WO2016140543A1 - Enzyme-based potentiometric glucose detection sensor and method for manufacturing same - Google Patents

Enzyme-based potentiometric glucose detection sensor and method for manufacturing same Download PDF

Info

Publication number
WO2016140543A1
WO2016140543A1 PCT/KR2016/002180 KR2016002180W WO2016140543A1 WO 2016140543 A1 WO2016140543 A1 WO 2016140543A1 KR 2016002180 W KR2016002180 W KR 2016002180W WO 2016140543 A1 WO2016140543 A1 WO 2016140543A1
Authority
WO
WIPO (PCT)
Prior art keywords
glucose
sensor
enzyme
conductive polymer
electrode
Prior art date
Application number
PCT/KR2016/002180
Other languages
French (fr)
Korean (ko)
Inventor
조철호
심윤보
김광복
정선태
조성제
조재걸
Original Assignee
삼성전자 주식회사
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사, 부산대학교 산학협력단 filed Critical 삼성전자 주식회사
Publication of WO2016140543A1 publication Critical patent/WO2016140543A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3272Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/005Enzyme electrodes involving specific analytes or enzymes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/333Ion-selective electrodes or membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/66Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood sugars, e.g. galactose

Definitions

  • the present invention relates to a sensor for detecting potentiometric glucose and a method for manufacturing the same, and more particularly, to an enzyme-based glucose sensor and a method for manufacturing the same, including a metal alloy oxide and an electrically conductive polymer.
  • a sensor is a device that selectively captures a physical quantity or a chemical quantity of a measurement target and converts it into a useful signal.
  • Electrochemical biosensors are used as devices for detecting various analytes in the environment, medicine, and food-related fields by using bioreceptors such as enzymes, microorganisms, and immune bodies. The high response specificity and fast responsiveness make it possible to measure target substances selectively, quickly and accurately.
  • the blood glucose sensor is a type of electrochemical biosensor which measures the concentration of glucose in blood or urine.
  • the conventional commercially available blood glucose sensor is a second generation biosensor using an electrochemical method (time vs. current method).
  • the conventional blood glucose sensor has the advantages of high sensitivity, high selectivity to monosaccharides and easy portability, but has ascorbic acid, dopamine, acetaminophen having an oxidation potential similar to the glucose detection potential. Interfering substances, such as acetaminophen, react to each other, resulting in interference (so-called interfering effects) and inferior sensitivity.
  • the enzymatic potentiometric glucose sensor detects a substance produced by the reaction between glucose and an enzyme and does not need to apply a specific potential, thereby avoiding the interference of the above-mentioned interfering substances.
  • the blood glucose sensor using the potentiometric method has not been studied much compared to the blood glucose sensor using the current measurement method.
  • metal oxides having various nanostructures have been widely applied to enzymatic or non-enzymatic glucose sensors.
  • Early work on metal oxides for glucose detection focused on the use of common electrode materials such as Cu, Ni, Fe, Pt and Au. However, these materials have resulted in fundamental disadvantages such as selectivity, low efficiency and contamination of metal electrode surfaces due to chemisorbed intermediates.
  • the present invention provides a sensor for detecting glucose having a simple and high sensitivity by measuring a potential difference according to an enzyme reaction without applying an external voltage.
  • the present invention also provides a method of manufacturing an enzyme-based potentiometric glucose detection sensor.
  • the present invention also provides a method for simply measuring glucose concentration by measuring the potential difference according to the enzyme reaction without applying an external voltage.
  • the electrode is surface modified with a multi-metal alloy dendrite oxide; A hydrogen ion sensitive conductive polymer formed on the oxide; And a glucose detecting sensor covalently bound to the conductive polymer, wherein the glucose is detected by measuring a potential difference according to an enzyme reaction without applying an external voltage. It provides a sensor for detection.
  • the sensor of the present invention is a sensor having a two-electrode structure and the electrode can be manufactured using a carbon-based material as the working electrode.
  • a carbon-based material for example, carbon ink, graphite, glassy carbon, graphene, or the like may be used as a material of the working electrode, but is not limited thereto.
  • the reference electrode may be a silver electrode (Ag / AgCl), but is not limited thereto.
  • carbon ink may be used as the material of the working electrode and silver ink may be used as the material of the reference electrode.
  • the working electrode may be modified on the electrode surface of the multi-metal alloy dendrite oxide.
  • multi-metal means two or more metals, preferably an alloy of two or three metals, more preferably a copper-cobalt alloy or a gold-zinc alloy. Can be.
  • the working electrode may be an electrode whose surface is modified with gold-zinc alloy dendrites.
  • the gold-zinc (Au-Zn) alloy dendrites of the present invention have a dendrite structure and can be applied as a preferred electrode in electrochemical devices because of the unique hierarchical structure having a large number of active sites and an extremely high surface area.
  • the gold-zinc alloy dendrites may have an atomic metal content ratio of Au and Zn of 70-90: 30-10.
  • the reaction mechanism for detecting H + produced by the reaction between glucose and glucose oxidase is as follows.
  • the gold-zinc alloy dendrite oxide film serves as an electrode for detecting hydrogen ions to detect glucose.
  • hydrogen ions are generated by oxidizing glucose in the blood, which is a glucose degrading enzyme
  • the gold-zinc alloy dendrites act as probes of hydrogen ions. This mechanism uses the reaction between oxygen and hydrogen ions in the dendrites. Is as follows.
  • the sensor of the present invention can measure the concentration of glucose by measuring the difference in potential between the reference electrode and the dendrite oxide electrode according to the reaction.
  • the sensor of the present invention uses an enzymatic potentiometric method, so it is not necessary to apply a specific potential from the outside, so that the measurement can be performed without an external constant voltage meter and an ammeter, so that the measurement is simple and the manufacturing of the sensor is simple. More importantly, since there is no need to apply a specific potential from the outside, interference of the interfering substances reacting to these potentials can be avoided, thereby preventing the interference effect.
  • the hydrogen ion sensitive conductive polymer may be a conductive polymer including a -COOH or -NH 2 functional group, and a conductive polymer including a carboxyl group is preferable. More preferably, it may be a conductive polymer including terthiophene having excellent physical, chemical, mechanical and electrical properties. Most preferably, the hydrogen ion-sensitive conductive polymer is terthiophene benzoic acid (TTBA), terthiophene carboxylic acid (TTCA), and disthienyl pyrrole benzoic acid ( dithienyl pirol benzoic acid, DTPBA).
  • TTBA terthiophene benzoic acid
  • TTCA terthiophene carboxylic acid
  • DTPBA disthienyl pyrrole benzoic acid
  • the gold-zinc alloy dendrite oxide film is used as a main material for detecting hydrogen ions, and the hydrogen-sensitive conductive polymer is introduced therein to improve the sensitivity of the dendrite oxide film to hydrogen ions and at the same time, the metal oxide surface. To prevent contamination and to stably stabilize the glucose degrading enzymes through peptide bonds.
  • the hydrogen-ion-sensitive conductive polymer having a carboxylic acid dissociates or associates with -COO - and H + in an aqueous solution to act as a receptor for H + , thereby forming a hydrogen-ion-sensitive polymer on the gold-zinc alloy dendrites.
  • Incorporation can significantly improve the sensitivity to potential change with respect to hydrogen ion concentration than with only a dendrite oxide film.
  • the conductive polymer is disposed between the metal and the enzyme to protect the surface of the electrode as well as to protect the enzyme, thereby enhancing the enzyme stability. Can be.
  • the covalent bond between the carboxyl group of the conductive polymer and the amine group of the enzyme can be coupled to the polymer, thereby improving the stability of the enzyme in the sensor to maintain a high selectivity .
  • the glucose degrading enzyme is glucose oxidase, glucose dehydrogenase, glucose hexokinase, glutamic oxalacetic transminase and glutamic pyruvic transaminase. It may be selected from the group consisting of.
  • glucose oxidase requires cofactor flavin adenine dinucleotide (FAD) in order to act as a catalyst for glucose oxidation reaction. It can be used in the form of an enzyme (FAD-GOx). In the catalytic reaction by glucose oxidase, FAD acts as an electron acceptor. In addition, glucose dehydrogenase, glucose hexokinase, glutamic oxalacetic transaminase, glutamic pyruvic transaminase, and the like, which are involved in glucose metabolism, can be used as glucose degrading enzymes.
  • the glucose detecting sensor of the present invention may further include a Nafion membrane coated on the layer on which the glucose degrading enzyme is formed.
  • the Nafion membrane serves to protect the sensor surface.
  • the Nafion membrane protects the surface from factors affecting pH, thereby increasing the stability of the sensor.
  • Sensors protected by Nafion membranes have the advantage of being stored for a long time.
  • the present invention provides a method for manufacturing a sensor for detecting glucose by measuring the potential difference according to the enzymatic reaction, comprising the steps of: modifying the gold-zinc alloy dendrites on the electrode surface through voltage application; Forming an oxide in an alkaline solution of the gold-zinc alloy dendrites; Modifying the hydrogen-ion (H + ) sensitized conductive polymer via potential injection on the gold-zinc alloy dendrites; It provides a method of manufacturing a sensor for detecting the potentiometric method comprising the step of binding a glucose degrading enzyme to the conductive polymer through a covalent bond.
