の順で、前記透過型液晶パネル、前記偏光板、前記第1のスクリーンの順に並んで構成されている
     表示装置。
    A projection unit for emitting light modulated in accordance with a first video signal composed of three primary color signals;
    A transmissive liquid crystal panel that modulates and emits light of each of the three primary colors emitted from the projection unit according to a second video signal composed of three primary color signals; and a polarizing plate that emits light of a predetermined polarization direction among incident light. A display unit comprising a first screen;
    The first video signal for driving the projection unit and the second video signal for driving the transmissive liquid crystal panel are generated from an input video signal consisting of three primary color signals, and the first video A display control unit for generating a synchronization signal for synchronizing the signal and the second video signal,
    The display unit is configured by arranging the transmissive liquid crystal panel, the polarizing plate, and the first screen in the order of the traveling direction of light emitted from the projection unit.
  2.  前記表示部は、さらに、第2のスクリーンを備え、前記投射部から射出された光の進行方向の順で、前記第2のスクリーン、前記透過型液晶パネル、前記偏光板、前記第1のスクリーンの順に並んで構成されている
     請求項1に記載の表示装置。
    The display unit further includes a second screen, and the second screen, the transmissive liquid crystal panel, the polarizing plate, and the first screen are arranged in order of the traveling direction of the light emitted from the projection unit. The display device according to claim 1, wherein the display device is arranged in order.
  3.  前記投射部から射出される光は、直線偏光である
     請求項1または2に記載の表示装置。
    The display device according to claim 1, wherein light emitted from the projection unit is linearly polarized light.
  4.  位相差板をさらに有し、
     前記投射部から射出される光は、直線偏光又は円偏光であり、前記投射部から射出される光は、前記位相差板を介して、前記透過型液晶パネルに入射する
     請求項1または2に記載の表示装置。
    A retardation plate;
    The light emitted from the projection unit is linearly polarized light or circularly polarized light, and the light emitted from the projection unit is incident on the transmissive liquid crystal panel via the retardation plate. The display device described.
  5.  前記透過型液晶パネルの入射側に、前記偏光板とは別の偏光板である入射側偏光板を有し、
     前記投射部から射出される光は、無偏光の光であり、前記投射部から射出される光は、前記入射側偏光板を介して、前記透過型液晶パネルに入射する
     請求項1または2に記載の表示装置。
    On the incident side of the transmissive liquid crystal panel, there is an incident side polarizing plate that is a polarizing plate different from the polarizing plate,
    The light emitted from the projection unit is non-polarized light, and the light emitted from the projection unit is incident on the transmissive liquid crystal panel via the incident-side polarizing plate. The display device described.
  6.  前記表示制御部は、前記投射部の出力特性を第1の出力特性に調整する第1のルックアップテーブル部と、前記透過型液晶パネルの出力特性を第2の出力特性に調整する第2のルックアップテーブル部とを有し、前記入力映像信号を前記第1のルックアップテーブル部により前記第1の映像信号へと調整し、前記入力映像信号を前記第2のルックアップテーブル部により前記第2の映像信号へと調整し、
     前記第1の出力特性におけるガンマ値と前記第2の出力特性におけるガンマ値との和が、前記入力映像信号のガンマ値に等しい
     請求項1乃至5いずれか1項に記載の表示装置。
    The display control unit includes a first look-up table unit that adjusts an output characteristic of the projection unit to a first output characteristic, and a second that adjusts an output characteristic of the transmissive liquid crystal panel to a second output characteristic. A lookup table unit that adjusts the input video signal to the first video signal by the first lookup table unit, and the input video signal by the second lookup table unit. 2 to adjust the video signal,
    6. The display device according to claim 1, wherein a sum of a gamma value in the first output characteristic and a gamma value in the second output characteristic is equal to the gamma value of the input video signal.
  7.  前記投射部と前記透過型液晶パネルの出力特性を比較した際に、より高いコントラストを示す一方の出力特性におけるガンマ値が、前記投射部と前記透過型液晶パネルの出力特性を比較した際に、より低いコントラストを示す他方の出力特性におけるガンマ値より大きく調整されている
     請求項6に記載の表示装置。
    When comparing the output characteristics of the projection unit and the transmissive liquid crystal panel, the gamma value in one output characteristic showing a higher contrast is compared when comparing the output characteristics of the projection unit and the transmissive liquid crystal panel. The display device according to claim 6, wherein the display device is adjusted to be larger than a gamma value in the other output characteristic exhibiting a lower contrast.
  8.  前記透過型液晶パネルの出力特性は、前記第2の映像信号の入力値が所定の値以上である場合、光出力が最大値である
     請求項6に記載の表示装置。
    7. The display device according to claim 6, wherein the output characteristics of the transmissive liquid crystal panel are such that when the input value of the second video signal is greater than or equal to a predetermined value, the light output is a maximum value.
PCT/JP2016/000076 2015-03-10 2016-01-08 Display device WO2016143236A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/699,866 US20170374328A1 (en) 2015-03-10 2017-09-08 Display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-047096 2015-03-10
JP2015047096 2015-03-10
JP2015235420A JP2016170386A (en) 2015-03-10 2015-12-02 Display device
JP2015-235420 2015-12-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/699,866 Continuation US20170374328A1 (en) 2015-03-10 2017-09-08 Display device

