CN114112636B - 原位致裂含气储层裂隙实时无损观测及两相渗流试验系统 - Google Patents

原位致裂含气储层裂隙实时无损观测及两相渗流试验系统 Download PDF

Info

Publication number
CN114112636B
CN114112636B CN202111445057.9A CN202111445057A CN114112636B CN 114112636 B CN114112636 B CN 114112636B CN 202111445057 A CN202111445057 A CN 202111445057A CN 114112636 B CN114112636 B CN 114112636B
Authority
CN
China
Prior art keywords
gas
slide bar
water
guide
electric pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111445057.9A
Other languages
English (en)
Other versions
CN114112636A (zh
Inventor
蒋长宝
吴家耀
曾越
张东明
邓博知
杨博文
孙奇
杨阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN202111445057.9A priority Critical patent/CN114112636B/zh
Publication of CN114112636A publication Critical patent/CN114112636A/zh
Application granted granted Critical
Publication of CN114112636B publication Critical patent/CN114112636B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
    • G01N13/04Investigating osmotic effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/0806Details, e.g. sample holders, mounting samples for testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Pulmonology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明公开了一种原位致裂含气储层裂隙实时无损观测及两相渗流试验系统,包括应力加载系统、高压电脉冲致裂操作系统、水气两相渗流系统和原位CT扫描系统;所述应力加载系统包括压力室、轴压加载模块和围压加载模块;所述高压电脉冲致裂操作系统包括高压电脉冲发生模块、高压电脉冲信号监测模块和保护模块;所述水气两相渗流系统包括水气压力加载模块和流量数据采集模块;所述原位CT扫描系统包括射线源、平板探测器、CT扫描检测机构。通过模拟不同地应力、不同电压等条件下的电脉冲作用煤体试验,模拟多物理场耦合作用下的高压电脉冲致裂煤体物理试验,能进行高压电脉冲原位增透含气储层两相渗流试验,并实时无损观测。