  • the dendrites may be formed by applying a voltage for 150 to 250 seconds at -0.2V to -0.7V.
  • the alkaline solution may be used without limitation as long as it includes a -OH group, but preferably NaOH, KOH, NH 4 OH, LiOH, Mg (OH) 2 , Ca (OH) 2 , Ba (OH) 2 , Al (OH) 3 And the like can be used.
  • the hydrogen-ion-sensitive conductive polymer and glucose degrading enzyme used in the sensor manufacturing method of the present invention are as described above, and the method of preparing the polymer film of TTCA and DTPBA on the metal dendrites is the same as that of TTBA.
  • the sensor manufacturing method of the present invention may further include a step of activating the carboxyl group of the conductive polymer by treating the catalyst with the polymer-modified electrode after the step of modifying the polymer and before the step of binding the glucose degrading enzyme.
  • the catalyst can be used without limitation so long as it is a catalyst for making a peptide bond, and is used as a crosslinking agent.
  • at least one from the group consisting of EDC (1-Ethyl-3- [3- (dimethylamino) propyl] carbodiimide hydrochloride), NHS (N-hydroxysuccinimide), and glutaldehyde (glutaldehyde) may be used. no.
  • the step of coupling the glucose degrading enzyme to the conductive polymer through a covalent bond by reacting the sugar oxidase on the electrode having the carboxyl group activated by the carboxyl group and the amine group of the sugar oxidase of the conductive polymer It can be made in such a way to form a covalent bond between them.
  • the method of manufacturing the glucose detecting sensor may further include coating a Nafion membrane on the layer on which the glucose degrading enzyme is formed.
  • the present invention provides a method for measuring glucose concentration by measuring a potential difference according to an enzyme reaction without applying an external voltage, wherein the enzyme is a sugar oxidase and is a gold-modified electrode on a surface of an electrode as a probe of hydrogen ions. It provides a method for measuring glucose concentration, characterized in that using zinc alloy dendrites oxide and hydrogen ion sensitive conductive polymer.
  • the glucose concentration measuring method it is not necessary to apply an external voltage, thereby eliminating the influence of an interfering substance reacting to the same voltage, and measuring the potential difference using a natural oxidation method through an enzymatic reaction rather than an artificial oxidation method. This makes the measurement simpler and more precise.
  • the sensor for detecting glucose of the present invention uses the potentiometric method to overcome the disadvantage that the external constant voltage meter and the current meter used by the conventional sensor are degraded by the interference material, so that the application of the external voltage is unnecessary, so that the blocking effect of the interference material is not required.
  • Figure 1 shows a schematic diagram of the production of potentiometric blood glucose sensor.
  • Figure 2 shows (A) Au-Zn alloy dendrite electrodeposition curve through voltage application, (B) electrochemical polymerization curve of pTTBA using cyclic voltammetry.
  • FIG. 3 shows (A) Au-Zn DOx, (B) Au-Zn DOx / pTTBA, (C) Au-Zn DOx / pTTBA / FAD-GOx, and Au-Zn DOx / pTTBA / FAD-GOx / Nafion SEM surface photo.
  • FIG. 6 shows a glucose detection sensitivity graph for interfering substances.
  • Figure 7 shows the calibration curve according to the addition of glucose to the specific simulated blood (medium).
  • Figure 8 shows the calibration curve using three concentrations of simulated blood (low, medium, high) for the detection of glucose in real blood.
  • test examples and examples are provided only for the purpose of illustration in order to facilitate understanding of the present invention, and the scope and scope of the present invention is not limited by the following examples.
  • Example 1 using the multi-metal oxide and the hydrogen-sensitive conductive polymer according to the present invention Potentiometric method Manufacturing of Blood Glucose Sensors
  • FIG. 1 shows a process of preparing a potentiometric glucose sensor.
  • 30mM Gold (III) Chloride trihydrate and 30mM Zinc chloride were dissolved together in 0.1M sodium sulfate, and then a precursor solution was prepared by adjusting the pH to 4.0 with 0.1M sodium hydroxide solution.
  • a precursor solution was prepared by adjusting the pH to 4.0 with 0.1M sodium hydroxide solution.
  • FIG. 2A After applying voltage at -0.5V for 200 seconds (FIG. 2A) to form gold-zinc alloy dendrites on the screen printed carbon electrode, the electrode surface was washed with ethanol and tertiary distilled water.
  • Gold-zinc alloy dendrite oxide film is formed by scanning 7 times from + 0.0V to + 1.5V using linear current-voltage method to form gold-zinc alloy dendrite oxide film, and then distilled water and ethanol Washed.
  • 1 mM TTBA a H + sensitized polymer monomer, was added to a mixed solvent of di (propylene glycol) methyl ether and tri (propylene glycol) methyl ether (1: 1). After melting, 5 ⁇ L was dropped onto the gold-zinc alloy dendrites, dried at 40 ° C., and then electrochemically polymerized in a 0.1 M phosphate buffer (pH 7.4) by a cyclic current-voltage method.
  • the scanning potential range was 0.0V to + 1.6V, and the scanning speed was sweep three times at 100 mv / s to form a polymer film (FIG. 2B).
  • the electrode of the potentiometric blood glucose sensor was used as a screen print electrode composed of a working electrode and a reference electrode, the working electrode using carbon ink, and the reference electrode was prepared using silver ink.
  • the pTTBA-formed electrode was added to a solution of 10.0 mM EDC (1-Ethyl-3- [3- (dimethylamino) propyl] carbodiimide hydrochloride) and 10.0 mM NHS (N-hydroxysuccinimide) in 0.1 M phosphate buffer (pH 7.4).
  • the reaction was carried out at 30 ° C. for 6 hours to activate the carboxyl acid group of pTTBA.
  • a 10 ⁇ L solution of FAD-GOx (6 mg / mL) was dropped on the surface of pTTBA and reacted for 12 hours at 4 ° C. to form a covalent bond between the carboxyl acid group of pTTBA and the amine group of FAD-GOx.
  • Enzyme cluster formation was also used to increase the amount of enzyme adsorption on the sensor surface.
  • the solution to be used for the enzyme cluster formation method is glutaaldehyde as a crosslinking agent between ammonium sulfate (ammonium sulfate (0.55 mg / mL)) and enzymes (FAD-GOx) as a precipitant of enzyme in FAD-GOx (6mg / mL) solution. , 0.5%) was prepared. 10 ⁇ L of the enzyme cluster solution was dropped onto the surface of the screen-printed carbon electrode modified to FAD-GOx and reacted at 4 ° C. at 12 hr. Enzyme adsorption was increased through covalent bonds between amine groups between FAD-GOx. Finally, 1 ⁇ L of Nafion (1.0%) was coated on the enzyme layer to prepare a blood glucose sensor.
  • FIG. 3 is a SEM surface photograph of each modification step of the sensor.
  • (A) it was possible to observe the gold-zinc dendrite structure having a multi-tree of gold-zinc.
  • (B) is a surface photograph of H + sensitive polymer electrodeposited by cyclic voltammetry on gold-zinc dendrites. H + sensitive polymer is formed between the branch trees of gold-zinc dendrites. It was confirmed that the size of the dry and the voids are reduced.
  • (C) in Figure 3 is a surface photograph of the FAD-GDH immobilized on the H + sensitive polymer. Referring to (B) of FIG.
  • FIG. 3 (D) is a surface photograph coated with 0.5% Nafion, covering the FAD-GDH layer in the form of a net film, and has a surface that is softer than the surface photograph of FIG.
  • Test Example 2 Potentiometric method Blood glucose sensor Glucose Performance Evaluation of Potential Changes with Concentration
  • Glucose solution of 30mg / dL, 100mg / dL, 200mg / dL, 300mg / dL, 400mg / dL, 500mg / dL dissolved in 0.1M phosphate buffer (pH 7.4) in the blood glucose sensor prepared according to Example 1 was processed to measure the potential change according to the glucose concentration, and the results are shown in FIG. 4.
  • the glucose sensor prepared in Example 1 was treated with a glucose solution having a concentration of 200 mg / dL dissolved in 0.1 M phosphate buffer solution (pH 7.4) to measure glucose potential at various temperatures (15, 16, 20, 25, 30, 35, 40 ° C.) and relative humidity (20, 30, 40, 50, 60, 70, 80%) The results are shown in FIG. 5.
  • FIG. 5A Three blood glucose sensors were measured for each section of temperature and relative humidity.
  • the detection sensitivity was constant in the 20 to 40 ° C. range, but the detection sensitivity was reduced by 24% when compared to 25 ° C. at 15 ° C.
  • FIG. It can be confirmed that the enzyme activity is lowered at a temperature of 20 ° C. or lower, and as a result, the glucose measurement sensitivity is lowered.
  • Figure 5 (A) it was confirmed to maintain a constant glucose detection sensitivity in the relative humidity 20 ⁇ 80% range.
  • FIG. 6 is a graph comparing glucose detection sensitivity in the presence of interfering substances.
  • Interfering substances used in this experiment were ascorbic acid (AA, 5mg / dL), dopamine (DA, 5mg / dL), acetaaminophen (AP, 15mg / dL), four monosaccharides ((mannose (10mg / dL) dL), lactose (10 mg / dL), xylose (10 mg / dL), fructose (30 mg / dL)).
  • Irradiation of the interfering substances was determined by including the respective interfering substances in a glucose solution of 200 mg / dL concentration dissolved in 0.1 M phosphate buffer (pH 7.4).
  • monosaccharides the four types of monosaccharides described above were included in a 200 mg / dL glucose solution, which was 1.2% lower than the mean potential difference value of glucose.
  • Dopamine, acetaaminophen, and ascorbic acid decreased glucose detection sensitivity by 5.2%, 5.5%, and 4.8%, respectively, and these hinders (monosaccharides, DA, AP, and AA) were found in the error range for glucose measurement. It does not matter because it is distributed within.
  • Test Example 5 In mock blood Glucose Concentration measurement
  • FIG. 7 is a calibration curve for glucose concentration (29, 119, 159, 250, 348, 434 mg / dL) of 6 sections of simulated blood using the potentiometric method. Three concentrations were measured for each concentration section. Excellent linearity was observed at the glucose concentration of 29 ⁇ 434 mg / dL.

Abstract

The present invention relates to an enzyme-based potentiometric glucose detection sensor and a method for manufacturing same, the glucose detection sensor detecting glucose by measuring a potential difference according to an enzyme reaction without the application of an external voltage, and comprising: an electrode which has the surface thereof modified by a gold-zinc alloyed dendritic oxide; a hydrogen ion sensitive conductive polymer which is formed on the oxide; and a glucose degrading enzyme which is bound to the conductive polymer through a covalent bond.

Description

효소 기반의 전위차법 글루코스 검출용 센서 및 이의 제조방법Enzyme-based potentiometric glucose detection sensor and manufacturing method thereof
본 발명은 전위차법 글루코스 검출용 센서 및 이의 제조방법에 관한 것으로서, 구체적으로 금속 합금 산화물과 전기 전도성 고분자를 포함하는 효소 기반의 글루코스 센서 및 이의 제조방법에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sensor for detecting potentiometric glucose and a method for manufacturing the same, and more particularly, to an enzyme-based glucose sensor and a method for manufacturing the same, including a metal alloy oxide and an electrically conductive polymer.
센서는 측정대상의 물리량이나 화학량을 선택적으로 포착하여 유용한 신호로 변환 및 출력하는 장치이다. 전기화학적 바이오센서는 효소, 미생물, 면역체 등의 바이오리셉터를 이용하여 환경, 의학, 식품 관련 분야에서 다양한 분석대상을 검출하는 장치로서 사용되고 있으며 특히 의학 분야에서는 글루코스, 콜레스테롤, 아미노산 등과 같은 대상물질에 대한 높은 반응 특이성과 빠른 응답성으로 인해 대상물질을 선택적이고도 신속·정확하게 측정할 수 있는 특징이 있다. A sensor is a device that selectively captures a physical quantity or a chemical quantity of a measurement target and converts it into a useful signal. Electrochemical biosensors are used as devices for detecting various analytes in the environment, medicine, and food-related fields by using bioreceptors such as enzymes, microorganisms, and immune bodies. The high response specificity and fast responsiveness make it possible to measure target substances selectively, quickly and accurately.
혈당 센서는 이러한 전기화학적 바이오센서의 일종으로서 혈액 또는 소변 내의 글루코스의 농도를 측정하는 것으로, 기존의 상용화된 혈당 센서는 대부분 전기화학적 방법(시간대-전류법)을 이용하는 2세대의 바이오 센서이다. The blood glucose sensor is a type of electrochemical biosensor which measures the concentration of glucose in blood or urine. The conventional commercially available blood glucose sensor is a second generation biosensor using an electrochemical method (time vs. current method).
종래 전류법을 이용한 혈당 센서는 고감도, 단당류에 대한 고선택성 및 휴대가 용이한 장점을 가지지만, 글루코스 검출 전위와 비슷한 산화 전위를 가진 아스코르빅 에시드(ascorbic acid), 도파민(dopamine), 아세트아미노펜(acetaminophen) 등과 같은 방해 물질들이 반응을 나타내므로 이로 인한 간섭이 나타나(소위, 방해 효과) 감도가 떨어진다. The conventional blood glucose sensor has the advantages of high sensitivity, high selectivity to monosaccharides and easy portability, but has ascorbic acid, dopamine, acetaminophen having an oxidation potential similar to the glucose detection potential. Interfering substances, such as acetaminophen, react to each other, resulting in interference (so-called interfering effects) and inferior sensitivity.
이에 반해, 효소식 전위차법 혈당센서는 글루코스와 효소와의 반응으로 생성된 물질을 검출하는 것으로서 특정 전위를 가해줄 필요가 없기 때문에 위에서 언급한 방해물질들의 간섭을 피할 수 있다. 그러나 전위차법을 이용한 혈당 센서는 전류 측정법을 이용한 혈당센서에 비해 연구가 많이 진행되지 않았다.On the contrary, the enzymatic potentiometric glucose sensor detects a substance produced by the reaction between glucose and an enzyme and does not need to apply a specific potential, thereby avoiding the interference of the above-mentioned interfering substances. However, the blood glucose sensor using the potentiometric method has not been studied much compared to the blood glucose sensor using the current measurement method.
한편, 다양한 나노 구조 (nanowire, nanorod, nanotube, nanoparticle, nanofiber, 등)를 가지는 금속 산화물들은 효소식 또는 비효소식 글루코스 센서에 많이 응용되고 있다. 글루코스 검출을 위한 금속 산화물에 관한 초기 연구는 Cu, Ni, Fe, Pt 및 Au와 같은 보편적인 전극 재료의 이용에 초점을 맞추었다. 그러나, 이러한 재료들은 선택성, 낮은 효율성 및 화학 흡착된 중간 매개물로 인한 금속 전극 표면의 오염성과 같은 근본적인 단점을 초래하였다. On the other hand, metal oxides having various nanostructures (nanowire, nanorod, nanotube, nanoparticle, nanofiber, etc.) have been widely applied to enzymatic or non-enzymatic glucose sensors. Early work on metal oxides for glucose detection focused on the use of common electrode materials such as Cu, Ni, Fe, Pt and Au. However, these materials have resulted in fundamental disadvantages such as selectivity, low efficiency and contamination of metal electrode surfaces due to chemisorbed intermediates.
이에 대한 대안으로 다양한 금속(Au, Cu, Pt, Pd-Pt, Pd-Ag, Cu-Co 등)을 이용한 새로운 구조를 가지는 다가지 트리 형태(덴드라이트 구조)의 단일 및 다중 금속 합금 산화물에 대한 연구가 진행되고 있지만 아직까지 다중 금속 합금 덴드라이트 재료에 대한 연구 및 이를 이용한 실용화 연구는 미비한 실정이다. As an alternative, it is possible to use a single and multiple metal alloy oxides of various tree types (dendrite structures) with new structures using various metals (Au, Cu, Pt, Pd-Pt, Pd-Ag, Cu-Co, etc.). Although research is ongoing, studies on multi-metal alloy dendrites and practical applications using them have been insufficient.
또한, 금속 산화 물질 표면의 오염성 및 단당류의 선택성 문제를 해결하기 위해 생체 물질(효소, 단백질, DNA 등)들에 적합한 기능성 전기 전도성 고분자에 대한 연구도 많이 진행되고 있다. 대표적인 예로 폴리피롤과 폴리아닐린을 이용한 화학 및 바이오센서 소자에 대한 연구는 이미 보고되었지만 이들 물질은 우수한 전기 전도성에도 불구하고 공기 중에 쉽게 산화 및 분해가 일어나 안정성이 현저히 떨어진다는 큰 문제점을 가지고 있다. In addition, many researches on functional electrically conductive polymers suitable for biological materials (enzymes, proteins, DNA, etc.) have been conducted to solve the problem of contaminants on the surface of metal oxides and selectivity of monosaccharides. As a representative example, studies on chemical and biosensor devices using polypyrrole and polyaniline have already been reported, but these materials have a big problem that they are easily oxidized and decomposed in the air despite the excellent electrical conductivity, thereby significantly reducing their stability.
본 발명은 외부 전압 인가없이 효소 반응에 따른 전위차를 측정함으로써 간편하고 고감도를 갖는 글루코스를 검출하는 센서를 제공한다. The present invention provides a sensor for detecting glucose having a simple and high sensitivity by measuring a potential difference according to an enzyme reaction without applying an external voltage.
본 발명은 또한 효소 기반의 전위차법 글루코스 검출용 센서의 제조방법을 제공한다. The present invention also provides a method of manufacturing an enzyme-based potentiometric glucose detection sensor.
본 발명은 또한 외부 전압 인가없이 효소 반응에 따른 전위차를 측정함으로써 간편하게 글루코스 농도를 측정하는 방법을 제공한다. The present invention also provides a method for simply measuring glucose concentration by measuring the potential difference according to the enzyme reaction without applying an external voltage.
본 발명의 일 양태로서, 다중 금속 합금 덴드라이트 산화물로 표면이 개질된 전극; 상기 산화물 위에 형성된 수소이온 감응형 전도성 고분자; 및 상기 전도성 고분자에 공유결합을 통해 결합된 글루코스 분해효소를 포함하는 글루코스 검출용 센서로서, 외부 전압 인가없이 효소 반응에 따른 전위차를 측정함으로써 글루코스를 검출하는 것을 특징으로 하는, 효소 기반의 전위차법 글루코스 검출용 센서를 제공한다. In one aspect of the invention, the electrode is surface modified with a multi-metal alloy dendrite oxide; A hydrogen ion sensitive conductive polymer formed on the oxide; And a glucose detecting sensor covalently bound to the conductive polymer, wherein the glucose is detected by measuring a potential difference according to an enzyme reaction without applying an external voltage. It provides a sensor for detection.
본 발명의 상기 센서는 2전극 구조의 센서이며 상기 전극은 작동전극으로서 탄소 기반의 재료를 사용하여 제조할 수 있다. 예컨대, 상기 작동전극의 소재로는 탄소 잉크, 그래파이트, 유리질 탄소(glassy carbon), 그래핀 등이 사용될 수 있으나 이에 한정되지 않는다. 기준전극은 실버 전극(Ag/AgCl)일 수 있으나 이에 한정되지 않는다. The sensor of the present invention is a sensor having a two-electrode structure and the electrode can be manufactured using a carbon-based material as the working electrode. For example, carbon ink, graphite, glassy carbon, graphene, or the like may be used as a material of the working electrode, but is not limited thereto. The reference electrode may be a silver electrode (Ag / AgCl), but is not limited thereto.
본 발명의 일 구체예에서, 일회용(disposable)으로 사용하는 센서인 경우 작동전극의 재료로서 탄소 잉크를, 기준전극의 재료로서 실버 잉크를 사용할 수 있다.In one embodiment of the present invention, in the case of a sensor used for disposable, carbon ink may be used as the material of the working electrode and silver ink may be used as the material of the reference electrode.
본 발명에서 상기 작동전극은 다중 금속 합금 덴드라이트 산화물로 전극 표면이 개질될 수 있다. 상기 다중 금속 합금 덴드라이트 산화물에서 용어 "다중 금속"이란 두 가지 이상의 금속으로 이루어지는 것을 말하며, 바람직하게 두 개 또는 세 개의 금속으로 이루어진 합금일 수 있으며, 더욱 바람직하게 구리-코발트 합금 또는 금-아연 합금일 수 있다. In the present invention, the working electrode may be modified on the electrode surface of the multi-metal alloy dendrite oxide. In the multi-metal alloy dendrite oxide, the term "multi-metal" means two or more metals, preferably an alloy of two or three metals, more preferably a copper-cobalt alloy or a gold-zinc alloy. Can be.
본 발명의 일 구체예에서, 상기 작동전극은 금-아연 합금 덴드라이트 산화물로 표면이 개질된 전극일 수 있다. In one embodiment of the present invention, the working electrode may be an electrode whose surface is modified with gold-zinc alloy dendrites.
본 발명의 금-아연(Au-Zn) 합금 덴드라이트는 덴드라이트 구조를 가짐으로써 다수의 활성부위와 극히 높은 표면적을 지닌 독특한 계층 구조로 인하여 전기화학적 디바이스에서 바람직한 전극으로 적용될 수 있다. The gold-zinc (Au-Zn) alloy dendrites of the present invention have a dendrite structure and can be applied as a preferred electrode in electrochemical devices because of the unique hierarchical structure having a large number of active sites and an extremely high surface area.
상기 금-아연 합금 덴드라이트는 Au 및 Zn의 원자적 금속 함량 비율이 70-90:30-10일 수 있다. The gold-zinc alloy dendrites may have an atomic metal content ratio of Au and Zn of 70-90: 30-10.
효소식 전위차법 혈당 검출 원리를 살펴보면, 글루코스와 글루코스 산화 효소의 반응으로 생성된 H+을 검출하는 것으로서 반응 메커니즘은 다음과 같다. Looking at the principle of the enzyme-type potentiometric blood glucose detection, the reaction mechanism for detecting H + produced by the reaction between glucose and glucose oxidase is as follows.
Glucose + FAD-GOx → Gluconolactone + FADH2-GOx ------------ (1)Glucose + FAD-GOx → Gluconolactone + FADH 2 -GOx ------------ (1)
FADH2-GOx + O2 → FAD-GOx + H2O2 ----------------------------- (2)FADH 2 -GOx + O 2 → FAD-GOx + H 2 O 2 ----------------------------- (2)
H2O2 → 2H+ + O2 + 2e- ----------------------------------------- (3) H 2 O 2 → 2H + + O 2 + 2e - ------------------------------------- ---- (3)
본 발명에서 상기 금-아연 합금 덴드라이트 산화막은 수소이온을 감지하는 전극으로서 작용하여 글루코스를 검출한다. 글루코스 분해효소가 검체인 혈액 내 글루코스를 산화시켜서 수소이온이 발생하면 금-아연 합금 덴드라이트 산화막이 수소이온의 프로브로서 작용하는데 이는 상기 덴드라이트 산화막의 산소와 수소이온이 반응하는 것을 이용하는 것으로 반응 메커니즘은 다음과 같다. In the present invention, the gold-zinc alloy dendrite oxide film serves as an electrode for detecting hydrogen ions to detect glucose. When hydrogen ions are generated by oxidizing glucose in the blood, which is a glucose degrading enzyme, the gold-zinc alloy dendrites act as probes of hydrogen ions. This mechanism uses the reaction between oxygen and hydrogen ions in the dendrites. Is as follows.
Figure PCTKR2016002180-appb-I000001
Figure PCTKR2016002180-appb-I000001
본 발명의 센서는 상기 반응에 따른 기준전극과 상기 덴드라이트 산화막 전극의 전위 차이를 측정함으로써 글루코스의 농도를 측정할 수 있다. 이와 같이, 본 발명의 센서는 효소식 전위차법을 이용하므로 외부에서 특정 전위를 가해줄 필요가 없어서 별도의 외부 정전압계 및 전류측정계 없이도 측정이 가능하므로 측정이 간편하고 센서의 제조 또한 간단하다. 더욱 중요하게는 외부에서 특정 전위를 가해줄 필요가 없기 때문에 이들 전위에 반응하는 방해물질들의 간섭을 피할 수 있어서 방해효과를 차단하는 장점을 갖는다. The sensor of the present invention can measure the concentration of glucose by measuring the difference in potential between the reference electrode and the dendrite oxide electrode according to the reaction. As described above, the sensor of the present invention uses an enzymatic potentiometric method, so it is not necessary to apply a specific potential from the outside, so that the measurement can be performed without an external constant voltage meter and an ammeter, so that the measurement is simple and the manufacturing of the sensor is simple. More importantly, since there is no need to apply a specific potential from the outside, interference of the interfering substances reacting to these potentials can be avoided, thereby preventing the interference effect.
상기 수소이온 감응형 전도성 고분자는 -COOH 또는 -NH2 작용기를 포함하는 전도성 고분자일 수 있으며, 카르복실기를 포함하는 전도성 고분자가 바람직하다. 보다 바람직하게는, 물리적, 화학적, 기계적 및 전기적인 특성이 우수한 터싸이오펜을 포함하는 전도성 고분자일 수 있다. 가장 바람직하게, 상기 수소이온 감응형 전도성 고분자는 터싸이오펜 벤조익 에시드(terthiophene benzoic acid, TTBA), 터싸이오펜 카르복실 에시드(terthiophene carboxylic acid, TTCA), 및 디싸이에닐 피롤 벤조익 에시드(dithienyl pirol benzoic acid, DTPBA)로 이루어진 군에서 선택될 수 있다. The hydrogen ion sensitive conductive polymer may be a conductive polymer including a -COOH or -NH 2 functional group, and a conductive polymer including a carboxyl group is preferable. More preferably, it may be a conductive polymer including terthiophene having excellent physical, chemical, mechanical and electrical properties. Most preferably, the hydrogen ion-sensitive conductive polymer is terthiophene benzoic acid (TTBA), terthiophene carboxylic acid (TTCA), and disthienyl pyrrole benzoic acid ( dithienyl pirol benzoic acid, DTPBA).
본 발명에서는 금-아연 합금 덴드라이트 산화막을 수소이온을 감지하는 주된 물질로 사용하고, 여기에 수소이온 감응형 전도성 고분자를 도입하여 덴드라이트 산화막의 수소이온에 대한 감도를 향상시킴과 동시에 금속 산화물 표면의 오염을 방지하고 또한 글루코스 분해 효소를 펩타이드 결합을 통해서 안정하게 고정화시키도록 하였다. In the present invention, the gold-zinc alloy dendrite oxide film is used as a main material for detecting hydrogen ions, and the hydrogen-sensitive conductive polymer is introduced therein to improve the sensitivity of the dendrite oxide film to hydrogen ions and at the same time, the metal oxide surface. To prevent contamination and to stably stabilize the glucose degrading enzymes through peptide bonds.
구체적으로, 카르복실 산을 가지는 수소이온 감응형 전도성 고분자는 수용액에서 -COO- 와 H+로 해리 또는 회합하여 H+의 리셉터로 작용하므로 상기 금-아연 합금 덴드라이트 산화막 위에 수소이온 감응형 고분자를 도입하면 덴드라이트 산화막만 있을 때보다 수소이온 농도에 대한 전위 변화에 대한 감도를 훨씬 더 향상시킬 수 있다. 또한, 통상적으로 당 분해효소가 금속과 직접 접촉하게 되면 효소의 안정성이 떨어지는데, 본 발명에서는 금속과 효소 사이에 상기 전도성 고분자를 배치함으로써 전극 표면을 보호할 뿐만 아니라 효소를 보호하여 효소의 안정성을 높일 수 있다. Specifically, the hydrogen-ion-sensitive conductive polymer having a carboxylic acid dissociates or associates with -COO - and H + in an aqueous solution to act as a receptor for H + , thereby forming a hydrogen-ion-sensitive polymer on the gold-zinc alloy dendrites. Incorporation can significantly improve the sensitivity to potential change with respect to hydrogen ion concentration than with only a dendrite oxide film. In addition, when the glycolytic enzyme is in direct contact with the metal, the enzyme is inferior in stability. In the present invention, the conductive polymer is disposed between the metal and the enzyme to protect the surface of the electrode as well as to protect the enzyme, thereby enhancing the enzyme stability. Can be.
본 발명의 일 구체예에서, 상기 전도성 고분자의 카르복실기와 효소의 아민기 사이의 공유결합을 통해 고분자에 효소를 결합시킬 수 있으며 이를 통해 센서에서 효소의 안정성이 향상되므로 고선택성이 유지될 수 있도록 한다. In one embodiment of the present invention, through the covalent bond between the carboxyl group of the conductive polymer and the amine group of the enzyme can be coupled to the polymer, thereby improving the stability of the enzyme in the sensor to maintain a high selectivity .
본 발명에서 상기 글루코스 분해효소는 글루코스 산화효소(glucose oxidase), 글루코스 탈수소화효소(glucose dehydrogenase), 글루코스 헥소키나아제(glucose hexokinase), 글루타믹옥살아세틱트랜스미나아제 및 글루타믹피루빅트랜스미나아제로 이루어진 군에서 선택될 수 있다. In the present invention, the glucose degrading enzyme is glucose oxidase, glucose dehydrogenase, glucose hexokinase, glutamic oxalacetic transminase and glutamic pyruvic transaminase. It may be selected from the group consisting of.
공지된 바와 같이, 글루코스 산화 반응의 촉매로 작동하기 위해서 글루코스 산화효소는 보조인자인 플라빈 아데닌 디뉴클레오티드(flavin adenine dinucleotide (FAD))를 필요로 하므로 본 발명에서 글루코스 산화효소는 보조인자가 결합된 당 산화효소(FAD-GOx) 형태로 사용할 수 있다. 글루코스 산화효소에 의한 촉매 반응에서 FAD는 전자 수용체로서 작용한다. 또한, 글루코스 대사에 관여하는 글루코스 탈수소화효소, 글루코스 헥소키나아제, 글루타믹옥살아세틱트랜스미나아제, 글루타믹피루빅트랜스미나아제 등이 글루코스 분해효소로 사용될 수 있다. As is known, glucose oxidase requires cofactor flavin adenine dinucleotide (FAD) in order to act as a catalyst for glucose oxidation reaction. It can be used in the form of an enzyme (FAD-GOx). In the catalytic reaction by glucose oxidase, FAD acts as an electron acceptor. In addition, glucose dehydrogenase, glucose hexokinase, glutamic oxalacetic transaminase, glutamic pyruvic transaminase, and the like, which are involved in glucose metabolism, can be used as glucose degrading enzymes.
본 발명의 글루코스 검출용 센서는 상기 글루코스 분해효소가 형성된 층 위에 코팅된 나피온 막을 더 포함할 수 있다. The glucose detecting sensor of the present invention may further include a Nafion membrane coated on the layer on which the glucose degrading enzyme is formed.
상기 나피온 막은 센서 표면을 보호하는 역할을 하는데, 예컨대 pH에 영향을 주는 요소들로부터 표면을 보호하므로 센서의 안정성을 증가시킬 수 있다. 나피온 막으로 보호된 센서는 오랜 기간 보관이 가능한 장점이 있다. The Nafion membrane serves to protect the sensor surface. For example, the Nafion membrane protects the surface from factors affecting pH, thereby increasing the stability of the sensor. Sensors protected by Nafion membranes have the advantage of being stored for a long time.
본 발명은 다른 하나의 양태로서, 효소 반응에 따른 전위차를 측정함으로써 글루코스를 검출하는 센서를 제조하는 방법으로서, 전압 인가를 통해 금-아연 합금 덴드라이트를 전극 표면에 개질하는 단계; 상기 금-아연 합금 덴드라이트를 알칼리 용액에서 산화물을 형성시키는 단계; 금-아연 합금 덴드라이트 산화물 위에 전위주사를 통해 수소이온(H+) 감응형 전도성 고분자로 개질하는 단계; 상기 전도성 고분자에 공유결합을 통해 글루코스 분해효소를 결합시키는 단계를 포함하는 것인, 전위차법 글루코스 검출용 센서의 제조방법을 제공한다. In another aspect, the present invention provides a method for manufacturing a sensor for detecting glucose by measuring the potential difference according to the enzymatic reaction, comprising the steps of: modifying the gold-zinc alloy dendrites on the electrode surface through voltage application; Forming an oxide in an alkaline solution of the gold-zinc alloy dendrites; Modifying the hydrogen-ion (H + ) sensitized conductive polymer via potential injection on the gold-zinc alloy dendrites; It provides a method of manufacturing a sensor for detecting the potentiometric method comprising the step of binding a glucose degrading enzyme to the conductive polymer through a covalent bond.
본 발명의 일 구체예로서, 상기 덴드라이트는 -0.2V 내지 -0.7V에서 150 내지 250초 동안 전압을 인가하여 형성할 수 있다.In one embodiment of the present invention, the dendrites may be formed by applying a voltage for 150 to 250 seconds at -0.2V to -0.7V.
상기 알칼리 용액은 -OH기를 포함하는 용액이면 제한없이 사용될 수 있으나 바람직하게 NaOH, KOH, NH4OH, LiOH, Mg(OH)2, Ca(OH)2, Ba(OH)2, Al(OH)3 등이 사용될 수 있다. The alkaline solution may be used without limitation as long as it includes a -OH group, but preferably NaOH, KOH, NH 4 OH, LiOH, Mg (OH) 2 , Ca (OH) 2 , Ba (OH) 2 , Al (OH) 3 And the like can be used.
본 발명의 센서 제조방법에 사용되는 상기 수소이온 감응형 전도성 고분자 및 글루코스 분해효소는 상기 기술한 바와 같으며, 금속 덴드라이트 산화막 위에 TTCA와 DTPBA의 고분자 막 제조 방법은 TTBA와 동일하다. The hydrogen-ion-sensitive conductive polymer and glucose degrading enzyme used in the sensor manufacturing method of the present invention are as described above, and the method of preparing the polymer film of TTCA and DTPBA on the metal dendrites is the same as that of TTBA.
본 발명의 센서 제조방법은 고분자로 개질하는 단계 후, 상기 글루코스 분해효소 결합 단계 전에, 고분자로 개질된 전극에 촉매를 처리하여 전도성 고분자의 카르복실기를 활성화시키는 단계를 더 포함할 수 있다. The sensor manufacturing method of the present invention may further include a step of activating the carboxyl group of the conductive polymer by treating the catalyst with the polymer-modified electrode after the step of modifying the polymer and before the step of binding the glucose degrading enzyme.
상기 촉매는 펩타이드 결합을 만드는 촉매이면 제한없이 사용할 수 있으며, 가교제로서 사용된다. 바람직하게 EDC(1-Ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride), NHS(N-hydroxysuccinimide), 및 글루타알데하이드(glutaldehyde)로 이루어진 군에서 하나 이상을 사용할 수 있으나 이에 한정되는 것은 아니다. The catalyst can be used without limitation so long as it is a catalyst for making a peptide bond, and is used as a crosslinking agent. Preferably, at least one from the group consisting of EDC (1-Ethyl-3- [3- (dimethylamino) propyl] carbodiimide hydrochloride), NHS (N-hydroxysuccinimide), and glutaldehyde (glutaldehyde) may be used. no.
본 발명의 일 구체예에서, 상기 전도성 고분자에 공유결합을 통해 글루코스 분해효소를 결합시키는 단계는, 상기 카르복실기가 활성화된 전극에 당 산화효소를 반응시켜서 상기 전도성 고분자의 카르복실기와 당 산화효소의 아민기 간의 공유결합을 형성시키는 방식으로 이루어질 수 있다.In one embodiment of the present invention, the step of coupling the glucose degrading enzyme to the conductive polymer through a covalent bond, by reacting the sugar oxidase on the electrode having the carboxyl group activated by the carboxyl group and the amine group of the sugar oxidase of the conductive polymer It can be made in such a way to form a covalent bond between them.
상기 글루코스 검출용 센서의 제조방법은 상기 글루코스 분해효소가 형성된 층 위에 나피온 막을 코팅시키는 단계를 더 포함할 수 있다. The method of manufacturing the glucose detecting sensor may further include coating a Nafion membrane on the layer on which the glucose degrading enzyme is formed.
이와 같이 제조된 전위차법 글루코스 검출용 센서를 사용하면 혈액 내 당을 간편하게 검출할 수 있다. By using the potentiometric glucose detection sensor thus prepared, sugar in blood can be detected easily.
본 발명은 또다른 하나의 양태로서, 외부 전압의 인가없이 효소 반응에 따른 전위차를 측정함으로써 글루코스 농도를 측정하는 방법으로서, 상기 효소는 당 산화효소이고, 수소이온의 프로브로서 전극 표면에 개질된 금-아연 합금 덴드라이트 산화물과 수소이온 감응형 전도성 고분자를 사용하는 것을 특징으로 하는 글루코스 농도 측정방법을 제공한다.In yet another aspect, the present invention provides a method for measuring glucose concentration by measuring a potential difference according to an enzyme reaction without applying an external voltage, wherein the enzyme is a sugar oxidase and is a gold-modified electrode on a surface of an electrode as a probe of hydrogen ions. It provides a method for measuring glucose concentration, characterized in that using zinc alloy dendrites oxide and hydrogen ion sensitive conductive polymer.
상기 글루코스 농도 측정방법을 사용하면 외부 전압을 인가할 필요가 없어서 동일한 전압에 반응하는 방해물질의 영향을 제거할 수 있고 인위적인 산화방식이 아닌 효소 반응을 통한 자연적인 산화방식을 이용하여 전위차를 측정하는 방식이므로 보다 간단하고 정밀한 측정이 가능하다.By using the glucose concentration measuring method, it is not necessary to apply an external voltage, thereby eliminating the influence of an interfering substance reacting to the same voltage, and measuring the potential difference using a natural oxidation method through an enzymatic reaction rather than an artificial oxidation method. This makes the measurement simpler and more precise.
발명의 글루코스 검출용 센서는 종래 센서가 채용하는 외부 정전압계 및 전류 측정계가 방해물질에 의한 감도가 저하되는 단점을 극복하기 위해 전위차법을 사용함으로써 외부전압의 인가가 불필요하여 방해물질의 차단효과가 뛰어나고, 수소이온 프로브로서 금-아연 합금 덴드라이트 산화막을 사용하고, 상기 산화막과 당 산화효소 사이에 고분자막을 형성함으로써 효소반응의 안정성을 향상시켜 향상된 감도뿐만 아니라 우수한 수명 및 내구성을 모두 확보할 수 있는 효과가 있다.The sensor for detecting glucose of the present invention uses the potentiometric method to overcome the disadvantage that the external constant voltage meter and the current meter used by the conventional sensor are degraded by the interference material, so that the application of the external voltage is unnecessary, so that the blocking effect of the interference material is not required. Excellent, using a gold-zinc alloy dendrite oxide film as a hydrogen ion probe, and forming a polymer film between the oxide film and the sugar oxidase to improve the stability of the enzyme reaction to ensure both excellent sensitivity and excellent life and durability It works.
도 1은 전위차법 혈당 센서 제작 모식도를 나타낸 것이다.Figure 1 shows a schematic diagram of the production of potentiometric blood glucose sensor.
도 2는 (A) 전압인가를 통한 Au-Zn 합금 덴드라이트 전착 곡선, (B)순환 전압-전류법을 이용한 pTTBA의 전기화학적 중합 곡선을 나타낸 것이다.Figure 2 shows (A) Au-Zn alloy dendrite electrodeposition curve through voltage application, (B) electrochemical polymerization curve of pTTBA using cyclic voltammetry.
도 3은 (A) Au-Zn DOx, (B) Au-Zn DOx /pTTBA, (C) Au-Zn DOx /pTTBA/FAD-GOx, 그리고 Au-Zn DOx /pTTBA/FAD-GOx/나피온의 SEM 표면 사진이다.3 shows (A) Au-Zn DOx, (B) Au-Zn DOx / pTTBA, (C) Au-Zn DOx / pTTBA / FAD-GOx, and Au-Zn DOx / pTTBA / FAD-GOx / Nafion SEM surface photo.
도 4는 전위차법을 이용하여 글루코스 농도 변화에 대한 검정 곡선을 나타낸 것이다.4 shows the calibration curve for glucose concentration change using the potentiometric method.
도 5는 온도 및 상대 습도의 대한 영향에 대한 그래프를 나타낸 것이다.5 shows a graph of the effects of temperature and relative humidity.
도 6은 방해 물질들에 대한 글루코스 검출 감도 그래프를 나타낸 것이다.6 shows a glucose detection sensitivity graph for interfering substances.
도 7은 특정 모사혈(medium)에 글루코스 첨가에 따른 검정 곡선을 나타낸 것이다.Figure 7 shows the calibration curve according to the addition of glucose to the specific simulated blood (medium).
도 8은 실제 혈액의 글루코스 검출을 위한 3가지 농도의 모사혈(low, medium, high)을 이용한 검정 곡선을 나타낸 것이다.Figure 8 shows the calibration curve using three concentrations of simulated blood (low, medium, high) for the detection of glucose in real blood.
이하, 시험예 및 실시예를 들어 본 발명의 구성 및 효과를 보다 구체적으로 설명한다. 그러나 이들 시험예 및 실시예는 본 발명에 대한 이해를 돕기 위해 예시의 목적으로만 제공된 것일 뿐 본 발명의 범주 및 범위가 하기 예에 의해 제한되는 것은 아니다.Hereinafter, the configuration and effects of the present invention will be described in more detail with reference to test examples and examples. However, these test examples and examples are provided only for the purpose of illustration in order to facilitate understanding of the present invention, and the scope and scope of the present invention is not limited by the following examples.
[[ 실시예Example 1] 본 발명에 따른 다중 금속 산화물 및 수소이온 감응용 전도성 고분자를 이용한  1] using the multi-metal oxide and the hydrogen-sensitive conductive polymer according to the present invention 전위차법Potentiometric method 혈당 센서의 제조 Manufacturing of Blood Glucose Sensors
도 1에 전위차법 혈당 센서 제작 과정을 나타내었다. 스크린 프린트 카본 전극 위에 금-아연 합금 덴드라이트 형성시키기 위해, 0.1M 소듐 설페이트에 각각 30mM Gold (Ⅲ) Chloride trihydrate와 30mM Zinc chloride를 함께 녹인 후 0.1M 수산화나트륨 용액으로 pH 4.0으로 맞춰서 precursor 용액을 준비한다. 전압 인가를 통해 -0.5V에서 200초(도 2의 (A))동안 가하여 스크린 프린트 카본 전극 위에 금-아연 합금 덴드라이트를 형성시킨 후 에탄올과 3차 증류수를 사용하여 전극 표면을 세척하였다. 금-아연 합금 덴드라이트 산화막의 형성 방법은 선형 전류-전압법을 이용하여 +0.0V에서 +1.5V까지 7회 주사하여 금-아연 합금 덴드라이트 산화막을 형성시킨 후 증류수와 에탄올을 사용하여 표면을 세척하였다. 그리고 H+ 감응용 고분자 단량체인 1mM의 TTBA를 디프로필렌 글리콜 메틸 이더(di(propylene glycol) methyl ether)과 트리프로필렌 글리콜 메틸 이더(tri(propylene glycol) methyl ether) (1:1)의 혼합 용매에 녹인 후 이를 금-아연 합금 덴드라이트 산화물 위에 5μL 떨어뜨리고 40℃에서 건조 후 0.1M 인산염 완충용액(pH 7.4)에서 순환 전류-전압법으로 전기화학적으로 중합시켰다. 주사 전위 범위는 0.0V에서 +1.6V이고, 주사 속도는 100mv/s로 3회 sweep하여 고분자막을 형성시켰다 (도 2의 (B)). 1 shows a process of preparing a potentiometric glucose sensor. On screen printed carbon electrodes To form a gold-zinc alloy dendrite, 30mM Gold (III) Chloride trihydrate and 30mM Zinc chloride were dissolved together in 0.1M sodium sulfate, and then a precursor solution was prepared by adjusting the pH to 4.0 with 0.1M sodium hydroxide solution. After applying voltage at -0.5V for 200 seconds (FIG. 2A) to form gold-zinc alloy dendrites on the screen printed carbon electrode, the electrode surface was washed with ethanol and tertiary distilled water. Gold-zinc alloy dendrite oxide film is formed by scanning 7 times from + 0.0V to + 1.5V using linear current-voltage method to form gold-zinc alloy dendrite oxide film, and then distilled water and ethanol Washed. 1 mM TTBA, a H + sensitized polymer monomer, was added to a mixed solvent of di (propylene glycol) methyl ether and tri (propylene glycol) methyl ether (1: 1). After melting, 5 μL was dropped onto the gold-zinc alloy dendrites, dried at 40 ° C., and then electrochemically polymerized in a 0.1 M phosphate buffer (pH 7.4) by a cyclic current-voltage method. The scanning potential range was 0.0V to + 1.6V, and the scanning speed was sweep three times at 100 mv / s to form a polymer film (FIG. 2B).
상기 전위차법 혈당 센서의 전극은 작동전극 및 기준전극으로 구성된 스크린 프린트 전극을 사용했으며, 작동전극은 탄소 잉크를 사용했으며, 기준전극은 실버잉크를 사용하여 제작하였다. The electrode of the potentiometric blood glucose sensor was used as a screen print electrode composed of a working electrode and a reference electrode, the working electrode using carbon ink, and the reference electrode was prepared using silver ink.
pTTBA가 형성된 전극을 10.0mM EDC(1-Ethyl-3-[3-(dimethylamino)propyl] carbodiimide hydrochloride) 및 10.0mM NHS(N-hydroxysuccinimide)를 0.1M 인산염 완충용액(pH 7.4)에 녹인 용액에 넣고 30℃에서 6hr 반응시켜 pTTBA의 카르복실 에시드 그룹을 활성화시켰다. pTTBA의 표면에 10μL의 FAD-GOx (6mg/mL) 용액을 떨어뜨려 4℃에서 12hr 반응시켜 pTTBA의 카르복실 에시드 그룹과 FAD-GOx의 아민 그룹을 공유결합으로 형성하였다. 또한 효소 클라스터 형성법을 사용하여 센서 표면에 효소의 흡착 양을 증가시켰다. 효소 클라스터 형성법에 사용될 용액은 FAD-GOx (6mg/mL) 용액에 효소의 침전제로 암모늄 설페이트(ammonium sulfate, 0.55 mg/mL), 효소 (FAD-GOx)들 사이에 가교제로 글루타알데하이드 (glutaldehyde, 0.5%) 넣어서 제조하였다. FAD-GOx까지 변성된 스크린 프린트 카본 전극 표면에 효소 클라스터 용액 10μL를 떨어뜨리고 4℃에서 12hr에서 반응시켰다. FAD-GOx사이의 아민 그룹간의 공유결합을 통해 효소 흡착량을 증가시켰다. 최종적으로 효소 층 위에 1μL의 나피온(1.0 %)을 코팅하여 혈당 센서를 제작하였다. The pTTBA-formed electrode was added to a solution of 10.0 mM EDC (1-Ethyl-3- [3- (dimethylamino) propyl] carbodiimide hydrochloride) and 10.0 mM NHS (N-hydroxysuccinimide) in 0.1 M phosphate buffer (pH 7.4). The reaction was carried out at 30 ° C. for 6 hours to activate the carboxyl acid group of pTTBA. A 10 μL solution of FAD-GOx (6 mg / mL) was dropped on the surface of pTTBA and reacted for 12 hours at 4 ° C. to form a covalent bond between the carboxyl acid group of pTTBA and the amine group of FAD-GOx. Enzyme cluster formation was also used to increase the amount of enzyme adsorption on the sensor surface. The solution to be used for the enzyme cluster formation method is glutaaldehyde as a crosslinking agent between ammonium sulfate (ammonium sulfate (0.55 mg / mL)) and enzymes (FAD-GOx) as a precipitant of enzyme in FAD-GOx (6mg / mL) solution. , 0.5%) was prepared. 10 μL of the enzyme cluster solution was dropped onto the surface of the screen-printed carbon electrode modified to FAD-GOx and reacted at 4 ° C. at 12 hr. Enzyme adsorption was increased through covalent bonds between amine groups between FAD-GOx. Finally, 1 μL of Nafion (1.0%) was coated on the enzyme layer to prepare a blood glucose sensor.
[[ 시험예Test Example 1] 센서의 각 변성 단계의  1] of each denaturation step of the sensor SEMSEM 표면 이미지 Surface image
본 발명에 따른 신규한 전위차법 혈당 센서의 각 변성 단계의 표면 확인하기 위하여 SEM 분석을 실시하였다.SEM analysis was performed to confirm the surface of each denaturing step of the novel potentiometric blood glucose sensor according to the present invention.
도 3은 센서의 각 변성단계의 SEM 표면 사진이다. 도 3에서 (A)는 금-아연의 다가지 트리 형태를 가진 금-아연 덴드라이트 구조를 관찰할 수 있었다. 도 3에서 (B)는 금-아연 덴드라이트 위에 순환전압전류법을 이용하여 H+ 감응형 고분자가 전착된 표면 사진으로 금-아연 덴드라이트의 가지 트리 사이에 H+ 감응형 고분자가 형성되어 덴드라이트의 크기 증가 및 공극이 감소함을 확인하였다. 도 3에서 (C)는 H+ 감응형 고분자 위에 FAD-GDH가 고정화 된 표면 사진이다. 도 3의 (B)를 보면 FAD-GDH가 H+ 감응형 고분자에 FAD-GDH가 고정화가 되어서 뚜렷한 덴드라이트 다가지 트리 형태가 관찰되지 않으며 표면이 매우 거친 것을 관찰되었다. 도 3의 (D)는 0.5% 나피온을 도포한 표면 사진으로 그물 막 형태로 FAD-GDH 층을 덮고 있으며 표면이 도 3의 (C) 표면 사진보다 부드러운 표면을 형성하고 있다.3 is a SEM surface photograph of each modification step of the sensor. In Figure 3 (A) it was possible to observe the gold-zinc dendrite structure having a multi-tree of gold-zinc. In FIG. 3, (B) is a surface photograph of H + sensitive polymer electrodeposited by cyclic voltammetry on gold-zinc dendrites. H + sensitive polymer is formed between the branch trees of gold-zinc dendrites. It was confirmed that the size of the dry and the voids are reduced. (C) in Figure 3 is a surface photograph of the FAD-GDH immobilized on the H + sensitive polymer. Referring to (B) of FIG. 3, FAD-GDH is immobilized on the H + sensitized polymer so that no distinct dendrite multi-tree shape is observed and the surface is very rough. FIG. 3 (D) is a surface photograph coated with 0.5% Nafion, covering the FAD-GDH layer in the form of a net film, and has a surface that is softer than the surface photograph of FIG.
상기 결과로부터 본 발명의 전위차법 혈당 센서의 변성 단계에 따른 표면 상태를 확인하였다. From the above results, the surface state of the denaturation step of the potentiometric glucose sensor of the present invention was confirmed.
[[ 시험예Test Example 2] 본 발명에 따른  2] according to the present invention 전위차법Potentiometric method 혈당 센서의  Blood glucose sensor 글루코스Glucose 농도에 따른 전위 변화에 대한 성능 평가  Performance Evaluation of Potential Changes with Concentration
상기 실시예 1 에 따라 제조된 혈당 센서에 0.1M 인산염 완충용액(pH 7.4)에 용해시킨 농도 30mg/dL, 100mg/dL, 200mg/dL, 300mg/dL, 400mg/dL, 500mg/dL의 글루코스 용액을 처리하여, 글루코스 농도에 따른 전위 변화를 측정하여 그 결과를 도 4에 나타냈다.Glucose solution of 30mg / dL, 100mg / dL, 200mg / dL, 300mg / dL, 400mg / dL, 500mg / dL dissolved in 0.1M phosphate buffer (pH 7.4) in the blood glucose sensor prepared according to Example 1 Was processed to measure the potential change according to the glucose concentration, and the results are shown in FIG. 4.
각 농도 구간마다 10 개의 센서를 이용하여 측정하였다. 당 농도 30~500 mg/dL에서 우수한 직선성을 보였다. 이 검량곡선의 상관 관계식은 E (mv) = (1.80±0.485)+(0.15±0.002) [C] (mg/dL)이며 상관 계수는 0.998이다. 당 농도 200mg/dL 구간에서 상대표준편차(Relative standard deviation)는 5.15% (n = 10)로 우수한 재현성을 보였다. 또한, 각 농도 구간의 평균 전위차값 대비 상대 표준 편차 범위는 ±5~13% 이내이다. Each concentration interval was measured using 10 sensors. Excellent linearity was shown at the sugar concentration of 30-500 mg / dL. The correlation of this calibration curve is E (mv) = (1.80 ± 0.485) + (0.15 ± 0.002) [C] (mg / dL) and the correlation coefficient is 0.998. Relative standard deviation was 5.15% ( n = 10) in the sugar concentration of 200mg / dL. In addition, the relative standard deviation range with respect to the average potential difference value of each concentration range is within ± 5 ~ 13%.
[[ 시험예Test Example 3]  3] 글루코스Glucose 측정에 대한 온도 및 상대 습도의  Of temperature and relative humidity for measurement 영향성Impact 평가 evaluation
상기 실시예 1에 따라 제조된 혈당센서에 0.1M 인산염 완충용액(pH 7.4)에 용해시킨 농도 200mg/dL의 글루코스 용액을 처리하여, 글루코스 전위 측정에 대한 다양한 온도 (15, 16, 20, 25, 30, 35, 40℃) 와 상대 습도 (20, 30, 40, 50, 60, 70, 80%)에 대한 영향 그 결과를 도 5에 나타냈다.The glucose sensor prepared in Example 1 was treated with a glucose solution having a concentration of 200 mg / dL dissolved in 0.1 M phosphate buffer solution (pH 7.4) to measure glucose potential at various temperatures (15, 16, 20, 25, 30, 35, 40 ° C.) and relative humidity (20, 30, 40, 50, 60, 70, 80%) The results are shown in FIG. 5.
온도 및 상대 습도의 각 구간마다 3개의 혈당 센서로 측정하였다. 도 5(A)에서 20~40℃ 구간에서는 일정한 검출 감도를 보이나 15℃에서 검출 감도는 25℃와 비교했을 때 24% 감소하였다. 이는 20℃ 이하의 온도에서는 효소의 활성도가 떨어져 결과적으로 글루코스 측정 감도가 떨어지는 것을 확인할 수 있다. 도 5(A)에서 상대 습도 20 ~ 80% 범위에서 일정한 글루코스 검출 감도를 유지하는 것을 확인하였다.Three blood glucose sensors were measured for each section of temperature and relative humidity. In FIG. 5A, the detection sensitivity was constant in the 20 to 40 ° C. range, but the detection sensitivity was reduced by 24% when compared to 25 ° C. at 15 ° C. FIG. It can be confirmed that the enzyme activity is lowered at a temperature of 20 ° C. or lower, and as a result, the glucose measurement sensitivity is lowered. In Figure 5 (A) it was confirmed to maintain a constant glucose detection sensitivity in the relative humidity 20 ~ 80% range.
[[ 시험예Test Example 4]  4] 글루코스Glucose 측정에 대한 방해물질들의  Of disturbances to the measurement 영향성Impact 평가 evaluation
도 6은 방해 물질들이 존재할 때 글루코스 검출 감도를 비교한 그래프이다. 이 실험에 사용된 방해 물질들은 아스코르빅 에시드 (AA, 5mg/dL), 도파민 (DA, 5mg/dL), 아세타아미노펜 (AP, 15mg/dL), 4종의 단당류 ((만노스 (10mg/dL), 락토스 (10mg/dL), 자일로스 (10mg/dL), 프락토스 (30mg/dL))이다. 6 is a graph comparing glucose detection sensitivity in the presence of interfering substances. Interfering substances used in this experiment were ascorbic acid (AA, 5mg / dL), dopamine (DA, 5mg / dL), acetaaminophen (AP, 15mg / dL), four monosaccharides ((mannose (10mg / dL) dL), lactose (10 mg / dL), xylose (10 mg / dL), fructose (30 mg / dL)).
방해 물질에 대한 조사는 0.1M 인산염 완충용액(pH 7.4)에 용해시킨 농도 200mg/dL의 글루코스 용액에 상기의 각각의 방해 물질들을 포함하여 측정하였다. 단당류의 경우, 200mg/dL의 글루코스 용액에 상기의 4 종류의 단당류를 포함하여 측정한 결과 글루코스의 평균 전위차값 대비 1.2% 감소하였다. 도파민과 아세타아미노펜, 아스코르빅 에시드의 경우는 글루코스 검출 감도가 각각 5.2%, 5.5%, 4.8% 감소하는 것을 관찰되었으며 이 방해물질 (단당류, DA, AP, AA)들은 글루코스 측정에 대한 오차 범위 내에 분포함으로 문제가 되지 않는다. Irradiation of the interfering substances was determined by including the respective interfering substances in a glucose solution of 200 mg / dL concentration dissolved in 0.1 M phosphate buffer (pH 7.4). In the case of monosaccharides, the four types of monosaccharides described above were included in a 200 mg / dL glucose solution, which was 1.2% lower than the mean potential difference value of glucose. Dopamine, acetaaminophen, and ascorbic acid decreased glucose detection sensitivity by 5.2%, 5.5%, and 4.8%, respectively, and these hinders (monosaccharides, DA, AP, and AA) were found in the error range for glucose measurement. It does not matter because it is distributed within.
[[ 시험예Test Example 5]  5] 모사혈에서의In mock blood 글루코스Glucose 농도 측정 Concentration measurement
모사혈 (medium)을 생리 식염수 (0.9% NaCl)를 이용하여 hematocrit의 농도를 10 %로 동일하게 희석하고 이에 글루코스를 첨가하여 서로 다른 6 가지의 농도 (29, 119, 159, 250, 348, 434mg/dL)를 가지는 글루코스를 포함하는 모사혈을 제조하였다.Dilute the hematocrit concentration to 10% with physiological saline (0.9% NaCl) and add glucose to the 6 different concentrations (29, 119, 159, 250, 348, 434mg). mock blood comprising glucose with (dL) was prepared.
도 7은 전위차법을 이용하여 6 구간의 모사혈의 글루코스 농도 (29, 119, 159, 250, 348, 434 mg/dL)에 대한 검정곡선이다. 각 농도 구간마다 3개의 센서를 이용하여 측정하였다. 모사혈의 글루코스 농도 29 ~ 434 mg/dL구간에서 우수한 직선성을 보였다. 이 검량곡선의 상관 관계식은 E (mV) = (1.178 ± 0.615) + (0.137 ± 0.004) [C] (mg/dL)이며 상관 계수는 0.99이다.FIG. 7 is a calibration curve for glucose concentration (29, 119, 159, 250, 348, 434 mg / dL) of 6 sections of simulated blood using the potentiometric method. Three concentrations were measured for each concentration section. Excellent linearity was observed at the glucose concentration of 29 ~ 434 mg / dL. The correlation of this calibration curve is E (mV) = (1.178 ± 0.615) + (0.137 ± 0.004) [C] (mg / dL) and the correlation coefficient is 0.99.
[[ 시험예Test Example 6] 실제 혈액에서  6] in real blood 글루코스Glucose 농도 측정 Concentration measurement
도 8은 실제 혈액의 글루코스 검출을 위해 세 가지 다른 글루코즈 농도를 가지는 모사혈 (low, medium, high)를 이용하여 얻은 검정곡선이다. 각 농도 구간마다 3개의 센서를 이용하여 측정하였다. 이 검량고선의 상관 관계식은 E (mV) = (19.45 ± 0.626) + (0.137 ± 0.012) [C] (mg/dL)이다. 위의 상관 관계식을 이용하여 실제 사람의 혈액으로부터 글루코스를 검출하였으며 농도는 99 ± 8.6 이였다. 또한, 상용화된 혈당 센서 (OneTouch Ultra)를 이용하여 측정 결과는 105 ± 1.5이다. 두 가지 센서를 이용하여 실제 혈액의 글루코스 농도의 측정 결과치가 잘 일치하는 것을 확인하였다. 따라서 본 발명을 통해 개발된 센서는 실제 혈액에서 글루코스 검출을 위한 센서로 사용될 수 있다. Figure 8 is a calibration curve obtained using simulated blood (low, medium, high) having three different glucose concentrations for the actual blood glucose detection. Three concentrations were measured for each concentration section. The correlation between these calibration curves is E (mV) = (19.45 ± 0.626) + (0.137 ± 0.012) [C] (mg / dL). Using the above correlation, glucose was detected from real human blood and the concentration was 99 ± 8.6. In addition, the measurement results using a commercially available blood glucose sensor (OneTouch Ultra) is 105 ± 1.5. The two sensors were used to confirm that the actual blood glucose concentrations were in good agreement. Therefore, the sensor developed through the present invention can be used as a sensor for detecting glucose in real blood.

Claims (14)

  1. 금-아연 합금 덴드라이트 산화물로 표면이 개질된 전극;An electrode whose surface is modified with gold-zinc alloy dendrites;
    상기 산화물 위에 형성된 수소이온 감응형 전도성 고분자; 및 A hydrogen ion sensitive conductive polymer formed on the oxide; And
    상기 전도성 고분자에 공유결합을 통해 결합된 글루코스 분해효소를 포함하는 글루코스 검출용 센서로서, A sensor for detecting glucose, comprising a glucose degrading enzyme covalently bonded to the conductive polymer,
    외부 전압 인가없이 효소 반응에 따른 전위차를 측정함으로써 글루코스를 검출하는 것을 특징으로 하는, 효소 기반의 전위차법 글루코스 검출용 센서. The enzyme-based potentiometric glucose detection sensor, characterized in that for detecting glucose by measuring the potential difference according to the enzyme reaction without applying an external voltage.
  2. 제 1 항에 있어서, 상기 전극은 작동 전극으로서 탄소 기반의 전극인 것을 특징으로 하는 전위차법 글루코스 검출용 센서.The sensor of claim 1, wherein the electrode is a carbon-based electrode as a working electrode.
  3. 제 1 항에 있어서, 상기 수소이온 감응형 전도성 고분자는 터싸이오펜 벤조익 에시드(TTBA), 터싸이오펜 카르복실 에시드(TTCA), 및 디싸이에닐 피롤 벤조익 에시드(DTPBA)로 이루어진 군에서 선택되는 것을 특징으로 하는 전위차법 글루코스 검출용 센서.The method of claim 1, wherein the hydrogen-ion sensitive conductive polymer is selected from the group consisting of terthiophene benzoic acid (TTBA), terthiophene carboxylic acid (TTCA), and dithioenyl pyrrole benzoic acid (DTPBA). A sensor for potentiometric glucose detection, characterized in that it is selected.
  4. 제 1 항에 있어서, 상기 글루코스 분해효소는 글루코스 산화효소(glucose oxidase), 글루코스 탈수소화효소(glucose dehydrogenase), 글루코스 헥소키나아제(glucose hexokinase), 글루타믹옥살아세틱트랜스미나아제 및 글루타믹피루빅트랜스미나아제로 이루어진 군에서 선택되는 것을 특징으로 하는 전위차법 글루코스 검출용 센서.According to claim 1, wherein the glucose degrading enzyme (glucose oxidase), glucose dehydrogenase (glucose dehydrogenase), glucose hexokinase (glucose hexokinase), glutamic oxalacetic transminase and glutamic pyruvic trans Potentiometric glucose detection sensor, characterized in that selected from the group consisting of minases.
  5. 제 1 항에 있어서, 상기 글루코스 분해효소 위에 코팅된 나피온 막을 더 포함하는 것을 특징으로 하는 전위차법 글루코스 검출용 센서.The sensor of claim 1, further comprising a Nafion membrane coated on the glucose degrading enzyme.
  6. 효소 반응에 따른 전위차를 측정함으로써 글루코스를 검출하는 센서를 제조하는 방법으로서, As a method of manufacturing a sensor for detecting glucose by measuring the potential difference according to the enzyme reaction,
    전압 인가를 통해 금-아연 합금 덴드라이트를 전극 표면에 개질하는 단계; Modifying the gold-zinc alloy dendrites on the electrode surface through voltage application;
    상기 금-아연 합금 덴드라이트를 알칼리 용액에서 산화물을 형성시키는 단계;Forming an oxide in an alkaline solution of the gold-zinc alloy dendrites;
    금-아연 합금 덴드라이트 산화물 위에 전위주사를 통해 수소이온(H+) 감응형 전도성 고분자로 개질하는 단계;Modifying the hydrogen-ion (H + ) sensitized conductive polymer via potential injection on the gold-zinc alloy dendrites;
    상기 전도성 고분자에 공유결합을 통해 글루코스 분해효소를 결합시키는 단계를 포함하는 것인, 전위차법 글루코스 검출용 센서의 제조방법.Comprising the step of coupling the glucose degrading enzyme to the conductive polymer through a covalent bond, the method of producing a sensor for detecting the potentiometric glucose.
  7. 제 6 항에 있어서, 상기 알칼리 용액은 NaOH, KOH, NH4OH, LiOH, Mg(OH)2, Ca(OH)2, Ba(OH)2, 및 Al(OH)3로 이루어진 군에서 선택되는 것을 특징으로 하는 전위차법 글루코스 검출용 센서의 제조방법.The method of claim 6, wherein the alkaline solution is selected from the group consisting of NaOH, KOH, NH 4 OH, LiOH, Mg (OH) 2 , Ca (OH) 2 , Ba (OH) 2 , and Al (OH) 3 . A method of manufacturing a sensor for detecting potential difference glucose.
  8. 제 6 항에 있어서, 상기 수소이온 감응형 전도성 고분자는 터싸이오펜 벤조익 에시드 (TTBA), 터싸이오펜 카르복실 에시드 (TTCA), 및 디싸이에닐 피롤 벤조익 에시드 (DTPBA)로 이루어진 군에서 선택되는 것을 특징으로 하는 전위차법 글루코스 검출용 센서의 제조방법.7. The method of claim 6, wherein the hydrogen ion sensitive conductive polymer is selected from the group consisting of terthiophene benzoic acid (TTBA), terthiophene carboxylic acid (TTCA), and disthioenyl pyrrole benzoic acid (DTPBA). A method of manufacturing a potentiometric glucose detection sensor, characterized in that it is selected.
  9. 제 6 항에 있어서, 상기 글루코스 분해효소는 글루코스 산화효소(glucose oxidase), 글루코스 탈수소화효소(glucose dehydrogenase), 글루코스 헥소키나아제(glucose hexokinase), 글루타믹옥살아세틱트랜스미나아제 및 글루타믹피루빅트랜스미나아제로 이루어진 군에서 선택되는 것을 특징으로 하는 전위차법 글루코스 검출용 센서의 제조방법.According to claim 6, wherein the glucose degrading enzyme (glucose oxidase), glucose dehydrogenase (glucose dehydrogenase), glucose hexokinase (glucose hexokinase), glutamic oxalacetic transminase and glutamic pyruvic trans A method for producing a potentiometric glucose detection sensor, characterized in that it is selected from the group consisting of minases.
  10. 제 6 항에 있어서, 상기 글루코스 분해효소 결합 단계 전에, 고분자로 개질된 전극에 촉매를 처리하여 상기 전도성 고분자의 카르복실기를 활성화시키는 단계를 더 포함하는 것을 특징으로 하는 전위차법 글루코스 검출용 센서의 제조방법.The method of claim 6, further comprising activating a carboxyl group of the conductive polymer by treating a catalyst with a polymer-modified electrode before the glucose degrading enzyme binding step. .
  11. 제 10 항에 있어서, 상기 촉매는 펩타이드 결합을 만드는 촉매인 것을 특징으로 하는 전위차법 글루코스 검출용 센서의 제조방법.The method of claim 10, wherein the catalyst is a catalyst for making peptide bonds.
  12. 제 6 항에 있어서, 상기 글루코스 분해효소 위에 나피온 막을 코팅시키는 단계를 더 포함하는 것을 특징으로 하는 전위차법 글루코스 검출용 센서의 제조방법.7. The method of claim 6, further comprising coating a Nafion membrane on the glucose degrading enzyme.
  13. 제 6 항 내지 제 12 항 중 어느 한 항에 따라 제조된 전위차법 글루코스 검출용 센서를 사용하여 혈액 내 당을 검출하는 방법.A method for detecting sugar in blood using a potentiometric glucose detection sensor manufactured according to any one of claims 6 to 12.
  14. 외부 전압의 인가없이 효소 반응에 따른 전위차를 측정함으로써 글루코스 농도를 측정하는 방법으로서, As a method of measuring glucose concentration by measuring the potential difference according to the enzyme reaction without applying an external voltage,
    상기 효소는 당 산화효소이고, The enzyme is a sugar oxidase,
    수소이온의 프로브로서 전극 표면에 개질된 금-아연 합금 덴드라이트 산화물과 수소이온 감응형 전도성 고분자를 사용하는 것을 특징으로 하는 글루코스 농도 측정방법. A method of measuring glucose concentration, comprising using a gold-zinc alloy dendrite oxide and a hydrogen ion-sensitive conductive polymer modified on an electrode surface as probes of hydrogen ions.
PCT/KR2016/002180 2015-03-04 2016-03-04 Enzyme-based potentiometric glucose detection sensor and method for manufacturing same WO2016140543A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0030223 2015-03-04
KR1020150030223A KR102423250B1 (en) 2015-03-04 2015-03-04 Enzyme-based glucose sensor using potentiometric detection and method for preparing the same