Publications (1)

Publication Number Publication Date
WO2016143236A1 true WO2016143236A1 (en) 2016-09-15

Family

ID=56879125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000076 WO2016143236A1 (en) 2015-03-10 2016-01-08 Display device

Country Status (1)

Country Link
WO (1) WO2016143236A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618818A (en) * 1992-12-09 1994-01-28 Casio Comput Co Ltd Projector device
JPH09189893A (en) * 1996-01-09 1997-07-22 Nec Corp Liquid crystal projector
JP2002214433A (en) * 2001-01-16 2002-07-31 Nitto Denko Corp Light diffusing plate, optical element and liquid crystal display device
JP2004138733A (en) * 2002-10-16 2004-05-13 Astro Design Inc Video display device
JP2007514242A (en) * 2003-12-09 2007-05-31 マシュー ベル、 Built-in interactive video display system
WO2007108183A1 (en) * 2006-03-22 2007-09-27 Sharp Kabushiki Kaisha Liquid crystal display device and television receiver
JP2009037259A (en) * 2001-02-27 2009-02-19 Univ Of British Columbia High dynamic range display device
JP2011158697A (en) * 2010-02-01 2011-08-18 Asahi Kasei Corp Diffusion sheet and multilayer display
JP2013011672A (en) * 2011-06-28 2013-01-17 Canon Inc Polarization modulation device and image projection device
JP2013190636A (en) * 2012-03-14 2013-09-26 Seiko Epson Corp Wavelength separation device, projector and image display system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618818A (en) * 1992-12-09 1994-01-28 Casio Comput Co Ltd Projector device
JPH09189893A (en) * 1996-01-09 1997-07-22 Nec Corp Liquid crystal projector
JP2002214433A (en) * 2001-01-16 2002-07-31 Nitto Denko Corp Light diffusing plate, optical element and liquid crystal display device
JP2009037259A (en) * 2001-02-27 2009-02-19 Univ Of British Columbia High dynamic range display device
JP2004138733A (en) * 2002-10-16 2004-05-13 Astro Design Inc Video display device
JP2007514242A (en) * 2003-12-09 2007-05-31 マシュー ベル、 Built-in interactive video display system
WO2007108183A1 (en) * 2006-03-22 2007-09-27 Sharp Kabushiki Kaisha Liquid crystal display device and television receiver
JP2011158697A (en) * 2010-02-01 2011-08-18 Asahi Kasei Corp Diffusion sheet and multilayer display
JP2013011672A (en) * 2011-06-28 2013-01-17 Canon Inc Polarization modulation device and image projection device
JP2013190636A (en) * 2012-03-14 2013-09-26 Seiko Epson Corp Wavelength separation device, projector and image display system

Similar Documents

Publication Publication Date Title
JP6620534B2 (en) Display device
JP6069195B2 (en) Optical system including polarization-modifying optical device, projection system, polarization output method, and calibration method for the same
CA2451449C (en) Dynamic range enhancement of image display apparatus
JP4582349B2 (en) Display device
US20090021821A1 (en) Multi-Primary Color Projection Display
KR20120023627A (en) High dynamic range projection system
US8259125B2 (en) Method for color signal gamut mapping and saturation boosting
JP2007240931A (en) Image display device and projector
US20120127287A1 (en) Optical compensation for ghosting in stereoscopic displays
US20170374328A1 (en) Display device
US10142600B2 (en) Display device
JP2009159371A (en) Device and method for adjusting image, and image display system
Damberg et al. 3.2: High dynamic range projection systems
WO2016151975A1 (en) Display device
WO2016143236A1 (en) Display device
WO2016143237A1 (en) Display device
JP6601192B2 (en) Display device
JP2011150111A (en) Image processor, image display system, and image processing method
JP2008090239A (en) Projection type image display device
JP2004233813A (en) Apparatus, method, and program for color unevenness correcting image processing, and projection type image display device
US20230344970A1 (en) Projection system and method for uniformity correction
JP2009156900A (en) Image quality conversion unit
JP2007293140A (en) Image display device
JP2009210765A (en) Projector
JP2009098627A (en) Projection video display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761215

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761215

Country of ref document: EP

Kind code of ref document: A1