WO2016140506A1 - High throughput photobioreactor - Google Patents

High throughput photobioreactor Download PDF

Info

Publication number
WO2016140506A1
WO2016140506A1 PCT/KR2016/002079 KR2016002079W WO2016140506A1 WO 2016140506 A1 WO2016140506 A1 WO 2016140506A1 KR 2016002079 W KR2016002079 W KR 2016002079W WO 2016140506 A1 WO2016140506 A1 WO 2016140506A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
light
plate
photobioreactor
tec module
Prior art date
Application number
PCT/KR2016/002079
Other languages
French (fr)
Korean (ko)
Inventor
정신화
김희식
조대현
오희목
허진아
Original Assignee
한국생명공학연구원
정신화
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150170245A external-priority patent/KR101751951B1/en
Application filed by 한국생명공학연구원, 정신화 filed Critical 한국생명공학연구원
Publication of WO2016140506A1 publication Critical patent/WO2016140506A1/en
Priority to US15/694,140 priority Critical patent/US10392596B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/26Inoculator or sampler
    • C12M1/32Inoculator or sampler multiple field or continuous type
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • C12M3/06Tissue, human, animal or plant cell, or virus culture apparatus with filtration, ultrafiltration, inverse osmosis or dialysis means

Definitions

  • the present invention relates to high throughput photobioreactors, and more particularly to high throughput photobioreactors capable of culturing photosynthetic microorganisms.
  • Photosynthetic microbes can grow using water, carbon dioxide, and sunlight, and can be cultured anywhere in the wilderness, on the coast, or in the sea, and thus do not compete with existing land crops in terms of land or space.
  • Photosynthetic microorganisms accumulate a large amount of lipids (up to 70%) in living organisms depending on culture conditions, and produce more than 50-100 times more oil (lipid) per unit area than conventional edible crops such as soybeans. Very high.
  • Biodiesel which is produced from photosynthetic microorganisms such as microalgae, can reduce pollutants such as fine dust and sulfur compounds significantly compared to existing diesel fuels.
  • the form of a pond or a channel that circulates the medium through the outer ring is an example of a low installation cost and an operating cost, while it is difficult to cultivate a high concentration and contaminated by other microorganisms, thereby increasing the recovery cost of the photosynthetic product.
  • the form of a pond or a channel that circulates the medium through the outer ring is an example of a low installation cost and an operating cost, while it is difficult to cultivate a high concentration and contaminated by other microorganisms, thereby increasing the recovery cost of the photosynthetic product.
  • the type of optical bioreactor in Korea Patent No. 10-0283026 developed in Korea is disclosed as an air-induced photobioreactor using a cylindrical inner conduit as a light emitter, and in Korean Patent Publication No. 10-2003-0018196
  • the light emitting turbine type photobiological reactor used as a light emitting body is known.
  • Separation of high-productivity microalgae and establishment of optimal production conditions with such a photobioreactor are essential for increasing biomass productivity, and microalgae are highly dependent on productivity of light quantity, temperature and carbon dioxide. Separation and optimal culture conditions for high-productivity microalgae should take these photosynthetic requirements into account, but controlling the conditions of light quantity, temperature and carbon dioxide is difficult in a laboratory environment.
  • an object of the present invention is to provide a high-throughput photobiological reactor which establishes optimum production conditions by culturing microorganisms in various environments by establishing various wide range and temperature conditions. It's there.
  • the present invention provides a high-throughput photobiological reactor that can more accurately set the optimum conditions required for the production of microalgae, and can easily and simply adjust the light quantity and temperature, even if the skilled researchers are not skilled It aims to do it.
  • the chamber; and the plate is installed in the chamber, the plurality of wells are mounted; and is installed inside the chamber to irradiate light toward the plate
  • a light quantity adjusting means positioned at an upper portion of the plate to vary the amount of light irradiated to the plurality of wells, and a temperature adjusting unit for adjusting a temperature of the plate.
  • the light source is provided in the chamber, and may be at least one of a light emitting diode (LED) and organic light emitting diodes (OLED).
  • LED light emitting diode
  • OLED organic light emitting diodes
  • the light amount adjusting means may be a light amount adjusting film positioned between the plate and the light source and having a gradation.
  • the light amount control film may be formed to have a gradual gradation to become transparent in achromatic color from one side to the other side in the longitudinal direction.
  • the light amount control film may be formed to have a gradual gradation to become transparent in a chromatic color from one side to the other side in the longitudinal direction.
  • the light amount adjusting means may be a dimmer connected to the light source to control the current supply amount to adjust the brightness of the light source.
  • the plurality of light sources are formed in at least two groups so that the groups are spaced apart in the longitudinal direction, and the dimmers are connected to the light sources of the group, including at least two, and the amount of light according to each group. Can be adjusted differently.
  • the temperature control unit is located in the lower portion of the plate, the hot water or heated air is injected, the first temperature control pipe for adjusting the temperature of the plate and cold water or cold air is injected to control the temperature of the plate And a temperature control block including a second temperature control pipe, and a temperature diffusion plate positioned between the temperature control block and the plate to maintain the temperature of the plate.
  • the first temperature control pipe and the second temperature control pipe may be arranged spaced apart from each other in the lateral direction.
  • the temperature control unit a plurality of semiconductor devices extending in the longitudinal direction of the plate; and a temperature control device for controlling the temperature of the plate by heating or cooling the semiconductor device;
  • the semiconductor devices may be spaced apart from each other in the lateral direction.
  • the optical bioreactor a control unit for controlling the light quantity of the light amount adjusting means and the temperature of the temperature control unit; and receiving and visually displaying a signal relating to the temperature and the light quantity from the control unit, It may further include a monitoring unit for receiving a setting of the user for control.
  • the temperature control unit the first TEC module (Thermo-Electric Cooling module) that is heated or cooled to the temperature input by the control unit; and is installed to be spaced apart from the first TEC module, by the control unit
  • a second TEC module having a higher temperature than that of the first TEC module; and an upper surface thereof is installed in surface contact with the lower surface of the plate, one lower surface of the second TEC module being in contact with the first TEC module, and the other lower surface thereof is the second TEC module.
  • a plate-shaped temperature gradient block in which both end portions are heated or cooled to different temperatures by the first TEC module and the second TEC module to form a temperature gradient.
  • the plate may include the first TEC module.
  • the temperature may be adjusted while generating a temperature gradient in the lateral direction by the temperature difference between the module and the second TEC module.
  • the temperature controller may further include a temperature sensor attached to the first TEC module and the second TEC module to sense a temperature.
  • control unit may finely increase or decrease the temperature of the first TEC module and the second TEC module by PWM (Pulse Width Modulation) control.
  • PWM Pulse Width Modulation
  • the light source is provided in the chamber, the printed circuit board (PCB) having a predetermined circuit pattern, and the LED unit consisting of a plurality of LED elements disposed on the PCB and having the same amount of light in the longitudinal direction
  • the LED substrate unit including a plurality of LED modules are arranged, wherein the light amount adjusting means, by the electronic control of the control unit, the plurality of LED units generates different amounts of light, the light gradient in the longitudinal direction to the LED module It can be made to form.
  • the LED substrate may be detachably provided in the chamber so that the LED substrate may be replaced with various kinds of light sources.
  • the high-throughput photobioreactor by culturing microorganisms in various environments by establishing a wide range of wide range and temperature conditions, it is possible to obtain the effect of establishing the optimum production conditions.
  • FIG. 1 is a view showing a photobioreactor according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of a photobioreactor according to an embodiment of the present invention.
  • FIG. 3 is a block diagram of a photobioreactor according to an embodiment of the present invention.
  • FIG. 4 is a view showing a light amount control means of the photobiological reactor according to an embodiment of the present invention.
  • FIG. 5 is a view showing a temperature control unit of the photobioreactor according to an embodiment of the present invention.
  • FIG. 6 is a view showing a temperature control unit of the photobioreactor according to an embodiment of the present invention.
  • FIG. 7 is a photograph of a photobioreactor according to an embodiment of the present invention.
  • FIG. 8 is a graph showing a temperature gradient and a light gradient of the photobioreactor according to an embodiment of the present invention.
  • FIG 9 is a graph showing the optimum growth conditions when culturing P.kessleri JD076 using the photobioreactor of the present invention ((A) absorbance value, (b) growth rate).
  • FIG 10 is a graph showing the optimal conditions of neutral lipid production when P.kessleri JD076 was cultured in an air feed culture using the photobioreactor of the present invention ((A) fluorescence intensity per unit cell (nile red intensity), ( B) neutral lipid productivity).
  • FIG. 11 is a graph confirming the growth optimum conditions when the P.kessleri JD076 cultured under 5% CO2 supply ((A) absorbance value, (B) growth rate).
  • FIG. 12 is a side view showing a photobioreactor according to another embodiment of the present invention.
  • FIG. 13 is a front view showing a photobioreactor according to another embodiment of the present invention.
  • FIG. 14 is a view of an example of a light source applied to another embodiment of the present invention as viewed from below.
  • 15 is a view of the plate and the temperature control unit applied to another embodiment of the present invention seen from above.
  • FIG. 16 is a side view of FIG. 15 viewed from the right side.
  • the present invention relates to a high throughput photobioreactor capable of culturing photosynthetic microorganisms in a variety of environments by establishing various broad range and temperature conditions in one culture.
  • photosynthetic microorganism means green algae, red algae, cyanobacteria capable of photosynthesis, for example, chlorella, Chlamydomanas, Haematococous, Botryococcus, Sene Scenedesmus, Spirulina, Tetraselmis, Dunaliella, and the like, but are not limited thereto.
  • the microalgae can produce carotenoids, cells, phycobiliproteins, lipids, carbohydrates, unsaturated fatty acids, and proteins in culture vessels.
  • the high throughput photobioreactor 100 is installed in a chamber 101, the chamber 101, and a plate 110 on which a plurality of wells 111 are mounted .
  • the light source 120 for irradiating light toward the plate 110, provided between the plate 110 and the light source 120 is irradiated to the plurality of wells 111 It comprises a light quantity adjusting means 130 for varying the amount of light and a temperature control unit 200 for adjusting the temperature of the plate 110.
  • the chamber 101 is a conventional one formed with a receiving space of a predetermined size therein, a door that can open and close the interior may be installed.
  • the plate 110 may be mounted in the chamber 101, and the light source 120, the light amount adjusting unit 130, and the temperature adjusting unit 200 may be mounted in the chamber 101.
  • the plate 110 may be equipped with a plurality of wells 111 in one frame, and the plurality of wells 111 may be aligned to efficiently detect various types of information in each well 111.
  • FIG. 1 an example in which 96 wells 111 are mounted is illustrated, but four, eight, sixteen, and twenty-four wells 111 may be used according to a desired culture purpose.
  • the well 111 may be any shape such as a square column, a cylinder, a rhombus column, and a test tube shape as long as it can contain a liquid.
  • the well 111 may be in the form of a square column or a cylinder having a flat bottom surface for optical detection.
  • the light required in the process of growing photosynthetic microorganisms may be irradiated from the light source 120 installed in the upper portion of the chamber 101.
  • the light source 120 may be a light emitting diode (LED) or organic light emitting diodes (OLED).
  • the driving of the light sources 120 may use one kind of light sources 120 or two or more kinds of light sources 120 in combination.
  • the photobioreactor 100 of the present invention can build a wide range of a single culture, which is provided by the light amount control film 131 between the plate 110 and the light source 120, each well The amount of light transmitted to 111 may be adjusted differently.
  • the light amount control film 131 may be formed to have a gradation in transparency or color from one side to the other side, for example, may be formed to have a gradation that is gradually transparent in achromatic color from one side to the other side. In addition, it may be formed to have a gradation of transparent color gradually from dark gray to one side from the other side. In another embodiment, the layer may be formed to have a gradation that becomes transparent in color from one side to the other side.
  • achromatic color refers to a generic term for an uncolored object color ranging from white to gray to black color
  • chromic color refers to a color having a color among objects.
  • the fluid color may be red, green, blue purple, or the like.
  • it may be formed to have a gradation of a transparent color gradually from red to the other side from one side, and may be formed to have a gradation of a transparent color gradually from blue.
  • the light amount control film 130 may be a film printed to produce a gradation effect using a specific paint.
  • the light amount adjusting means 130 may be a dimmer 132 for differently adjusting the light amount of the light source 120.
  • the plurality of light sources 110 may be formed in at least two groups, and the groups may be spaced apart in the longitudinal direction, and the dimmers 132 may include at least two light sources 120 of the group.
  • the amount of light can be adjusted differently according to each group. For example, it may be composed of eight groups, and the light amount of the eight groups may be adjusted to be different from each other.
  • the brightness of the light source may be adjusted by controlling the supply amount of current for each light source through the dimmer 132.
  • the temperature control unit 200 includes a temperature control block 220 and the temperature diffusion plate 210, the chamber 101 using the temperature diffusion plate 210 and the temperature control block 220 for temperature control. It can maintain a constant temperature inside.
  • the temperature control block 220 may be composed of a first temperature control pipe 221 and a second temperature control pipe 222. That is, it is composed of a water circulation system including a plurality of circulation tubes, by circulating the water at a set temperature, it is possible to variously adjust the temperature of the plate 110.
  • the first temperature control pipe 221 is injected with hot water or heated air, it is possible to adjust the temperature of the plate 110, the second temperature control pipe 222 is injected with cold water or cold air to the The temperature of the plate 110 may be adjusted.
  • hot water or heated air injected into the first temperature control pipe 221 may be 30 to 50 ° C.
  • cold water or cold air injected into the second temperature control pipe 222 may be 4 to 15 ° C.
  • the specific growth rate of the microorganism is greatly affected by the environment in which the microorganism grows, in particular by the culture temperature.
  • the photobioreactor 100 is to be maintained at a temperature suitable for the growth and production of microorganisms, the heat transfer phenomenon and temperature control in the reactor is an important factor in determining the characteristics and efficiency of the photobioreactor.
  • the photobioreactor 100 in the present invention is controlled by injecting hot water and cooling water using the temperature control block 220, the temperature of the culture solution by the temperature diffusion plate 210 can be maintained substantially constant.
  • the temperature controller 200 may be formed of a semiconductor device 231. More specifically, the temperature controller 200 may include a plurality of semiconductor devices 231 extending in a longitudinal direction. And a temperature controller (not shown) for controlling the temperature of the plate 110 by heating or cooling the semiconductor device 231, wherein the semiconductor device 231 is a temperature control block 220. Similarly, the temperature can be controlled by being spaced apart from each other in the lateral direction.
  • the photobioreactor 100 of the present invention may further include a gas supply unit for supplying carbon dioxide into the chamber 101, wherein the gas supply unit supplies a supply pipe connected to the chamber 101 and the supply unit. Is installed on one side of the pipe may include a supply pump for pumping to supply carbon dioxide into the chamber (101).
  • an additional detection method may be performed in the photobioreactor 100 of the present invention in order to detect various types of photosynthetic microorganisms cultured in the well 111 at the bottom of each well 111. For example, dissolved oxygen, carbon dioxide, pH, etc. in the well 111 may be monitored through additional detection methods.
  • BG11 medium was prepared by mixing Stock No. 1 to Stock No. 9 disclosed in Table 1.
  • K 2 HPO 4 , ammonium ferric citrate and trace metal solution were sterilized separately and added after sterilization of the medium.
  • trace metal solutions include H 3 BO 3 , MnCl 2 4H 2 O, ZnSO 4 7H 2 O, Na 2 MoO 4 2H 2 O, CuSO 4 5H 2 O and Co (NO 3 ) as shown in Table 1 below. 2 ⁇ 6H 2 O was mixed and 1 ml per 1 L was diluted and used.
  • a light source was used as an LED lamp, and the light quantity was measured using a Li-COR (Li-198) light meter (Li-COR, USA), and the temperature was measured using an IR thermometer (FLUKE, USE). The temperature of was measured. The measurement was repeated three times to give an average value, and the temperature gradient and light gradient occurring in each well are shown in FIG. 8. The temperature was 15 to 33 ° C., and the light was generated in the range of 4 to 450 ⁇ mol / m 2 / s.
  • OD cell density
  • Parachlorella kessleri (parachlorella kessleri. JD076) was cultured using the photobioreactor 100 in Experimental Example 1, and the absorbance, cell mass, and neutral lipid content after culture were measured in this Experimental Example.
  • FIG. 9 is a graph showing the absorbance (A) and growth rate (B) when P.kessleri JD076 was cultured using the photobioreactor 100 of the present invention.
  • A absorbance
  • B growth rate
  • the optimum range is 29 ⁇ 30 °C temperature range in the section of the increase in the biomass
  • the light conditions showed the optimal conditions at 150 ⁇ 250 ⁇ mol / m 2 / s.
  • this result was analyzed in the same manner as the result of converting the absorbance value to the growth rate, it was confirmed that the maximum growth rate is 0.4 / day.
  • FIG. 10 is a graph showing the optimal conditions of neutral lipid production when P.kessleri JD076 was cultured in an air feed culture using the photobioreactor 100 of the present invention ((A) fluorescence per unit cell, (B) neutral) Lipid productivity).
  • FIG. 11 is a graph ((A) absorbance value and (B) growth rate) showing optimal conditions when P.kessleri JD076 was cultured under 5% CO 2 .
  • the optimum culture period was 24 ⁇ 30 °C, it was confirmed that the light conditions are 400 ⁇ mol / m 2 / s. Also, the absorbance value and growth rate of cell mass were higher when carbon dioxide was supplied than when carbon dioxide was not supplied. More specifically, the cell mass was 0.55, and the growth rate was confirmed to be 0.8 / day.
  • FIGS. 12 to 16 a high throughput photobioreactor 100 according to another embodiment of the present invention will be described.
  • the high throughput photobiological reactor 100 according to another embodiment shown in FIGS. 12 to 16 has a light source 520, a light quantity adjusting means, and a temperature control as compared to the embodiment shown in FIGS. 1 to 11. There is a difference in the unit 600, there is a difference in that the vibration means 700 is added. Therefore, hereinafter, a detailed description of the same configuration as the above embodiment will be omitted.
  • the high throughput photobioreactor 100 includes a control unit for controlling the light quantity of the light quantity adjusting means 130 and the temperature of the temperature control unit 600. 300 and a monitoring unit 400 for receiving a signal related to the temperature and the amount of light from the control unit 300 to visually display and receiving a user's setting for control of the control unit 300.
  • the control unit 300 may control the light amount of the light amount adjusting unit 130 and the temperature of the temperature control unit 600 to be adjusted to a predetermined value.
  • the controller 300 may include a main board having a main control unit (hereinafter referred to as MCU) installed in the chamber 101.
  • MCU main control unit
  • the light source 520, the light amount adjusting means 130, and the temperature controller 600 may be electrically connected to the MCU to adjust the temperature and the light amount by the MCU.
  • control unit 300 is not limited to the illustrated embodiment and the above example, and if the light quantity adjusting means 130 and the temperature control unit 600 is electrically connected to control the temperature and the light quantity Various modifications are possible.
  • the monitoring unit 400 may receive a signal related to the temperature and the amount of light from the control unit 300 and visually display it, and receive a user's setting for control of the control unit 300.
  • the monitoring unit 400 may be configured as a touch screen so that a user may easily check information and input information.
  • the monitoring unit 400 is connected to the control unit 300 provided to the MCU, it is possible to check the information on the light quantity and temperature in real time and to easily set the appropriate temperature.
  • the current temperature and the expected temperature by the setting may be displayed on the touch screen.
  • the current intensity of the LED provided to the light source 520 may be checked and a desired intensity may be set.
  • the monitoring unit 400 is not limited to the above-described embodiment, and various modifications are possible if the user can receive and display a signal from the control unit 300 and input the necessary information.
  • microalgae When using the high throughput optical bioreactor 100 according to another embodiment of the present invention, by providing a control unit 300 and a monitoring unit 400 connected to the control unit 300 to control the temperature and light amount electronically, microalgae It is possible to more accurately set the optimum conditions required for the production of, and even if you are not a skilled researcher can obtain an excellent effect that can easily and simply adjust the amount of light and temperature.
  • the temperature control unit 600 applied to another embodiment of the present invention, the first TEC is heated or cooled to the temperature input by the control unit 300 Module 610 (Thermo-Electric Cooling module), the second TEC module 620 is installed to be spaced apart from the first TEC module 610, the temperature is higher than the first TEC module 610, the upper surface
  • the lower surface of the plate 110 is installed in surface contact, one lower surface is in contact with the first TEC module 610, the other lower surface is in contact with the second TEC module 620, the first TEC module 610 and the first 2
  • the temperature gradient block 630 of the plate-shaped temperature gradient block 630 in which both ends are heated or cooled to a different temperature to form a temperature gradient, and the temperature of the first TEC module 610 and the second TEC module 620. It may include a control unit 300 to control the.
  • the temperature of the plate 110 may be adjusted while a temperature gradient is generated in the well 111 by a temperature difference between the first TEC module 610 and the second TEC module 620.
  • the temperature gradient block 630 may be formed in a plate shape, the upper surface may be installed to be in surface contact with the entire surface of the lower surface of the plate 110, a portion of the lower surface of the first TEC module 610 and the first 2 may be installed in contact with the TEC module 620.
  • the temperature gradient block 630 is made of a material having good thermal conductivity to transfer the temperature of the first TEC module 610 and the second TEC module 620 to the plate 110 to the well 111 of the plate 110. Can be heated or cooled.
  • the first TEC module 610 may be heated or cooled to a temperature received by the controller 300.
  • the second TEC module 620 may be installed to be spaced apart from the first TEC module 610, and a temperature higher than that of the first TEC module 610 may be input by the controller 300.
  • the chamber 101 may include a cooling fan 640 that may induce the flow of air when the first TEC module 610 and the second TEC module 620 are cooled, and an outlet of air, although not shown. Can be.
  • the temperature gradient block 630 has one lower surface contacting the first TEC module 610 and the other lower surface contacting the second TEC module 620 so that the first TEC module 610 and the second TEC module are in contact with each other.
  • both ends may be heated or cooled to different temperatures, thereby forming a temperature gradient in the transverse direction.
  • the temperature gradient block 630 of the region corresponding to the space (see Fig. 13) between the first TEC module 610 and the second TEC module 620 in the transverse direction A temperature gradient can be formed.
  • the well 111 mounted on the plate 110 may be in surface contact with the temperature gradient block 630 to receive a temperature, thereby causing a temperature gradient in the lateral direction. Therefore, in the plurality of wells 111, various temperature conditions may be formed within a temperature range between the first TEC module 610 and the first TEC module 610.
  • thermoelectric module applied to the temperature control unit 600 of another embodiment of the present invention, as shown in the embodiment, a plurality of thermoelectric elements are formed thinly arranged, the first TEC module 610 and the second TEC module 620 By arranging the spaces apart at appropriate intervals, in particular, the temperature setting in the low temperature region may be possible. Therefore, the photobioreactor 100 according to another embodiment of the present invention can easily set a wide range of temperature environment, it is possible to obtain the effect of culturing various kinds of microalgae.
  • the temperature controller 600 may further include temperature sensors 651 and 652 attached to the first TEC module 610 and the second TEC module 620 to sense temperature.
  • the temperature sensors 651 and 652 may be attached to the first TEC module 610 and the second TEC module 620, respectively, and detect and control the temperature of the first TEC module 610 and the second TEC module 620.
  • a signal can be sent to 300.
  • the controller 300 may transmit the temperature information received from the temperature sensors 651 and 652 to the monitoring unit 400, and the user may check the current temperature in real time through the monitoring unit 400.
  • control unit 300 may finely increase or decrease the temperature of the first TEC module and the second TEC module by PWM (Pulse Width Modulation) control.
  • PWM Pulse Width Modulation
  • the controller 300 provided to the MCU converts the input temperature signal into a PWM signal and outputs the PWM signal, so that the temperature of the first TEC module and the second TEC module gradually increases or decreases (for example, 0.1 ° C./sec). You can do that.
  • the light source 520 is provided inside the chamber 101, and is disposed on a printed circuit board (PCB) on which a predetermined circuit pattern is formed and on the PCB.
  • the LED unit 525 including the plurality of LED elements 527 having the same light amount may be configured as the LED substrate 521 including the LED modules 523 in which the plurality of LED units 525 are arranged in the longitudinal direction.
  • the light amount adjusting unit 130 may be configured such that a light gradient is formed in the LED module 523 in the longitudinal direction by generating a plurality of LED units 525 by the electronic control of the controller 300. .
  • the light source 520 is provided to the LED substrate 521 including the LED element 527
  • the LED substrate 521 may include a PCB and the LED module 523.
  • the LED module 523 may be arranged in the longitudinal direction of the LED unit 525 formed in the horizontal direction
  • the LED unit 525 may include a plurality of LED elements 527 disposed in the longitudinal direction.
  • the number of LED elements 527 may be provided to correspond to the number of wells 111 mounted on the plate 110.
  • the controller 300 may control the plurality of LED units 525 arranged in the longitudinal direction to have different amounts of light, and more preferably, the amount of light gradually increases from one side of the longitudinal direction to the other side. Can be controlled. Accordingly, the LED module 523 is capable of irradiating light of various sizes in the longitudinal direction to the wells 111 mounted on the plate 110 by forming a gradient of the amount of light in the longitudinal direction.
  • the light amount adjusting unit 130 performs the control of the light amount through the electronic control of the MCU provided to the control unit 300, the light amount adjusting unit 130 can provide the desired amount of light more accurately and easily.
  • the LED substrate 521 may be detachably provided in the chamber 101 so that the LED substrate 521 may be replaced with various kinds of light sources 520.
  • the LED substrate 521 may be bolted by the fastening member 540 inside the cover 103 of the chamber 101.
  • the LED substrate 521 is replaced with another light source 520 (for example, an LED module 523 that emits a different color)
  • the bolt of the fastening member 540 is removed and the other LED is removed. It can be assembled by replacing with the substrate portion 521.
  • one side of the LED substrate 521 may include a power connection terminal 545 that receives power and light quantity information from the controller 300.
  • the power connection terminal 545 may include a plurality of pins corresponding to the pins of the PCB circuit of the LED substrate 521, and a plurality of wires for transmitting a signal from the controller 300 may be detachably connected. . Accordingly, even when the LED board unit 521 is replaced with the other LED board unit 521, the same light quantity information can be received by the power connection terminal 545 from the controller 300.
  • the amount of light is controlled by the light amount adjusting means 130 even after replacing the LED substrate 521, it is possible to further increase the cultivation efficiency by replacing without limitation to the kind of suitable LED light of the photo organism to be cultured.
  • the method of installing the LED substrate 521 in the chamber is not limited to the illustrated embodiment, and various modifications are possible as long as the LED substrate 521 can be detachably assembled.
  • control unit 300 may include a constant current IC for flowing a constant current by control from the outside to supply a constant current to the LED module 523.
  • the MCU provided to the controller 300 includes a constant current IC, it is possible to stably supply a constant current having a constant size to the plurality of LED elements 527 by external control.
  • the high throughput photobioreactor 100 is installed to surround the edge of the plate 110, and the plate is formed by its own weight. It may further include a well holder 115 for close contact with the 110 and the temperature gradient block 630.
  • the well holder 115 may be formed in a shape corresponding to the shape of the plate 110 and may be formed in a frame shape having a hollow portion into which the edge of the plate 110 may be fitted. And, more preferably, it may be made of a metal having a large mass.
  • the plate 110 may be in close contact with the temperature gradient block 630 by the weight of the well holder 115. Therefore, the well holder 115 may provide an effect of efficiently transferring the temperature of the temperature gradient block 630 to the plate 110 by bringing the plate 110 into close contact with the temperature gradient block 630.
  • the photobioreactor 100 is coupled to the well holder 115, and the plate 110 is performed to perform the stirring operation in the well 111.
  • Vibration means 700 for generating a vibration of) may be further included.
  • the vibration means 700 may be made of, for example, a vibration motor, but is not limited thereto, and various modifications may be made if the plate 110 may be vibrated.
  • the vibrating means 700 may be installed in a plurality of spaced apart from the well holder 115. That is, in the illustrated embodiment, the case in which two up and down are installed in the well holder 115 is illustrated, but is not limited thereto, and three or more vibration motors may be arranged at regular intervals.
  • the high-throughput photobioreactor by culturing microorganisms in various environments by establishing a wide range of wide range and temperature conditions, it is possible to obtain the effect of establishing the optimum production conditions.
  • the control unit for controlling the temperature and the amount of light electronically and a monitoring unit connected to the control unit, it is possible to more accurately set the optimal conditions for the production of microalgae Even if you are not an experienced researcher, you can easily and simply control the light quantity and temperature.

Abstract

The present invention provides a high throughput photobioreactor. The high throughput photobioreactor may comprise: a chamber; a plate which is installed on the inside of the chamber and has a plurality of wells mounted thereon; a plurality of light sources which are installed on the inside of the chamber so as to radiate light in the plate direction; a light quantity control means which is positioned on the upper section of the plate so as to vary the quantity of light radiated on the plurality of wells; and a temperature control unit for controlling the temperature of the plate.

Description

고 처리량 광생물 반응기High throughput photobioreactor
본 발명은 고 처리량 광생물 반응기에 관한 것이며, 더욱 상세하게는 광합성 미생물을 배양할 수 있는 고 처리량 광생물 반응기에 관한 것이다.The present invention relates to high throughput photobioreactors, and more particularly to high throughput photobioreactors capable of culturing photosynthetic microorganisms.
전 세계적으로 석유, 천연가스 등의 고갈, 수급체계의 불안정성 등의 고유가 위기가 조성되고 있으며, 이와 더불어 기후변화, 환경파괴 등의 생태계 보호를 위하여 화석에너지의 사용 제한이 가시화되고 있는 실정이다.High oil prices such as depletion of petroleum and natural gas and instability of supply and demand systems are being created all over the world, and the use of fossil energy is becoming visible to protect ecosystems such as climate change and environmental destruction.
이에 따라 세계 각국은 신재생 에너지 개발은 물론, 기존의 화력발전의 효율 증대와 친환경 재고에 힘을 기울이고 있으며, 광합성 미생물 등을 이용한 생물학적 에너지 생산기술도 각광을 받고 있다.As a result, countries around the world are concentrating on the development of renewable energy as well as the efficiency of existing thermal power generation and eco-friendly inventory. Biological energy production technology using photosynthetic microorganisms is also in the spotlight.
최근에는 바이오연료 생산에 따른 곡물자원의 가격 인상과 식량자원에 관한 우려로 광합성 미생물 이용 연구가 수송용 바이오연료 생산에 초점을 맞추어 광합성 미생물의 유전체, 유전자 등 기초 연구뿐만 아니라, 미생물 개량, 반응기, 시스템 연구 등 응용연구가 대규모로 진행되고 있다.Recently, research on the utilization of photosynthetic microorganisms has focused on the production of biofuels for transportation due to the increase in the price of grain resources and food resources due to biofuel production. Applied research such as system research is being conducted in large scale.
광합성 미생물은 물, 이산화탄소와 햇빛을 이용하여 성장이 가능하며, 황무지, 해안가, 바다 등 어디서든 배양할 수 있어 기존 육상작물과 토지나 공간 측면에서 상호 경쟁하지 않는다. 광합성 미생물은 배양조건에 따라 생체 내에 많은 양의 지질(최대 70%)을 축적하며, 단위 면적당 오일(지질) 생산량이 콩과 같은 기존 식용작물에 비해 50-100배 이상 높아 대체 생물원유로서의 기능성이 매우 높다. 미세조류 등 광합성 미생물을 원료로 생산한 바이오디젤은 기존 경유에 비해 미세분진, 황화합물 등의 오염물질 배출을 크게 줄일 수 있어 친환경 자동차 연료로 적합하다.Photosynthetic microbes can grow using water, carbon dioxide, and sunlight, and can be cultured anywhere in the wilderness, on the coast, or in the sea, and thus do not compete with existing land crops in terms of land or space. Photosynthetic microorganisms accumulate a large amount of lipids (up to 70%) in living organisms depending on culture conditions, and produce more than 50-100 times more oil (lipid) per unit area than conventional edible crops such as soybeans. Very high. Biodiesel, which is produced from photosynthetic microorganisms such as microalgae, can reduce pollutants such as fine dust and sulfur compounds significantly compared to existing diesel fuels.
이러한 광합성 미생물을 효율적으로 생산하기 위해 고효율 광생물 반응기 및 고농도 배양기술의 개발이 시도되고 있으며, 미세조류와 같은 광합성 미생물을 배양하는 방법은 크게 옥외배양법과 광생물 반응기를 이용하는 방법으로 나눌 수 있다.In order to efficiently produce such photosynthetic microorganisms, development of high-efficiency photobioreactors and high concentration culture technologies has been attempted, and methods of culturing photosynthetic microorganisms such as microalgae can be largely divided into outdoor culture methods and photobioreactors.
옥외배양법의 경우는 연못형태나 외륜으로 배지를 순환시키는 수로형태를 예로 들 수 있는데, 설치비나 운영비가 적게 드는 반면, 고농도의 배양이 힘들고 다른 미생물에 의해 오염되기 쉬워 광합성 산물의 회수비용이 증가한다는 단점이 있다.In the case of the outdoor culture method, for example, the form of a pond or a channel that circulates the medium through the outer ring is an example of a low installation cost and an operating cost, while it is difficult to cultivate a high concentration and contaminated by other microorganisms, thereby increasing the recovery cost of the photosynthetic product. There are disadvantages.
따라서, 광합성 미생물을 이용한 바이오연료, 의약품, 건강식품, 사료 등 고부가가치 물질의 생산이 가능하게 되고, 특히 생물학적 이산화탄소 고정화 공정에 광합성 미생물의 고농도 대량배양 기술이 필수적으로 요구됨에 따라 배양효율이 높은 광생물 반응기에 대한 수요가 증대되고 있는 실정이다.Therefore, it is possible to produce high value-added substances such as biofuels, medicines, health foods, feeds, etc. using photosynthetic microorganisms, and in particular, high concentration and mass culture technology of photosynthetic microorganisms is essential for the biological carbon dioxide immobilization process. The demand for bioreactors is increasing.
현재 국내에서 개발된 대한민국 특허 제10-0283026호에서 광생물 반응기의 형태는 원통형 내부도관을 발광체를 이용한 공기부양식 광생물 반응기가 개시되어 있으며, 대한민국 특허 공개 제10-2003-0018196호에서는 교반기를 발광체로 이용한 발광터빈형 광생물 반응기가 알려져있다.At present, the type of optical bioreactor in Korea Patent No. 10-0283026 developed in Korea is disclosed as an air-induced photobioreactor using a cylindrical inner conduit as a light emitter, and in Korean Patent Publication No. 10-2003-0018196 The light emitting turbine type photobiological reactor used as a light emitting body is known.
이러한 광생물 반응기로 고 생산성 미세조류의 분리 및 최적의 생산조건을 확립하는 것은 바이오매스 생산성 증가를 위해 필수적이며, 미세조류는 광량, 온도 그리고 이산화탄소의 조건에 의해 생산성이 크게 좌우된다. 생산성이 높은 미세조류의 분리 및 최적 배양 조건은 이러한 광합성의 필수 요건들을 고려하여야 하지만 실험실 환경에서 광량, 온도 및 이산화탄소의 조건을 조절하는 것은 쉽지 않다.Separation of high-productivity microalgae and establishment of optimal production conditions with such a photobioreactor are essential for increasing biomass productivity, and microalgae are highly dependent on productivity of light quantity, temperature and carbon dioxide. Separation and optimal culture conditions for high-productivity microalgae should take these photosynthetic requirements into account, but controlling the conditions of light quantity, temperature and carbon dioxide is difficult in a laboratory environment.
이에 따라, 최적의 생산조건의 확립을 할 수 있는 광생물 반응기가 필요한 실정이다.Accordingly, there is a need for a photobioreactor capable of establishing optimal production conditions.
본 발명은 상기와 같은 종래 문제점을 해소하기 위하여 제안된 것으로서 그 목적 측면은, 다양한 광범위와 온도 조건을 구축하여 다양한 환경에서 미생물을 배양함으로써, 최적의 생산조건을 확립하는 고처리량 광생물 반응기를 제공하는 데에 있다. The present invention has been proposed in order to solve the conventional problems as described above, an object of the present invention is to provide a high-throughput photobiological reactor which establishes optimum production conditions by culturing microorganisms in various environments by establishing various wide range and temperature conditions. It's there.
또한, 본 발명은 다른 측면으로써, 미세조류의 생산에 필요한 최적의 조건을 더욱 정확하게 설정할 수 있고, 숙련된 연구원이 아닌 경우에도 용이하고 간편하게 광량과 온도 등을 조절할 수 있는 고처리량 광생물 반응기를 제공하는 것을 목적으로 한다.In another aspect, the present invention provides a high-throughput photobiological reactor that can more accurately set the optimum conditions required for the production of microalgae, and can easily and simply adjust the light quantity and temperature, even if the skilled researchers are not skilled It aims to do it.
상기와 같은 목적을 달성하기 위한 기술적인 측면으로서 본 발명은, 챔버;와, 상기 챔버 내부에 설치되며, 복수개의 웰이 장착되는 플레이트;와, 상기 챔버 내부에 설치되어 상기 플레이트 방향으로 광을 조사하는 복수개의 광원;과, 상기 플레이트의 상부에 위치하여 상기 복수개의 웰에 조사되는 광량을 다르게 하는 광량 조절 수단;과, 상기 플레이트의 온도를 조절하기 위한 온도조절부;를 포함하는 고 처리량 광생물 반응기를 제공한다. As a technical aspect for achieving the above object, the present invention, the chamber; and the plate is installed in the chamber, the plurality of wells are mounted; and is installed inside the chamber to irradiate light toward the plate And a light quantity adjusting means positioned at an upper portion of the plate to vary the amount of light irradiated to the plurality of wells, and a temperature adjusting unit for adjusting a temperature of the plate. Provide a reactor.
바람직하게, 상기 광원은, 상기 챔버 내에 구비되며, LED(Light emitting diode) 및 OLED(Organic light emitting diodes) 중 적어도 어느 하나일 수 있다. Preferably, the light source is provided in the chamber, and may be at least one of a light emitting diode (LED) and organic light emitting diodes (OLED).
바람직하게, 상기 광량 조절 수단은, 상기 플레이트와 상기 광원 사이에 위치하며 그라데이션(gradation)을 갖는 광량 조절 필름일 수 있다. Preferably, the light amount adjusting means may be a light amount adjusting film positioned between the plate and the light source and having a gradation.
바람직하게, 상기 광량 조절 필름은, 종방향으로 일측으로부터 타측으로 갈수록 무채색에서 투명해지게 점층적으로 그라데이션을 갖도록 형성될 수 있다. Preferably, the light amount control film may be formed to have a gradual gradation to become transparent in achromatic color from one side to the other side in the longitudinal direction.
바람직하게, 상기 광량 조절 필름은, 종방향으로 일측으로부터 타측으로 갈수록 유채색에서 투명해지게 점층적으로 그라데이션을 갖도록 형성될 수 있다.Preferably, the light amount control film may be formed to have a gradual gradation to become transparent in a chromatic color from one side to the other side in the longitudinal direction.
바람직하게, 상기 광량 조절 수단은, 상기 광원과 연결되어 전류 공급량을 제어하여 상기 광원의 밝기를 조절하는 디머일 수 있다. Preferably, the light amount adjusting means may be a dimmer connected to the light source to control the current supply amount to adjust the brightness of the light source.
바람직하게, 상기 복수개의 광원은, 적어도 두 개의 그룹으로 형성되어 상기 그룹이 종방향으로 이격되어 배치되고, 상기 디머는, 적어도 두 개 포함하여 상기 그룹의 광원에 연결되어, 각각의 그룹에 따라 광량을 다르게 조절할 수 있다. Preferably, the plurality of light sources are formed in at least two groups so that the groups are spaced apart in the longitudinal direction, and the dimmers are connected to the light sources of the group, including at least two, and the amount of light according to each group. Can be adjusted differently.
바람직하게, 상기 온도조절부는, 상기 플레이트의 하부에 위치하며, 온수 또는 가열된 공기가 주입되어, 상기 플레이트의 온도를 조절하는 제1온도조절배관과 냉수 또는 냉기가 주입되어 상기 플레이트의 온도를 조절하는 제2온도조절배관을 포함하는 온도조절블록;과, 상기 온도조절블록과 플레이트 사이에 위치하여, 상기 플레이트의 온도를 유지하는 온도확산판;을 포함할 수 있다.Preferably, the temperature control unit is located in the lower portion of the plate, the hot water or heated air is injected, the first temperature control pipe for adjusting the temperature of the plate and cold water or cold air is injected to control the temperature of the plate And a temperature control block including a second temperature control pipe, and a temperature diffusion plate positioned between the temperature control block and the plate to maintain the temperature of the plate.
바람직하게, 상기 제1온도조절배관 및 제2온도조절배관은, 횡방향으로 서로 이격되어 배치될 수 있다. Preferably, the first temperature control pipe and the second temperature control pipe may be arranged spaced apart from each other in the lateral direction.
바람직하게, 상기 온도조절부는, 상기 플레이트의 길이방향으로 확장된 복수개의 반도체소자;와, 상기 반도체소자를 가열 또는 냉각하여, 상기 플레이트의 온도를 조절하는 온도조절장치;를 포함하되, 상기 복수개의 반도체소자는 횡방향으로 서로 이격되어 배치될 수 있다. Preferably, the temperature control unit, a plurality of semiconductor devices extending in the longitudinal direction of the plate; and a temperature control device for controlling the temperature of the plate by heating or cooling the semiconductor device; The semiconductor devices may be spaced apart from each other in the lateral direction.
한편, 바람직하게, 상기 광생물 반응기는, 상기 광량 조절 수단의 광량과 상기 온도조절부의 온도를 제어하는 제어부;와, 상기 제어부로부터 온도와 광량에 관한 신호를 수신하여 시각적으로 표시하고, 상기 제어부의 제어를 위해 사용자의 설정을 입력받는 모니터링부;를 더 포함할 수 있다.On the other hand, preferably, the optical bioreactor, a control unit for controlling the light quantity of the light amount adjusting means and the temperature of the temperature control unit; and receiving and visually displaying a signal relating to the temperature and the light quantity from the control unit, It may further include a monitoring unit for receiving a setting of the user for control.
바람직하게, 상기 온도조절부는, 상기 제어부에 의해 입력된 온도로 가열 또는 냉각되는 제1 TEC모듈(Thermo-Electric Cooling module);과, 상기 제1 TEC모듈과 이격되게 설치되며, 상기 제어부에 의해 상기 제1 TEC모듈보다 높은 온도가 입력되는 제2 TEC모듈;과, 상면이 상기 플레이트의 하면에 면접촉되게 설치되고, 일측 하면이 상기 제1 TEC모듈과 접촉되며, 타측 하면이 상기 제2 TEC모듈과 접촉되어, 상기 제1 TEC모듈과 상기 제2 TEC모듈에 의해 양단부가 상이한 온도로 가열 또는 냉각되어 온도구배가 형성되는 판 형의 온도구배블록;을 포함하여, 상기 플레이트는, 상기 제1 TEC모듈과 상기 제2 TEC모듈 사이의 온도차에 의해 상기 웰에 횡방향으로 온도 구배를 발생하면서 온도가 조절될 수 있다. Preferably, the temperature control unit, the first TEC module (Thermo-Electric Cooling module) that is heated or cooled to the temperature input by the control unit; and is installed to be spaced apart from the first TEC module, by the control unit A second TEC module having a higher temperature than that of the first TEC module; and an upper surface thereof is installed in surface contact with the lower surface of the plate, one lower surface of the second TEC module being in contact with the first TEC module, and the other lower surface thereof is the second TEC module. And a plate-shaped temperature gradient block in which both end portions are heated or cooled to different temperatures by the first TEC module and the second TEC module to form a temperature gradient. The plate may include the first TEC module. The temperature may be adjusted while generating a temperature gradient in the lateral direction by the temperature difference between the module and the second TEC module.
바람직하게, 상기 온도조절부는, 상기 제1 TEC모듈과 상기 제2 TEC모듈에 부착되어, 온도를 감지하는 온도센서;를 더 포함할 수 있다. The temperature controller may further include a temperature sensor attached to the first TEC module and the second TEC module to sense a temperature.
바람직하게, 상기 제어부는, PWM(Pulse Width Modulation) 제어에 의해 상기 제1 TEC 모듈과 제2 TEC 모듈의 온도를 미세하게 상승 또는 하강시킬 수 있다. Preferably, the control unit may finely increase or decrease the temperature of the first TEC module and the second TEC module by PWM (Pulse Width Modulation) control.
바람직하게, 상기 광원은, 상기 챔버 내부에 구비되며, 소정의 회로패턴이 형성된 PCB(printed circuit board)와, 상기 PCB 상에 배치되며 동일한 광량을 가지는 복수의 LED 소자로 이루어진 LED 유닛이 종방향으로 복수개가 배열되는 LED 모듈을 포함하는 LED 기판부로 이루어지며, 상기 광량 조절 수단은, 상기 제어부의 전자적 제어에 의해, 상기 복수의 LED 유닛이 서로 다른 광량을 발생하여 상기 LED 모듈에 종방향으로 광구배가 형성되게 이루어질 수 있다. Preferably, the light source is provided in the chamber, the printed circuit board (PCB) having a predetermined circuit pattern, and the LED unit consisting of a plurality of LED elements disposed on the PCB and having the same amount of light in the longitudinal direction The LED substrate unit including a plurality of LED modules are arranged, wherein the light amount adjusting means, by the electronic control of the control unit, the plurality of LED units generates different amounts of light, the light gradient in the longitudinal direction to the LED module It can be made to form.
바람직하게, 상기 LED 기판부는, 다양한 종류의 광원으로 교체 가능하도록, 상기 챔버에 탈부착 가능하게 구비될 수 있다. Preferably, the LED substrate may be detachably provided in the chamber so that the LED substrate may be replaced with various kinds of light sources.
이와 같은 본 발명의 일 실시예에 의한 고처리량 광생물 반응기에 의하면, 다양한 광범위와 온도 조건을 구축하여 다양한 환경에서 미생물을 배양함으로써, 최적의 생산조건을 확립하는 효과를 얻을 수 있다. According to the high-throughput photobioreactor according to one embodiment of the present invention, by culturing microorganisms in various environments by establishing a wide range of wide range and temperature conditions, it is possible to obtain the effect of establishing the optimum production conditions.
한편, 본 발명의 다른 실시예에 의한 고 처리량 광생물 반응기를 이용하면, 온도와 광량을 전자적으로 제어하는 제어부와 제어부에 연결된 모니터링부를 구비함으로써, 미세조류의 생산에 필요한 최적의 조건을 더욱 정확하게 설정할 수 있고, 숙련된 연구원이 아닌 경우에도 용이하고 간편하게 광량과 온도 등을 조절할 수 있는 우수한 효과를 얻을 수 있다. On the other hand, when using a high throughput photobioreactor according to another embodiment of the present invention, by providing a control unit connected to the control unit and the electronic control of temperature and light quantity, it is possible to more accurately set the optimum conditions for the production of microalgae And, even if you are not a skilled researcher can obtain an excellent effect that can easily and simply adjust the amount and temperature of light.
또한, 본 발명의 다른 실시예에 의하면, 넓은 범위의 온도 환경을 용이하게 설정할 수 있으므로, 다양한 종류의 미세조류를 효율적으로 배양 가능한 효과를 얻을 수 있다.In addition, according to another embodiment of the present invention, since it is possible to easily set a wide range of temperature environment, it is possible to obtain an effect capable of culturing various kinds of microalgae efficiently.
아울러, 본 발명의 다른 실시예에 의하면, LED 기판부를 교체 가능하게 구비함으로써, 배양되는 광생물에 적합한 LED 광을 적용할 수 있어 배양 효율을 더욱 더 증진시킬 수 있다. In addition, according to another embodiment of the present invention, by providing a replaceable LED substrate, it is possible to apply the LED light suitable for the cultured photo organisms can further enhance the culture efficiency.
도 1은 본 발명의 일 실시예에 따른 광생물 반응기를 나타낸 도면이다.1 is a view showing a photobioreactor according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 광생물 반응기의 분해사시도이다.2 is an exploded perspective view of a photobioreactor according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 광생물 반응기의 구성도이다.3 is a block diagram of a photobioreactor according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 광생물 반응기의 광량 조절 수단을 나타낸 도면이다.4 is a view showing a light amount control means of the photobiological reactor according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 광생물 반응기의 온도조절부를 나타낸 도면이다.5 is a view showing a temperature control unit of the photobioreactor according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 광생물 반응기의 온도조절부를 나타낸 도면이다.6 is a view showing a temperature control unit of the photobioreactor according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 광생물 반응기의 사진이다.7 is a photograph of a photobioreactor according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 광생물 반응기의 온도구배와 광구배를 나타낸 그래프이다.8 is a graph showing a temperature gradient and a light gradient of the photobioreactor according to an embodiment of the present invention.
도 9는 본 발명의 광생물 반응기를 이용하여 P.kessleri JD076 을 배양하였을 때의 성장 최적조건을 나타낸 그래프이다((A) 흡광도 값, (b) 성장률).9 is a graph showing the optimum growth conditions when culturing P.kessleri JD076 using the photobioreactor of the present invention ((A) absorbance value, (b) growth rate).
도 10은 본 발명의 광생물 반응기를 이용하여 공기 공급 배양에서 P.kessleri JD076 을 배양하였을 때 중성지질 생산의 최적 조건을 나타낸 그래프이다((A) 단위 세포당 형광광도 (nile red intensity), (B) 중성 지질 생산성).10 is a graph showing the optimal conditions of neutral lipid production when P.kessleri JD076 was cultured in an air feed culture using the photobioreactor of the present invention ((A) fluorescence intensity per unit cell (nile red intensity), ( B) neutral lipid productivity).
도 11은 5% CO2 공급하에서 P.kessleri JD076 을 배양하였을 때의 성장 최적조건을 확인한 그래프이다((A) 흡광도 값, (B) 성장율).11 is a graph confirming the growth optimum conditions when the P.kessleri JD076 cultured under 5% CO2 supply ((A) absorbance value, (B) growth rate).
도 12는 본 발명의 다른 실시예에 따른 광생물 반응기를 나타내는 측면도이다. 12 is a side view showing a photobioreactor according to another embodiment of the present invention.
도 13은 본 발명의 다른 실시예에 따른 광생물 반응기를 나타내는 정면도이다. 13 is a front view showing a photobioreactor according to another embodiment of the present invention.
도 14는 본 발명의 다른 실시예에 적용되는 광원의 일 예를 하측에서 바라본 도면이다. 14 is a view of an example of a light source applied to another embodiment of the present invention as viewed from below.
도 15는 본 발명의 다른 실시예에 적용되는 플레이트와 온도조절부를 상측에서 바라본 도면이다.15 is a view of the plate and the temperature control unit applied to another embodiment of the present invention seen from above.
도 16은 도 15를 우측에서 바라본 측면도이다. 16 is a side view of FIG. 15 viewed from the right side.
이하, 첨부된 도면에 따라 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
먼저, 이하에서 설명되는 실시예들은 본 발명인 고 처리량 광생물 반응기의 기술적인 특징을 이해시키기에 적합한 실시예들이다. 다만, 본 발명이 이하에서 설명되는 실시예에 한정하여 적용되거나 설명되는 실시예들에 의하여 본 발명의 기술적 특징이 제한되는 것이 아니며, 본 발명의 기술 범위 내에서 다양한 변형 실시가 가능하다.Firstly, the embodiments described below are suitable embodiments for understanding the technical features of the present high throughput photobioreactor. However, the technical features of the present invention are not limited by the embodiments described or applied to the embodiments described below, and various modifications are possible within the technical scope of the present invention.
본 발명은 한번의 배양으로 다양한 광범위와 온도 조건을 구축하여 다양한 환경에서 광합성 미생물을 배양할 수 있는 고 처리량 광생물 반응기에 관한 것이다.The present invention relates to a high throughput photobioreactor capable of culturing photosynthetic microorganisms in a variety of environments by establishing various broad range and temperature conditions in one culture.
본 발명에서, 광합성 미생물은 광합성을 할 수 있는 녹조류, 홍조류, 남조류를 의미하며, 예를 들어, 클로렐라, 클라미도모나스(Chlamydomanas), 해마토코커스 (Haematococous), 보트리오 코터스(Botryococcus), 세네데스무스(Scenedesmus), 스피룰리나(Spirulina), 테트라셀미스(Tetraselmis), 두날리엘라(Dunaliella), 등 일 수 있으나, 이에 한정되는 것은 아니다. 이때 상술한 미세조류는 배양용기 내에서 카로테노이드, 균체, 파이코빌리프로테인, 지질, 탄수화물, 불포화지방산, 단백질을 생산할 수 있다.In the present invention, photosynthetic microorganism means green algae, red algae, cyanobacteria capable of photosynthesis, for example, chlorella, Chlamydomanas, Haematococous, Botryococcus, Sene Scenedesmus, Spirulina, Tetraselmis, Dunaliella, and the like, but are not limited thereto. At this time, the microalgae can produce carotenoids, cells, phycobiliproteins, lipids, carbohydrates, unsaturated fatty acids, and proteins in culture vessels.
도 1 내지 도 11을 참조하여 본 발명의 일실시예에 따른 광생물 반응기(100)에 대해 설명한다.1 to 11 will be described with respect to the photobioreactor 100 according to an embodiment of the present invention.
도 1 내지 도 7를 참조하면, 본 발명에 따른 고 처리량 광생물 반응기(100)는 챔버(101), 상기 챔버(101) 내부에 설치되며, 복수개의 웰(111) 장착되는 플레이트(110), 상기 챔버(101) 내부에 설치되어 상기 플레이트(110) 방향으로 광을 조사하는 광원(120), 상기 플레이트(110)와 광원(120) 사이에 구비되어 상기 복수개의 웰(111)에 조사되는 광량을 다르게 하는 광량 조절 수단(130) 및 상기 플레이트(110)의 온도를 조절하기 위한 온도조절부(200)를 포함하여 구성된다.1 to 7, the high throughput photobioreactor 100 according to the present invention is installed in a chamber 101, the chamber 101, and a plate 110 on which a plurality of wells 111 are mounted . Is installed in the chamber 101, the light source 120 for irradiating light toward the plate 110, provided between the plate 110 and the light source 120 is irradiated to the plurality of wells 111 It comprises a light quantity adjusting means 130 for varying the amount of light and a temperature control unit 200 for adjusting the temperature of the plate 110.
먼저, 챔버(101)는 내부에 일정한 크기의 수용공간이 형성된 통상적인 것으로서, 내부를 개폐할 수 있는 도어가 설치될 수 있다. 상기 챔버(101)의 내부에는 플레이트(110)가 장착되며, 광원(120), 광량 조절 수단(130) 및 온도조절부(200) 등이 상기 챔버(101) 내부에 장착될 수 있다.First, the chamber 101 is a conventional one formed with a receiving space of a predetermined size therein, a door that can open and close the interior may be installed. The plate 110 may be mounted in the chamber 101, and the light source 120, the light amount adjusting unit 130, and the temperature adjusting unit 200 may be mounted in the chamber 101.
또한, 플레이트(110)는 하나의 프레임에 복수개의 웰(111)이 장착될 수 있고, 상기 복수개의 웰(111)은 각 웰(111)에서 각종 정보를 효율적으로 검출하기 위하여 정렬될 수 있다. 도 1을 참조하면, 96개의 웰(111)(well)이 장착된 예가 도시되나, 원하는 배양 목적에 따라 4개, 8개, 16개, 24개의 웰(111) 등이 사용될 수 있다. In addition, the plate 110 may be equipped with a plurality of wells 111 in one frame, and the plurality of wells 111 may be aligned to efficiently detect various types of information in each well 111. Referring to FIG. 1, an example in which 96 wells 111 are mounted is illustrated, but four, eight, sixteen, and twenty-four wells 111 may be used according to a desired culture purpose.
이때의 웰(111)은 액체를 담을 수 있는 형태라면 사각기둥, 원기둥, 마름모기둥 및 시험관형 등의 어떤한 형태라도 가능하며, 광학검출을 위해 저면이 평평한 사각기둥 또는 원기둥의 형태일 수 있다.In this case, the well 111 may be any shape such as a square column, a cylinder, a rhombus column, and a test tube shape as long as it can contain a liquid. The well 111 may be in the form of a square column or a cylinder having a flat bottom surface for optical detection.
또한, 광합성 미생물이 생장하는 과정에서 필요한 빛은 챔버(101)내의 상부에 설치된 광원(120)에서 조사할 수 있다. 이때의 광원(120)은 LED(Light emitting diode) 또는 OLED(Organic light emitting diodes) 일 수 있다. 특히, 상기 광원(120)들의 운전은 한 종류의 광원(120)을 사용하거나 두 종류 이상의 광원(120)을 복합적으로 사용할 수 있다. In addition, the light required in the process of growing photosynthetic microorganisms may be irradiated from the light source 120 installed in the upper portion of the chamber 101. In this case, the light source 120 may be a light emitting diode (LED) or organic light emitting diodes (OLED). In particular, the driving of the light sources 120 may use one kind of light sources 120 or two or more kinds of light sources 120 in combination.
이에 더하여, 본 발명의 광생물 반응기(100)는 한번의 배양으로 다양한 광범위를 구축할 수 있으며, 이는 광량 조절 필름(131)이 플레이트(110)와 광원(120)사이에 구비됨으로써, 각각에 웰(111)에 전달되는 광량을 서로 다르게 조절할 수 있다.In addition, the photobioreactor 100 of the present invention can build a wide range of a single culture, which is provided by the light amount control film 131 between the plate 110 and the light source 120, each well The amount of light transmitted to 111 may be adjusted differently.
보다 구체적으로, 상기 광량 조절 필름(131)은 일측으로부터 타측으로 갈수록 투명도 또는 색상에서 그라데이션을 갖도록 형성될 수 있으며, 일 예로 일측으로부터 타측으로 갈수록 무채색에서 점층적으로 투명해지는 그라데이션을 갖도록 형성할 수 있으며, 일측으로부터 타측으로 갈수록 진한 회색에서 점층적으로 투명색의 그라데이션을 갖도록 형성할 수 있다. 다른 양태로서, 일측으로부터 타측으로 갈수록 유채색에서 투명해지는 그라데이션을 갖도록 형성될 수 있다.More specifically, the light amount control film 131 may be formed to have a gradation in transparency or color from one side to the other side, for example, may be formed to have a gradation that is gradually transparent in achromatic color from one side to the other side. In addition, it may be formed to have a gradation of transparent color gradually from dark gray to one side from the other side. In another embodiment, the layer may be formed to have a gradation that becomes transparent in color from one side to the other side.
여기서 무채색이라 함은 백색에서 회색을 거쳐 흑색에 이르는 채색이 없는 물체색의 총칭을 의미하며, 유채색이라 함은 물체의 색 중에서 색상이 있는 색을 의미한다. 유체색은 붉은색, 녹색, 청색 자색 등일 수 있다.Here, the term achromatic color refers to a generic term for an uncolored object color ranging from white to gray to black color, and chromic color refers to a color having a color among objects. The fluid color may be red, green, blue purple, or the like.
일 예로, 일측으로부터 타측으로 갈수록 붉은색에서 점층적으로 투명색의 그라데이션을 갖도록 형성할 수 있으며, 푸른색에서 점층적으로 투명색의 그라데이션을 갖도록 형성할 수 있다.For example, it may be formed to have a gradation of a transparent color gradually from red to the other side from one side, and may be formed to have a gradation of a transparent color gradually from blue.
이러한 광량 조절 필름(130)은 특정 도료를 사용하여 그라데이션 효과를 내도록 인쇄된 필름일 수 있다.The light amount control film 130 may be a film printed to produce a gradation effect using a specific paint.
특정 양태로서, 도 4를 참조하면, 상기 광량 조절 수단(130)은 상기 광원(120)의 광량을 다르게 조절하는 디머(132) 일 수 있다. 보다 구체적으로, 복수개의 광원(110)은 적어도 두개의 그룹으로 형성될 수 있으며, 상기 그룹이 종방향으로 이격되어 배치되고, 상기 디머(132)는 적어도 두개를 포함하여 상기 그룹의 광원(120)과 연결되어 각각의 그룹에 따라 광량을 다르게 조절할 수 있다. 일 예로 8개의 그룹으로 이루어질 수 있으며, 8개의 그룹의 광량이 서로 다르게 하여 조절할 수 있다.As a specific aspect, referring to FIG. 4, the light amount adjusting means 130 may be a dimmer 132 for differently adjusting the light amount of the light source 120. More specifically, the plurality of light sources 110 may be formed in at least two groups, and the groups may be spaced apart in the longitudinal direction, and the dimmers 132 may include at least two light sources 120 of the group. The amount of light can be adjusted differently according to each group. For example, it may be composed of eight groups, and the light amount of the eight groups may be adjusted to be different from each other.
즉, 디머(132)를 통하여, 상기 광원마다 전류의 공급량을 제어하여, 상기 광원의 밝기를 조절할 수 있다.That is, the brightness of the light source may be adjusted by controlling the supply amount of current for each light source through the dimmer 132.
한편, 온도조절부(200)는 온도조절블록(220)과 온도확산판(210)을 포함하며, 온도조절을 위해 온도확산판(210)과 온도조절블록(220)을 이용하여 챔버(101)의 내부를 일정한 온도를 유지할 수 있다.On the other hand, the temperature control unit 200 includes a temperature control block 220 and the temperature diffusion plate 210, the chamber 101 using the temperature diffusion plate 210 and the temperature control block 220 for temperature control. It can maintain a constant temperature inside.
특히, 온도조절블록(220)은 제1온도조절배관(221)과 제2온도조절배관(222)으로 구성될 수 있다. 즉, 복수개의 순환관을 포함하는 물순환 시스템으로 구성되어, 설정된 온도로 물을 순환시켜, 상기 플레이트(110)의 온도를 다양하게 조절할 수 있다.In particular, the temperature control block 220 may be composed of a first temperature control pipe 221 and a second temperature control pipe 222. That is, it is composed of a water circulation system including a plurality of circulation tubes, by circulating the water at a set temperature, it is possible to variously adjust the temperature of the plate 110.
보다 구체적으로, 제1온도조절배관(221)에는 온수 또는 가열된 공기가 주입되어, 상기 플레이트(110)의 온도를 조절할 수 있으며, 제2온도조절배관(222)에는 냉수 또는 냉기가 주입되어 상기 플레이트(110)의 온도를 조절할 수 있다. 이때, 제1온도조절배관(221)으로 주입되는 온수 또는 가열된 공기는 30 내지 50℃일 수 있으며, 제2온도조절배관(222)으로 주입되는 냉수 또는 냉기는 4 내지 15℃ 일 수 있다.More specifically, the first temperature control pipe 221 is injected with hot water or heated air, it is possible to adjust the temperature of the plate 110, the second temperature control pipe 222 is injected with cold water or cold air to the The temperature of the plate 110 may be adjusted. In this case, hot water or heated air injected into the first temperature control pipe 221 may be 30 to 50 ° C., and cold water or cold air injected into the second temperature control pipe 222 may be 4 to 15 ° C.
특히, 미생물의 비성장속도는 미생물이 자라는 환경에 많은 영향을 받는데, 특히 배양온도에 의해 큰 영향을 받는다. 광생물 반응기(100)는 미생물의 성장 및 생산에 적합한 온도로 유지되어야 하는 데 반응기 내의 열전달 현상 및 온도제어는 광생물 반응기의 특성과 효율을 결정하는 중요한 요소가 된다.In particular, the specific growth rate of the microorganism is greatly affected by the environment in which the microorganism grows, in particular by the culture temperature. The photobioreactor 100 is to be maintained at a temperature suitable for the growth and production of microorganisms, the heat transfer phenomenon and temperature control in the reactor is an important factor in determining the characteristics and efficiency of the photobioreactor.
본 발명에서의 광생물 반응기(100)는 온도조절블록(220)을 이용하여 열수와 냉각수를 주입하여 제어되는데 온도확산판(210)에 의해서 배양액의 온도가 거의 일정하게 유지될 수 있다.The photobioreactor 100 in the present invention is controlled by injecting hot water and cooling water using the temperature control block 220, the temperature of the culture solution by the temperature diffusion plate 210 can be maintained substantially constant.
한편, 도 6을 참조하면, 상기 온도조절부(200)는 반도체 소자(231)로 형성될 수 있다 보다 구체적으로, 상기 온도조절부(200)는 길이방향으로 확장된 복수개의 반도체 소자(231)와 상기 반도체소자(231)를 가열 또는 냉각하여 상기 플레이트(110)의 온도를 조절하는 온도조절장치(미도시)를 포함하여 형성될 수 있으며, 상기 반도체소자(231)는 온도조절블록(220)과 마찬가지로 횡방향으로 서로 이격되어 온도를 조절할 수 있다.Meanwhile, referring to FIG. 6, the temperature controller 200 may be formed of a semiconductor device 231. More specifically, the temperature controller 200 may include a plurality of semiconductor devices 231 extending in a longitudinal direction. And a temperature controller (not shown) for controlling the temperature of the plate 110 by heating or cooling the semiconductor device 231, wherein the semiconductor device 231 is a temperature control block 220. Similarly, the temperature can be controlled by being spaced apart from each other in the lateral direction.
이에 더하여, 본 발명의 광생물 반응기(100)는 상기 챔버(101)내부에 이산화탄소를 공급하는 가스공급부를 더 구비할 수 있으며, 상기 가스공급부는 상기 챔버(101)에 연결되는 공급배관과 상기 공급배관의 일측에 설치되어 이산화탄소를 상기 챔버(101) 내부로 공급하도록 펌핑하는 공급펌프룰 포함할 수 있다.In addition, the photobioreactor 100 of the present invention may further include a gas supply unit for supplying carbon dioxide into the chamber 101, wherein the gas supply unit supplies a supply pipe connected to the chamber 101 and the supply unit. Is installed on one side of the pipe may include a supply pump for pumping to supply carbon dioxide into the chamber (101).
그리고, 각 웰(111)의 바닥에는 웰(111)에서 배양되는 광합성 미생물들의 각종정보를 검출하기 위하여 본 발명의 광생물 반응기(100)에서 추가의 검출방법이 진행될 수 있다. 일예로, 웰(111) 내의 용존산소, 이산화탄소, pH 등을 추가의 검출방법을 통해서 모니터링 할 수 있다.In addition, an additional detection method may be performed in the photobioreactor 100 of the present invention in order to detect various types of photosynthetic microorganisms cultured in the well 111 at the bottom of each well 111. For example, dissolved oxygen, carbon dioxide, pH, etc. in the well 111 may be monitored through additional detection methods.
이하, 본 발명의 이해를 돕기 위하여 실험예를 들어 상세하게 설명하기로 한다. 다만 하기의 실험예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실험예에 한정되는 것은 아니다. 본 발명의 실험예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, an experimental example will be described in detail to help the understanding of the present invention. However, the following experimental examples are merely to illustrate the content of the present invention is not limited to the scope of the present invention. Experimental examples of the present invention are provided to more completely explain the present invention to those skilled in the art.
<실험예>Experimental Example
실험예 1. 광합성 미생물 및 배양 조건Experimental Example 1. Photosynthetic microorganisms and culture conditions
본 실험예에서의 광생물 반응기(100)를 이용한 광합성 미생물 배양에는 파라클로렐라 (parachlorella sp. JD076) 균주를 사용하였으며, BG11 배지를 사용하였다. BG11 배지는 표 1에 개시된 Stock No.1 내지 Stock No.9를 혼합하여 제조하였다. 이때, K2HPO4, ammonium ferric citrate 그리고 trace metal solution은 따로 멸균하여 배지 멸균 후 첨가하였다. 특히, trace metal solution 은 아래 표 1에 나타난 바와 같이 H3BO3, MnCl24H2O, ZnSO47H2O, Na2MoO4·2H2O, CuSO45H2O 및 Co(NO3)2·6H2O 을 혼합하였으며, 1L 당 1ml 를 취하여 희석하여 사용하였다.Parachlorella sp. (JD076) strain was used for photosynthetic microbial culture using the photobioreactor 100 in this experimental example, and BG11 medium was used. BG11 medium was prepared by mixing Stock No. 1 to Stock No. 9 disclosed in Table 1. At this time, K 2 HPO 4 , ammonium ferric citrate and trace metal solution were sterilized separately and added after sterilization of the medium. In particular, trace metal solutions include H 3 BO 3 , MnCl 2 4H 2 O, ZnSO 4 7H 2 O, Na 2 MoO 4 2H 2 O, CuSO 4 5H 2 O and Co (NO 3 ) as shown in Table 1 below. 2 · 6H 2 O was mixed and 1 ml per 1 L was diluted and used.
Stock No.Stock No. 배지성분Medium 용량Volume
1One NaNO3 NaNO 3 15 g/L15 g / L
22 K2HPO4 K 2 HPO 4 0.04 g/L0.04 g / L
33 MgSO4·7H2OMgSO 4 7 H 2 O 0.075 g/L0.075 g / L
44 NaCO3 NaCO 3 0.0202 g/L0.0202 g / L
55 CaCl2·2H2OCaCl 2 · 2H 2 O 0.006 g/L0.006 g / L
66 Citric acidCitric acid 0.006 g/L0.006 g / L
77 Ammonium ferric citrateAmmonium ferric citrate 0.006 g/L0.006 g / L
88 Na2·EDTANa 2 · EDTA 0.001 g/L0.001 g / L
99 Trace metal solutionTrace metal solution
H3BO3 H 3 BO 3 2.86 g/L2.86 g / L
MnCl24H2OMnCl 2 4H 2 O 1.81 g/L1.81 g / L
ZnSO4·7H2OZnSO 4 · 7H 2 O 0.22 g/L0.22 g / L
Na2MoO4·2H2ONa 2 MoO 4 2H 2 O 0.39 g/L0.39 g / L
CuSO4·5H2OCuSO 4 · 5H 2 O 0.08 g/L0.08 g / L
Co(NO3)2·6H2OCo (NO 3 ) 2 6H 2 O 0.05 g/L0.05 g / L
또한, 이때의 광원은 LED 램프를 사용하였으며, 광량은 Li-COR(Li-198) light meter(Li-COR, USA) 를 이용하여 측정하고 온도는 IR Thermometer(FLUKE, USE) 를 이용하여 각 웰의 온도를 측정하였다. 측정은 3회 반복하여 평균값을 냈으며, 각각의 웰에 발생하는 온도구배 및 광구배는 도 8에 나타난 바와 같다. 온도는 15 내지 33℃, 그리고 광은 4 내지 450μmol/m2/s 의 범위로 발생하였다.In this case, a light source was used as an LED lamp, and the light quantity was measured using a Li-COR (Li-198) light meter (Li-COR, USA), and the temperature was measured using an IR thermometer (FLUKE, USE). The temperature of was measured. The measurement was repeated three times to give an average value, and the temperature gradient and light gradient occurring in each well are shown in FIG. 8. The temperature was 15 to 33 ° C., and the light was generated in the range of 4 to 450 μmol / m 2 / s.
또한, 균체농도(OD) 는 0.1로 동일하게 웰에 200㎕ 로 채워주었으며, 배양은 CO2 를 주입하지 않은 배지에서 2일간 배양하였고 5% CO2 를 주입한 후에 2일간 배양하였다. 배양 후 흡광도(Optical density) 는 마이크로플레이트 흡광리더기(microplate absorbance reader, Tecan, Switzerland) 로 균체량(cell biomass) 를 측정하였으며, 형광광도계(microplate fluorescence reader, Biotek, USA)로 형광광도(nile red intensity)를 측정하였다.Further, gave cell density (OD) was filled with 200㎕ in the same manner in 0.1-well, culturing is in a medium that is not injected with CO 2 2 days the culture was incubated 2 days after the injection of 5% CO 2. After cultivation, the optical density was measured using a microplate absorbance reader (Tecan, Switzerland) to measure cell biomass and a microplate fluorescence reader (Biotek, USA). Was measured.
실험예 2. 광합성 미생물의 성장 최적 조건Experimental Example 2. Optimal Growth Conditions for Photosynthetic Microorganisms
상기 실험예 1에서 광생물 반응기(100)를 이용하여 파라클로렐라 케슬러리(parachlorella kessleri. JD076)를 배양하였으며, 본 실험예에서는 배양 후의 흡광도, 균체량, 중성 지질함량 등을 측정하였다.Parachlorella kessleri (parachlorella kessleri. JD076) was cultured using the photobioreactor 100 in Experimental Example 1, and the absorbance, cell mass, and neutral lipid content after culture were measured in this Experimental Example.
도 9는 본 발명의 광생물 반응기(100)를 이용하여, P.kessleri JD076 을 배양하였을 때의 흡광도(A)와 성장률(B)을 나타낸 그래프이다. 도 9를 참조하면, 상기 광생물 반응기(100)에 공기 공급(CO2를 주입하지 않음)을 하지 않았을 때, 파라클로렐라 케슬러리 (parachlorella kessleri. JD076)의 균체량(biomass)은 최대 0.3 까지 증가한 것을 확인할 수 있었다.9 is a graph showing the absorbance (A) and growth rate (B) when P.kessleri JD076 was cultured using the photobioreactor 100 of the present invention. Referring to FIG. 9, the biomass of parachlorella kessleri (JD076) increased up to 0.3 when no air supply (no CO 2 was injected) to the photobioreactor 100 was performed. I could confirm it.
특히, 균체량(biomass) 이 증가한 구간에서 최적 구간은 29~30℃의 온도범위이며, 광 조건은 150~250 μmol/m2/s 에서 최적조건을 나타내었다. 특히, 이와 같은 결과는 흡광도 값을 성장율로 전환한 결과에서도 동일하게 분석되었으며, 최대 성장률은 0.4/day 인 것을 확인할 수 있었다.In particular, the optimum range is 29 ~ 30 ℃ temperature range in the section of the increase in the biomass, the light conditions showed the optimal conditions at 150 ~ 250 μmol / m 2 / s. In particular, this result was analyzed in the same manner as the result of converting the absorbance value to the growth rate, it was confirmed that the maximum growth rate is 0.4 / day.
도 10은 본 발명의 광생물 반응기(100)를 이용하여 공기 공급 배양에서 P.kessleri JD076 을 배양하였을 때 중성지질 생산의 최적 조건을 나타낸 그래프((A) 단위 세포당 형광광도, (B) 중성 지질 생산성) 이다. 10 is a graph showing the optimal conditions of neutral lipid production when P.kessleri JD076 was cultured in an air feed culture using the photobioreactor 100 of the present invention ((A) fluorescence per unit cell, (B) neutral) Lipid productivity).
도 10을 참조하여 나일 레드(nile red) 염색을 통해 세포내 중성 지질 함량을 확인하여 보면, 그 결과 중성지질을 세포내 최대로 저장하는 구간은 24℃, 광량 280μmol/m2/s 조건인 것을 확인할 수 있었다.Referring to Figure 10 to determine the intracellular neutral lipid content through nile red (nile red) staining, as a result of the maximum storage of the neutral lipid in the cell is 24 ℃, the amount of light 280μmol / m 2 / s conditions I could confirm it.