Publications (1)

Publication Number Publication Date
WO2016140543A1 true WO2016140543A1 (en) 2016-09-09

Family

ID=56848965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/002180 WO2016140543A1 (en) 2015-03-04 2016-03-04 Enzyme-based potentiometric glucose detection sensor and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR102423250B1 (en)
WO (1) WO2016140543A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110514704A (en) * 2018-05-22 2019-11-29 爱科来株式会社 New bio method for sensing
US20200058953A1 (en) * 2018-08-17 2020-02-20 Boston College Methods and compositions for gold dendrite-based biosensors
CN112067671A (en) * 2020-08-18 2020-12-11 微泰医疗器械(杭州)有限公司 Glucose electrochemical sensor and preparation method thereof
CN112697857A (en) * 2020-12-04 2021-04-23 南方科技大学 Glucose electrode, microfluidic chip, microfluidic passive sweat patch and preparation method and application thereof
CN112710712A (en) * 2017-12-29 2021-04-27 深圳硅基传感科技有限公司 Portable glucose monitor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102038928B1 (en) 2017-09-25 2019-10-31 한국생산기술연구원 Catalyst for nonenzymatic glucose sensor comprising metal-organic frameworks and manufacturing method thereof and nonenzymatic glucose sensor using the catalyst
KR102188664B1 (en) * 2018-06-08 2020-12-08 주식회사 아이센스 Crosslinking agent for preparation of sensing layer or diffusion layer of electrochemical sensor comprising genipin
KR20220075974A (en) 2020-11-30 2022-06-08 한국생산기술연구원 Method for manufacturing spinel type NCO nanostructure for non-enzymatic glucose sensor
KR20230071048A (en) 2021-11-15 2023-05-23 재단법인 대구경북첨단의료산업진흥재단 Structure for glucose detection containing diboronic acid anthracene-based compound, method of manufacturing the same and use thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015650A2 (en) * 2011-07-27 2013-01-31 부산대학교 산학협력단 Cu-co alloy dendrite electrode and biosensor including same
KR20140046913A (en) * 2012-10-11 2014-04-21 삼성전자주식회사 Electron transfer mediators for an enzyme-based biosensor
KR101453679B1 (en) * 2013-06-17 2014-10-23 부산대학교 산학협력단 Solid type pH sensor and preparation method thereof
KR20140132869A (en) * 2013-05-08 2014-11-19 동국대학교 산학협력단 Bio-sensor array for measuring glucose, glycated protein and total albumin
KR20150006114A (en) * 2013-07-08 2015-01-16 가천대학교 산학협력단 Biochip For Measuring Blood Glucose, and Apparatus For Measuring Blood Glucose For Smart Phone Including The Same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101203898B1 (en) 2008-11-26 2012-11-23 고려대학교 산학협력단 Glucose biosensor based on porous conducting polymer nanorods on an electrode and method for preparing the same
KR20140006437A (en) 2012-07-05 2014-01-16 부산대학교 산학협력단 Au-zn bimetallic dendrite electrode, fuel cell and biosensor comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015650A2 (en) * 2011-07-27 2013-01-31 부산대학교 산학협력단 Cu-co alloy dendrite electrode and biosensor including same
KR20140046913A (en) * 2012-10-11 2014-04-21 삼성전자주식회사 Electron transfer mediators for an enzyme-based biosensor
KR20140132869A (en) * 2013-05-08 2014-11-19 동국대학교 산학협력단 Bio-sensor array for measuring glucose, glycated protein and total albumin
KR101453679B1 (en) * 2013-06-17 2014-10-23 부산대학교 산학협력단 Solid type pH sensor and preparation method thereof
KR20150006114A (en) * 2013-07-08 2015-01-16 가천대학교 산학협력단 Biochip For Measuring Blood Glucose, and Apparatus For Measuring Blood Glucose For Smart Phone Including The Same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112710712A (en) * 2017-12-29 2021-04-27 深圳硅基传感科技有限公司 Portable glucose monitor
CN112710712B (en) * 2017-12-29 2022-05-17 深圳硅基传感科技有限公司 Portable glucose monitor
CN110514704A (en) * 2018-05-22 2019-11-29 爱科来株式会社 New bio method for sensing
CN110514704B (en) * 2018-05-22 2024-02-13 爱科来株式会社 Novel biosensing method
US20200058953A1 (en) * 2018-08-17 2020-02-20 Boston College Methods and compositions for gold dendrite-based biosensors
CN112067671A (en) * 2020-08-18 2020-12-11 微泰医疗器械(杭州)有限公司 Glucose electrochemical sensor and preparation method thereof
CN112697857A (en) * 2020-12-04 2021-04-23 南方科技大学 Glucose electrode, microfluidic chip, microfluidic passive sweat patch and preparation method and application thereof

Also Published As

Publication number Publication date
KR102423250B1 (en) 2022-07-21
KR20160107464A (en) 2016-09-19

Similar Documents

Publication Publication Date Title
WO2016140543A1 (en) Enzyme-based potentiometric glucose detection sensor and method for manufacturing same
Wang et al. Recent advances in electrochemical sensors for antibiotics and their applications
Zuaznabar-Gardona et al. A wide-range solid state potentiometric pH sensor based on poly-dopamine coated carbon nano-onion electrodes
US20200158678A1 (en) Nanostructured graphene-modified graphite pencil electrode system for simultaneous detection of analytes
Li et al. Au nanoparticles/poly (caffeic acid) composite modified glassy carbon electrode for voltammetric determination of acetaminophen
Liu et al. A sensitive sensor for determination of l-tryptophan based on gold nanoparticles/poly (alizarin red S)-modified glassy carbon electrode
Amini et al. Electrocatalytic determination of traces of insulin using a novel silica nanoparticles-Nafion modified glassy carbon electrode
Zhang et al. Simultaneous voltammetric detection of dopamine, ascorbic acid and uric acid using a poly (2-(N-morpholine) ethane sulfonic acid)/RGO modified electrode
Xi et al. Integration of carbon nanotubes to three-dimensional C-MEMS for glucose sensors
Liu et al. Construction of a non-enzymatic glucose sensor based on copper nanoparticles/poly (o-phenylenediamine) nanocomposites
Liu et al. Enzyme biosensors for point-of-care testing
KR20180006835A (en) Bio sensor and manufacturing method thereof
CN108802390A (en) A kind of preparation of the pancreatic tumour marker immunosensor based on graphene-gold-palladium nanocomposite
Wu et al. Nanosilver-doped DNA polyion complex membrane for electrochemical immunoassay of carcinoembryonic antigen using nanogold-labeled secondary antibodies
Kappo et al. Voltammetric DNA sensor based on redox-active dyes for determining doxorubicin
Hasanzadeh et al. Immobilization of proline dehydrogenase on functionalized silica mesoporous nanomaterial towards preparation of a novel thermostable enzyme biosensor
Suresh et al. Graphene–metal chalcogenide modified electrochemical sensors
Arlyapov et al. Biosensor based on screen-printed electrode and glucose-oxidase modified with the addition of single-walled carbon nanotubes and thermoexpanded graphite
CN108241012A (en) The preparation method and applications of hemoglobin sensor electrode based on graphene
CN110208356B (en) Electrochemical sensor and preparation and application thereof
CN113552192A (en) Self-calibration current ratio type pH sensor and preparation method and application thereof
WO2018012692A1 (en) Biosensor and manufacturing method therefor
Gao et al. Layer-by-layer electrodeposition of redox polymers and enzymes on screen-printed carbon electrodes for the preparation of reagentless biosensors
Shieh et al. Temperature responsive carbon nanotubes/poly (N-isopropylacrylamide)-modified electrodes for electrochemical selective determination of dopamine, uric acid, and ascorbic acid
CN106442672B (en) A kind of sulfate ion suppressive electrochemica biological sensor and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16759179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16759179

Country of ref document: EP

Kind code of ref document: A1