WO2016141621A1 - 真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统 - Google Patents

真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统 Download PDF

Info

Publication number
WO2016141621A1
WO2016141621A1 PCT/CN2015/076982 CN2015076982W WO2016141621A1 WO 2016141621 A1 WO2016141621 A1 WO 2016141621A1 CN 2015076982 W CN2015076982 W CN 2015076982W WO 2016141621 A1 WO2016141621 A1 WO 2016141621A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
seepage
hydraulic
experimental
slitting
Prior art date
Application number
PCT/CN2015/076982
Other languages
English (en)
French (fr)
Inventor
黄炳香
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to US15/110,039 priority Critical patent/US9921202B2/en
Publication of WO2016141621A1 publication Critical patent/WO2016141621A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/32Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring the deformation in a solid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L15/00Devices or apparatus for measuring two or more fluid pressure values simultaneously

Definitions

  • the invention relates to the field of coal mining, in particular to an experimental system for real triaxial flow fracturing, slitting, seepage, and gas drive.
  • the present invention provides an experimental system for true triaxial flow fracturing, slitting, seepage, and gas flooding integration.
  • a true triaxial flow fracturing, slitting, seepage, gas drive integrated experimental system which comprises a true triaxial experimental frame, a loading system and a monitoring system;
  • the monitoring system is respectively connected with the true triaxial experimental frame and the loading system signal;
  • the true triaxial experimental frame consists of a main frame and six flat jacks;
  • test block loading chamber is arranged in the main frame
  • test block loading chamber Six flat jacks are disposed in the test block loading chamber
  • the six flat jacks together form a regular hexahedron.
  • the main frame comprises a bottom plate, an upper cover plate, a limit steel column, a limiter, a ring steel ring and a curved pad;
  • the upper cover and the bottom plate are respectively disposed at two ends of the ring steel ring;
  • the upper cover plate and the bottom plate are fixedly connected by the limit steel column;
  • the arc-shaped pad is four pieces, which are evenly arranged in the ring steel ring;
  • the four curved pads are respectively offset from the four sides of the regular hexahedron.
  • the loading system includes a six-channel hydraulic voltage regulator control loading system and a four-channel electro-hydraulic servo control loading system;
  • the six-channel hydraulic pressure control control loading system and the four-channel electro-hydraulic servo control loading system are respectively connected with the true three-axis experimental frame oil circuit;
  • the four-channel electro-hydraulic servo control loading system is connected to the true three-axis experimental frame through a four-channel oil-water conversion supercharger;
  • the six-channel hydraulic regulator control loading system is connected to the true triaxial experimental frame through an oil separator.
  • one side of the oil separator is provided with three oil inlet pipes, and the other side is provided with six oil outlet pipes;
  • Each oil inlet pipeline is correspondingly connected to two oil outlet pipelines;
  • the oil separator is disposed in the oil separator
  • the upper part of the fuel tank is provided with an upper cover
  • a drain valve is provided at a lower portion of the fuel tank.
  • the monitoring system includes a data processor, a pressure sensor, and a deformation monitoring system
  • the pressure sensor and the deformation monitoring system are respectively connected to the data processor signal;
  • the deformation monitoring system includes 24 displacement sensors;
  • the displacement sensor is hidden and mounted on the curved pad of the flat jack;
  • the displacement sensor wiring adopts a lead slot on the curved pad to concentrate the data line of the displacement sensor to the upper part of the curved pad;
  • the displacement sensor is connected in the form of a quick plug, and a quick plug female is mounted on the upper surface of the curved pad.
  • true triaxial flow fracturing, slitting, seepage, gas drive integrated experimental system also includes a true triaxial flow fracturing system
  • the true triaxial flow fracturing system includes a similar material casting bare hole simulation system, a stone drilling sealing system, a curved sealing device and a porous simultaneous independent control cracking system;
  • the similar material casting bare hole simulation system includes a thin round rod and a winding wire disposed on one end thereof;
  • the stone drilling and sealing system includes an "O" type sealing ring and a sealant
  • the curved sealer comprises a non-porous vertical section and a perforated curved section for simulating the hydraulic crack propagation law of the oblique stress field;
  • the porous simultaneous independent control of the cracking system includes a porous cover plate grinder and a stopper, enabling up to five drill holes to simultaneously control flow fracturing independently.
  • true triaxial flow fracturing, slitting, seepage, gas drive integration experimental system also includes a true triaxial seepage and gas drive system
  • the true triaxial seepage and gas flooding system includes an upper seepage plate and a lower seepage plate;
  • a seepage hole is arranged on the upper seepage plate and the lower seepage plate;
  • the upper seepage plate is further provided with a water inlet hole and a hydraulic fracture hole;
  • a water outlet hole is also disposed on the lower seepage plate
  • the true triaxial seepage and gas drive system is cast with a sealant around the test block.
  • the true triaxial flow fracturing, slitting, seepage, gas drive integration experimental system also includes a hydraulic slitting experimental system
  • the hydraulic slotting experimental system is connected to the true triaxial experimental frame for hydraulic slitting experiments.
  • the hydraulic slitting experimental system includes an electromechanical control cabinet, a high pressure pump control cabinet, a high pressure pump, and a hydraulic slitting device;
  • the hydraulic slotting device comprises a rotating electric machine, a traction motor, a base, a guide rail, a slotted drill pipe, a support bearing, a propulsion screw, a high pressure rotary joint, a slider and a bracket;
  • the rail is fixedly disposed on the bracket
  • the base is connected to the guide rail through two sliders;
  • the slotted drill rod is fixed on the base by two support bearings;
  • a pulley is mounted on the end of the rotating electrical machine and the slot drill pipe;
  • the rotating motor drives the slotted drill rod to rotate clockwise or counterclockwise through the pulley
  • the traction motor is mounted on the rail;
  • the propeller screw is fixed on the guide rail through two support bearings at both ends;
  • the surface of the rod body of the propulsion screw is provided with a thread
  • a pulley is attached to one end of the propulsion screw, and the pulley of the output end of the traction motor is connected by a belt.
  • the invention provides a true triaxial flow fracturing, slitting, seepage, gas flooding integrated experimental system, and under the condition of true triaxial stress, can realize the high osmotic pressure seepage and fluid-solid coupling experiment of the test block, and can carry out
  • the true triaxial mechanical deformation test of coal and soft rock can be used for drilling, hydraulic slitting, high pressure water, etc. It has integrated functions such as flow fracturing, seepage, gas drive, hydraulic slitting, etc., according to specific experimental requirements. , use each function in combination.
  • the true triaxial flow fracturing, slitting, seepage, gas flooding integrated experimental system provided by the invention can systematically and accurately study and judge the hydraulic fracturing process in the coal rock layer, which greatly improves the construction. Effect and construction safety.
  • FIG. 1 is a schematic structural view of an integrated experimental system for true triaxial flow fracturing, slitting, seepage, and gas flooding according to the present invention
  • FIG. 2 is a schematic structural view of a true triaxial experimental frame of an experimental system for true triaxial flow fracturing, slitting, seepage, and gas flooding;
  • Figure 3 is a plan view of Figure 2;
  • FIG. 4 is a schematic structural view of an upper cover plate of an experimental system for true triaxial flow fracturing, slitting, seepage, and gas flooding;
  • FIG. 5 is a schematic structural view of a flat jack of an experimental system for true triaxial flow fracturing, slitting, seepage, and gas flooding;
  • FIG. 6 is a schematic structural view of a curved pad of an experimental system for true triaxial flow fracturing, slitting, seepage, and gas flooding;
  • FIG. 7 is a schematic structural view of a limiter of an experimental system for true triaxial flow fracturing, slitting, seepage, and gas flooding;
  • FIG. 8 is a schematic view showing the connection manner of a six-channel hydraulic pressure-stabilizing load control system and a true three-axis experimental frame of the true triaxial flow fracturing, slitting, seepage, and gas drive-integration experimental system of the present invention
  • FIG. 9 is a schematic view showing the connection manner of a four-channel electro-hydraulic servo control loading system and a true triaxial experimental frame of an experimental system for true triaxial flow fracturing, slitting, seepage, and gas flooding;
  • FIG. 10 is a schematic structural view of an oil separator of an experimental system for true triaxial flow fracturing, slitting, seepage, and gas flooding;
  • FIG. 11 is a schematic view showing the installation structure of an oil separator of an experimental system for true triaxial flow fracturing, slitting, seepage, and gas flooding;
  • FIG. 12 is a schematic view showing the arrangement of a displacement sensor of an experimental system for true triaxial flow fracturing, slitting, seepage, and gas flooding;
  • FIG. 13 is a frame diagram of a true triaxial flow fracturing experimental system of an experimental system for true triaxial flow fracturing, slitting, seepage, and gas flooding;
  • FIG. 14 is a schematic view showing a simulated bare hole cracking method of an experimental system for true triaxial flow fracturing, slitting, seepage, and gas flooding;
  • 15 is a schematic view showing a method for sealing a hole in a rock by a true triaxial flow fracturing, slitting, seepage, and gas flooding integrated experimental system;
  • 16 is a schematic structural view of a conventional hole sealer of an experimental system for true triaxial flow fracturing, slitting, seepage, and gas flooding;
  • 17 is a schematic structural view of a curved sealer of an experimental system for true triaxial flow fracturing, slitting, seepage, and gas flooding;
  • 18 is a schematic diagram of a gas flooding simulation of an experimental system for true triaxial flow fracturing, slitting, seepage, and gas flooding;
  • 19 is a schematic structural view of a hydraulic slitting experimental system of an experimental system for true triaxial flow fracturing, slitting, seepage, and gas flooding.
  • the present invention provides an experimental system for true triaxial flow fracturing, slitting, seepage, and gas drive, including a true triaxial experimental frame 18, a loading system 26, and a monitoring system 8;
  • the shaft experimental frame 18 and the loading system 26 are connected by an oil circuit;
  • the monitoring system 8 is respectively connected with the true triaxial experimental frame 18 and the loading system 26;
  • the true triaxial experimental frame 18 includes a main frame and six flat jacks;
  • a test block loading chamber 31 is provided; six flat jacks are disposed in the test block loading chamber 31; the six flat jacks are collectively formed into a regular hexahedron.
  • a rigid jack with a stroke of 20 mm is used to apply a rigid load to the side of the specimen.
  • a pair of flat jacks are used in each of three orthogonal directions to simulate three principal stresses of the in-situ stress.
  • the four sides of the flat jack and the sample contact surface are machined into a 45° chamfer 43 to ensure that the three orthogonal direction loading jacks do not squeeze each other within the effective stroke.
  • the hydraulic pressure is supplied to the flat jack from the multi-channel voltage regulator, and the pressure of each channel can be separately controlled.
  • the main frame includes a bottom plate 39, an upper cover 32, a limit steel column 35, a stopper 42, a ring steel ring 36 and a curved pad 41; the upper cover 32 and the bottom plate 39 are respectively disposed on the ring steel
  • the two ends of the ring 36; the upper cover 32 and the bottom plate 39 are fixedly connected by the limit steel column 35; the curved pad 41 is four pieces, evenly arranged in the ring steel ring 36; the four curved pads 41 respectively It is offset by the four sides of the regular hexahedron.
  • the true triaxial experimental frame 18 (shown in Figures 2 and 3), the mass of the cover plate 32 on the experimental frame alone is 1374.41 kg, and the mass of the upper carrier plate is 76.14 kg.
  • the loading simulation of the test block 58 of different grades is realized by the method of adding six blocks on the test block 58; at present, the experimental system has been processed.
  • the set of 300 ⁇ 300 ⁇ 100mm 3 sets, the mass of the single block is 70.2kg, and the experimental frame can carry out the loading simulation of 300 ⁇ 300 ⁇ 300mm 3 and 500 ⁇ 500 ⁇ 500mm 3 two-dimensional cube test pieces.
  • Cylinder diameter for loading flat jacks The loading area acting on the surface of the test block 58 is determined by the size of the test block 58 such that the liquid pressure applied to the console is not equal to the load compressive stress on the surface of the test block 58.
  • the load stress of the 300mm and 500mm cubes is determined according to the area ratio relationship.
  • the console provides hydraulic pressure of 1.5386 and 0.553896 times.
  • a test block loading cavity 31 of 500 ⁇ 500 ⁇ 500 mm 3 is left inside the loading frame for placing the cube test block 58 and six faces of the cube test block 58.
  • Directly contacted are six flat jacks, namely an upper flat jack 33, a lower flat jack 38 and four side flat jacks 40; the outer sides of the four side flat jacks 40 are curved plates placed between two adjacent curved plates
  • the stopper 42 and the outer ring are rounded and large steel rings are closely attached to the curved plate, and eight limit steel columns 35 are arranged outside to limit the position.
  • the lower flat jack 38 is placed in a lower pad 37, the bottom plate 37 is a bottom plate 39, and the upper flat jack 33 is an upper cover plate 32.
  • This is the composition of the loading frame and its positional relationship. The structure and the connection relationship between them are described in detail.
  • the structure of the flat jack is shown in Figure 5, the diameter of the cylinder loaded with the flat jack.
  • the stroke is 20mm, and the four sides of the flat jack and the sample contact surface are processed into a 45° chamfer 43 to ensure that the three orthogonal direction loading jacks do not squeeze each other within the effective stroke.
  • the loading jack oil pipe 45 is connected to the oil separator 22 through the small hole of the experimental frame bottom plate 39 through the jack oil pipe groove 46 of the curved pad plate 41.
  • a lifting hole 44 is formed in the upper portion of each of the components of the true triaxial experimental frame 18.
  • the experimental system framework can realize the experiment of the test block 58 with a maximum size of 500 ⁇ 500 ⁇ 500 mm 3 , and at the same time adopt the method of adding six blocks on the test block 58 to realize the test block of different grades. Loading simulation.
  • each of the four blocks on the side of the test block 58 is designed with a chamfer 43 so as to reduce the influence of the boundary effect and increase the stroke of the block to ensure that the load jacks of the three orthogonal directions are
  • the inner blocks are not squeezed together in the effective stroke, and the test block 58 is prevented from being overhead, so that the confining pressure is not loaded.
  • the loading system 26 includes a six-channel hydraulic regulated control loading system and a four-channel electro-hydraulic servo control loading system; a six-channel hydraulic regulated control loading system and a four-channel electro-hydraulic servo-controlled loading system, respectively, and a true triaxial experimental frame 18
  • the oil circuit connection; the four-channel servo loader 30 and the true three-axis experimental frame 18 are connected by a four-channel oil-water conversion supercharger 4; the six-channel hydraulic pressure regulator 27 and the true three-axis experimental frame 18 pass through the oil separator 22 connections.
  • the six-channel hydraulic voltage regulator control loading system is a six-channel hydraulic regulator 27, and the four-channel electro-hydraulic servo control loading system is a four-channel servo loader 30; the two sets of loading systems can work independently and can achieve three-way confining pressure.
  • Control loading and The control loading of the four-channel oil-water conversion supercharger 4 realizes the true three-axis single-hole water injection cracking experiment. It can also be used together to realize the experimental functions of true triaxial porous and simultaneous control of water injection cracking and true triaxial seepage.
  • the six-channel hydraulic regulator 27 is based on the solenoid valve control principle, and its voltage regulation function can realize the three-way confining pressure loading simulated ground stress, which can meet the requirements of the experimental system, but the water injection control requires a highly accurate control loading system, and The water injection loading needs to set the loading path according to different needs to realize dynamic control, and the six-channel hydraulic regulator 27 cannot be loaded according to the predetermined loading path, and the system response period is long, and the loading accuracy to the water pressure is low, so it cannot Meet the requirements of water injection control.
  • the four-channel oil-water conversion supercharger 4 is independently loaded by the four-channel servo loader 30.
  • the system is based on the servo valve control principle and can realize L/min, MPa/ Min and other stepless program control loading and unloading, the loading path can be arbitrarily set, thereby achieving high-precision control of the liquid injection (gas) system, and the response period of the system is short.
  • a four-channel servo-loader 30 is used to perform a true three-axis single-hole hydraulic fracturing experiment.
  • a four-channel servo-loader 30 is used to perform four-channel oil-water conversion supercharger 4.
  • a six-channel hydraulic regulator 27 is used for three-way confining pressure loading. That is, two systems are used together to achieve specific experimental functions.
  • the four-channel servo loader 30 uses the cooling air conditioner 29 for cooling and cooling.
  • the electro-hydraulic servo control loading system 26 has the function of being able to expand into a conventional mechanical testing machine, that is, the hydraulic pipeline is connected to the experimental machine frame to carry out conventional rock mechanics experiments.
  • the loading system 26 is composed of a four-channel servo loader 30, a six-channel hydraulic voltage-stabilizing loading system 26, a high-pressure water test bench, and the like.
  • the six-channel hydraulic regulator 27 realizes the loading of the three-way confining pressure of the test block 58 to simulate the true ground stress; the four-channel servo loader 30 realizes independent loading of the four hydraulic boosters, thereby realizing the liquid injection (gas) system. High precision control.
  • the experimental system can realize the function of rock triaxial mechanics experimental machine, and can carry out true triaxial mechanical deformation test of coal and soft rock.
  • the test of the confining pressure of the test block 58 is carried out by applying a rigid load to the side of the sample by a flat jack with a stroke of 20 mm.
  • a pair of flat jacks are respectively used in three orthogonal directions to simulate the three main stresses of the ground stress. stress.
  • the four sides of the flat jack and the sample contact surface are machined into a 45° chamfer 43 to ensure that the three orthogonal direction loading jacks do not squeeze each other within the effective stroke.
  • the injection (gas) system of test block 58 provides a high pressure fracturing fluid (gas) body by a four-channel oil-water shifting supercharger 4, which includes water, nitrogen, liquid nitrogen foam, and a multi-phase fluid such as water. Sand fracturing fluid, etc.
  • the four water pressure boosters are independently loaded by the four-channel servo loader 30, and the stepless program control loading and unloading such as L/min, MPa/min can be realized, thereby realizing high precision of the liquid injection (gas) system. control.
  • the loading of the confining pressure requires a stable pressure output for the loading jack, while the pressure loading mode can be controlled, and the response period and loading accuracy of the loading system 26 are to meet the requirements of the experimental system.
  • a six-channel hydraulic pressure-stabilizing loading system 26 is used to supply hydraulic oil to the jack to achieve three-way confining pressure loading of the test block 58.
  • the pressure of each channel can be separately controlled, and the liquid can be pumped with a constant displacement, or can be carried out according to a preset pumping procedure.
  • the six-channel hydraulic regulator 27 is composed of a loading oil pump 28, a nitrogen hydraulic pressure stabilizer, a load control system, and an automatic data acquisition system.
  • the electric oil pump 28 provides a hydraulic source, and the nitrogen pressure regulator and the hydraulic pressure boosting system realize each channel. It is separately loaded and unloaded, and the loading and unloading of each channel is controlled and monitored by a computer program. Loading pressure, displacement, hydraulic pressure, flow rate, displacement and other data are automatically collected during the experiment.
  • the hydraulic pressure of the loading pump is more than 30MPa, the displacement is more than 2.5L/min; the accuracy of the hydraulic pressure regulator is 0.5%; the computer can automatically control the loading path, and the loading is controlled by L/min, MPa/min, etc.; Collect loading pressure, displacement, hydraulic pressure, flow, displacement and other data: hydraulic range 0-60MPa or more, flow range 0-0.5m 3 /h, data acquisition time interval less than 1s.
  • the performance of the six-channel hydraulic regulator system meets the requirements of a true three-axis loading system 26.
  • the six-channel hydraulic control loading system is used to simulate the ground stress (containing pressure) loading of the frame of the true triaxial test bench. It is also possible to control the loading of multiple waterways while controlling the water injection and cracking.
  • the response period and loading accuracy of the solenoid valve can meet the requirements for confining pressure loading, the loading of the liquid injection system does not meet the expected accuracy requirements, and the injection system needs to be controlled to load according to different loading paths and loading modes.
  • the cycle is short and the loading accuracy is high. Therefore, the true triaxial flow fracturing injection system adopts the solenoid valve for controlled loading, which cannot meet the requirements.
  • the servo valve is used to control the loading of the liquid injection system
  • the electro-hydraulic servo control system is purchased to independently load the four-channel oil-water conversion supercharger 4, so that high-precision control of the liquid injection (gas) system can be realized.
  • three channels in the four-channel electro-hydraulic servo control system control the confining pressure loading of the true triaxial loading frame, and another channel controls the loading of the water pressure to achieve high precision of confining pressure and water pressure loading. control.
  • the water pressure loading of the multi-channel is controlled by the four-channel electro-hydraulic servo control system, and the confining pressure loading of the true three-axis loading frame can be loaded by the six-channel hydraulic regulator 27.
  • the four-channel servo control loading system provides pressure flow to the four-channel supercharger, and the feedback signal is provided by the pressure sensor 20 and the displacement sensor 52 at the rear end of the supercharger to realize control of the servo valve, thereby realizing different pressure flow output.
  • the loading system 26 includes a hydraulic oil source, a servo distribution station (oil separator 22), an electro-hydraulic servo valve, a computer acquisition control system, a piping system, and the like.
  • Each channel of the system can achieve double action; pressure or displacement control can be realized; it can be controlled by unconditional program such as L/min, MPa/min, etc. It can set the loading path according to the needs, can realize variable frequency pulse loading, and can be based on displacement
  • the monitoring system controls the loading; the system response frequency is not lower than 100Hz, the response period is less than 10ms; the electro-hydraulic servo loading system 26 has an accuracy of 0.5%, and the reliability is good; the data sampling frequency has a large selection range, and different sampling can be selected according to specific experimental requirements.
  • the electro-hydraulic servo control system can be used together with the control system of six-channel high-precision hydraulic regulator, acoustic emission AE13, acoustic emission meter 14, etc., which can realize automatic control and data acquisition with the same computer.
  • Directional valve acoustic emission AE13, acoustic emission meter 14, etc.
  • the electro-hydraulic servo control loading system 26 has the function of being able to expand into a conventional mechanical testing machine, that is, a hydraulic rock tube is connected to the experimental machine frame to perform a conventional rock mechanics experiment.
  • the four-channel oil-water conversion supercharger 4 can realize the control of changing the oil pressure to the water (gas) pressure.
  • the structure of the oil-water conversion supercharger includes a cylinder, a water tank connected to the cylinder, and a cylinder piston disposed in the cylinder respectively.
  • Water cylinder piston in the water tank, cylinder A connecting rod is arranged between the piston and the water cylinder piston; the diameter of the oil cylinder is larger than the diameter of the water cylinder, the connection portion is T-shaped, the T-shaped joint is provided with a sealing ring 59, and a venting hole is provided; the tail of the water tank is provided
  • the inlet and outlet oil pipe 48 of the oil cylinder is provided with a valve and has a quick joint;
  • the inlet and outlet water system includes an inlet pipe connecting the water tank 6 and a check valve provided on the inlet pipe, and an outlet pipe connecting the water tank 6 and the sequentially arranged Check valves, valves, pressure gauges and quick couplings on the outlet pipe.
  • the cylinder piston is reciprocated at the same time to realize pumping and pressing water, so that the oil pressure is converted into high-pressure water, wherein the diameter of the cylinder is larger than the diameter of the cylinder, and the pressure is increased, and the diameter of the cylinder and the diameter of the cylinder are appropriately adjusted.
  • the ratio of the ratio can adjust the boost pressure.
  • the four-channel oil-water conversion supercharger 4 of the experimental system uses the cylinder diameter to be twice the diameter of the water tank, so that the 1:2 boost function can be realized, and the four-channel hydraulic servo control is realized.
  • the system provides a hydraulic pressure of 31.5 MPa for the four-channel oil-water conversion supercharger 4 cylinder, so the water pressure of the water injection system can reach 63 MPa.
  • the oil pressure is converted into water pressure, which provides a possibility for high-pressure water injection in coal mines. It is also convenient for rock water injection test in rock mechanics test. It has simple structure, convenient use and wide practicality.
  • Each cylinder is equipped with a displacement sensor 52. During the experiment, the displacement of each cylinder piston can be detected.
  • the four water (gas) passages are loaded by the oil-water (gas) conversion supercharger, and the single-channel can be used to draw water out at one time. Rise.
  • Each of the channels is equipped with a displacement sensor 52 and is connected to the piston. During the experiment, the displacement of the water injection displacement is controlled by controlling the displacement of the piston.
  • each cylinder of the four-channel oil-water conversion supercharger 4 is larger than the original, so the water volume is more; the four pistons of the four-channel oil-water conversion supercharger 4 are connected with the displacement sensor 52, and the displacement of the piston is monitored.
  • the water injection amount is indirectly monitored, and the water injection displacement is controlled according to the feedback signal; the water absorption of the water tank is controlled by the electromagnetic valve, and automatic water absorption can be realized.
  • the loading of the three-way confining pressure of the experimental platform is controlled and loaded by a six-channel hydraulic pressure regulation system or a four-channel electro-hydraulic servo control system, and the three-way oil passage is output, and the three oil passages are turned into six oil passages by using the oil separator 22.
  • the cubic test block 58 is supplied with oil in three orthogonal jacks in three orthogonal directions, and the oil separator 22 is as shown in FIG.
  • the oil separator 22 is used to realize that each oil passage is changed to two, and the three-way oil passage is changed into a six-way oil passage, so that the stress applied to the two oil passages in each stress direction is equal. At the same time, the oil passage and the oil separator 22 are connected by means of the quick plug 53 to facilitate the disassembly of the oil passage. At the end of each experiment, only the oil passage of the six jacks and the oil separator 22 are removed.
  • one side of the oil separator 22 is provided with three oil inlet pipes 47, and the other side is provided with six oil outlet pipes 48; each of the oil inlet pipes 47 respectively communicates with two oil outlet pipes 48;
  • the oil separator 50 is disposed in the oil distribution tank 50; three oil inlet holes are disposed on one side of the oil distribution tank 50, and six oil outlet holes are disposed on the opposite side; an upper cover 49 is disposed on an upper portion of the oil distribution tank 50; An oil drain valve 51 is provided at the lower portion.
  • the three oil inlet pipes 47 are three-way hydraulic oil circuits provided by the loading system 26, and each oil circuit is divided into two in the oil separator 22 to become a six-way output oil circuit, wherein one oil path becomes two-way oil.
  • the way of the road is to use a three-way joint, so that the pressure of the two oil passages of the output is equal, that is, the pressure of the two oil passages in the direction of each principal stress is equal.
  • the connection between the oil pipe and the oil separator 22 is connected by the quick plug 53, which facilitates the removal and connection of the oil passage and saves time.
  • three pressure sensors 20 are installed at the three oil inlets for monitoring the pressure of each oil passage.
  • the oil separator 22 is installed in the oil distribution tank 50 as shown in Fig. 11, and three oil inlet holes are left on one side of the oil distribution tank 50, from the hydraulic control system or electricity.
  • the three-way oil pipe outputted by the liquid servo system is connected to the oil separator 22 through the three oil inlet holes on the side of the oil distribution tank 50, and the oil separator 22 is connected to the oil separator 50 on the other side of the oil distribution tank 50 for the oil separator. 22 outlets of the six outlet pipes of the 22, the upper cover 49 of the fuel tank 50 can be opened to connect and remove the oil passages.
  • Three pressure sensors 20 are installed at the three oil inlet pipes 47 of the oil separator 22 for monitoring the size of the three-way confining pressure, and the upper portion of the oil distribution tank 50 also has three outlets for the lead wires of the three-way pressure sensor 20 to pass. .
  • At the bottom of the oil separator tank 50 there is an oil discharge valve 51. When the oil accumulation in the oil distribution tank 50 is excessive, the oil discharge valve 51 can be opened to discharge the oil and be recycled.
  • three oil inlet holes are left on one side of the oil distribution tank 50, and the three-way oil pipes output from the hydraulic control system or the electro-hydraulic servo system enter the oil distribution tank 50 through the three oil inlet holes on the side of the oil distribution tank 50.
  • the oil separator 22 is connected, and the other side of the oil separator tank 50 has six oil outlet holes for the outlets of the six oil discharge pipes 48 of the oil separator 22.
  • the upper cover 49 of the oil separator 50 can be opened to connect and remove the oil passage.
  • a pressure sensor 20 is installed at each of the three oil inlet pipes 47 of the oil separator 22 for monitoring the size of the three-way confining pressure, and the upper portion of the oil distribution tank 50 also has three outlets for the lead wires of the three-way pressure sensor 20 to pass. .
  • the erection of the oil separator 22 in the oil separator 50 ensures that the oil pipe ports of the oil separator 50 are horizontally aligned with the oil pipe connection ports of the oil separator 22 to prevent the oil pipe from being bent in the oil separator 50. At the same time, a certain amount of space should be reserved for oil storage at the bottom of the fuel tank 50.
  • Such an arrangement is performed in the oil distribution tank 50 each time the oil circuit is connected and removed, and the leaked hydraulic oil is collected in the oil distribution tank 50 without leaking to the floor, thereby avoiding oil leakage and contaminating the floor.
  • the collected hydraulic oil can be recycled without waste; the oil separator 50 is like an explosion-proof device, and the oil separator 22 is installed inside.
  • the experiment process is abnormal, the oil pressure is too high, resulting in the oil pipe and the oil separation.
  • the oil pipe and the high-pressure oil are all isolated in the oil-distributing tank 50, and no damage is caused to the experimenter; the installation positions of the three sensors are closer to the confining pressure-loading jack, and the measured three-way confining pressure value The error is smaller.
  • the monitoring system 8 includes a data processor, a pressure sensor 20, and a deformation monitoring system; the pressure sensor 20 and the deformation monitoring system are respectively connected with the data processor signal; the oil separator 22 is provided with three pressure sensors 20; the deformation monitoring system includes 24 displacement sensors 52; the displacement sensor 52 is hidden on the curved pad 41 of the flat jack; the displacement sensor 52 is routed by opening the lead groove 54 on the curved pad 41, and the data line of the displacement sensor 52 is concentrated to the arc The upper portion of the pad 41; the displacement sensor 52 is connected in the form of a quick plug 53, and a quick plug female is mounted on the upper portion of the curved pad 41.
  • the deformation monitoring system 11 is added to the original monitoring system 8.
  • the function of the deformation monitoring system 11 is to monitor the strain in three orthogonal directions of the cube test block 58 during the hydraulic fracturing process.
  • the deformation monitoring system 11 performs real-time monitoring by the data processor, that is, the deformation monitoring computer 12.
  • the true triaxial loading of the cube test block 58 is loaded with 5-6 flat jacks, so the displacement sensor 52 is mounted on the flat jack to monitor the test block 58.
  • a total of 20 displacement sensors 52 are installed, and each jack is simultaneously monitored by four displacement sensors 52.
  • the difficulties in the installation of the displacement sensor 52 are as follows: 1. The arrangement of the sensor leads, the 20 sensor data lines are numerous, the original experimental system is already quite compact, and the wiring does not affect the original experimental system, but also facilitates the disassembly of the experimental system; 2. Because each time the experiment is completed, the experimental system must be dismantled and the test block 58 removed. Therefore, it is necessary to require the connection and installation of the sensor to be convenient; 3. Water leakage and oil leakage often occur during the experiment, so the plug of the displacement sensor 52 Must be waterproof.
  • Two lead grooves 54 are opened on both sides of the curved surface of the curved pad 41, and the data line of the displacement sensor 52 at the bottom of the curved plate and the data line of the upper displacement sensor 52 are collected by the lead groove 54 to the upper surface of the curved plate.
  • the quick plug 53 Connected to the female plug of the quick plug 53, the quick plug 53 is 412-3 mm higher than the curved pad, the water is prevented from entering the plug, the male connector of the quick plug 53 is connected to the displacement sensor 52 to collect the data line of the system, and the fast plug 53 of the data line is used for the radio.
  • the antenna plug is convenient for plugging and unplugging, which is convenient for disassembly and assembly of the experimental system.
  • the lead of the displacement sensor 52 is sealed in the lead groove 54 of the curved pad 41 by a sealant 60 to function as a fixing and waterproofing.
  • the displacement sensor 52 and the patch panel have a waterproof function; the displacement measurement resolution is 0.001 mm or more, and the effective range of the displacement sensor 52 is 0-25 mm.
  • the performance of the entire displacement measurement system is reliable, and three orthogonal directions of the cube test block 58 can be realized. Accurate monitoring of strain.
  • the signal collected by the displacement sensor 52 is transmitted to the sensor data acquisition software through the data line, and the data can be displayed in real time, and the data record storage format is various, and the chart format and the document format are available.
  • the storage method is flexible, and the sampling time and sampling method can be set. The interval between data sampling and saving can be set.
  • the data can be saved in real time (in case of power failure, computer shutdown, etc., the data will not be lost), the original collected data cannot be changed, and the collected data can be exported to TXT text format or Access database format.
  • the innovations of the deformation monitoring system 11 are as follows: 1.
  • the function also solves the arrangement of multiple data lines well, which is convenient for disassembly and assembly of the experimental system; 2.
  • the connection of the data lines adopts the form of the quick plug 53, which is convenient for plugging and unplugging, and the female head of the quick plug 53 is curved upward.
  • the backing plate is 412-3mm, which has waterproof function; 3.
  • the displacement sensor 52 is hidden and mounted on the curved pad of the jack, which is a non-contact arrangement, ensuring the probe of the displacement sensor 52 when the jack is installed and not being tested. Do not stick out the block.
  • the role of the displacement sensor 52 is to monitor the strain in three orthogonal directions of the cube test block 58 during true triaxial loading.
  • the displacement sensors 52 of the four sides of the cube test block 58 are all mounted on the curved pad, and four displacement sensors 52 are mounted on each pad for simultaneous monitoring, and the layout of the four displacement sensors 52 on each of the curved pads is
  • the lead mode is shown in Figure 12; the four displacement sensors 52 at the bottom of the test block 58 are mounted at the four corners of the bottom jack, and the data transmission line directly leads through the small holes in the lower pad 37 and the bottom plate 39 to extract the true three-axis loading frame. outer.
  • the invention concentrates the data line of the sensor to the upper part of the curved plate by opening the lead groove 54 on the curved pad board, which does not affect the function of the original experimental system, and also solves the arrangement of the plurality of data lines well. It is convenient for disassembly and assembly of the experimental system; the connection of the data line adopts the form of the quick plug 53, which is convenient for plugging and unplugging, and the female head of the quick plug 53 is 412-3 mm higher than the curved pad, and has a waterproof function; the displacement sensor 52 is hidden and installed in the jack.
  • the curved pad which is a non-contact arrangement, ensures that the probe of the displacement sensor 52 does not protrude out of the block when the jack is installed and not tested.
  • the monitoring and control system also includes the monitoring of the three-way confining pressure of the test block 58 , the monitoring of the water injection pressure and the displacement, and the control of the confining pressure loading and the water injection loading according to the feedback signal.
  • the specific implementation manner is: three pressure sensors 20 mounted on the oil separator 22 transmit the monitored three-way confining pressure signal to the hydraulic controller 15 of the six-channel hydraulic pressure regulator 27 through the data line, and then It is passed to the monitoring computer 9, which controls the loading of the confining pressure based on the feedback signal.
  • the pressure sensor 20 mounted on the high pressure water pipe of the four-channel oil-water conversion supercharger 4 and the four displacement sensors 52 connected to the piston transmit the monitored water pressure and displacement signals to the servo control of the four-channel servo loader 30.
  • the device 10 is then transmitted to the monitoring computer 9, which controls the pressure and displacement of the water injection based on the feedback signal.
  • the monitoring system also includes monitoring of acoustic emission and microseismic events during the entire cracking process, using real-time monitoring tests such as PCI-2 8-channel or Disp 24-channel acoustic emission instrument 14, RSM acoustic wave instrument and TDS-6 microseismic acquisition system.
  • PCI-2 8-channel or Disp 24-channel acoustic emission instrument 14 RSM acoustic wave instrument and TDS-6 microseismic acquisition system.
  • the true triaxial flow fracturing, slitting, seepage, gas drive integration experimental system also includes a hydraulic slitting experimental system; the hydraulic slitting experimental system is connected with the true triaxial experimental frame 18 for hydraulic slitting experiment.
  • the true triaxial flow fracturing, slitting, seepage, gas flooding integration experimental system also includes a true triaxial flow fracturing system;
  • the true triaxial fracturing system includes a similar material casting bare hole simulation system, Stone drilling and sealing system, curved sealing device and porous simultaneous independent control of cracking system;
  • similar material casting bare hole simulation system includes a thin round rod and a winding wire disposed on one end thereof;
  • the stone drilling and sealing system includes an "O" type sealing ring and a sealant;
  • the curved sealing device includes no hole The vertical section and the curved section of the hole are used to simulate the hydraulic crack propagation law of the oblique stress field;
  • the porous simultaneous independent control cracking system includes the porous cover grinding tool and the stopper, which can realize simultaneous control of up to 5 drill holes simultaneously Flow pressure cracking.
  • test block 58 also needs to be sealed before the experiment.
  • the sealer 57 is poured together with a similar material in order to achieve the sealing effect, but there is a problem in this pouring method, that is, the bare hole cracking section 19 cannot be formed, and how to pour the cube
  • the sealing device 57 is poured together to achieve the sealing effect and the bare hole cracking portion 19 can be formed. This is an urgent problem to be solved.
  • the above problem is analyzed.
  • the core of the problem is how to form a bare hole section in the lower part of the hole sealer 57 when pouring the cube test block 58.
  • the method I use is to wear a thin round rod 56 (such as thick wire).
  • the length exposed at the lower portion of the hole sealer 57 is equal to the length of the bare hole section, and then wound at a lowermost end of the thin round rod 56 from the bottom to the top by a line so that the diameter of the winding is equal to the sealing hole.
  • the diameter of the device 57 is up, and then the wire is taken out of the sealing device 57 for pouring. After the pouring is completed, it is waited for two or three days.
  • test block 58 After the test block 58 is solidified and formed, when the mold is removed, the thin round rod 56 is first extracted, and then the wire is twisted. Out, this forms the bare hole cracking section 19.
  • the test block 58 As an example, a method of simulating the bare hole section when the test block 58 is cast by a similar material will be described in detail.
  • the bare hole cracking section 19 is designed to be 100 mm, and the hole sealing device 57 is 220 mm in length and 18 mm in diameter.
  • a thick round rod 56 is passed through the sealing device 57, and the lower end of the sealing device 57 is extended by 100 mm.
  • the length is then wrapped with cotton thread from the lower end of the thin round rod 56 one by one until the diameter reaches 18 mm, and the diameter of the sealing device 57 is the same, the cotton thread is taken out of the sealing device 57, and then the sealing device is 57 and the bottom winding 55 are put into the similar material for pouring.
  • the winding 55 is ensured to be in the center of the test block 58.
  • the sealing device 57 is perpendicular to the upper surface of the test block 58 and the exposed length is 120 mm, and the pouring is completed. Thereafter, the test block 58 is air-dried for one or two days. After the test block 58 is formed, the grinding tool is removed, and the thin round rod 56 is now withdrawn, and the winding 55 is taken out. At this time, the bottom of the sealing device 57 in the test block 58 has formed 100 mm. The bare hole segment.
  • the thin round rod 56 as thick as possible is used, so that the cotton thread can be wound only once to achieve the diameter requirement, thus preventing the winding due to the winding. 55 layers are too many, the cotton thread is cut off during the process of drawing; 2, the thin round rod 56 must be taken out first, then the cotton thread is taken out in turn, if first pumped Line, it is easy to break the line; 3, in order to make the surface of the formed bare hole smooth, a layer of wet wipes, newspapers, etc. can be wrapped on the outside of the winding 55.
  • the above method for simulating a bare hole can simulate a bare hole segment of any length and any diameter.
  • the method is not limited by the length and diameter of the bare hole segment, and the length and diameter of the bare hole segment can be determined according to actual conditions, and has universal applicability.
  • the preparation of the test block 58 is no longer required to be poured, so the sealing method is also different from the sealing method using the similar material pouring.
  • the upper surface of the stone is drilled for cracking with a drill, and then the hole sealer 57 is lowered into the borehole to seal at a certain depth, and a certain length of the bare hole cracking section is left at the bottom of the sealer 57. 19.
  • the surface of the drill hole punched in the stone is very smooth, and the sealing hole is difficult. It is difficult to achieve the sealing effect when sealing the sealing hole 60.
  • the high pressure water tends to be drilled from the sealing device 57 during the cracking process. Leakage between the holes caused the experiment to fail.
  • the length of the design sealing device 57 is 220 mm, wherein the sealing hole length is 100 mm, the diameter is 25.8 mm, and the lower portion of the sealing device 57 leaves a bare hole cracking portion 19 of 100 mm.
  • Three concave grooves are formed in the sealing section 61 of the sealing device 57, and are equally spaced, and then three "O"-shaped sealing rings 59 are installed in the concave grooves, and the sealing glue is applied on the outer side of the sealing device 57. 60.
  • the hole sealer 57 is lowered into the sealing hole by 100 mm to reach the sealing position.
  • the sealing method of the "O" type sealing ring and the sealing glue is not limited by the sealing length and diameter of the cracking hole 63.
  • the sealing depth and the sealing diameter can be determined according to actual conditions, and the number of layers and sealing of the sealing ring 59 are adopted.
  • the arrangement pitch of the circle 59 can also be changed according to the sealing effect, and has universal applicability, and the sealing effect is good, and the experimental effect can be achieved.
  • sealers 57 are designed according to different experimental requirements. According to the angle between the bare hole cracking section 19 and the direction of the principal stress, it is divided into two categories: a straight sealer (conventional sealer) and a curved sealer.
  • the drilling direction of a conventional sealer is perpendicular to a principal stress direction.
  • the expansion law of hydraulic cracks under the action of vertical stress field is studied. According to different experimental requirements, there are various sizes of conventional hole sealers.
  • the inner structure of the sealer is described in detail below with a length of 320 mm, an outer diameter of 20 mm and an inner diameter of 10 mm.
  • the designed plugging length is 200 mm, and the bare hole cracking section 19 is 100 mm in length.
  • the sealing section 61 has a thread surface of 100 mm and is a threaded section 62 to enhance the adhesion with the sealing mortar 57 and the cement mortar to improve the sealing effect.
  • the bare hole cracking section 19 has 4 rows (12 per row) of cracking holes 63 having a diameter of 4 mm for passing the water flow, in order to prevent the cracking hole 63 from being blocked by the cement mortar during pouring, and ensuring the water injection effect, when pouring, intentionally A thin wet wipe is placed on the bare hole cracking section 19 of the sealer 57 to simulate the cracking of the bare hole.
  • the diameter of the plugging device 57, the length of the sealing section 61 and the length of the bare hole cracking section 19 can be changed according to specific experimental requirements.
  • the hydraulically cracked on-site construction drilling is mostly inclined drilling, and most of the drilling direction is oblique to the principal stress direction. Therefore, the expansion law of hydraulic cracks under the oblique stress field must be studied. Based on this design, the curved sealer 57 is designed to study the expansion law of hydraulic cracks under the action of oblique stress field.
  • the internal structure of the sealer 57 is described in detail below by taking a curved sealer having an outer diameter of 20 mm, an inner diameter of 10 mm, and a non-porous vertical section and an angled curved section at an angle of 135°.
  • the curved sealer consists of a non-porous vertical section and a perforated curved section, wherein the non-porous vertical section is 220 mm, the perforated curved section is 90 mm, and the two are at an angle of 135°, and the total length of the curved sealer is 310 mm.
  • the perforated curved section opens four rows of cracking holes 63 having a hole diameter of 4 mm along the phase angle of 90° for passing the water flow, in order to prevent the cracking hole 63 from being blocked by the cement mortar during pouring, thereby ensuring the water injection effect, and the sealing device is specially designed during the pouring.
  • the bare hole cracking section 19 of 57 is wrapped with a thin layer of wet wipes.
  • the sealing hole length is 200 mm
  • the sealing surface 61 has a thread surface of 100 mm which is a threaded section 62, which enhances the degree of bonding of the sealing device 57 with a similar material and improves the sealing effect.
  • the test block 58 is 500 ⁇ 500 ⁇ 500 mm 3
  • the upper portion of the sealer 57 exposes the test block 58 by about 2 cm
  • the test block 58 has a size of 300 ⁇ 300 ⁇ 300 mm 3
  • the upper portion of the sealer 57 exposes the test block 58 about 12 cm. This ensures that the 90 mm curved bare hole cracking section 19 is in the middle of the test block 58.
  • the angle between the non-porous vertical section and the perforated curved section of the curved sealer, the diameter of the sealer 57, and the length of the sealed section 61 and the bare-hole cracking section 19 can be changed according to specific experimental requirements.
  • a special porous cover plate mold was designed, which can realize up to 5 drill holes and control hydraulic cracking at the same time.
  • the cement mortar test was carried out with 500 ⁇ 500 ⁇ 500mm 3 special porous cover plate mold.
  • Block 58 is restrained by the stopper 42.
  • the stopper 42 is connected with the cover plate by means of a thread.
  • the mixed water injection method is adopted, and each hole is independently filled with water by a water channel to ensure uniform water discharge displacement.
  • the stopper 42 is used together with the mold to ensure the position of the crack hole 63 is accurate, and the error of the experimental result caused by the positional displacement of the crack hole 63 is minimized.
  • Hydraulic fracturing measurement Geostress technology is one of the most widely used geostress measurement techniques.
  • the hydraulic fracturing stress measurement method is the most effective means for deep ground stress measurement. At present, the method of measuring the two-dimensional stress of rock hydraulic fracturing is relatively mature, but there are not many simulation experiments in the laboratory.
  • the real triaxial hydraulic fracturing experimental system can be used to simulate the geostress measurement of rock.
  • the two-dimensional ground stress measurement is mainly perpendicular to the two horizontal stresses of the borehole, so the upper and lower directions are the maximum principal stress direction, and the influence is eliminated.
  • the confining pressure is applied, the water injection is cracked, and the initial crack occurs. Stop the water injection, the pressure slowly drops, wait for the pressure to stabilize, then relieve the pressure, then refill the water, after the crack is reopened (pressure drop), stop the water injection in time, keep the water pressure constant, and then repeat the pressure relief several times; after the end of the experiment, according to each
  • the first stage water pressure curve interprets the initial rupture pressure, reopening the pressure, closing the pressure, and calculates the corresponding horizontal maximum and minimum principal stresses for each stage. The average value is compared with the preset horizontal ground stress to verify the ground stress measurement. Precision.
  • the conventional true triaxial hydraulic fractured borehole direction is perpendicular to a principal stress direction.
  • the hydraulic fractured borehole is perpendicular to a principal stress direction, and is perpendicular to a certain
  • the stress field distribution obtained by hydraulic fracturing in a principal stress direction has great limitations.
  • the bending law of the hydraulic cracks under the oblique stress field is studied by using a curved sealer, and the distribution law of the geostress field is analyzed.
  • the bending angle of the bare hole cracking section 19 of the sealing device 57 can be arbitrarily changed according to the actual situation, and the expansion law of the crack under the oblique stress field can be simulated, and the magnitude of the ground stress can be analyzed to check the ground stress measurement.
  • the test block 58 is prepared by casting a similar material in the corresponding mold. At present, three sets of molds of 300 ⁇ 300 ⁇ 300 mm 3 and 500 ⁇ 500 ⁇ 500 mm 3 have been processed, and three pieces can be simultaneously prepared at one time. 300 x 300 x 300 mm 3 and three 500 x 500 x 500 mm 3 test blocks 58.
  • hydraulic slitting, hydraulic fracturing, seepage, and the like can be used in combination.
  • seepage before the experiment then hydraulic fracturing, study the effect of pore pressure on the hydraulic fracturing pressure and crack propagation pressure; seepage after hydraulic fracturing, test the permeability change caused by cracking.
  • Gas drive and hydraulic fracturing can also be used in combination, first gas drive, then hydraulic fracturing, study the gas-flooding effect of hydraulic fracturing and its mechanism. Hydraulic fracturing and hydraulic slashing can also be used in combination.
  • Hydraulic slashing is performed under true triaxial conditions, and then hydraulic fracturing is performed to study the orientation effect of hydraulic kerf crack initiation and expansion. Hydraulic slitting and seepage can also be used in combination. Under the true triaxial condition, the coal body is hydraulically slitted, and then the change of seepage performance can be tested to achieve various functions.
  • the true triaxial flow fracturing, slitting, seepage, gas flooding integration experimental system also includes a true triaxial seepage and gas flooding system;
  • the true triaxial seepage and gas flooding system includes an upper seepage plate 64 and a lower seepage plate 69; upper seepage The flow plate 64 and the lower seepage plate 69 are both provided with a seepage hole 67 in the array;
  • the upper seepage plate 64 is further provided with a water inlet hole 65 and a hydraulic fracture hole 66; and the lower seepage plate 69 is further provided with a water outlet hole 70.
  • the biggest problem that needs to be solved by seepage is the sealing problem, considering both the effect of sealing and the cost.
  • the seepage plate is placed on the top and bottom of the sample, and the sealant 60 is used for pouring and sealing.
  • the sealant 60 requires good adhesion and can be well bonded with the coal sample 68 and the block to form a whole, and at the same time A certain degree of flexibility, can resist a certain degree of deformation when the pressure is applied.
  • the seepage of coal sample 68 is taken as an example to explain the seepage and gas drive.
  • the gas drive simulation experiment system also needs to process two seepage plates, which are respectively placed in the upper and lower parts of the coal sample 68.
  • the cross section of the seepage plate is equivalent to the size of the coal sample 68 (400 ⁇ 400 mm 2 ), two
  • the perforation plate is densely covered with a small hole having a diameter of 2 mm, and the small holes are arranged in a matrix of 10 mm ⁇ 10 mm 2 .
  • Upper and lower seepage plates (400 ⁇ 400 ⁇ 5mm 3 ), a piece of 400 ⁇ 400 ⁇ 400mm 3 coal or briquette material is placed in the middle to form a 400 ⁇ 400 ⁇ 500mm 3 combination, which is cast with glue around.
  • Each side sealant 60 is poured to a thickness of 50 mm and finally cast into a 500 x 500 x 500 mm 3 percolation unit.
  • the upper seepage plate 64 is provided with a hole for introducing gas gas and high-pressure water, and a hydraulic cracking hole is reserved in the middle. When only seepage is performed without hydraulic cracking, the intermediate hydraulic cracking hole is sealed.
  • the hydraulic cracking hole 66 reserved by the upper seepage plate 64 can first perform the gas infiltration of the coal sample 68 and then hydraulically crack. Now, when simulating the high pressure water to drive the gas, the intermediate reserved hydraulic cracking hole 66 needs to be first blocked. .
  • This simulated gas flooding test can use the side holes to inject gas into the coal sample 68, simulate the original state of the coal sample 68, and then inject high pressure water into it to simulate the phenomenon of high pressure water driving the gas.
  • the water inlet (gas) port on the side is externally connected with a tee, one end is connected to the pressure sensor 20, the second flow sensor 21, the pressure regulating valve 23 and the gas storage tank 24, and the other end is connected to the valve and the four-channel oil-water conversion supercharger 4.
  • the upper surface of the lower seepage plate 69 is densely covered with a small hole as below the upper seepage plate 64, and an air outlet is left under the lower seepage plate 69, and the hose, the valve and the flow sensor are connected after the air outlet.
  • the gas is introduced into the coal sample through the small hole in the side of the upper seepage plate 64, until the gas outlet of the lower seepage plate has a stable gas flow, the lower outlet valve is closed, and the coal is kept open.
  • the valve at the gas inlet is closed, the valve of the high pressure water is opened, and high pressure water is introduced into the upper seepage plate 64.
  • the osmotic pressure of true triaxial seepage must be less than the confining pressure.
  • the confining pressure of the experimental system can be increased to more than 20 MPa, so the osmotic pressure can reach 14-15 MPa.
  • the osmotic pressure can reach 14-15 MPa depends on whether the sealing performance can be satisfied. In theory, it is completely achievable, and it is necessary to continuously try and improve the sealing performance in the later experimental process.
  • the experimental system can realize the maximum sample size of 400 ⁇ 400 ⁇ 400mm 3 coal sample seepage, and can also carry out the seepage of the rock sample, the specific size is determined according to the actual situation.
  • Pressure sensor 20 second flow sensor 21, pressure regulating valve 23, gas storage tank 24, four-channel oil-water conversion supercharger 4, true triaxial experimental frame 18, concentration sensor 16 and first flow sensor 17, and oil metering
  • the units 71 together form a true triaxial integrated system 25.
  • the hydraulic slitting experimental system comprises an electromechanical control cabinet 2, a high pressure pump control cabinet 3, a high pressure pump 5 and a hydraulic slitting device;
  • the hydraulic slotting device comprises a rotating electric machine, a traction motor, a base, a guide rail, a slotted drill pipe, a support bearing, a propulsion screw, a high-pressure rotary joint, a slider and a bracket; the guide rail is fixedly disposed on the bracket; the base passes through two sliders and a guide rail Connection
  • the slotted drill rod is fixed on the base by two support bearings; a pulley is mounted on the end of the rotary motor and the slot drill pipe; the rotary motor drives the slot drill rod to rotate clockwise or counterclockwise through the pulley; the traction motor
  • the propeller screw is fixed on the guide rail through two support bearings at both ends; the surface of the propeller screw body is provided with a thread; the propeller is equipped with a pulley at one end thereof, and the pulley of the output end of the traction motor is connected by a belt.
  • the base and the bracket together constitute a hydraulic slit test bench 7, and the rotary motor, the traction motor, the guide rail, the slotted drill pipe, the support bearing, the propulsion screw, the high-pressure rotary joint and the slider are all arranged on the hydraulic slit test bench 7.
  • the special drill pipe for slitting rotates around its own axis under the driving of the rotary motor, so that a certain depth of radial slit can be cut in the wall of the drill hole in the standard test piece.
  • the rotating motor When the rotating motor is turned off and the traction motor is turned on, the high-pressure water outlet on the nozzle is fixed in a certain direction, and the base is driven by the traction motor to drive the special bolt for the slit to rise or fall in the vertical direction, thereby in the standard test piece.
  • Two axial slits having a certain depth are cut in the direction in which the inner bore hole wall is set. The water pressure and the kerf time of the high-pressure water are set as needed, so that cracks of a certain depth can be cut.
  • the first way is to erect the bracket of the hydraulic slitting system 1 on a flat ground, rotate the rail by 90° to make the rail in a vertical state, and then fix the rail. Place the standard test piece under the bracket of the hydraulic slitting system 1 and align the hydraulic drill special drill pipe with the drill hole on the standard test piece, and then perform hydraulic slitting.
  • the second way is to place the standard test piece on a special shelf, with the holed side of the test piece facing the hydraulic slit test device, and the drill hole center facing the hydraulic slit special drill pipe. Then perform a hydraulic slit.
  • the hydraulically cut bit uses a small bore based on the anchor rig ( or Drilling and cutting integrated drill bit can realize the integrated function of drilling and cutting.
  • the true triaxial hydraulic slitting experimental system uses the true triaxial hydraulic fracturing test bench to add 58 triaxial confining pressure to the test block 58 and then installs a hydraulic slitting device on the hydraulic fracturing test bench.
  • the test block 58 performs the slitting, and the slitting device can cut the axial joint and the radial joint, and can simulate the hydraulic slitting of the coal rock mass under the original rock stress state.
  • the coal rock body is sealed, and then the hydraulic cracking test of the test block 58 after the slitting can be performed.
  • the device is mainly composed of two parts, the first part is a hydraulic slitting device, and the second part is a true triaxial loading device.
  • the hydraulic slotting device comprises a traction motor, a rotating motor, a slider, a slide rail, a frame, a dedicated drill pipe for the slit and a drill bit.
  • the traction motor drives the slider composed of the rotary motor and the drill rod to move on the slide rail, and drives the drill bit to move up and down in the test block 58, and cuts the seam in the axial direction of the drill hole.
  • the rotary motor is fixed on the slider and connected to the drill rod to drive the drill rod to rotate, so that the drill bit rotates in the test block 58, and the radial slit is cut.
  • the fixing of the hydraulic slitting device and the true three-axis loading frame is the key to the slitting work.
  • the hydraulic slitting device has a large weight and needs to be installed with a lifting ring, which is convenient for lifting by driving.
  • a limit device is installed in the hole in the middle of the upper cover 32 of the true triaxial loading frame to limit the drill pipe.
  • the base of the slotting device is bolted to the upper cover 32 to prevent the drill pipe from swaying during the grooving process and affecting the quality of the kerf.
  • the slitting device and the stopper 42 on the upper cover 32 are removed.
  • the seepage system can be installed to perform the seepage test after the slitting; the special sealing device 57 can also be used to seal the hole, and the test block 58 after the slit is hydraulically cracked, and the cutting is performed. After the seam, the test block 58 is hydraulically fractured; it is also possible to observe the crack propagation by inserting the borehole camera into the hole. Combine according to actual needs.
  • Test block 58 was prepared one month before the experiment.
  • the mold is first assembled, and similar simulated materials are prepared (usually using cement mortar to prepare test block 58, the mass ratio of fine sand, cement and water is 3.5:1:0.3), and then similar simulation is used in the mold.
  • the material is poured and the hole sealer 57 is installed.
  • the test block 58 has been substantially formed.
  • the mold is removed, and then the test block 58 is watered and cured every one or two days.
  • the experiment can be carried out after about 28 days of natural air drying.
  • test block 58 Insert the test block 58 and assemble the test bench: put the test block 58 into the frame of the test bench with a lifting device, and then install the jacks on four sides, the curved pad, the stopper 42 and the upper water-filling pad at one time. The upper cover 32, then the eight pre-tightening nuts 34 are tightened, and the test bench is assembled.
  • the water injection cracking experiment after 5 minutes of confining pressure regulation, set the water injection mode on the control software (can be loaded according to MPa/min, mL/min, pulse water injection, etc.) to make the four-channel servo loader 30
  • the four-channel oil-water shifting supercharger 4 is controlled to inject high-pressure water into the test block 58.
  • the AE host synchronizes to record the acoustic emission monitoring data. Water was injected until the test block 58 was pressed open, and water leakage occurred in the lower part of the test bench, and the experiment was finished.
  • the invention provides a true triaxial flow fracturing, slitting, seepage, gas flooding integrated experimental system, and under the condition of true triaxial stress, the high osmotic pressure seepage and fluid-solid coupling experiment of the test block 58 can be realized, Conducting true triaxial mechanical deformation tests of coal and soft rock, drilling, hydraulic slitting, high pressure water, etc., with integrated functions such as flow fracturing, seepage, gas drive, hydraulic slitting, etc., according to specific experiments It is required to use each function in combination.
  • the true triaxial flow fracturing, slitting, seepage, gas flooding integrated experimental system provided by the invention can systematically and accurately study and judge the hydraulic fracturing process in the coal rock layer, which greatly improves the construction. Effect and construction safety.

Abstract

一种真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统,涉及煤矿开采领域。其包括真三轴实验框架(18)、加载系统(26)和监控系统(8)。在真三轴应力条件下,能实现试块尺寸最大为500×500×500mm3的实验。能最多5个钻孔同时独立控制流压致裂,钻孔致裂水压力可达60MPa。能考虑煤体内瓦斯的影响。能实现试块尺寸最大为400×400×400mm3的高渗透压力的渗流和流固耦合试验。能进行煤与软岩的真三轴力学变形测试。具备流量70L/min、水压力70MPa煤矿用高压泵实验台,可进行钻孔、割缝、高压水等试验。通过上述实验系统可对煤岩层水力致裂过程进行系统、精确地研究和判断,提高了施工效果和安全性。

Description

真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统 技术领域
本发明涉及煤矿开采领域,具体而言,涉及一种真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统。
背景技术
煤矿中的坚硬顶板、冲击地压、低渗透性煤层瓦斯抽采、煤与瓦斯突出、坚硬厚及特厚煤层综放开采等是制约矿井安全高效生产的技术难题。解决这些技术难题涉及一个共性的核心问题——煤岩体结构改造,即在煤岩体中人工增加裂缝,弱化其强度、改善其渗透性等。目前,水力致裂是实现煤岩体结构改造的有效途径。
煤岩层结构复杂、煤层质软、瓦斯的吸附解吸效应、天然裂缝发育、非均质性严重、采动影响等因素导致煤岩体水力致裂变得复杂,煤矿井下水力致裂和煤层气的开发实践已经证明了这一点。
由于水力致裂过程中地层中的裂缝扩展与裂缝形态是很复杂的,而目前的监测技术无法精确的监测水力致裂过程中裂缝的实时扩展及裂缝形态,因此人们对水力致裂现场施工裂缝的扩展规律等不清楚,这将会导致水力致裂的现场施工具有盲目性,造成施工效果不佳甚至失败,在很大程度上制约了水力致裂技术的发展和推广。但是,目前煤炭系统还没有一套完整的实验系统针对以上问题进行系统、深入地研究,因此迫切需要研制相应的实验系统对其机理等开展研究。
发明内容
为了解决现有技术中的上述问题,本发明提供了一种真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统。
在本发明的实施例中提供了一种真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统,其包括真三轴实验框架、加载系统和监控系统;
真三轴实验框架与加载系统通过油路连接;
监控系统分别与真三轴实验框架和加载系统信号连接;
真三轴实验框架包括主架和六个扁千斤顶;
主架上内设置有试块加载腔;
六个扁千斤顶均设置在试块加载腔内;
六个扁千斤顶共同围成一个正六面体。
进一步的,主架包括底板、上盖板、限位钢柱、限位器、圆环钢圈和弧形垫板;
上盖板和底板分别设置在圆环钢圈的两端;
上盖板与底板通过限位钢柱固定连接;
弧形垫板为四块,均匀排列设置在圆环钢圈内;
四块弧形垫板分别与正六面体的四个侧面相抵。
进一步的,加载系统包括六通道液压稳压控制加载系统和四通道电液伺服控制加载系统;
六通道液压稳压控制加载系统和四通道电液伺服控制加载系统分别与真三轴实验框架油路连接;
四通道电液伺服控制加载系统与真三轴实验框架之间通过四通道油水转换增压器连接;
六通道液压稳压控制加载系统与真三轴实验框架之间通过分油器连接。
进一步的,分油器的一侧设置有三个进油管路,相对的另一侧设置有六个出油管路;
每个进油管路分别对应连通两个出油管路;
分油器设置在分油箱内;
分油箱的一侧设置有三个进油孔,相对的另一侧设置有六个出油孔;
分油箱的上部设置有上盖;
分油箱的下部设置有排油阀。
进一步的,监控系统包括数据处理器、压力传感器和变形监测系统;
压力传感器和变形监测系统分别与数据处理器信号连接;
分油器上设置有三个压力传感器;
变形监测系统包括24只位移传感器;
位移传感器暗藏安装在扁千斤顶的弧形垫板上;
位移传感器布线采用在弧形垫板上开引线槽,将位移传感器的数据线集中到弧形垫板的上部;
位移传感器的连接方式采用快插头的形式,在弧形垫板上部安装快插头母头。
进一步的,真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统还包括真三轴流压致裂系统;
真三轴流压致裂系统包括相似材料浇注裸孔模拟系统、石块钻孔封孔系统、弯曲封孔器和多孔同时独立控制致裂系统;
相似材料浇注裸孔模拟系统、石块钻孔封孔系统、弯曲封孔器和多孔同时独立控制致裂系统并联设置;
相似材料浇注裸孔模拟系统包括一根细圆杆及设置在其一端上的缠绕线;
石块钻孔封孔系统包括“O”型密封圈和密封胶;
弯曲封孔器包括无孔垂直段与有孔弯曲段,用于模拟斜交应力场的水压裂缝扩展规律;
多孔同时独立控制致裂系统包括多孔盖板磨具和限位器,能实现最多5个钻孔同时独立控制流压致裂。
进一步的,真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统还包括真三轴渗流与瓦斯驱赶系统;
真三轴渗流与瓦斯驱赶系统包括上部渗流板和下部渗流板;
上部渗流板与下部渗流板上均阵列设置有渗流孔;
上部渗流板上还设置有入水孔和水力致裂孔;
下部渗流板上还设置有出水孔;
真三轴渗流与瓦斯驱赶系统在试块四周用密封胶浇注。
进一步的,真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统还包括水力割缝实验系统;
水力割缝实验系统与真三轴实验框架连接,用于进行水力割缝实验。
进一步的,水力割缝实验系统包括机电控制柜、高压泵控制柜、高压泵和水力割缝装置;
水力割缝装置包括旋转电机、牵引电动机、底座、导轨、割缝钻杆、支撑轴承、推进螺杆、高压旋转接头、滑块和支架;
导轨固定设置在支架上;
底座通过两个滑块与导轨连接;
割缝钻杆由两个支撑轴承固定在底座上;
在旋转电机的端部和割缝钻杆上均安装有皮带轮;
旋转电机通过皮带轮带动割缝钻杆顺时针或逆时针方向转动;
牵引电动机安装在导轨上;
推进螺杆通过两端的两个支撑轴承固定在导轨上;
推进螺杆的杆体表面设置有螺纹;
推进螺杆的一端安装有皮带轮,与牵引电动机的输出端的皮带轮通过皮带连接。
本发明提供的真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统,在真三轴应力条件下,能够实现试块的高渗透压力的渗流和流固耦合实验,能够进行煤与软岩的真三轴力学变形测试,可进行钻孔、水力割缝、高压水等实验,具备流压致裂、渗流、瓦斯驱赶、水力割缝等一体化功能,可根据具体实验要求,对各功能进行组合使用。通过本发明提供的真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统可以对煤岩层中的水力致裂过程进行系统地、精确地研究和判断,极大了提高了施工效果和施工的安全性。
附图说明
图1为本发明真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统的结构示意图;
图2为本发明真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统的真三轴实验框架的结构示意图;
图3为图2的俯视图;
图4为本发明真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统的上盖板的结构示意图;
图5为本发明真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统的扁千斤顶的结构示意图;
图6为本发明真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统的弧形垫板的结构示意图;
图7为本发明真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统的限位器的结构示意图;
图8为本发明真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统的六通道液压稳压加载控制系统与真三轴实验框架的连接方式示意图;
图9为本发明真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统的四通道电液伺服控制加载系统与真三轴实验框架的连接方式示意图;
图10为本发明真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统的分油器的结构示意图;
图11为本发明真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统的分油器的安装结构示意图;
图12为本发明真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统的位移传感器的布置示意图;
图13为本发明真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统的真三轴流压致裂实验系统框架图;
图14为本发明真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统的模拟裸孔致裂方法的示意图;
图15为本发明真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统的石块钻孔封孔方法的示意图;
图16为本发明真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统的常规封孔器的结构示意图;
图17为本发明真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统的弯曲封孔器的结构示意图;
图18为本发明真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统的瓦斯驱赶模拟示意图;
图19为本发明真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统的水力割缝实验系统的结构示意图。
附图标记:
1:水力割缝系统;2:机电控制柜;3:高压泵控制柜;4:四通道油水转换增压器;5:高压泵;6:水箱;7:水力割缝实验台;8:监控系统;9:监控计算机;10:伺服控制器;11:变形监测系统;12:变形监测计算机;13:声发射AE;14:声发射仪;15:液压控制器;16:浓度传感器;17:第一流量传感器;18:真三轴实验框架;19:裸孔致裂段;20:压力传感器;21:第二流量传感器;22:分油器;23:调压阀;24:瓦斯储集罐;25:真三轴一体化系统;26:加载系统;27:六通道液压稳压器;28:油泵;29:冷却空调;30:四通道伺服加载器;31:试块加载腔;32:上盖板;33:上扁千斤顶;34:预紧螺母;35:限位钢柱;36:圆环钢圈;37:下部垫板;38:下扁千斤顶;39:底板;40:侧扁千斤顶;41:弧形垫板;42:限位器;43:倒角;44:起吊孔;45:加载千斤顶油管;46:千斤顶油管槽;47:进油管;48:出油管;49:上盖;50:分油箱;51:排油阀;52:位移传感器;53:快插头;54:引线槽;55:绕线;56:细圆杆;57:封孔器;58:试块;59:密封圈;60:密封胶;61:封孔段;62:螺纹段;63:致裂孔;64:上部渗流板;65:入水孔;66:水力致裂孔;67:渗流孔;68:煤样;69:下部渗流板;70:出水孔;71:油液计量器。
具体实施方式
下面参照附图详细介绍本发明的示例性实施例。提供这些示例性实施例的目的是为了使得本领域普通技术人员能够清楚地理解本发明,并且根据这里的描述能够实现本发明。附图和具体实施例不旨在对本发明进行限定,本发明的范围由所附权利要求限定。
如附图所示,本发明提供了一种真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统,包括真三轴实验框架18、加载系统26和监控系统8;真三轴实验框架18与加载系统26通过油路连接;监控系统8分别与真三轴实验框架18和加载系统26信号连接;真三轴实验框架18包括主架和六个扁千斤顶;主架上内设置有试块加载腔31;六个扁千斤顶均设置在试块加载腔31内;六个扁千斤顶共同围成一个正六面体。
采用行程为20mm的扁千斤顶向试样的侧面施加刚性载荷,根据地应力场特征,在三个正交的方向上各采用一对扁千斤分别模拟地应力的三个主应力。扁千斤顶与试样接触面的四边均加工成45°的倒角43,以确保三个正交方向的加载千斤顶在有效行程内不相互挤紧。由多通道稳压源向扁千斤顶提供液压,各通道的压力大小可分别控制。
进一步的,主架包括底板39、上盖板32、限位钢柱35、限位器42、圆环钢圈36和弧形垫板41;上盖板32和底板39分别设置在圆环钢圈36的两端;上盖板32与底板39通过限位钢柱35固定连接;弧形垫板41为四块,均匀排列设置在圆环钢圈36内;四块弧形垫板41分别与正六面体的四个侧面相抵。
真三轴实验框架18(如图2和图3所示),仅实验框架上盖板32的质量就达1378.41kg,上承载板质量为76.14kg。考虑到现场取500×500×500mm3的试块58比较困难等因素,采用在试块58六面加垫块的方法,实现不同等级尺寸的试块58的加载模拟;目前,实验系统已加工了300×300×100mm3的成套垫块,单块垫块质量为70.2kg,实验框架可以进行300×300×300mm3和500×500×500mm3两种规格立方体试件的加载模拟。
加载扁千斤顶的油缸直径
Figure PCTCN2015076982-appb-000001
而作用于试块58表面的加载面积由试块58尺寸确定,导致控制台所加的液体压强不等于试块58表面的加载压应力。根据面积比例关系确定300mm和500mm立方体的加载压应力是控制台提供液压的1.5386和0.553896倍。
真三轴加载的实现途径:采用行程为20mm的扁千斤顶向试样的侧面施加刚性载荷,根据地应力场特征,在三个正交的方向上各采用一对扁千斤分别模拟地应力的三个主应力。
真三轴加载系统26从里到外的结构:首先在加载框架的内部留出500×500×500mm3的试块加载腔31空间用于放置立方体试块58,与立方体试块58六个面直接接触的是六个扁千斤顶,即一个上扁千斤顶33,一个下扁千斤顶38和四个侧扁千斤顶40;四个侧扁千斤顶40的外面是弧形板,相邻两个弧形板之间放置限位器42,再往外就是圆环形大钢圈紧贴弧形板,外面有八根限位钢柱35进行限位。下扁千斤顶38放置在一个下部垫板37内,下部垫板37下面是底板39,上扁千斤顶33的上面是上盖板32,这是加载框架的组成及其位置关系,下面就每一部分的结构及其之间的连接关系进行详细描述。
扁千斤顶的结构如图5所示,加载扁千斤顶的油缸直径
Figure PCTCN2015076982-appb-000002
行程为20mm,扁千斤顶与试样接触面的四边均加工成45°的倒角43,以确保三个正交方向的加载千斤顶在有效行程内不相互挤紧。
加载千斤顶油管45通过弧形垫板41的千斤顶油管槽46经实验框架底板39的小孔连接至分油器22上。
真三轴实验框架18的每一个部件的上部都加工有起吊孔44。
因为每一部分的质量很大,安装和拆卸极不方便,加工了起吊孔44后,在安装和拆卸实验框架的过程中均可借助于行车起吊,方便省时。
目前实验系统框架在三个主应力条件下,能实现试块58尺寸最大为500×500×500mm3的实验,同时采用在试块58六面加垫块的方法,实现不同等级尺寸试块58的加载模拟。
同时每个垫块贴近试块58一面的四个边均设计有倒角43,这样可以减小边界效应的影响,同时可以增大垫块的行程,以确保三个正交方向的加载千斤顶在有效行程内内侧垫块不相互挤紧,避免将试块58架空导致围压没有加载上。
进一步的,加载系统26包括六通道液压稳压控制加载系统和四通道电液伺服控制加载系统;六通道液压稳压控制加载系统和四通道电液伺服控制加载系统分别与真三轴实验框架18油路连接;四通道伺服加载器30与真三轴实验框架18之间通过四通道油水转换增压器4连接;六通道液压稳压器27与真三轴实验框架18之间通过分油器22连接。
六通道液压稳压控制加载系统即六通道液压稳压器27,四通道电液伺服控制加载系统即四通道伺服加载器30;两套加载系统既可以独立工作,均能实现对三向围压的控制加载和 对四通道油水转换增压器4的控制加载,实现真三轴单孔注水致裂实验。也可以配合使用,实现真三轴多孔同时控制注水致裂及真三轴渗流等实验功能。
利用六通道液压稳压控制加载系统进行真三轴单孔注水致裂实验时,利用其中三个通道进行立方体试块58的三向围压加载模拟地应力,另外两个通道分别控制四通道油水转换增压器4的其中两个通道,实现向试块58内注入高压水,剩余的一个通道留作备用。
六通道液压稳压器27是基于电磁阀控制原理,其稳压功能可以实现三向围压加载模拟地应力,能满足实验系统的要求,但是注水控制则需要精度很高的控制加载系统,且注水加载需要根据不同的需要设置加载路径,实现动态控制,而六通道液压稳压器27不能实现按照预定加载路径进行加载,且系统响应周期较长,对水压的加载精度较低,因此不能满足注水控制的要求。
利用四通道伺服加载器30进行真三轴单孔注水实验时,其中的三个通道进行三向围压加载,剩余的一个通道控制油水转换增压器4的一个通道实现向试块58内注入高压注水。
为了实现对注水加载系统的高精度动态控制,采用四通道伺服加载器30对四通道油水转换增压器4进行独立加载,该系统是基于伺服阀控制原理,能实现按L/min、MPa/min等无级程序控制加卸载,可任意设置加载路径、从而实现对注液(气)系统的高精度控制,并且系统的响应周期短。
当进行真三轴单孔水力致裂实验时,为了实现围压及注水的高精度加载,利用四通道伺服加载器30进行真三轴单孔水力致裂实验。
当进行真三轴多孔同时控制注水致裂及真三轴渗流等实验时,为了保证多通道同时高压注水的高精度独立控制,采用四通道伺服加载器30对四通道油水转换增压器4进行独立加载,而采用六通道液压稳压器27进行三向围压的加载。即两套系统配合使用,实现特定的实验功能。
四通道伺服加载器30利用冷却空调29进行冷却散热。
同时电液伺服控制加载系统26具备能扩展成常规力学实验机的功能,即将液压管路连接实验机框架即可进行常规的岩石力学实验。
加载系统26由四通道伺服加载器30、六通道液压稳压加载系统26及高压水实验台等组成。六通道液压稳压器27实现试块58三向围压的加载,模拟真实地应力;四通道伺服加载器30实现对四个水压增压器独立加载,从而实现对注液(气)系统的高精度控制。同时该实验系统能实现岩石三轴力学实验机功能,能进行煤与软岩的真三轴力学变形测试。
试块58围压的加载采用行程为20mm的扁千斤顶向试样的侧面施加刚性载荷,根据地应力场特征,在三个正交的方向上各采用一对扁千斤分别模拟地应力的三个主应力。扁千斤顶与试样接触面的四边均加工成45°的倒角43,以确保三个正交方向的加载千斤顶在有效行程内不相互挤紧。
试块58的注液(气)系统由四通道油水转换增压器4提供高压压裂液(气)体,压裂液(气)体包括水、氮气、液氮泡沫、以及多相流体如水砂压裂液等。通过四通道伺服加载器30实现对四个水压增压器进行独立加载,可实现按L/min、MPa/min等无级程序控制加卸载,从而实现对注液(气)系统的高精度控制。
围压的加载要求对加载千斤顶提供稳定的压力输出,同时压力加载方式可以控制,且加载系统26的响应周期和加载精度要满足实验系统的要求。
针对以上要求,基于电磁阀的工作原理,采用六通道液压稳压加载系统26为千斤顶提供液压油,实现对试块58的三向围压加载。各通道的压力大小可分别控制,可实现以恒定的排量泵注液体,也可按预先设定的泵注程序进行。
六通道液压稳压器27由加载油泵28、氮气液压稳压台、加载控制系统、数据自动采集系统构成,由电动油泵28提供液压源,通过氮气稳压和液压增压系统,实现各个通道的单独加卸载,并通过电脑程序对各个通道的加卸载进行控制和监测。实验过程中自动采集加载压力、位移、注液压强、流量、排量等数据。加载泵的液压达30MPa以上,排量2.5L/min以上;液压稳压器精度达到0.5%;可实现电脑自动控制加载路径,按L/min、MPa/min等程序控制加载;实验过程中自动采集加载压力、位移、注液压强、流量、排量等数据:液压范围0-60MPa以上,流量范围0-0.5m3/h,数据采集时间间隔小于1s。六通道液压稳压系统的性能可以满足真三轴加载系统26的要求。
采用六通道液压控制加载系统模拟真三轴实验台框架的地应力(围压)加载,也可以在多孔同时控制注水致裂时控制多水路的加载。
由于电磁阀的响应周期及加载精度对于围压加载可以满足要求,但对于注液系统的加载达不到预期的精度要求,同时注液系统需要根据不同的加载路径和加载方式进行控制加载,响应周期要短,加载精度要高,因此真三轴流压致裂的注液系统采用电磁阀进行控制加载已不能满足要求。
针对以上问题,采用伺服阀进行注液系统的控制加载,购置电液伺服控制系统对四通道油水转换增压器4进行独立加载,可实现对注液(气)系统的高精度控制。进行单孔注水致裂时,四通道电液伺服控制系统中的三个通道控制真三轴加载框架的围压加载,另外一个通道控制水压的加载,实现围压及水压加载的高精度控制。进行多孔同时致裂时,通过四通道电液伺服控制系统控制多水路的水压加载,这时真三轴加载框架的围压加载则可以用六通道液压稳压器27进行加载。
四通道伺服控制加载系统为四通道增压器提供压力流量,由增压器后端的压力传感器20和位移传感器52提供反馈信号,实现对伺服阀的控制,从而实现不同的压力流量输出。加载系统26包括液压油源、伺服分配站(分油器22)、电液伺服阀、计算机采集控制系统、管道系统等。
系统每个通道均能实现双作用;可实现压力或位移控制;可按L/min、MPa/min等无级程序控制加卸载,能根据需要设置加载路径,可实现变频脉冲加载,能基于位移监测系统控制加载;系统响应频率不低于100Hz,响应周期小于10ms;电液伺服加载系统26精度达到0.5%,可靠性好;数据采样频率有较大选择范围,可根据具体实验要求选择不同采样频率;系统流量为50L/min,配置可调的变排量泵,根据具体的实验可调小系统流量,避免有时不必要的油温升高;4个通道的流量:4L/min,4L/min,4L/min,40L/min;系统工作压力可达31.5MPa。
电液伺服控制系统可与六通道高精度液压稳压器的控制系统、声发射AE13、声发射仪14等配合使用,可实现用同一台电脑进行自动控制和数据采集等,油路系统配置有换向阀。
电液伺服控制加载系统26具备能扩展成常规力学实验机的功能,即将液压管路连接实验机框架即可进行常规的岩石力学实验。
四通道油水转换增压器4能实现控制将油压向水(气)压的转变,油水转换增压器的结构包括油缸,与油缸相连接的水缸,分别设在油缸内的油缸活塞和水缸内的水缸活塞,油缸 活塞与水缸活塞之间设有连杆;油缸的直径大于水缸的直径,其连接处呈T字形,T字形连接处设有密封圈59,并设有排气孔;水缸的尾部设有进出水系统。
油缸的进出油管48上设有阀门,并设有快速接头;进出水系统包括一路连接水箱6的进水管和设在进水管上的单向阀,还包括一路连接水箱6的出水管和依次设在出水管上的单向阀、阀门、压力表和快速接头。
通过油缸活塞的往复运动,同时带动水缸活塞作往复运动,实现抽水和压水,使油压转化为高压水,其中油缸直径大于水缸直径,实现增压,适当调节油缸直径与水缸直径比值的大小能调节增压大小,目前实验系统的四通道油水转换增压器4采用的是油缸直径为水缸直径的2倍,因此能实现1:2的增压功能,四通道液压伺服控制系统对四通道油水转换增压器4油缸提供的油压为31.5MPa,因此注水系统的水压能达到63MPa。油缸和水缸结合处有密封圈59,使油不会进入水缸一侧,水缸一侧设有一排气口,在抽水过程中排气使用。实现了油压转换为水压,为煤矿中煤体高压注水提供了可能,同时也方便了岩石力学试验中用于岩石注水的试验,其结构简单,使用方便,具有广泛的实用性。
每个油缸均装有位移传感器52,实验过程中可以检测到每个油缸活塞的位移,4个水(气)道采用油水(气)转换增压器加载,单水道能一次性向外打水10升。
其中每个通道上都装有位移传感器52并与活塞连接,实验过程中通过控制活塞的位移达到对注水排量的控制。
四通道油水转换增压器4的每个缸的直径都比原来大,因此装水体积更多;四通道油水转换增压器4的四个活塞都连接有位移传感器52,通过监测活塞的位移间接监测注水量,并根据反馈信号对注水排量进行控制;水缸吸水通过电磁阀进行控制,可实现自动吸水。
实验台三向围压的加载通过六通道液压稳压系统或者四通道电液伺服控制系统进行控制加载,输出三路油路,利用分油器22实现三个油路变成六个油路,对立方体试块58三个正交方向六个扁千斤顶进行供油,分油器22如图10所示。
采用分油器22实现每一油路一变二,将三路油路变为六路油路,确保了每个应力方向上的两路油路加载的应力相等。同时油路与分油器22采用快插头53的方式进行连接,便于油路拆卸,每次实验结束,只需将六个千斤顶的油路与分油器22拆除。
进一步的,分油器22的一侧设置有三个进油管47路,相对的另一侧设置有六个出油管48路;每个进油管47路分别对应连通两个出油管48路;分油器22设置在分油箱50内;分油箱50的一侧设置有三个进油孔,相对的另一侧设置有六个出油孔;分油箱50的上部设置有上盖49;分油箱50的下部设置有排油阀51。
在分油器22的某一个侧面有三个进油管47,与之相对的另一侧面有六个出油管48。三个进油管47是由加载系统26提供的三路液压油路,每一油路在分油器22内部一分为二,变为六路输出油路,其中,一路油路变为两路油路的方式是采用一个三通接头,这样可以保证输出的两路油路压力相等,即每个主应力方向上的两路油路加载的压力相等。油管与分油器22的连接均采用快插头53的连接方式,便于油路拆除和连接,节省时间。同时在三个油路输入口处安装三只压力传感器20,用于监测每一油路的压力。
但在实验过程中,发现每次实验结束后拆除分油器22上的油路时管路又总有油露出,不仅造成浪费,也污染了实验场地,地板漏油很难清理干净。因此,油路拆除过程中的漏油现象是急需解决的问题。
针对上述问题,设计了一种新型分油装置,将分油器22安装在如图11所示的分油箱50里,分油箱50的一侧留有三个进油孔,从液压控制系统或者电液伺服系统输出的三路油管通过分油箱50侧面的三个进油孔进入分油箱50中与分油器22连接,分油箱50的另一侧有六个出油孔,用于分油器22的六个出油管48路的出口,分油箱50上盖49可以打开,进行油路的连接与拆除。在分油器22的三个进油管47处安装三个压力传感器20,用于监测三向围压的大小,同时分油箱50的上部也有三个出口,用于三路压力传感器20的引线通过。在分油箱50的底部有一个排油阀51,当分油箱50中的积油过多时,可以打开排油阀51将油放出,循环利用。
也就是说,在分油箱50的一侧留有三个进油孔,从液压控制系统或者电液伺服系统输出的三路油管通过分油箱50的侧面的三个进油孔进入分油箱50中与分油器22连接,分油箱50的另一侧有六个出油孔,用于分油器22的六个出油管48的出口。分油箱50的上盖49可以打开,进行油路的连接与拆除。在分油器22的三个进油管47处分别安装一个压力传感器20,用于监测三向围压的大小,同时分油箱50的上部也有三个出口,用于三路压力传感器20的引线通过。在分油箱50的底部有一个排油阀51,当分油箱50中的积油过多时,可以将油放出,循环利用。
分油器22在分油箱50中的架设,能够保证分油箱50的各油管口与分油器22的油管连接口水平对齐,以避免油管在分油箱50中弯曲。同时分油箱50底部要留出一定的空间储油。
这样的设置,每次连接和拆除油路时均在分油箱50中进行,漏出的液压油就会被收集在分油箱50中,不会外漏到地板上,这样既避免了漏油污染地板,同时收集的液压油还能循环利用,不会造成浪费;分油箱50就像一个防爆装置,将分油器22装在里面,当实验过程出现异常,油路压力过高导致油管与分油器22崩开时,油管和高压油均会被隔离在分油箱50内,不会对实验人员造成伤害;三个传感器的安装位置更加接近于围压加载千斤顶,测得的三向围压值误差更小。
同时针对实验过程中,真三轴实验框架18下面经常会发生漏油、漏水问题,加工了一个大圆盘在放置在真三轴实验框架18的底部,防止漏油、漏水以致污染实验场地。
进一步的,监控系统8包括数据处理器、压力传感器20和变形监测系统;压力传感器20和变形监测系统分别与数据处理器信号连接;分油器22上设置有三个压力传感器20;变形监测系统包括24只位移传感器52;位移传感器52暗藏安装在扁千斤顶的弧形垫板41上;位移传感器52布线采用在弧形垫板41上开引线槽54,将位移传感器52的数据线集中到弧形垫板41的上部;位移传感器52的连接方式采用快插头53的形式,在弧形垫板41上部安装快插头母头。
监测试样(包括岩石及煤样等)的真三轴流压致裂过程中的变形情况对于测定试样的一些物理力学参数及分析裂缝的扩展情况都具有重要意义。因此,在原有监控系统8的基础上添加了变形监测系统11。
变形监测系统11的功能是监测水力致裂过程中立方体试块58三个正交方向的应变。变形监测系统11通过数据处理器即变形监测计算机12进行实时监测,立方体试块58的真三轴加载采用5-6个扁千斤顶加载,因此采用在扁千斤顶上安装位移传感器52来监测试块58的变形,共安装20只位移传感器52,每个千斤顶采用4个位移传感器52同时监测。
位移传感器52安装的难点有:1、传感器引线的布置,20只传感器数据线繁多,原有的实验系统已经相当紧凑,如何布线既不影响原有实验系统,又能方便的实验系统的拆卸; 2、因为每次做完实验,均要拆除实验系统,取出试块58,因此必须要求传感器的连接与安装必须方便;3、实验过程中经常会出现漏水、漏油,因此位移传感器52的插头必须具有防水功能。
基于以上考虑,我将5个千斤顶的位移传感器52暗藏安装在千斤顶外侧的弧形垫板上,确保在千斤顶安装及不进行实验时,位移传感器52的探针不伸出垫块;每块垫块上的多个位移传感器52的数据线汇集于垫块方便插线的位置,并固定安装插线盒,数据采集系统的数据线插头插入即可,便于真三轴实验框架18的拆装;每个垫块上位移传感器52的布置如图12所示。
在弧形垫板41的弧形面两侧开两个引线槽54,弧形板底部的位移传感器52数据线与上部的位移传感器52数据线通过引线槽54汇集到弧形板的上表面,连接到快插头53母头,快插头53高出弧形垫板412-3mm,防治水进入插头,快插头53的公头连接位移传感器52采集系统的数据线,数据线的快插头53采用收音机天线插头,插拔方便,便于实验系统的拆装。位移传感器52的引线采用密封胶60密封在弧形垫板41的引线槽54内,起到固定和防水的作用。位移传感器52和插线板等具有防水功能;位移测量分辨力达0.001mm以上,位移传感器52的有效量程0-25mm,整个位移测量系统性能要可靠,可实现立方体试块58三个正交方向应变的精确监测。
位移传感器52采集到的信号通过数据线传输到传感器数据采集软件,可以实现数据实时显示,数据记录存储格式多样,有图表格式、文档格式等。存储方式灵活,可以设置采样时间、采样方式等。可以设置数据采样保存的间隔时间,数据实时存盘(遇到断电、电脑关机等情况,数据不会丢失),原始采集的数据不可更改,采集的数据可以导出到TXT文本格式或者Access数据库格式。
该变形监测系统11的创新点有:1、传感器的布线方式,通过在弧形垫板上开引线槽54,将传感器的数据线集中到弧形板的上部,既不影响原有实验系统的功能,也很好地解决了多条数据线的布置,便于实验系统的拆装;2、数据线的连接采用快插头53的形式,插拔方便,且快插头53的母头高出弧形垫板412-3mm,具有防水功能;3、位移传感器52暗藏安装在千斤顶的弧形垫板上,即为非接触式的布置,确保在千斤顶安装及不进行实验时,位移传感器52的探针不伸出垫块。
位移传感器52的作用:用于监测真三轴加载过程中立方体试块58三个正交方向的应变。
24只位移传感器52的安装位置及安装方式:
立方体试块58的四个侧面的位移传感器52均安装在弧形垫板上,每个垫块上安装4个位移传感器52同时监测,每个弧形垫板上4个位移传感器52的布局及引线方式如图12所示;试块58底部的4个位移传感器52安装在底部千斤顶的4个边角处,数据传输线直接通过在下部垫板37和底板39开小孔引出真三轴加载框架外。
本发明通过在弧形垫板上开引线槽54,将传感器的数据线集中到弧形板的上部,既不影响原有实验系统的功能,也很好地解决了多条数据线的布置,便于实验系统的拆装;数据线的连接采用快插头53的形式,插拔方便,且快插头53的母头高出弧形垫板412-3mm,具有防水功能;位移传感器52暗藏安装在千斤顶的弧形垫板上,即为非接触式的布置,确保在千斤顶安装及不进行实验时,位移传感器52的探针不伸出垫块。
监测控制系统还包括试块58三向围压大小的监测、注水压力及排量的监测,并根据反馈信号对围压加载及注水加载进行控制。
具体的实现方式为:安装在分油器22上的三个压力传感器20将监测到的三向围压的大小信号通过数据线传输到六通道液压稳压器27的液压控制器15,然后再传给监控计算机9,监控计算机9根据反馈的信号控制围压的加载。安装在四通道油水转换增压器4四个缸的高压水管路上的压力传感器20和与活塞连接的4个位移传感器52将监测到水压力及位移信号传输到四通道伺服加载器30的伺服控制器10上,然后再传输到监控计算机9,监控计算机9根据反馈的信号对注水的压力和排量进行控制。
监测系统还包括对整个致裂过程中的声发射及微震事件的监测,采用PCI-2型8通道或Disp型24通道声发射仪14、RSM声波仪和TDS-6微震采集系统等实时监测试块58的微破裂和裂缝的扩展过程。
进一步的,真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统还包括水力割缝实验系统;水力割缝实验系统与真三轴实验框架18连接,用于进行水力割缝实验。
进一步的,真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统还包括真三轴流压致裂系统;真三轴流压致裂系统包括相似材料浇注裸孔模拟系统、石块钻孔封孔系统、弯曲封孔器和多孔同时独立控制致裂系统;相似材料浇注裸孔模拟系统、石块钻孔封孔系统、弯曲封孔器和多孔同时独立控制致裂系统并联设置;相似材料浇注裸孔模拟系统包括一根细圆杆及设置在其一端上的缠绕线;石块钻孔封孔系统包括“O”型密封圈和密封胶;弯曲封孔器包括无孔垂直段与有孔弯曲段,用于模拟斜交应力场的水压裂缝扩展规律;多孔同时独立控制致裂系统包括多孔盖板磨具和限位器,能实现最多5个钻孔同时独立控制流压致裂。
在进行实验之前,还需要对试块58进行封孔处理。
采用相似模拟材料浇注立方体试块58时,为了达到密封效果,将封孔器57与相似材料一起浇筑,但这种浇筑方式存在一个问题,就是无法形成裸孔致裂段19,如何在浇筑立方体试块58时,将封孔器57一起浇筑达到封孔效果同时又能形成裸孔致裂段19,这是一个急需解决的问题。
对上述问题进行分析,问题的核心是如何在浇筑立方体试块58时,在封孔器57下部能形成一段裸孔段,我采用的方法是用一根细圆杆56(如粗铁丝)穿过封孔器57,在封孔器57下部露出的长度等于裸孔段长度,然后在细圆杆56的最下端用线从下往上一层一层地缠绕,使得缠绕的直径等于封孔器57的直径为止,然后将线引出封孔器57,进行浇筑,浇筑完成后等待两三天,待试块58固化成形后,拆除模具时,先将细圆杆56抽出,然后将线拽出,这样就形成了裸孔致裂段19。下面以300mm立方体试块58为例,详细说明采用相似材料浇筑试块58时模拟裸孔段的方法。
设计裸孔致裂段19为100mm,封孔器57为长度220mm,直径18mm,浇筑试块58时,将一根粗细圆杆56穿过封孔器57,在封孔器57下端伸出100mm的长度,然后用棉线从细圆杆56下端头开始一层一层的往上缠绕,直到直径达到18mm,与封孔器57的直径相同,将棉线引出封孔器57,然后将封孔器57和底部的绕线55一同下入相似材料中进行浇注,浇注过程中确保绕线55段处于试块58正中央,封孔器57垂直于试块58上表面且外露长度为120mm,浇注完成后,试块58风干一两天,待试块58成形后拆除磨具,现将细圆杆56抽出,再将绕线55抽出,这时试块58内的封孔器57底部已形成100mm的裸孔段。
操作过程中需要注意的事项有:1、在小于封孔器内径的前提下,采用尽可能粗的细圆杆56,使得棉线只需缠绕一圈就可以达到直径要求,这样可以防止由于绕线55层数过多,在抽线的过程中将棉线拽断;2、必须先抽出细圆杆56,然后再将棉线依次拽出,如果先抽 线,很容易将线拽断;3、为了使形成的裸孔段表面光滑,可以在绕线55的外侧包裹一层湿巾、报纸等。
上述模拟裸孔的方法可以模拟出任意长度和任意直径的裸孔段,该方法不受裸孔段长度和直径的限制,裸孔段长度及直径可根据实际情况而定,具有普遍适用性。
采用石块进行水力致裂实验时,试块58的制备就不再需要浇筑,因此封孔方法也与采用相似材料浇筑的封孔方法不同。实验前用钻机在石块上表面进行钻孔用于致裂,然后将封孔器57下入到钻孔中一定深度进行封孔,封孔器57底部留出一定长度的裸孔致裂段19。但是用钻机在石块中打出的钻孔表面很光滑,封孔难度较大,采用密封胶60封孔时很难达到封孔效果,致裂过程中高压水往往会从封孔器57与钻孔之间漏出导致实验失败。
针对上述问题,我采用了以“O”型密封圈59加密封胶60的方法进行封孔,在封孔器57的封孔段61加工几个凹形槽,安装上“O”型密封圈59,在封孔器57外侧涂上密封胶60,将封孔器57下入到钻孔中的设计深度进行封孔。下面以一个具体的300mm立方体石块为例,详细说明“O”型密封圈59加密封胶60的封孔方法的操作。
设计封孔器57的长度为220mm,其中封孔长度为100mm,直径为25.8mm,封孔器57的下部留出100mm的裸孔致裂段19。在封孔器57的封孔段61加工三个凹形槽,等间距排列,然后将三个“O”型密封圈59安装在凹形槽内,在封孔器57的外侧涂上密封胶60,将封孔器57下入100mm到达封孔位置进行封孔。
“O”型密封圈加密封胶的封孔方法不受致裂孔63的封孔长度和直径限制,封孔深度及封孔直径可根据实际情况而定,同时采用密封圈59的层数和密封圈59的排列间距也可根据密封效果进行更改,具有普遍适用性,密封效果良好,能达到实验效果。
根据不同的实验要求,设计了不同类型的封孔器57。根据裸孔致裂段19与主应力方向的夹角分为两大类:即直封孔器(常规封孔器)和弯曲封孔器。
常规封孔器的钻孔方向与某一主应力方向垂直,研究的是在垂直应力场作用下水压裂缝的扩展规律。根据实验要求的不同,有多种尺寸的常规封孔器,下面以长度为320mm,外径为20mm,内径为10mm的封孔器为例详细介绍封孔器的内部结构。
设计封孔长度为200mm,裸孔致裂段19长度为100mm。封孔段61有100mm设计为螺纹表面,为螺纹段62,以增强与封孔器57与水泥砂浆的粘结,提高封孔效果。裸孔致裂段19有4排(每排12个)直径为4mm的致裂孔63,用来通过水流,为了防止致裂孔63在浇筑时被水泥砂浆堵塞,保证注水效果,在浇筑时,特意在封孔器57的裸孔致裂段19外包一层薄的湿巾,模拟裸孔致裂。封孔器57的直径、封孔段61及裸孔致裂段19长度等都可以根据具体实验要求进行改变。
水力致裂的现场施工钻孔多为倾斜钻孔,钻孔方向大多数是与主应力方向斜交,因此必须研究在斜交应力场下水压裂缝的扩展规律。基于此设计了弯曲封孔器57研究在斜交应力场作用下水压裂缝的扩展规律。
下面以外径为20mm,内径10mm,无孔垂直段与有孔弯曲段呈135°夹角的弯曲封孔器为例详细介绍封孔器57的内部结构。
弯曲封孔器由无孔垂直段和有孔弯曲段两部分组成,其中无孔垂直段220mm,有孔弯曲段90mm,两者呈135°夹角,弯曲封孔器总长为310mm。有孔弯曲段沿90°相位角开四排孔径为4mm的致裂孔63,用来通过水流,为了防止致裂孔63在浇筑时被水泥砂浆堵塞,保证注水效果,在浇筑时特意在封孔器57的裸孔致裂段19外包一层薄的湿巾。封孔长度为 200mm,封孔段61有100mm的螺纹表面为螺纹段62,增强封孔器57与相似材料的粘结程度,提高封孔效果。若试块58为500×500×500mm3,封孔器57的上部露出试块58约2cm,若试块58尺寸为300×300×300mm3,封孔器57的上部露出试块58约12cm,这样可以保证90mm的弯曲的裸孔致裂段19在试块58中部。
弯曲封孔器无孔垂直段与有孔弯曲段的夹角、封孔器57的直径以及封孔段61与裸孔致裂段19的长度等都可以根据具体实验要求进行改变。
根据多孔致裂要求,设计了专用的多孔盖板模具,能实现最多5个钻孔同时独立控制水力致裂,在实验室,用500×500×500mm3的专用多孔盖板模具浇筑水泥砂浆试块58,并用限位器42限位,限位器42与盖板通过螺纹的方式进行连接,采用混合注水方式,每个孔用一个水道独立注水,保证注水排量一致。其中限位器42与模具配套使用,可以确保致裂孔63的位置精确,最大程度减小因致裂孔63的位置错动而造成的实验结果的误差。
水力致裂测量地应力技术是目前应用最广泛的地应力测量技术之一,水力致裂地应力测量方法是迄今为止进行深部地应力测量最有效的手段。目前岩石水力致裂测量二维地应力的方法较为成熟,但实验室的模拟实验研究并不多,利用真三轴水力致裂实验系统,可以进行模拟岩石地应力测量校验。
二维地应力测量主要是垂直于钻孔的两个水平应力,所以设上下为最大主应力方向,消除影响;设置好三向围压后,进行加围压,注水致裂,初次出现破裂后停止注水,压力缓慢下降,待压力稳定后泄压,然后重新注水,裂缝重新张开后(压力降),及时停止注水,保持水压恒定,之后泄压重复多次;实验结束后,根据每一阶段的水压力曲线判读初始破裂压力、重新张开压力、关闭压力、计算出每一阶段对应的水平最大和最小主应力,取平均值与预设水平地应力相比,检验地应力测量的精度。
常规的真三轴水力致裂钻孔方向均是与某一主应力方向垂直,而在实际工程当中,水力致裂钻孔与某一主应力方向垂直的情况是很少的,在垂直于某一主应力方向进行水力致裂得到的应力场分布具有很大的局限性。
针对上述问题,采用弯曲封孔器研究在斜交应力场下水压裂缝的扩展规律,分析地应力场的分布规律。封孔器57的裸孔致裂段19的弯曲角度可以根据实际情况任意改变,可以模拟在斜交应力场下裂缝的扩展规律,分析地应力的大小,从而对地应力测量进行校检。
实验用试块58的制备在相应的模具中用相似材料进行浇注,目前已加工300×300×300mm3和500×500×500mm3两种规格的模具各三套,可一次性同时制备三块300×300×300mm3和三块500×500×500mm3的试块58。
上述各种功能可以根据需要组合使用,水力割缝与水力致裂、渗流等均可以组合使用。比如实验前渗流,然后水力致裂,研究孔隙压力对水力致裂破裂压力的及裂缝扩展压力的影响;水力致裂后进行渗流,测试致裂后导致的渗透性变化。瓦斯驱赶与水力致裂也可以组合使用,先进行瓦斯驱赶,之后进行水力致裂,研究水力致裂的瓦斯驱赶效应及其机理。水力致裂与水力割缝也可以组合使用,在真三轴条件下先进行水力割缝,然后进行水力致裂,研究水力割缝对裂缝起裂及扩展的定向作用。水力割缝与渗流也可以组合使用,在真三轴条件下,对煤体进行水力割缝,然后可以测试其渗流性能的变化等等,实现多种功能。
进一步的,真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统还包括真三轴渗流与瓦斯驱赶系统;真三轴渗流与瓦斯驱赶系统包括上部渗流板64和下部渗流板69;上部渗 流板64与下部渗流板69上均阵列设置有渗流孔67;上部渗流板64上还设置有入水孔65和水力致裂孔66;下部渗流板69上还设置有出水孔70。
渗流需要解决的最大难题就是密封问题,既要考虑密封的效果又要考虑成本。实验时在试样的上下放置渗流板,四周用密封胶60进行浇筑密封,密封胶60要求粘性好,可以与煤样68及垫块很好的粘合在一起,构成一个整体,同时又具有一定的柔性,进行围压加载时可以抵抗一定程度的变形。下面以煤样68的渗流为例对渗流及瓦斯驱赶进行详细说明。
设计改装瓦斯驱赶的模拟实验系统,实现大尺寸(400×400×400mm3)煤样68在真三轴的条件下,模拟瓦斯的驱赶,跟煤矿井下水力致裂更接近。借鉴MTS渗流试验系统,瓦斯驱赶模拟实验系统也需要加工两个渗流板,分别置于煤样68的上部和下部,渗流板的截面与煤样68的尺寸相当(400×400mm2),两个渗流板上密布着直径为2mm的小孔,小孔呈10mm×10mm2的矩阵式布置。
上、下两块渗流板(400×400×5mm3),中间放置一块400×400×400mm3的煤或型煤材料,组成一个400×400×500mm3的组合体,在四周用胶来浇注,每一侧密封胶60浇筑的厚度为50mm,最终浇注成一个500×500×500mm3的渗流单元。上部渗流板64上设有通入瓦斯气体和高压水的孔,中间预留有水力致裂钻孔,在只进行渗流而不进行水力致裂时,中间的水力致裂钻孔密封。
上部渗流板64预留的水力致裂孔66,可以先进行煤样68的瓦斯渗透再进行水力致裂,现在模拟高压水驱赶瓦斯时,需要将中间的预留的水力致裂孔66先封堵上。本次模拟瓦斯驱赶的试验可以利用侧面的孔,向煤样68中注入瓦斯,模拟原始状态的煤样68,然后向其中注入高压水,模拟高压水驱赶瓦斯的现象。侧面的入水(气)口,外接一个三通,一端接压力传感器20、第二流量传感器21、调压阀23和瓦斯储集罐24,另一端接阀门和四通道油水转换增压器4。
下部渗流板69的上面与上部渗流板64的下面一样密布着小孔,在下部渗流板69的下面留有一个出气口,出气口后连接软管、阀门和流量传感器。实验时,首先,通过上部渗流板64的侧面小孔中向煤样中通入瓦斯,直至下部的渗流板的出气口有稳定的瓦斯流动出来后,关闭下部的出气口阀门,保持通入煤样的瓦斯压力,维持24h后,关闭瓦斯入口处的阀门,打开高压水的阀门,开始向上部渗流板64中通入高压水。
真三轴渗流的渗透压力必须小于围压,该实验系统的围压最高可以加到20MPa以上,因此渗透压力可以达到14-15MPa,目前国内还没有能够做到真三轴渗流且渗透压力可以达到这么高,同时渗透压力能否达到14-15MPa还取决于密封性能能否满足,理论上是完全可以实现的,需要在后期的实验过程中不断的进行尝试并对密封性能进行改进。该实验系统可以实现最大尺寸为400×400×400mm3煤样渗流,同时也能实行岩样的渗流,具体尺寸根据实际情况进行确定。
压力传感器20、第二流量传感器21、调压阀23、瓦斯储集罐24、四通道油水转换增压器4、真三轴实验框架18、浓度传感器16和第一流量传感器17以及油液计量器71共同组成了真三轴一体化系统25。
进一步的,水力割缝实验系统包括机电控制柜2、高压泵控制柜3、高压泵5和水力割缝装置;
水力割缝装置包括旋转电机、牵引电动机、底座、导轨、割缝钻杆、支撑轴承、推进螺杆、高压旋转接头、滑块和支架;导轨固定设置在支架上;底座通过两个滑块与导轨连接; 割缝钻杆由两个支撑轴承固定在底座上;在旋转电机的端部和割缝钻杆上均安装有皮带轮;旋转电机通过皮带轮带动割缝钻杆顺时针或逆时针方向转动;牵引电动机安装在导轨上;推进螺杆通过两端的两个支撑轴承固定在导轨上;推进螺杆的杆体表面设置有螺纹;推进螺杆的一端安装有皮带轮,与牵引电动机的输出端的皮带轮通过皮带连接。
底座和支架共同组成水力割缝实验台7,旋转电机、牵引电动机、导轨、割缝钻杆、支撑轴承、推进螺杆、高压旋转接头和滑块均设置在水力割缝实验台7上。
当牵引电动机关闭,旋转电动机打开时,调整底座的位置使水力割缝钻杆的钻头深入钻孔指定的深度,然后固定底座,使固定在底座上的旋转钻杆在竖直方向固定不动,割缝专用钻杆在旋转电机的带动下绕自身轴线转动,从而可以在标准试件内钻孔孔壁上切割出一定深度的径向缝。当旋转电机关闭,牵引电机打开时,将喷嘴上的高压水出口固定在某个方向,底座在牵引电动机的牵引下,带动割缝专用锚杆在竖直方向上升或者下降,从而在标准试件内钻孔孔壁设定的方向上切割出两条具有一定深度的轴向缝。根据需要设定高压水的水压和割缝时间,从而可以切割出特定深度的裂缝。
水力割缝的方式有两种,第一种方式是将水力割缝系统1的支架架设在平整的地面上,将导轨旋转90°使导轨处于竖直状态,然后将导轨固定。将标准试件安放在水力割缝系统1支架下,并将水力割缝专用钻杆对准标准试件上的钻孔,然后进行水力割缝。第二种方式是将标准试件放置在专用架子上,将试件有孔的一面朝向水力割缝试验装置,并且使钻孔中心正对水力割缝专用钻杆。然后进行水力割缝。
水力割缝的钻头采用基于锚索钻机的小孔径(
Figure PCTCN2015076982-appb-000003
Figure PCTCN2015076982-appb-000004
)钻割一体化钻头,能实现钻割一体化功能。
水力致裂实验台上盖板32中间有4个起吊孔44用于安装起吊螺栓用行车起吊。割缝装置底座的四条腿用角铁焊接,在底部加工和实验台盖板一样的螺栓孔,然后用螺栓将割缝装置固定在上盖板32上,防止割缝过程中钻杆发生晃动,影响割缝的质量,如附图9所示。
真三轴水力割缝实验系统,是利用真三轴水力致裂实验台给试块58加三轴围压,然后在水力致裂实验台上架设水力割缝装置,对加三轴围压后的试块58进行割缝,该割缝装置可以割出轴向缝和径向缝,可以模拟出煤岩体在原岩应力状态下,进行水力割缝的研究。水力割缝完毕后,再对煤岩体进行封孔,然后可以对割缝后的试块58进行水力致裂研究。该装置主要有两部分组成,第一部分是水力割缝装置,第二部分是真三轴加载装置。
水力割缝装置,其包括一个牵引电动机、一个旋转电动机、一个滑块、一个滑轨、一个框架、一个割缝专用钻杆和钻头等部分。牵引电动机带动旋转电动机和钻杆等组成的滑块在滑轨上移动,带动钻头在试块58中上下移动,切割出钻孔轴向的缝。旋转电动机是固定在滑块上,与钻杆相连,带动钻杆旋转,从而使钻头在试块58中旋转,切割出径向缝。
水力割缝装置与真三轴加载框架的固定是割缝工作的关键,水力割缝装置重量较大,需要安装吊环,方便用行车起吊。将水力割缝装置吊装到真三轴加载框架上后,在真三轴加载框架的上盖板32的中间的孔中,安装一个限位装置对钻杆进行限位。将钻杆限位完成后,将割缝装置的底座用螺栓固定在上盖板32上,防止割缝过程中钻杆发生晃动而影响割缝的质量。
水力割缝完毕后,拆下割缝装置和上盖板32上的限位器42。可以安装渗流系统进行割缝后的渗流实验;也可以用专用封孔器57封孔,对割缝后的试块58进行水力致裂,研究割 缝后的试块58水力致裂形态;也可以将钻孔摄像仪下入孔内观察裂纹扩展情况等。根据实际需要进行组合。
实验前的准备工作:
1、实验用试块58的制备:实验前一个月开始制备试块58。制备试块58时首先组装好模具,准备相似模拟材料(通常是采用水泥砂浆制备试块58,细沙、水泥、水的质量配比为3.5:1:0.3),然后在模具中用相似模拟材料进行浇注并安装好封孔器57。浇注完成后等待一两天,试块58已基本成形,此时拆除模具,之后每隔一两天给试块58浇水养护。自然风干约28天后即可进行实验。
2、放入试块58,组装实验台:用起吊装置将试块58放入实验台框架中,然后一次安装四个侧面的千斤顶、弧形垫板、限位器42、上部注水垫板、上盖板32,然后拧紧八个预紧螺母34,实验台组装完毕。
3、连接油路,安装声发射监测系统:将5个加载千斤顶油管45连接到分油器22上。连接好声发射装置,将声发射探头放置在紧贴试块58的千斤顶上部。
4、吸水、加围压:启动六通道液压稳压器27与四通道伺服加载器30,通过监控计算机9的控制软件控制安装在四通道油水转换增压器4水缸吸水管路上的电磁阀,使水缸进行自动吸水。为了试验结束后便于观测试块58的水压裂缝形态,因此在水箱6中加入红色广告画染料。水缸吸满水后,监控计算机9控制六通道液压稳压器27进行试块58三向围压加载,围压加载到位后稳压5min。
5、按实验方案进行注水致裂实验:围压稳压5min后,在控制软件上设置注水方式(可按照MPa/min、mL/min,脉冲注水等路径加载),使四通道伺服加载器30做出响应,控制四通道油水转换增压器4向试块58内注入高压水。同时AE主机同步开始记录声发射监测数据。注水直至试块58被压开,实验台下部出现漏水,实验结束。
6、实验结束后,保存实验记录数据,卸载围压。拆除分油器22上围压加载的油路,同时将声发射探头回收。一次拆除实验台,取出试块58,将试块58沿水压裂缝劈开,观察裂缝的形态。实验全程进行拍照或录像。
本发明提供的真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统,在真三轴应力条件下,能够实现试块58的高渗透压力的渗流和流固耦合实验,能够进行煤与软岩的真三轴力学变形测试,可进行钻孔、水力割缝、高压水等实验,具备流压致裂、渗流、瓦斯驱赶、水力割缝等一体化功能,可根据具体实验要求,对各功能进行组合使用。通过本发明提供的真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统可以对煤岩层中的水力致裂过程进行系统地、精确地研究和判断,极大了提高了施工效果和施工的安全性。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (9)

  1. 一种真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统,其中,包括真三轴实验框架、加载系统和监控系统;
    所述真三轴实验框架与所述加载系统通过油路连接;
    所述监控系统分别与所述真三轴实验框架和所述加载系统信号连接;
    所述真三轴实验框架包括主架和六个扁千斤顶;
    所述主架上内设置有试块加载腔;
    六个所述扁千斤顶均设置在所述试块加载腔内;
    六个所述扁千斤顶共同围成一个正六面体。
  2. 根据权利要求1所述的真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统,其特征在于,所述主架包括底板、上盖板、限位钢柱、限位器、圆环钢圈和弧形垫板;
    所述上盖板和所述底板分别设置在所述圆环钢圈的两端;
    所述上盖板与所述底板通过所述限位钢柱固定连接;
    所述弧形垫板为四块,均匀排列设置在所述圆环钢圈内;
    四块所述弧形垫板分别与所述正六面体的四个侧面相抵。
  3. 根据权利要求2所述的真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统,其特征在于,所述加载系统包括六通道液压稳压控制加载系统和四通道电液伺服控制加载系统;
    所述六通道液压稳压控制加载系统和所述四通道电液伺服控制加载系统分别与所述真三轴实验框架油路连接;
    所述四通道电液伺服控制加载系统与所述真三轴实验框架之间通过四通道油水转换增压器连接;
    所述六通道液压稳压控制加载系统与所述真三轴实验框架之间通过分油器连接。
  4. 根据权利要求3所述的真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统,其特征在于,所述分油器的一侧设置有三个进油管路,相对的另一侧设置有六个出油管路;
    每个进油管路分别对应连通两个出油管路;
    所述分油器设置在分油箱内;
    所述分油箱的一侧设置有三个进油孔,相对的另一侧设置有六个出油孔;
    所述分油箱的上部设置有上盖;
    所述分油箱的下部设置有排油阀。
  5. 根据权利要求3所述的真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统,其特征在于,所述监控系统包括数据处理器、压力传感器和变形监测系统;
    所述压力传感器和所述变形监测系统分别与所述数据处理器信号连接;
    所述分油器上设置有三个所述压力传感器;
    所述变形监测系统包括24只位移传感器;
    所述位移传感器暗藏安装在所述扁千斤顶的弧形垫板上;
    所述位移传感器布线采用在所述弧形垫板上开引线槽,将所述位移传感器的数据线集中到所述弧形垫板的上部;
    所述位移传感器的连接方式采用快插头的形式,在所述弧形垫板上部安装快插头母头。
  6. 根据权利要求1所述的真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统,其特征在于,还包括真三轴流压致裂系统;
    所述真三轴流压致裂系统包括相似材料浇注裸孔模拟系统、石块钻孔封孔系统、弯曲封孔器和多孔同时独立控制致裂系统;
    所述相似材料浇注裸孔模拟系统、所述石块钻孔封孔系统、所述弯曲封孔器和所述多孔同时独立控制致裂系统并联设置;
    所述相似材料浇注裸孔模拟系统包括一根细圆杆及设置在其一端上的缠绕线;
    所述石块钻孔封孔系统包括“O”型密封圈和密封胶;
    所述弯曲封孔器包括无孔垂直段与有孔弯曲段,用于模拟斜交应力场的水压裂缝扩展规律;
    所述多孔同时独立控制致裂系统包括多孔盖板磨具和限位器,能实现最多5个钻孔同时独立控制流压致裂。
  7. 根据权利要求1所述的真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统,其特征在于,还包括真三轴渗流与瓦斯驱赶系统;
    所述真三轴渗流与瓦斯驱赶系统包括上部渗流板和下部渗流板;
    所述上部渗流板与所述下部渗流板上均阵列设置有渗流孔;
    所述上部渗流板上还设置有入水孔和水力致裂孔;
    所述下部渗流板上还设置有出水孔;
    所述真三轴渗流与瓦斯驱赶系统在试块四周用密封胶浇注。
  8. 根据权利要求1所述的真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统,其特征在于,还包括水力割缝实验系统;
    所述水力割缝实验系统与所述真三轴实验框架连接,用于进行水力割缝实验。
  9. 根据权利要求8所述的真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统,其特征在于,所述水力割缝实验系统包括机电控制柜、高压泵控制柜、高压泵和水力割缝装置;
    所述水力割缝装置包括旋转电机、牵引电动机、底座、导轨、割缝钻杆、支撑轴承、推进螺杆、高压旋转接头、滑块和支架;
    所述导轨固定设置在所述支架上;
    所述底座通过两个所述滑块与所述导轨连接;
    所述割缝钻杆由两个所述支撑轴承固定在所述底座上;
    在所述旋转电机的端部和所述割缝钻杆上均安装有皮带轮;
    所述旋转电机通过所述皮带轮带动所述割缝钻杆顺时针或逆时针方向转动;
    所述牵引电动机安装在所述导轨上;
    所述推进螺杆通过两端的两个所述支撑轴承固定在所述导轨上;
    所述推进螺杆的杆体表面设置有螺纹;
    所述推进螺杆的一端安装有皮带轮,与所述牵引电动机的输出端的皮带轮通过皮带连接。
PCT/CN2015/076982 2015-03-09 2015-04-20 真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统 WO2016141621A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/110,039 US9921202B2 (en) 2015-03-09 2015-04-20 Integrated experimental system of hydrofracturing, water jet slotting, seepage and gas displacement under true triaxial stress

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510100605.2A CN104614497B (zh) 2015-03-09 2015-03-09 真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统
CN201510100605.2 2015-03-09

Publications (1)

Publication Number Publication Date
WO2016141621A1 true WO2016141621A1 (zh) 2016-09-15

Family

ID=53149038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/076982 WO2016141621A1 (zh) 2015-03-09 2015-04-20 真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统

Country Status (3)

Country Link
US (1) US9921202B2 (zh)
CN (1) CN104614497B (zh)
WO (1) WO2016141621A1 (zh)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106940233A (zh) * 2017-04-01 2017-07-11 合肥工业大学 一种地下结构防水测试综合试验平台及其试验方法
CN106970015A (zh) * 2017-05-10 2017-07-21 河南理工大学 一种模拟煤岩钻孔热冷加注装置及渗透率测试方法
CN107101930A (zh) * 2017-06-13 2017-08-29 北京永瑞达科贸有限公司 圆缺形截面可视渗流模拟装置
CN107764658A (zh) * 2017-11-23 2018-03-06 中南大学 模拟二维加载液氮降温巷道开挖卸荷的试验装置及方法
CN107807057A (zh) * 2017-10-16 2018-03-16 太原理工大学 一种适用于煤岩体轴向震动加载的实验装置
CN108107181A (zh) * 2018-02-22 2018-06-01 西安科技大学 二维物理相似模拟试验平台及其试验方法
CN109459313A (zh) * 2018-12-29 2019-03-12 四川大学 真实采动应力影响下煤岩体的力学行为和渗流特性原位测试方法及系统
CN109488281A (zh) * 2018-12-19 2019-03-19 山东科技大学 一种室内覆岩离层变形探测装置及其评价方法
CN109668926A (zh) * 2018-12-25 2019-04-23 中国矿业大学 裂隙岩体单元结构的等效导热系数测试系统与计算方法
CN109870349A (zh) * 2019-03-29 2019-06-11 中国矿业大学 一种高温高压水压致裂夹持器及其试验方法
CN110056335A (zh) * 2018-11-27 2019-07-26 安阳工学院 一种三轴多裂纹水力压裂实验装置及实验方法
CN110595909A (zh) * 2019-09-30 2019-12-20 华北水利水电大学 模拟深部岩体不同温度影响下的真三轴试验系统及方法
CN111003202A (zh) * 2019-12-04 2020-04-14 江西洪都航空工业集团有限责任公司 一种舱盖充放气加载试验系统及使用方法
WO2020048187A3 (zh) * 2019-06-19 2020-05-07 四川大学 三轴测试仪进行地质断层力学行为的室内实验模拟装置及方法
CN112081575A (zh) * 2020-09-10 2020-12-15 西南石油大学 多场耦合下煤层气井井周围岩形变可视化模拟装置与方法
CN112780243A (zh) * 2020-12-31 2021-05-11 中国矿业大学 一体化强化煤层瓦斯抽采系统以及抽采方法
CN113030429A (zh) * 2021-03-15 2021-06-25 中国矿业大学 一种多功能煤与瓦斯突出物理模拟装置
CN113049394A (zh) * 2021-03-20 2021-06-29 中国矿业大学 一种模拟煤矿坚硬顶板岩层水力压裂的实验装置和方法
CN113310815A (zh) * 2021-05-20 2021-08-27 武汉大学 一种真三轴加载的岩石钻孔取芯试验系统及试验方法
CN113447362A (zh) * 2021-06-05 2021-09-28 中煤科工集团西安研究院有限公司 一种煤岩层底板承压水反力模拟实验装置及方法
CN113565482A (zh) * 2020-04-29 2021-10-29 中国石油化工股份有限公司 一种用于模拟水平井暂堵压裂的模拟装置和方法
CN113624583A (zh) * 2021-08-02 2021-11-09 中海石油(中国)有限公司 一种疏松砂岩制样和压裂模拟一体化的实验装置
CN114152618A (zh) * 2021-11-26 2022-03-08 国家能源投资集团有限责任公司 一种相似模拟实验系统及相似模拟实验方法
CN114252343A (zh) * 2021-12-17 2022-03-29 中国石油大学(华东) 一种深层断溶体裂缝闭合机理实验装置
CN114415627A (zh) * 2021-12-22 2022-04-29 煤炭科学技术研究院有限公司 一种全工作面液压支架电液控制系统测试方法及设备
CN114607331A (zh) * 2020-11-24 2022-06-10 中国石油天然气股份有限公司 水平井分段体积压裂模拟试验装置及方法
CN115324548A (zh) * 2021-05-11 2022-11-11 中国石油化工股份有限公司 一种裸眼水平井暂堵分段压裂实验装置
CN109870350B (zh) * 2019-03-29 2023-10-27 中国矿业大学 一种防漏液高温高压水压致裂系统和试验方法
CN116430004B (zh) * 2023-03-17 2024-01-23 中国科学院武汉岩土力学研究所 一种水力剪切临界条件下注浆试验装置及测试方法

Families Citing this family (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106370576B (zh) * 2015-07-20 2019-04-02 中国石油化工股份有限公司 用于研究煤岩渗透率的模拟装置及方法
CN105134284B (zh) * 2015-08-03 2017-05-31 中国矿业大学 一种基于水平定向钻孔液氮循环冻融增透抽采瓦斯方法
US10302814B2 (en) 2015-08-20 2019-05-28 Baker Hughes, A Ge Company, Llc Mechanisms-based fracture model for geomaterials
CN105221117B (zh) * 2015-11-11 2018-07-27 中国矿业大学(北京) 一种致裂煤层抽采煤层气装置及应用方法
CN105507894B (zh) * 2015-12-09 2018-07-06 河南理工大学 煤层气垂直井水力压裂过程煤粉产出测试装置与方法
CN105626027B (zh) * 2015-12-23 2017-12-29 中国石油大学(北京) 一种煤岩定向井加砂压裂的物理模拟方法
CN105443081B (zh) * 2016-01-08 2017-12-05 中国矿业大学(北京) 一种基于轮替思想的瓦斯抽采设备与抽采方法
US10546072B2 (en) * 2016-03-28 2020-01-28 Baker Huges, A Ge Company, Llc Obtaining micro- and macro-rock properties with a calibrated rock deformation simulation
US10102311B2 (en) * 2016-03-28 2018-10-16 Baker Hughes, A Ge Company, Llc Obtaining micro- and macro-rock properties with a calibrated rock deformation simulation
EP3981651A1 (en) 2016-04-15 2022-04-13 Mobile Tech, Inc. Gateway-based anti-theft security system and method
CN106124380B (zh) * 2016-06-22 2019-01-15 太原理工大学 一种相似模拟实验中测量煤柱透气性的装置及方法
CN106770834A (zh) * 2017-01-07 2017-05-31 河南工程学院 一种微生物降解原煤吸附甲烷实验装置
CN106680124B (zh) * 2017-01-24 2019-07-05 中国石油大学(北京) 一种测定岩石可钻性的装置及方法
US10339771B2 (en) * 2017-02-03 2019-07-02 International Business Machines Coporation Three-dimensional holographic visual and haptic object warning based on visual recognition analysis
CN107339090A (zh) * 2017-03-28 2017-11-10 辽宁工程技术大学 液氮致裂钻孔煤实验装置
CN106885740B (zh) * 2017-04-05 2023-07-07 辽宁工程技术大学 一种基于真三轴加载下的煤岩体蠕变力学行为试验装置
CN107202807B (zh) * 2017-04-10 2023-07-18 中国矿业大学(北京) 一种基于中子照相实验台的加载装置
CN106840904B (zh) * 2017-04-13 2023-02-07 安徽理工大学 一种岩石三轴不等压加载与监测装置
CN106988739B (zh) * 2017-05-19 2020-05-22 中国石油集团川庆钻探工程有限公司 页岩储层压裂裂缝识别与解释评价方法
CN107101817B (zh) * 2017-05-22 2023-02-24 河南理工大学 煤岩壁钻孔钻具钻削性能实验台
CN107132572B (zh) * 2017-06-14 2023-03-10 四川大学 用于岩体破裂微震测试的试验平台
CN107121339B (zh) * 2017-06-15 2023-03-21 河南理工大学 煤岩壁围压智能恒定加载装置
CN107340229A (zh) * 2017-06-22 2017-11-10 中国矿业大学 一种测试煤岩体动力学特性的实验装置及方法
CN107219128B (zh) * 2017-07-13 2023-03-24 河南理工大学 多期构造运动作用下煤系地层应力分布模拟装置及方法
CN107290226B (zh) * 2017-08-06 2023-04-07 吉林大学 一种用于真三轴水力压裂模拟实验的液氮制冷安装装置
CN108956933B (zh) * 2017-08-25 2023-07-14 山东科技大学 一种实验室内模拟逆断层形成的方法及装置
CN107957375A (zh) * 2017-10-24 2018-04-24 江苏师范大学 一种测试上覆岩层移动、隔水性及温度变化的试验系统
CN107729700B (zh) * 2017-10-27 2021-03-16 中煤科工集团重庆研究院有限公司 煤层瓦斯抽采钻孔割缝封孔的参数确定方法
CN107991113B (zh) * 2017-11-13 2019-06-11 中国矿业大学 一种钻孔、涨裂、截割一体化实验台及测试方法
CN107764628B (zh) * 2017-11-23 2023-06-06 中南大学 模拟深部三维加载条件下开挖卸荷的试验装置及试验方法
CN107907661A (zh) * 2017-12-15 2018-04-13 中国科学院地质与地球物理研究所兰州油气资源研究中心 盆地深部储层岩石与流体相互作用模拟装置及使用方法
CN107907428A (zh) * 2018-01-02 2018-04-13 吉林大学 自带加热功能的半开放式方形岩芯水力压裂试验装置
CN108507879B (zh) * 2018-02-08 2019-03-12 山东科技大学 微裂隙三轴应力渗流注浆试验系统及其使用方法
CN108362622B (zh) * 2018-02-08 2020-05-22 成都理工大学 一种保持岩石应力实现不同方向渗流的真三轴夹持器
CN108106944B (zh) * 2018-02-27 2023-10-03 中国科学院武汉岩土力学研究所 一种原位岩体三轴流变试验装置
CN110318743B (zh) * 2018-03-30 2022-06-21 中国石油化工股份有限公司 薄互层页岩油储层压裂模拟试验方法及装置
CN108386177B (zh) * 2018-04-17 2023-07-21 唐山合众启航科技有限公司 一种三维多层多井压裂支撑裂缝实时监测实验系统与方法
CN108398325B (zh) * 2018-04-25 2024-02-02 中国石油大学(北京) 测试岩石用的声学响应试验装置
CN108318345B (zh) * 2018-04-25 2024-02-06 中国石油大学(北京) 多方位角井眼破裂压力测试装置
CN108362574A (zh) * 2018-04-28 2018-08-03 四川大学 高温高压多场耦合下岩石力学测试承载系统
CN108590768B (zh) * 2018-05-11 2020-06-19 山东科技大学 一种非均布覆压下注水煤层流固耦合应力监测系统
CN108693019B (zh) * 2018-05-24 2020-07-03 吉林大学 水-热-力耦合作用路基动力响应试验装置及方法
CN108766178B (zh) * 2018-05-30 2023-05-16 西安科技大学 一种大倾角煤层支架与围岩系统四维物理模拟实验平台
CN109459535B (zh) * 2018-12-20 2024-02-13 河南工业和信息化职业学院 一种实验室用多浆高压注浆装置及其注浆方法
CN109540688B (zh) * 2019-01-10 2023-10-24 辽宁工程技术大学 一种大尺寸真三轴水力压裂模拟试验装置及试验方法
CN109630087B (zh) * 2019-01-15 2023-04-25 河南理工大学 可增压液氮溶浸煤体致裂增透装置及增透实验方法
CN109752248A (zh) * 2019-01-22 2019-05-14 北京交通大学 土体泥水劈裂伸展过程的可视化模拟试验装置和方法
CN109827883B (zh) * 2019-03-14 2024-02-27 中建东设岩土工程有限公司 一种模拟深基坑工程管道破裂工况下排桩支护基坑稳定性研究的试验装置与试验方法
CN109916798A (zh) * 2019-03-19 2019-06-21 吕梁学院 具有导流功能的渗流板及其试验清理方法
CN110284921B (zh) * 2019-04-24 2020-11-03 山东科技大学 一种基于二元复合液的急倾斜特厚煤层瓦斯治理方法
CN111980645B (zh) * 2019-05-23 2022-11-04 中国石油天然气股份有限公司 造缝装置、用于模拟填砂模型驱替实验过程的系统及工艺
CN110007059B (zh) * 2019-05-29 2023-06-23 河南理工大学 冲击地压破含瓦斯煤模拟实验系统及破煤实验方法
CN110082220A (zh) * 2019-05-31 2019-08-02 重庆大学 一种真三轴多孔导向压裂实验装置
CN110426286A (zh) * 2019-05-31 2019-11-08 中国平煤神马能源化工集团有限责任公司 一种真三轴压裂渗流连续测试系统及方法
CN112196521B (zh) * 2019-06-19 2023-11-28 中国石油天然气股份有限公司 一种水平井压裂裂缝形态多维度监测装置
CN110308052B (zh) * 2019-08-01 2021-07-20 中国矿业大学 基于声发射技术的空心岩样径向渗流试验装置和试验方法
CN110320149B (zh) * 2019-08-02 2021-08-03 西南石油大学 一种流向可调式不规则岩样高压渗透装置及测试方法
CN110441214B (zh) * 2019-08-26 2020-09-15 中国地质大学(北京) 煤样裂缝渗透测试装置及其测试方法
CN110579586B (zh) * 2019-10-16 2023-05-23 长安大学 加卸荷扰动下非饱和土水气二相流运移实验仪及方法
CN110836822B (zh) * 2019-10-21 2022-07-01 河南理工大学 一种高效高压气体压裂实验防爆检测试验舱及检测方法
CN110671087B (zh) * 2019-10-23 2021-06-08 中国石油集团川庆钻探工程有限公司 一种多尺度裂缝两相流动模拟评测装置
CN110736821B (zh) * 2019-10-29 2022-07-19 中国石油大学(华东) 一种基于重力加载材料的滑坡区域管道安全性的模型试验装置
CN110700823B (zh) * 2019-11-20 2022-10-14 重庆地质矿产研究院 一种真三轴裂缝扩展模拟和渗透率同步实验的加载体以及渗透率测试表征方法
CN110926954B (zh) * 2019-12-16 2022-11-18 重庆大学 一种真三轴条件下分段水力压裂试验装置和试验方法
CN111077017A (zh) * 2019-12-30 2020-04-28 黑龙江科技大学 一种单方向卸载煤层瓦斯突出模拟装置
CN111220452B (zh) * 2020-02-19 2022-06-03 辽宁工程技术大学 一种煤岩模拟试验用真三轴压力室及其试验方法
CN111175146B (zh) * 2020-02-20 2022-10-14 济南轨道交通集团有限公司 一种管片抗弯、抗渗两用试验装置及方法
CN111175134B (zh) * 2020-02-20 2022-12-09 济南轨道交通集团有限公司 一种管片抗拔、抗渗两用实验装置及实验方法
CN111272633B (zh) * 2020-03-09 2022-04-08 山东科技大学 钻孔变形影响煤层渗透性与润湿效果的试验方法
CN111198254B (zh) * 2020-03-23 2022-02-15 长沙理工大学 便于微观试验制样的温控固结仪及其使用方法
CN111579382A (zh) * 2020-04-10 2020-08-25 中国石油大港油田勘探开发研究院 一种可模拟径向压力的真三轴实验装置及方法
CN111649925B (zh) * 2020-06-01 2022-04-19 河海大学 一种基于透明土的管道变形分布式监测装置及监测方法
CN113914851B (zh) * 2020-07-08 2024-02-02 中国石油化工股份有限公司 模拟复杂裂缝系统内压裂液渗吸的实验方法
CN111999199A (zh) * 2020-07-31 2020-11-27 山东科技大学 一种预压裂与截割性能综合实验系统
CN112100842B (zh) * 2020-09-10 2022-04-29 江西理工大学 一种识别地应力异常区及大范围测量地应力的新方法
CN112285277B (zh) * 2020-09-16 2023-03-31 煤炭科学技术研究院有限公司 一种煤与瓦斯突出煤体示踪及洞穴形体发育的测试方法
CN112540026B (zh) * 2020-11-25 2022-02-18 浙江大学 温控非饱和三轴仪水汽分离收集及监测装置及其应用系统
CN112730070A (zh) * 2020-11-27 2021-04-30 江苏珂地石油仪器有限公司 一种真三轴水力致裂及剪切耦合模拟系统
CN112730190B (zh) * 2020-12-18 2022-05-20 中山大学 一种温控低渗透性土的实验设备
CN112729194B (zh) * 2020-12-30 2022-08-16 赵乾 一种聚乙烯塑料制品厚度智能检测装置
CN112881151B (zh) * 2021-01-14 2023-01-31 淮阴工学院 真三轴煤岩流固耦合试验装置
CN112859945B (zh) * 2021-01-15 2022-06-17 四川大学 率定平台孔压控制系统及其控制方法
CN112903470B (zh) * 2021-01-18 2022-03-25 东北大学 一种基于硬岩真三轴系统的高温渗流耦合实验装置及方法
CN112985982B (zh) * 2021-02-26 2021-11-16 中国矿业大学 一种适用于真三轴加载的电法监测装置及其使用方法
CN113029907B (zh) * 2021-03-15 2022-02-22 中国矿业大学 一种煤样渗透率测试和突出模拟一体化试验方法
CN113006759B (zh) * 2021-03-16 2022-10-11 中国石油大学(华东) 页岩油压裂同步增能模拟实验装置与方法
CN113189302B (zh) * 2021-04-20 2023-06-02 山东大学 深埋隧道穿越活动断裂突水突泥动力灾害试验系统及方法
CN113281234B (zh) * 2021-05-14 2023-09-01 河南工程学院 一种煤屑瓦斯扩散渗流测定装置
CN113252467B (zh) * 2021-06-07 2022-04-15 西南石油大学 一种模拟深井钻井真三轴条件的岩石钻进实验装置与方法
CN113309513B (zh) * 2021-06-08 2023-02-28 中国地质大学(北京) 一种大型多尺度深部煤层气开采试验装置
CN113432976B (zh) * 2021-06-17 2023-03-10 太原理工大学 一种单侧限矸石压缩响应特征试验装置和方法
CN113447633A (zh) * 2021-06-25 2021-09-28 安徽理工大学 一种高压电脉冲致裂受载含瓦斯煤的可移动式实验装置
CN113484153A (zh) * 2021-07-02 2021-10-08 应急管理部国家自然灾害防治研究院 室内真三轴水压致裂地应力测试模拟方法及装置
CN113530516B (zh) * 2021-07-16 2022-09-02 中国矿业大学 一种脉动co2泡沫压裂及评价模拟一体化试验装置及方法
CN113552323A (zh) * 2021-08-03 2021-10-26 山西银锋科技有限公司 一种高压岩石注浆测试实验系统及其测试方法
CN113758805B (zh) * 2021-08-17 2024-02-09 中海石油(中国)有限公司 模拟裂缝扩展与储层伤害评价的室内装置及方法
CN113591420B (zh) * 2021-09-08 2022-05-13 中国石油大学(北京) 真三轴水力压裂实验的仿真方法及处理器
CN113777123B (zh) * 2021-09-16 2024-01-12 安徽理工大学 一种核磁共振真三轴夹持器及应用方法
CN113884373B (zh) * 2021-09-29 2023-05-12 中国石油大学(北京) 现场真三轴加载条件下完井及冲蚀试验测试系统和方法
CN113917110A (zh) * 2021-09-30 2022-01-11 中国矿业大学(北京) 一种多功能三维相似模拟试验平台与试验方法
CN114135271B (zh) * 2021-11-30 2023-05-19 重庆大学 原位致裂煤层裂隙实时无损观测及两相渗流试验方法
CN114112636B (zh) * 2021-11-30 2022-09-09 重庆大学 原位致裂含气储层裂隙实时无损观测及两相渗流试验系统
CN114412437A (zh) * 2021-12-01 2022-04-29 煤炭科学技术研究院有限公司 受载含瓦斯煤体模拟钻进与多参量随钻监测试验系统
CN114563551B (zh) * 2022-03-02 2022-10-21 中国矿业大学 一种渗流状态下动载诱发煤与瓦斯突出试验方法
CN115144277A (zh) * 2022-06-28 2022-10-04 山东科技大学 一种多位置冲击荷载作用下煤体注水致裂试验系统
CN115219089B (zh) * 2022-08-19 2023-03-31 惠州市建设集团工程建设监理有限公司 应用于建设监理的基坑监测系统及监理检测方法
CN115096714A (zh) * 2022-08-25 2022-09-23 中国长江三峡集团有限公司 压裂物理模拟实验装置及其使用方法
US11614390B1 (en) 2022-10-27 2023-03-28 Chongqing University Real-time nondestructive observation and two-phase seepage test system for fracture of in-situ fractured gas-bearing reservoir
CN116046519B (zh) * 2022-11-25 2023-08-11 中南大学 岩石三轴气力耦合单/双裂纹起裂扩展试验装置及方法
CN115977621B (zh) * 2022-12-23 2023-06-02 重庆大学 Vhsd直井水平井水力连通开采稠油藏的物理模拟方法
CN115824824B (zh) * 2023-01-06 2023-04-21 昆明理工大学 一种深井涌水模拟的岩石真三轴渗流耦合试验装置及方法
CN116201537A (zh) * 2023-03-09 2023-06-02 海安县石油科研仪器有限公司 一种石油采收率实验系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050020057A (ko) * 2003-08-20 2005-03-04 한국지질자원연구원 진삼축압축시험장치
CN102621000A (zh) * 2012-03-27 2012-08-01 中国科学院武汉岩土力学研究所 一种可实现水压致裂试验的真三轴压力装置
CN102735548A (zh) * 2012-07-05 2012-10-17 重庆大学 多功能真三轴流固耦合试验系统
CN102735549A (zh) * 2012-07-05 2012-10-17 重庆大学 多功能真三轴流固耦合压力室
CN103883301A (zh) * 2014-03-31 2014-06-25 中国矿业大学 一种煤层气井水力压裂物理模拟方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4502338A (en) * 1983-05-16 1985-03-05 Iowa State University Research Foundation, Inc. Triaxial apparatus for testing particulate material and method of using the same
CN102607950B (zh) * 2012-03-05 2013-08-07 山东科技大学 一种岩石剪切渗流耦合真三轴试验系统
CN102735547B (zh) * 2012-07-05 2014-07-02 重庆大学 真三轴状态下煤岩水压致裂试验方法
US9567722B2 (en) * 2015-06-03 2017-02-14 Ramesh Chandra Gupta Test device for determining three-dimensional consolidation properties of soils

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050020057A (ko) * 2003-08-20 2005-03-04 한국지질자원연구원 진삼축압축시험장치
CN102621000A (zh) * 2012-03-27 2012-08-01 中国科学院武汉岩土力学研究所 一种可实现水压致裂试验的真三轴压力装置
CN102735548A (zh) * 2012-07-05 2012-10-17 重庆大学 多功能真三轴流固耦合试验系统
CN102735549A (zh) * 2012-07-05 2012-10-17 重庆大学 多功能真三轴流固耦合压力室
CN103883301A (zh) * 2014-03-31 2014-06-25 中国矿业大学 一种煤层气井水力压裂物理模拟方法

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106940233A (zh) * 2017-04-01 2017-07-11 合肥工业大学 一种地下结构防水测试综合试验平台及其试验方法
CN106940233B (zh) * 2017-04-01 2023-03-17 合肥工业大学 一种地下结构防水测试综合试验平台及其试验方法
CN106970015A (zh) * 2017-05-10 2017-07-21 河南理工大学 一种模拟煤岩钻孔热冷加注装置及渗透率测试方法
CN106970015B (zh) * 2017-05-10 2023-02-17 河南理工大学 一种模拟煤岩钻孔热冷加注装置及渗透率测试方法
CN107101930A (zh) * 2017-06-13 2017-08-29 北京永瑞达科贸有限公司 圆缺形截面可视渗流模拟装置
CN107807057A (zh) * 2017-10-16 2018-03-16 太原理工大学 一种适用于煤岩体轴向震动加载的实验装置
CN107807057B (zh) * 2017-10-16 2023-08-08 太原理工大学 一种适用于煤岩体轴向震动加载的实验装置
CN107764658A (zh) * 2017-11-23 2018-03-06 中南大学 模拟二维加载液氮降温巷道开挖卸荷的试验装置及方法
CN107764658B (zh) * 2017-11-23 2023-08-11 中南大学 模拟二维加载液氮降温巷道开挖卸荷的试验装置及方法
CN108107181A (zh) * 2018-02-22 2018-06-01 西安科技大学 二维物理相似模拟试验平台及其试验方法
CN110056335A (zh) * 2018-11-27 2019-07-26 安阳工学院 一种三轴多裂纹水力压裂实验装置及实验方法
CN110056335B (zh) * 2018-11-27 2023-11-03 安阳工学院 一种三轴多裂纹水力压裂实验装置及实验方法
CN109488281A (zh) * 2018-12-19 2019-03-19 山东科技大学 一种室内覆岩离层变形探测装置及其评价方法
CN109488281B (zh) * 2018-12-19 2022-03-29 山东科技大学 一种室内覆岩离层变形探测装置及其评价方法
CN109668926A (zh) * 2018-12-25 2019-04-23 中国矿业大学 裂隙岩体单元结构的等效导热系数测试系统与计算方法
CN109668926B (zh) * 2018-12-25 2023-11-10 中国矿业大学 裂隙岩体单元结构的等效导热系数测试系统与计算方法
CN109459313A (zh) * 2018-12-29 2019-03-12 四川大学 真实采动应力影响下煤岩体的力学行为和渗流特性原位测试方法及系统
CN109459313B (zh) * 2018-12-29 2023-09-01 四川大学 煤岩体的力学行为和渗流特性原位测试方法及系统
CN109870349B (zh) * 2019-03-29 2023-10-27 中国矿业大学 一种高温高压水压致裂夹持器及其试验方法
CN109870349A (zh) * 2019-03-29 2019-06-11 中国矿业大学 一种高温高压水压致裂夹持器及其试验方法
CN109870350B (zh) * 2019-03-29 2023-10-27 中国矿业大学 一种防漏液高温高压水压致裂系统和试验方法
WO2020048187A3 (zh) * 2019-06-19 2020-05-07 四川大学 三轴测试仪进行地质断层力学行为的室内实验模拟装置及方法
CN110595909A (zh) * 2019-09-30 2019-12-20 华北水利水电大学 模拟深部岩体不同温度影响下的真三轴试验系统及方法
CN110595909B (zh) * 2019-09-30 2024-03-05 华北水利水电大学 模拟深部岩体不同温度影响下的真三轴试验系统及方法
CN111003202A (zh) * 2019-12-04 2020-04-14 江西洪都航空工业集团有限责任公司 一种舱盖充放气加载试验系统及使用方法
CN113565482A (zh) * 2020-04-29 2021-10-29 中国石油化工股份有限公司 一种用于模拟水平井暂堵压裂的模拟装置和方法
CN112081575A (zh) * 2020-09-10 2020-12-15 西南石油大学 多场耦合下煤层气井井周围岩形变可视化模拟装置与方法
CN114607331A (zh) * 2020-11-24 2022-06-10 中国石油天然气股份有限公司 水平井分段体积压裂模拟试验装置及方法
CN114607331B (zh) * 2020-11-24 2023-09-26 中国石油天然气股份有限公司 水平井分段体积压裂模拟试验装置及方法
CN112780243A (zh) * 2020-12-31 2021-05-11 中国矿业大学 一体化强化煤层瓦斯抽采系统以及抽采方法
CN113030429A (zh) * 2021-03-15 2021-06-25 中国矿业大学 一种多功能煤与瓦斯突出物理模拟装置
CN113049394A (zh) * 2021-03-20 2021-06-29 中国矿业大学 一种模拟煤矿坚硬顶板岩层水力压裂的实验装置和方法
CN115324548A (zh) * 2021-05-11 2022-11-11 中国石油化工股份有限公司 一种裸眼水平井暂堵分段压裂实验装置
CN113310815B (zh) * 2021-05-20 2022-09-02 武汉大学 一种真三轴加载的岩石钻孔取芯试验系统及试验方法
CN113310815A (zh) * 2021-05-20 2021-08-27 武汉大学 一种真三轴加载的岩石钻孔取芯试验系统及试验方法
CN113447362B (zh) * 2021-06-05 2023-08-08 中煤科工集团西安研究院有限公司 一种煤岩层底板承压水反力模拟实验装置及方法
CN113447362A (zh) * 2021-06-05 2021-09-28 中煤科工集团西安研究院有限公司 一种煤岩层底板承压水反力模拟实验装置及方法
CN113624583B (zh) * 2021-08-02 2023-10-20 中海石油(中国)有限公司 一种疏松砂岩制样和压裂模拟一体化的实验装置
CN113624583A (zh) * 2021-08-02 2021-11-09 中海石油(中国)有限公司 一种疏松砂岩制样和压裂模拟一体化的实验装置
CN114152618A (zh) * 2021-11-26 2022-03-08 国家能源投资集团有限责任公司 一种相似模拟实验系统及相似模拟实验方法
CN114252343B (zh) * 2021-12-17 2023-06-09 中国石油大学(华东) 一种深层断溶体裂缝闭合机理实验装置
CN114252343A (zh) * 2021-12-17 2022-03-29 中国石油大学(华东) 一种深层断溶体裂缝闭合机理实验装置
CN114415627A (zh) * 2021-12-22 2022-04-29 煤炭科学技术研究院有限公司 一种全工作面液压支架电液控制系统测试方法及设备
CN114415627B (zh) * 2021-12-22 2024-03-08 煤科(北京)检测技术有限公司 一种全工作面液压支架电液控制系统测试方法及设备
CN116430004B (zh) * 2023-03-17 2024-01-23 中国科学院武汉岩土力学研究所 一种水力剪切临界条件下注浆试验装置及测试方法

Also Published As

Publication number Publication date
US9921202B2 (en) 2018-03-20
CN104614497B (zh) 2016-04-20
US20170003263A1 (en) 2017-01-05
CN104614497A (zh) 2015-05-13

Similar Documents

Publication Publication Date Title
WO2016141621A1 (zh) 真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统
CN108386177B (zh) 一种三维多层多井压裂支撑裂缝实时监测实验系统与方法
CN101793142B (zh) 真三轴钻井堵漏模拟评价装置
CN110346216B (zh) 一种模拟掘进扰动情况下煤岩体三轴加载试验装置及方法
CN106437694B (zh) 模拟煤层压裂作用排采煤粉变化监测装置及其实验方法
CN107843481B (zh) 盾构刀具磨损试验装置及试验方法
CN110987638A (zh) 一种可视化真三轴水力劈裂试验装置及方法
CN204679347U (zh) 一种钻井液承压堵漏压裂试验装置
CN110108838B (zh) 一种定向钻孔注浆浆液扩散的模拟试验方法
CN106018748A (zh) 一种单裂隙岩体流-固耦合试验系统及试验方法
CN208137925U (zh) 一种三维多层多井压裂支撑裂缝实时监测实验系统
CN105134186A (zh) 页岩气水力压裂物理模拟试验系统
CN209542309U (zh) 一种大尺寸真三轴水力压裂模拟试验装置
CN110308052B (zh) 基于声发射技术的空心岩样径向渗流试验装置和试验方法
CN105974084A (zh) 一种本煤层瓦斯抽采实验模拟装置
CN111119831B (zh) 一种水平井分段压裂室内模拟试验装置及其操作方法
CN205786605U (zh) 一种本煤层瓦斯抽采实验模拟装置
CN106596290B (zh) 岩体结构面现场水力耦合直剪试验结构装置及构建方法
CN201627577U (zh) 真三轴钻井堵漏模拟评价装置
CN204422525U (zh) 高温高压水泥浆堵漏性能试验评价装置
CN110887775A (zh) 一种峰后破裂岩石三轴浆液渗透性测试系统及方法
CN110056335B (zh) 一种三轴多裂纹水力压裂实验装置及实验方法
CN109540769A (zh) 一种基于声发射探测技术的弯曲渗流试验装置及试验方法
CN105301202A (zh) 用于确定上保护层开采卸压范围的测试系统及测试方法
CN111157356A (zh) 一种应力扰动作用下岩体含冰裂隙冻胀力演化测试装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15110039

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15884304

Country of ref document: EP

Kind code of ref document: A1