WO2016143052A1 - Scanning probe microscope - Google Patents

Scanning probe microscope Download PDF

Info

Publication number
WO2016143052A1
WO2016143052A1 PCT/JP2015/056918 JP2015056918W WO2016143052A1 WO 2016143052 A1 WO2016143052 A1 WO 2016143052A1 JP 2015056918 W JP2015056918 W JP 2015056918W WO 2016143052 A1 WO2016143052 A1 WO 2016143052A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
unit
data
scanning
probe
Prior art date
Application number
PCT/JP2015/056918
Other languages
French (fr)
Japanese (ja)
Inventor
浩 新井
大田 昌弘
政夫 松田
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2015/056918 priority Critical patent/WO2016143052A1/en
Publication of WO2016143052A1 publication Critical patent/WO2016143052A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q30/00Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
    • G01Q30/04Display or data processing devices
    • G01Q30/06Display or data processing devices for error compensation

Definitions

  • the present invention relates to a scanning probe microscope (Scanning Probe Microscope: SPM) such as an atomic force microscope (AFM) or a scanning tunneling microscope (Scanning Tunnel Microscope: STM).
  • SPM scanning probe microscope
  • AFM atomic force microscope
  • STM scanning tunnel Microscope
  • SPM obtains an image of the fine structure of the sample surface based on the interaction between the probe and the sample while scanning the sample surface with the probe.
  • the interaction detected here is AFM using atomic force and STM using tunneling current.
  • AFM atomic force
  • a probe is generally provided near the tip of a cantilever (cantilever), and the surface of the sample is scanned with the probe while vibrating the cantilever up and down with a piezoelectric element, and the amplitude, phase and / or frequency of the vibration is scanned. Find the change in atomic force from the change. Thereby, a slight change in atomic force during scanning of the sample surface can be accurately measured.
  • Measured data such as atomic force and tunnel current is superimposed with noise due to various factors.
  • electrical noise is superimposed on a signal of measurement data from an electric circuit that supplies power used for scanning the surface of a sample with a probe or applying vibration to a cantilever in an AFM.
  • mechanical vibrations that the SPM device receives from the floor and surrounding noise also cause noise.
  • Patent Document 1 and Non-Patent Document 1 a power spectrum is created by performing a fast Fourier transform (FFT) on an electrical signal of measurement data obtained by SPM, and specified from the power spectrum. It is described that an image from which noise is removed is obtained by performing inverse FFT after cutting noise and background having a peak at a frequency of.
  • FFT fast Fourier transform
  • Patent Document 2 describes an SPM in which a sample stage is placed on a vibration isolation mechanism having a gantry and a surface plate that is levitated using an air spring and the sample stage is covered with a soundproof cover. .
  • this SPM mechanical vibration from the floor surface is suppressed by a vibration isolation mechanism, and mechanical vibration due to ambient noise is suppressed by a soundproof cover, thereby reducing the influence of noise on the image.
  • Patent Document 3 in the SPM, a sample table is provided on a sample table drive mechanism via a damping alloy spacer made of a damping alloy such as cast iron or lead, so that the sample can be removed from the floor surface. It is described that it is suppressed from receiving mechanical vibration.
  • the problem to be solved by the present invention is to provide an SPM capable of observing an image of a sample surface almost in real time and sufficiently reducing mechanical noise.
  • the first aspect of the scanning probe microscope according to the present invention which has been made to solve the above problems, comprises a probe, a sample holder for holding a sample, and the surface of the sample held by the sample holder.
  • a scanning unit that relatively moves the probe and the sample holder so as to scan with the probe; and a measurement unit that measures an interaction generated between the probe and the sample.
  • a scanning probe microscope that creates an image of the surface based on a measurement result of an interaction, a) a measurement data storage unit for storing measurement data obtained by the measurement unit; b) At a plurality of predetermined timings during scanning of the surface by the scanning unit, by performing noise removal processing on the measurement data in the measurement data storage unit obtained within a predetermined period before each timing A sample surface image creation data creation unit for creating sample surface image creation data; c) A sample surface image creation unit that creates the surface image based on the sample surface image creation data each time the sample surface image creation data is created.
  • sample surface image creation data that has been subjected to noise removal processing at each of a plurality of predetermined timings is created. Since the sample surface image creation unit sequentially creates an image of the sample surface every time, a sample surface image from which noise has been removed can be obtained almost in real time. Further, by performing such data processing on the measurement data, not only electrical noise but also noise due to mechanical vibration can be reduced.
  • the timing is not particularly limited. For example, when scanning is performed in one direction on the sample surface and is slightly shifted in a direction perpendicular to the direction, scanning in one direction is performed once (one way once). Or every two times (one round trip).
  • frequency spectrum data is created by performing Fourier transform on the measurement data, and the background and noise frequency bands are generated from the frequency spectrum data. It is possible to suitably use a process by Fourier transform in which data for sample surface image creation is created by performing inverse Fourier transform after removing the data.
  • the sample surface image creation data creation unit is b-1) Noise that creates frequency spectrum data before noise removal by Fourier transforming the measurement data in the measurement data storage unit obtained within a predetermined period before each timing at the plurality of predetermined timings A pre-removal frequency spectrum data creation unit; b-2) A frequency spectrum data creation unit after noise removal that creates frequency spectrum data after noise removal by removing one or both of the background and data of a predetermined frequency band from the frequency spectrum data before noise removal.
  • b-3 It is desirable to include a post-noise removal measurement data creation unit that creates sample surface image creation data by performing inverse Fourier transform on the frequency spectrum data after noise removal.
  • Moving average method The average value of a plurality of data including the data to be processed and the data obtained before and / or after that is used as the value after noise removal processing in the data to be processed.
  • the moving average value may be a simple moving average value obtained by taking the sum of n (natural number) data and dividing by n, or data obtained at a time close to the data to be processed You may use the weighted moving average value weighted by.
  • Local filter method The average value or median of the data obtained at the point where the data to be processed was obtained, and the multiple points arranged in a matrix around the point, and the data to be processed The value after noise removal processing at.
  • Noise line removal method For each line obtained each time scanning in one direction is performed, an index value such as an average value or median value of the data obtained in the processing target line, and a line before the processing target line. Alternatively, the index values obtained from the lines obtained later are compared, and if the difference between the index values is equal to or greater than a predetermined value, the processing target line is determined as a noise line. Then, the average value of the data at each point of the noise line and the data of the line obtained before and / or after corresponding to each data is taken, or before or / and after without using the data of the noise line. Interpolation processing using the obtained line data is performed to obtain a value after noise removal processing in the processing target data.
  • a second aspect of the scanning probe microscope includes a probe, a sample holder for holding a sample, and the probe so as to scan the surface of the sample held by the sample holder with the probe.
  • a scanning unit that relatively moves the needle and the sample holder; and a measuring unit that measures an interaction generated between the probe and the sample, and the sample based on a measurement result of the interaction by the measuring unit.
  • a scanning probe microscope that creates an image of the surface of a) a vibration measuring unit provided in the sample holder for measuring the vibration of the sample holder; b) Driving the noise removal vibration waveform to the scanning unit to cancel the vibration of the sample holder based on the vibration data of the sample holder measured by the vibration measuring unit during the scanning of the surface by the scanning unit.
  • a noise removing vibration applying unit that is superimposed on the signal;
  • a sample surface image creation unit that creates an image of the surface based on measurement data obtained by the measurement unit sequentially during scanning of the surface by the scanning unit.
  • the scanning probe microscope sufficiently removes noise due to mechanical vibration.
  • a noise-removing vibration waveform that cancels the external vibration is applied to the scanning unit based on the data of the external vibration measured by the vibration measuring unit, resulting in mechanical vibration applied to the sample from the outside.
  • Noise can be reliably removed. Since this operation is performed during scanning of the sample surface, a sample surface image from which noise has been removed can be obtained in almost real time.
  • the sample surface image can be compared with the case of passively suppressing noise by the vibration isolator. Noise can be reduced.
  • the vibration measuring unit and the noise removing vibration applying unit used in the scanning probe microscope of the second aspect may be further provided in the scanning probe microscope of the first aspect.
  • an image of the sample surface from which noise has been removed can be observed almost in real time, and only a mechanical vibration isolator is provided. Noise can be reduced more than when it is used.
  • An example of the scanning probe microscope of the first aspect according to the present invention will be described as a first example, and an example of a scanning probe microscope of the second aspect will be described as a second example.
  • FIG. 1 is a surface image of mica (mica) obtained by a general scanning probe microscope (atomic force microscope in the example of FIG. 1).
  • a general scanning probe microscope atomic force microscope in the example of FIG. 1
  • noise removal processing using Fourier transform is performed on the data of the surface image before noise removal processing (FIG. 1A).
  • FIG. 1B is obtained by performing the noise removal processing after acquiring all the data for one image.
  • the scanning probe microscope 10 of the first embodiment obtains a clear image by performing the noise removal process during data acquisition.
  • the configuration of the scanning probe microscope 10 of the first embodiment will be described.
  • the scanning probe microscope 10 is an atomic force microscope, and includes a measurement unit 11, a data processing unit 12, a control unit 13, and a display 14, as shown in FIG.
  • the measuring unit 11 includes a probe 111, a cantilever 112, a sample holder 113, a scanner (scanning unit) 114, and a measuring unit 115.
  • the probe 111 is attached in the vicinity of the tip of the cantilever 112 and is disposed so as to face the surface of the sample S attached to the sample holder 113.
  • a piezoelectric element is attached to the cantilever 112, but when the piezoelectric element is not operated and is in a fixed state (contact mode), an AC voltage of a predetermined frequency is applied to the piezoelectric element, so that the cantilever 112 is There is a case where it vibrates in the vertical direction (Z-axis direction) at the predetermined cycle.
  • the scanner 114 includes a piezoelectric element (not shown) (not shown) attached to the cantilever 112 and a scanner driving unit 1141, and the sample holder 113 (that is, a voltage applied to the piezoelectric element from the scanner driving unit 1141 (that is, the sample holder 113).
  • the sample S) attached to the sample holder 113 is scanned in the X and Y biaxial directions parallel to the sample surface and moved in the Z axis direction.
  • the measuring unit 115 is provided above the cantilever 112, and includes a laser light source 1151, a laser optical system 1152, and a photodetector 1153.
  • the laser optical system 1152 includes a lens, a beam splitter, a mirror, and the like so that the laser light emitted from the laser light source 1151 is irradiated near the tip of the cantilever 112 and the reflected light is introduced into the photodetector 1153.
  • the photodetector 1153 has a light receiving surface that is divided into a plurality of portions in the displacement direction of the cantilever 112, converts the intensity of light received on each light receiving surface into an electric signal, and transmits the electric signal to the control unit 13.
  • the data processing unit 12 includes a data storage unit 120, a measurement data creation unit 121, a frequency spectrum data creation unit 122 before noise removal, a frequency spectrum data creation unit 123 after noise removal, and a measurement data creation unit 124 after noise removal.
  • the sample surface image creation unit 125 is controlled by the control unit 13.
  • a combination of the frequency spectrum data creation unit 122 before noise removal, the frequency spectrum data creation unit 123 after noise removal, and the measurement data creation unit 124 after noise removal corresponds to the sample surface image creation data creation unit.
  • Both of the data processing unit 12 and the control unit 13 are realized by computer hardware and software.
  • the data storage unit 120 is a memory that stores the measurement data created by the measurement data creation unit 121 described below and the sample surface image creation data created by the measurement data creation unit 124 after noise removal described later. is there.
  • the measurement data creation unit 121 creates measurement data (raw data before performing noise removal processing) based on the electrical signal sent from the photodetector 1153 to the control unit 13.
  • the pre-noise removal frequency spectrum data creation unit 122 obtains measurement data from the data storage unit 120 and performs Fourier transform for each predetermined period during measurement (during scanning of the sample surface), thereby obtaining pre-noise removal frequency spectrum data. To create.
  • the post-noise removal frequency spectrum data creation unit 123 creates post-noise removal frequency spectrum data from which noise has been removed by performing an operation described later on the pre-noise removal frequency spectrum data.
  • the measurement data creation unit 124 after noise removal creates sample surface image creation data by performing inverse Fourier transform on the frequency spectrum data after noise removal.
  • the sample surface image creation unit 125 creates a sample surface image based on the data every time sample surface image creation data is created in the measurement data creation unit 124 after noise removal. The created sample surface image is displayed on the display 14.
  • the scanner 114 brings the probe 111 closer to the surface of the sample S by moving the sample holder 113 in the Z direction.
  • the position of the probe 111 with respect to the surface of the sample S (hereinafter, simply referred to as “the position of the probe 111”) is set in the positive X direction without vibrating the cantilever 112 or applying vibration in the Z direction.
  • the scanner 114 moves the sample holder 113 so that it moves at a constant speed.
  • the laser light source 1151 of the measuring unit 115 irradiates the laser light near the tip of the cantilever 112 via the laser optical system 1152 and introduces the reflected light to the photodetector 1153. . Then, the spot of the laser beam incident on the photodetector 1153 is detected.
  • the spot position of the laser beam also vibrates in response to the vibration of the cantilever 112, and the amplitude of the cantilever 112 is the atomic force between the atom at the tip of the probe 111 and the atom on the surface of the sample S, that is, the probe. The fact that it depends on the distance between the needle 111 and the surface of the sample S is utilized.
  • the measurement data creation unit 121 can obtain measurement data of the uneven shape on the surface of the sample S.
  • the obtained measurement data is sequentially stored in the data storage unit 120 together with the coordinates in the XY plane of the probe 111 with respect to the sample S.
  • the scanner 114 moves the position of the probe 111 slightly in the positive Y direction, and then in the negative X direction, which is the opposite of the previous one. The position of the probe 111 is moved.
  • the scanner 114 slightly moves the position of the probe 111 in the positive Y direction. Up to this point, the position of the probe 111 has reciprocated once in the X direction. Thereafter, by repeating the same operation, the surface of the sample S is scanned two-dimensionally with the probe 111.
  • the pre-noise removal frequency spectrum data creation unit 122 The obtained measurement data is acquired from the data storage unit 120 and subjected to Fourier transform. In the frequency spectrum data before noise removal obtained as a result, a peak having a specific frequency as a vertex is generated due to noise such as floor vibration.
  • the frequency spectrum data creation unit 123 after noise removal creates frequency spectrum data after noise removal by detecting the frequency range where this peak exists from the frequency spectrum data before noise removal and then deleting the data within the range. .
  • the measurement data creation unit 124 after noise removal performs inverse Fourier transform on the frequency spectrum data after noise removal. Thereby, sample surface image creation data from which the influence of noise is eliminated is created. Thereafter, based on the sample surface image creation data, the sample surface image creation unit 125 obtains the sample surface image after noise removal processing, which is obtained while the probe 111 is moved once in one direction in the X direction. It is created and displayed on the display 14. Then, by repeating the operation described in this paragraph, each time the probe 111 moves one way in the X direction, the sample surface image obtained during the movement is sequentially displayed on the display 14. A sample surface image on which noise removal processing has been performed can be obtained with a sense close to real time during measurement.
  • the timing for displaying the sample surface image by performing the noise removal processing is set to be one time each time the probe 111 moves one way in the X direction. It is good also as timings other than those.
  • the measurement data acquired by the pre-noise removal frequency spectrum data creation unit 122 from the data storage unit 120 is the amount obtained while the probe 111 moves one way in the X direction. All the measurement data stored in the unit 120 may be acquired. In this case, the Fourier transform performed by the pre-noise removal frequency spectrum data creation unit 122 is performed using all of the measurement data.
  • the measurement data after noise removal is stored in the data storage unit 120, and after the measurement is completed, the sample surface image creation unit 125 performs the data storage unit 120.
  • the sample surface image creation unit 125 By reading out the sample surface image creation data from the image and performing image display processing, the sample surface image from which noise has been removed can be displayed on the display 14 without performing noise removal processing again.
  • this is not essential in the present invention.
  • only the measurement data before the noise removal processing is stored in the data storage unit 120, and when the sample surface image is created after the measurement is completed, the data storage unit 120 is stored.
  • the sample surface image may be created after the measurement data is read out and noise removal processing is performed.
  • a sample surface image creation data creation unit that performs processing by Fourier transform (the frequency spectrum data creation unit 122 before noise removal, the frequency spectrum data creation unit 123 after noise removal, and the measurement data creation unit 124 after noise removal are combined)
  • a method that performs processing by a moving average method, a local filter method, or a noise line removal method may be used.
  • the sample surface image creation data creation unit obtains a plurality of measurement data necessary for calculation of average values, median values, etc. from the data storage unit 120 at a predetermined timing, and averages them.
  • Sample surface image creation data is created by calculating values, median values, and the like.
  • the configuration of the scanning probe microscope 20 of the second embodiment will be described with reference to FIG.
  • the scanning probe microscope 20 is an atomic force microscope, and includes a measurement unit 21, a data processing unit 22, a control unit 23, a noise removal vibration waveform generation unit 25, and a display 14.
  • the measuring unit 21 includes a probe 111, a cantilever 112, a sample holder 113, a scanner (scanning unit) 214, a measuring unit 115, and a sample holder vibration sensor 216. Since the configuration other than the scanner 214 and the sample holder vibration sensor 216 is the same as that of the scanning probe microscope 10 of the first embodiment, the description thereof is omitted.
  • the scanner 214 includes a piezoelectric element (not shown) and a scanner driving unit 2141.
  • the scanner driving unit 2141 scans the sample holder 113 in the two axes X and Y and moves the sample holder 113 to an AC voltage (driving signal to the scanning unit) having a predetermined frequency so as to move in the Z-axis direction.
  • the noise removal voltage (noise removal vibration waveform) generated by the noise removal vibration waveform generation unit 25 is superimposed and applied to the piezoelectric element so as to generate noise removal vibration. Therefore, the scanner 214 functions as the noise removal vibration applying unit together with the noise removal vibration waveform generation unit 25.
  • the sample holder vibration sensor 216 is a sensor for measuring mechanical vibration generated in the sample holder, and is configured by a piezoelectric element different from those provided in the cantilever 112 and the scanner 214.
  • the sample holder vibration sensor 216 converts the pressure change to the piezoelectric element caused by the mechanical vibration of the sample holder into an electric signal as a voltage change in each of the three directions of X, Y, and Z, and removes noise via the control unit 23. This is transmitted to the vibration waveform generator 25.
  • the noise removal vibration waveform generation unit 25 generates a noise removal voltage based on the electrical signal sent from the sample holder vibration sensor 216.
  • the data processing unit 22 includes a measurement data storage unit 220, a measurement data creation unit 221, and a sample surface image creation unit 225, all of which are controlled by the control unit 23.
  • the measurement data creation unit 221 is basically the same as the measurement data creation unit 121 in the first embodiment. However, this is different from the first embodiment in that the created measurement data is not only transmitted to the measurement data storage unit 220 but also transmitted to the sample surface image creation unit 225.
  • the measurement data storage unit 220 stores the data created by the measurement data creation unit 221. Unlike the data storage unit 120 of the first embodiment, the measurement data storage unit 220 does not store the measurement data after noise removal.
  • the sample surface image creation unit 225 creates a sample surface image based on the data. The created sample surface image is displayed on the display 14.
  • the scanning probe microscope 20 of the second embodiment With the sample S attached to the sample holder 113, measurement is started by a predetermined operation. Similarly to the first embodiment, the scanner 114 moves the sample holder 113 in the Z direction to bring the probe 111 close to the surface of the sample S and then applies vibration to the cantilever 112 in the Z direction or vibrates. Without moving, the sample holder 113 is moved so that the position of the probe 111 relative to the surface of the sample S is moved.
  • the measuring unit 115 detects the vibration of the cantilever 112 by the same method as in the first embodiment, and the scanner 214 has a constant amplitude of the vibration (that is, the atoms at the tip of the probe 111 and the surface of the sample S).
  • the position in the Z direction of the surface of the sample S is adjusted so that the atomic force of atoms is constant), and the measurement data creation unit 221 creates measurement data of the uneven shape on the surface of the sample S based on this position.
  • the sample holder vibration sensor 216 measures the mechanical vibration of the sample holder 113 in parallel with the scanning of the surface of the sample S and the creation of measurement data.
  • the measured mechanical vibration data of the sample holder is transmitted as an electrical signal from the sample holder vibration sensor 216 to the noise removal vibration waveform generation unit 25 via the control unit 23.
  • the noise removal vibration waveform generation unit 25 Based on this electrical signal, the noise removal vibration waveform generation unit 25 generates a noise removal voltage to be applied to the piezoelectric element so as to vibrate the piezoelectric element of the scanner 214 so as to cancel the measured mechanical vibration of the sample holder. .
  • a signal having a phase opposite to that of vibration is generated.
  • This noise removal voltage is superimposed on the voltage for scanning the surface of the sample S in the scanner driving unit 2141 and applied to the piezoelectric element of the scanner 214. Thereby, the mechanical vibration of the sample holder 113 is canceled.
  • an image of the surface of the sample S is created by the sample surface image creation unit 225 based on the measurement data created by the measurement data creation unit 221 and displayed on the display 14.
  • an image of the surface of the sample S can be obtained almost in real time without noise due to mechanical vibration of the sample holder 113.
  • a scanning unit that moves only the sample holder 113 is used, but any scanning unit that moves the probe 111 and the sample holder 113 relatively may be used. That is, a device that moves only the probe 111 or a device that moves both the probe 111 and the sample holder 113 can be used as the scanning unit.
  • the noise removal vibration waveform may be superimposed on the drive signal for these moving devices. .
  • the measurement data is stored in the measurement data storage unit 220, and after the measurement is completed, the sample surface image creation unit 225 receives the measurement data from the measurement data storage unit 220.
  • the sample surface image can be used as the display 14 again.
  • this is not an essential requirement in the present invention.

Abstract

Provided is a scanning probe microscope 10 that comprises a probe 111, a sample holder 113 for holding a sample S, a scanning unit (scanner 114) for causing the probe 111 and the sample holder 113 to move relative to each other so as to scan the surface of the sample S with the probe 111, and a measuring unit 115 for measuring the interaction between the probe 111 and the sample S, and creates an image of the surface of the sample on the basis of the measurement results thereof, wherein the scanning probe microscope 10 is provided with: a measurement data storage unit (data storage unit 120) that stores measurement data obtained by the measuring unit 115; a pre-noise removal frequency spectral data creation unit 122 that, at a predetermined plurality of timings during scanning of the surface, creates pre-noise removal frequency spectral data by Fourier transforming measurement data in the measurement data storage unit obtained within a predetermined period prior to each timing; a post-noise removal frequency spectral data creation unit 123 that creates post-noise removal frequency spectral data by removing either one or both of the background and data of a predetermined frequency band from the noise removal processing data; a post-noise removal measurement data creation unit 124 that creates sample surface image creation data by inverse Fourier transforming the post-noise removal frequency spectral data; and a sample surface image creation unit 125 that creates an image of the surface on the basis of the sample surface image creation data each time the sample surface image creation data is created.

Description

走査型プローブ顕微鏡Scanning probe microscope
 本発明は、原子間力顕微鏡(Atomic Force Microscope: AFM)や走査型トンネル顕微鏡(Scanning Tunneling Microscope: STM)等の走査型プローブ顕微鏡(Scanning Probe Microscope: SPM)に関する。 The present invention relates to a scanning probe microscope (Scanning Probe Microscope: SPM) such as an atomic force microscope (AFM) or a scanning tunneling microscope (Scanning Tunnel Microscope: STM).
 SPMは、探針で試料の表面を走査しながら、探針と試料の間に生じる相互作用に基づいて、試料表面の微細構造の像を得るものである。ここで検出する相互作用として原子間力を用いるものがAFM、トンネル電流を用いるものがSTMである。AFMでは一般に、カンチレバー(片持ち梁)の先端付近に探針を設け、圧電素子によってカンチレバーを上下に振動させながら探針による試料表面の走査を行い、その振動の振幅、位相及び/又は周波数の変化から原子間力の変化を求める。これにより、試料表面の走査中におけるわずかな原子間力の変化を精度良く計測することができる。 SPM obtains an image of the fine structure of the sample surface based on the interaction between the probe and the sample while scanning the sample surface with the probe. The interaction detected here is AFM using atomic force and STM using tunneling current. In AFM, a probe is generally provided near the tip of a cantilever (cantilever), and the surface of the sample is scanned with the probe while vibrating the cantilever up and down with a piezoelectric element, and the amplitude, phase and / or frequency of the vibration is scanned. Find the change in atomic force from the change. Thereby, a slight change in atomic force during scanning of the sample surface can be accurately measured.
 これら原子間力やトンネル電流等の計測データには種々の要因によってノイズが重畳される。例えば、探針による試料表面の走査やAFMにおけるカンチレバーへの振動の付与等に用いる電力を供給する電気回路から、計測データの信号に電気的なノイズが重畳される。また、SPMの装置が床面や周囲の騒音(音波)から受ける機械的振動もノイズの原因となる。 Measured data such as atomic force and tunnel current is superimposed with noise due to various factors. For example, electrical noise is superimposed on a signal of measurement data from an electric circuit that supplies power used for scanning the surface of a sample with a probe or applying vibration to a cantilever in an AFM. In addition, mechanical vibrations that the SPM device receives from the floor and surrounding noise (sound waves) also cause noise.
 SPMにおけるこれらのノイズの影響を排除するために、従来より種々の対策がなされている。例えば特許文献1及び非特許文献1には、SPMにより得られた計測データの電気信号に対して高速フーリエ変換(Fast Fourier Transform:FFT)を行うことによりパワースペクトルを作成し、そのパワースペクトルから特定の周波数においてピークを有するノイズやバックグラウンドをカットしたうえで、逆FFTを行うことによりノイズが除去された像を得ることが記載されている。 * Various measures have been taken to eliminate the influence of these noises in SPM. For example, in Patent Document 1 and Non-Patent Document 1, a power spectrum is created by performing a fast Fourier transform (FFT) on an electrical signal of measurement data obtained by SPM, and specified from the power spectrum. It is described that an image from which noise is removed is obtained by performing inverse FFT after cutting noise and background having a peak at a frequency of.
 特許文献2には、架台と該台上に空気ばねを用いて浮上させた定盤を有する除振機構に試料ステージを載置すると共に、試料ステージを防音カバーで覆ったSPMが記載されている。このSPMでは、床面からの機械的振動は除振機構により、周囲の騒音による機械的振動は防音カバーにより、それぞれ抑えられ、それにより像へのノイズの影響を低減させることができる。また、特許文献3には、SPMにおいて、試料台駆動機構の上に、鋳鉄や鉛等の制振合金から成る制振合金スペーサを介して試料台を設けることにより、試料が床面からの機械的振動を受けることを抑えることが記載されている。 Patent Document 2 describes an SPM in which a sample stage is placed on a vibration isolation mechanism having a gantry and a surface plate that is levitated using an air spring and the sample stage is covered with a soundproof cover. . In this SPM, mechanical vibration from the floor surface is suppressed by a vibration isolation mechanism, and mechanical vibration due to ambient noise is suppressed by a soundproof cover, thereby reducing the influence of noise on the image. Further, in Patent Document 3, in the SPM, a sample table is provided on a sample table drive mechanism via a damping alloy spacer made of a damping alloy such as cast iron or lead, so that the sample can be removed from the floor surface. It is described that it is suppressed from receiving mechanical vibration.
特開平10-073600号公報Japanese Patent Laid-Open No. 10-073600 特開平10-282118号公報JP-A-10-282118 特開2007-218677号公報JP 2007-218677
 SPMでは、試料表面のうち探針で走査し終えたところから順次、試料表面の像をディスプレイに表示してゆくことにより、ほぼリアルタイムで観測することが可能である。しかしながら、特許文献1及び非特許文献1に記載のSPMでは、SPMにより試料表面全体の計測データを取得した後に、FFT等のデータ処理を行うことによってノイズの除去を行うため、ノイズが除去された像をリアルタイムで表示することはできない。 In SPM, it is possible to observe almost real time by displaying images of the sample surface on the display sequentially from the point where scanning with the probe is completed. However, in the SPMs described in Patent Document 1 and Non-Patent Document 1, noise is removed by performing data processing such as FFT after obtaining measurement data of the entire sample surface by SPM. The image cannot be displayed in real time.
 一方、特許文献2及び3に記載のSPMでは、ほぼリアルタイムでの観測は可能である。しかし、これらのSPMで用いられる除振機構、防音カバー及び制振合金スペーサ等の除振装置は機械的振動を緩和するだけに過ぎず、機械的振動を十分には除去することができない。 On the other hand, the SPM described in Patent Documents 2 and 3 can be observed almost in real time. However, vibration isolation devices such as vibration isolation mechanisms, soundproof covers, and vibration damping alloy spacers used in these SPMs only relieve mechanical vibrations and cannot sufficiently eliminate mechanical vibrations.
 本発明が解決しようとする課題は、試料表面の像をほぼリアルタイムで観測することができ、且つ、機械的ノイズも十分に低減することができるSPMを提供することである。 The problem to be solved by the present invention is to provide an SPM capable of observing an image of a sample surface almost in real time and sufficiently reducing mechanical noise.
 上記課題を解決するために成された本発明に係る走査型プローブ顕微鏡の第1の態様のものは、探針と、試料を保持する試料ホルダと、該試料ホルダに保持された試料の表面を該探針で走査するように該探針と試料ホルダを相対的に移動させる走査部と、該探針と該試料の間に生じる相互作用を計測する計測部を有し、該計測部による該相互作用の計測結果に基づいて該表面の像を作成する走査型プローブ顕微鏡であって、
 a) 前記計測部により得られる計測データを保存する計測データ保存部と、
 b) 前記走査部による前記表面の走査中における所定の複数のタイミングにおいて、各タイミング以前の所定の期間内に得られた前記計測データ保存部中の計測データに対してノイズ除去処理を行うことにより試料表面像作成用データを作成する試料表面像作成用データ作成部と、
 c) 前記試料表面像作成用データが作成される毎に、該試料表面像作成用データに基づいて前記表面の像を作成する試料表面像作成部と
を備えることを特徴とする。
The first aspect of the scanning probe microscope according to the present invention, which has been made to solve the above problems, comprises a probe, a sample holder for holding a sample, and the surface of the sample held by the sample holder. A scanning unit that relatively moves the probe and the sample holder so as to scan with the probe; and a measurement unit that measures an interaction generated between the probe and the sample. A scanning probe microscope that creates an image of the surface based on a measurement result of an interaction,
a) a measurement data storage unit for storing measurement data obtained by the measurement unit;
b) At a plurality of predetermined timings during scanning of the surface by the scanning unit, by performing noise removal processing on the measurement data in the measurement data storage unit obtained within a predetermined period before each timing A sample surface image creation data creation unit for creating sample surface image creation data;
c) A sample surface image creation unit that creates the surface image based on the sample surface image creation data each time the sample surface image creation data is created.
 第1の態様の走査型プローブ顕微鏡によれば、試料表面の走査中に、所定の複数のタイミング毎にノイズ除去処理が行われた試料表面像作成用データが作成され、その結果、それらのタイミング毎に順次、試料表面像作成部によって試料表面の画像が作成されてゆくため、ほぼリアルタイムで、ノイズが除去された試料表面像を得ることができる。また、計測データに対してこのようなデータ処理を行うことにより、電気的なノイズばかりでなく、機械的振動によるノイズも低減することができる。 According to the scanning probe microscope of the first aspect, during the scanning of the sample surface, sample surface image creation data that has been subjected to noise removal processing at each of a plurality of predetermined timings is created. Since the sample surface image creation unit sequentially creates an image of the sample surface every time, a sample surface image from which noise has been removed can be obtained almost in real time. Further, by performing such data processing on the measurement data, not only electrical noise but also noise due to mechanical vibration can be reduced.
 上記タイミングは特に問わないが、例えば、試料表面の1方向に走査し、該方向に垂直な方向にわずかにずらしたうえで走査する場合において、1方向の走査を1回(片道1回)毎、あるいは2回(往復1回)毎等とすることができる。 The timing is not particularly limited. For example, when scanning is performed in one direction on the sample surface and is slightly shifted in a direction perpendicular to the direction, scanning in one direction is performed once (one way once). Or every two times (one round trip).
 試料表面像作成用データ作成部における前記ノイズ除去処理には、計測データに対してフーリエ変換を行うことにより周波数スペクトルのデータを作成し、当該周波数スペクトルのデータからバックグラウンドやノイズである周波数帯のデータを除去したうえで逆フーリエ変換することにより試料表面像作成用データを作成するという、フーリエ変換による処理を好適に用いることができる。すなわち、上記試料表面像作成用データ作成部は、
 b-1) 前記所定の複数のタイミングにおいて、各タイミング以前の所定の期間内に得られた前記計測データ保存部中の計測データをフーリエ変換することにより、ノイズ除去前周波数スペクトルデータを作成するノイズ除去前周波数スペクトルデータ作成部と、
 b-2) 前記ノイズ除去前周波数スペクトルデータからバックグラウンド及び所定の周波数帯のデータのいずれか一方又は両方を除去することにより、ノイズ除去後周波数スペクトルデータを作成するノイズ除去後周波数スペクトルデータ作成部と、
 b-3) 前記ノイズ除去後周波数スペクトルデータを逆フーリエ変換することにより試料表面像作成用データを作成するノイズ除去後計測データ作成部と
を備えることが望ましい。
In the noise removal processing in the sample surface image creation data creation unit, frequency spectrum data is created by performing Fourier transform on the measurement data, and the background and noise frequency bands are generated from the frequency spectrum data. It is possible to suitably use a process by Fourier transform in which data for sample surface image creation is created by performing inverse Fourier transform after removing the data. That is, the sample surface image creation data creation unit is
b-1) Noise that creates frequency spectrum data before noise removal by Fourier transforming the measurement data in the measurement data storage unit obtained within a predetermined period before each timing at the plurality of predetermined timings A pre-removal frequency spectrum data creation unit;
b-2) A frequency spectrum data creation unit after noise removal that creates frequency spectrum data after noise removal by removing one or both of the background and data of a predetermined frequency band from the frequency spectrum data before noise removal. When,
b-3) It is desirable to include a post-noise removal measurement data creation unit that creates sample surface image creation data by performing inverse Fourier transform on the frequency spectrum data after noise removal.
 前記ノイズ除去処理には、フーリエ変換を用いる方法の他に、例えば以下の方法を用いることができる。
(1) 移動平均法
 処理対象のデータと、それよりも前又は/及び後に得られたデータを合わせた複数個のデータの平均値を、当該処理対象のデータにおけるノイズ除去処理後の値とする。移動平均の値には、n(自然数)個のデータの和を取ってnで除することにより得られる単純移動平均値を用いてもよいし、処理対象のデータに近い時点で得られたデータにより重みを付けた加重移動平均値を用いてもよい。
(2) 局所フィルタ法
 処理対象のデータが得られた点、及びその点の周囲にマトリクス状に配置された複数の点で得られたデータの平均値や中央値等を、当該処理対象のデータにおけるノイズ除去処理後の値とする。
(3) ノイズライン除去法
 1方向の走査を1回行う毎に得られるラインにつき、処理対象のラインで得られたデータの平均値や中央値などの指標値と、当該処理対象ラインよりも前又は/及び後に得られたラインで得られた指標値を比較し、それら指標値の差が所定値以上である場合には、当該処理対象ラインをノイズラインと判定する。そのうえで、ノイズラインの各点におけるデータと、各データに対応する、前又は/及び後に得られたラインのデータの平均値を取るか、あるいはノイズラインのデータを使用することなく前又は/及び後に得られたラインのデータを用いた補間処理を行うことにより、当該処理対象のデータにおけるノイズ除去処理後の値とする。
In addition to the method using Fourier transform, for example, the following method can be used for the noise removal processing.
(1) Moving average method The average value of a plurality of data including the data to be processed and the data obtained before and / or after that is used as the value after noise removal processing in the data to be processed. . The moving average value may be a simple moving average value obtained by taking the sum of n (natural number) data and dividing by n, or data obtained at a time close to the data to be processed You may use the weighted moving average value weighted by.
(2) Local filter method The average value or median of the data obtained at the point where the data to be processed was obtained, and the multiple points arranged in a matrix around the point, and the data to be processed The value after noise removal processing at.
(3) Noise line removal method For each line obtained each time scanning in one direction is performed, an index value such as an average value or median value of the data obtained in the processing target line, and a line before the processing target line. Alternatively, the index values obtained from the lines obtained later are compared, and if the difference between the index values is equal to or greater than a predetermined value, the processing target line is determined as a noise line. Then, the average value of the data at each point of the noise line and the data of the line obtained before and / or after corresponding to each data is taken, or before or / and after without using the data of the noise line. Interpolation processing using the obtained line data is performed to obtain a value after noise removal processing in the processing target data.
 本発明に係る走査型プローブ顕微鏡の第2の態様のものは、探針と、試料を保持する試料ホルダと、該試料ホルダに保持された試料の表面を該探針で走査するように該探針と試料ホルダを相対的に移動させる走査部と、該探針と該試料の間に生じる相互作用を計測する計測部を有し、該計測部による該相互作用の計測結果に基づいて該試料の表面の像を作成する走査型プローブ顕微鏡であって、
 a) 前記試料ホルダに設けられた、該試料ホルダの振動を計測する振動計測部と、
 b) 前記走査部による前記表面の走査中に、前記振動計測部により計測された該試料ホルダの振動のデータに基づいて、該試料ホルダの振動を打ち消すノイズ除去振動波形を前記走査部への駆動信号に重畳するノイズ除去振動付与部と、
 c) 前記走査部による前記表面の走査中に順次、前記計測部により得られる計測データに基づいて前記表面の像を作成する試料表面像作成部と
を備えることを特徴とする。
A second aspect of the scanning probe microscope according to the present invention includes a probe, a sample holder for holding a sample, and the probe so as to scan the surface of the sample held by the sample holder with the probe. A scanning unit that relatively moves the needle and the sample holder; and a measuring unit that measures an interaction generated between the probe and the sample, and the sample based on a measurement result of the interaction by the measuring unit. A scanning probe microscope that creates an image of the surface of
a) a vibration measuring unit provided in the sample holder for measuring the vibration of the sample holder;
b) Driving the noise removal vibration waveform to the scanning unit to cancel the vibration of the sample holder based on the vibration data of the sample holder measured by the vibration measuring unit during the scanning of the surface by the scanning unit. A noise removing vibration applying unit that is superimposed on the signal;
c) A sample surface image creation unit that creates an image of the surface based on measurement data obtained by the measurement unit sequentially during scanning of the surface by the scanning unit.
 第2の態様の走査型プローブ顕微鏡は、機械的振動によるノイズを十分に除去するものである。この走査型プローブ顕微鏡では、振動計測部により計測された外部振動のデータに基づいて該外部振動を打ち消すノイズ除去振動波形を走査部に与えることにより、外部から試料に与えられる機械的振動に起因したノイズを確実に除去することができる。この操作は試料表面の走査中に行うため、ほぼリアルタイムで、ノイズが除去された試料表面像を得ることができる。また、探針と試料ホルダの相対的な動きに対してノイズ除去振動を与えるという能動的な操作を行うことにより、除振装置によって受動的にノイズの抑制を行う場合よりも、試料表面像のノイズを低減することができる。 The scanning probe microscope according to the second aspect sufficiently removes noise due to mechanical vibration. In this scanning probe microscope, a noise-removing vibration waveform that cancels the external vibration is applied to the scanning unit based on the data of the external vibration measured by the vibration measuring unit, resulting in mechanical vibration applied to the sample from the outside. Noise can be reliably removed. Since this operation is performed during scanning of the sample surface, a sample surface image from which noise has been removed can be obtained in almost real time. In addition, by performing an active operation of giving noise removal vibration to the relative movement of the probe and the sample holder, the sample surface image can be compared with the case of passively suppressing noise by the vibration isolator. Noise can be reduced.
 第1の態様の走査型プローブ顕微鏡に更に、第2の態様の走査型プローブ顕微鏡において用いられる前記振動計測部及び前記ノイズ除去振動付与部を設けてもよい。 The vibration measuring unit and the noise removing vibration applying unit used in the scanning probe microscope of the second aspect may be further provided in the scanning probe microscope of the first aspect.
 本発明に係る第1及び第2の態様の走査型プローブ顕微鏡によれば、ノイズが除去された試料表面の像を、ほぼリアルタイムで観測することができ、且つ、機械的な除振装置のみを用いた場合よりもノイズを低減させることができる。 According to the scanning probe microscopes of the first and second aspects of the present invention, an image of the sample surface from which noise has been removed can be observed almost in real time, and only a mechanical vibration isolator is provided. Noise can be reduced more than when it is used.
一般的な走査型プローブ顕微鏡において取得したデータに対してフーリエ変換によるノイズ除去処理を行う前(a)と行った後(b)の表面像の例を示す画像。An image showing an example of a surface image before (a) and after (b) performing noise removal processing by Fourier transform on data acquired by a general scanning probe microscope. 本発明に係る第1の態様の走査型プローブ顕微鏡の一実施例(第1実施例)を示す概略構成図。The schematic block diagram which shows one Example (1st Example) of the scanning probe microscope of the 1st aspect which concerns on this invention. 本発明に係る第2の態様の走査型プローブ顕微鏡の一実施例(第2実施例)を示す概略構成図。The schematic block diagram which shows one Example (2nd Example) of the scanning probe microscope of the 2nd aspect which concerns on this invention. 第1実施例の走査型プローブ顕微鏡の構成と第2実施例の走査型プローブ顕微鏡の構成を組み合わせたものである第3実施例を示す概略構成図。The schematic block diagram which shows 3rd Example which combines the structure of the scanning probe microscope of 1st Example, and the structure of the scanning probe microscope of 2nd Example.
 本発明に係る第1の態様の走査型プローブ顕微鏡の例を第1実施例として、第2の態様の走査型プローブ顕微鏡の例を第2実施例として、それぞれ説明する。 An example of the scanning probe microscope of the first aspect according to the present invention will be described as a first example, and an example of a scanning probe microscope of the second aspect will be described as a second example.
 [第1実施例]
 図1は、一般的な走査型プローブ顕微鏡(同図の例では原子間力顕微鏡)によって得られたマイカ(雲母)の表面像である。従来の走査型プローブ顕微鏡では、ノイズ除去処理を行う前の表面像(図1(a))のデータに対してフーリエ変換を用いたノイズ除去処理を行うことにより、図1(b)に示すように、より鮮明な表面像が得られる。但し、図1(b)に示した画像は、画像1枚分のデータを全て取得した後に当該ノイズ除去処理を行ったものである。従来の走査型プローブ顕微鏡ではデータの取得中にはこのような鮮明な画像を得ることができなかった。第1実施例の走査型プローブ顕微鏡10は、データの取得中に上記ノイズ除去処理を行うことによって鮮明な画像を得るものである。
[First embodiment]
FIG. 1 is a surface image of mica (mica) obtained by a general scanning probe microscope (atomic force microscope in the example of FIG. 1). In the conventional scanning probe microscope, as shown in FIG. 1B, noise removal processing using Fourier transform is performed on the data of the surface image before noise removal processing (FIG. 1A). In addition, a clearer surface image can be obtained. However, the image shown in FIG. 1B is obtained by performing the noise removal processing after acquiring all the data for one image. With a conventional scanning probe microscope, such a clear image could not be obtained during data acquisition. The scanning probe microscope 10 of the first embodiment obtains a clear image by performing the noise removal process during data acquisition.
 第1実施例の走査型プローブ顕微鏡10の構成を説明する。この走査型プローブ顕微鏡10は原子間力顕微鏡であり、図2に示すように、測定部11、データ処理部12、制御部13及びディスプレイ14を有する。 The configuration of the scanning probe microscope 10 of the first embodiment will be described. The scanning probe microscope 10 is an atomic force microscope, and includes a measurement unit 11, a data processing unit 12, a control unit 13, and a display 14, as shown in FIG.
 測定部11は、探針111、カンチレバー112、試料ホルダ113、スキャナ(走査部)114、及び計測部115を有する。探針111はカンチレバー112の先端付近に取り付けられており、試料ホルダ113に取り付けられる試料Sの表面に対向するように配置されている。カンチレバー112には圧電素子が取り付けられているが、圧電素子を動作させず固定状態とする場合(コンタクトモード)と、該圧電素子に所定の周波数の交流電圧が印加されることにより、カンチレバー112は該所定周期で上下方向(Z軸方向とする)に振動する場合とがある。スキャナ114は(カンチレバー112に取り付けられたものとは別の)圧電素子(図示せず)とスキャナ駆動部1141を備え、スキャナ駆動部1141から該圧電素子に印加される電圧によって試料ホルダ113(すなわち試料ホルダ113に取り付けられる試料S)を試料表面に平行なX、Yの二軸方向に走査し、且つZ軸方向に移動させるものである。 The measuring unit 11 includes a probe 111, a cantilever 112, a sample holder 113, a scanner (scanning unit) 114, and a measuring unit 115. The probe 111 is attached in the vicinity of the tip of the cantilever 112 and is disposed so as to face the surface of the sample S attached to the sample holder 113. A piezoelectric element is attached to the cantilever 112, but when the piezoelectric element is not operated and is in a fixed state (contact mode), an AC voltage of a predetermined frequency is applied to the piezoelectric element, so that the cantilever 112 is There is a case where it vibrates in the vertical direction (Z-axis direction) at the predetermined cycle. The scanner 114 includes a piezoelectric element (not shown) (not shown) attached to the cantilever 112 and a scanner driving unit 1141, and the sample holder 113 (that is, a voltage applied to the piezoelectric element from the scanner driving unit 1141 (that is, the sample holder 113). The sample S) attached to the sample holder 113 is scanned in the X and Y biaxial directions parallel to the sample surface and moved in the Z axis direction.
 計測部115はカンチレバー112の上方に設けられており、レーザ光源1151、レーザ光学系1152及び光検出器1153を有している。レーザ光学系1152は、レーザ光源1151が発するレーザ光をカンチレバー112の先端付近に照射し、その反射光を光検出器1153に導入するよう、レンズ、ビームスプリッタ、ミラー等により構成されている。光検出器1153は、カンチレバー112の変位方向に複数に分割された受光面を有し、各受光面において受光された光の強度を電気信号に変換し、制御部13に送信するものである。 The measuring unit 115 is provided above the cantilever 112, and includes a laser light source 1151, a laser optical system 1152, and a photodetector 1153. The laser optical system 1152 includes a lens, a beam splitter, a mirror, and the like so that the laser light emitted from the laser light source 1151 is irradiated near the tip of the cantilever 112 and the reflected light is introduced into the photodetector 1153. The photodetector 1153 has a light receiving surface that is divided into a plurality of portions in the displacement direction of the cantilever 112, converts the intensity of light received on each light receiving surface into an electric signal, and transmits the electric signal to the control unit 13.
 データ処理部12は、データ保存部120と、計測データ作成部121と、ノイズ除去前周波数スペクトルデータ作成部122と、ノイズ除去後周波数スペクトルデータ作成部123と、ノイズ除去後計測データ作成部124と、試料表面像作成部125を有し、いずれも制御部13により制御される。ノイズ除去前周波数スペクトルデータ作成部122、ノイズ除去後周波数スペクトルデータ作成部123及びノイズ除去後計測データ作成部124を合わせたものが上記試料表面画像作成用データ作成部に該当する。これらデータ処理部12及び制御部13はいずれも、コンピュータのハードウエア及びソフトウエアにより実現されている。 The data processing unit 12 includes a data storage unit 120, a measurement data creation unit 121, a frequency spectrum data creation unit 122 before noise removal, a frequency spectrum data creation unit 123 after noise removal, and a measurement data creation unit 124 after noise removal. The sample surface image creation unit 125 is controlled by the control unit 13. A combination of the frequency spectrum data creation unit 122 before noise removal, the frequency spectrum data creation unit 123 after noise removal, and the measurement data creation unit 124 after noise removal corresponds to the sample surface image creation data creation unit. Both of the data processing unit 12 and the control unit 13 are realized by computer hardware and software.
 データ保存部120は、次に述べる計測データ作成部121により作成された計測データを保存すると共に、後述のノイズ除去後計測データ作成部124で作成された試料表面像作成用データを保存するメモリである。計測データ作成部121は、光検出器1153から制御部13に送られた電気信号に基づいて、計測データ(ノイズ除去処理を行う前の生のデータ)を作成するものである。以下、ノイズ除去の方法として、周波数スペクトルデータを用いて除去する方法をとった場合について説明する。ノイズ除去前周波数スペクトルデータ作成部122は、計測中(試料表面の走査中)の所定期間毎に、データ保存部120から計測データを取得してフーリエ変換することにより、ノイズ除去前周波数スペクトルデータを作成するものである。ノイズ除去後周波数スペクトルデータ作成部123は、ノイズ除去前周波数スペクトルデータに対して後述の操作を行うことにより、ノイズが除去されたノイズ除去後周波数スペクトルデータを作成するものである。ノイズ除去後計測データ作成部124は、ノイズ除去後周波数スペクトルデータを逆フーリエ変換することにより試料表面像作成用データを作成するものである。試料表面像作成部125は、ノイズ除去後計測データ作成部124において試料表面像作成用データが作成される毎に、そのデータに基づいて試料表面像を作成するものである。作成された試料表面像はディスプレイ14に表示される。 The data storage unit 120 is a memory that stores the measurement data created by the measurement data creation unit 121 described below and the sample surface image creation data created by the measurement data creation unit 124 after noise removal described later. is there. The measurement data creation unit 121 creates measurement data (raw data before performing noise removal processing) based on the electrical signal sent from the photodetector 1153 to the control unit 13. Hereinafter, the case where the removal method using frequency spectrum data is taken as a noise removal method will be described. The pre-noise removal frequency spectrum data creation unit 122 obtains measurement data from the data storage unit 120 and performs Fourier transform for each predetermined period during measurement (during scanning of the sample surface), thereby obtaining pre-noise removal frequency spectrum data. To create. The post-noise removal frequency spectrum data creation unit 123 creates post-noise removal frequency spectrum data from which noise has been removed by performing an operation described later on the pre-noise removal frequency spectrum data. The measurement data creation unit 124 after noise removal creates sample surface image creation data by performing inverse Fourier transform on the frequency spectrum data after noise removal. The sample surface image creation unit 125 creates a sample surface image based on the data every time sample surface image creation data is created in the measurement data creation unit 124 after noise removal. The created sample surface image is displayed on the display 14.
 第1実施例の走査型プローブ顕微鏡10の動作を説明する。
 試料ホルダ113に試料Sを取り付けた状態で、所定の操作により測定を開始する。まず、スキャナ114は試料ホルダ113をZ方向に移動させることにより探針111を試料Sの表面に近づける。その状態で、カンチレバー112を振動させずに、もしくはZ方向の振動を与えながら、試料Sの表面に対する探針111の位置(以下、単に「探針111の位置」とする)を正のX方向に一定速度で移動させるよう、スキャナ114は試料ホルダ113を移動させる。このように試料ホルダ113を移動させる間、計測部115のレーザ光源1151はレーザ光学系1152を介して、レーザ光をカンチレバー112の先端付近に照射し、その反射光を光検出器1153に導入する。そして、光検出器1153に入射するレーザ光のスポットを検出する。ここで、カンチレバー112の振動に対応してレーザ光のスポット位置も振動すること、及びカンチレバー112の振幅の大きさが探針111の先端の原子と試料S表面の原子の原子間力、すなわち探針111と試料S表面間の距離に依存することを利用する。すなわち、探針111の位置をX方向に移動させる間、レーザ光のスポット位置の振幅が一定になるように試料S表面のZ方向の位置をスキャナ114の動作によって調整し、この間の試料S表面のZ方向の位置を求めることにより、計測データ作成部121は試料S表面の凹凸形状の計測データを得ることができる。得られた計測データは順次、試料Sに対する探針111のXY面内の座標と共に、データ保存部120に保存される。
The operation of the scanning probe microscope 10 of the first embodiment will be described.
With the sample S attached to the sample holder 113, measurement is started by a predetermined operation. First, the scanner 114 brings the probe 111 closer to the surface of the sample S by moving the sample holder 113 in the Z direction. In this state, the position of the probe 111 with respect to the surface of the sample S (hereinafter, simply referred to as “the position of the probe 111”) is set in the positive X direction without vibrating the cantilever 112 or applying vibration in the Z direction. The scanner 114 moves the sample holder 113 so that it moves at a constant speed. While the sample holder 113 is moved in this way, the laser light source 1151 of the measuring unit 115 irradiates the laser light near the tip of the cantilever 112 via the laser optical system 1152 and introduces the reflected light to the photodetector 1153. . Then, the spot of the laser beam incident on the photodetector 1153 is detected. Here, the spot position of the laser beam also vibrates in response to the vibration of the cantilever 112, and the amplitude of the cantilever 112 is the atomic force between the atom at the tip of the probe 111 and the atom on the surface of the sample S, that is, the probe. The fact that it depends on the distance between the needle 111 and the surface of the sample S is utilized. That is, while moving the position of the probe 111 in the X direction, the position of the surface of the sample S in the Z direction is adjusted by the operation of the scanner 114 so that the amplitude of the spot position of the laser beam is constant, and the surface of the sample S during this time By obtaining the position in the Z direction, the measurement data creation unit 121 can obtain measurement data of the uneven shape on the surface of the sample S. The obtained measurement data is sequentially stored in the data storage unit 120 together with the coordinates in the XY plane of the probe 111 with respect to the sample S.
 探針111がX方向の移動範囲の端部まで達したとき、スキャナ114は探針111の位置をわずかに正のY方向に移動させ、次いで、これまでとは逆である負のX方向に探針111の位置を移動させる。そして、X方向の移動範囲の(先程とは反対側の)端部まで達したとき、スキャナ114は探針111の位置をわずかに正のY方向に移動させる。ここまでで、探針111の位置はX方向に1往復したことになる。以後、同様の操作を繰り返すことにより、試料Sの表面を探針111で2次元状に走査してゆく。 When the probe 111 reaches the end of the movement range in the X direction, the scanner 114 moves the position of the probe 111 slightly in the positive Y direction, and then in the negative X direction, which is the opposite of the previous one. The position of the probe 111 is moved. When the end of the movement range in the X direction (on the opposite side) is reached, the scanner 114 slightly moves the position of the probe 111 in the positive Y direction. Up to this point, the position of the probe 111 has reciprocated once in the X direction. Thereafter, by repeating the same operation, the surface of the sample S is scanned two-dimensionally with the probe 111.
 本実施例では、探針111がX方向の移動範囲の端部に達する毎、すなわちX方向に片道1回移動する毎に、ノイズ除去前周波数スペクトルデータ作成部122は、この片道の移動の間に得られた測定データをデータ保存部120から取得し、フーリエ変換を行う。これにより得られるノイズ除去前周波数スペクトルデータには、床の振動等のノイズに起因して、特定の周波数を頂点とするピークが生じる。ノイズ除去後周波数スペクトルデータ作成部123は、ノイズ除去前周波数スペクトルデータからこのピークが存在する周波数範囲を検出したうえで該範囲内のデータを削除することにより、ノイズ除去後周波数スペクトルデータを作成する。あるいは、ノイズによるピークが生じる周波数帯が予め分かっている場合には、ノイズ除去前周波数スペクトルデータから当該周波数帯のデータを削除する。そして、ノイズ除去後計測データ作成部124は、ノイズ除去後周波数スペクトルデータを逆フーリエ変換する。これにより、ノイズの影響が排除された試料表面像作成用データが作成される。その後、試料表面像作成部125が試料表面像作成用データに基づいて、探針111がX方向に片道1回移動した間に得られた、ノイズ除去処理が施された後の試料表面像を作成し、ディスプレイ14に表示する。そして、本段落で説明した操作を繰り返すことにより、探針111がX方向に片道1回移動する毎に、その移動の間に得られた試料表面像が順次ディスプレイ14に表示されてゆくため、測定中にリアルタイムに近い感覚で、ノイズ除去処理が施された試料表面像を得ることができる。 In this embodiment, every time the probe 111 reaches the end of the movement range in the X direction, that is, every time when the probe 111 moves one way in the X direction, the pre-noise removal frequency spectrum data creation unit 122 The obtained measurement data is acquired from the data storage unit 120 and subjected to Fourier transform. In the frequency spectrum data before noise removal obtained as a result, a peak having a specific frequency as a vertex is generated due to noise such as floor vibration. The frequency spectrum data creation unit 123 after noise removal creates frequency spectrum data after noise removal by detecting the frequency range where this peak exists from the frequency spectrum data before noise removal and then deleting the data within the range. . Alternatively, when the frequency band in which a peak due to noise occurs is known in advance, the data of the frequency band is deleted from the frequency spectrum data before noise removal. Then, the measurement data creation unit 124 after noise removal performs inverse Fourier transform on the frequency spectrum data after noise removal. Thereby, sample surface image creation data from which the influence of noise is eliminated is created. Thereafter, based on the sample surface image creation data, the sample surface image creation unit 125 obtains the sample surface image after noise removal processing, which is obtained while the probe 111 is moved once in one direction in the X direction. It is created and displayed on the display 14. Then, by repeating the operation described in this paragraph, each time the probe 111 moves one way in the X direction, the sample surface image obtained during the movement is sequentially displayed on the display 14. A sample surface image on which noise removal processing has been performed can be obtained with a sense close to real time during measurement.
 本実施例では、ノイズ除去処理を行って試料表面像を表示するタイミングを、探針111がX方向に片道1回移動する毎としたが、往復1回(片道2回)移動する毎としてもよいし、それら以外のタイミングとしてもよい。また、本実施例では、ノイズ除去前周波数スペクトルデータ作成部122がデータ保存部120から取得する測定データを、探針111がX方向に片道移動する間に得られた分としたが、データ保存部120に保存されている全ての測定データを取得するようにしてもよい。その場合、ノイズ除去前周波数スペクトルデータ作成部122で行うフーリエ変換はそれら全ての測定データを用いて行うこととなる。 In this embodiment, the timing for displaying the sample surface image by performing the noise removal processing is set to be one time each time the probe 111 moves one way in the X direction. It is good also as timings other than those. Further, in this embodiment, the measurement data acquired by the pre-noise removal frequency spectrum data creation unit 122 from the data storage unit 120 is the amount obtained while the probe 111 moves one way in the X direction. All the measurement data stored in the unit 120 may be acquired. In this case, the Fourier transform performed by the pre-noise removal frequency spectrum data creation unit 122 is performed using all of the measurement data.
 なお、本実施例では、ほぼリアルタイムで試料表面像を表示する他に、ノイズ除去後計測データをデータ保存部120に保存しておき、計測終了後に、試料表面像作成部125がデータ保存部120から試料表面像作成用データを読み出して画像表示処理を行うことにより、改めてノイズ除去処理を行うことなくノイズが除去された試料表面像をディスプレイ14に表示することもできる。但し、このことは本発明においては必須ではなく、例えばデータ保存部120にはノイズ除去処理前の計測データのみを保存しておき、計測終了後に試料表面像を作成する際にはデータ保存部120から計測データを読み出してノイズ除去処理を行ったうえで試料表面像を作成するようにしてもよい。 In the present embodiment, in addition to displaying the sample surface image in almost real time, the measurement data after noise removal is stored in the data storage unit 120, and after the measurement is completed, the sample surface image creation unit 125 performs the data storage unit 120. By reading out the sample surface image creation data from the image and performing image display processing, the sample surface image from which noise has been removed can be displayed on the display 14 without performing noise removal processing again. However, this is not essential in the present invention. For example, only the measurement data before the noise removal processing is stored in the data storage unit 120, and when the sample surface image is created after the measurement is completed, the data storage unit 120 is stored. The sample surface image may be created after the measurement data is read out and noise removal processing is performed.
 また、試料表面画像作成用データ作成部としてフーリエ変換による処理を行うもの(ノイズ除去前周波数スペクトルデータ作成部122、ノイズ除去後周波数スペクトルデータ作成部123及びノイズ除去後計測データ作成部124を合わせたもの)の代わりに、移動平均法、局所フィルタ法、ノイズライン除去法による処理を行うものを用いてもよい。これら各方法ではいずれも、試料表面画像作成用データ作成部は、所定のタイミングで、平均値や中央値等の計算に必要な複数個の測定データをデータ保存部120から取得して、それら平均値や中央値等の計算を行うことにより、試料表面画像作成用データを作成する。 In addition, a sample surface image creation data creation unit that performs processing by Fourier transform (the frequency spectrum data creation unit 122 before noise removal, the frequency spectrum data creation unit 123 after noise removal, and the measurement data creation unit 124 after noise removal are combined) Instead of the above, a method that performs processing by a moving average method, a local filter method, or a noise line removal method may be used. In each of these methods, the sample surface image creation data creation unit obtains a plurality of measurement data necessary for calculation of average values, median values, etc. from the data storage unit 120 at a predetermined timing, and averages them. Sample surface image creation data is created by calculating values, median values, and the like.
[第2実施例]
 第2実施例の走査型プローブ顕微鏡20の構成を、図3を用いて説明する。この走査型プローブ顕微鏡20は原子間力顕微鏡であり、測定部21、データ処理部22、制御部23、ノイズ除去振動波形生成部25及びディスプレイ14を有する。
[Second Embodiment]
The configuration of the scanning probe microscope 20 of the second embodiment will be described with reference to FIG. The scanning probe microscope 20 is an atomic force microscope, and includes a measurement unit 21, a data processing unit 22, a control unit 23, a noise removal vibration waveform generation unit 25, and a display 14.
 測定部21は、探針111、カンチレバー112、試料ホルダ113、スキャナ(走査部)214、計測部115、及び試料ホルダ振動センサ216を有する。スキャナ214及び試料ホルダ振動センサ216以外の構成は、第1実施例の走査型プローブ顕微鏡10と同様であるため、説明を省略する。 The measuring unit 21 includes a probe 111, a cantilever 112, a sample holder 113, a scanner (scanning unit) 214, a measuring unit 115, and a sample holder vibration sensor 216. Since the configuration other than the scanner 214 and the sample holder vibration sensor 216 is the same as that of the scanning probe microscope 10 of the first embodiment, the description thereof is omitted.
 スキャナ214は、圧電素子(図示せず)とスキャナ駆動部2141を備える。スキャナ駆動部2141は、試料ホルダ113をX及びYの二軸方向に走査すると共にZ軸方向に移動させるよう所定周波数の交流電圧(走査部への駆動信号)に、後述のように該圧電素子がノイズ除去振動を生成するようにノイズ除去振動波形生成部25により生成されるノイズ除去電圧(ノイズ除去振動波形)を重畳して、該圧電素子に印加するものである。従って、スキャナ214はノイズ除去振動波形生成部25と共に前記ノイズ除去振動付与部として機能する。 The scanner 214 includes a piezoelectric element (not shown) and a scanner driving unit 2141. The scanner driving unit 2141 scans the sample holder 113 in the two axes X and Y and moves the sample holder 113 to an AC voltage (driving signal to the scanning unit) having a predetermined frequency so as to move in the Z-axis direction. The noise removal voltage (noise removal vibration waveform) generated by the noise removal vibration waveform generation unit 25 is superimposed and applied to the piezoelectric element so as to generate noise removal vibration. Therefore, the scanner 214 functions as the noise removal vibration applying unit together with the noise removal vibration waveform generation unit 25.
 試料ホルダ振動センサ216は、試料ホルダに生じる機械的振動を計測するセンサであり、カンチレバー112及びスキャナ214に設けられたものとは別の圧電素子により構成される。試料ホルダ振動センサ216は、X、Y及びZの3方向についてそれぞれ、試料ホルダの機械的振動により生じる圧電素子への圧力の変化を電圧の変化として電気信号化し、制御部23を介してノイズ除去振動波形生成部25に送信するものである。 The sample holder vibration sensor 216 is a sensor for measuring mechanical vibration generated in the sample holder, and is configured by a piezoelectric element different from those provided in the cantilever 112 and the scanner 214. The sample holder vibration sensor 216 converts the pressure change to the piezoelectric element caused by the mechanical vibration of the sample holder into an electric signal as a voltage change in each of the three directions of X, Y, and Z, and removes noise via the control unit 23. This is transmitted to the vibration waveform generator 25.
 ノイズ除去振動波形生成部25は、試料ホルダ振動センサ216から送出された電気信号に基づいてノイズ除去電圧を生成するものである。 The noise removal vibration waveform generation unit 25 generates a noise removal voltage based on the electrical signal sent from the sample holder vibration sensor 216.
 データ処理部22は、計測データ保存部220と、計測データ作成部221と、試料表面像作成部225を有し、いずれも制御部23により制御される。計測データ作成部221は基本的には第1実施例における計測データ作成部121と同様のものである。但し、作成された計測データが計測データ保存部220に送信されるだけでなく、試料表面像作成部225にも送信される点において第1実施例と相違している。計測データ保存部220は、計測データ作成部221で作成されたデータを保存するものである。第1実施例のデータ保存部120とは異なり、計測データ保存部220にはノイズ除去後計測データは保存されない。試料表面像作成部225は、計測データ作成部221において計測データが作成される毎に、そのデータに基づいて試料表面像を作成するものである。作成された試料表面像はディスプレイ14に表示される。 The data processing unit 22 includes a measurement data storage unit 220, a measurement data creation unit 221, and a sample surface image creation unit 225, all of which are controlled by the control unit 23. The measurement data creation unit 221 is basically the same as the measurement data creation unit 121 in the first embodiment. However, this is different from the first embodiment in that the created measurement data is not only transmitted to the measurement data storage unit 220 but also transmitted to the sample surface image creation unit 225. The measurement data storage unit 220 stores the data created by the measurement data creation unit 221. Unlike the data storage unit 120 of the first embodiment, the measurement data storage unit 220 does not store the measurement data after noise removal. Each time the measurement data creation unit 221 creates measurement data, the sample surface image creation unit 225 creates a sample surface image based on the data. The created sample surface image is displayed on the display 14.
 第2実施例の走査型プローブ顕微鏡20の動作を説明する。
 試料ホルダ113に試料Sを取り付けた状態で、所定の操作により測定を開始する。スキャナ114は第1実施例と同様に、試料ホルダ113をZ方向に移動させることにより探針111を試料Sの表面に近づけた後、カンチレバー112に対してZ方向の振動を与えながら、もしくは振動させずに、試料Sの表面に対する探針111の位置を移動させるよう、試料ホルダ113を移動させる。この移動の間、第1実施例と同様の方法により、計測部115はカンチレバー112の振動を検出し、スキャナ214はこの振動の振幅が一定(すなわち探針111の先端の原子と試料S表面の原子の原子間力が一定)になるように試料S表面のZ方向の位置を調整し、計測データ作成部221はこの位置に基づいて試料S表面の凹凸形状の計測データを作成する。
The operation of the scanning probe microscope 20 of the second embodiment will be described.
With the sample S attached to the sample holder 113, measurement is started by a predetermined operation. Similarly to the first embodiment, the scanner 114 moves the sample holder 113 in the Z direction to bring the probe 111 close to the surface of the sample S and then applies vibration to the cantilever 112 in the Z direction or vibrates. Without moving, the sample holder 113 is moved so that the position of the probe 111 relative to the surface of the sample S is moved. During this movement, the measuring unit 115 detects the vibration of the cantilever 112 by the same method as in the first embodiment, and the scanner 214 has a constant amplitude of the vibration (that is, the atoms at the tip of the probe 111 and the surface of the sample S). The position in the Z direction of the surface of the sample S is adjusted so that the atomic force of atoms is constant), and the measurement data creation unit 221 creates measurement data of the uneven shape on the surface of the sample S based on this position.
 試料ホルダ振動センサ216は、これら試料S表面の走査及び計測データの作成と同時並行で、試料ホルダ113の機械的振動を計測する。計測された試料ホルダの機械的振動のデータは電気信号として試料ホルダ振動センサ216から制御部23を介してノイズ除去振動波形生成部25に送出される。ノイズ除去振動波形生成部25ではこの電気信号に基づいて、計測された試料ホルダの機械的振動を打ち消すようにスキャナ214の圧電素子を振動させるよう、該圧電素子に印加するノイズ除去電圧を生成する。例えば、振動とは逆位相の信号を生成するなどがある。このノイズ除去電圧はスキャナ駆動部2141において、試料S表面の走査のための電圧に重畳され、スキャナ214の圧電素子に印加される。これにより、試料ホルダ113の機械的振動が打ち消される。 The sample holder vibration sensor 216 measures the mechanical vibration of the sample holder 113 in parallel with the scanning of the surface of the sample S and the creation of measurement data. The measured mechanical vibration data of the sample holder is transmitted as an electrical signal from the sample holder vibration sensor 216 to the noise removal vibration waveform generation unit 25 via the control unit 23. Based on this electrical signal, the noise removal vibration waveform generation unit 25 generates a noise removal voltage to be applied to the piezoelectric element so as to vibrate the piezoelectric element of the scanner 214 so as to cancel the measured mechanical vibration of the sample holder. . For example, a signal having a phase opposite to that of vibration is generated. This noise removal voltage is superimposed on the voltage for scanning the surface of the sample S in the scanner driving unit 2141 and applied to the piezoelectric element of the scanner 214. Thereby, the mechanical vibration of the sample holder 113 is canceled.
 データ処理部22では、計測データ作成部221により作成された計測データに基づいて随時、試料表面像作成部225により試料Sの表面の像が作成され、ディスプレイ14に表示されてゆく。これにより、試料ホルダ113の機械的振動によるノイズが無い状態で試料Sの表面の像がほぼリアルタイムで得られる。 In the data processing unit 22, an image of the surface of the sample S is created by the sample surface image creation unit 225 based on the measurement data created by the measurement data creation unit 221 and displayed on the display 14. As a result, an image of the surface of the sample S can be obtained almost in real time without noise due to mechanical vibration of the sample holder 113.
 なお、走査部には、本実施例では試料ホルダ113のみを移動させるものを用いたが、探針111と試料ホルダ113を相対的に移動させるものであればよい。すなわち、探針111のみを移動させるものや、探針111と試料ホルダ113の双方を移動させるものも、走査部として用いることができる。探針111のみを移動させるものや、探針111と試料ホルダ113の双方を移動させるものを走査部として用いる場合には、ノイズ除去振動波形はこれらの移動するものに対する駆動信号に重畳すればよい。 In the present embodiment, a scanning unit that moves only the sample holder 113 is used, but any scanning unit that moves the probe 111 and the sample holder 113 relatively may be used. That is, a device that moves only the probe 111 or a device that moves both the probe 111 and the sample holder 113 can be used as the scanning unit. When using only the probe 111 moving device or a device that moves both the probe 111 and the sample holder 113 as a scanning unit, the noise removal vibration waveform may be superimposed on the drive signal for these moving devices. .
 また、本実施例では、ほぼリアルタイムで試料表面像を表示する他に、計測データを計測データ保存部220に保存しておき、計測終了後に、試料表面像作成部225が計測データ保存部220から計測データを読み出して画像表示処理を行うことにより、改めて試料表面像をディスプレイ14にすることができる。但し、このことは本発明において必須要件ではない。 In addition, in this embodiment, in addition to displaying the sample surface image in almost real time, the measurement data is stored in the measurement data storage unit 220, and after the measurement is completed, the sample surface image creation unit 225 receives the measurement data from the measurement data storage unit 220. By reading the measurement data and performing image display processing, the sample surface image can be used as the display 14 again. However, this is not an essential requirement in the present invention.
[第3実施例]
 以上、第1及び第2実施例の走査型プローブ顕微鏡について説明したが、図4に示す走査型プローブ顕微鏡30のように、第1実施例における計測中にフーリエ変換によるノイズ除去処理を行うための構成と、第2実施例におけるノイズとなる振動をキャンセルする振動を探針に与える構成を組み合わせて用いてもよい(第3実施例)。
[Third embodiment]
The scanning probe microscopes of the first and second embodiments have been described above. However, as in the scanning probe microscope 30 shown in FIG. 4, noise removal processing by Fourier transform is performed during measurement in the first embodiment. You may use combining a structure and the structure which gives the probe the vibration which cancels the vibration used as the noise in 2nd Example to a probe (3rd Example).
10、20、30…走査型プローブ顕微鏡
11、21…測定部
111…探針
112…カンチレバー
113…試料ホルダ
114、214…スキャナ
1141、2141…スキャナ駆動部
115…計測部
1151…レーザ光源
1152…レーザ光学系
1153…光検出器
12、22…データ処理部
120…データ保存部
121、221…計測データ作成部
122…ノイズ除去前周波数スペクトルデータ作成部
123…ノイズ除去後周波数スペクトルデータ作成部
124…ノイズ除去後計測データ作成部
125、225…試料表面像作成部
13、23…制御部
14…ディスプレイ
216…試料ホルダ振動センサ
220…計測データ保存部
25…ノイズ除去振動波形生成部
DESCRIPTION OF SYMBOLS 10, 20, 30 ... Scanning probe microscope 11, 21 ... Measuring part 111 ... Probe 112 ... Cantilever 113 ... Sample holder 114, 214 ... Scanner 1141, 2141 ... Scanner drive part 115 ... Measuring part 1151 ... Laser light source 1152 ... Laser Optical system 1153... Photodetector 12, 22 .. data processing unit 120... Data storage unit 121, 221 .. measurement data creation unit 122 .. pre-noise removal frequency spectrum data creation unit 123. Post-removal measurement data creation unit 125, 225 ... sample surface image creation unit 13, 23 ... control unit 14 ... display 216 ... sample holder vibration sensor 220 ... measurement data storage unit 25 ... noise removal vibration waveform generation unit

Claims (3)

  1.  探針と、試料を保持する試料ホルダと、該試料ホルダに保持された試料の表面を該探針で走査するように該探針と試料ホルダを相対的に移動させる走査部と、該探針と該試料の間に生じる相互作用を計測する計測部を有し、該計測部による該相互作用の計測結果に基づいて該表面の像を作成する走査型プローブ顕微鏡であって、
     a) 前記計測部により得られる計測データを保存する計測データ保存部と、
     b) 前記走査部による前記表面の走査中における所定の複数のタイミングにおいて、各タイミング以前の所定の期間内に得られた前記計測データ保存部中の計測データ
    に対してノイズ除去処理を行うことにより試料表面像作成用データを作成する試料表面像作成用データ作成部と、
     c) 前記試料表面像作成用データが作成される毎に、該試料表面像作成用データに基づいて前記表面の像を作成する試料表面像作成部と
    を備えることを特徴とする走査型プローブ顕微鏡。
    A probe, a sample holder that holds the sample, a scanning unit that relatively moves the probe and the sample holder so that the surface of the sample held by the sample holder is scanned by the probe, and the probe And a scanning probe microscope for creating an image of the surface based on a measurement result of the interaction by the measurement unit,
    a) a measurement data storage unit for storing measurement data obtained by the measurement unit;
    b) At a plurality of predetermined timings during scanning of the surface by the scanning unit, by performing noise removal processing on the measurement data in the measurement data storage unit obtained within a predetermined period before each timing A sample surface image creation data creation unit for creating sample surface image creation data;
    c) a scanning probe microscope comprising: a sample surface image creating unit that creates an image of the surface based on the data for creating the sample surface image each time the sample surface image creating data is created .
  2.  d) 前記試料ホルダに設けられた、該試料ホルダの振動を計測する振動計測部と、
     e) 前記走査部による前記表面の走査中に、前記振動計測部により計測された該試料ホルダの振動のデータに基づいて、該試料ホルダの振動を打ち消すノイズ除去振動波形を前記走査部への駆動信号に重畳するノイズ除去振動付与部と
    を備えることを特徴とする請求項1に記載の走査型プローブ顕微鏡。
    d) a vibration measuring unit provided in the sample holder for measuring the vibration of the sample holder;
    e) Driving the noise removal vibration waveform for canceling the vibration of the sample holder to the scanning unit based on the vibration data of the sample holder measured by the vibration measuring unit during the scanning of the surface by the scanning unit. The scanning probe microscope according to claim 1, further comprising a noise removal vibration applying unit that is superimposed on the signal.
  3.  探針と、試料を保持する試料ホルダと、該試料ホルダに保持された試料の表面を該探針で走査するように該探針と試料ホルダを相対的に移動させる走査部と、該探針と該試料の間に生じる相互作用を計測する計測部を有し、該計測部による該相互作用の計測結果に基づいて該試料の表面の像を作成する走査型プローブ顕微鏡であって、
     a) 前記試料ホルダに設けられた、該試料ホルダの振動を計測する振動計測部と、
     b) 前記走査部による前記表面の走査中に、前記振動計測部により計測された該試料ホルダの振動のデータに基づいて、該試料ホルダの振動を打ち消すノイズ除去振動波形を前記走査部への駆動信号に重畳するノイズ除去振動付与部と、
     c) 前記走査部による前記表面の走査中に順次、前記計測部により得られる計測データに基づいて前記表面の像を作成する試料表面像作成部と
    を備えることを特徴とする走査型プローブ顕微鏡。
    A probe, a sample holder that holds the sample, a scanning unit that relatively moves the probe and the sample holder so that the surface of the sample held by the sample holder is scanned by the probe, and the probe And a scanning probe microscope for creating an image of the surface of the sample based on a measurement result of the interaction by the measurement unit,
    a) a vibration measuring unit provided in the sample holder for measuring the vibration of the sample holder;
    b) Driving the noise removal vibration waveform to the scanning unit to cancel the vibration of the sample holder based on the vibration data of the sample holder measured by the vibration measuring unit during the scanning of the surface by the scanning unit. A noise removing vibration applying unit that is superimposed on the signal;
    c) A scanning probe microscope comprising: a sample surface image creation unit that creates an image of the surface based on measurement data obtained by the measurement unit sequentially during scanning of the surface by the scanning unit.
PCT/JP2015/056918 2015-03-10 2015-03-10 Scanning probe microscope WO2016143052A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/056918 WO2016143052A1 (en) 2015-03-10 2015-03-10 Scanning probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/056918 WO2016143052A1 (en) 2015-03-10 2015-03-10 Scanning probe microscope

Publications (1)

Publication Number Publication Date
WO2016143052A1 true WO2016143052A1 (en) 2016-09-15

Family

ID=56878578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056918 WO2016143052A1 (en) 2015-03-10 2015-03-10 Scanning probe microscope

Country Status (1)

Country Link
WO (1) WO2016143052A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04181642A (en) * 1990-11-14 1992-06-29 Olympus Optical Co Ltd Scanning probe microscope image processor
JPH0579811A (en) * 1991-09-19 1993-03-30 Nikon Corp Scanning type microscope
JPH05340712A (en) * 1992-06-11 1993-12-21 Olympus Optical Co Ltd Real-time display device for scanning probe microscope
JPH10267945A (en) * 1997-03-21 1998-10-09 Olympus Optical Co Ltd Scanning optical microscope
JPH11264834A (en) * 1997-12-10 1999-09-28 Peter Heiland Raster mode scanning apparatus for compensating disturbance effect of mechanical vibration affecting scanning step

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04181642A (en) * 1990-11-14 1992-06-29 Olympus Optical Co Ltd Scanning probe microscope image processor
JPH0579811A (en) * 1991-09-19 1993-03-30 Nikon Corp Scanning type microscope
JPH05340712A (en) * 1992-06-11 1993-12-21 Olympus Optical Co Ltd Real-time display device for scanning probe microscope
JPH10267945A (en) * 1997-03-21 1998-10-09 Olympus Optical Co Ltd Scanning optical microscope
JPH11264834A (en) * 1997-12-10 1999-09-28 Peter Heiland Raster mode scanning apparatus for compensating disturbance effect of mechanical vibration affecting scanning step

Similar Documents

Publication Publication Date Title
Mahjoubfar et al. High-speed nanometer-resolved imaging vibrometer and velocimeter
Di Maio et al. Continuous Scan, a method for performing modal testing using meaningful measurement parameters; Part I
TW475982B (en) Acoustic microscope
WO2014103106A1 (en) Photoacoustic microscope
WO2015125976A1 (en) Method for calculating optical scanning locus, and optical scanning device
JP2019507871A (en) Method and system for monitoring parameters of moving objects
JP2019040185A (en) High-resolution 2d microscopy with improved section thickness
CN108917913B (en) Microstructure modal analysis acoustic excitation frequency domain optical coherence tomography detection device and method
JP2009526236A (en) Ultrasonic microimaging device having at least one balanced linear motor assembly
WO2017011752A1 (en) Systems, apparatus, and methods for spectral imaging
JP2020536276A (en) High resolution confocal microscope
Ngoi et al. Two-axis-scanning laser Doppler vibrometer for microstructure
JP2006252800A (en) Scanning electron microscope
CN114778077A (en) Method and apparatus for in vivo high resolution multi-photon microscopy
WO2016143052A1 (en) Scanning probe microscope
Schnell et al. Transient vibration imaging with time-resolved synthetic holographic confocal microscopy
WO2012020811A1 (en) Scanning microscope
JP2009014547A (en) Observation method for solid substance, grease evaluation method, and method for manufacturing bearing
JPWO2008029561A1 (en) Scanning probe microscope and active damping drive controller
JP6287775B2 (en) Scanning probe microscope
WO2010067570A1 (en) Method for processing output of scanning type probe microscope, and scanning type probe microscope
JP5232681B2 (en) Scanning probe microscope and operation method thereof
JP6086719B2 (en) Photoacoustic microscope
JP6782803B2 (en) Image vibration reduction device and method
Bai et al. A 2D MEMS mirror with sidewall electrodes applied for confocal MACROscope imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884546

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15884546

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP