WO2016143136A1 - Moisture permeable waterproof film and composite fabric layered therewith - Google Patents

Moisture permeable waterproof film and composite fabric layered therewith Download PDF

Info

Publication number
WO2016143136A1
WO2016143136A1 PCT/JP2015/057374 JP2015057374W WO2016143136A1 WO 2016143136 A1 WO2016143136 A1 WO 2016143136A1 JP 2015057374 W JP2015057374 W JP 2015057374W WO 2016143136 A1 WO2016143136 A1 WO 2016143136A1
Authority
WO
WIPO (PCT)
Prior art keywords
moisture
waterproof film
lcst
permeable waterproof
water
Prior art date
Application number
PCT/JP2015/057374
Other languages
French (fr)
Japanese (ja)
Inventor
榎本 雅穗
表 雄一郎
彩 景 尹
鉉 周 崔
宰 源 呉
Original Assignee
榎本 雅穗
東洋紡Stc株式会社
株式会社徳成
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 榎本 雅穗, 東洋紡Stc株式会社, 株式会社徳成 filed Critical 榎本 雅穗
Priority to PCT/JP2015/057374 priority Critical patent/WO2016143136A1/en
Publication of WO2016143136A1 publication Critical patent/WO2016143136A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them

Definitions

  • the present invention relates to a film containing a polyurethane resin modified with an acrylic resin having LCST (lower critical eutectic temperature), and in particular for various apparel applications such as for rain (snow), for sports, for outdoor use, for work, etc.
  • LCST lower critical eutectic temperature
  • the present invention relates to a moisture permeable waterproof film used in the above.
  • Moisture-permeable and waterproof fabrics that have the characteristics of passing moisture (breathable) but not passing water (waterproof) have moisture permeability, so the function of releasing water vapor from sweating to the outside of clothes and water resistance. Therefore, it has a function of preventing rain from entering the clothes, and such a moisture-permeable and waterproof fabric is widely used in sports clothing and cold clothing. Among them, it is widely used as a clothing material for sports, outdoor, and outdoor work with a high amount of sweat, and is now an indispensable clothing material especially in the skiing, snowboarding, athletic and mountaineering fields.
  • a fabric having both moisture permeability and waterproof properties for example, a high density woven fabric in which yarns are woven in high density, and a resin such as polyurethane resin, polyester resin, nylon resin, polytetrafluoroethylene resin are used.
  • a resin such as polyurethane resin, polyester resin, nylon resin, polytetrafluoroethylene resin
  • coatings and films formed from these resins which are bonded to a fabric through an adhesive.
  • a polyurethane resin film having a particularly high hydrophilicity, a microporous polytetrafluoroethylene resin coated on the surface of the fabric, and a porous film formed by using a so-called wet coagulation method and using a polyurethane resin are formed on one side of the fabric, etc., which are evaluated in terms of both moisture permeability and waterproofness and are widely accepted in the market.
  • a film formed from a hydrophilic polyurethane resin obtained by copolymerizing a highly hydrophilic ether polyol component such as polyethylene glycol in the soft segment portion has been developed (for example, Patent Documents 1 and 2).
  • Patent Documents 1 and 2 such a moisture permeable waterproof film has insufficient performance due to swelling of the membrane surface when water is absorbed, resulting in poor wearing comfort, poor appearance, and poor washing durability. There were many.
  • due to the effect of lowering the moisture permeability due to the swelling of the film surface the moisture permeability of the fabric is not so high during exercise and there is a problem such as a feeling of stuffiness.
  • a moisture-permeable waterproof fabric laminated with a microporous polyurethane film or polytetrafluoroethylene film exhibits excellent effects in both moisture permeability and waterproof properties, but has a porous structure.
  • the manufacturing equipment and process for forming the film are complicated, it is difficult to manufacture the film easily, and the product becomes very expensive.
  • a wet coagulation method is adopted, and a porous film formed using a polyurethane resin is formed on one side of the fabric, for example, a polyurethane resin for wet processing
  • a hydrophilic polyurethane resin is mixed and processed into a fabric
  • a fabric processed by adding a sulfonic acid soda compound to a polyamino acid polyurethane resin Patent Document 6
  • these fabrics are excellent in dew condensation suppression performance, they cannot be said to have good water resistance and washing durability when worn.
  • Patent Document 7 As a moisture-permeable waterproof fabric that emphasizes dew condensation suppression performance and adopting a dry method, for example, an amino resin powder is proposed (Patent Document 7).
  • the fabric of Patent Document 7 has insufficient washing durability and wear resistance, and performance as a clothing fabric is insufficient.
  • Patent Document 8 a fabric in which a wet-processed cloth is overcoated with a hydrophilic polyurethane resin has also been proposed (Patent Document 8).
  • Patent Document 8 since it takes time and effort to process, the manufacturing cost increases, and the wet-processed cloth is used. Also, the washing durability was insufficient.
  • a temperature-responsive polymer that exhibits different performance in response to temperature stimulation.
  • a material using such a temperature-responsive polymer there is a moisture-permeable waterproof fabric using a polyurethane resin whose glass transition temperature is adjusted to a range of about ⁇ 20 to 20 ° C.
  • These moisture-permeable and waterproof fabrics have low moisture permeability according to JIS L 1099 B-1 method when the body temperature is low, such as at rest, and the same method when body temperature is high, such as immediately after active exercise. The moisture permeability to be measured is improved. This is a phenomenon that takes advantage of the fact that the transmittance of vaporized water (water vapor) increases with the glass transition temperature as a boundary. This makes it easier for water vapor generated in the body to escape to the outside in a high temperature state.
  • these fabrics cannot sufficiently exhibit the dew condensation suppressing performance of absorbing liquefied moisture on the moisture permeable waterproof fabric in a low temperature state.
  • the present invention is a film having a high dew condensation suppressing performance in a low temperature state and excellent in moisture permeability at a high temperature state, and for rain (snow), sports use, outdoor use, work use and the like using the film.
  • An object of the present invention is to provide a suitable moisture-permeable waterproof fabric.
  • the present inventors have obtained a resin obtained by modifying an acrylic resin having LCST (Lower Critical Solution Temperature) as a temperature responsive polymer with a urethane resin.
  • LCST Lower Critical Solution Temperature
  • the present invention was completed by finding that a film made of the resin as a raw material exhibits high water absorption at a low temperature and exhibits appropriate moisture permeability at a high temperature.
  • the moisture-permeable waterproof film according to the present invention includes a polyurethane resin modified with an acrylic resin and has LCST.
  • the moisture-permeable and waterproof film of the present invention is characterized in that the moisture-permeable and waterproof film has an LCST of 0 ° C. or more and 40 ° C. or less, and the moisture-permeable and waterproof film does not exhibit water solubility at or below the LCST.
  • the acrylic resin is obtained by polymerization from a monomer mixture for an acrylic resin containing N-isopropylacrylamide and a hydroxyl group-containing (meth) acrylate as essential components. More preferably, it contains a monomer having an ⁇ , ⁇ -unsaturated ethylenic bond.
  • the polyol which comprises the said polyurethane resin contains polyether polyol.
  • moisture-permeable waterproof film of the present invention the water pressure is below 450kPa than 50 kPa, B-1 moisture permeability under 43 ° C. atmosphere or less 20000g / m 2 ⁇ 24h or more 50000g / m 2 ⁇ 24h, 13 B-1 moisture permeability under °C atmosphere or less 12000 g / m 2 ⁇ 24h or more 16000g / m 2 ⁇ 24h, the rate of change of water absorption before and after the LCST is 2 to 5.
  • the present invention also includes a composite fabric characterized by laminating the moisture-permeable and waterproof film on a base fabric.
  • FIG. 1 is a graph for LCST measurement in Examples 1-2 and Comparative Examples 1-3.
  • the moisture permeable waterproof film according to the present invention includes a polyurethane resin modified with an acrylic resin and has an LCST.
  • denatured the acrylic resin which has LCST with the urethane resin is used as a raw material which comprises a moisture-permeable waterproof film.
  • the polyurethane component serves as a water-insoluble component and adjusts the balance between the hydrophilicity and hydrophobicity of the moisture permeable waterproof film. Can do.
  • the moisture permeable waterproof film according to the present invention preferably has a moisture permeable waterproof film having an LCST of 0 ° C. or higher and 40 ° C. or lower, and the moisture permeable waterproof film has a property of not exhibiting water solubility even at LCST or lower.
  • a temperature-responsive polymer poly N-isopropylacrylamide (PNIPAM) obtained by polymerizing N-isopropylacrylamide (NIPAM) is known, and the LCST of NIPAM homopolymer is usually about 32 ° C. NIPAM homopolymer exhibits hydrophilicity and becomes water-soluble at 32 ° C. or lower. However, if the film dissolves in water under a normal temperature condition of 32 ° C.
  • the present invention provides a moisture permeable waterproof film adjusted to have an LCST of 0 ° C. or more and 40 ° C. or less, taking advantage of the temperature response characteristics of NIPAM. Therefore, in this invention, the kind and quantity of each component which comprise a moisture-permeable waterproof film are adjusted.
  • the present invention is described in detail below.
  • the acrylic resin used in the present invention is obtained by radical polymerization from a monomer mixture for acrylic resin containing N-isopropylacrylamide and hydroxyl group-containing (meth) acrylate as essential components.
  • N-isopropylacrylamide is used as a raw material for the acrylic resin in order to impart temperature responsiveness to the acrylic resin.
  • the moisture-permeable waterproof film containing the acrylic resin exhibits hydrophilicity at a low temperature range and exhibits hydrophobicity at a high temperature range.
  • this moisture permeable waterproof film When this moisture permeable waterproof film is used, moisture is absorbed by the moisture permeable waterproof film in a low temperature range, so that the dew condensation suppressing effect and the moisture permeability measured based on the JIS L1099 B-1 method are improved. On the other hand, in the high temperature range, moisture is hardly absorbed by the moisture permeable waterproof film, and as a result, the moisture transmission rate is hardly lowered, and the moisture permeability measured based on the JIS L1099 B-1 method is improved.
  • the amount of NIPAM used is, for example, preferably 50 to 95% by mass, more preferably 50 to 90% by mass, and still more preferably 50 to 85% by mass. If the amount of NIPAM used is within the above range, the moisture-permeable waterproof film can exhibit a clear temperature response, which is preferable.
  • NIPAM, a hydroxyl group-containing (meth) acrylate described later, and a monomer having an ⁇ , ⁇ -unsaturated ethylenic bond added as necessary Is 100% by mass.
  • the acrylic resin monomer mixture contains a hydroxyl group ( Contains (meth) acrylates.
  • (meth) acrylate means methacrylate or acrylate.
  • hydroxyl group-containing (meth) acrylates examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, Examples thereof include caprolactone-modified hydroxy (meth) acrylate, methyl ⁇ - (hydroxymethyl) acrylate, ethyl ⁇ - (hydroxymethyl) acrylate, and mono (meth) acrylate of polyester diol obtained from phthalic acid and propylene glycol. Of these, 2-hydroxyethyl (meth) acrylate or 3-hydroxypropyl (meth) acrylate is preferable.
  • the amount of the hydroxyl group-containing (meth) acrylate used in 100% by mass of the acrylic resin monomer mixture is preferably, for example, 0.5 to 5% by mass, more preferably 0.7 to 3% by mass, More preferably, it is 1 to 2.5% by mass. If the hydroxyl group-containing (meth) acrylates are within the above range, it is preferable because a sufficient amount of reaction points can be formed when reacting with the urethane resin.
  • the monomer mixture for acrylic resin may further contain a monomer having an ⁇ , ⁇ -unsaturated ethylenic bond other than the monomers described above, if necessary.
  • a monomer having an ⁇ , ⁇ -unsaturated ethylenic bond include (meth) acrylic acid; (meth) acrylates; (meth) acrylamides (excluding N-isopropylacrylamide (NIPAM)).
  • NIPAM N-isopropylacrylamide
  • R 1 represents an alkyl group having 1 to 15 carbon atoms or a cycloalkyl group having 3 to 20 carbon atoms, and m is 0 or 1).
  • Examples of the alkyl group represented by R 1 in the formula (1) include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, a tert-butyl group, a sec-butyl group, a pentyl group, and a hexyl group.
  • linear or branched alkyl groups such as a group, octyl group, decyl group, undecyl group, dodecyl group, cetyl group and stearyl group.
  • the alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, and particularly preferably 1 to 4 carbon atoms. Of these, a methyl group, an ethyl group, an n-propyl group, and an iso-propyl group are preferable, and a methyl group is more preferable.
  • Examples of the cycloalkyl group represented by R 1 include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and a cyclododecyl group.
  • the number of constituent elements of the ring skeleton of the cycloalkyl group is preferably 3 to 15, more preferably 5 to 9, and still more preferably 6 (cyclohexyl group).
  • M in the (meth) acrylates may be 0 or 1, but in the present invention, acrylates in which m is 0 are particularly preferable.
  • the (meth) acrylate is preferably contained in an amount of 1 to 20% by mass, more preferably 3 to 15% by mass, and further preferably 5 to 10%. % By mass. It is preferable to adjust the (meth) acrylates within the above range because hydrophobicity can be imparted to the acrylic resin. LCST tends to decrease as the amount of (meth) acrylates increases.
  • the (meth) acrylamides include N-ethylacrylamide, Nn-propylacrylamide, N-isopropylacrylamide, N-cyclopropylacrylamide, N, N-diethylacrylamide, N-methyl-N-ethylacrylamide, N-methyl-Nn-propylacrylamide, N-methyl-N-isopropylacrylamide, N-methoxypropylacrylamide, N-ethoxypropylacrylamide, N-isopropoxypropylacrylamide, N- Ethoxyethyl acrylamide, N- (2,2-dimethoxyethyl) -N-methyl acrylamide, N-1-methyl-2-methoxyethyl acrylamide, N-1-methoxymethylpropyl acrylate Amides, N-di (2-methoxyethyl) acrylamide, N-2-methoxyethyl-Nn-propylacrylamide, N-2-
  • R 2 and R 3 are the same or different and are a hydrogen atom, a linear or branched alkyl group having 1 to 15 carbon atoms, and n is 0 or 1)
  • (meth) Acrylamides are preferred.
  • alkyl group of R 2 and R 3 in the formula (2) those exemplified in the column of R 1 can be preferably used, and the alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms. Particularly preferred is 1 to 4. Of these, methyl, ethyl, n-propyl, iso-propyl, n-butyl, tert-butyl and sec-butyl are preferred.
  • cycloalkyl group of R 2 and R 3 in the formula (2) those exemplified in the column of R 1 can be preferably used, and the number of constituent elements of the ring skeleton of the cycloalkyl group is preferably 3 to 15, The number is preferably 3 to 8, and more preferably 3 to 5.
  • Such (meth) acrylamides include N-tert-butyl (meth) acrylamide, N-sec-butyl (meth) acrylamide, N-butyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, and N , N-dimethyl (meth) acrylamide is preferably used.
  • N in the (meth) acrylamides may be 0 or 1, but acrylamides in which n is 0 are particularly preferred in the present invention.
  • the (meth) acrylamide is preferably contained in an amount of 3 to 40% by mass, more preferably 5 to 35% by mass, and still more preferably 10 to 25%. % By mass.
  • an acrylic resin by copolymerizing the aforementioned monomers, for example, in the presence of a radical polymerization initiator, at least NIPAM and hydroxyl group-containing (meth) acrylates, and if necessary, ⁇ , ⁇ other than these It is preferable to react with a monomer having an unsaturated ethylenic bond.
  • radical polymerization initiator examples include azobisisobutyronitrile, azobis (2-methylbutyronitrile), 2,2′-azobis-2,4-dimethylvaleronitrile, 2,2′-azobis- (4 Azo polymerization initiators such as -methoxy-2,4-dimethylvaleronitrile); organic compounds such as tert-butyl hydroperoxide, cumene hydroperoxide, benzoyl peroxide, dicumyl peroxide, di-tert-butyl peroxide Peroxides; persulfates such as potassium persulfate, sodium persulfate, ammonium persulfate; hydrogen peroxide; and the like. These may be used alone or in combination of two or more.
  • the amount of the radical polymerization initiator used is preferably 0.01 to 5 parts by mass, more preferably 0.1 to 4 parts by mass with respect to 100 parts by mass of the acrylic resin monomer mixture. If the amount of the radical polymerization initiator is within the above range, it is preferable because the molecular weight of the acrylic resin can be adjusted to an appropriate range and the reaction can sufficiently proceed.
  • the copolymerization reaction for producing the acrylic resin may be carried out in the absence of a solvent or in the presence of a solvent, but is preferably carried out in the presence of a solvent.
  • Solvents that can be preferably used in the copolymerization reaction include, for example, formamide solvents such as N, N-dimethylformamide and N, N-diethylformamide; sulfoxide solvents such as dimethyl sulfoxide and diethyl sulfoxide; N, N-dimethyl And acetamide solvents such as acetamide and N, N-diethylacetamide;
  • the solvent may be used in an amount such that the solid content concentration in the reaction solution is 5 to 80% by mass (more preferably 40 to 70% by mass).
  • the reaction temperature in the copolymerization reaction is preferably 20 to 120 ° C. If the reaction temperature is too low, the reaction takes a long time, which is not preferable, and if the reaction temperature is too high, a side reaction may occur.
  • the polyurethane resin is obtained by polymerization from a monomer mixture for a polyurethane resin containing a polyol and a polyisocyanate generally used as a raw material for the polyurethane resin.
  • polyols examples include compounds having di- or higher hydroxyl groups, and these can be used alone or in combination of two or more.
  • the polyol may be a low molecular weight product having a weight average molecular weight of less than 400 or a high molecular weight product having a weight average molecular weight of 400 to 4000.
  • Low molecular weight polyols include ethylene glycol, diethylene glycol, triethylene glycol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, glycerin, hexanetriol, diglycerin, penta
  • polyols such as erythritol and sorbitol
  • polyamines such as ethylenediamine, hexamethylenediamine, xylylenediamine, and isophoronediamine; aminoalcohols; and the like. These may be used alone or in combination of two or more.
  • polystyrene resin examples include polyether polyols, polyester polyols, polyether polyols, or polymer polyols obtained by grafting a vinyl monomer to polyester polyols.
  • the polyether polyol is a polyalkylene glycol obtained by addition polymerization of an alkylene oxide (ethylene oxide, propylene oxide, etc.) to an initiator having active hydrogen.
  • the initiator include polyols, polyamines, and amino alcohols exemplified in the low molecular weight polyol column.
  • a polyurethane resin containing a polyol as a constituent unit is preferable for a moisture-permeable and waterproof film because of its high hydrophilicity.
  • polyalkylene glycol examples include polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, and the like, and polyether polyols obtained by copolymerizing these polyalkylene glycols, and these may be used alone or in combination of two or more thereof.
  • the polyester polyol is obtained by dehydrating and condensing dicarboxylic acids such as succinic acid, glutaric acid, adipic acid, sebacic acid, maleic acid, fumaric acid, phthalic acid and trimellitic acid to the above-described low molecular weight polyol.
  • dicarboxylic acids such as succinic acid, glutaric acid, adipic acid, sebacic acid, maleic acid, fumaric acid, phthalic acid and trimellitic acid to the above-described low molecular weight polyol.
  • Condensed polyester polyols such as polyethylene adipate (PEA), polybutylene adipate (PBA), polyhexamethylene adipate (PHMA); obtained by ring-opening polymerization of cyclic ester monomers such as ⁇ -caprolactone to the above-mentioned low molecular weight polyols Lactone polyester polyols such as poly- ⁇ -caprolactone (PCL); polycarbonate diols such as polyhexamethylene carbonate; and the like. These may be used alone or in combination of two or more.
  • examples of the polyisocyanate include aromatic, aliphatic and alicyclic isocyanates having di- or higher isocyanate groups.
  • examples of the polyisocyanate include toluene diisocyanate (2,4-TDI, 2,6-TDI, etc.), diphenylmethane diisocyanate (2,2′-MDI, 2,4′-MDI, 4,4′-MDI, etc.), Aromatic isocyanates such as naphthalene diisocyanate (1,5-NDI, etc.), xylene diisocyanate (XDI), 4,4′-diisocyanato-3,3′-dimethylbiphenyl (TODI); tetramethylene diisocyanate, hexamethylene diisocyanate (1 , 6-HDI, etc.), 1,3,6-hexamethylene triisocyanate, dodecane diisocyanate, trimethylhexamethylene diisocyanate, lys
  • the method for producing the polyurethane resin is not particularly limited, and examples thereof include a one-shot method and a prepolymer method.
  • the prepolymer method is preferable.
  • the polyol may be used so that the number of moles of the hydroxyl group in the polyol is 0.5 to 2.5 mol with respect to 1 mol of the isocyanate group in the polyisocyanate. It is more preferable to use the polyol in a small excess so as to be 1 to 2 mol.
  • a solvent from the viewpoint of adjusting the viscosity and improving the emulsifying dispersibility of the prepolymer.
  • a solvent that is inert to isocyanate groups and that is relatively hydrophilic.
  • amides such as dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone; carbonization such as benzene, toluene, xylene, ethylbenzene, trimethylbenzene, hexane, cyclohexane, methylcyclohexane, ethylcyclohexane, mineral spirit, etc.
  • Alcohols such as isopropyl alcohol and tert-butyl alcohol; halogenated hydrocarbons such as dichloromethane and chloroform; esters such as ethyl acetate, propyl acetate and propylene glycol monomethyl ether acetate; diethyl ether, cyclohexyl methyl ether, di Ethers such as butyl ether, dimethoxyethane, dioxane, tetrahydrofuran, dioxolane; methyl ethyl ketone, methyl isobutyl ketone Ketones such as cyclohexanone; and the like, may be used singly or in combination of two or more.
  • the temperature at the time of producing the prepolymer is not particularly limited, but is preferably 50 to 200 ° C, more preferably 60 to 120 ° C.
  • the reaction time is preferably 0.1 to 12 hours, more preferably 0.5 to 3 hours.
  • a known catalyst can be used for the synthesis of the urethane prepolymer.
  • the catalyst include monoamines such as triethylamine and N, N-dimethylcyclohexylamine; N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N ′′, N ′′ -pentamethyldiethylenetriamine Polyamines such as 1,8-diazabicyclo [5.4.0] -7-undecene (DBU), cyclic diamines such as triethylenediamine; tin-based catalysts such as dibutyltin dilaurate and dibutyltin diacetate .
  • DBU 1,8-diazabicyclo [5.4.0] -7-undecene
  • tin-based catalysts such as dibutyltin dilaurate and dibutyltin diacetate .
  • the prepolymer produced by the above-described method and the polyol and / or polyisocyanate are polymerized, it is preferable to use a solvent, a catalyst, or the like detailed in the prepolymer production method.
  • the chain extender used for producing the above-mentioned polyurethane resin is not particularly limited, and examples thereof include water, low molecular weight polyols, polyamines, amino alcohols, and the like.
  • the low molecular weight polyol the same ones as described above can be used.
  • the polyamines include aliphatic polyamines such as ethylenediamine, propylenediamine, tetramethylenediamine, and hexamethylenediamine; aromatic polyamines such as tolylenediamine, xylylenediamine, and diaminodiphenylmethane; diaminocyclohexylmethane, piperazine, and isophoronediamine.
  • Alicyclic polyamines such as hydrazine, succinic dihydrazide, adipic dihydrazide, phthalic dihydrazide, and the like.
  • hydrazines such as hydrazine, succinic dihydrazide, adipic dihydrazide, phthalic dihydrazide, and the like.
  • ethylenediamine and / or hydrazine as a chain extender component.
  • alkanolamine include diethanolamine and monoethanolamine.
  • the acrylic resin having LCST may be added as a raw material during the production of the prepolymer, or may be added when further polymerizing the produced prepolymer and other components. It is preferred to add the resin during prepolymer production.
  • the acrylic resin is preferably 5 to 50% by mass, more preferably 10 to 40% by mass, and still more preferably 15 to 35% by solid content in 100% by mass of the finally obtained acrylic resin-modified urethane resin. It is good to use so that it may become mass%.
  • the moisture-permeable waterproof film according to the present invention is formed from a resin solution containing a polyurethane resin modified with an acrylic resin.
  • the method for producing a moisture permeable waterproof film is not particularly limited, but a resin solution containing a polyurethane resin modified with an acrylic resin is applied to a release paper and dried to be contained in the resin solution.
  • a dry method of evaporating the organic solvent or the aqueous medium is preferable.
  • various methods such as a reverse coating method, a gravure coating method, a rod coating method, a bar coating method, a Mayer bar coating method, a die coating method, and a spray coating method may be appropriately employed.
  • the resin solution may contain various additives such as antioxidants, heat stabilizers, weather stabilizers, ultraviolet absorbers, organic lubricants, pigments, dyes, organic or inorganic fine particles, and fillers. Further, an antistatic agent, a nucleating agent and the like may be blended.
  • the thickness of the moisture permeable waterproof film may be appropriately changed depending on the application, but is preferably 3 to 50 ⁇ m, more preferably 5 to 30 ⁇ m, and still more preferably 6 to 15 ⁇ m. If the thickness of the moisture permeable waterproof film is within the above range, it is preferable because the material can be widely applied to various uses.
  • the moisture-permeable waterproof film of the present invention has LCST as described above.
  • LCST is preferably 0 ° C. or higher and 40 ° C. or lower, more preferably 5 ° C. or higher and 35 ° C. or lower, still more preferably 10 ° C. or higher and 35 ° C. or lower, and still more preferably 15 ° C. or higher and 30 ° C. or lower. Since the freezing point of water is 0 ° C., if the LCST is lower than 0 ° C., there is a possibility that desired effects such as a dew condensation suppressing effect cannot be sufficiently exhibited in the obtained moisture-permeable waterproof film.
  • LCST when LCST exceeds 40 ° C., appearance defects due to swelling of the water-absorbed membrane surface, which is a problem in conventional moisture-permeable waterproof films, deterioration of washing durability, moisture permeability, and further deterioration due to moisture permeability There is a possibility that improvement of dripping will be insufficient.
  • the amount of (meth) acrylamides should be reduced, and to lower the LCST, the amount of (meth) acrylamides should be increased.
  • LCST can be measured by the method described below. [LCST] A moisture-permeable waterproof film having a thickness of 50 ⁇ m is cut into a 5 cm square, the cut sample film is dried at 120 ° C.
  • the moisture-permeable waterproof film according to the present invention has high water pressure resistance, and the water pressure resistance measured by the method described below is 50 kPa or more, and can be 100 kPa or more.
  • the upper limit of the water pressure resistance is not particularly limited, but it is 450 kPa or less, and even if it is 400 kPa or less, there is no problem. If the water pressure resistance is too low, the film cannot maintain rigidity, and it may be difficult to apply it to clothing materials such as rain clothes and sportswear. When the water pressure resistance is too high, the texture of the film becomes hard, and it may be difficult to apply to the clothing material.
  • a moisture-permeable waterproof film having a thickness of 10 ⁇ m is produced from a resin solution for moisture-permeable and waterproof films by a dry method and applied to a JIS L1092 7.1B method (high water pressure method). ).
  • the moisture-permeable waterproof film according to the present invention exhibits hydrophobicity when the temperature in the clothes is increased, and exhibits moderate moisture permeability by being difficult to swell.
  • B-1 moisture permeability at 43 ° C. atmosphere (measuring environment is 50 ° C. ⁇ 65% RH and water temperature in the water tank is set to 43 ° C. ) "exerts the least 20000g / m 2 ⁇ 24h, can also be at least 22000g / m 2 ⁇ 24h, also be at least 45500g / m 2 ⁇ 24h with the presence of the polyurethane resin modified with acrylic resin Is possible.
  • the upper limit is 50000 g / m 2 ⁇ 24 h or less, and there is no problem even if it is 49000 g / m 2 ⁇ 24 h or less. If the B-1 moisture permeability in a 43 ° C. atmosphere is too low, when the moisture-permeable and waterproof film of the present invention is used for clothes, the wearer of the clothes may feel uncomfortable during exercise, etc. is there. On the other hand, if the B-1 moisture permeability in a 43 ° C. atmosphere is too high, water resistance may be insufficient.
  • the moisture permeable waterproof film exhibits hydrophilicity when the temperature in the garment decreases, such as at the end of exercise, and exhibits effects such as suppressing condensation.
  • B-1 moisture permeability at 13 ° C. atmosphere measuring environment is 20 ° C. ⁇ 65% RH, water temperature in water tank is set to 13 ° C.
  • 16000g / m 2 ⁇ 24h it is also possible to be less than or equal to 15000g / m 2 ⁇ 24h. If the B-1 moisture permeability in a 13 ° C.
  • the lower limit is usually 12000 g / m 2 ⁇ 24 h or more, and even if it is 12,500 g / m 2 ⁇ 24 h or more, there is no problem.
  • the moisture-permeable waterproof film of the present invention exhibits hydrophilicity at a lower temperature range than the LCST with the LCST as a boundary, the water absorption rate is higher in this temperature range.
  • the water absorption rate tends to be low at this temperature range. Therefore, the characteristics based on the change rate of the water absorption rate are evaluated by “change rate of the water absorption rate before and after LCST” measured by the method described below.
  • the rate of change in water absorption before and after LCST can be 2 or more and can be 2.3 or more.
  • the change rate of the water absorption before and after LCST is usually 5 or less, and even if it is 4.7 or less, there is no problem. If the rate of change in water absorption before and after LCST is too low, there is a high possibility that a high water absorption rate cannot be achieved in a temperature range lower than LCST, and the dew condensation suppression effect of the moisture permeable waterproof film may not be sufficiently exhibited. . Also, if the rate of change in water absorption before and after LCST is too large, the hydrophilicity of the moisture-permeable and waterproof film will increase sharply, which may reduce the film strength.
  • the change rate of water absorption rate before and after LCST is 10 ° C higher than the LCST-LCST. It is defined as the value divided by the rate of change in water absorption (%) between the temperatures.
  • the method for measuring the water absorption S% is the same as the method described in the LCST column.
  • the water absorption S 1 at LCST-10 (° C.) and the water absorption S 2 at LCST (° C.) are respectively determined, and the change rate RA of the water absorption before LCST is determined from (S 1 -S 2 ) / S 1 .
  • the water absorption S 3 at LCST + 10 (° C.) is obtained, and the change rate R B of the water absorption after LCST is obtained from (S 2 ⁇ S 3 ) / S 2 . Rate of change of the water absorption before and after the LCST is evaluated by R A / R B.
  • the present invention also includes a composite fabric in which the moisture-permeable and waterproof film is laminated on a base fabric.
  • a composite fabric in which the moisture-permeable and waterproof film is laminated on a base fabric.
  • Examples of the base fabric of the composite fabric include woven fabric, knitted fabric, non-woven fabric, lace, and net.
  • the woven structure of the woven fabric is not particularly limited, and examples thereof include plain weave, twill weave, satin weave, and dobby weave.
  • the knitting structure of the knitted fabric includes, for example, weft knitting such as flat knitting, rib knitting, double-sided knitting and pearl knitting; warp knitting such as tricot knitting and russell; round knitting such as tengu, smooth, milling, picket and blister; Is mentioned.
  • examples of the nonwoven fabric include wet nonwoven fabrics such as chemical bonds, thermal bonds, and spunlaces; dry nonwoven fabrics such as chemical bonds, thermal bonds, spunlaces, and needle punches; and spunbond nonwoven fabrics.
  • the moisture-permeable waterproof film of the present invention has an appropriate strength, it is possible to produce a fabric that is not easily torn and has excellent wear resistance. Further, when the moisture permeable waterproof film and the knitted fabric are combined, a knitted fabric excellent in moisture permeable and waterproof properties can be produced without impairing the unique stretchability and soft texture of the knitted fabric.
  • the base fabric preferably contains various fibers.
  • the fibers include polyester fibers such as polyethylene terephthalate, polytrimethylene terephthalate, and polybutylene terephthalate; polyamide fibers such as nylon 6 and nylon 66; polyimide fibers.
  • the base fabric mainly contains synthetic fibers.
  • 50% by mass or more of the synthetic fibers are contained in 100% by mass of the base fabric. More preferably, it is 75 mass% or more, More preferably, it is 85 mass% or more, Most preferably, it is 95 mass% or more.
  • the upper limit is preferably 100% by mass, but even if it is 97% by mass or less, it is acceptable.
  • the fibers constituting the base fabric include, for example, at least one inorganic fine particle selected from titanium oxide, zinc oxide, alumina (aluminum oxide), magnesium oxide, barium sulfate, talc, kaolin, calcium carbonate, sodium carbonate, and the like. Also good.
  • the inorganic fine particles titanium oxide is particularly preferable.
  • the fiber may be a semidal containing 0.01 to 1.2% by mass of inorganic fine particles in 100% of the fiber, or a fuller containing 1.2 to 7% by mass of the inorganic fine particles. When the upper limit is exceeded, the yarn-making property is lowered, and it may be difficult to stably produce a uniform spun yarn.
  • the thickness of the fibers constituting the base fabric and the number of filaments may be appropriately adjusted according to the intended use of the resulting fabric, and the multifilament used for the warp of the plain woven fabric preferably has a fineness of 50 to 280 dtex, more preferably 60 ⁇ 200 dtex. Further, the number of monofilaments in one multifilament is not particularly limited, and is preferably 150 to 500, for example, and more preferably 200 to 400.
  • the base fabric can be subjected to water-repellent finishing, soft finishing, resin processing, and antistatic processing for adjusting the texture and the strength of the fabric as necessary. These processes may be performed before compounding with the moisture permeable waterproof film, or may be performed after combining the moisture permeable waterproof film and the fabric.
  • the water repellent used in the water repellent process may be a general fiber water repellent, such as a silicone water repellent, a fluorine water repellent composed of a polymer having a perfluoroalkyl group, and a paraffin water repellent.
  • An agent is preferably used.
  • a water repellent processing method a general method such as a padding method, a spray method, printing, coating, or a gravure method can be used.
  • examples of the softener used for the soft finish include amino-modified silicone, polyethylene-based, polyester-based, paraffin-based softeners, and the like.
  • the flexible process using these and a silicone process can be performed as a post-process for finishing.
  • a method of combining the moisture permeable waterproof film and the base fabric a method of bonding the moisture permeable waterproof film and the base fabric to each other through an adhesive; a method of joining by heat treatment; a method of joining by stitching; Is mentioned.
  • said adhesive agent if it is an adhesive agent used for joining of a general purpose film and cloth, it can use widely, For example, a polyurethane-type adhesive agent etc. are preferable.
  • bonding both with an adhesive agent it is good to laminate and fix a base fabric, for example, after printing an adhesive agent on a moisture-permeable waterproof film in a linear form or a dot form.
  • the moisture permeable waterproof film is directed to the skin side of the wearer.
  • a protective layer on the moisture permeable waterproof film side surface of the composite fabric of the moisture permeable waterproof film and the base fabric.
  • the practical durability of the composite fabric is improved, and stickiness during sweating due to contact between the skin and the moisture-permeable waterproof film can be improved.
  • a protective layer is laminated
  • the method of bonding the protective layer include a method of bonding the protective layer and the moisture permeable waterproof film via an adhesive layer, and the kind and application method of the adhesive are applied by attaching the moisture permeable waterproof film and the base fabric described above. It is the same as the method of matching.
  • the adhesive is not applied to the entire surface of the protective layer. This is because if the adhesive is applied to the entire surface of the protective layer, the moisture permeability of the composite fabric decreases, and the wearer may feel sticky when sweating. Moreover, since the design of the back surface of the composite fabric can be improved by not applying the adhesive to the entire surface of the protective layer, the appearance is improved.
  • the protective layer examples include woven fabrics, knitted fabrics, non-woven fabrics, laces, nets and the like, as in the case of the base fabric. Among them, at least one selected from woven fabrics, circular knitted fabrics, warp knitted fabrics and non-woven fabrics is preferable. These protective layers may be used alone or in combination of two or more. Moreover, as a fiber of a protective layer, since it is excellent in durability, a synthetic fiber like a polyester fiber (for example, polyethylene terephthalate) and a polyamide fiber (for example, nylon 6, nylon 66) is preferable.
  • a polyester fiber for example, polyethylene terephthalate
  • a polyamide fiber for example, nylon 6, nylon 66
  • the composite fabric made by combining the moisture permeable waterproof film and the base fabric manufactured by the method described above is used for rain (snow) clothing such as rain clothing; sports clothing such as golf, skiing and snowboarding; It can be preferably used as a clothing material such as clothing; work clothing for workers working in high-temperature environments, humid environments, and the like.
  • the water pressure resistance of the moisture permeable waterproof film was obtained by manufacturing a moisture permeable waterproof film having a thickness of 10 ⁇ m by a dry method from the resin solution for moisture permeable waterproof film manufactured in the column of Examples / Comparative Examples. Measured according to JIS L1092 7.1B method (high water pressure method).
  • ⁇ Moisture permeability> The measurement is performed according to JIS L1099 B-1 method (potassium acetate method) using a moisture-permeable waterproof film having a thickness of 10 ⁇ m.
  • B-1 moisture permeability at 13 ° C. atmosphere is measured by setting the measurement environment to 20 ° C. ⁇ 65% RH and the water temperature in the water tank to 13 ° C.
  • B-1 moisture permeability at 43 ° C. atmosphere is measured by setting the measurement environment to 50 ° C. ⁇ 65% RH and the water temperature in the water tank to 43 ° C.
  • LCST ⁇ Lower critical eutectic temperature
  • the water absorption S% at T ° C. is obtained by converting W 1 / W 0 into percentage. And in order to obtain
  • the method for measuring the water absorption S% is the same as the method described in the LCST column.
  • the water absorption S 1 at LCST-10 (° C.) and the water absorption S 2 at LCST (° C.) are respectively determined, and the change rate RA of the water absorption before LCST is determined from (S 1 -S 2 ) / S 1 .
  • the water absorption S 3 at LCST + 10 (° C.) is obtained, and the change rate R B of the water absorption after LCST is obtained from (S 2 ⁇ S 3 ) / S 2 .
  • Rate of change of the water absorption before and after the LCST is evaluated by R A / R B.
  • Example 1 158 parts of isopropyl acrylamide (NIPAM), 13 parts of methyl acrylate (MA), 24 parts of tert-butyl acrylamide (TBAA), 3 parts of 2-hydroxyethyl acrylate (HEA), 5 parts of azobisisobutyronitrile (AIBN) Then, solution polymerization was performed in a mixed solution of 300 parts of DMF to produce an acrylic resin (AC-1) having a hydroxyl group in the molecule.
  • NIPAM isopropyl acrylamide
  • MA methyl acrylate
  • TBAA tert-butyl acrylamide
  • HOA 2-hydroxyethyl acrylate
  • AIBN azobisisobutyronitrile
  • prepolymer solution 600 parts of polyethylene glycol (PEG) having a weight average molecular weight of 2,000, 532 parts of acrylic resin (AC-1) having a hydroxyl group in the molecule, and 535 parts of dimethylformamide (DMF) under a nitrogen stream Then, 31 parts of 4,4′-diphenylmethane diisocyanate (MDI) and 5.2 parts of 2,6-triene diisocyanate (2,6-TDI) are added, and the mixture is heated at 75 ° C. for about 1 hour. A polymer solution was obtained.
  • PEG polyethylene glycol
  • AC-1 acrylic resin
  • DMF dimethylformamide
  • Example 2 100 parts of isopropyl acrylamide (NIPAM), 19 parts of diethyl acrylamide (DEAA), 26 parts of methyl acrylate (MA), 50 parts of tert-butyl acrylamide (TBAA), 3 parts of 2-hydroxypropyl acrylate (HEA), azobisisobuty An acrylic resin (AC-2) having a hydroxyl group was produced by solution polymerization of 5 parts of ronitrile (AIBN) in a mixed solution of 300 parts of DMF.
  • AIBN ronitrile
  • a moisture permeable waterproof film was prepared from the resin solution for a moisture permeable waterproof film thus obtained so as to have a thickness of 50 ⁇ m by a dry method.
  • the LCST was 20 ° C., and the value obtained by dividing the change in water absorption between 10 and 20 ° C. by the change in water absorption between 20 and 30 ° C. was 4. 0.
  • Comparative Example 1 (1) After 600 parts of PEG having a weight average molecular weight of 2000 and 641 parts of DMF were uniformly mixed under a nitrogen stream, 38 parts of MDI was added and heated at 75 ° C. for about 1 hour to prepare a prepolymer solution. Next, 567 parts of DMF and 105 parts of EG were added to the prepared prepolymer solution and mixed uniformly, and then 463 parts of MDI was added to increase the viscosity. Further, 604 parts of DMF and 1008 parts of MEK were added together with the thickening of the polymer, and while diluting, the viscosity at 25 ° C. was increased to 70000 mPa ⁇ s, and the reaction was stopped.
  • a moisture permeable waterproof film was prepared from the resin solution for a moisture permeable waterproof film thus obtained so as to have a thickness of 50 ⁇ m by a dry method. Although LCST was measured about the manufactured moisture-permeable waterproof film, LCST was not able to be confirmed.
  • Comparative Example 2 (1) After 600 parts of PEG having a weight average molecular weight of 2000 and 641 parts of DMF were uniformly mixed under a nitrogen stream, 38 parts of MDI was added and heated at 75 ° C. for about 1 hour to prepare a prepolymer solution.
  • a moisture permeable waterproof film was prepared from the resin solution for a moisture permeable waterproof film thus obtained so as to have a thickness of 50 ⁇ m by a dry method. Although LCST was measured about the manufactured moisture-permeable waterproof film, LCST was not able to be confirmed.
  • a moisture permeable waterproof film was prepared from the resin solution for a moisture permeable waterproof film thus obtained so as to have a thickness of 50 ⁇ m by a dry method.
  • LCST was measured about the manufactured moisture-permeable waterproof film, LCST was 0 degrees C or less, and it was not able to confirm.
  • Comparative Example 4 (1) 600 parts of PEG having a weight average molecular weight of 2000, 177 parts of an acrylic resin (AC-1) having a hydroxyl group in the molecule, and 641 parts of DMF were mixed uniformly under a nitrogen stream, and then 38 parts of MDI was added, and 75 ° C. For about 1 hour to prepare a prepolymer solution.
  • a moisture permeable waterproof film was prepared from the resin solution for a moisture permeable waterproof film thus obtained so as to have a thickness of 50 ⁇ m by a dry method.
  • the LCST was 25 ° C., and the value obtained by dividing the change in water absorption between 15 and 25 ° C. by the change in water absorption between 25 and 35 ° C. was 1. It became 5.
  • FIG. 1 shows a graph for LCST measurement in Examples 1-2 and Comparative Examples 1-3.
  • the water absorption rate of the moisture-permeable waterproof film produced in Example 1 changes greatly in the vicinity of 25 ° C.
  • the LCST of Example 1 was set to 25 ° C.
  • the LCST of Example 2 was set to 20 ° C.
  • the moisture-permeable and waterproof films produced in Comparative Examples 1 and 2 did not contain a polyurethane resin modified with an acrylic resin, so there was no change in water absorption rate, and LCST was not measured.
  • the moisture-permeable waterproof film produced in Comparative Example 3 includes a polyurethane resin modified with an acrylic resin
  • the set LCST is considered to be lower than 0 ° C., and consequently, the water absorption rate with respect to water.
  • LCST was set to 0 ° C. because no change point was observed.
  • the moisture permeable waterproof film according to the present invention is used for developing both hydrophilicity and hydrophobicity depending on temperature, for example, rain (snow) clothing such as rain clothing; sports clothing such as golf, skiing and snowboarding; It can be preferably used as a film for clothing materials such as outdoor clothing such as mountain climbing; work clothing for workers working in high-temperature environments, humid environments, and the like.

Abstract

The present invention provides: a film having high dew-suppressive capabilities in a low-temperature state and excellent moisture-permeability in a high temperature state; and a moisture permeable waterproof fabric using this film, which is suitable for precipitation (snow) use, sports use, outdoor use, work use, and the like. This moisture permeable waterproof film is characterized by: containing a polyurethane resin modified with an acrylic resin; and having an LCST (lower critical solution temperature).

Description

透湿防水フィルム及びそれを積層した複合生地Moisture permeable waterproof film and composite fabric laminated therewith
 本発明は、LCST(下限臨界共溶温度)を有するアクリル樹脂で変性されたポリウレタン樹脂を含むフィルムに関するものであり、特に降水(雪)用、スポーツ用、アウトドア用、作業用等の各種衣料用途に用いられる透湿防水フィルムに関するものである。 The present invention relates to a film containing a polyurethane resin modified with an acrylic resin having LCST (lower critical eutectic temperature), and in particular for various apparel applications such as for rain (snow), for sports, for outdoor use, for work, etc. The present invention relates to a moisture permeable waterproof film used in the above.
 湿気を通すが(透湿性)、水を通さない(防水性)という両方の特性を兼ね備えた透湿防水性の生地は、透湿性を有するため発汗による水蒸気を衣服外に放出する機能と、防水性を有するため雨が衣服内に侵入することを防止する機能を有しており、このような透湿防水生地はスポーツ用衣料や防寒用衣料に広く使用されている。中でも、発汗量の多いスポーツ用、アウトドア用、屋外作業用の衣料用素材として広く用いられており、特に、スキー、スノーボード、アスレチック、登山分野においては、今や必要不可欠な衣料素材となっている。 Moisture-permeable and waterproof fabrics that have the characteristics of passing moisture (breathable) but not passing water (waterproof) have moisture permeability, so the function of releasing water vapor from sweating to the outside of clothes and water resistance. Therefore, it has a function of preventing rain from entering the clothes, and such a moisture-permeable and waterproof fabric is widely used in sports clothing and cold clothing. Among them, it is widely used as a clothing material for sports, outdoor, and outdoor work with a high amount of sweat, and is now an indispensable clothing material especially in the skiing, snowboarding, athletic and mountaineering fields.
 このような透湿性と防水性を併せ持った生地として、例えば、糸を高密度に織り込んだ高密度織物や、ポリウレタン樹脂、ポリエステル樹脂、ナイロン樹脂、ポリテトラフルオロエチレン樹脂等の樹脂を、生地の表面にコーティングしたものや、これらの樹脂から形成したフィルムを、接着剤を介して生地と貼り合わせたものが知られている。中でも、特に親水性を高めたポリウレタン樹脂フィルムや、微多孔質のポリテトラフルオロエチレン樹脂を生地の表面にコーティングしたものや、いわゆる湿式凝固法を採用し、ポリウレタン樹脂を用いて形成された多孔膜を、生地の片面に形成したもの等が、透湿性・防水性の両面で評価され、市場でも広く受け入れられている。 As a fabric having both moisture permeability and waterproof properties, for example, a high density woven fabric in which yarns are woven in high density, and a resin such as polyurethane resin, polyester resin, nylon resin, polytetrafluoroethylene resin are used. There are known coatings and films formed from these resins, which are bonded to a fabric through an adhesive. Among these, a polyurethane resin film having a particularly high hydrophilicity, a microporous polytetrafluoroethylene resin coated on the surface of the fabric, and a porous film formed by using a so-called wet coagulation method and using a polyurethane resin. Are formed on one side of the fabric, etc., which are evaluated in terms of both moisture permeability and waterproofness and are widely accepted in the market.
 具体的には、例えば、親水性を高めたポリウレタン樹脂フィルムを用いた生地として、ソフトセグメント部にポリエチレングリコール等の親水性の高いエーテルポリオール成分を共重合した親水性ポリウレタン樹脂から形成されたフィルムを貼り合わせたものが数多く開発されている(例えば、特許文献1~2)。しかしながら、このような透湿防水フィルムは、水を吸水したときの膜表面の膨潤により、着用快適性が悪くなったり、外観を損ねたり、洗濯耐久性が悪化し、性能としては不十分なものが多かった。また膜表面の膨潤による透湿性低下の影響から、運動時には生地の透湿性がさほど高くならず、ムレ感がある等の問題があった。一方親水性成分の使用量を控え、フィルムの水に対する膨潤性を低くした場合には、運動時の透湿性は改善される。ところが運動直後の安静時には衣服内の温度低下に伴う飽和水蒸気圧により衣服内に結露が生じてしまうが、該フィルムは水に対する膨潤性が低いため結露に対する吸水が間に合わず、結果として衣服内が蒸れ、汗冷えを生じる等の問題もあった。 Specifically, for example, as a fabric using a polyurethane resin film having increased hydrophilicity, a film formed from a hydrophilic polyurethane resin obtained by copolymerizing a highly hydrophilic ether polyol component such as polyethylene glycol in the soft segment portion. Many bonded materials have been developed (for example, Patent Documents 1 and 2). However, such a moisture permeable waterproof film has insufficient performance due to swelling of the membrane surface when water is absorbed, resulting in poor wearing comfort, poor appearance, and poor washing durability. There were many. In addition, due to the effect of lowering the moisture permeability due to the swelling of the film surface, the moisture permeability of the fabric is not so high during exercise and there is a problem such as a feeling of stuffiness. On the other hand, when the amount of the hydrophilic component used is reduced and the swelling property of the film with respect to water is lowered, the moisture permeability during exercise is improved. However, at the time of rest immediately after exercise, condensation occurs in the clothes due to the saturated water vapor pressure accompanying the temperature drop in the clothes, but the film is not swellable to water, so the water absorption for the condensation is not in time, resulting in stuffiness in the clothes. There were also problems such as causing sweat chills.
 また微多孔質のポリウレタンフィルムやポリテトラフルオロエチレンフィルムをラミネートした透湿防水生地は(例えば、特許文献3~4)、透湿性及び防水性の両面で優れた効果を発揮するが、多孔質構造を形成するための製造設備や工程が複雑になり、フィルムを容易に製造することが難しく、製品も非常に高価になってしまうという問題があった。 In addition, a moisture-permeable waterproof fabric laminated with a microporous polyurethane film or polytetrafluoroethylene film (for example, Patent Documents 3 to 4) exhibits excellent effects in both moisture permeability and waterproof properties, but has a porous structure. The manufacturing equipment and process for forming the film are complicated, it is difficult to manufacture the film easily, and the product becomes very expensive.
 更に、特に結露抑制性能を重視した透湿防水生地として、湿式凝固法を採用し、ポリウレタン樹脂を用いて形成された多孔膜を生地の片面に形成したものとしては、例えば、湿式加工用ポリウレタン樹脂に親水性ポリウレタン樹脂を混合して生地に加工するものや(特許文献5)、ポリアミノ酸ポリウレタン樹脂にスルホン酸ソーダ化合物を加えて加工した生地(特許文献6)が提案されている。しかし、これらの生地は結露抑制性能には優れるものの、着用時の耐水性や洗濯耐久性は良好とは言えなかった。 Furthermore, as a moisture-permeable waterproof fabric that emphasizes dew condensation suppression performance, a wet coagulation method is adopted, and a porous film formed using a polyurethane resin is formed on one side of the fabric, for example, a polyurethane resin for wet processing There are proposed ones in which a hydrophilic polyurethane resin is mixed and processed into a fabric (Patent Document 5), and a fabric processed by adding a sulfonic acid soda compound to a polyamino acid polyurethane resin (Patent Document 6). However, although these fabrics are excellent in dew condensation suppression performance, they cannot be said to have good water resistance and washing durability when worn.
 また、結露抑制性能を重視した透湿防水生地であって、乾式法を採用したものとしては、例えば、アミノ樹脂パウダーを配するものが提案されている(特許文献7)。しかし特許文献7の生地は、洗濯耐久性や耐摩耗性が十分でなく、衣料用生地としての性能が不十分であった。一方、湿式加工布に親水性ポリウレタン樹脂をオーバーコート加工した生地も提案されているが(特許文献8)、加工に手間がかかるため製造コストが高くなり、湿式加工布を使用していることから、洗濯耐久性も不十分であった。 Further, as a moisture-permeable waterproof fabric that emphasizes dew condensation suppression performance and adopting a dry method, for example, an amino resin powder is proposed (Patent Document 7). However, the fabric of Patent Document 7 has insufficient washing durability and wear resistance, and performance as a clothing fabric is insufficient. On the other hand, a fabric in which a wet-processed cloth is overcoated with a hydrophilic polyurethane resin has also been proposed (Patent Document 8). However, since it takes time and effort to process, the manufacturing cost increases, and the wet-processed cloth is used. Also, the washing durability was insufficient.
 ところで、温度刺激に応じて異なる性能を発現する温度応答性ポリマーが知られている。このような温度応答性ポリマーを使用したものとして、ガラス転移温度を-20~20℃程度の範囲に調整したポリウレタン樹脂を用いた透湿防水生地がある(特許文献9~11)。これらの透湿防水生地は、静止時等の体温が低い状態ではJIS L 1099 B-1法での透湿度が低く、活発な運動を行った直後等の体温が高い状態では、同様の方法で測定する透湿度が向上する。これは気化した水(水蒸気)の透過率が、ガラス転移温度を境にして大きくなることを利用した現象であり、これにより体内で発生した水蒸気が高温状態では外部に抜けやすくなっている。しかしこれらの生地は、低温状態において、液化した水分を透湿防水生地上で吸水するという結露抑制性能を十分に発揮できるものではなかった。 By the way, a temperature-responsive polymer that exhibits different performance in response to temperature stimulation is known. As a material using such a temperature-responsive polymer, there is a moisture-permeable waterproof fabric using a polyurethane resin whose glass transition temperature is adjusted to a range of about −20 to 20 ° C. (Patent Documents 9 to 11). These moisture-permeable and waterproof fabrics have low moisture permeability according to JIS L 1099 B-1 method when the body temperature is low, such as at rest, and the same method when body temperature is high, such as immediately after active exercise. The moisture permeability to be measured is improved. This is a phenomenon that takes advantage of the fact that the transmittance of vaporized water (water vapor) increases with the glass transition temperature as a boundary. This makes it easier for water vapor generated in the body to escape to the outside in a high temperature state. However, these fabrics cannot sufficiently exhibit the dew condensation suppressing performance of absorbing liquefied moisture on the moisture permeable waterproof fabric in a low temperature state.
特開平11-49875号公報JP 11-49875 A 特開平11-269773号公報JP 11-269773 A 特開平4-41778号公報JP-A-4-41778 特開昭58-166036号公報JP 58-166036 A 特開平9-228253号公報JP-A-9-228253 特開昭63-145482号公報Japanese Unexamined Patent Publication No. 63-145482 特開平8-209541号公報JP-A-8-209541 特開平11-61648号公報JP-A-11-61648 特開平6-49169号公報JP-A-6-49169 WO94/00631号公報WO94 / 00631 Publication 特開平5-272061号公報JP-A-5-272061
 このような状況下、本発明は、低温状態では結露抑制性能が高く、高温状態では透湿性に優れるフィルム、及び該フィルムを用いた降水(雪)用、スポーツ用、アウトドア用、作業用等に好適な透湿防水生地を提供することを課題として掲げた。 Under such circumstances, the present invention is a film having a high dew condensation suppressing performance in a low temperature state and excellent in moisture permeability at a high temperature state, and for rain (snow), sports use, outdoor use, work use and the like using the film. An object of the present invention is to provide a suitable moisture-permeable waterproof fabric.
 本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、温度応答性ポリマーとしてLCST(下限臨界共溶温度,Lower critical solution temperature)を有するアクリル樹脂をウレタン樹脂で変性した樹脂を用いれば、該樹脂を原料とするフィルムは、低温状態では高い吸水性を示し、高温状態では適度な透湿性を発揮することを見出して本発明を完成した。 As a result of intensive studies to solve the above problems, the present inventors have obtained a resin obtained by modifying an acrylic resin having LCST (Lower Critical Solution Temperature) as a temperature responsive polymer with a urethane resin. When used, the present invention was completed by finding that a film made of the resin as a raw material exhibits high water absorption at a low temperature and exhibits appropriate moisture permeability at a high temperature.
 すなわち、本発明に係る透湿防水フィルムは、アクリル樹脂で変性されたポリウレタン樹脂を含み、LCSTを有することを特徴とする。そして、本発明の透湿防水フィルムは、透湿防水フィルムのLCSTが0℃以上40℃以下であり、該透湿防水フィルムはLCST以下でも水溶性を示さない点が特徴的である。また前記アクリル樹脂は、N-イソプロピルアクリルアミドと、ヒドロキシル基含有(メタ)アクリレート類とを必須として含むアクリル樹脂用単量体混合物から重合により得られたものであり、前記単量体混合物が、更にα,β-不飽和エチレン性結合を有する単量体を含むことがより好ましい。また前記ポリウレタン樹脂を構成するポリオールには、ポリエーテルポリオールを含むことが好ましい。更に、本発明の透湿防水フィルムは、耐水圧が50kPa以上450kPa以下であり、43℃雰囲気下のB-1透湿度が20000g/m2・24h以上50000g/m2・24h以下であり、13℃雰囲気下のB-1透湿度が12000g/m2・24h以上16000g/m2・24h以下であり、LCST前後の吸水率の変化率が2以上5以下である。
 また、本発明は前記透湿防水フィルムを基布に積層したことを特徴とする複合生地をも包含する。
That is, the moisture-permeable waterproof film according to the present invention includes a polyurethane resin modified with an acrylic resin and has LCST. The moisture-permeable and waterproof film of the present invention is characterized in that the moisture-permeable and waterproof film has an LCST of 0 ° C. or more and 40 ° C. or less, and the moisture-permeable and waterproof film does not exhibit water solubility at or below the LCST. The acrylic resin is obtained by polymerization from a monomer mixture for an acrylic resin containing N-isopropylacrylamide and a hydroxyl group-containing (meth) acrylate as essential components. More preferably, it contains a monomer having an α, β-unsaturated ethylenic bond. Moreover, it is preferable that the polyol which comprises the said polyurethane resin contains polyether polyol. Furthermore, moisture-permeable waterproof film of the present invention, the water pressure is below 450kPa than 50 kPa, B-1 moisture permeability under 43 ° C. atmosphere or less 20000g / m 2 · 24h or more 50000g / m 2 · 24h, 13 B-1 moisture permeability under ℃ atmosphere or less 12000 g / m 2 · 24h or more 16000g / m 2 · 24h, the rate of change of water absorption before and after the LCST is 2 to 5.
The present invention also includes a composite fabric characterized by laminating the moisture-permeable and waterproof film on a base fabric.
 本発明によれば、低温状態では高い吸水性を示し、高温状態では適度な透湿性を発揮する透湿防水フィルムが得られる。 According to the present invention, it is possible to obtain a moisture-permeable waterproof film that exhibits high water absorption at low temperatures and exhibits moderate moisture permeability at high temperatures.
図1は実施例1~2及び比較例1~3のLCST測定用のグラフである。FIG. 1 is a graph for LCST measurement in Examples 1-2 and Comparative Examples 1-3.
 本発明に係る透湿防水フィルムは、アクリル樹脂で変性されたポリウレタン樹脂を含み、LCSTを有することを特徴とする。本発明では、透湿防水フィルムを構成する原料として、LCSTを有するアクリル樹脂をウレタン樹脂で変性した樹脂を使用している。このように、アクリル樹脂と、ポリウレタン樹脂を構成する各成分とを反応させることにより、ポリウレタン成分が非水溶性成分の役割を果たし、透湿防水フィルムの親水性と疎水性のバランスを調整することができる。 The moisture permeable waterproof film according to the present invention includes a polyurethane resin modified with an acrylic resin and has an LCST. In this invention, the resin which modified | denatured the acrylic resin which has LCST with the urethane resin is used as a raw material which comprises a moisture-permeable waterproof film. In this way, by reacting the acrylic resin and each component constituting the polyurethane resin, the polyurethane component serves as a water-insoluble component and adjusts the balance between the hydrophilicity and hydrophobicity of the moisture permeable waterproof film. Can do.
 本発明に係る透湿防水フィルムは、透湿防水フィルムのLCSTが0℃以上40℃以下であり、該透湿防水フィルムはLCST以下でも水溶性を示さない性質を有することが望ましい。温度応答性ポリマーとして、N-イソプロピルアクリルアミド(NIPAM)を重合して得られるポリN-イソプロピルアクリルアミド(PNIPAM)が知られており、NIPAMホモポリマーのLCSTは通常32℃程度である。NIPAMホモポリマーは、32℃以下では親水性を示して水溶性を示すようになるが、32℃以下という常温条件下でフィルムが水に溶解してしまうと、フィルムを、常温且つ湿潤な環境下で使用する各種日用品に応用し難く、PNIPAMの有する温度応答性を十分に活用することが難しくなる。本発明は、このNIPAMの有する温度応答性の特徴を活かして、特にLCSTが0℃以上40℃以下となるように調整した透湿防水フィルムを提供するものであるが、このような性質を付与するため、本発明では透湿防水フィルムを構成する各成分の種類や量を調整している。以下、本発明を詳述する。 The moisture permeable waterproof film according to the present invention preferably has a moisture permeable waterproof film having an LCST of 0 ° C. or higher and 40 ° C. or lower, and the moisture permeable waterproof film has a property of not exhibiting water solubility even at LCST or lower. As a temperature-responsive polymer, poly N-isopropylacrylamide (PNIPAM) obtained by polymerizing N-isopropylacrylamide (NIPAM) is known, and the LCST of NIPAM homopolymer is usually about 32 ° C. NIPAM homopolymer exhibits hydrophilicity and becomes water-soluble at 32 ° C. or lower. However, if the film dissolves in water under a normal temperature condition of 32 ° C. or lower, the film is placed in a room temperature and wet environment. It is difficult to apply to various daily necessities used in, and it is difficult to fully utilize the temperature responsiveness of PNIPAM. The present invention provides a moisture permeable waterproof film adjusted to have an LCST of 0 ° C. or more and 40 ° C. or less, taking advantage of the temperature response characteristics of NIPAM. Therefore, in this invention, the kind and quantity of each component which comprise a moisture-permeable waterproof film are adjusted. The present invention is described in detail below.
<アクリル樹脂>
 本発明で用いるアクリル樹脂は、N-イソプロピルアクリルアミドと、ヒドロキシル基含有(メタ)アクリレート類とを必須として含むアクリル樹脂用単量体混合物からラジカル重合により得られたものである。本発明では、アクリル樹脂に温度応答性を付与するために、アクリル樹脂の原料として、N-イソプロピルアクリルアミドを用いる。前述したように、アクリル樹脂が温度応答性を発現することで、該アクリル樹脂を含む透湿防水フィルムは、低温域では親水性を発現し、高温域では疎水性を発現する。この透湿防水フィルムを用いれば、低温域では水分が該透湿防水フィルムに吸水されるため、結露抑制効果やJIS L1099 B-1法に基づき測定される透湿度が向上する。一方高温域では、水分が該透湿防水フィルムに吸水され難く、その結果、透湿速度が低下しにくく、JIS L1099 B-1法に基づき測定される透湿度が向上する。
<Acrylic resin>
The acrylic resin used in the present invention is obtained by radical polymerization from a monomer mixture for acrylic resin containing N-isopropylacrylamide and hydroxyl group-containing (meth) acrylate as essential components. In the present invention, N-isopropylacrylamide is used as a raw material for the acrylic resin in order to impart temperature responsiveness to the acrylic resin. As described above, when the acrylic resin exhibits temperature responsiveness, the moisture-permeable waterproof film containing the acrylic resin exhibits hydrophilicity at a low temperature range and exhibits hydrophobicity at a high temperature range. When this moisture permeable waterproof film is used, moisture is absorbed by the moisture permeable waterproof film in a low temperature range, so that the dew condensation suppressing effect and the moisture permeability measured based on the JIS L1099 B-1 method are improved. On the other hand, in the high temperature range, moisture is hardly absorbed by the moisture permeable waterproof film, and as a result, the moisture transmission rate is hardly lowered, and the moisture permeability measured based on the JIS L1099 B-1 method is improved.
 アクリル樹脂用単量体混合物100質量%中、NIPAMの使用量は、例えば、50~95質量%が好ましく、より好ましくは50~90質量%であり、更に好ましくは50~85質量%である。NIPAMの使用量が前記範囲内であれば、透湿防水フィルムが明確な温度応答性を発現できるため好ましい。なお本発明では、アクリル樹脂用単量体混合物100質量%中、NIPAM、後述するヒドロキシル基含有(メタ)アクリレート類、及び必要に応じて加えるα,β-不飽和エチレン性結合を有する単量体の合計を100質量%とする。 In 100% by mass of the acrylic resin monomer mixture, the amount of NIPAM used is, for example, preferably 50 to 95% by mass, more preferably 50 to 90% by mass, and still more preferably 50 to 85% by mass. If the amount of NIPAM used is within the above range, the moisture-permeable waterproof film can exhibit a clear temperature response, which is preferable. In the present invention, in 100% by mass of the acrylic resin monomer mixture, NIPAM, a hydroxyl group-containing (meth) acrylate described later, and a monomer having an α, β-unsaturated ethylenic bond added as necessary Is 100% by mass.
 また該アクリル樹脂でウレタン樹脂を変性する(すなわち、後述するポリウレタン樹脂中のイソシアネート基やこれから派生した基とアクリル樹脂とを反応させる)ために、アクリル樹脂用単量体混合物は、ヒドロキシル基含有(メタ)アクリレート類を含有する。なお本発明において「(メタ)アクリレート」は、メタクリレート又はアクリレートを意味する。前記ヒドロキシル基含有(メタ)アクリレート類としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、カプロラクトン変性ヒドロキシ(メタ)アクリレート、α-(ヒドロキシメチル)アクリル酸メチル、α-(ヒドロキシメチル)アクリル酸エチル、フタル酸とプロピレングリコールとから得られるポリエステルジオールのモノ(メタ)アクリレート等が挙げられる。中でも、2-ヒドロキシエチル(メタ)アクリレート又は3-ヒドロキシプロピル(メタ)アクリレートが好ましい。 Further, in order to modify the urethane resin with the acrylic resin (that is, to react an isocyanate group in the polyurethane resin described later or a group derived therefrom with the acrylic resin), the acrylic resin monomer mixture contains a hydroxyl group ( Contains (meth) acrylates. In the present invention, “(meth) acrylate” means methacrylate or acrylate. Examples of the hydroxyl group-containing (meth) acrylates include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, Examples thereof include caprolactone-modified hydroxy (meth) acrylate, methyl α- (hydroxymethyl) acrylate, ethyl α- (hydroxymethyl) acrylate, and mono (meth) acrylate of polyester diol obtained from phthalic acid and propylene glycol. Of these, 2-hydroxyethyl (meth) acrylate or 3-hydroxypropyl (meth) acrylate is preferable.
 アクリル樹脂用単量体混合物100質量%中、ヒドロキシル基含有(メタ)アクリレート類の使用量は、例えば、0.5~5質量%が好ましく、より好ましくは0.7~3質量%であり、更に好ましくは1~2.5質量%である。ヒドロキシル基含有(メタ)アクリレート類が前記範囲内であれば、ウレタン樹脂と反応させるときに十分な量の反応点を形成できるため好ましい。 The amount of the hydroxyl group-containing (meth) acrylate used in 100% by mass of the acrylic resin monomer mixture is preferably, for example, 0.5 to 5% by mass, more preferably 0.7 to 3% by mass, More preferably, it is 1 to 2.5% by mass. If the hydroxyl group-containing (meth) acrylates are within the above range, it is preferable because a sufficient amount of reaction points can be formed when reacting with the urethane resin.
 前記アクリル樹脂用単量体混合物は、必要に応じて、前述した単量体以外のα,β-不飽和エチレン性結合を有する単量体を更に含んでいてもよい。前記α,β-不飽和エチレン性結合を有する単量体としては、例えば、(メタ)アクリル酸;(メタ)アクリレート類;(メタ)アクリルアミド類(但し、N-イソプロピルアクリルアミド(NIPAM)を除く);アクリルニトリル、スチレン、α-メチルスチレン、ビニルトルエン、N-ビニルアセチルアミド;等が挙げられる。 The monomer mixture for acrylic resin may further contain a monomer having an α, β-unsaturated ethylenic bond other than the monomers described above, if necessary. Examples of the monomer having an α, β-unsaturated ethylenic bond include (meth) acrylic acid; (meth) acrylates; (meth) acrylamides (excluding N-isopropylacrylamide (NIPAM)). Acrylonitrile, styrene, α-methylstyrene, vinyltoluene, N-vinylacetylamide; and the like.
 前記(メタ)アクリレート類としては、例えば、下記式(1): Examples of the (meth) acrylates include the following formula (1):
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(式中、R1は炭素数1~15のアルキル基又は炭素数3~20のシクロアルキル基を表し、mは0又は1である。)で表される(メタ)アクリレート類が好ましい。 (Wherein R 1 represents an alkyl group having 1 to 15 carbon atoms or a cycloalkyl group having 3 to 20 carbon atoms, and m is 0 or 1).
 式(1)におけるR1のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、tert-ブチル基、sec-ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ウンデシル基、ドデシル基、セチル基、ステアリル基等の直鎖又は分岐のアルキル基が挙げられる。アルキル基の炭素数は、1~10がより好ましく、更に好ましくは1~5であり、特に好ましくは1~4である。中でも、メチル基、エチル基、n-プロピル基、iso-プロピル基が好ましく、より好ましくはメチル基である。 Examples of the alkyl group represented by R 1 in the formula (1) include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, a tert-butyl group, a sec-butyl group, a pentyl group, and a hexyl group. And linear or branched alkyl groups such as a group, octyl group, decyl group, undecyl group, dodecyl group, cetyl group and stearyl group. The alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, and particularly preferably 1 to 4 carbon atoms. Of these, a methyl group, an ethyl group, an n-propyl group, and an iso-propyl group are preferable, and a methyl group is more preferable.
 R1のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロドデシル基等が挙げられる。シクロアルキル基の環骨格の構成元素数は、3~15が好ましく、より好ましくは5~9であり、更に好ましくは6(シクロヘキシル基)である。 Examples of the cycloalkyl group represented by R 1 include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and a cyclododecyl group. The number of constituent elements of the ring skeleton of the cycloalkyl group is preferably 3 to 15, more preferably 5 to 9, and still more preferably 6 (cyclohexyl group).
 前記(メタ)アクリレート類におけるmは0又は1のいずれでもよいが、本発明では特にmが0のアクリレート類が好ましい。 M in the (meth) acrylates may be 0 or 1, but in the present invention, acrylates in which m is 0 are particularly preferable.
 アクリル樹脂用単量体混合物100質量%中、該(メタ)アクリレート類は、1~20質量%含まれていることが好ましく、より好ましくは3~15質量%であり、更に好ましくは5~10質量%である。(メタ)アクリレート類を前記範囲内に調整することにより、アクリル樹脂に疎水性を付与することができるため好ましい。なおLCSTは(メタ)アクリレート類が多くなるにつれて下がる傾向を示す。 In 100% by mass of the acrylic resin monomer mixture, the (meth) acrylate is preferably contained in an amount of 1 to 20% by mass, more preferably 3 to 15% by mass, and further preferably 5 to 10%. % By mass. It is preferable to adjust the (meth) acrylates within the above range because hydrophobicity can be imparted to the acrylic resin. LCST tends to decrease as the amount of (meth) acrylates increases.
 また前記(メタ)アクリルアミド類(但し、N-イソプロピルアクリルアミドを除く)としては、N-エチルアクリルアミド、N-n-プロピルアクリルアミド、N-イソプロピルアクリルアミド、N-シクロプロピルアクリルアミド、N,N-ジエチルアクリルアミド、N-メチル-N-エチルアクリルアミド、N-メチル-N-n-プロピルアクリルアミド、N-メチル-N-イソプロピルアクリルアミド、N-メトキシプロピルアクリルアミド、N-エトキシプロピルアクリルアミド、N-イソプロポキシプロピルアクリルアミド、N-エトキシエチルアクリルアミド、N-(2,2-ジメトキシエチル)-N-メチルアクリルアミド、N-1-メチル-2-メトキシエチルアクリルアミド、N-1-メトキシメチルプロピルアクリルアミド、N-ジ(2-メトキシエチル)アクリルアミド、N-2-メトキシエチル-N-n-プロピルアクリルアミド、N-2-メトキシエチル-N-エチルアクリルアミド、N-2-メトキシエチル-N-イソプロピルアクリルアミド、N-メトキシエトキシプロピルアクリルアミド、N-テトラヒドロフルフリルアクリルアミド、N-(1,3-ジオキソラン-2-イル)メチルアクリルアミド、N-メチル-N-(1,3-ジオキソラン-2-イル)メチルアクリルアミド、N-シクロプロピルアクリルアミド、N-ピロリジノメチルアクリルアミド等の各種アクリルアミド類が挙げられ、中でも、下記式(2): The (meth) acrylamides (excluding N-isopropylacrylamide) include N-ethylacrylamide, Nn-propylacrylamide, N-isopropylacrylamide, N-cyclopropylacrylamide, N, N-diethylacrylamide, N-methyl-N-ethylacrylamide, N-methyl-Nn-propylacrylamide, N-methyl-N-isopropylacrylamide, N-methoxypropylacrylamide, N-ethoxypropylacrylamide, N-isopropoxypropylacrylamide, N- Ethoxyethyl acrylamide, N- (2,2-dimethoxyethyl) -N-methyl acrylamide, N-1-methyl-2-methoxyethyl acrylamide, N-1-methoxymethylpropyl acrylate Amides, N-di (2-methoxyethyl) acrylamide, N-2-methoxyethyl-Nn-propylacrylamide, N-2-methoxyethyl-N-ethylacrylamide, N-2-methoxyethyl-N-isopropylacrylamide N-methoxyethoxypropylacrylamide, N-tetrahydrofurfurylacrylamide, N- (1,3-dioxolan-2-yl) methylacrylamide, N-methyl-N- (1,3-dioxolan-2-yl) methylacrylamide And various acrylamides such as N-cyclopropylacrylamide and N-pyrrolidinomethylacrylamide. Among them, the following formula (2):
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中、R2及びR3は、同一又は異なって、水素原子、炭素数1~15の直鎖若しくは分岐鎖のアルキル基、nは0又は1である。)で表される(メタ)アクリルアミド類が好ましい。 (Wherein R 2 and R 3 are the same or different and are a hydrogen atom, a linear or branched alkyl group having 1 to 15 carbon atoms, and n is 0 or 1) (meth) Acrylamides are preferred.
 式(2)におけるR2、R3のアルキル基としては、R1の欄で例示したものを好ましく使用でき、アルキル基の炭素数は1~10がより好ましく、更に好ましくは1~5であり、特に好ましくは1~4である。中でも、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、tert-ブチル基、sec-ブチル基が好ましい。 As the alkyl group of R 2 and R 3 in the formula (2), those exemplified in the column of R 1 can be preferably used, and the alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms. Particularly preferred is 1 to 4. Of these, methyl, ethyl, n-propyl, iso-propyl, n-butyl, tert-butyl and sec-butyl are preferred.
 また式(2)におけるR2、R3のシクロアルキル基としては、R1の欄で例示したものを好ましく使用でき、シクロアルキル基の環骨格の構成元素数は、3~15が好ましく、より好ましくは3~8であり、更に好ましくは3~5である。 Further, as the cycloalkyl group of R 2 and R 3 in the formula (2), those exemplified in the column of R 1 can be preferably used, and the number of constituent elements of the ring skeleton of the cycloalkyl group is preferably 3 to 15, The number is preferably 3 to 8, and more preferably 3 to 5.
 このような(メタ)アクリルアミド類としては、N-tert-ブチル(メタ)アクリルアミド、N-sec-ブチル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド及びN,N-ジメチル(メタ)アクリルアミドから選ばれる少なくとも1種が好ましく用いられる。 Such (meth) acrylamides include N-tert-butyl (meth) acrylamide, N-sec-butyl (meth) acrylamide, N-butyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, and N , N-dimethyl (meth) acrylamide is preferably used.
 前記(メタ)アクリルアミド類におけるnは0又は1のいずれでもよいが、本発明では特にnが0のアクリルアミド類が好ましい。 N in the (meth) acrylamides may be 0 or 1, but acrylamides in which n is 0 are particularly preferred in the present invention.
 アクリル樹脂用単量体混合物100質量%中、該(メタ)アクリルアミド類は、3~40質量%含まれていることが好ましく、より好ましくは5~35質量%であり、更に好ましくは10~25質量%である。(メタ)アクリルアミド類を共重合することにより、LCSTを調整しやすくなると共に、アクリル樹脂に疎水性を付与することができる。 In 100% by mass of the acrylic resin monomer mixture, the (meth) acrylamide is preferably contained in an amount of 3 to 40% by mass, more preferably 5 to 35% by mass, and still more preferably 10 to 25%. % By mass. By copolymerizing (meth) acrylamides, LCST can be easily adjusted and hydrophobicity can be imparted to the acrylic resin.
 前述した単量体を共重合させアクリル樹脂を製造するには、例えば、ラジカル重合開始剤存在下で、少なくともNIPAM並びにヒドロキシル基含有(メタ)アクリレート類、更に必要に応じてこれら以外のα,β-不飽和エチレン性結合を有する単量体を反応させるとよい。 In order to produce an acrylic resin by copolymerizing the aforementioned monomers, for example, in the presence of a radical polymerization initiator, at least NIPAM and hydroxyl group-containing (meth) acrylates, and if necessary, α, β other than these It is preferable to react with a monomer having an unsaturated ethylenic bond.
 ラジカル重合開始剤としては、例えば、アゾビスイソブチロニトリル、アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス-2,4-ジメチルバレロニトリル、2,2’-アゾビス-(4-メトキシ-2,4-ジメチルバレロニトリル)等のアゾ系重合開始剤;tert-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、ベンゾイルパーオキサイド、ジクミルパーオキサイド、ジ-tert-ブチルパーオキサイド等の有機過酸化物;過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の過硫酸塩;過酸化水素;等が挙げられ、これらを単独で又は2種類以上を組み合わせて使用するとよい。 Examples of the radical polymerization initiator include azobisisobutyronitrile, azobis (2-methylbutyronitrile), 2,2′-azobis-2,4-dimethylvaleronitrile, 2,2′-azobis- (4 Azo polymerization initiators such as -methoxy-2,4-dimethylvaleronitrile); organic compounds such as tert-butyl hydroperoxide, cumene hydroperoxide, benzoyl peroxide, dicumyl peroxide, di-tert-butyl peroxide Peroxides; persulfates such as potassium persulfate, sodium persulfate, ammonium persulfate; hydrogen peroxide; and the like. These may be used alone or in combination of two or more.
 ラジカル重合開始剤の使用量は、アクリル樹脂用単量体混合物100質量部に対して、0.01~5質量部であることが好ましく、より好ましくは0.1~4質量部である。ラジカル重合開始剤の量が前記範囲内であれば、アクリル樹脂の分子量を適切な範囲に調整できる上、反応を十分に進行させることができるため好ましい。 The amount of the radical polymerization initiator used is preferably 0.01 to 5 parts by mass, more preferably 0.1 to 4 parts by mass with respect to 100 parts by mass of the acrylic resin monomer mixture. If the amount of the radical polymerization initiator is within the above range, it is preferable because the molecular weight of the acrylic resin can be adjusted to an appropriate range and the reaction can sufficiently proceed.
 アクリル樹脂を製造するための共重合反応は、溶媒不存在下で行っても、溶媒存在下で行ってもよいが、溶媒存在下で実施することが好ましい。共重合反応に好ましく用いることのできる溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド等のホルムアミド系溶媒;ジメチルスルホキシド、ジエチルスルホキシド等のスルホキシド系溶媒;N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド等のアセトアミド系溶媒;等が挙げられる。前記溶媒は、反応溶液中の固形分濃度が、5~80質量%(より好ましくは、40~70質量%)となる量で使用するとよい。 The copolymerization reaction for producing the acrylic resin may be carried out in the absence of a solvent or in the presence of a solvent, but is preferably carried out in the presence of a solvent. Solvents that can be preferably used in the copolymerization reaction include, for example, formamide solvents such as N, N-dimethylformamide and N, N-diethylformamide; sulfoxide solvents such as dimethyl sulfoxide and diethyl sulfoxide; N, N-dimethyl And acetamide solvents such as acetamide and N, N-diethylacetamide; The solvent may be used in an amount such that the solid content concentration in the reaction solution is 5 to 80% by mass (more preferably 40 to 70% by mass).
 共重合反応における反応温度は、20~120℃が好ましい。反応温度が低すぎると、反応に長時間を要するため好ましくなく、反応温度が高すぎると副反応を招く虞があるため好ましくない。 The reaction temperature in the copolymerization reaction is preferably 20 to 120 ° C. If the reaction temperature is too low, the reaction takes a long time, which is not preferable, and if the reaction temperature is too high, a side reaction may occur.
<ポリウレタン樹脂>
 次にポリウレタン樹脂について説明する。ポリウレタン樹脂は、一般にポリウレタン樹脂の原料として用いられるポリオール及びポリイソシアネートを含むポリウレタン樹脂用単量体混合物から重合により得られる。
<Polyurethane resin>
Next, the polyurethane resin will be described. The polyurethane resin is obtained by polymerization from a monomer mixture for a polyurethane resin containing a polyol and a polyisocyanate generally used as a raw material for the polyurethane resin.
 ポリオールとしては、ジ又はそれ以上のヒドロキシル基を有する化合物が挙げられ、これを単独で又は2種以上を組み合わせて使用することができる。前記ポリオールは、重量平均分子量が400未満の低分子量物であっても、重量平均分子量が400~4000の高分子量物であってもよい。 Examples of polyols include compounds having di- or higher hydroxyl groups, and these can be used alone or in combination of two or more. The polyol may be a low molecular weight product having a weight average molecular weight of less than 400 or a high molecular weight product having a weight average molecular weight of 400 to 4000.
 低分子量のポリオールとしては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、グリセリン、ヘキサントリオール、ジグリセリン、ペンタエリスリトール、ソルビトール等のポリオール;エチレンジアミン、ヘキサメチレンジアミン、キシリレンジアミン、イソホロンジアミン等のポリアミン類;アミノアルコール類;等が挙げられ、これらを単独で又は2種以上を組み合わせて使用するとよい。 Low molecular weight polyols include ethylene glycol, diethylene glycol, triethylene glycol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, glycerin, hexanetriol, diglycerin, penta Examples include polyols such as erythritol and sorbitol; polyamines such as ethylenediamine, hexamethylenediamine, xylylenediamine, and isophoronediamine; aminoalcohols; and the like. These may be used alone or in combination of two or more.
 また重量平均分子量が400~4000高分子量のポリオールとしては、例えば、ポリエーテルポリオール、ポリエステルポリオール、ポリエーテルポリオール類又はポリエステルポリオール類にビニルモノマーをグラフト化したポリマーポリオール類等が挙げられる。 Examples of the polyol having a weight average molecular weight of 400 to 4000 high molecular weight include polyether polyols, polyester polyols, polyether polyols, or polymer polyols obtained by grafting a vinyl monomer to polyester polyols.
 前記ポリエーテルポリオールとは、活性水素を有する開始剤に、アルキレンオキサイド(エチレンオキサイド、プロピレンオキサイド等)を付加重合して得られるポリアルキレングリコール等である。前記開始剤としては、低分子量のポリオールの欄で例示したポリオール、ポリアミン類、アミノアルコール類が挙げられる。ポリオールを構成単位に含むポリウレタン樹脂は親水性が高くなるため、透湿防水フィルムには好ましい。このようなポリアルキレングリコールとしては、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール等、及びこれらのポリアルキレングリコールを共重合したポリエーテルポリオールが挙げられ、単独又はこれらの2種以上を使用するとよい。 The polyether polyol is a polyalkylene glycol obtained by addition polymerization of an alkylene oxide (ethylene oxide, propylene oxide, etc.) to an initiator having active hydrogen. Examples of the initiator include polyols, polyamines, and amino alcohols exemplified in the low molecular weight polyol column. A polyurethane resin containing a polyol as a constituent unit is preferable for a moisture-permeable and waterproof film because of its high hydrophilicity. Examples of such polyalkylene glycol include polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, and the like, and polyether polyols obtained by copolymerizing these polyalkylene glycols, and these may be used alone or in combination of two or more thereof. .
 また前記ポリエステルポリオールとしては、前述した低分子量のポリオールに、コハク酸、グルタル酸、アジピン酸、セバシン酸、マレイン酸、フマル酸、フタル酸、トリメリット酸等のジカルボン酸類を脱水縮合して得られるポリエチレンアジペート(PEA)、ポリブチレンアジペート(PBA)、ポリヘキサメチレンアジペート(PHMA)等の縮合系ポリエステルポリオール;前述した低分子量のポリオールに、ε-カプロラクトン等の環状エステルモノマーを開環重合して得られるポリ-ε-カプロラクトン(PCL)等のラクトン系ポリエステルポリオール;ポリヘキサメチレンカーボネート等のポリカーボネートジオール;等が挙げられ、単独又は2種以上組み合わせて使用するとよい。 The polyester polyol is obtained by dehydrating and condensing dicarboxylic acids such as succinic acid, glutaric acid, adipic acid, sebacic acid, maleic acid, fumaric acid, phthalic acid and trimellitic acid to the above-described low molecular weight polyol. Condensed polyester polyols such as polyethylene adipate (PEA), polybutylene adipate (PBA), polyhexamethylene adipate (PHMA); obtained by ring-opening polymerization of cyclic ester monomers such as ε-caprolactone to the above-mentioned low molecular weight polyols Lactone polyester polyols such as poly-ε-caprolactone (PCL); polycarbonate diols such as polyhexamethylene carbonate; and the like. These may be used alone or in combination of two or more.
 一方、ポリイソシアネートとしては、ジ又はそれ以上のイソシアネート基を有する芳香族系、脂肪族系、脂環系のイソシアネートが挙げられる。ポリイソシアネートとしては、例えば、トルエンジイソシアネート(2,4-TDI、2,6-TDI等)、ジフェニルメタンジイソシアネート(2,2’-MDI、2,4’-MDI、4,4’-MDI等)、ナフタレンジイソシアネート(1,5-NDI等)、キシレンジイソシアネート(XDI)、4,4’-ジイソシアナト-3,3’-ジメチルビフェニル(TODI)等の芳香族イソシアネート類;テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート(1,6-HDI等)、1,3,6-ヘキサメチレントリイソシアネート、ドデカンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート等の脂肪族イソシアネート類;3-イソシアネートメチル-3,3,5’-トリメチルシクロヘキシルジイソシアネート、ジシクロヘキシルメタン4,4’-ジイソシアネート、イソホロンジイソシアネート、水素添加トルエンジイソシアネート、水素添加キシレンジイソシアネート、水素添加ジフェニルメタンジイソシアネート、テトラメチルキシレンジイソシアネート、ノルボルネンジイソシアネートメチル等の脂環族イソシアネート類;等が挙げられ、これを単独で又は2種以上を組み合わせて使用することができる。中でも、芳香族イソシアネート類が好ましく、より好ましくは、トルエンジイソシアネート、ジフェニルメタンジイソシアネートのいずれか一方、又はこの両方である。 On the other hand, examples of the polyisocyanate include aromatic, aliphatic and alicyclic isocyanates having di- or higher isocyanate groups. Examples of the polyisocyanate include toluene diisocyanate (2,4-TDI, 2,6-TDI, etc.), diphenylmethane diisocyanate (2,2′-MDI, 2,4′-MDI, 4,4′-MDI, etc.), Aromatic isocyanates such as naphthalene diisocyanate (1,5-NDI, etc.), xylene diisocyanate (XDI), 4,4′-diisocyanato-3,3′-dimethylbiphenyl (TODI); tetramethylene diisocyanate, hexamethylene diisocyanate (1 , 6-HDI, etc.), 1,3,6-hexamethylene triisocyanate, dodecane diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate and other aliphatic isocyanates; 3-isocyanate methyl-3,3,5′-trimethyl And alicyclic isocyanates such as cyclohexyl diisocyanate, dicyclohexylmethane 4,4′-diisocyanate, isophorone diisocyanate, hydrogenated toluene diisocyanate, hydrogenated xylene diisocyanate, hydrogenated diphenylmethane diisocyanate, tetramethylxylene diisocyanate, norbornene diisocyanate methyl; These can be used alone or in combination of two or more. Among these, aromatic isocyanates are preferable, and more preferably one of toluene diisocyanate and diphenylmethane diisocyanate, or both.
 ポリウレタン樹脂の製造方法は特に限定されず、例えば、ワンショット法、プレポリマー法等が挙げられる。本発明では、前述した温度応答性を有するアクリル樹脂を、ポリウレタン樹脂と反応させて使用するため、プレポリマー法が好ましい。ポリウレタンプレポリマー用の単量体混合物中、ポリオールは、ポリイソシアネート中のイソシアネート基の1molに対し、ポリオール中の水酸基のモル数が0.5~2.5molとなるように用いるとよく、1.1~2molとなるようにポリオールを小過剰で用いることがより好ましい。 The method for producing the polyurethane resin is not particularly limited, and examples thereof include a one-shot method and a prepolymer method. In the present invention, since the acrylic resin having the temperature responsiveness described above is used after being reacted with the polyurethane resin, the prepolymer method is preferable. In the monomer mixture for the polyurethane prepolymer, the polyol may be used so that the number of moles of the hydroxyl group in the polyol is 0.5 to 2.5 mol with respect to 1 mol of the isocyanate group in the polyisocyanate. It is more preferable to use the polyol in a small excess so as to be 1 to 2 mol.
 プレポリマーの製造に際し、粘度の調整及び該プレポリマーの乳化分散性を向上させる観点から、溶媒を使用することも好ましい態様である。前記溶媒としては、イソシアネート基に対して不活性な溶媒であり、比較的親水性の高いものを用いるとよい。具体的には、ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類;ベンゼン、トルエン、キシレン、エチルベンゼン、トリメチルベンゼン、ヘキサン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、ミネラルスピリット等の炭化水素類;イソプロピルアルコール、tert-ブチルアルコール等のアルコール類;ジクロロメタン、クロロホルム等のハロゲン化炭化水素類;酢酸エチル、酢酸プロピル、プロピレングリコールモノメチルエーテルアセテート等のエステル類;ジエチルエーテル、シクロヘキシルメチルエーテル、ジブチルエーテル、ジメトキシエタン、ジオキサン、テトラヒドロフラン、ジオキソラン等のエーテル類;メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;等が挙げられ、これらを単独で又は2種以上を組み合わせて使用するとよい。 In the production of the prepolymer, it is also a preferred embodiment to use a solvent from the viewpoint of adjusting the viscosity and improving the emulsifying dispersibility of the prepolymer. As the solvent, it is preferable to use a solvent that is inert to isocyanate groups and that is relatively hydrophilic. Specifically, amides such as dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone; carbonization such as benzene, toluene, xylene, ethylbenzene, trimethylbenzene, hexane, cyclohexane, methylcyclohexane, ethylcyclohexane, mineral spirit, etc. Hydrogens; alcohols such as isopropyl alcohol and tert-butyl alcohol; halogenated hydrocarbons such as dichloromethane and chloroform; esters such as ethyl acetate, propyl acetate and propylene glycol monomethyl ether acetate; diethyl ether, cyclohexyl methyl ether, di Ethers such as butyl ether, dimethoxyethane, dioxane, tetrahydrofuran, dioxolane; methyl ethyl ketone, methyl isobutyl ketone Ketones such as cyclohexanone; and the like, may be used singly or in combination of two or more.
 プレポリマー製造時の温度は特に限定されないが、50~200℃が好ましく、より好ましくは60~120℃である。また反応時間は0.1~12時間が好ましく、より好ましくは0.5~3時間である。 The temperature at the time of producing the prepolymer is not particularly limited, but is preferably 50 to 200 ° C, more preferably 60 to 120 ° C. The reaction time is preferably 0.1 to 12 hours, more preferably 0.5 to 3 hours.
 またウレタンプレポリマーの合成には、既知の触媒を使用することができる。前記触媒としては、例えばトリエチルアミン、N,N-ジメチルシクロヘキシルアミン等のモノアミン類;N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N”,N”-ペンタメチルジエチレントリアミン等のポリアミン類;1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)、トリエチレンジアミン等の環状ジアミン類;ジブチルチンジラウリレート、ジブチルチンジアセテート等の錫系触媒等が挙げられる。 In addition, a known catalyst can be used for the synthesis of the urethane prepolymer. Examples of the catalyst include monoamines such as triethylamine and N, N-dimethylcyclohexylamine; N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N ″, N ″ -pentamethyldiethylenetriamine Polyamines such as 1,8-diazabicyclo [5.4.0] -7-undecene (DBU), cyclic diamines such as triethylenediamine; tin-based catalysts such as dibutyltin dilaurate and dibutyltin diacetate .
 前述した方法で製造したプレポリマーと、ポリオール及び/又はポリイソシアネートを重合する際には、プレポリマーの製造方法で詳述した溶媒、触媒等を用いるとよい。 When the prepolymer produced by the above-described method and the polyol and / or polyisocyanate are polymerized, it is preferable to use a solvent, a catalyst, or the like detailed in the prepolymer production method.
 上述したポリウレタン樹脂を製造する際に用いる鎖延長剤は、特に限定されないが、例えば、水、低分子量のポリオール、ポリアミン類、アミノアルコール類、等を挙げることができる。前記低分子量のポリオールとしては、前述したものと同じものを使用することができる。前記ポリアミン類としては、エチレンジアミン、プロピレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン等の脂肪族ポリアミン;トリレンジアミン、キシリレンジアミン、ジアミノジフェニルメタン等の芳香族ポリアミン;ジアミノシクロヘキシルメタン、ピペラジン、イソホロンジアミン等の脂環式ポリアミン;ヒドラジン、コハク酸ジヒドラジド、アジピン酸ジヒドラジド、フタル酸ジヒドラジド等のヒドラジン類等を挙げることができる。これらの中でも、エチレンジアミン及び/又はヒドラジンを鎖延長剤成分として使用することが好ましい。また、前記アルカノールアミンとして、例えばジエタノールアミン、モノエタノールアミン等を挙げることができる。 The chain extender used for producing the above-mentioned polyurethane resin is not particularly limited, and examples thereof include water, low molecular weight polyols, polyamines, amino alcohols, and the like. As the low molecular weight polyol, the same ones as described above can be used. Examples of the polyamines include aliphatic polyamines such as ethylenediamine, propylenediamine, tetramethylenediamine, and hexamethylenediamine; aromatic polyamines such as tolylenediamine, xylylenediamine, and diaminodiphenylmethane; diaminocyclohexylmethane, piperazine, and isophoronediamine. Alicyclic polyamines; hydrazines such as hydrazine, succinic dihydrazide, adipic dihydrazide, phthalic dihydrazide, and the like. Among these, it is preferable to use ethylenediamine and / or hydrazine as a chain extender component. Examples of the alkanolamine include diethanolamine and monoethanolamine.
 またLCSTを有するアクリル樹脂は、プレポリマー製造時に原料として加えてもよく、製造したプレポリマーと他の成分を更に重合する際に加えてもよいが、反応のし易さから本発明では特にアクリル樹脂をプレポリマー製造時に加えることが好ましい。なおアクリル樹脂は、最終的に得られるアクリル樹脂変性ウレタン樹脂100質量%中、固形分比率で、5~50質量%が好ましく、より好ましくは10~40質量%であり、更に好ましくは15~35質量%となるように用いるとよい。 The acrylic resin having LCST may be added as a raw material during the production of the prepolymer, or may be added when further polymerizing the produced prepolymer and other components. It is preferred to add the resin during prepolymer production. The acrylic resin is preferably 5 to 50% by mass, more preferably 10 to 40% by mass, and still more preferably 15 to 35% by solid content in 100% by mass of the finally obtained acrylic resin-modified urethane resin. It is good to use so that it may become mass%.
<透湿防水フィルムの製造方法>
 本発明に係る透湿防水フィルムは、アクリル樹脂で変性されたポリウレタン樹脂を含む樹脂溶液から形成される。透湿防水フィルムの製造方法は、特に限定されるものではないが、アクリル樹脂で変性されたポリウレタン樹脂を含む樹脂溶液を、離型紙上に塗布し、乾燥することによって、該樹脂溶液に含まれている有機溶剤あるいは水媒体を蒸発させるという乾式法を採用するとよい。樹脂溶液の塗布方法としては、例えば、リバースコート法、グラビアコート法、ロッドコート法、バーコート法、マイヤーバーコート法、ダイコート法、スプレーコート法等の各種方法を適宜採用するとよい。また必要に応じて、該樹脂溶液には各種添加剤、例えば、酸化防止剤、耐熱安定剤、耐候安定剤、紫外線吸収剤、有機の易滑剤、顔料、染料、有機又は無機の微粒子、充填剤、帯電防止剤、核剤等を配合してもよい。
<Method for producing moisture permeable waterproof film>
The moisture-permeable waterproof film according to the present invention is formed from a resin solution containing a polyurethane resin modified with an acrylic resin. The method for producing a moisture permeable waterproof film is not particularly limited, but a resin solution containing a polyurethane resin modified with an acrylic resin is applied to a release paper and dried to be contained in the resin solution. A dry method of evaporating the organic solvent or the aqueous medium is preferable. As a method for applying the resin solution, for example, various methods such as a reverse coating method, a gravure coating method, a rod coating method, a bar coating method, a Mayer bar coating method, a die coating method, and a spray coating method may be appropriately employed. If necessary, the resin solution may contain various additives such as antioxidants, heat stabilizers, weather stabilizers, ultraviolet absorbers, organic lubricants, pigments, dyes, organic or inorganic fine particles, and fillers. Further, an antistatic agent, a nucleating agent and the like may be blended.
 透湿防水フィルムの厚さは、用途に応じて適宜変更するとよいが、例えば、3~50μmが好ましく、より好ましくは5~30μmであり、更に好ましくは6~15μmである。透湿防水フィルムの厚さが前記範囲内であれば、各種用途に広く適用可能な材料となるため好ましい。 The thickness of the moisture permeable waterproof film may be appropriately changed depending on the application, but is preferably 3 to 50 μm, more preferably 5 to 30 μm, and still more preferably 6 to 15 μm. If the thickness of the moisture permeable waterproof film is within the above range, it is preferable because the material can be widely applied to various uses.
<透湿防水フィルム>
 本発明の透湿防水フィルムは、前述したようにLCSTを有している。LCSTは0℃以上40℃以下が好ましく、より好ましくは5℃以上35℃以下であり、更に好ましくは10℃以上35℃以下であり、より更に好ましくは15℃以上30℃以下である。水の凝固点は0℃であることから、LCSTが0℃を下回ると、得られる透湿防水フィルムにおいて、結露抑制効果等の所望の効果を十分に発揮できない虞がある。また、LCSTが40℃を超えると、従来の透湿防水フィルムにおける問題点である吸水した膜面の膨潤による外観不良、洗濯耐久性の低下、透湿性低下、更には透湿性低下による着用時のムレの改善が、不十分となる虞がある。LCSTを高くするには(メタ)アクリルアミド類の量を減らすとよく、LCSTを低くするには(メタ)アクリルアミド類の量を増やすとよい。なお、LCSTは下記に記載する方法により測定することができる。
 [LCST]厚さ50μmの透湿防水フィルムを5cm角に切り出し、切り出した試料用フィルムを120℃で15分間乾燥し、乾燥後の試料用フィルムの絶乾質量W0を求める。次に、水温をT℃に調整したイオン交換水に、乾燥後の試料用フィルムを2分間浸漬した後、イオン交換水から引き上げた直後の試料用フィルムの質量W1を測定する(試料用フィルムの表裏面に付着する水滴は濾紙で拭き取る)。T℃における吸水率S%は、W1/W0をパーセントに換算して求める。そして、LCSTを求めるため、Tの値を変化させて各温度における吸水率S%を求める。結果を、x軸に温度T℃、y軸に吸水率S%となるようにプロットし、作製したグラフを見て、吸水率S%が大きく変化する時の温度を透湿防水フィルムのLCSTとする。
<Water-permeable waterproof film>
The moisture-permeable waterproof film of the present invention has LCST as described above. LCST is preferably 0 ° C. or higher and 40 ° C. or lower, more preferably 5 ° C. or higher and 35 ° C. or lower, still more preferably 10 ° C. or higher and 35 ° C. or lower, and still more preferably 15 ° C. or higher and 30 ° C. or lower. Since the freezing point of water is 0 ° C., if the LCST is lower than 0 ° C., there is a possibility that desired effects such as a dew condensation suppressing effect cannot be sufficiently exhibited in the obtained moisture-permeable waterproof film. Moreover, when LCST exceeds 40 ° C., appearance defects due to swelling of the water-absorbed membrane surface, which is a problem in conventional moisture-permeable waterproof films, deterioration of washing durability, moisture permeability, and further deterioration due to moisture permeability There is a possibility that improvement of dripping will be insufficient. To increase the LCST, the amount of (meth) acrylamides should be reduced, and to lower the LCST, the amount of (meth) acrylamides should be increased. LCST can be measured by the method described below.
[LCST] A moisture-permeable waterproof film having a thickness of 50 μm is cut into a 5 cm square, the cut sample film is dried at 120 ° C. for 15 minutes, and the absolutely dry mass W 0 of the sample film after drying is obtained. Next, after immersing the dried sample film for 2 minutes in ion exchange water whose water temperature is adjusted to T ° C., the mass W 1 of the sample film immediately after being pulled up from the ion exchange water is measured (sample film). Wipe off water droplets adhering to the front and back of the filter paper). Water absorption S% at T ° C. is obtained by converting the W 1 / W 0 in percent. And in order to obtain | require LCST, the value of T is changed and the water absorption S% in each temperature is calculated | required. The results are plotted so that the temperature is T ° C. on the x-axis and the water absorption S% is on the y-axis, and the temperature at which the water absorption S% changes greatly is determined by looking at the produced graph. To do.
 本発明に係る透湿防水フィルムは耐水圧が高く、下記に記載する方法で測定される耐水圧は50kPa以上であり、100kPa以上にすることもできる。耐水圧の上限は特に限定されないが、450kPa以下であり、400kPa以下であっても問題ない。なお、耐水圧が低すぎると、フィルムが剛性を保てず、雨衣、スポーツウェア等の衣料用素材への適用が難しくなる虞がある。耐水圧が高すぎると、フィルムの風合いが硬くなってしまい、衣料用素材への適用が難しくなる場合がある。
 [耐水圧]透湿防水フィルム用樹脂溶液から、乾式法にて厚さ10μmの透湿防水フィルムを製造し、これに当て布をしたものを用いて、JIS L1092 7.1B法(高水圧法)に準じて測定した。
The moisture-permeable waterproof film according to the present invention has high water pressure resistance, and the water pressure resistance measured by the method described below is 50 kPa or more, and can be 100 kPa or more. The upper limit of the water pressure resistance is not particularly limited, but it is 450 kPa or less, and even if it is 400 kPa or less, there is no problem. If the water pressure resistance is too low, the film cannot maintain rigidity, and it may be difficult to apply it to clothing materials such as rain clothes and sportswear. When the water pressure resistance is too high, the texture of the film becomes hard, and it may be difficult to apply to the clothing material.
[Water-resistant pressure] A moisture-permeable waterproof film having a thickness of 10 μm is produced from a resin solution for moisture-permeable and waterproof films by a dry method and applied to a JIS L1092 7.1B method (high water pressure method). ).
 本発明に係る透湿防水フィルムは、衣服内の温度が上昇すると疎水性を示し、膨潤し難くなることにより適度な透湿性を発揮する。例えば、JIS L1099 B-1法(酢酸カリウム法)に準じて測定される「43℃雰囲気下のB-1透湿度(測定環境を50℃×65%RH、水槽内の水温を43℃に設定)」は、20000g/m2・24h以上を発揮し、22000g/m2・24h以上にすることもでき、アクリル樹脂で変性されたポリウレタン樹脂の存在により45500g/m2・24h以上にすることも可能である。通常上限は、50000g/m2・24h以下であり、49000g/m2・24h以下であっても問題ない。43℃雰囲気下のB-1透湿度が低すぎると、本発明の透湿防水フィルムを衣服に用いた場合に、該衣服の着用者が運動時にムレ感を感じる等、不快感を示す虞がある。一方、43℃雰囲気下のB-1透湿度が高すぎると、耐水性が不足する虞があるため好ましくない。 The moisture-permeable waterproof film according to the present invention exhibits hydrophobicity when the temperature in the clothes is increased, and exhibits moderate moisture permeability by being difficult to swell. For example, measured according to JIS L1099 B-1 method (potassium acetate method) “B-1 moisture permeability at 43 ° C. atmosphere (measuring environment is 50 ° C. × 65% RH and water temperature in the water tank is set to 43 ° C. ) "exerts the least 20000g / m 2 · 24h, can also be at least 22000g / m 2 · 24h, also be at least 45500g / m 2 · 24h with the presence of the polyurethane resin modified with acrylic resin Is possible. Usually, the upper limit is 50000 g / m 2 · 24 h or less, and there is no problem even if it is 49000 g / m 2 · 24 h or less. If the B-1 moisture permeability in a 43 ° C. atmosphere is too low, when the moisture-permeable and waterproof film of the present invention is used for clothes, the wearer of the clothes may feel uncomfortable during exercise, etc. is there. On the other hand, if the B-1 moisture permeability in a 43 ° C. atmosphere is too high, water resistance may be insufficient.
 また透湿防水フィルムは、運動終了時等のように衣服内の温度が低下する際には親水性を示し、結露を抑制する等の効果を発揮する。例えば、JIS L1099 B-1法(酢酸カリウム法)に準じて測定される「13℃雰囲気下のB-1透湿度(測定環境を20℃×65%RH、水槽内の水温を13℃に設定)」は、16000g/m2・24h以下を発揮し、15000g/m2・24h以下にすることも可能である。また13℃雰囲気下のB-1透湿度が低すぎると、衣服内の水蒸気が外部へ排出されず、衣服内の水蒸気量が増加し、衣服内の温度が低下したときに、衣服内の水蒸気が液化して結露が生じやすくなるため好ましくないが、本発明においてその下限は通常12000g/m2・24h以上であり、12500g/m2・24h以上であっても問題ない。 The moisture permeable waterproof film exhibits hydrophilicity when the temperature in the garment decreases, such as at the end of exercise, and exhibits effects such as suppressing condensation. For example, measured according to JIS L1099 B-1 method (potassium acetate method) “B-1 moisture permeability at 13 ° C. atmosphere (measuring environment is 20 ° C. × 65% RH, water temperature in water tank is set to 13 ° C. ) "is to demonstrate the following 16000g / m 2 · 24h, it is also possible to be less than or equal to 15000g / m 2 · 24h. If the B-1 moisture permeability in a 13 ° C. atmosphere is too low, the water vapor in the garment is not discharged to the outside, the amount of water vapor in the garment increases, and the temperature in the garment decreases. However, in the present invention, the lower limit is usually 12000 g / m 2 · 24 h or more, and even if it is 12,500 g / m 2 · 24 h or more, there is no problem.
 本発明の透湿防水フィルムは、LCSTを境にして、LCSTよりも低温域では親水性を示すため、この温度域では吸水率が高くなっている。一方、LCSTよりも高温域では疎水性を示すため、この温度域では吸水率は低くなる傾向にある。そこで、吸水率の変化率に基づく特性を、下記に記載する方法で測定される「LCST前後の吸水率の変化率」で評価する。LCST前後の吸水率の変化率は、2以上を発揮でき、2.3以上にもできる。また通常LCST前後の吸水率の変化率は、5以下であり、4.7以下であっても問題ない。LCST前後の吸水率の変化率が低すぎると、LCSTよりも低い温度域では、高い吸水率を達成できていない可能性が高く、透湿防水フィルムの結露抑制効果が十分に発揮されない虞がある。また、LCST前後の吸水率の変化率が大きすぎると、透湿防水フィルムの親水性が急激に強まることからフィルム強度が低下する虞があるため好ましくない。
 [LCST前後の吸水率の変化率]LCST前後の吸水率の変化率は、LCSTから10℃低下させた温度~LCST間での吸水率(%)の変化率を、LCST~LCSTから10℃上昇させた温度間での吸水率(%)の変化率、で除した値として定義する。吸水率S%を測定する方法は、LCSTの欄で説明した方法と同じである。LCST-10(℃)における吸水率S1、LCST(℃)における吸水率S2をそれぞれ求め、LCST前の吸水率の変化率RAを(S1-S2)/S1から求める。また、LCST+10(℃)における吸水率S3を求め、LCST後の吸水率の変化率RBを(S2-S3)/S2から求める。LCST前後の吸水率の変化率は、RA/RBで評価する。
Since the moisture-permeable waterproof film of the present invention exhibits hydrophilicity at a lower temperature range than the LCST with the LCST as a boundary, the water absorption rate is higher in this temperature range. On the other hand, since it exhibits hydrophobicity at a temperature range higher than LCST, the water absorption rate tends to be low at this temperature range. Therefore, the characteristics based on the change rate of the water absorption rate are evaluated by “change rate of the water absorption rate before and after LCST” measured by the method described below. The rate of change in water absorption before and after LCST can be 2 or more and can be 2.3 or more. Moreover, the change rate of the water absorption before and after LCST is usually 5 or less, and even if it is 4.7 or less, there is no problem. If the rate of change in water absorption before and after LCST is too low, there is a high possibility that a high water absorption rate cannot be achieved in a temperature range lower than LCST, and the dew condensation suppression effect of the moisture permeable waterproof film may not be sufficiently exhibited. . Also, if the rate of change in water absorption before and after LCST is too large, the hydrophilicity of the moisture-permeable and waterproof film will increase sharply, which may reduce the film strength.
[Change rate of water absorption rate before and after LCST] The change rate of water absorption rate before and after LCST is 10 ° C higher than the LCST-LCST. It is defined as the value divided by the rate of change in water absorption (%) between the temperatures. The method for measuring the water absorption S% is the same as the method described in the LCST column. The water absorption S 1 at LCST-10 (° C.) and the water absorption S 2 at LCST (° C.) are respectively determined, and the change rate RA of the water absorption before LCST is determined from (S 1 -S 2 ) / S 1 . Further, the water absorption S 3 at LCST + 10 (° C.) is obtained, and the change rate R B of the water absorption after LCST is obtained from (S 2 −S 3 ) / S 2 . Rate of change of the water absorption before and after the LCST is evaluated by R A / R B.
<複合生地>
 また本発明は、前記透湿防水フィルムを基布に積層した複合生地も包含する。このように複合生地とすることにより、基布自身の有する特徴に加え透湿防水性が付与された、特に降水(雪)用、スポーツ用、アウトドア用、作業用等の各種衣料用途に優れた生地を得ることができるため好ましい。
<Composite fabric>
The present invention also includes a composite fabric in which the moisture-permeable and waterproof film is laminated on a base fabric. By making the composite fabric in this way, in addition to the characteristics of the base fabric itself, moisture permeability and waterproofness were imparted, and it was particularly excellent for various apparel applications such as rain (snow), sports, outdoor use, work use, etc. It is preferable because a dough can be obtained.
 複合生地の基布としては、例えば、織物、編物、不織布、レース、網等が挙げられる。前記織物の織組織は特に限定されないが、例えば、平織り、綾織り、朱子織り、ドビー織等が挙げられる。また前記編物の編組織は、例えば、平編、リブ編、両面編、パール編等の緯編;トリコット編、ラッセル等の経編;天竺、スムース、フライス、ピケ、ブリスター等の丸編;等が挙げられる。更に前記不織布としては、例えば、ケミカルボンド、サーマルボンド、スパンレース等の湿式不織布;ケミカルボンド、サーマルボンド、スパンレース、ニードルパンチ等の乾式不織布;スパンボンド不織布;等が挙げられる。本発明の透湿防水フィルムは適度な強度を有することから、破れにくく耐摩耗性に優れた生地を製造することができる。また、透湿防水フィルムと編物を複合すると、編物が有する独特の伸長性やソフトな風合いを損なうことなく、透湿防水性に優れる編物を製造できる。 Examples of the base fabric of the composite fabric include woven fabric, knitted fabric, non-woven fabric, lace, and net. The woven structure of the woven fabric is not particularly limited, and examples thereof include plain weave, twill weave, satin weave, and dobby weave. The knitting structure of the knitted fabric includes, for example, weft knitting such as flat knitting, rib knitting, double-sided knitting and pearl knitting; warp knitting such as tricot knitting and russell; round knitting such as tengu, smooth, milling, picket and blister; Is mentioned. Furthermore, examples of the nonwoven fabric include wet nonwoven fabrics such as chemical bonds, thermal bonds, and spunlaces; dry nonwoven fabrics such as chemical bonds, thermal bonds, spunlaces, and needle punches; and spunbond nonwoven fabrics. Since the moisture-permeable waterproof film of the present invention has an appropriate strength, it is possible to produce a fabric that is not easily torn and has excellent wear resistance. Further, when the moisture permeable waterproof film and the knitted fabric are combined, a knitted fabric excellent in moisture permeable and waterproof properties can be produced without impairing the unique stretchability and soft texture of the knitted fabric.
 前記基布には、各種繊維が含まれていることが好ましく、繊維としては例えば、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル繊維;ナイロン6、ナイロン66等のポリアミド繊維;ポリイミド繊維;アクリル繊維;ポリプロピレン、ポリエチレン等のポリオレフィン繊維;ポリウレタン繊維等の合成繊維や、綿、麻等の天然繊維;レーヨン等の再生繊維;アセテート繊維等の半合成繊維;等が挙げられる。これらの繊維は単独で使用してもよく、複数種を使用してもよい。特に複合生地の防水性能を高めるには、基布は合成繊維を主として含むものが好ましく、具体的には、基布100質量%中、合成繊維が50質量%以上含まれていることが好ましく、より好ましくは75質量%以上であり、更に好ましくは85質量%以上であり、特に好ましくは95質量%以上である。上限は100質量%が好ましいが、97質量%以下であっても許容できる。 The base fabric preferably contains various fibers. Examples of the fibers include polyester fibers such as polyethylene terephthalate, polytrimethylene terephthalate, and polybutylene terephthalate; polyamide fibers such as nylon 6 and nylon 66; polyimide fibers. Acrylic fibers; polyolefin fibers such as polypropylene and polyethylene; synthetic fibers such as polyurethane fibers; natural fibers such as cotton and hemp; regenerated fibers such as rayon; semisynthetic fibers such as acetate fibers; These fibers may be used alone or in combination. In particular, in order to improve the waterproof performance of the composite fabric, it is preferable that the base fabric mainly contains synthetic fibers. Specifically, it is preferable that 50% by mass or more of the synthetic fibers are contained in 100% by mass of the base fabric. More preferably, it is 75 mass% or more, More preferably, it is 85 mass% or more, Most preferably, it is 95 mass% or more. The upper limit is preferably 100% by mass, but even if it is 97% by mass or less, it is acceptable.
 基布を構成する繊維は、例えば、酸化チタン、酸化亜鉛、アルミナ(酸化アルミニウム)、酸化マグネシウム、硫酸バリウム、タルク、カオリン、炭酸カルシウム及び炭酸ナトリウム等から選ばれる少なくとも一種の無機微粒子を含んでいてもよい。前記無機微粒子としては特に酸化チタンが好ましい。該繊維は無機微粒子を繊維100%中に0.01~1.2質量%含むセミダルであっても、前記無機微粒子を1.2~7質量%含むフルダルであってもよい。上限値を超えると、製糸性が低下して、均一な紡績糸を安定して製造することが難しくなる虞がある。 The fibers constituting the base fabric include, for example, at least one inorganic fine particle selected from titanium oxide, zinc oxide, alumina (aluminum oxide), magnesium oxide, barium sulfate, talc, kaolin, calcium carbonate, sodium carbonate, and the like. Also good. As the inorganic fine particles, titanium oxide is particularly preferable. The fiber may be a semidal containing 0.01 to 1.2% by mass of inorganic fine particles in 100% of the fiber, or a fuller containing 1.2 to 7% by mass of the inorganic fine particles. When the upper limit is exceeded, the yarn-making property is lowered, and it may be difficult to stably produce a uniform spun yarn.
 基布を構成する繊維の太さやフィラメント数は、できあがる布地の用途に応じて適宜調整するとよく、平織物の経糸に用いるマルチフィラメントとしては、繊度が50~280dtexのものが好ましく、より好ましくは60~200dtexである。また1本のマルチフィラメントにおけるモノフィラメント数も特に限定されず、例えば、150~500本が好ましく、より好ましくは200~400本である。 The thickness of the fibers constituting the base fabric and the number of filaments may be appropriately adjusted according to the intended use of the resulting fabric, and the multifilament used for the warp of the plain woven fabric preferably has a fineness of 50 to 280 dtex, more preferably 60 ~ 200 dtex. Further, the number of monofilaments in one multifilament is not particularly limited, and is preferably 150 to 500, for example, and more preferably 200 to 400.
 前記基布には、必要に応じて、撥水加工、風合いや織物の強力を調整するための柔軟仕上げや樹脂加工、帯電防止加工を実施することができる。これらの加工は、透湿防水フィルムとの複合化前に行ってもよいし、透湿防水フィルムと生地を貼り合わせて複合化した後に行ってもよい。 The base fabric can be subjected to water-repellent finishing, soft finishing, resin processing, and antistatic processing for adjusting the texture and the strength of the fabric as necessary. These processes may be performed before compounding with the moisture permeable waterproof film, or may be performed after combining the moisture permeable waterproof film and the fabric.
 撥水加工に用いる撥水剤としては、一般的な繊維用撥水加工剤でよく、例えば、シリコーン系撥水剤、パーフルオロアルキル基を有するポリマーからなるフッ素系撥水剤、パラフィン系撥水剤が好適に用いられる。撥水加工の方法は、パディング法、スプレー法、プリント、コーティング、グラビア法等、一般的な方法を用いることができる。本発明では特に、生地に撥水加工を施しておくと、生地の防水性能が向上し、雨天時等の高湿度下であっても着用快適性が高まるため好ましい。 The water repellent used in the water repellent process may be a general fiber water repellent, such as a silicone water repellent, a fluorine water repellent composed of a polymer having a perfluoroalkyl group, and a paraffin water repellent. An agent is preferably used. As a water repellent processing method, a general method such as a padding method, a spray method, printing, coating, or a gravure method can be used. In the present invention, it is particularly preferable to apply a water-repellent finish to the fabric because the waterproof performance of the fabric is improved and the wearing comfort is enhanced even under high humidity such as rainy weather.
 また、柔軟仕上げに用いる柔軟剤としては、例えば、アミノ変性シリコーンや、ポリエチレン系、ポリエステル系、パラフィン系柔軟剤等が例示できる。また、これらを用いた柔軟加工や、シリコーン加工を仕上げのための後加工として行うことができる。 Further, examples of the softener used for the soft finish include amino-modified silicone, polyethylene-based, polyester-based, paraffin-based softeners, and the like. Moreover, the flexible process using these and a silicone process can be performed as a post-process for finishing.
 透湿防水フィルムと基布を複合化する方法としては、透湿防水フィルムと基布を、接着剤を介して基布を貼り合わせる方法;熱処理により接合する方法;縫合して接合する方法;等が挙げられる。前記接着剤としては、汎用のフィルムと布の接合に使用される接着剤であれば広く用いることができ、例えば、ポリウレタン系接着剤等が好ましい。なお接着剤で両者を貼り合わせるときは、例えば、透湿防水フィルムに、線状、ドット状に接着剤をプリントした後、基布を積層して固定するとよい。また接着剤を塗布する際には、コーティング法、グラビア法等により、透湿防水フィルムの一部分又は全面に均一に塗布し、基布と接着するとよい。このとき、生地と透湿防水フィルムの積層体に圧力をかけ、両者を圧着してもよい。 As a method of combining the moisture permeable waterproof film and the base fabric, a method of bonding the moisture permeable waterproof film and the base fabric to each other through an adhesive; a method of joining by heat treatment; a method of joining by stitching; Is mentioned. As said adhesive agent, if it is an adhesive agent used for joining of a general purpose film and cloth, it can use widely, For example, a polyurethane-type adhesive agent etc. are preferable. In addition, when bonding both with an adhesive agent, it is good to laminate and fix a base fabric, for example, after printing an adhesive agent on a moisture-permeable waterproof film in a linear form or a dot form. Moreover, when apply | coating an adhesive agent, it is good to apply | coat to the one part or the whole surface of a moisture-permeable waterproof film uniformly by a coating method, a gravure method, etc., and to adhere | attach with a base fabric. At this time, pressure may be applied to the laminate of the fabric and the moisture-permeable waterproof film, and both may be pressure bonded.
 本発明に係る透湿防水フィルムと基布とを接合した生地を衣類として仕立てる際は、前記透湿防水フィルムが着用者の皮膚側に向くようにする。 When preparing a fabric obtained by joining the moisture permeable waterproof film and the base fabric according to the present invention as clothing, the moisture permeable waterproof film is directed to the skin side of the wearer.
 また透湿防水フィルムと基布との複合生地には、透湿防水フィルム側表面に保護層を積層することも可能である。保護層を積層することにより、複合生地の実用耐久性が向上するとともに、肌と透湿防水フィルムとが接触することによる発汗時のべたつき等を改善することができる。また、保護層を積層すれば、複合生地の引裂強力や破断強力が向上することも期待できる。保護層を貼り合せる方法としては、接着層を介して保護層と透湿防水フィルムを接合する方法が挙げられ、接着剤の種類や塗布方法は、前述した透湿防水フィルムと基布とを貼り合わせる方法と同様である。ただし接着剤を介して保護層を貼り合わせる際には、接着剤が保護層の全面に塗布されていない方がよい。保護層全面に接着剤を塗布してしまうと、複合生地の透湿度が低下し、衣類着用者が発汗時にべたつきを感じる虞があるからである。また、接着剤を保護層の全面に塗布しないことで、複合生地の裏面の意匠性を高めることもできるため、見た目も良くなる。 Also, it is possible to laminate a protective layer on the moisture permeable waterproof film side surface of the composite fabric of the moisture permeable waterproof film and the base fabric. By laminating the protective layer, the practical durability of the composite fabric is improved, and stickiness during sweating due to contact between the skin and the moisture-permeable waterproof film can be improved. Moreover, if a protective layer is laminated | stacked, it can also be expected that the tear strength and breaking strength of the composite fabric are improved. Examples of the method of bonding the protective layer include a method of bonding the protective layer and the moisture permeable waterproof film via an adhesive layer, and the kind and application method of the adhesive are applied by attaching the moisture permeable waterproof film and the base fabric described above. It is the same as the method of matching. However, when bonding a protective layer through an adhesive, it is better that the adhesive is not applied to the entire surface of the protective layer. This is because if the adhesive is applied to the entire surface of the protective layer, the moisture permeability of the composite fabric decreases, and the wearer may feel sticky when sweating. Moreover, since the design of the back surface of the composite fabric can be improved by not applying the adhesive to the entire surface of the protective layer, the appearance is improved.
 前記保護層としては、基布と同じように、織物、編物、不織布、レース、網等が挙げられ、中でも織物、丸編の編物、経編の編物及び不織布から選ばれる少なくとも1以上が好ましい。これらの保護層は単独で用いても、2種以上を組み合わせて用いてもよい。また保護層の繊維としては、耐久性に優れることから、ポリエステル繊維(例えば、ポリエチレンテレフタレート)や、ポリアミド繊維(例えば、ナイロン6、ナイロン66)のような合成繊維が好ましい。 Examples of the protective layer include woven fabrics, knitted fabrics, non-woven fabrics, laces, nets and the like, as in the case of the base fabric. Among them, at least one selected from woven fabrics, circular knitted fabrics, warp knitted fabrics and non-woven fabrics is preferable. These protective layers may be used alone or in combination of two or more. Moreover, as a fiber of a protective layer, since it is excellent in durability, a synthetic fiber like a polyester fiber (for example, polyethylene terephthalate) and a polyamide fiber (for example, nylon 6, nylon 66) is preferable.
 前述した方法で製造される透湿防水フィルムと基布を複合化した複合生地は、雨衣等の降水(雪)用衣料;ゴルフ、スキー、スノーボード等のスポーツ用衣料;アスレチック、登山等のアウトドア用衣料;高温環境下、多湿環境下等で作業する作業従事者のための作業用衣料;等の衣料素材として好ましく使用することができる。 The composite fabric made by combining the moisture permeable waterproof film and the base fabric manufactured by the method described above is used for rain (snow) clothing such as rain clothing; sports clothing such as golf, skiing and snowboarding; It can be preferably used as a clothing material such as clothing; work clothing for workers working in high-temperature environments, humid environments, and the like.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。なお、以下においては、特に断りのない限り、「部」は「質量部」を、「%」は「質量%」を意味する。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention. In the following, “part” means “part by mass” and “%” means “mass%” unless otherwise specified.
<耐水圧>
 透湿防水フィルムの耐水圧は、実施例・比較例の欄で製造した透湿防水フィルム用樹脂溶液から、乾式法にて厚さ10μmの透湿防水フィルムを製造し、これに当て布をしたものを用いて、JIS L1092 7.1B法(高水圧法)に準じて測定する。
<Water pressure resistance>
The water pressure resistance of the moisture permeable waterproof film was obtained by manufacturing a moisture permeable waterproof film having a thickness of 10 μm by a dry method from the resin solution for moisture permeable waterproof film manufactured in the column of Examples / Comparative Examples. Measured according to JIS L1092 7.1B method (high water pressure method).
<透湿度>
 厚さ10μmの透湿防水フィルムを用いて、JIS L1099 B-1法(酢酸カリウム法)に準じて測定する。「13℃雰囲気下のB-1透湿度」は、測定環境を20℃×65%RH、水槽内の水温を13℃に設定して測定を行う。また「43℃雰囲気下のB-1透湿度」は、測定環境を50℃×65%RH、水槽内の水温を43℃に設定して測定を行う。
<Moisture permeability>
The measurement is performed according to JIS L1099 B-1 method (potassium acetate method) using a moisture-permeable waterproof film having a thickness of 10 μm. “B-1 moisture permeability at 13 ° C. atmosphere” is measured by setting the measurement environment to 20 ° C. × 65% RH and the water temperature in the water tank to 13 ° C. “B-1 moisture permeability at 43 ° C. atmosphere” is measured by setting the measurement environment to 50 ° C. × 65% RH and the water temperature in the water tank to 43 ° C.
<下限臨界共溶温度(LCST)>
 まず実施例・比較例で作製した透湿防水フィルム用樹脂溶液を用い、乾式法で厚さ50μmの透湿防水フィルムを製造する。製造した透湿防水フィルムを5cm角に切り出し、切り出した試料用フィルムを120℃で15分間乾燥し、乾燥後の試料用フィルムの絶乾質量W0を求める。次に、水温をT℃に調整したイオン交換水に、乾燥後の試料用フィルムを2分間浸漬した後、イオン交換水から引き上げた直後の試料用フィルムの質量W1を測定する(試料用フィルムの表裏面に付着する水滴は濾紙で拭き取る)。T℃における吸水率S%は、W1/W0をパーセントに換算して求める。そして、LCSTを求めるため、Tの値を変化させて各温度における吸水率S%を求める。結果を、x軸に温度T℃、y軸に吸水率S%となるようにプロットし、作製したグラフを見て、吸水率S%が大きく変化する時の温度を透湿防水フィルムのLCSTとする。
<Lower critical eutectic temperature (LCST)>
First, a moisture permeable waterproof film having a thickness of 50 μm is produced by a dry method using the resin solution for moisture permeable waterproof film prepared in Examples and Comparative Examples. The manufactured moisture permeable waterproof film is cut into 5 cm square, the cut sample film is dried at 120 ° C. for 15 minutes, and the absolutely dry mass W 0 of the dried sample film is obtained. Next, after immersing the dried sample film for 2 minutes in ion exchange water whose water temperature is adjusted to T ° C., the mass W 1 of the sample film immediately after being pulled up from the ion exchange water is measured (sample film). Wipe off water droplets adhering to the front and back of the filter paper). The water absorption S% at T ° C. is obtained by converting W 1 / W 0 into percentage. And in order to obtain | require LCST, the value of T is changed and the water absorption S% in each temperature is calculated | required. The results are plotted so that the temperature is T ° C. on the x-axis and the water absorption S% is on the y-axis, and the temperature at which the water absorption S% changes greatly is determined by looking at the produced graph. To do.
<LCST前後の吸水率の変化率>
 吸水率S%を測定する方法は、LCSTの欄で説明した方法と同じである。LCST-10(℃)における吸水率S1、LCST(℃)における吸水率S2をそれぞれ求め、LCST前の吸水率の変化率RAを(S1-S2)/S1から求める。また、LCST+10(℃)における吸水率S3を求め、LCST後の吸水率の変化率RBを(S2-S3)/S2から求める。LCST前後の吸水率の変化率は、RA/RBで評価する。
<Change rate of water absorption before and after LCST>
The method for measuring the water absorption S% is the same as the method described in the LCST column. The water absorption S 1 at LCST-10 (° C.) and the water absorption S 2 at LCST (° C.) are respectively determined, and the change rate RA of the water absorption before LCST is determined from (S 1 -S 2 ) / S 1 . Further, the water absorption S 3 at LCST + 10 (° C.) is obtained, and the change rate R B of the water absorption after LCST is obtained from (S 2 −S 3 ) / S 2 . Rate of change of the water absorption before and after the LCST is evaluated by R A / R B.
<衣料用生地としての良否判断>
 実施例、比較例で作成した複合生地を用いて、JIS L0217 103法に準じて繰り返し洗濯(20回)、吊り干し乾燥を行い、フィルム面の外観品位より確認した。フィルム面に欠損(破れ等)がある場合は「不良」とし、フィルム面に欠損は無いが、膨潤などに伴うシワや波打ちが発生しているものを「やや良好」とし、フィルム面が一様にきれいなものを「良好」とした。
<Judgment of quality as clothing material>
Using the composite fabrics prepared in Examples and Comparative Examples, repeated washing (20 times) and hanging drying were performed according to JIS L0217 103 method, and the appearance quality of the film surface was confirmed. If there is a defect (breaking, etc.) on the film surface, it is judged as “bad”, and there is no defect on the film surface. A beautiful item was defined as “good”.
 実施例1
 イソプロピルアクリルアミド(NIPAM)158部、アクリル酸メチル(MA)13部、tert-ブチルアクリルアミド(TBAA)24部、2-ヒドロキシエチルアクリレート(HEA)3部、アゾビスイソブチロニトリル(AIBN)5部を、DMF300部の混合溶液中にて溶液重合して、分子内にヒドロキシル基を有するアクリル樹脂(AC-1)を製造した。
Example 1
158 parts of isopropyl acrylamide (NIPAM), 13 parts of methyl acrylate (MA), 24 parts of tert-butyl acrylamide (TBAA), 3 parts of 2-hydroxyethyl acrylate (HEA), 5 parts of azobisisobutyronitrile (AIBN) Then, solution polymerization was performed in a mixed solution of 300 parts of DMF to produce an acrylic resin (AC-1) having a hydroxyl group in the molecule.
(1)プレポリマー溶液の製造
 重量平均分子量2000のポリエチレングリコール(PEG)600部、分子内にヒドロキシル基を有するアクリル樹脂(AC-1)532部、ジメチルホルムアミド(DMF)535部を、窒素気流下において均一に混合した後、4,4’-ジフェニルメタンジイソシアネート(MDI)31部、2,6-トリエンジイソシアネート(2,6-TDI)5.2部を加え、75℃で約1時間加熱してプレポリマー溶液を得た。
(1) Production of prepolymer solution 600 parts of polyethylene glycol (PEG) having a weight average molecular weight of 2,000, 532 parts of acrylic resin (AC-1) having a hydroxyl group in the molecule, and 535 parts of dimethylformamide (DMF) under a nitrogen stream Then, 31 parts of 4,4′-diphenylmethane diisocyanate (MDI) and 5.2 parts of 2,6-triene diisocyanate (2,6-TDI) are added, and the mixture is heated at 75 ° C. for about 1 hour. A polymer solution was obtained.
(2)透湿防水フィルム用樹脂溶液の製造
 次いで、(1)工程で製造したプレポリマー溶液に、DMF567部、エチレングリコール(EG)105部を加え、均一に混合した後、MDIを463部加えた。また、ポリマーの増粘と共に、DMF711部、メチルエチルケトン(MEK)1185部を加えて希釈しながら撹拌を続け、25℃における粘度が70000mPa・sになるまで増粘させた後、反応を停止した。
(2) Manufacture of resin solution for moisture permeable waterproof film Next, 567 parts of DMF and 105 parts of ethylene glycol (EG) are added to the prepolymer solution manufactured in step (1) and mixed uniformly, and then 463 parts of MDI is added. It was. In addition to the thickening of the polymer, 711 parts of DMF and 1185 parts of methyl ethyl ketone (MEK) were added and stirred while diluting to increase the viscosity until the viscosity at 25 ° C. reached 70000 mPa · s, and then the reaction was stopped.
(3)透湿防水フィルムの製造
 このようにして得られた透湿防水フィルム用樹脂溶液から、透湿防水フィルムを、乾式法にて厚さ50μmとなるように作製した。製造した透湿防水フィルムについてLCSTを測定したところ、LCSTは25℃であり、15~25℃間における吸水率の変化を25~35℃間における吸水率の変化率で除した値が2.5となった。
(3) Manufacture of moisture-permeable and waterproof film From the resin solution for moisture-permeable and waterproof films obtained as described above, a moisture-permeable and waterproof film was prepared by a dry method so as to have a thickness of 50 μm. When the LCST was measured for the produced moisture-permeable waterproof film, the LCST was 25 ° C., and the value obtained by dividing the change in water absorption between 15 and 25 ° C. by the change in water absorption between 25 and 35 ° C. was 2.5. It became.
(4)基布及び複合生地の製造
 次に、(2)工程で製造した透湿防水フィルム用樹脂溶液から、透湿防水フィルムを2枚、乾式法にて厚さ10μmとなるように作製した。また、経糸にポリエステルセミダル糸(78dtex、216フィラメント)、緯糸にポリエステルセミダル糸(156dtex、432フィラメント)を用いて、平組織の織物を製造した。この織物には、一般的な染色を行い、最終仕上げとして撥水加工を行った。製造された織物の経糸密度は140本/インチ、緯糸密度は83本/インチ、目付は116g/m2であった。厚さ10μmの透湿防水フィルムの1枚の上に、湿気硬化型ポリウレタン系接着剤を16メッシュドットで配置し、その上に作製した平織物を貼り合わせて複合生地を製造した。
(4) Manufacture of base fabric and composite fabric Next, from the resin solution for moisture permeable waterproof film produced in the step (2), two moisture permeable waterproof films were prepared by a dry method so as to have a thickness of 10 μm. . In addition, a plain-textured fabric was manufactured using polyester semi-dal yarn (78 dtex, 216 filament) as warp and polyester semi-dal yarn (156 dtex, 432 filament) as weft. This fabric was subjected to general dyeing and water-repellent finishing as a final finish. The produced woven fabric had a warp density of 140 yarns / inch, a weft density of 83 yarns / inch, and a basis weight of 116 g / m 2 . A moisture curable polyurethane adhesive was arranged with 16 mesh dots on one moisture permeable waterproof film having a thickness of 10 μm, and a plain fabric prepared thereon was bonded to produce a composite fabric.
 実施例2
 イソプロピルアクリルアミド(NIPAM)100部、ジエチルアクリルアミド(DEAA)19部、アクリル酸メチル(MA)26部、tert-ブチルアクリルアミド(TBAA)50部、2-ヒドロキシプロピルアクリレート(HEA)3部、アゾビスイソブチロニトリル(AIBN)5部を、DMF300部の混合溶液中で溶液重合して、ヒドロキシル基を有するアクリル樹脂(AC-2)を製造した。
Example 2
100 parts of isopropyl acrylamide (NIPAM), 19 parts of diethyl acrylamide (DEAA), 26 parts of methyl acrylate (MA), 50 parts of tert-butyl acrylamide (TBAA), 3 parts of 2-hydroxypropyl acrylate (HEA), azobisisobuty An acrylic resin (AC-2) having a hydroxyl group was produced by solution polymerization of 5 parts of ronitrile (AIBN) in a mixed solution of 300 parts of DMF.
(1)重量平均分子量2000のPEG550部、重量平均分子量2000のポリテトラメチレングリコール(PTMG)50部、分子内にヒドロキシル基を有するアクリル樹脂(AC-2)532部、DMF535部を、窒素気流下において均一に混合した後、MDIを38部加え、75℃で約1時間加熱してプレポリマー溶液を製造した。 (1) PEG 550 parts with a weight average molecular weight of 2000, 50 parts of polytetramethylene glycol (PTMG) with a weight average molecular weight of 2000, 532 parts of an acrylic resin (AC-2) having a hydroxyl group in the molecule, and 535 parts of DMF under a nitrogen stream Then, 38 parts of MDI was added and heated at 75 ° C. for about 1 hour to prepare a prepolymer solution.
(2)次いで、(1)工程で製造したプレポリマー溶液に、DMF567部、EG105部を加え、均一に混合した後、MDIを463部加えた。また、ポリマーの増粘と共に、DMF711部、MEK1185部を加えて希釈しながら撹拌を続け、25℃における粘度が70000mPa・sになるまで増粘させた後、反応を停止した。 (2) Next, 567 parts of DMF and 105 parts of EG were added to the prepolymer solution produced in the step (1) and mixed uniformly, and then 463 parts of MDI was added. In addition to the thickening of the polymer, 711 parts of DMF and 1185 parts of MEK were added and stirring was continued while diluting to increase the viscosity until the viscosity at 25 ° C. reached 70000 mPa · s, and then the reaction was stopped.
(3)このようにして得られた透湿防水フィルム用樹脂溶液から、透湿防水フィルムを、乾式法にて厚さ50μmとなるように作製した。製造した透湿防水フィルムについてLCSTを測定したところ、LCSTは20℃であり、10~20℃間における吸水率の変化を、20~30℃間における吸水率の変化率で除した値が4.0となった。 (3) A moisture permeable waterproof film was prepared from the resin solution for a moisture permeable waterproof film thus obtained so as to have a thickness of 50 μm by a dry method. When the LCST was measured for the produced moisture-permeable waterproof film, the LCST was 20 ° C., and the value obtained by dividing the change in water absorption between 10 and 20 ° C. by the change in water absorption between 20 and 30 ° C. was 4. 0.
(4)次に、(2)工程で製造した透湿防水フィルム用樹脂溶液から、透湿防水フィルムを2枚、乾式法にて厚さ10μmとなるように作製した。平組織の織物は実施例1と同様にして製造し、厚さ10μmの透湿防水フィルムの1枚の上に、湿気硬化型ポリウレタン系接着剤を16メッシュドットで配置し、その上に作製した平織物を貼り合わせて複合生地を製造した。 (4) Next, two moisture permeable waterproof films were produced from the resin solution for moisture permeable waterproof film produced in the step (2) so as to have a thickness of 10 μm by a dry method. A plain-textured fabric was produced in the same manner as in Example 1. A moisture-curable polyurethane-based adhesive was arranged with 16 mesh dots on one piece of a moisture-permeable waterproof film having a thickness of 10 μm, and was produced thereon. A plain fabric was laminated to produce a composite fabric.
 比較例1
(1)重量平均分子量2000のPEG600部、DMF641部を、窒素気流下において均一に混合した後、MDIを38部加え、75℃で約1時間加熱してプレポリマー溶液を製造した。次いで、製造したプレポリマー溶液に、DMF567部、EG105部を加え、均一に混合した後、MDIを463部加えて増粘した。また、ポリマーの増粘と共にDMF604部、MEK1008部を加えて、希釈しながら、25℃における粘度が70000mPa・sにまで増粘し、反応を停止した。
Comparative Example 1
(1) After 600 parts of PEG having a weight average molecular weight of 2000 and 641 parts of DMF were uniformly mixed under a nitrogen stream, 38 parts of MDI was added and heated at 75 ° C. for about 1 hour to prepare a prepolymer solution. Next, 567 parts of DMF and 105 parts of EG were added to the prepared prepolymer solution and mixed uniformly, and then 463 parts of MDI was added to increase the viscosity. Further, 604 parts of DMF and 1008 parts of MEK were added together with the thickening of the polymer, and while diluting, the viscosity at 25 ° C. was increased to 70000 mPa · s, and the reaction was stopped.
(2)このようにして得られた透湿防水フィルム用樹脂溶液から、透湿防水フィルムを、乾式法にて厚さ50μmとなるように作製した。製造した透湿防水フィルムについてLCSTを測定したが、LCSTは確認できなかった。 (2) A moisture permeable waterproof film was prepared from the resin solution for a moisture permeable waterproof film thus obtained so as to have a thickness of 50 μm by a dry method. Although LCST was measured about the manufactured moisture-permeable waterproof film, LCST was not able to be confirmed.
(3)次に、(2)工程で製造した透湿防水フィルム用樹脂溶液から、透湿防水フィルムを2枚、乾式法にて厚さ10μmとなるように作製した。平組織の織物は実施例1と同様にして製造し、厚さ10μmの透湿防水フィルムの1枚の上に、湿気硬化型ポリウレタン系接着剤を16メッシュドットで配置し、その上に作製した平織物を貼り合わせて複合生地を製造した。 (3) Next, two moisture permeable waterproof films were produced from the resin solution for the moisture permeable waterproof film produced in the step (2) so as to have a thickness of 10 μm by a dry method. A plain-textured fabric was produced in the same manner as in Example 1. A moisture-curable polyurethane-based adhesive was arranged with 16 mesh dots on one piece of a moisture-permeable waterproof film having a thickness of 10 μm, and was produced thereon. A plain fabric was laminated to produce a composite fabric.
 比較例2
(1)重量平均分子量2000のPEG600部、DMF641部を、窒素気流下において均一に混合した後、MDIを38部加え、75℃で約1時間加熱してプレポリマー溶液を製造した。
Comparative Example 2
(1) After 600 parts of PEG having a weight average molecular weight of 2000 and 641 parts of DMF were uniformly mixed under a nitrogen stream, 38 parts of MDI was added and heated at 75 ° C. for about 1 hour to prepare a prepolymer solution.
(2)次いで、(1)工程で製造したプレポリマー溶液に、DMF567部、EG105部を加え、均一に混合した後、MDIを463部加えて増粘した。また、ポリマーの増粘と共にDMF604部、MEK1008部を加えて、希釈しながら、25℃における粘度が70000mPa・sにまで増粘し、反応を停止した。その後、製造した樹脂溶液850部に、アクリロニトリルスチレン共重合体樹脂を、DMFで固形分濃度30%に溶解したものを150部加え、透湿防水フィルム用溶液とした。 (2) Next, 567 parts of DMF and 105 parts of EG were added to the prepolymer solution produced in the step (1) and mixed uniformly, and then 463 parts of MDI was added to increase the viscosity. Further, 604 parts of DMF and 1008 parts of MEK were added together with the thickening of the polymer, and while diluting, the viscosity at 25 ° C. was increased to 70000 mPa · s, and the reaction was stopped. Thereafter, 150 parts of a solution of acrylonitrile styrene copolymer resin dissolved in DMF to a solid content concentration of 30% was added to 850 parts of the produced resin solution to obtain a solution for moisture permeable waterproof film.
(3)このようにして得られた透湿防水フィルム用樹脂溶液から、透湿防水フィルムを、乾式法にて厚さ50μmとなるように作製した。製造した透湿防水フィルムについてLCSTを測定したが、LCSTは確認できなかった。 (3) A moisture permeable waterproof film was prepared from the resin solution for a moisture permeable waterproof film thus obtained so as to have a thickness of 50 μm by a dry method. Although LCST was measured about the manufactured moisture-permeable waterproof film, LCST was not able to be confirmed.
(4)次に、(2)工程で製造した透湿防水フィルム用樹脂溶液から、透湿防水フィルムを2枚、乾式法にて厚さ10μmとなるように作製した。平組織の織物は実施例1と同様にして製造し、厚さ10μmの透湿防水フィルムの1枚の上に、湿気硬化型ポリウレタン系接着剤を16メッシュドットで配置し、その上に作製した平織物を貼り合わせて複合生地を製造した。 (4) Next, two moisture permeable waterproof films were produced from the resin solution for moisture permeable waterproof film produced in the step (2) so as to have a thickness of 10 μm by a dry method. A plain-textured fabric was produced in the same manner as in Example 1. A moisture-curable polyurethane-based adhesive was arranged with 16 mesh dots on one piece of a moisture-permeable waterproof film having a thickness of 10 μm, and was produced thereon. A plain fabric was laminated to produce a composite fabric.
 比較例3
 イソプロピルアクリルアミド(NIPAM)79部、アクリル酸メチル(MA)16部、tert-ブチルアクリルアミド(TBAA)77部、2-ヒドロキシプロピルアクリレート(HEA)3部、アゾビスイソブチロニトリル(AIBN)5部を、DMF300部の混合溶液中で溶液重合して、分子内にヒドロキシル基を有するアクリル樹脂(AC-3)を製造した。
Comparative Example 3
79 parts isopropylacrylamide (NIPAM), 16 parts methyl acrylate (MA), 77 parts tert-butylacrylamide (TBAA), 3 parts 2-hydroxypropyl acrylate (HEA), 5 parts azobisisobutyronitrile (AIBN) Then, solution polymerization was performed in a mixed solution of 300 parts of DMF to produce an acrylic resin (AC-3) having a hydroxyl group in the molecule.
(1)重量平均分子量2000のPEG600部、分子内にヒドロキシル基を有するアクリル樹脂(AC-3)532部、DMF535部を、窒素気流下において均一に混合した後、MDIを38部加え、75℃で約1時間加熱してプレポリマー溶液を製造した。 (1) 600 parts of PEG having a weight average molecular weight of 2000, 532 parts of an acrylic resin (AC-3) having a hydroxyl group in the molecule, and 535 parts of DMF were uniformly mixed under a nitrogen stream, and then 38 parts of MDI was added, and 75 ° C. For about 1 hour to prepare a prepolymer solution.
(2)次いで、(1)工程で製造したプレポリマー溶液に、DMF567部、EG105部を加え、均一に混合した後、MDIを463部加えた。また、ポリマーの増粘と共に、DMF711部、MEK1185部を加えて希釈しながら撹拌を続け、25℃における粘度が70000mPa・sになるまで増粘させた後、反応を停止した。 (2) Next, 567 parts of DMF and 105 parts of EG were added to the prepolymer solution produced in the step (1) and mixed uniformly, and then 463 parts of MDI was added. In addition to the thickening of the polymer, 711 parts of DMF and 1185 parts of MEK were added and stirring was continued while diluting to increase the viscosity until the viscosity at 25 ° C. reached 70000 mPa · s, and then the reaction was stopped.
(3)このようにして得られた透湿防水フィルム用樹脂溶液から、透湿防水フィルムを、乾式法にて厚さ50μmとなるように作製した。製造した透湿防水フィルムについてLCSTを測定したところ、LCSTは0℃以下であり、確認できなかった。 (3) A moisture permeable waterproof film was prepared from the resin solution for a moisture permeable waterproof film thus obtained so as to have a thickness of 50 μm by a dry method. When LCST was measured about the manufactured moisture-permeable waterproof film, LCST was 0 degrees C or less, and it was not able to confirm.
(4)次に、(2)工程で製造した透湿防水フィルム用樹脂溶液から、透湿防水フィルムを2枚、乾式法にて厚さ10μmとなるように作製した。平組織の織物は実施例1と同様にして製造し、厚さ10μmの透湿防水フィルムの1枚の上に、湿気硬化型ポリウレタン系接着剤を16メッシュドットで配置し、その上に作製した平織物を貼り合わせて複合生地を製造した。 (4) Next, two moisture permeable waterproof films were produced from the resin solution for moisture permeable waterproof film produced in the step (2) so as to have a thickness of 10 μm by a dry method. A plain-textured fabric was produced in the same manner as in Example 1. A moisture-curable polyurethane-based adhesive was arranged with 16 mesh dots on one piece of a moisture-permeable waterproof film having a thickness of 10 μm, and was produced thereon. A plain fabric was laminated to produce a composite fabric.
 比較例4
(1)重量平均分子量2000のPEG600部、分子内にヒドロキシル基を有するアクリル樹脂(AC-1)177部、DMF641部を、窒素気流下において均一に混合した後、MDIを38部加え、75℃で約1時間加熱してプレポリマー溶液を製造した。
Comparative Example 4
(1) 600 parts of PEG having a weight average molecular weight of 2000, 177 parts of an acrylic resin (AC-1) having a hydroxyl group in the molecule, and 641 parts of DMF were mixed uniformly under a nitrogen stream, and then 38 parts of MDI was added, and 75 ° C. For about 1 hour to prepare a prepolymer solution.
(2)次いで、(1)工程で製造したプレポリマー溶液に、DMF567部、EG105部を加え、均一に混合した後、MDIを463部加えて増粘した。また、ポリマーの増粘と共にDMF711部、MEK1185部を加えて、希釈しながら、25℃における粘度が70000mPa・sにまで増粘し、反応を停止した。 (2) Next, 567 parts of DMF and 105 parts of EG were added to the prepolymer solution produced in the step (1) and mixed uniformly, and then 463 parts of MDI was added to increase the viscosity. Moreover, DMF711 part and MEK1185 part were added with the thickening of the polymer, the viscosity in 25 degreeC increased to 70000 mPa * s, diluting, and reaction was stopped.
(3)このようにして得られた透湿防水フィルム用樹脂溶液から、透湿防水フィルムを、乾式法にて厚さ50μmとなるように作製した。製造した透湿防水フィルムについてLCSTを測定したところ、LCSTは25℃であり、15~25℃間における吸水率の変化を、25~35℃間における吸水率の変化率で除した値が1.5となった。 (3) A moisture permeable waterproof film was prepared from the resin solution for a moisture permeable waterproof film thus obtained so as to have a thickness of 50 μm by a dry method. When the LCST was measured for the produced moisture-permeable waterproof film, the LCST was 25 ° C., and the value obtained by dividing the change in water absorption between 15 and 25 ° C. by the change in water absorption between 25 and 35 ° C. was 1. It became 5.
(4)次に、(2)工程で製造した透湿防水フィルム用樹脂溶液から、透湿防水フィルムを2枚、乾式法にて厚さ10μmとなるように作製した。平組織の織物は実施例1と同様にして製造し、厚さ10μmの透湿防水フィルムの1枚の上に、湿気硬化型ポリウレタン系接着剤を16メッシュドットで配置し、その上に作製した平織物を貼り合わせて複合生地を製造した。 (4) Next, two moisture permeable waterproof films were produced from the resin solution for moisture permeable waterproof film produced in the step (2) so as to have a thickness of 10 μm by a dry method. A plain-textured fabric was produced in the same manner as in Example 1. A moisture-curable polyurethane-based adhesive was arranged with 16 mesh dots on one piece of a moisture-permeable waterproof film having a thickness of 10 μm, and was produced thereon. A plain fabric was laminated to produce a composite fabric.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 また図1に、実施例1~2及び比較例1~3のLCST測定用のグラフを示す。図1に示すように、実施例1で作製された透湿防水フィルムの吸水率は25℃付近で大きく変化していることがわかる。また実施例2で作製された透湿防水フィルムの吸水率も、20℃付近で大きく変化していることから、実施例1のLCSTは25℃、実施例2のLCSTは20℃とした。一方、比較例1~2で作製された透湿防水フィルムは、アクリル樹脂で変性されたポリウレタン樹脂を含まないため、吸水率の変化点がなく、LCSTは測定されなかった。更に、比較例3で作製された透湿防水フィルムは、アクリル樹脂で変性されたポリウレタン樹脂を含むが、設定されたLCSTが0℃よりも低いと考えられ、結果的に水に対して吸水率の変化点が発現しないため、LCSTは0℃とした。 FIG. 1 shows a graph for LCST measurement in Examples 1-2 and Comparative Examples 1-3. As shown in FIG. 1, it can be seen that the water absorption rate of the moisture-permeable waterproof film produced in Example 1 changes greatly in the vicinity of 25 ° C. Moreover, since the water absorption rate of the moisture permeable waterproof film produced in Example 2 also changed greatly around 20 ° C., the LCST of Example 1 was set to 25 ° C., and the LCST of Example 2 was set to 20 ° C. On the other hand, the moisture-permeable and waterproof films produced in Comparative Examples 1 and 2 did not contain a polyurethane resin modified with an acrylic resin, so there was no change in water absorption rate, and LCST was not measured. Furthermore, although the moisture-permeable waterproof film produced in Comparative Example 3 includes a polyurethane resin modified with an acrylic resin, the set LCST is considered to be lower than 0 ° C., and consequently, the water absorption rate with respect to water. LCST was set to 0 ° C. because no change point was observed.
 本発明に係る透湿防水フィルムは、温度に応じて親水性と疎水性の両方を発現させる用途、例えば、雨衣等の降水(雪)用衣料;ゴルフ、スキー、スノーボード等のスポーツ用衣料;アスレチック、登山等のアウトドア用衣料;高温環境下、多湿環境下等で作業する作業従事者のための作業用衣料;等の衣料素材用のフィルムとして好ましく使用することができる。 The moisture permeable waterproof film according to the present invention is used for developing both hydrophilicity and hydrophobicity depending on temperature, for example, rain (snow) clothing such as rain clothing; sports clothing such as golf, skiing and snowboarding; It can be preferably used as a film for clothing materials such as outdoor clothing such as mountain climbing; work clothing for workers working in high-temperature environments, humid environments, and the like.

Claims (7)

  1.  アクリル樹脂で変性されたポリウレタン樹脂を含み、LCST(下限臨界共溶温度)を有することを特徴とする透湿防水フィルム。 A moisture-permeable waterproof film comprising a polyurethane resin modified with an acrylic resin and having a LCST (lower critical solution temperature).
  2.  下記に記載する方法で測定される透湿防水フィルムのLCSTが0℃以上40℃以下であり、該透湿防水フィルムはLCST以下でも水溶性を示さない請求項1に記載の透湿防水フィルム。
     [LCST]厚さ50μmの透湿防水フィルムを5cm角に切り出し、切り出した試料用フィルムを120℃で15分間乾燥し、乾燥後の試料用フィルムの絶乾質量W0を求める。次に、水温をT℃に調整したイオン交換水に、乾燥後の試料用フィルムを2分間浸漬した後、イオン交換水から引き上げた直後の試料用フィルムの質量W1を測定する(試料用フィルムの表裏面に付着する水滴は濾紙で拭き取る)。T℃における吸水率S%は、W1/W0をパーセントに換算して求める。そして、LCSTを求めるため、Tの値を変化させて各温度における吸水率S%を求める。結果を、x軸に温度T℃、y軸に吸水率S%となるようにプロットし、作製したグラフを見て吸水率S%が大きく変化する時の温度を透湿防水フィルムのLCSTとする。
    The moisture permeable waterproof film according to claim 1, wherein the moisture permeable waterproof film measured by the method described below has an LCST of 0 ° C or higher and 40 ° C or lower, and the moisture permeable waterproof film does not exhibit water solubility even at LCST or lower.
    [LCST] A moisture-permeable waterproof film having a thickness of 50 μm is cut into a 5 cm square, the cut sample film is dried at 120 ° C. for 15 minutes, and the absolutely dry mass W 0 of the sample film after drying is obtained. Next, after immersing the dried sample film for 2 minutes in ion exchange water whose water temperature is adjusted to T ° C., the mass W 1 of the sample film immediately after being pulled up from the ion exchange water is measured (sample film). Wipe off water droplets adhering to the front and back of the filter paper). The water absorption S% at T ° C. is obtained by converting W 1 / W 0 into percentage. And in order to obtain | require LCST, the value of T is changed and the water absorption S% in each temperature is calculated | required. The results are plotted so that the temperature is T ° C. on the x-axis and the water absorption S% is on the y-axis, and the temperature at which the water absorption S% changes greatly by looking at the produced graph is the LCST of the moisture-permeable waterproof film. .
  3.  前記アクリル樹脂は、
     N-イソプロピルアクリルアミドと、ヒドロキシル基含有(メタ)アクリレート類とを必須として含むアクリル樹脂用単量体混合物から重合により得られたものである請求項1又は2に記載の透湿防水フィルム。
    The acrylic resin is
    The moisture-permeable and waterproof film according to claim 1 or 2, which is obtained by polymerization from a monomer mixture for acrylic resin containing N-isopropylacrylamide and hydroxyl group-containing (meth) acrylate as essential components.
  4.  前記単量体混合物が、更にα,β-不飽和エチレン性結合を有する単量体を含む請求項3に記載の透湿防水フィルム。 The moisture-permeable waterproof film according to claim 3, wherein the monomer mixture further contains a monomer having an α, β-unsaturated ethylenic bond.
  5.  前記ポリウレタン樹脂を構成するポリオールが、ポリエーテルポリオールを含む請求項1~4のいずれか1項に記載の透湿防水フィルム。 The moisture permeable waterproof film according to any one of claims 1 to 4, wherein the polyol constituting the polyurethane resin contains a polyether polyol.
  6.  下記に記載する方法で測定される耐水圧が50kPa以上450kPa以下であり、
     下記に記載する方法で測定される透湿度について、
     43℃雰囲気下のB-1透湿度が20000g/m2・24h以上50000g/m2・24h以下であり、
     13℃雰囲気下のB-1透湿度が12000g/m2・24h以上16000g/m2・24h以下であり、
     下記に記載する方法で測定されるLCST前後の吸水率の変化率が2以上5以下である請求項1~5のいずれか1項に記載の透湿防水フィルム。
     [耐水圧]透湿防水フィルム用樹脂溶液から、乾式法にて厚さ10μmの透湿防水フィルムを製造し、これに当て布をしたものを用いて、JIS L1092 7.1B法(高水圧法)に準じて測定する。
     [透湿度]厚さ10μmの透湿防水フィルムを用いて、JIS L1099 B-1法(酢酸カリウム法)に準じて測定する。「13℃雰囲気下のB-1透湿度」は、測定環境を20℃×65%RH、水槽内の水温を13℃に設定して測定を行う。また「43℃雰囲気下のB-1透湿度」は、測定環境を50℃×65%RH、水槽内の水温を43℃に設定して測定を行う。
     [LCST前後の吸水率の変化率]LCST前後の吸水率の変化率は、LCSTから10℃低下させた温度~LCST間での吸水率(%)の変化率を、LCST~LCSTから10℃上昇させた温度間での吸水率(%)の変化率、で除して求める。
    The water pressure resistance measured by the method described below is 50 kPa or more and 450 kPa or less,
    About moisture permeability measured by the method described below,
    43 ° C. B-1 moisture permeability atmosphere is 20000g / m 2 · 24h or more 50000 g / m and a 2 · 24h or less,
    13 ° C. B-1 moisture permeability atmosphere is 12000g / m 2 · 24h or more 16000 g / m and a 2 · 24h or less,
    The moisture-permeable and waterproof film according to any one of claims 1 to 5, wherein the rate of change in water absorption before and after LCST measured by the method described below is 2 or more and 5 or less.
    [Water-resistant pressure] A moisture-permeable waterproof film having a thickness of 10 μm is produced from a resin solution for moisture-permeable and waterproof films by a dry method and applied to a JIS L1092 7.1B method (high water pressure method). ).
    [Moisture permeability] Measured according to JIS L1099 B-1 method (potassium acetate method) using a moisture permeable waterproof film having a thickness of 10 μm. “B-1 moisture permeability at 13 ° C. atmosphere” is measured by setting the measurement environment to 20 ° C. × 65% RH and the water temperature in the water tank to 13 ° C. “B-1 moisture permeability at 43 ° C. atmosphere” is measured by setting the measurement environment to 50 ° C. × 65% RH and the water temperature in the water tank to 43 ° C.
    [Change rate of water absorption rate before and after LCST] The change rate of water absorption rate before and after LCST is 10 ° C higher than the LCST-LCST. It is obtained by dividing by the rate of change in water absorption (%) between the temperatures.
  7.  請求項1~6のいずれか1項に記載の透湿防水フィルムを基布に積層したことを特徴とする複合生地。 A composite fabric characterized by laminating the moisture-permeable and waterproof film according to any one of claims 1 to 6 on a base fabric.
PCT/JP2015/057374 2015-03-12 2015-03-12 Moisture permeable waterproof film and composite fabric layered therewith WO2016143136A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/057374 WO2016143136A1 (en) 2015-03-12 2015-03-12 Moisture permeable waterproof film and composite fabric layered therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/057374 WO2016143136A1 (en) 2015-03-12 2015-03-12 Moisture permeable waterproof film and composite fabric layered therewith

Publications (1)

Publication Number Publication Date
WO2016143136A1 true WO2016143136A1 (en) 2016-09-15

Family

ID=56878662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057374 WO2016143136A1 (en) 2015-03-12 2015-03-12 Moisture permeable waterproof film and composite fabric layered therewith

Country Status (1)

Country Link
WO (1) WO2016143136A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115073776A (en) * 2021-03-15 2022-09-20 聚纺股份有限公司 Functional fabric and method for producing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007211153A (en) * 2006-02-10 2007-08-23 Mkv Platech Co Ltd Temperature-sensitive light-shielding material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007211153A (en) * 2006-02-10 2007-08-23 Mkv Platech Co Ltd Temperature-sensitive light-shielding material

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LV HAINING ET AL.: "Microporous membrane with temperature-sensitive breathability based on PU/PNIPAAm semi-IPN", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 124, no. Sl, 2012, pages E2 - E8, XP055308647 *
XIAOHUA LIU ET AL.: "A novel polyurethane- modified poly (N-isopropylacrylamide) hydrogels", POLYMERS FOR ADVANCED TECHNOLOGIES, vol. 13, no. 3-4, 2002, pages 242 - 246, XP001101755 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115073776A (en) * 2021-03-15 2022-09-20 聚纺股份有限公司 Functional fabric and method for producing same

Similar Documents

Publication Publication Date Title
US4539255A (en) Moisture-permeable waterproof fabric
TWI595133B (en) Thermisch fixierbares flaechengebilde
JP4503096B1 (en) Moisture permeable waterproof fabric and method for producing the same
CN104479337B (en) Preparation process of waterproof air-permeable moisture-permeable microporous film
MX2007009465A (en) Solvent free aqueous polyurethane dispersions and shaped articles therefrom.
CN101892598B (en) Multi-layer cemented elasticized fabric and production method and application thereof
JP4022000B2 (en) Moisture permeable waterproof fabric and method for producing the same
EP2202352A1 (en) Cloth waterproofed with vegetable component
US6787487B1 (en) Water vapor-permeable and waterproof material and method for manufacturing the same
JP7123907B2 (en) Aqueous polyurethane dispersions, prepolymers, and shaped articles made therefrom
WO2011132581A1 (en) Aqueous dispersion of polyurethane resin, nonporous film, and method for producing moisture-permeable waterproof fabric
JP6486282B2 (en) Waterproof fabric and textile product using the same
KR20200078345A (en) Method for producing leather material
WO2016143136A1 (en) Moisture permeable waterproof film and composite fabric layered therewith
CN106866911B (en) A kind of footwear material finishing agent and preparation method thereof
JP5717521B2 (en) Moisture permeable waterproof fabric
JP5456303B2 (en) Hot melt adhesive sheet and tape comprising plant-derived components
JP2009161898A (en) Glove insert made of plant-originated component
JP2001214374A (en) Water repellent and moisture permeable fabric and method for producing the same
JP2016044261A (en) Moisture permeable waterproof membrane and moisture permeable waterproof fabric
JPH11124774A (en) Moisture-permeable waterproof cloth and its production
JP2003020574A (en) Method for producing moisture-permeating and waterproofing laminated fabric
JPS6317151B2 (en)
JP6422115B2 (en) Fabric and manufacturing method thereof
JP2003306870A (en) Moisture-permeable watertight coated fabric with excellent tear strength

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15884623

Country of ref document: EP

Kind code of ref document: A1