도 11은 5% CO2 공급하에서 P.kessleri JD076 을 배양하였을 때의 최적 조건을 나타낸 그래프((A) 흡광도 값, (B) 성장율)이다. FIG. 11 is a graph ((A) absorbance value and (B) growth rate) showing optimal conditions when P.kessleri JD076 was cultured under 5% CO 2 .
도 11을 참조하면, 5% CO2 를 공급한 배양 환경에서 배양 최적 구간은 24~30℃ 이고, 광조건은 400μmol/m2/s 인 것을 확인할 수 있었다. 또한 균체량의 흡광도 값 과 성장율이 이산화탄소를 공급하지 않았을 때보다 이산화탄소를 공급하였을 때 가 더 높았다. 보다 구체적으로, 균체량이 0.55 였으며, 성장율은 0.8/day 인 것으로 확인하였다.Referring to Figure 11, in the culture environment supplied with 5% CO 2 , the optimum culture period was 24 ~ 30 ℃, it was confirmed that the light conditions are 400μmol / m 2 / s. Also, the absorbance value and growth rate of cell mass were higher when carbon dioxide was supplied than when carbon dioxide was not supplied. More specifically, the cell mass was 0.55, and the growth rate was confirmed to be 0.8 / day.
즉, 본 발명의 광생물 반응기(100)를 이용하여 P.kessleri JD076 를 배양한 결과 4일 만에 온도, 광, CO2 의 유무에 따라서 균체량(biomass) 의 변화를 확인할 수 있었으며, 나일 레드(nile red) 염색을 통한 지질함량 분석은 미생물의 최적 배양 조건을 확인시켜줄 수 있었다.That is, as a result of culturing P.kessleri JD076 using the photobioreactor 100 of the present invention, it was possible to confirm the change of the biomass according to temperature, light and CO 2 in 4 days. Lipid content analysis through nile red staining could confirm the optimal culture conditions of microorganisms.
한편, 이하에서는 도 12 내지 도 16를 참조하여, 본 발명의 다른 실시예에 의한 고 처리량 광생물 반응기(100)를 설명한다. Meanwhile, referring to FIGS. 12 to 16, a high throughput photobioreactor 100 according to another embodiment of the present invention will be described.
도 12 내지 도 16에 도시된 다른 실시예에 의한 고 처리량 광생물 반응기(100)는, 도 1 내지 도 11에 도시된 일 실시예와 비교하면, 광원(520)과 광량조절수단과, 온도조절부(600)에 있어서 차이가 있으며, 진동수단(700)이 추가된 점에서 차이가 있다. 따라서, 이하에서는 상기 일실시예와 동일한 구성에 대한 자세한 설명은 생략한다. The high throughput photobiological reactor 100 according to another embodiment shown in FIGS. 12 to 16 has a light source 520, a light quantity adjusting means, and a temperature control as compared to the embodiment shown in FIGS. 1 to 11. There is a difference in the unit 600, there is a difference in that the vibration means 700 is added. Therefore, hereinafter, a detailed description of the same configuration as the above embodiment will be omitted.
도 12에 도시된 실시예와 같이, 본 발명의 다른 실시예에 의한 고 처리량 광생물 반응기(100)는, 광량 조절 수단(130)의 광량과 온도조절부(600)의 온도를 제어하는 제어부(300)와, 제어부(300)로부터 온도와 광량에 관한 신호를 수신하여 시각적으로 표시하고, 제어부(300)의 제어를 위해 사용자의 설정을 입력받는 모니터링부(400)를 더 포함할 수 있다. As shown in FIG. 12, the high throughput photobioreactor 100 according to another embodiment of the present invention includes a control unit for controlling the light quantity of the light quantity adjusting means 130 and the temperature of the temperature control unit 600. 300 and a monitoring unit 400 for receiving a signal related to the temperature and the amount of light from the control unit 300 to visually display and receiving a user's setting for control of the control unit 300.
제어부(300)는, 광량 조절 수단(130)의 광량과 온도조절부(600)의 온도가 기설정된 값으로 조절되도록 제어할 수 있다. The control unit 300 may control the light amount of the light amount adjusting unit 130 and the temperature of the temperature control unit 600 to be adjusted to a predetermined value.
예를 들어, 제어부(300)는, 챔버(101) 내부에 설치되는 MCU(Main Control Unit, 이하, MCU라 함)를 주제어장치로 하는 메인보드로 이루어질 수 있다. 그리고, 광원(520)과 광량 조절 수단(130)과 온도조절부(600)는 MCU에 전기적으로 연결되어 MCU에 의해 온도와 광량 등이 조절될 수 있다. For example, the controller 300 may include a main board having a main control unit (hereinafter referred to as MCU) installed in the chamber 101. In addition, the light source 520, the light amount adjusting means 130, and the temperature controller 600 may be electrically connected to the MCU to adjust the temperature and the light amount by the MCU.
다만, 상기 제어부(300)는 도시된 실시예와 상기한 일 예에 한정하는 것은 아니며, 상기 광량 조절 수단(130) 및 온도조절부(600)와 전기적으로 연결되어 온도와 광량을 제어할 수 있다면, 다양한 변형실시가 가능하다. However, the control unit 300 is not limited to the illustrated embodiment and the above example, and if the light quantity adjusting means 130 and the temperature control unit 600 is electrically connected to control the temperature and the light quantity Various modifications are possible.
한편, 모니터링부(400)는, 제어부(300)로부터 온도와 광량에 관한 신호를 수신하여 시각적으로 표시하고, 제어부(300)의 제어를 위해 사용자의 설정을 입력받을 수 있다.On the other hand, the monitoring unit 400 may receive a signal related to the temperature and the amount of light from the control unit 300 and visually display it, and receive a user's setting for control of the control unit 300.
예를 들어, 모니터링부(400)는, 사용자로 하여금 정보 확인 및 정보의 입력이 용이하도록 터치스크린으로 구성될 수 있다. 그리고, 이러한 모니터링부(400)는 MCU로 제공되는 제어부(300)에 연결되어, 광량과 온도에 관한 정보를 실시간으로 확인하고 적절한 온도를 용이하게 설정할 수 있다. For example, the monitoring unit 400 may be configured as a touch screen so that a user may easily check information and input information. In addition, the monitoring unit 400 is connected to the control unit 300 provided to the MCU, it is possible to check the information on the light quantity and temperature in real time and to easily set the appropriate temperature.
구체적으로, 터치스크린에 현재의 온도와 설정에 의한 예상온도가 도시될 수 있다. 그리고, 광원(520)으로 제공되는 LED의 현재 세기를 확인하고 원하는 세기를 설정할 수 있다. 다만, 모니터링부(400)는 상기한 실시예에 한정하는 것은 아니며, 제어부(300)로부터 신호를 수신하여 표시하고 사용자가 필요한 정보를 입력할 수 있다면 다양한 변형실시가 가능하다. Specifically, the current temperature and the expected temperature by the setting may be displayed on the touch screen. In addition, the current intensity of the LED provided to the light source 520 may be checked and a desired intensity may be set. However, the monitoring unit 400 is not limited to the above-described embodiment, and various modifications are possible if the user can receive and display a signal from the control unit 300 and input the necessary information.
본 발명의 다른 실시예에 의한 고 처리량 광생물 반응기(100)를 이용하면, 온도와 광량을 전자적으로 제어하는 제어부(300)와 제어부(300)에 연결된 모니터링부(400)를 구비함으로써, 미세조류의 생산에 필요한 최적의 조건을 더욱 정확하게 설정할 수 있고, 숙련된 연구원이 아닌 경우에도 용이하고 간편하게 광량과 온도 등을 조절할 수 있는 우수한 효과를 얻을 수 있다. When using the high throughput optical bioreactor 100 according to another embodiment of the present invention, by providing a control unit 300 and a monitoring unit 400 connected to the control unit 300 to control the temperature and light amount electronically, microalgae It is possible to more accurately set the optimum conditions required for the production of, and even if you are not a skilled researcher can obtain an excellent effect that can easily and simply adjust the amount of light and temperature.
한편, 도 12와 도 13에 도시된 실시예를 참조하면, 본 발명의 다른 실시예에 적용되는 온도조절부(600)는, 제어부(300)에 의해 입력된 온도로 가열 또는 냉각되는 제1 TEC모듈(610)(Thermo-Electric Cooling module)과, 제1 TEC모듈(610)과 이격되게 설치되며, 제1 TEC모듈(610)보다 높은 온도가 입력되는 제2 TEC모듈(620)과, 상면이 플레이트(110)의 하면에 면접촉되게 설치되고, 일측 하면이 제1 TEC모듈(610)과 접촉되며, 타측 하면이 제2 TEC모듈(620)과 접촉되어, 제1 TEC모듈(610)과 제2 TEC모듈(620)에 의해 양단부가 상이한 온도로 가열 또는 냉각되어 온도구배가 형성되는 판 형의 온도구배블록(630)과, 제1 TEC모듈(610)과 제2 TEC모듈(620)의 온도를 제어하는 제어부(300)를 포함할 수 있다. On the other hand, referring to the embodiment shown in Figure 12 and 13, the temperature control unit 600 applied to another embodiment of the present invention, the first TEC is heated or cooled to the temperature input by the control unit 300 Module 610 (Thermo-Electric Cooling module), the second TEC module 620 is installed to be spaced apart from the first TEC module 610, the temperature is higher than the first TEC module 610, the upper surface The lower surface of the plate 110 is installed in surface contact, one lower surface is in contact with the first TEC module 610, the other lower surface is in contact with the second TEC module 620, the first TEC module 610 and the first 2 The temperature gradient block 630 of the plate-shaped temperature gradient block 630 in which both ends are heated or cooled to a different temperature to form a temperature gradient, and the temperature of the first TEC module 610 and the second TEC module 620. It may include a control unit 300 to control the.
그리고, 플레이트(110)는, 제1 TEC모듈(610)과 제2 TEC모듈(620) 사이의 온도차에 의해 웰(111)에 횡방향으로 온도 구배가 발생되면서 온도가 조절될 수 있다.In addition, the temperature of the plate 110 may be adjusted while a temperature gradient is generated in the well 111 by a temperature difference between the first TEC module 610 and the second TEC module 620.
구체적으로, 온도구배블록(630)은 판 형으로 형성될 수 있고, 상면이 플레이트(110)의 하면에 전체에 면접촉되게 설치될 수 있고, 하면의 일부가 제1 TEC모듈(610)과 제2 TEC모듈(620)에 접촉되게 설치될 수 있다. 그리고, 온도구배블록(630)은 열전도가 잘 되는 재질로 이루어져 제1 TEC모듈(610)과 제2 TEC모듈(620)의 온도를 플레이트(110)에 전달하여 플레이트(110)의 웰(111)을 가열 또는 냉각시킬 수 있다. Specifically, the temperature gradient block 630 may be formed in a plate shape, the upper surface may be installed to be in surface contact with the entire surface of the lower surface of the plate 110, a portion of the lower surface of the first TEC module 610 and the first 2 may be installed in contact with the TEC module 620. In addition, the temperature gradient block 630 is made of a material having good thermal conductivity to transfer the temperature of the first TEC module 610 and the second TEC module 620 to the plate 110 to the well 111 of the plate 110. Can be heated or cooled.
이때, 제1 TEC모듈(610)은, 제어부(300)에 의해 수신한 온도로 가열 또는 냉각될 수 있다. 그리고, 제2 TEC모듈(620)은, 제1 TEC모듈(610)과 이격되게 설치되고, 제어부(300)에 의해 제1 TEC모듈(610)보다 높은 온도가 입력될 수 있다. 그리고, 챔버(101) 내부에는 제1 TEC모듈(610)과 제2 TEC모듈(620) 냉각시에 공기의 흐름을 유도할 수 있는 냉각팬(640)과 도시하지 않았지만 공기의 유출입구를 구비될 수 있다. In this case, the first TEC module 610 may be heated or cooled to a temperature received by the controller 300. In addition, the second TEC module 620 may be installed to be spaced apart from the first TEC module 610, and a temperature higher than that of the first TEC module 610 may be input by the controller 300. In addition, the chamber 101 may include a cooling fan 640 that may induce the flow of air when the first TEC module 610 and the second TEC module 620 are cooled, and an outlet of air, although not shown. Can be.
또한, 온도구배블록(630)은, 일측 하면이 제1 TEC모듈(610)과 접촉되며, 타측 하면이 제2 TEC모듈(620)과 접촉되어, 제1 TEC모듈(610)과 제2 TEC모듈(620)에 의해 양단부가 상이한 온도로 가열 또는 냉각됨으로써 횡방향으로 온도구배가 형성될 수 있다. In addition, the temperature gradient block 630 has one lower surface contacting the first TEC module 610 and the other lower surface contacting the second TEC module 620 so that the first TEC module 610 and the second TEC module are in contact with each other. By 620, both ends may be heated or cooled to different temperatures, thereby forming a temperature gradient in the transverse direction.
즉, 온도구배블록(630)의 양측 단부만 제1 TEC모듈(610)과 제2 TEC모듈(620)에 접촉됨으로써 일측 단부는 제1 TEC모듈(610)과 동일한 온도가 되고, 타측 단부는 제2 TEC모듈(620)과 동일한 온도가 되며, 제1 TEC모듈(610)과 제2 TEC모듈(620) 사이의 공간(도 13 참조)에 대응되는 영역의 온도구배블록(630)은 횡방향으로 온도구배가 형성될 수 있다.That is, only the both ends of the temperature gradient block 630 is in contact with the first TEC module 610 and the second TEC module 620 so that one end is the same temperature as the first TEC module 610, the other end is made of 2 becomes the same temperature as the TEC module 620, the temperature gradient block 630 of the region corresponding to the space (see Fig. 13) between the first TEC module 610 and the second TEC module 620 in the transverse direction A temperature gradient can be formed.
이에 따라, 플레이트(110)에 장착되는 웰(111)은, 온도구배블록(630)과 면접촉되어 온도를 전달받음으로써, 횡방향으로 온도구배가 발생할 수 있다. 따라서, 복수의 웰(111)은, 제1 TEC모듈(610)과 제1 TEC모듈(610) 사이의 온도 범위 내에서, 다양한 온도 조건이 형성될 수 있다. Accordingly, the well 111 mounted on the plate 110 may be in surface contact with the temperature gradient block 630 to receive a temperature, thereby causing a temperature gradient in the lateral direction. Therefore, in the plurality of wells 111, various temperature conditions may be formed within a temperature range between the first TEC module 610 and the first TEC module 610.
본 발명의 다른 실시예의 온도조절부(600)에 적용되는 TEC모듈은 도시된 실시예와 같이, 열전소자를 얇게 형성하여 다수 배치시키고, 제1 TEC모듈(610)과 제2 TEC모듈(620) 사이를 적절한 간격으로 이격되게 배치함으로써, 특히 저온 영역의 온도 설정도 가능할 수 있다. 따라서, 본 발명의 다른 실시예에 의한 광생물 반응기(100)는, 넓은 범위의 온도 환경을 용이하게 설정할 수 있으므로, 다양한 종류의 미세조류를 배양할 수 있는 효과를 얻을 수 있다. TEC module applied to the temperature control unit 600 of another embodiment of the present invention, as shown in the embodiment, a plurality of thermoelectric elements are formed thinly arranged, the first TEC module 610 and the second TEC module 620 By arranging the spaces apart at appropriate intervals, in particular, the temperature setting in the low temperature region may be possible. Therefore, the photobioreactor 100 according to another embodiment of the present invention can easily set a wide range of temperature environment, it is possible to obtain the effect of culturing various kinds of microalgae.
한편, 온도조절부(600)는, 제1 TEC모듈(610)과 제2 TEC모듈(620)에 부착되어, 온도를 감지하는 온도센서(651,652)를 더 포함할 수 있다. The temperature controller 600 may further include temperature sensors 651 and 652 attached to the first TEC module 610 and the second TEC module 620 to sense temperature.
온도센서(651,652)는, 제1 TEC모듈(610)과 제2 TEC모듈(620)에 각각 부착될 수 있으며, 제1 TEC모듈(610)과 제2 TEC모듈(620)의 온도를 감지하여 제어부(300)로 신호를 보낼 수 있다. 제어부(300)는 온도센서(651,652)로부터 수신한 온도 정보를 모니터링부(400)로 송부할 수 있고, 사용자는 모니터링부(400)를 통해 현재의 온도를 실시간으로 확인할 수 있다. The temperature sensors 651 and 652 may be attached to the first TEC module 610 and the second TEC module 620, respectively, and detect and control the temperature of the first TEC module 610 and the second TEC module 620. A signal can be sent to 300. The controller 300 may transmit the temperature information received from the temperature sensors 651 and 652 to the monitoring unit 400, and the user may check the current temperature in real time through the monitoring unit 400.
한편, 제어부(300)는, PWM(Pulse Width Modulation, 펄스 폭 변조) 제어에 의해 제1 TEC 모듈과 제2 TEC 모듈의 온도를 미세하게 상승 또는 하강시킬 수 있다. On the other hand, the control unit 300 may finely increase or decrease the temperature of the first TEC module and the second TEC module by PWM (Pulse Width Modulation) control.
즉, MCU로 제공되는 제어부(300)가 입력받은 온도 신호를 PWM 신호로 변환하여 출력함으로써, 제1 TEC 모듈과 제2 TEC 모듈의 온도가 서서히(예를 들어, 0.1℃/sec) 상승 또는 하강하도록 할 수 있다. That is, the controller 300 provided to the MCU converts the input temperature signal into a PWM signal and outputs the PWM signal, so that the temperature of the first TEC module and the second TEC module gradually increases or decreases (for example, 0.1 ° C./sec). You can do that.
한편, 도 13 및 도 14에 도시된 실시예를 참조하면, 광원(520)은, 챔버(101) 내부에 구비되며, 소정의 회로패턴이 형성된 PCB(printed circuit board)와, PCB 상에 배치되며 동일한 광량을 가지는 복수의 LED 소자(527)로 이루어진 LED 유닛(525)이 종방향으로 복수개가 배열되는 LED 모듈(523)을 포함하는 LED 기판부(521)로 이루어질 수 있다. Meanwhile, referring to the exemplary embodiments illustrated in FIGS. 13 and 14, the light source 520 is provided inside the chamber 101, and is disposed on a printed circuit board (PCB) on which a predetermined circuit pattern is formed and on the PCB. The LED unit 525 including the plurality of LED elements 527 having the same light amount may be configured as the LED substrate 521 including the LED modules 523 in which the plurality of LED units 525 are arranged in the longitudinal direction.
또한, 광량 조절 수단(130)은, 제어부(300)의 전자적 제어에 의해, 복수의 LED 유닛(525)이 서로 다른 광량을 발생하여 LED 모듈(523)에 종방향으로 광구배가 형성되게 이루어질 수 있다. In addition, the light amount adjusting unit 130 may be configured such that a light gradient is formed in the LED module 523 in the longitudinal direction by generating a plurality of LED units 525 by the electronic control of the controller 300. .
즉, 광원(520)은 LED 소자(527)를 포함하는 LED 기판부(521)로 제공되는데, LED 기판부(521)는 PCB와 LED 모듈(523)을 포함할 수 있다. 이때, LED 모듈(523)은 가로방향으로 길게 형성된 LED 유닛(525)이 종방향으로 배열될 수 있고, LED 유닛(525)은 길이방향으로 배치된 복수의 LED 소자(527)를 포함할 수 있다. 그리고, 상기 LED 소자(527)의 개수는 플레이트(110)에 장착되는 웰(111)의 개수에 대응되게 구비될 수 있다. That is, the light source 520 is provided to the LED substrate 521 including the LED element 527, the LED substrate 521 may include a PCB and the LED module 523. At this time, the LED module 523 may be arranged in the longitudinal direction of the LED unit 525 formed in the horizontal direction, the LED unit 525 may include a plurality of LED elements 527 disposed in the longitudinal direction. . The number of LED elements 527 may be provided to correspond to the number of wells 111 mounted on the plate 110.
또한, 제어부(300)는, 종방향으로 배열되는 복수의 LED 유닛(525)을 서로 다른 광량을 가지도록 제어할 수 있으며, 더욱 바람직하게는 종방향의 일측에서 타측으로 갈수록 점층적으로 광량이 증가하도록 제어할 수 있다. 이에 따라, LED 모듈(523)은, 종방향으로 광량의 구배가 형성됨으로써, 플레이트(110)에 장착되는 웰(111)에 종방향으로 다양한 크기의 광을 조사할 수 있다. In addition, the controller 300 may control the plurality of LED units 525 arranged in the longitudinal direction to have different amounts of light, and more preferably, the amount of light gradually increases from one side of the longitudinal direction to the other side. Can be controlled. Accordingly, the LED module 523 is capable of irradiating light of various sizes in the longitudinal direction to the wells 111 mounted on the plate 110 by forming a gradient of the amount of light in the longitudinal direction.
그리고, 광량 조절 수단(130)은 이러한 광량의 제어를 제어부(300)로 제공되는 MCU의 전자적 제어를 통해 수행하므로, 사용자가 원하는 광량을 더욱 정확하고 용이하게 제공할 수 있다. In addition, since the light amount adjusting unit 130 performs the control of the light amount through the electronic control of the MCU provided to the control unit 300, the light amount adjusting unit 130 can provide the desired amount of light more accurately and easily.
한편, LED 기판부(521)는, 다양한 종류의 광원(520)으로 교체 가능하도록, 챔버(101)에 탈부착 가능하게 구비될 수 있다. Meanwhile, the LED substrate 521 may be detachably provided in the chamber 101 so that the LED substrate 521 may be replaced with various kinds of light sources 520.
구체적으로, 도 12 및 도 13에 도시된 실시예와 같이, LED 기판부(521)는 챔버(101)의 커버(103) 내측에 체결부재(540)에 의해 볼트 결합될 수 있다. 그리고, LED 기판부(521)를 다른 종류의 광원(520)(예를 들어, 다른 색을 조사하는 LED 모듈(523))으로 교체 시에, 상기 체결부재(540)의 볼트를 분리하고 다른 LED 기판부(521)로 교체하여 조립할 수 있다. Specifically, as shown in FIGS. 12 and 13, the LED substrate 521 may be bolted by the fastening member 540 inside the cover 103 of the chamber 101. When the LED substrate 521 is replaced with another light source 520 (for example, an LED module 523 that emits a different color), the bolt of the fastening member 540 is removed and the other LED is removed. It can be assembled by replacing with the substrate portion 521.
이때, 도 13 및 도 14를 참조하면, LED 기판부(521)의 일측에는 제어부(300)로부터 전원 및 광량정보를 전달받는 전원연결단자(545)를 구비할 수 있다. 여기서 전원연결단자(545)는, LED 기판부(521)의 PCB 회로의 핀과 대응되는 다수의 핀을 구비하고, 제어부(300)로부터의 신호를 전달하는 다수의 전선이 탈부착 가능하게 연결될 수 있다. 이에 따라, 다른 LED 기판부(521)로 교체한 경우에도 상기 전원연결단자(545)에 의해 제어부(300)로부터 동일한 광량 정보를 수신할 수 있게 된다.13 and 14, one side of the LED substrate 521 may include a power connection terminal 545 that receives power and light quantity information from the controller 300. Here, the power connection terminal 545 may include a plurality of pins corresponding to the pins of the PCB circuit of the LED substrate 521, and a plurality of wires for transmitting a signal from the controller 300 may be detachably connected. . Accordingly, even when the LED board unit 521 is replaced with the other LED board unit 521, the same light quantity information can be received by the power connection terminal 545 from the controller 300.
따라서, LED 기판부(521)를 교체한 후에도 광량 조절 수단(130)에 의해 광량이 조절되므로, 배양되는 광생물의 적합한 LED 광의 종류로 제한 없기 교체하여 배양 효율을 더욱 더 증진시킬 수 있다. Therefore, since the amount of light is controlled by the light amount adjusting means 130 even after replacing the LED substrate 521, it is possible to further increase the cultivation efficiency by replacing without limitation to the kind of suitable LED light of the photo organism to be cultured.
다만, LED 기판부(521)를 쳄버에 설치하는 방법은, 도시된 실시예에 한정하는 것은 아니며, LED 기판부(521)를 분리 가능하게 조립할 수 있다면 다양한 변형실시가 가능하다. However, the method of installing the LED substrate 521 in the chamber is not limited to the illustrated embodiment, and various modifications are possible as long as the LED substrate 521 can be detachably assembled.
한편, 제어부(300)는, LED 모듈(523)에 일정한 전류를 공급하도록, 외부로부터의 제어에 의해 정전류를 흐르게 하는 정전류 IC를 포함할 수 있다. On the other hand, the control unit 300 may include a constant current IC for flowing a constant current by control from the outside to supply a constant current to the LED module 523.
즉, 제어부(300)로 제공되는 MCU는 정전류 IC를 포함함으로써, 외부로부터의 제어에 의해 복수의 LED 소자(527)에 일정한 크기의 정전류를 안정하게 공급하는 효과를 얻을 수 있다. That is, since the MCU provided to the controller 300 includes a constant current IC, it is possible to stably supply a constant current having a constant size to the plurality of LED elements 527 by external control.
한편, 도 15 및 도 16에 도시된 실시예를 참조하면, 본 발명의 다른 실시예에 의한 고 처리량 광생물 반응기(100)는, 플레이트(110)의 가장자리를 감싸도록 설치되어, 자중에 의해 플레이트(110)와 온도구배블록(630)을 밀착시키는 웰 홀더(115)를 더 포함할 수 있다. Meanwhile, referring to the embodiments illustrated in FIGS. 15 and 16, the high throughput photobioreactor 100 according to another embodiment of the present invention is installed to surround the edge of the plate 110, and the plate is formed by its own weight. It may further include a well holder 115 for close contact with the 110 and the temperature gradient block 630.
즉, 웰 홀더(115)는 플레이트(110)의 형상에 대응되는 형상으로 형성되며, 플레이트(110)의 가장자리가 끼워질 수 있는 중공부를 가진 프레임 형태로 형성될 수 있다. 그리고, 더욱 바람직하게는 질량이 큰 금속으로 이루어질 수 있다. That is, the well holder 115 may be formed in a shape corresponding to the shape of the plate 110 and may be formed in a frame shape having a hollow portion into which the edge of the plate 110 may be fitted. And, more preferably, it may be made of a metal having a large mass.
이에 따라, 플레이트(110)는, 웰 홀더(115)의 자중에 의해 온도구배블록(630)에 더욱 밀착될 수 있다. 따라서, 웰 홀더(115)는, 플레이트(110)와 온도구배블록(630)을 밀착시킴으로써, 온도구배블록(630)의 온도를 플레이트(110)에 효율적으로 전달하는 효과를 제공할 수 있다. Accordingly, the plate 110 may be in close contact with the temperature gradient block 630 by the weight of the well holder 115. Therefore, the well holder 115 may provide an effect of efficiently transferring the temperature of the temperature gradient block 630 to the plate 110 by bringing the plate 110 into close contact with the temperature gradient block 630.
한편, 도 15 및 도 16을 참조하면, 본 발명의 다른 실시예에 의한 광생물 반응기(100)는, 웰 홀더(115)에 결합되고, 상기 웰(111)에서 교반 동작이 수행되도록 플레이트(110)의 진동을 발생시키는 진동수단(700)을 더 포함할 수 있다. Meanwhile, referring to FIGS. 15 and 16, the photobioreactor 100 according to another embodiment of the present invention is coupled to the well holder 115, and the plate 110 is performed to perform the stirring operation in the well 111. Vibration means 700 for generating a vibration of) may be further included.
즉, 플레이트(110)의 가장자리는 웰 홀더(115)에 끼워지므로, 진동수단(700)이 웰 홀더(115)를 진동시키면 플레이트(110) 전체에 진동이 전달되면서 웰(111)에 수용된 광생물의 교반이 이루어질 수 있다. 이때, 진동수단(700)은, 예를 들어 진동 모터로 이루어질 수 있으나, 이에 한정되는 것은 아니며 플레이트(110)를 진동시킬 수 있다면 다양한 변형실시가 가능하다. That is, since the edge of the plate 110 is fitted to the well holder 115, when the vibrating means 700 vibrates the well holder 115, the vibrating body is transmitted to the entire plate 110, and the optical organism accommodated in the well 111 is provided. Agitation of can be achieved. At this time, the vibration means 700 may be made of, for example, a vibration motor, but is not limited thereto, and various modifications may be made if the plate 110 may be vibrated.
더욱 바람직하게는, 진동수단(700)은 웰 홀더(115)에 복수 개가 이격되게 설치될 수 있다. 즉, 도시된 실시예에는 웰 홀더(115)에 상,하로 두 개가 설치된 경우가 도시되나, 이에 한정되는 것은 아니며, 3 이상의 진동모터가 일정한 간격으로 배치될 수도 있음은 물론이다. More preferably, the vibrating means 700 may be installed in a plurality of spaced apart from the well holder 115. That is, in the illustrated embodiment, the case in which two up and down are installed in the well holder 115 is illustrated, but is not limited thereto, and three or more vibration motors may be arranged at regular intervals.
이에 따라, 플레이트(110) 전체에 고르게 진동을 전달하는 효과를 제공할 수 있다. Accordingly, it is possible to provide the effect of transmitting the vibration evenly throughout the plate 110.
이와 같은 본 발명의 일 실시예에 의한 고처리량 광생물 반응기에 의하면, 다양한 광범위와 온도 조건을 구축하여 다양한 환경에서 미생물을 배양함으로써, 최적의 생산조건을 확립하는 효과를 얻을 수 있다. According to the high-throughput photobioreactor according to one embodiment of the present invention, by culturing microorganisms in various environments by establishing a wide range of wide range and temperature conditions, it is possible to obtain the effect of establishing the optimum production conditions.
본 발명의 다른 실시예에 의한 고 처리량 광생물 반응기를 이용하면, 온도와 광량을 전자적으로 제어하는 제어부와 제어부에 연결된 모니터링부를 구비함으로써, 미세조류의 생산에 필요한 최적의 조건을 더욱 정확하게 설정할 수 있고, 숙련된 연구원이 아닌 경우에도 용이하고 간편하게 광량과 온도 등을 조절할 수 있는 우수한 효과를 얻을 수 있다. When using the high throughput photobioreactor according to another embodiment of the present invention, by providing a control unit for controlling the temperature and the amount of light electronically and a monitoring unit connected to the control unit, it is possible to more accurately set the optimal conditions for the production of microalgae Even if you are not an experienced researcher, you can easily and simply control the light quantity and temperature.
본 발명은 지금까지 특정한 실시 예에 관련하여 도시하고 설명하였지만, 이하의 특허청구범위에 의해 마련되는 본 발명의 정신이나 분야를 벗어나지 않는 한 도내에서 본 발명이 다양하게 개조 및 변화될 수 있다는 것을 당 업계에서 통상의 지식을 가진 자는 용이하게 알 수 있음을 밝혀두고자 한다. While the invention has been shown and described in connection with specific embodiments so far, it will be appreciated that the invention can be varied and modified without departing from the spirit or scope of the invention as set forth in the claims below. It will be appreciated that those skilled in the art can easily know.

Claims (22)

  1. 챔버;chamber;
    상기 챔버 내부에 설치되며, 복수개의 웰이 장착되는 플레이트;A plate installed inside the chamber and equipped with a plurality of wells;
    상기 챔버 내부에 설치되어 상기 플레이트 방향으로 광을 조사하는 복수개의 광원;A plurality of light sources installed inside the chamber to irradiate light toward the plate;
    상기 플레이트의 상부에 위치하여 상기 복수개의 웰에 조사되는 광량을 다르게 하는 광량 조절 수단; 및, Light amount adjusting means positioned at an upper portion of the plate to change an amount of light irradiated to the plurality of wells; And,
    상기 플레이트의 온도를 조절하기 위한 온도조절부;A temperature controller for controlling the temperature of the plate;
    를 포함하는 고 처리량 광생물 반응기.High throughput photobioreactor comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 광원은, 상기 챔버 내에 구비되며, LED(Light emitting diode) 및 OLED(Organic light emitting diodes) 중 적어도 어느 하나인 것을 특징으로 하는 고 처리량 광생물 반응기.The light source is provided in the chamber, the high throughput optical bioreactor, characterized in that at least one of the light emitting diodes (LED) and organic light emitting diodes (OLED).
  3. 제1항에 있어서, 상기 광량 조절 수단은, The method of claim 1, wherein the light amount adjusting means,
    상기 플레이트와 상기 광원 사이에 위치하며 그라데이션(gradation)을 갖는 광량 조절 필름인 것을 특징으로 하는 고 처리량 광생물 반응기.And a light quantity controlling film positioned between the plate and the light source and having a gradation.
  4. 제3항에 있어서, 상기 광량 조절 필름은, The method of claim 3, wherein the light amount control film,
    종방향으로 일측으로부터 타측으로 갈수록 무채색에서 투명해지게 점층적으로 그라데이션을 갖도록 형성되는 것을 특징으로 하는 고 처리량 광생물 반응기.A high throughput photobioreactor, characterized in that it is formed to have a gradual gradation to become achromatic and transparent from one side to the other in the longitudinal direction.
  5. 제3항에 있어서, 상기 광량 조절 필름은, The method of claim 3, wherein the light amount control film,
    종방향으로 일측으로부터 타측으로 갈수록 유채색에서 투명해지게 점층적으로 그라데이션을 갖도록 형성되는 것을 특징으로 하는 고 처리량 광생물 반응기.High-throughput photobioreactor characterized in that it is formed to have a gradual gradation to become transparent in the chromatic color from one side to the other side in the longitudinal direction.
  6. 제1항에 있어서, 상기 광량 조절 수단은, The method of claim 1, wherein the light amount adjusting means,
    상기 광원과 연결되어 전류 공급량을 제어하여 상기 광원의 밝기를 조절하는 디머인 것을 특징으로 하는 고 처리량 광생물 반응기.And a dimmer connected to the light source to control the current supply to adjust the brightness of the light source.
  7. 제6항에 있어서, The method of claim 6,
    상기 복수개의 광원은, 적어도 두 개의 그룹으로 형성되어 상기 그룹이 종방향으로 이격되어 배치되고,The plurality of light sources are formed in at least two groups so that the groups are spaced apart in the longitudinal direction,
    상기 디머는, 적어도 두 개 포함하여 상기 그룹의 광원에 연결되어, 각각의 그룹에 따라 광량을 다르게 조절하는 것을 특징으로 하는 고 처리량 광생물 반응기.The dimmer is connected to the light source of the group, including at least two, high throughput photobiological reactor, characterized in that to adjust the amount of light differently according to each group.
  8. 제1항에 있어서, 상기 온도조절부는, The method of claim 1, wherein the temperature control unit,
    상기 플레이트의 하부에 위치하며, 온수 또는 가열된 공기가 주입되어, 상기 플레이트의 온도를 조절하는 제1온도조절배관과 냉수 또는 냉기가 주입되어 상기 플레이트의 온도를 조절하는 제2온도조절배관을 포함하는 온도조절블록; 및,Located at the bottom of the plate, the hot water or heated air is injected, the first temperature control pipe for adjusting the temperature of the plate and cold water or cold air is injected to include a second temperature control pipe for controlling the temperature of the plate A temperature control block; And,
    상기 온도조절블록과 플레이트 사이에 위치하여, 상기 플레이트의 온도를 유지하는 온도확산판; Located between the temperature control block and the plate, the temperature diffusion plate for maintaining the temperature of the plate;
    을 포함하는 것을 특징으로 하는 고 처리량 광생물 반응기.High throughput photobioreactor comprising a.
  9. 제8항에 있어서, The method of claim 8,
    상기 제1온도조절배관 및 제2온도조절배관은, 횡방향으로 서로 이격되어 배치되는 것을 특징으로 하는 고 처리량 광생물 반응기.The first temperature control pipe and the second temperature control pipe, high throughput optical bioreactor, characterized in that spaced apart from each other disposed in the transverse direction.
  10. 제1항에 있어서, 상기 온도조절부는, The method of claim 1, wherein the temperature control unit,
    상기 플레이트의 길이방향으로 확장된 복수개의 반도체소자; 및A plurality of semiconductor devices extending in the longitudinal direction of the plate; And
    상기 반도체소자를 가열 또는 냉각하여, 상기 플레이트의 온도를 조절하는 온도조절장치;A temperature controller for heating or cooling the semiconductor device to adjust the temperature of the plate;
    를 포함하되, 상기 복수개의 반도체소자는 횡방향으로 서로 이격되어 배치되는 것을 특징으로 하는 고 처리량 광생물 반응기.Including, The plurality of semiconductor devices are high throughput photobiological reactor, characterized in that arranged in the lateral direction spaced apart from each other.
  11. 제1항에 있어서, 상기 광생물 반응기는, The method of claim 1, wherein the photobiological reactor,
    상기 광량 조절 수단의 광량과 상기 온도조절부의 온도를 제어하는 제어부; 및,A control unit controlling the light amount of the light amount adjusting means and the temperature of the temperature adjusting unit; And,
    상기 제어부로부터 온도와 광량에 관한 신호를 수신하여 시각적으로 표시하고, 상기 제어부의 제어를 위해 사용자의 설정을 입력받는 모니터링부;A monitoring unit for receiving a signal related to a temperature and an amount of light from the controller and visually displaying the signal, and receiving a user's setting to control the controller;
    를 더 포함하는 것을 특징으로 하는 고 처리량 광생물 반응기.High throughput photobioreactor further comprising a.
  12. 제11항에 있어서, 상기 온도조절부는, The method of claim 11, wherein the temperature control unit,
    상기 제어부에 의해 입력된 온도로 가열 또는 냉각되는 제1 TEC모듈(Thermo-Electric Cooling module); A first TEC module (Thermo-Electric Cooling module) heated or cooled to a temperature input by the controller;
    상기 제1 TEC모듈과 이격되게 설치되며, 상기 제어부에 의해 상기 제1 TEC모듈보다 높은 온도가 입력되는 제2 TEC모듈; 및,A second TEC module installed to be spaced apart from the first TEC module and having a temperature higher than that of the first TEC module by the controller; And,
    상면이 상기 플레이트의 하면에 면접촉되게 설치되고, 일측 하면이 상기 제1 TEC모듈과 접촉되며, 타측 하면이 상기 제2 TEC모듈과 접촉되어, 상기 제1 TEC모듈과 상기 제2 TEC모듈에 의해 양단부가 상이한 온도로 가열 또는 냉각되어 온도구배가 형성되는 판 형의 온도구배블록; An upper surface is installed in surface contact with the lower surface of the plate, one lower surface is in contact with the first TEC module, the other lower surface is in contact with the second TEC module, by the first TEC module and the second TEC module A plate-shaped temperature gradient block whose both ends are heated or cooled to different temperatures to form a temperature gradient;
    을 포함하여, 상기 플레이트는, 상기 제1 TEC모듈과 상기 제2 TEC모듈 사이의 온도차에 의해 상기 웰에 횡방향으로 온도 구배를 발생하면서 온도가 조절되는 것을 특징으로 하는 고 처리량 광생물 반응기.Including, The plate, High throughput photobioreactor characterized in that the temperature is adjusted while generating a temperature gradient in the well in the transverse direction by the temperature difference between the first TEC module and the second TEC module.
  13. 제12항에 있어서, The method of claim 12,
    상기 온도조절부는, 상기 제1 TEC모듈과 상기 제2 TEC모듈에 부착되어, 온도를 감지하는 온도센서;를 더 포함하는 것을 특징으로 하는 고 처리량 광생물 반응기.The temperature control unit, the high-throughput photobiological reactor further comprises; a temperature sensor attached to the first TEC module and the second TEC module for sensing a temperature.
  14. 제12항에 있어서, The method of claim 12,
    상기 제어부는, PWM(Pulse Width Modulation) 제어에 의해 상기 제1 TEC 모듈과 제2 TEC 모듈의 온도를 미세하게 상승 또는 하강시키는 것을 특징으로 하는 고 처리량 광생물 반응기.The control unit is a high throughput photobiological reactor, characterized in that for increasing or decreasing the temperature of the first TEC module and the second TEC module finely by PWM (Pulse Width Modulation) control.
  15. 제11항에 있어서, The method of claim 11,
    상기 광원은, 상기 챔버 내부에 구비되며, 소정의 회로패턴이 형성된 PCB(printed circuit board)와, 상기 PCB 상에 배치되며 동일한 광량을 가지는 복수의 LED 소자로 이루어진 LED 유닛이 종방향으로 복수개가 배열되는 LED 모듈을 포함하는 LED 기판부로 이루어지며, The light source is provided inside the chamber, and a plurality of LED units including a printed circuit board (PCB) having a predetermined circuit pattern formed thereon and a plurality of LED elements disposed on the PCB and having the same amount of light are arranged in the longitudinal direction. It consists of an LED substrate including an LED module,
    상기 광량 조절 수단은, 상기 제어부의 전자적 제어에 의해, 상기 복수의 LED 유닛이 서로 다른 광량을 발생하여 상기 LED 모듈에 종방향으로 광구배가 형성되게 이루어진 것을 특징으로 하는 고 처리량 광생물 반응기.The light quantity adjusting means is a high-throughput photobiological reactor, characterized in that by the electronic control of the control unit, the plurality of LED units to generate different amounts of light to form a light gradient in the longitudinal direction of the LED module.
  16. 제15항에 있어서, The method of claim 15,
    상기 LED 기판부는, 다양한 종류의 광원으로 교체 가능하도록, 상기 챔버에 탈부착 가능하게 구비되는 것을 특징으로 하는 고 처리량 광생물 반응기.The LED substrate, high throughput optical bioreactor, characterized in that the detachably provided in the chamber to be replaced with various kinds of light sources.
  17. 제15항에 있어서,The method of claim 15,
    상기 제어부는, LED 모듈에 일정한 전류를 공급하도록 외부로부터의 제어에 의해 정전류를 흐르게 하는 정전류 IC를 포함하는 것을 특징으로 하는 고 처리량 광생물 반응기.The control unit includes a high-throughput photobioreactor comprising a constant current IC for flowing a constant current by control from the outside to supply a constant current to the LED module.
  18. 제12항에 있어서, The method of claim 12,
    상기 광생물 반응기는, 상기 플레이트의 가장자리를 감싸도록 설치되어, 자중에 의해 상기 플레이트와 상기 온도구배블록을 밀착시키는 웰 홀더;를 더 포함하는 것을 특징으로 하는 고 처리량 광생물 반응기.The photobioreactor is installed so as to surround the edge of the plate, the high-throughput photobiological reactor, characterized in that it further comprises; a well holder for contacting the plate and the temperature gradient block by its own weight.
  19. 제18항에 있어서, The method of claim 18,
    상기 광생물 반응기는, 상기 웰 홀더에 결합되고, 상기 웰에서 교반 동작이 수행되도록 상기 플레이트의 진동을 발생시키는 진동수단;을 더 포함하는 것을 특징으로 하는 고 처리량 광생물 반응기.The optical bioreactor is coupled to the well holder, vibrating means for generating a vibration of the plate to perform a stirring operation in the well; high throughput optical bioreactor further comprising.
  20. 제19항에 있어서,The method of claim 19,
    상기 진동수단은, 상기 웰 홀더에 복수 개가 이격되게 설치되는 것을 특징으로 하는 고 처리량 광생물 반응기.The vibrating means is a high throughput optical bioreactor, characterized in that a plurality of spaced apart is installed in the well holder.
  21. 제1항 내지 제20항 중 어느 한 항에 있어서, 상기 광생물 반응기는, The photobioreactor according to any one of claims 1 to 20,
    상기 챔버내부에 이산화탄소를 공급하는 가스공급부;를 더 구비하는 것을 특징으로 하는 고 처리량 광생물 반응기.And a gas supply unit for supplying carbon dioxide to the chamber.
  22. 제21항에 있어서, 상기 가스공급부는,The method of claim 21, wherein the gas supply unit,
    상기 챔버에 연결되는 공급배관; 및, A supply pipe connected to the chamber; And,
    상기 공급배관의 일측에 설치되어 이산화탄소를 상기 챔버 내부로 공급하도록 펌핑하는 공급펌프; A supply pump installed at one side of the supply pipe to pump carbon dioxide into the chamber;
    를 포함하는 것을 특징으로 하는 고 처리량 광생물 반응기.High throughput photobioreactor comprising a.
PCT/KR2016/002079 2015-03-03 2016-03-02 High throughput photobioreactor WO2016140506A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/694,140 US10392596B2 (en) 2015-03-03 2017-09-01 High throughput photobioreactor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150029732 2015-03-03
KR10-2015-0029732 2015-03-03
KR1020150170245A KR101751951B1 (en) 2015-03-03 2015-12-01 High throughput photobioreactor
KR10-2015-0170245 2015-12-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/694,140 Continuation-In-Part US10392596B2 (en) 2015-03-03 2017-09-01 High throughput photobioreactor

Publications (1)

Publication Number Publication Date
WO2016140506A1 true WO2016140506A1 (en) 2016-09-09

Family

ID=56848134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/002079 WO2016140506A1 (en) 2015-03-03 2016-03-02 High throughput photobioreactor

Country Status (1)

Country Link
WO (1) WO2016140506A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100842840B1 (en) * 2007-08-16 2008-07-02 (주)이노바이오 Microbe incubator with temperature control apparatus
KR20110000463A (en) * 2009-06-26 2011-01-03 (주)비엔피테크 Multi-channel photobioreactor for culturing photosynthetic microorganisms
KR20120124277A (en) * 2011-05-03 2012-11-13 (주)나비바이오텍 Portable Cultivation System
KR20140099995A (en) * 2013-02-04 2014-08-14 한국에너지기술연구원 Floating-type Photobioreactor
WO2014148903A1 (en) * 2013-03-21 2014-09-25 Micro Resources Ltd. Reactor for bulk production of photosynthetic microorganisms
KR20140131121A (en) * 2013-05-03 2014-11-12 주식회사 아이지디 Light Tester For Photoautotroph

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100842840B1 (en) * 2007-08-16 2008-07-02 (주)이노바이오 Microbe incubator with temperature control apparatus
KR20110000463A (en) * 2009-06-26 2011-01-03 (주)비엔피테크 Multi-channel photobioreactor for culturing photosynthetic microorganisms
KR20120124277A (en) * 2011-05-03 2012-11-13 (주)나비바이오텍 Portable Cultivation System
KR20140099995A (en) * 2013-02-04 2014-08-14 한국에너지기술연구원 Floating-type Photobioreactor
WO2014148903A1 (en) * 2013-03-21 2014-09-25 Micro Resources Ltd. Reactor for bulk production of photosynthetic microorganisms
KR20140131121A (en) * 2013-05-03 2014-11-12 주식회사 아이지디 Light Tester For Photoautotroph

Similar Documents

Publication Publication Date Title
WO2011090330A2 (en) Photobioreactor made of a transparent film
AU772150B2 (en) Photobioreactor with improved supply of light by surface enlargement, wavelength shifter bars or light transport
CN1057561C (en) Method of control of microorganism growth process
Chini Zittelli et al. A modular flat panel photobioreactor (MFPP) for indoor mass cultivation of Nannochloropsis sp. under artificial illumination
KR101155136B1 (en) Multi-channel photobioreactor for culturing photosynthetic microorganisms
CN1697875A (en) Multi-layered photobioreactor and method of culturing photosynthetic microorganisms using the same
CN204676066U (en) A kind of micro algae growth digital display type artificial climate cultivates instrument
US10392596B2 (en) High throughput photobioreactor
Choi et al. Optimum conditions for cultivation of Chlorella sp. FC-21 using light emitting diodes
WO2016140506A1 (en) High throughput photobioreactor
Tsygankov Laboratory scale photobioreactors
KR101823866B1 (en) Apparatus for cultivation of microalgae
US20090303706A1 (en) Wave length light optimizer for human driven biological processes
WO2013133481A1 (en) Vinyl sheet-type photobioreactor, and method for manufacturing same
Modigell et al. Reactor development for a biosolar hydrogen production process
Socher et al. Phototrophic growth of Arthrospira platensis in a respiration activity monitoring system for shake flasks (RAMOS®)
KR101608214B1 (en) Photobioreactor capable of controlling media temperature
KR20140119311A (en) The tank unit of Benthic Diatoms for eco-friendly culture
Mertiri et al. Optical microplates for photonic high throughput screening of algal photosynthesis and biofuel production
US20240124824A1 (en) Lighting device and incubator for microalgae growth experiments
KR20150003950A (en) Cultivating device for Photosynthetic microoranisms, Cultivating method and Analysis method of Photosynthetic microoranisms using thereof
CN212565354U (en) Adjustable light source for microalgae culture
CN103122306A (en) Photosynthetic cultivation fermentation device
CN210340918U (en) Microbial strain constant temperature culture apparatus
CN216192327U (en) Biochemical incubator of cooling illumination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16759142

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16759142

Country of ref document: EP

Kind code of ref document: A1