Description

原位致裂含气储层裂隙实时无损观测及两相渗流试验系统
技术领域
本发明涉及用于煤层气(矿井瓦斯)开采领域,具体涉及一种高压电脉冲原位致裂含气储层裂隙实时无损观测及两相渗流试验系统。
背景技术
高压电脉冲破碎岩石技术,作为新兴的储层增透技术,近几十年内迅速在油气开采和矿物加工、煤层气开采等领域得到广泛的应用。高压电脉冲的致裂作用是利用放电过程中产生的冲击波以及等离子体通道中产生的高温引起的力学效应对固体进行破碎。在煤层增透技术领域,高压电脉冲煤层增透技术相较于以往的煤层增透技术具有耗能少、效率高等一系列的优势。目前,高压电脉冲技术在增加煤层渗透性方面的现场应用中取得了一定的效果,但是高压电脉冲致裂煤层增渗的基础理论研究仍处于探索阶段。
水气两相渗流是开采煤层气过程中常发生的情况。煤层气开采过程中,由于排水降压诱导的煤岩体孔隙通道中的煤层气解吸和扩散,煤层气通过渗透作用在裂隙岩体中由高势能往低势能方向运移。地下水的排出使煤层压力降低,煤岩体中被吸附的气体开始从微孔隙表面分离解吸,解吸气浓度在解吸面附近高于裂隙中煤层气的浓度,煤层气会在相应的浓度梯度下从孔隙—微裂隙系统向裂隙空间扩散,由于地下水的广泛存在,岩体裂隙中会有水气两相渗流情况出现。水和煤层气在煤体中的流动规律主要与水和煤层气在煤层中相对渗透率有关,渗透率的大小直接决定煤层气开采的效果。地下水对煤层气的赋存运移的控制作用比较明显,煤层气和地下水的渗流彼此影响。研究受载含煤层气煤的水气两相渗流特性,对煤层气开发利用具有重要的理论意义和工程实践作用。
CT扫描作为近年来热门的检测手段,具有无损检测和三维可视的特点,CT成像主要利用射线衰减的原理,X射线经由射线源发射,在穿透不同厚度、不同密度的材料时后衰减程度产生差异。不同射线量的X射线在探测器产生不同明暗程度的图像,经由计算机处理后形成可视化图像,能够获取试件内部细观结构,同时在显示器上直观显现检测对象的内部结构。
现有的电脉冲致裂增渗系统,虽然在一定程度上实现了对高压电脉冲致裂煤体的研究,但无法对试验过程中的受载试件进行原位实时无损可视信息捕获,无法对试验过程中的受载试件进行原位增透渗流并实时获取信息,试验过程中的信息获取量较少,限制了电脉冲致裂煤体过程中作用响应机理的研究,同时难以模拟深部开采的煤岩体的地应力环境。
发明内容
本发明致力于开发一种模拟范围更广,操作简单且试验数据精确的原位致裂含气储层裂隙实时无损观测及两相渗流试验系统,能够模拟含气储层裂隙水气两流原位渗流,并实现原位无损观测。
为此,本发明所采用的技术方案为:一种原位致裂含气储层裂隙实时无损观测及两相渗流试验系统,包括应力加载系统、高压电脉冲致裂操作系统、水气两相渗流系统和原位CT扫描系统;
所述应力加载系统包括压力室、轴压加载模块和围压加载模块;所述压力室采用圆管结构,在压力室内居中安装有试件;所述轴压加载模块包含轴压泵,以及在试件的上下两端对称设置并依次相连的第一滑杆、第二滑杆、第三滑杆、第四滑杆、第五滑杆、油缸、轴压管道,第二滑杆与压力室滑动配合,第一滑杆、第三滑杆、第四滑杆的直径均小于第二滑杆的直径,第五滑杆伸入各自对应的油缸内,所述油缸的侧壁上开设有轴压通道,所述轴压管道的一端与轴压泵相连,另一端通过轴压通道接入对应油缸内,并通过所有滑杆为试件提供上下相等的轴压;所述围压加载模块包含围压泵、隔离胶套和两个围压管道,所述压力室侧壁上上下对称地开设有两个围压通道,围压管道的一端与围压泵相连,另一端通过对应的围压通道接入试件内腔为试件四周提供围压,隔离胶套包裹在两个第一滑杆与试件外,且隔离胶套与第一滑杆之间设置有密封圈,以防止液压油通过隔离胶套上下端浸入试件中;
所述高压电脉冲致裂操作系统包括高压电脉冲发生模块、高压电脉冲信号监测模块和保护模块;所述高压电脉冲发生模块包含高压脉冲电源、高压电容器、高压电脉冲开关、第一导线节段、第二导线节段、第三导线节段、电极针和导气导液导电螺栓;高压脉冲电源通过第一导线节段为高压电容器充电,所述试件的上下两端均配备有电极针和导气导液导电螺栓,电极针的一端抵在试件上,另一端依次同轴穿过第一滑杆、第二滑杆、第三滑杆后,插入第四滑杆的盲孔中,所述导气导液导电螺栓的一端与电极针相连,另一端横向穿到第四滑杆外,上方的导气导液导电螺栓通过第二导线节段与高压电容器的正极相连,下方的导气导液导电螺栓通过第三导线节段与高压电容器的负极相连,所述第二导线节段上串联有高压电脉冲开关;所述高压电脉冲信号监测模块包括罗氏线圈、高压探头和示波器,罗氏线圈套在第三导线节段上,高压探头串联在第三导线节段上,罗氏线圈与高压探头的监测信号通过信号传输线连接到示波器;所述保护模块包括电磁屏蔽场,用于将高压电脉冲致裂操作系统产生的高能量静电、原位CT扫描系统产生的X射线隔绝在电磁屏蔽场中;
所述水气两相渗流系统包括水气压力加载模块和流量数据采集模块,所述水气压力加载模块包括气罐、水压泵、气体管道、水压管道、水气管道和水气收集容器,所述电极针的直径小于所穿过滑杆的内径形成水气通道,且两个水气通道均紧贴试件,导气导液导电螺栓为空心杆结构,且位于上方的导气导液导电螺栓的内侧端与水气通道连通,外侧端通过水气管道与水气收集容器相连,位于下方的导气导液导电螺栓的内侧端与水气通道连通,外侧端分别设置有进气口和进水口,其中进气口通过气体管道与气罐的出气口相连,进水口通过水压管道与水压泵的出水口相连;所述流量数据采集模块包括安装在气体管道上的气体流量计、安装在水压管道上的液体流量计;
所述原位CT扫描系统包括射线源、平板探测器、CT扫描检测机构,所述射线源和平板探测器分别布置在压力室的两侧,压力室可360°水平旋转地安装在绝缘固定底座上,压力室采用满足CT扫描要求的材料制作而成,平板探测器与CT扫描检测机构通过数据传输线相连。
作为上述方案的优选,所述气体管道、水压管道上分别安装有单向阀,气体管道、水压管道、水气管道上分别安装有截止阀,气罐、水压泵、轴压泵、围压泵安装在电磁屏蔽场外。
进一步优选为,所述电极针上开设有平台,供导气导液导电螺栓插入进行面贴合导电,导气导液导电螺栓与第四滑杆之间通过不锈钢密封套隔开;所述导气导液导电螺栓的直径大于电极针上开设的平台宽度,或导气导液导电螺栓的内侧端的侧壁上开设有连通孔,使导气导液导电螺栓的空心与水气通道连通;位于下方的导气导液导电螺栓的进气口、进水口与空心构成“Y”形通道。若导气导液导电螺栓与电极针点接触,接触点位置处在电脉冲过程中会产生放电,采用面贴合安装,有效避免点接触产生电弧影响放电效果。
进一步优选为,所述射线源选用配备有高功率微米焦点和高分辨率纳米焦点的X双射线管,射线源倾斜安装在射线管支架的下部,射线管支架的上端悬吊在电磁屏蔽场的顶部,所述平板探测器安装在电磁屏蔽场的侧壁上,射线源的射线穿透压力室被平板探测器接收后在CT扫描检测机构上形成扫描图像。
进一步优选为,所述第一滑杆、第二滑杆、第三滑杆、第四滑杆为高密度绝缘杆,轴压泵采用具有伺服控制系统的位移精密注射泵。
为确保试验过程中的用电安全,所述第一导线节段、第二导线节段、第三导线节段采用符合100kV绝缘标准的绝缘材料包裹,在第二导线节段、第三导线节段与导气导液导电螺栓连接处采用符合100kV绝缘标准的绝缘胶带完全缠裹。
进一步优选为,所述电极针与试件接触的端部设计成圆台状,电极针的另一端通过安装在第四滑杆盲孔内的压缩弹簧抵紧,确保电极针的试件始终紧密贴合。
进一步优选为,所述绝缘固定底座的顶部居中位置处设置有定位圆台,位于下端的所述油缸的底部居中位置处设置有正好供定位圆台插入的定位凹槽。
进一步优选为,所述第四滑杆与第五滑杆的接触位置处通过定位圆台、定位凹槽配合安装。
进一步优选为,加载前,所述第二滑杆的远端与压力室的端头齐平,围压通道正对第二滑杆的近端,轴压通道正对第五滑杆的远端,第五滑杆的近端伸到油缸外。
进一步优选为,所述不锈钢密封套的外径在远端位置处加大作为翻边,且该翻边正好盖在第四滑杆外壁上,方便按入安装,通过翻边控制按入到位;不锈钢密封套的内径近端小、远端大,且在长度的中间位置处形成台阶面;相应的,所述导气导液导电螺栓位于第四滑杆内的段也为近端小、远端大;所述导气导液导电螺栓位于第四滑杆外的段上设置有环向凹槽,用于缠绕连接对应的第二导线节段或第三导线节段。
本发明的有益效果:
(1)应力加载系统包括压力室、轴压加载模块和围压加载模块,除轴压泵、围压泵、轴压管道和轴压管道外,其余部分构成一个岩心夹持器整体,将整个岩心夹持器整体置于绝缘固定底座上,并能进行360°水平旋转,在此基础上结合高压电脉冲致裂操作系统、水气两相渗流系统和原位CT扫描系统,能进行保压状态下、加载过程中的高压电脉冲后的水气两相实时渗流试验和原位CT实时扫描,避免了应力卸下以及拆装试件过程中对试件造成的影响干扰试验结果,便于更精准地对煤体进行宏微观分析,研究结果可为高压电脉冲煤层增透技术乃至煤层气开采的基础研究提供先进可靠的支撑;
(2)岩心夹持器可拆卸地安装在绝缘固定底座上,可在保压状态下转移或进行诸如核磁共振检测等,为多方面对试件进行分析提供了基础,从而具备为高压电脉冲煤层增透技术提供更完善的基础理论分析的条件;
(3)采用多级滑杆结合油缸为试件提供上下相等的轴压加载,通过直径较大的滑杆确保与压力室滑动配合,直径较小的滑杆能减小管壁摩擦对轴压加载的影响,采用油缸侧壁开孔并通过多级滑杆实现轴压的传递,既便于单个滑杆的加工和更换,又能方便试验过程试件的拆装;采用在压力室上下间隔开孔作为围压供给通道,并结合隔离胶套、密封圈,以防止液压油通过隔离胶套上下端浸入试件中,结构简单、加载可靠;轴压加载巧妙利用了油缸的侧壁开孔,围压加载巧妙利用了压力室的侧壁开孔,使整个布局合理紧凑、简洁易控,同时加载的围压和轴压高,能够进行深部应力环境下高压电脉冲致裂煤岩体的研究,最大100kV的高压电脉冲输出,最大围压为60MPa,远远高出目前仅能满足25KV高压电脉冲输出,最大围压在10MPa以下的情况;
(4)试件的上下两端均配备有电极针和导气导液导电螺栓,从而将高压电脉冲引入试件中,且电极针和导气导液导电螺栓均利用多级传递滑杆安装,考虑到绝缘问题,将安装电极针的所有滑杆采用高密度绝缘杆;除此之外,整个系统关键部分设置在电磁屏蔽场内,用于隔绝高压电脉冲致裂操作系统产生的高能量静电,系统安全可靠。
(5)导气导液导电螺栓是采用导电材料制成的空心杆,既能导电,又能导气导液,并通过限定电极针的直径小于所穿过滑杆的内径形成水气通道,且两个水气通道均紧贴试件安装,从而进行导气导液,充分巧妙地利用空间结构进行布置,使整个系统结构更加紧凑合理。
综上所述,通过模拟不同地应力、不同电压等条件下的电脉冲作用煤体试验,模拟多物理场耦合作用下的高压电脉冲致裂煤体物理试验,进行增透含气储层的两相渗流试验,并结合工业CT进行原位实时扫描分析。对含瓦斯煤高压电脉冲技术作用后的孔裂隙发展规律、物相响应特征进行精确深入研究,揭示作用过程中电场、应力场等多场耦合的内在机制与实质,为使用高压电脉冲致裂煤体,为提高煤层气的开采效率提供理论支持和工程参数指导。
附图说明
图1为本发明的结构示意图。
图2为本发明的压力室剖视图。
图3为图2的A部放大图。
图4为图2的B部放大图。
其中,包括1试件、2压力室、3轴压泵、4油缸、5轴压管道、6第一滑杆、7第二滑杆、8第三滑杆、9第四滑杆、10第五滑杆、11围压泵、12隔离胶套、13围压管道、14密封圈、15高压脉冲电源、16高压电容器、17高压电脉冲开关、18第一导线节段、19第二导线节段、20第三导线节段、21电极针、22导气导液导电螺栓、23不锈钢密封套、24罗氏线圈、25高压探头、26示波器、27电磁屏蔽场、28气罐、29水压泵、30气体管道、31水压管道、32水气管道、33压缩弹簧、34水气收集容器、35气体流量计、36液体流量计、37单向阀、38截止阀、39绝缘固定底座、40射线源、41平板探测器、42CT扫描检测机构、43射线管支架。
具体实施方式
下面通过实施例并结合附图,对本发明作进一步说明:
结合图1—图4所示,一种原位致裂含气储层裂隙实时无损观测及两相渗流试验系统,主要由应力加载系统、高压电脉冲致裂操作系统、水气两相渗流系统和原位CT扫描系统四大部分组成。
应力加载系统主要由压力室2、轴压加载模块和围压加载模块组成。
压力室2采用圆管结构,在压力室2内居中安装有试件1。
轴压加载模块由轴压泵3,以及在试件1的上下两端对称设置并依次相连的第一滑杆6、第二滑杆7、第三滑杆8、第四滑杆9、第五滑杆10、油缸4、轴压管道5组成。第二滑杆7与压力室2滑动配合,第一滑杆6、第三滑杆8、第四滑杆9的直径均小于第二滑杆7的直径,第五滑杆10伸入各自对应的油缸4内滑动配合。油缸4的侧壁上开设有轴压通道4a,轴压管道5的一端与轴压泵3相连,另一端通过轴压通道4a接入对应油缸4内,并通过所有滑杆(第一滑杆6、第二滑杆7、第三滑杆8、第四滑杆9、第五滑杆10依次传递轴压)为试件1提供上下相等的轴压。
为防止高压电能逸散,第一滑杆6、第二滑杆7、第三滑杆8、第四滑杆9为高密度绝缘杆。为了实现轴压加载精确控制,轴压泵3采用具有伺服控制系统的位移精密注射泵。另外,第四滑杆9与第五滑杆10的接触位置处通过定位圆台、定位凹槽配合安装。
加载轴压时,由轴压泵流出的液压油流经轴压管道到达油缸,到达油缸的液压油推动多级滑杆依次传递到试件,达到加载轴压效果。
围压加载模块由围压泵11、隔离胶套12和两个围压管道13等组成。压力室2侧壁上上下对称地开设有两个围压通道2a,围压管道13的一端与围压泵11相连,另一端通过对应的围压通道2a接入试件1内腔为试件1四周提供围压。为了增强密封效果、确保试验的顺利进行,隔离胶套12包裹在两个第一滑杆6与试件1外,且隔离胶套12与第一滑杆6之间设置有密封圈14,以防止液压油通过隔离胶套12上下端浸入试件1中,导致高压电脉冲对试件放电失败。
加载围压时,液压油经由围压泵流经围压管道到达压力室,液压油充满压力室后关闭围压通道,具有压力的液压油在压力室内对试件四周施加围压。
最好是,加载前,第二滑杆7的远端与压力室2的端头齐平,围压通道2a正对第二滑杆7的近端,轴压通道4a正对第五滑杆10的远端,第五滑杆10的近端伸到油缸4外,便于安装控制。
高压电脉冲致裂操作系主要由高压电脉冲发生模块、高压电脉冲信号监测模块和保护模块组成。
高压电脉冲发生模块由高压脉冲电源15、高压电容器16、高压电脉冲开关17、第一导线节段18、第二导线节段19、第三导线节段20、电极针21和导气导液导电螺栓22组成。高压脉冲电源15通过第一导线节段18为高压电容器16充电。试件1的上下两端均配备有电极针21和导气导液导电螺栓22。电极针21的一端抵在试件1上,另一端依次同轴穿过第一滑杆6、第二滑杆7、第三滑杆8后,插入第四滑杆9的盲孔中。第四滑杆9内开有盲孔,第一滑杆6、第二滑杆7、第三滑杆8内开有通孔供电极针21穿过。导气导液导电螺栓22的一端与电极针21相连,另一端横向穿到第四滑杆9外,上方的导气导液导电螺栓22通过第二导线节段19与高压电容器16的正极相连,下方的导气导液导电螺栓22通过第三导线节段20与高压电容器16的负极相连。第二导线节段19上串联有高压电脉冲开关17。
最好是,第一导线节段18、第二导线节段19、第三导线节段20采用符合100kV绝缘标准的绝缘材料包裹,在第二导线节段19、第三导线节段20与导气导液导电螺栓22连接处采用符合100kV绝缘标准的绝缘胶带完全缠裹。
另外,电极针21与试件1接触的端部设计成圆台状,电极针21的另一端通过安装在第四滑杆9盲孔内的压缩弹簧33抵紧,保证电极针与试件紧密接触,集中放电的同时避免在轴压加载过程中电极针对试件端部造成破坏。试件上、下两端的电极针需选用具有良好导电性能的金属材料制成。
电极针21上开设有平台,供导气导液导电螺栓22插入进行面贴合导电,导气导液导电螺栓22与第四滑杆9之间通过不锈钢密封套23隔开。不锈钢密封套23的外径在远端位置处加大作为翻边23a,且该翻边23a正好盖在第四滑杆9外壁上;不锈钢密封套23的内径近端小、远端大,且在长度的中间位置处形成台阶面;相应的,导气导液导电螺栓22位于第四滑杆9内的段也为近端小、远端大;导气导液导电螺栓22位于第四滑杆9外的段上设置有环向凹槽22a,用于缠绕连接对应的第二导线节段19或第三导线节段20。
高压电脉冲信号监测模块由罗氏线圈24、高压探头25和示波器26组成。罗氏线圈24套在第三导线节段20上,高压探头25串联在第三导线节段20上,测试高压电脉冲放电过程中的电路电压变化信号。罗氏线圈24与高压探头25的监测信号通过信号传输线连接到示波器26。罗氏线圈与高压探头监测信号通过信号传输线传输到示波器中,在示波器屏幕上显示脉冲电流和电压的波形并储存成数据文件,方便进行对历史脉冲电流和电压数据进行对比分析,确定最优的高压电脉冲致裂试件的脉冲电流和电压波形。后续通过调节高压电脉冲发生模块的放电形式还原最优脉冲电流和电压波形,实现对试件最优高压电脉冲致裂效果进行参数还原。
由于罗氏线圈的感应较敏感,罗氏线圈的摆放位置尽量选择试验过程中不易触碰的地方,同时罗氏线圈与第二导线节段保持一定距离,减小脉冲电流信号数据采集过程中的电磁干扰。
保护模块主体为电磁屏蔽场27,由于高压电脉冲致裂操作系统产生的高能量静电均会对人体造成生命威胁,需建立电磁屏蔽场,将试验过程产生的高压电脉冲致裂操作系统产生的高能量静电、原位CT扫描系统产生的X射线隔绝在电磁屏蔽场中,保障试验过程中操作人员的健康安全。
另外,压力室2可拆卸并360°水平旋转地安装在绝缘固定底座39上,绝缘固定底座39的顶部居中位置处设置有定位圆台,位于下端的油缸4的底部居中位置处设置有正好供定位圆台插入的定位凹槽。
高压脉冲电源通过第一导线节段连接高压电容器,实验时可根据需求调整输入电路中的电压、电流输入值控制对高压电脉冲电路系统的输入能量,从而产生不同能量的高压电脉冲对试件进行脉冲放电致裂,通过对比不同高压脉冲输入能量对试件的致裂效果,实现对含瓦斯煤层的最优致裂参数的确定。在向高压电容器充电的过程中,可以远程操作调节充电电流和电压,确保试验过程的安全可靠。
高压电容器采用组合电容并联的方式,采用可选择容量的方法,通过更换不同接入电容的数量来改变高压电脉冲电路中的电容参数。
高压电脉冲开关与第二导线节段串联,通过控制高压电脉冲开关的闭合实现高压电脉冲对试件能量的释放。当高压脉冲电源对高压电容器充入满足试验要求的电压后将高压电脉冲开关闭合,使得高压电容器释放特定的高压脉冲能量短时间内作用在试件上。通过控制高压电脉冲开关的闭合次数可以控制高压脉冲能量对试件的脉冲放电作用次数,从而实现特定频率的高压脉冲能量对试件致裂效果研究。
水气两相渗流系统由水气压力加载模块和流量数据采集模块组成。
水气压力加载模块主要由气罐28、水压泵29、气体管道30、水压管道31、水气管道32和水气收集容器34组成。电极针21的直径小于所穿过滑杆的内径,从而在电极针与所穿过滑杆之间形成水气通道。两个水气通道均紧贴试件1。导气导液导电螺栓22为空心杆结构,空心用于水气通过。位于上方的导气导液导电螺栓22的内侧端与上方的水气通道连通,外侧端通过水气管道32与水气收集容器34相连。位于下方的导气导液导电螺栓22的内侧端与下方的水气通道连通,外侧端分别设置有进气口和进水口;其中进气口通过气体管道30与气罐28的出气口相连,进水口通过水压管道31与水压泵29的出水口相连。流量数据采集模块包括安装在气体管道30上的气体流量计35、安装在水压管道31上的液体流量计36。
最好是,气体管道30、水压管道31上分别安装有单向阀37,气体管道30、水压管道31、水气管道32上分别安装有截止阀38,气罐28、水压泵29、轴压泵3、围压泵11安装在电磁屏蔽场27外。
另外,电极针21上开设有平台,供导气导液导电螺栓22插入进行面贴合导电,从而进行电导通。导气导液导电螺栓22与第四滑杆9之间通过不锈钢密封套23隔开。导气导液导电螺栓22的直径大于电极针21上开设的平台宽度,或导气导液导电螺栓22的内侧端的侧壁上开设有连通孔,使导气导液导电螺栓22的空心与水气通道连通。位于下方的导气导液导电螺栓22的进气口、进水口与空心构成“Y”形通道。
在水气两相渗流特性试验过程中,含有一定压力的煤层气从气罐释放,通过气体管道到达下方的导气导液导电螺栓的进气口,含压水体从压力泵流出,通过水压管道到达导气导液导电螺栓的进水口,含压气体与含压水体在导气导液导电螺栓的空心内混合,水气混合流体通过下方的电极针与所穿过滑杆之间形成水气通道,到达试件下端。通过调整气罐和水压泵提供的水气体积比为试件提供不同的两相渗流压力。渗流通过试件的水汽混合流体从试件底端到达试件顶端,再通过上方的电极针与所穿过滑杆之间形成水气通道,导气导液导电螺栓的空心、水气管道流入水气收集容器中。
在单相流体渗流特性试验中,通过调整气罐阀门可以模拟不同气体压力下的高压电脉冲处致裂煤体研究,通过调整水压泵的出水流量可以进行不同流体压力条件下的高压电脉冲致裂煤体试验,从而使得该试验装置具有更全面的工程条件模拟能力。
原位CT扫描系统主要由射线源40、平板探测器41、CT扫描检测机构42组成。射线源40和平板探测器41分别布置在压力室2的两侧,平板探测器41作为接收器。压力室2可360°水平旋转地安装在绝缘固定底座39上。为了得到更清晰的扫描图像数据,压力室2采用满足CT扫描要求的材料制作而成,同时为了满足应力加载系统对试件的加载要求,该材料还需要具备高力学强度的性质。平板探测器41与CT扫描检测机构42通过数据传输线相连。
最好是,射线源40选用配备有高功率微米焦点和高分辨率纳米焦点的X双射线管,射线源40倾斜安装在射线管支架32的下部。射线管支架32的上端悬吊在电磁屏蔽场27的顶部,平板探测器41安装在电磁屏蔽场27的侧壁上。射线源40的射线穿透压力室2被平板探测器41接收后在CT扫描检测机构42上形成扫描图像。
射线管可进行0.5μm以下微小细节的观测,不仅能够对小尺试件进行扫描,还可以完成大尺寸或者不规则试件的扫描成像。扫描过程中关闭压力室轴压通道、围压通道,使压力室内的试件维持稳定的应力环境,控制绝缘固定底座带动压力室进行360°水平旋转,每旋转一个角度则采集一次数据,完成旋转后扫描数据采集同时完成。
原位CT扫描系统中接收器为平板探测器,从射线管发射的X射线穿透压力室后能量衰减,衰减后的X射线被平板探测器接收后在平板探测器底片上留下明暗不同的图像,该数据经过数据传输线传输到CT扫描检测机构,经过数据处理后直观显示成试件扫描图片。

Claims (10)

1.一种原位致裂含气储层裂隙实时无损观测及两相渗流试验系统,其特征在于:包括应力加载系统、高压电脉冲致裂操作系统、水气两相渗流系统和原位CT扫描系统;
所述应力加载系统包括压力室(2)、轴压加载模块和围压加载模块;所述压力室(2)采用圆管结构,在压力室(2)内居中安装有试件(1);所述轴压加载模块包含轴压泵(3),以及在试件(1)的上下两端对称设置并依次相连的第一滑杆(6)、第二滑杆(7)、第三滑杆(8)、第四滑杆(9)、第五滑杆(10)、油缸(4)、轴压管道(5),第二滑杆(7)与压力室(2)滑动配合,第一滑杆(6)、第三滑杆(8)、第四滑杆(9)的直径均小于第二滑杆(7)的直径,第五滑杆(10)伸入各自对应的油缸(4)内,所述油缸(4)的侧壁上开设有轴压通道(4a),所述轴压管道(5)的一端与轴压泵(3)相连,另一端通过轴压通道(4a)接入对应油缸(4)内,并通过所有滑杆为试件(1)提供上下相等的轴压;所述围压加载模块包含围压泵(11)、隔离胶套(12)和两个围压管道(13),所述压力室(2)侧壁上上下对称地开设有两个围压通道(2a),围压管道(13)的一端与围压泵(11)相连,另一端通过对应的围压通道(2a)接入试件(1)内腔为试件(1)四周提供围压,隔离胶套(12)包裹在两个第一滑杆(6)与试件(1)外,且隔离胶套(12)与第一滑杆(6)之间设置有密封圈(14),以防止液压油通过隔离胶套(12)上下端浸入试件(1)中;
所述高压电脉冲致裂操作系统包括高压电脉冲发生模块、高压电脉冲信号监测模块和保护模块;所述高压电脉冲发生模块包含高压脉冲电源(15)、高压电容器(16)、高压电脉冲开关(17)、第一导线节段(18)、第二导线节段(19)、第三导线节段(20)、电极针(21)和导气导液导电螺栓(22);高压脉冲电源(15)通过第一导线节段(18)为高压电容器(16)充电,所述试件(1)的上下两端均配备有电极针(21)和导气导液导电螺栓(22),电极针(21)的一端抵在试件(1)上,另一端依次同轴穿过第一滑杆(6)、第二滑杆(7)、第三滑杆(8)后,插入第四滑杆(9)的盲孔中,所述导气导液导电螺栓(22)的一端与电极针(21)相连,另一端横向穿到第四滑杆(9)外,其中上方的导气导液导电螺栓(22)通过第二导线节段(19)与高压电容器(16)的正极相连,下方的导气导液导电螺栓(22)通过第三导线节段(20)与高压电容器(16)的负极相连,所述第二导线节段(19)上串联有高压电脉冲开关(17);所述高压电脉冲信号监测模块包括罗氏线圈(24)、高压探头(25)和示波器(26),罗氏线圈(24)套在第三导线节段(20)上,高压探头(25)串联在第三导线节段(20)上,罗氏线圈(24)与高压探头(25)的监测信号通过信号传输线连接到示波器(26);所述保护模块包括电磁屏蔽场(27),用于将高压电脉冲致裂操作系统产生的高能量静电、原位CT扫描系统产生的X射线隔绝在电磁屏蔽场(27)中;
所述水气两相渗流系统包括水气压力加载模块和流量数据采集模块,所述水气压力加载模块包括气罐(28)、水压泵(29)、气体管道(30)、水压管道(31)、水气管道(32)和水气收集容器(34),所述电极针(21)的直径小于所穿过滑杆的内径形成水气通道,且两个水气通道均紧贴试件(1),导气导液导电螺栓(22)为空心杆结构,且位于上方的导气导液导电螺栓(22)的内侧端与水气通道连通,外侧端通过水气管道(32)与水气收集容器(34)相连,位于下方的导气导液导电螺栓(22)的内侧端与水气通道连通,外侧端分别设置有进气口和进水口,其中进气口通过气体管道(30)与气罐(28)的出气口相连,进水口通过水压管道(31)与水压泵(29)的出水口相连;所述流量数据采集模块包括安装在气体管道(30)上的气体流量计(35)、安装在水压管道(31)上的液体流量计(36);
所述原位CT扫描系统包括射线源(40)、平板探测器(41)、CT扫描检测机构(42),所述射线源(40)和平板探测器(41)分别布置在压力室(2)的两侧,压力室(2)可360°水平旋转地安装在绝缘固定底座(39)上,压力室(2)采用满足CT扫描要求的材料制作而成,平板探测器(41)与CT扫描检测机构(42)通过数据传输线相连。
2.按照权利要求1所述的原位致裂含气储层裂隙实时无损观测及两相渗流试验系统,其特征在于:所述射线源(40)选用配备有高功率微米焦点和高分辨率纳米焦点的X双射线管,射线源(40)倾斜安装在射线管支架(43 )的下部,射线管支架(43 )的上端悬吊在电磁屏蔽场(27)的顶部,所述平板探测器(41)安装在电磁屏蔽场(27)的侧壁上,射线源(40)的射线穿透压力室(2)被平板探测器(41)接收后在CT扫描检测机构(42)上形成扫描图像。
3.按照权利要求1所述的原位致裂含气储层裂隙实时无损观测及两相渗流试验系统,其特征在于:所述电极针(21)上开设有平台,供导气导液导电螺栓(22)插入进行面贴合导电,导气导液导电螺栓(22)与第四滑杆(9)之间通过不锈钢密封套(23)隔开;所述导气导液导电螺栓(22)的直径大于电极针(21)上开设的平台宽度,或导气导液导电螺栓(22)的内侧端的侧壁上开设有连通孔,使导气导液导电螺栓(22)的空心与水气通道连通;位于下方的导气导液导电螺栓(22)的进气口、进水口与空心构成“Y”形通道。
4.按照权利要求1所述的原位致裂含气储层裂隙实时无损观测及两相渗流试验系统,其特征在于:所述第一滑杆(6)、第二滑杆(7)、第三滑杆(8)、第四滑杆(9)为高密度绝缘杆,轴压泵(3)采用具有伺服控制系统的位移精密注射泵。
5.按照权利要求1所述的原位致裂含气储层裂隙实时无损观测及两相渗流试验系统,其特征在于:所述第一导线节段(18)、第二导线节段(19)、第三导线节段(20)采用符合100kV绝缘标准的绝缘材料包裹,在第二导线节段(19)、第三导线节段(20)与导气导液导电螺栓(22)连接处采用符合100kV绝缘标准的绝缘胶带完全缠裹。
6.按照权利要求1所述的原位致裂含气储层裂隙实时无损观测及两相渗流试验系统,其特征在于:所述电极针(21)与试件(1)接触的端部设计成圆台状,电极针(21)的另一端通过安装在第四滑杆(9)盲孔内的压缩弹簧(33)抵紧。
7.按照权利要求1所述的原位致裂含气储层裂隙实时无损观测及两相渗流试验系统,其特征在于:所述绝缘固定底座(39)的顶部居中位置处设置有定位圆台,位于下端的所述油缸(4)的底部居中位置处设置有正好供定位圆台插入的定位凹槽。
8.按照权利要求1所述的原位致裂含气储层裂隙实时无损观测及两相渗流试验系统,其特征在于:所述第四滑杆(9)与第五滑杆(10)的接触位置处通过定位圆台、定位凹槽配合安装。
9.按照权利要求1所述的原位致裂含气储层裂隙实时无损观测及两相渗流试验系统,其特征在于:加载前,所述第二滑杆(7)的远端与压力室(2)的端头齐平,围压通道(2a)正对第二滑杆(7)的近端,轴压通道(4a)正对第五滑杆(10)的远端,第五滑杆(10)的近端伸到油缸(4)外。
10.按照权利要求3所述的原位致裂含气储层裂隙实时无损观测及两相渗流试验系统,其特征在于:所述不锈钢密封套(23)的外径在远端位置处加大作为翻边(23a),且该翻边(23a)正好盖在第四滑杆(9)外壁上;不锈钢密封套(23)的内径近端小、远端大,且在长度的中间位置处形成台阶面;相应的,所述导气导液导电螺栓(22)位于第四滑杆(9)内的段也为近端小、远端大;所述导气导液导电螺栓(22)位于第四滑杆(9)外的段上设置有环向凹槽(22a),用于缠绕连接对应的第二导线节段(19)或第三导线节段(20)。
CN202111445057.9A 2021-11-30 2021-11-30 原位致裂含气储层裂隙实时无损观测及两相渗流试验系统 Active CN114112636B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111445057.9A CN114112636B (zh) 2021-11-30 2021-11-30 原位致裂含气储层裂隙实时无损观测及两相渗流试验系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111445057.9A CN114112636B (zh) 2021-11-30 2021-11-30 原位致裂含气储层裂隙实时无损观测及两相渗流试验系统

Publications (2)

Publication Number Publication Date
CN114112636A CN114112636A (zh) 2022-03-01
CN114112636B true CN114112636B (zh) 2022-09-09

Family

ID=80368776

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111445057.9A Active CN114112636B (zh) 2021-11-30 2021-11-30 原位致裂含气储层裂隙实时无损观测及两相渗流试验系统

Country Status (1)

Country Link
CN (1) CN114112636B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116087459B (zh) * 2022-12-23 2023-09-19 重庆大学 液态二氧化碳冲孔致裂煤层模拟试验系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107939364A (zh) * 2017-11-14 2018-04-20 中国矿业大学 一种电脉冲致裂增透与瓦斯渗流一体化装置与方法
CN110542639A (zh) * 2019-10-09 2019-12-06 中国矿业大学(北京) 一种带ct实时扫描的真三轴瓦斯渗流试验装置及方法
CN113390906A (zh) * 2021-06-11 2021-09-14 内蒙古科技大学 一种细观尺度下低渗透性煤岩体致裂增透效果的评价方法
CN113504125A (zh) * 2021-07-27 2021-10-15 辽宁工程技术大学 一种真三轴物理化学联合煤岩增透试验装置及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104614497B (zh) * 2015-03-09 2016-04-20 中国矿业大学 真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107939364A (zh) * 2017-11-14 2018-04-20 中国矿业大学 一种电脉冲致裂增透与瓦斯渗流一体化装置与方法
CN110542639A (zh) * 2019-10-09 2019-12-06 中国矿业大学(北京) 一种带ct实时扫描的真三轴瓦斯渗流试验装置及方法
CN113390906A (zh) * 2021-06-11 2021-09-14 内蒙古科技大学 一种细观尺度下低渗透性煤岩体致裂增透效果的评价方法
CN113504125A (zh) * 2021-07-27 2021-10-15 辽宁工程技术大学 一种真三轴物理化学联合煤岩增透试验装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
多场多相耦合下多孔介质压裂渗流试验系统的研制与应用;尹光志等;《岩石力学与工程学报》;20160515;第2853-2861页 *

Also Published As

Publication number Publication date
CN114112636A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
US11614390B1 (en) Real-time nondestructive observation and two-phase seepage test system for fracture of in-situ fractured gas-bearing reservoir
CN108678761B (zh) 一种基于真三轴加载的岩石微波致裂试验装置
CN114112636B (zh) 原位致裂含气储层裂隙实时无损观测及两相渗流试验系统
CN105443090B (zh) 一种测量注水注气对油藏开发的影响的实验装置及方法
CN107830960B (zh) 一种水压致裂封隔器装置
CN104535727B (zh) 一种水力加砂压裂系统
CN106370675A (zh) 一种工业ct扫描试验系统
CN104535426A (zh) Ct实时扫描的三轴应力、渗流、化学耦合流变试验系统
CN114135271B (zh) 原位致裂煤层裂隙实时无损观测及两相渗流试验方法
CN109613119A (zh) 一种声电渗综合监测的拟三轴压力室及试验方法
CN109632494A (zh) 复合频谱激电法和弯曲元法的固结试验装置
US11519866B1 (en) Multifunctional experimental system for in-situ simulation of gas hydrate
Jia et al. Novel multi-field coupling high-voltage electric pulse fracturing coal–rock permeability enhancement test system
CN202421128U (zh) 一种高分辨率电磁探伤组合仪
US3699436A (en) Remotely controllable defect detector of electric resistance type
CN114112853B (zh) 用于煤层致裂的试件夹持器
CN109115892A (zh) 竖直管道的管壁检测装置、检测系统及检测方法
CN109025939B (zh) 超声波致密油渗吸实验装置
US11630049B1 (en) Test piece holder for coalbed fracturing
CN114062141B (zh) 高压电脉冲原位致裂煤层裂隙实时无损观测装置
CN114076715B (zh) 高压电脉冲原位致裂煤层裂隙并实时无损观测的试验方法
CN106353177A (zh) 一种工业ct扫描试验系统及同步旋转装置
CN114062142B (zh) 高压电脉冲原位增透含气储层两相渗流试验方法
CN114062143B (zh) 高压电脉冲原位增透含气储层两相渗流试验装置
Xie et al. Research progress and application of deep in-situ condition preserved coring and testing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant