WO2016140411A1 - Device and method for real-time membrane fouling monitoring in reverse osmosis membrane vessel - Google Patents

Device and method for real-time membrane fouling monitoring in reverse osmosis membrane vessel Download PDF

Info

Publication number
WO2016140411A1
WO2016140411A1 PCT/KR2015/008387 KR2015008387W WO2016140411A1 WO 2016140411 A1 WO2016140411 A1 WO 2016140411A1 KR 2015008387 W KR2015008387 W KR 2015008387W WO 2016140411 A1 WO2016140411 A1 WO 2016140411A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
storage unit
cell
membrane
reverse osmosis
Prior art date
Application number
PCT/KR2015/008387
Other languages
French (fr)
Korean (ko)
Inventor
김지훈
김형수
Original Assignee
성균관대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교 산학협력단 filed Critical 성균관대학교 산학협력단
Publication of WO2016140411A1 publication Critical patent/WO2016140411A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/08Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/10Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • B01D65/109Testing of membrane fouling or clogging, e.g. amount or affinity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/144Wave energy

Definitions

  • the present invention relates to the technical field of water treatment, and more particularly, to a monitoring apparatus and method for detecting the degree of membrane contamination of the reverse osmosis membrane vessel in the reverse osmosis membrane treatment apparatus.
  • Desalination refers to the process of removing salt from sewage, wastewater, dam water, as well as seawater containing salts, and removing inorganic salts as well as Na + , Cl - ions. It is a process.
  • the membrane filtration process refers to a physical filtration method in which a separation membrane is used as a filter medium to pass water to separate and remove impurities in raw water and to obtain clean filtered water.
  • FIG. 1A shows the general flow of a reverse osmosis membrane treatment device, which is one of the membrane filtration processes.
  • Raw water such as seawater flows into the pretreatment unit 10
  • pretreatment water flows into the pretreatment unit 20
  • pretreatment water flows into the RO treatment unit 30, and the RO treatment unit 30 receives the pretreatment water.
  • RO treatment is divided into filtered and concentrated water.
  • the RO processing unit 30 is composed of a reverse osmosis membrane vessel.
  • 1B shows an example of a reverse osmosis membrane vessel, which is illustrated as having seven elements 31 to 37 illustratively. Reverse osmosis membrane is naturally used for each of the elements 31 to 37, and membrane fouling inevitably occurs during the filtration process. Detailed description of the reverse osmosis membrane vessel of Figure 1b will be described later.
  • membrane fouling is a phenomenon in which various foreign substances existing in the inflow water flowing into the membrane are deposited or adsorbed on the surface of the filter membrane to reduce the permeate amount of the membrane. Based on the causative substances, membrane fouling of particulate matter by colloid or suspended solids, membrane fouling of organic substances by adsorption of organic substances such as natural organic substances, biofilm fouling by microorganism attachment or growth, precipitation or scale of metal salts, etc. It can be classified into inorganic membrane fouling.
  • Membrane fouling in desalination plants using reverse osmosis membranes or nanofiltration membranes is the biggest problem when operating in the field because it reduces the performance of membranes and lowers the recovery rate.
  • CIP cleaning in place
  • CIP chemical cleaning
  • the most widely used method may be referred to as a method for measuring a Si Den Density Index (SDI) index.
  • SDI Si Den Density Index
  • the SDI index obtained by measuring the SDI of the influent is a method of predicting the membrane fouling tendency of the influent in the desalination process using the reverse osmosis membrane and the nanofiltration membrane. In general, when the SDI index value is less than 2 to 3, it is determined that the membrane contamination is not severe inflow source water, and when the SDI index value is 5 or more, it is determined that the membrane contamination is an influent source.
  • the SDI index is only a method of indirectly measuring the possibility of membrane contamination, and in particular, it is measured by passing the influent at a pressure of 30 psi using a separator having a diameter of 47 mm (or 0.45 pore size). There is a big problem that the impact of colloids or organic matter of a smaller size can not be evaluated.
  • the desalination process mainly using the reverse osmosis membrane and the nanofiltration membrane uses a cross-flow filtration mode in which the inflow direction and the permeation direction of the filtration membrane are orthogonal to each other, the dead-end ) And the filtration principle is different.
  • MFI modified fouling index
  • MFI-UF modified fouling index by ultrafilter
  • MFI-NF modified fouling index by nanofilter
  • Korean Patent Publication No. 10-2011-0089710 Korean Patent Publication No. 10-2014-0016417, Korean Patent Publication No. 10-2010-0057262, Korean Patent Publication No. 10-2013-0081436, Korean Patent Publication No. 10- 2014-0076197 is a quantitative membrane fouling index for membrane fouling caused by particulate matter, colloidal material, organic matter, etc., using a variety of microfiltration (MF), ultrafiltration (UF), and nanofiltration (NF) separation membranes.
  • MF microfiltration
  • UF ultrafiltration
  • NF nanofiltration
  • Korean Patent Laid-Open Publication No. 10-2014-0054670 discloses a membrane fouling index (TMP, trans-membrane pressure) in real time in a membrane filtration process operated at low pressure of microfiltration (MF) and ultrafiltration (UF).
  • TMP membrane fouling index
  • MF microfiltration
  • UF ultrafiltration
  • the present invention proposes an apparatus and method for controlling membrane fouling using a membrane fouling index that can be calculated using a rate of change and can selectively perform optimal chemical cleaning (CIP) according to the calculated membrane fouling index.
  • CIP chemical cleaning
  • Korean Patent Laid-Open No. 10-2013-0085220 proposes a real-time monitoring device that receives measurement information from sensors such as a flowmeter and a pressure gauge of a seawater desalination plant, calculates a membrane fouling degree of a reverse osmosis membrane, and diagnoses and controls it through a control unit.
  • Korean Patent Registration No. 10-0811199, Korean Patent Registration No. 10-1318578, and Korean Patent Publication No. 10-2011-0102750 are flow field flow fractions useful for the measurement of molecular weight and particle size distribution, such as chromatography.
  • Korean Patent Publication No. 10-2014-0037357 focuses on the fact that it is very important not only to predict membrane fouling through membrane fouling index, but also to normalize the water treatment process by cleaning contaminated separators.
  • a washing index measuring device is proposed.
  • microfiltration membrane and the reverse osmosis membrane operated at high pressure by the solute and solvent diffusion and transfer principle do not have a pore size, and thus the microfiltration membrane and ultrafiltration membrane having the pore size and operated at low pressure by the sieving method principle.
  • the filtration mechanism of the membrane is due to the difference.
  • nanofiltration membranes and reverse osmosis membranes unlike microfiltration membranes and ultrafiltration membranes, are generally particles, organic materials, and inorganic materials (scaling) that are blocking pore size by means of water washing or air scribing with chemicals.
  • desalination plants such as reverse osmosis, because backwashing is not possible for biofilm fouling.
  • FIG. 2 shows a facility for detecting membrane fouling of a reverse osmosis membrane vessel in a desalination plant (see www.rowaterpurifiers.com).
  • most desalination plants process thousands to tens of thousands of tonnes per day, so a separate skid facility such as FIG. 2 is used that can simulate the desalination plant without affecting the main plant.
  • the skid facility as shown in FIG. 2 employs about one reverse osmosis membrane vessel applied to the actual reverse osmosis membrane treatment apparatus.
  • the degree of membrane fouling of one reverse osmosis membrane vessel the degree of membrane contamination of the reverse osmosis membrane vessel is estimated.
  • Patent Document 1 Korean Patent Publication No. 10-2011-0089710
  • Patent Document 2 Korean Patent Publication No. 10-2014-0016417
  • Patent Document 3 Korean Patent Publication No. 10-2010-0057262
  • Patent Document 4 Korean Patent Publication No. 10-2013-0081436
  • Patent Document 5 Korean Patent Publication No. 10-2014-0076197
  • Patent Document 6 Korean Patent Publication No. 10-2014-0054670
  • Patent Document 7 Korean Patent Publication No. 10-2013-0085220
  • Patent Document 8 Korean Patent Registration No. 10-0811199
  • Patent Document 9 Korean Registered Patent No. 10-1318578
  • Patent Document 10 Korean Patent Publication No. 10-2011-0102750
  • Patent Document 11 Korean Patent Publication No. 10-2014-0037357
  • the present invention is to propose a device and method that can effectively and accurately monitor the degree of membrane fouling of the reverse osmosis membrane in the reverse osmosis membrane treatment process as described above.
  • the membrane fouling of raw water the organic membrane fouling, inorganic membrane fouling, and biological substances generated in the vessels generated from desalination water treatment facilities operated at high pressure with nanofiltration (NF) membrane and reverse osmosis (RO) membrane.
  • NF nanofiltration
  • RO reverse osmosis
  • FIG. 1B shows an example composed of seven separator elements, but is not limited thereto.
  • the first and last elements are important here.
  • the first lead element has the largest amount of water to be treated and causes a membrane fouling phenomenon in which particle membrane fouling and organic (biological) membrane fouling dominate.
  • the last end element is accelerated by the filtration of the previous elements to increase the osmotic pressure to the least amount of water treatment, inorganic (scale) membrane fouling is the dominant membrane fouling phenomenon is different.
  • the present invention proposes an apparatus and method for predicting effective and accurate membrane fouling phenomenon by sufficiently reflecting these characteristics.
  • the middle element from the second element to the sixth element is an element of a membrane contamination process, and thus, in order to simulate this, a filtration cycle of rapid and sequential cyclic repetition is simulated. Since it is desirable to have, it is to propose a device and method for rapid prediction through this.
  • the influent storage unit 100 And an inflow water stored in the inflow water storage unit 100, and an RO treatment simulation unit 300 that divides the reverse osmosis membrane vessel into RO treatment and divides the treated water and concentrated water into the RO treatment simulation unit 300.
  • the concentrated water separated from) is re-introduced into the inflow water storage unit 100, and the RO treatment simulation unit 300 includes a first RO cell 310, a second RO cell 320, and a third RO cell 370.
  • first RO cell 310 the second RO cell 320, and the third RO cell 370 are preferably separated from each other.
  • valve (V1) provided in the line inflowing the inflow water into the inflow water storage unit 100;
  • a valve (V2) provided in a line drained from the inflow water storage unit (100);
  • Valves (V3, V4, V5) respectively provided in a line into which the inflow water flows into the first RO cell 310, the second RO cell 320, and the third RO cell 370;
  • HP high pressure pump
  • valves (V1, V2, V3, V4, V5) is opened and closed depending on the level of the influent storage unit 100, the high-pressure pump (HP) of the influent storage unit 100 It is preferable that the operation is determined by the water level.
  • LS water level sensor
  • the RO treatment simulation unit 300 further includes a treatment water storage unit 400 for storing the processed water, and by detecting the water level of the treated water storage unit 400, the inflow water storage unit 100 It is preferable that the level of is calculated.
  • the water temperature control device for adjusting the raw water temperature in the inlet water storage unit (H); And it is preferable to further include a driver (M) for stirring the raw water in the inflow water storage unit (100).
  • Pre-processing unit 10 is pre-processed by the raw water flow;
  • a RO processing unit 30 which pretreatment water flows from the pretreatment unit 20 and is RO treated to discharge the treated water.
  • the RO processing unit 30 is a reverse osmosis membrane vessel, and includes a plurality of RO elements connected to each other ( 31 to 37, wherein the plurality of RO elements 31 to 37 may include a lead element 31 at which the pretreatment water is introduced, an end element 37 at which the concentrated water is discharged, and It is composed of a plurality of middle elements 32 to 36 positioned between the lead element 31 and the end element 37, and the second RO cell 320 of the RO processing simulation unit 300.
  • the ratio of) corresponds to the ratio of the plurality of middle elements 32 to 36 in the RO processing unit 30.
  • the reduced ratio of the current water level relative to the total water level of the influent storage unit 100 preferably corresponds to the recovery rate of the RO processing unit 30.
  • the inflow water stored in the inflow water storage unit 100 of the real-time membrane fouling monitoring device is preferably the same as the pretreatment water flowing into the RO processing unit 30.
  • another embodiment of the present invention (a) when the water level of the inflow water storage unit 100 is a predetermined full water level (L0), the inflow water to the first RO cell 310 Incoming step; (b) when the water level of the inflow water storage unit 100 is a predetermined first water level L1, the inflow into the first RO cell 310 is stopped, and the inflow water flows into the second RO cell 320. ; And (c) when the water level of the inflow water storage unit 100 is the preset second water level L2, the inflow into the second RO cell 320 is stopped, and the inflow water flows into the third RO cell 370. It provides a real-time membrane fouling monitoring method comprising the steps.
  • the inflow water storage It is preferable to further include the step of draining the fluid remaining in the portion (100).
  • (0) further comprises the step of introducing the raw water into the inflow water storage unit 100 so that the water level of the inflow water storage unit 100 reaches a preset full water level (L0). It is preferable.
  • the control unit includes the step of opening the valve (V1), the step (a), the control unit opens the valve (V3) to operate the high pressure pump (HP)
  • the step (b) includes the step of opening the valve V4 and closing the valve V3
  • the step (c) includes the opening of the valve V5.
  • Closing the valve V4 and the step (d) includes the control unit stopping the operation of the high pressure pump HP, opening the valve V2, and closing the valve V5. It is preferred to include the step.
  • step (d) after confirming that all the fluid remaining in the influent storage unit 100 is drained, it is preferable to return to the step (0).
  • the membrane contamination state of the RO processing unit 30 is detected according to the membrane contamination state of the RO processing simulation unit 300.
  • Figure 1a is a conventional general reverse osmosis membrane device, in particular a conceptual diagram for explaining the seawater desalination process.
  • FIG. 1B is a conceptual view for explaining the elements in the RO processing unit which is the reverse osmosis membrane vessel forming the reverse osmosis membrane device shown in FIG. 1A.
  • FIG. 2 is a photograph of a reverse osmosis membrane skid, which is a conventional apparatus for monitoring membrane fouling of a reverse osmosis membrane vessel.
  • FIG. 3 is a conceptual diagram illustrating a real-time membrane fouling monitoring apparatus according to the present invention.
  • FIGS. 4a and 4b are photographs for explaining the RO cell of the real-time membrane fouling monitoring apparatus according to the present invention.
  • FIG. 5 is a flowchart illustrating a real-time membrane fouling monitoring method according to the present invention.
  • FIG. 6 is a table for explaining the operation of the valve and the high-pressure pump in order to explain the real-time membrane fouling monitoring method according to the present invention.
  • raw water means a fluid introduced to be filtered in the reverse osmosis membrane vessel.
  • raw water may be seawater, but the monitoring apparatus according to the present invention is not limited thereto.
  • the "influent water” flowing into the RO simulation processing unit is a concept of the same fluid as the fluid flowing into the RO processing unit of the actual reverse osmosis membrane vessel.
  • RO element refers to a unit constituting the reverse osmosis membrane vessel, and may also be referred to as "RO module”.
  • the "level sensor (LS)” does not mean only means for detecting the level of the influent, but means all means for detecting information such as water level, weight, flow rate, for example, water level sensor, weight sensor, It may include a flow meter, but is not limited thereto.
  • the general reverse osmosis membrane treatment apparatus is shown. As described above with reference to Figure 1a, it can be applied to any conventional reverse osmosis membrane treatment apparatus.
  • the RO processor 30 may be referred to as a reverse osmosis membrane vessel, and is composed of a plurality of elements 31 to 37 as shown in FIG. 1B.
  • a reverse osmosis membrane vessel is composed of 3 to 10 elements, which will be described here as an example of 7 elements.
  • the RO elements 31 to 37 are the lead elements 31 at which the pretreatment water flows in, the end elements 37 at the end of which the treated water flows out, and a plurality of middle parts disposed therebetween.
  • Middle elements 32 to 36 There are five middle elements 32 to 36 shown, but there is no limit to the number as described above.
  • the lead element 31 and the end element 37 are important. Since the pretreatment water passes through each element sequentially, the membrane fouling pattern of the two elements is significantly different after a long time since the reverse osmosis membrane treatment apparatus is operated.
  • the lead element 31 into which the pretreatment water flows is mainly made of particle fouling and organic membrane fouling.
  • inorganic membrane fouling scaling
  • the present invention separates the first RO cell 310 corresponding to the lead element 31 and the third RO cell 370 corresponding to the end element 37 separately.
  • Middle elements 32 to 36 between are set to one second RO cell 320.
  • the size of the second RO cell 320 is set corresponding to the size or capacity of the middle element (32 to 36) to check the actual film contamination state.
  • the real-time membrane fouling monitoring apparatus is operated at the same level by reducing only the absolute amount of the treatment compared to the reverse osmosis membrane treatment apparatus in operation. That is, by checking the membrane fouling degree of each RO cell (310, 320, 370) of the RO treatment simulation unit 300 according to the present invention, the membrane fouling degree of the reverse osmosis membrane treatment device in operation is not decomposed or analyzed. It can be estimated without any need, and a cleaning method for obtaining an optimal cleaning effect can also be estimated.
  • the core component having such a function is the RO processing simulation unit 300. This works by simulating the processing of the RO processing unit 30 of the actual reverse osmosis membrane treatment apparatus.
  • the first RO cell 310 corresponding to the lead element 31 of the RO processor 30, the third RO cell 370 corresponding to the end element 37, and the middle element 32 therebetween. 36 consists of one second RO cell 320.
  • 4A and 4B show the membrane that constitutes the RO cells 310, 320, 370.
  • FIG. 4A is an illustration of a spiral wound membrane among reverse osmosis membranes. Inside this kind of a number of membranes are wound, the RO cells 310, 320, 370 are constructed using a membrane section cut a portion of which is small.
  • RO cells 310, 320, 370 as described above may be configured.
  • each housing size is similar.
  • the center RO cell corresponds to the second RO cell 320, and by adjusting the size of the membrane section included therein, the size corresponds to the size, number, or capacity of the middle elements 32 to 36 as described above. To match.
  • the size of the plurality of membrane sections may be similar, but a plurality of second RO cells 320 may be used or stacked.
  • the RO treatment simulation unit 300 Membrane contamination progress of the) is made similar to the membrane contamination progress of the RO treatment unit 30 of the actual reverse osmosis membrane treatment apparatus.
  • the pretreatment water injected into the RO treatment unit 30 is used as the inflow water.
  • a water temperature control device (H) for adjusting the raw water temperature may be provided with a driver (M) for stirring the raw water.
  • M driver
  • the RO processing simulation unit 300 can approximate the RO processing unit 30.
  • the inflow water introduced from the inflow water storage unit 100 to the RO processing simulation unit 300 is controlled by sensing the level of the inflow water storage unit 100.
  • the inflow water storage unit 100 is provided with a water level sensor (LS) for detecting the water level.
  • LS water level sensor
  • valve V1 is provided in a line into which the influent flows into the influent storage unit 100
  • another valve V2 is provided in a line draining from the influent storage unit 100 and the first RO cell 310.
  • the second RO cell 320 and the third RO cell 370 are provided with different valves V3, V4, and V5 respectively in the inflow line.
  • a separate high pressure pump HP is further provided in a line into which the inflow water flows into the first RO cell 310, the second RO cell 320, and the third RO cell 370.
  • the controller (not shown) adjusts the valves V1, V2, V3, V4, and V5 and the high pressure pump HP according to the level of the influent storage unit 100.
  • the influent is divided into concentrated water and treated water.
  • Treated water is stored in a separate treated water storage unit 400, it is important that the concentrated water must be re-introduced back to the inlet water storage unit (100). This is because the concentrated water must be re-introduced to simulate the degree of membrane fouling for each element as described above.
  • the water level of the inflow water storage unit 100 eventually corresponds to the amount of treated water stored in the treated water storage unit 400, that is, the change in the water level of the inflow water storage unit 100 Corresponding to the recovery rate of the RO treatment simulation unit 300, and in other words, it may correspond to the treatment amount or the concentration rate of the RO treatment simulation unit 300.
  • the RO processing unit 300 corresponds to the throughput of the actual RO processing unit 30. Throughput can be controlled, through which the membrane contamination progress of the RO treatment simulation unit 300 will proceed in accordance with the membrane contamination progress of the RO processing unit (30).
  • a separate sensor (not shown) is provided in the treated water storage unit 400 and based on this. By estimating the water level of the influent storage unit 100 may control the valve and the high pressure pump.
  • 6 illustrates the opening and closing of the valves V1, V2, V3, V4, and V5 controlled by the controller (not shown) and the operation of the high pressure pump HP. In the following description, the expression of the controller will be omitted.
  • the inlet water is introduced into the influent water storage unit 100 by opening the valve V1 (S10).
  • Inflow water is preferably a pre-treatment water in the same way as flowing into the RO processing unit (30).
  • the valve V1 is closed.
  • Inflow water flows into the first RO cell 310 that simulates the lead element 31 (S100).
  • the valve V3 is opened and the high pressure pump HP is operated.
  • the RO treatment is performed in the first RO cell 310 to be divided into the treated water and the concentrated water, the treated water is stored in the treated water storage unit 400, and the concentrated water is returned to the influent storage unit 100. Inflow. In this process, the membrane contamination of the first RO cell 310 proceeds, and the water level of the influent storage unit 100 gradually decreases.
  • the influent flowing in is different from the pretreated water flowing into the first RO cell 310, and thus, the inflow water including the concentrated water separated from the treated water in the first RO cell 310 is actually a middle element 32 to 36. Similar to the influent flow into).
  • the RO treatment is performed in the second RO cell 320 to be divided into the treated water and the concentrated water, the treated water is stored in the treated water storage unit 400, and the concentrated water is re-used in the influent storage unit 100. Inflow. In this process, the membrane contamination of the second RO cell 320 proceeds, and the water level of the influent storage unit 100 gradually decreases.
  • inflow water flows into the third RO cell 370 that simulates the end element 37 (S300).
  • the valve V5 is opened and the valve V4 is closed.
  • the high pressure pump (HP) is still in operation.
  • the influent flowing in unlike the influent flowing into the first RO cell 310 or the inflow flowing into the second RO cell 320, the influent includes a concentrated water separated from the treated water in the second RO cell (320). Influent, similar to the inflow into the actual end element 37.
  • the RO treatment is performed in the third RO cell 370 to be divided into the treated water and the concentrated water. Inflow. In this process, the membrane contamination of the third RO cell 370 proceeds, and the water level of the influent storage unit 100 gradually decreases.
  • the third RO cell 320 has all of the membrane contaminations set in advance.
  • valve V5 is closed, the high pressure pump HP is stopped, and the valve V2 is opened to drain the influent storage 100 (S500).
  • step S600 If further operation is required (S600), the process proceeds to step S10 again.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The present invention relates to the technical field of water treatment and, more specifically, provides monitoring device and method for detecting real-time the degree of membrane fouling of a reverse osmosis membrane vessel in a reverse osmosis membrane treatment device. To this end, the present invention comprises an RO treatment simulation unit which separates treated water and condensed water by means of simulation of a reverse osmosis membrane vessel and RO treatment, wherein the RO treatment simulation unit has three cells that simulate elements of an actual RO treatment unit and wherein influent water flows into any one of the three cells on the basis of the water level of an influent water storage unit.

Description

역삼투막 베셀 내 실시간 막오염 감시 장치 및 방법Real-time membrane contamination monitoring apparatus and method in reverse osmosis membrane vessel
본 발명은 수처리 기술분야에 관한 것으로, 보다 상세하게는 역삼투막 처리 장치에서의 역삼투막 베셀의 막오염 정도를 실시간으로 감지하기 위한 감시 장치 및 그 방법에 관한 것이다.The present invention relates to the technical field of water treatment, and more particularly, to a monitoring apparatus and method for detecting the degree of membrane contamination of the reverse osmosis membrane vessel in the reverse osmosis membrane treatment apparatus.
담수화(mineral removal, desalination)란 염분을 포함하고 있는 해수(바닷물)뿐만 아니라 하수, 폐수, 댐수 등에서 염분을 제거하여 담수를 얻는 공정을 말하며, Na+, Cl- 이온뿐만 아니라 다수의 무기 염류가 제거되는 공정이다. Desalination refers to the process of removing salt from sewage, wastewater, dam water, as well as seawater containing salts, and removing inorganic salts as well as Na + , Cl - ions. It is a process.
이를 위하여 다양한 공정이 사용될 수 있는데, 그 중 대표적으로 막여과 공정을 들 수 있다.Various processes can be used for this purpose, and the membrane filtration process is a typical example.
막여과 공정이란 분리막을 여과재로 사용하여 물을 통과시켜서 원수 속의 불순한 물질을 분리 제거하고 깨끗한 여과수를 얻는 물리적 여과 방법을 의미한다. The membrane filtration process refers to a physical filtration method in which a separation membrane is used as a filter medium to pass water to separate and remove impurities in raw water and to obtain clean filtered water.
도 1a는 막여과 공정 중 하나인 역삼투막 처리 장치의 일반적인 흐름을 도시한다. 해수와 같은 원수가 전전처리부(10)에 유입되고, 전전처리수는 전처리부(20)에 유입되며, 전처리수는 RO 처리부(30)에 유입되며, RO 처리부(30)는 유입된 전처리수를 RO 처리하여 여과된 처리수와 농축수로 구분하게 된다.1A shows the general flow of a reverse osmosis membrane treatment device, which is one of the membrane filtration processes. Raw water such as seawater flows into the pretreatment unit 10, pretreatment water flows into the pretreatment unit 20, pretreatment water flows into the RO treatment unit 30, and the RO treatment unit 30 receives the pretreatment water. RO treatment is divided into filtered and concentrated water.
이와 같은 RO 처리부(30)는 역삼투막 베셀로 이루어진다. 도 1b에는 역삼투막 베셀의 일례를 도시하는데, 예시적으로 7개의 엘리먼트(31~37)가 구비된 것으로 도시한다. 각각의 엘리먼트(31~37)들에는 역삼투막이 당연히 사용되는바, 여과 처리 과정에서 필연적으로 막오염이 발생한다. 도 1b의 역삼투막 베셀에 대한 구체적인 설명은 후술한다.The RO processing unit 30 is composed of a reverse osmosis membrane vessel. 1B shows an example of a reverse osmosis membrane vessel, which is illustrated as having seven elements 31 to 37 illustratively. Reverse osmosis membrane is naturally used for each of the elements 31 to 37, and membrane fouling inevitably occurs during the filtration process. Detailed description of the reverse osmosis membrane vessel of Figure 1b will be described later.
여기에서, "막오염(membrane fouling)"이란 분리막에 유입되는 유입수 중에 존재하는 여러 가지 이물질들이 여과막의 표면에 침착되거나 흡착되어 분리막의 투과수량을 감소시키는 현상이다. 원인 물질을 기준으로, 콜로이드 또는 부유고형물에 의한 입자물질 막오염, 자연유기물질 등 유기물의 흡착에 의한 유기물질 막오염, 미생물의 부착 또는 성장에 의한 생물 막오염, 금속염 등의 침전 또는 스케일에 의한 무기물질 막오염 등으로 구분할 수 있다.Here, "membrane fouling" is a phenomenon in which various foreign substances existing in the inflow water flowing into the membrane are deposited or adsorbed on the surface of the filter membrane to reduce the permeate amount of the membrane. Based on the causative substances, membrane fouling of particulate matter by colloid or suspended solids, membrane fouling of organic substances by adsorption of organic substances such as natural organic substances, biofilm fouling by microorganism attachment or growth, precipitation or scale of metal salts, etc. It can be classified into inorganic membrane fouling.
주로 역삼투막 또는 나노여과막을 이용하는 담수화 시설에서 막오염은 분리막의 성능을 감소시키고 회수율을 낮추기에 실제 현장에서의 운영시 가장 큰 문제가 된다.Membrane fouling in desalination plants using reverse osmosis membranes or nanofiltration membranes is the biggest problem when operating in the field because it reduces the performance of membranes and lowers the recovery rate.
이를 해소하기 위하여, 막오염을 사전에 최소화하도록 전처리 공정을 강화하는 방법, 또는 주처리 공정의 운전 조건을 최적화하는 방법이 사용되기도 하나, 일반적으로는 막오염이 일정 수준 진행되었을 경우 초기상태로 분리막의 투과성능을 회복시키기 위해 플러싱(flushing) 등의 물리세정이나 화학약품 등을 통한 화학세정(CIP, cleaning in place)을 수행한다. In order to solve this problem, a method of reinforcing the pretreatment process to minimize membrane contamination in advance or optimizing the operating conditions of the main treatment process is generally used. In order to restore the permeability of the CIP, cleaning in place (CIP) is performed through physical cleaning or chemicals such as flushing.
가장 효과적인 것은 화학세정(CIP)이라 할 수 있는데, 잦은 화학세정(CIP)을 수행할 경우 처리수 생산 정지로 인하여 생산 성능이 크게 악화되고, 소요되는 화학약품비 및 세정폐액 처리비의 등의 증가에 따른 유지 관리 성능도 악화되며, 더불어 사용된 분리막의 배제(rejection) 성능 악화 및 분리막의 변형 및 노화 등 궁극적으로 분리막 교체 시기를 앞당김으로써 전체 운영 관리비를 증가시키는 요인이 될 수 있다.The most effective can be called chemical cleaning (CIP). When performing frequent chemical cleaning (CIP), the production performance is greatly deteriorated due to the stoppage of treatment water production, and due to the increase of the chemical cost and cleaning waste treatment cost, etc. Maintenance performance is also deteriorated and, in addition, deterioration of the rejection of used separators, deformation and aging of the separators can ultimately lead to an increase in overall operational management costs by accelerating the membrane replacement time.
따라서, 세정을 적절한 시점에 수행하는 것이 매우 중요하며, 이를 위하여 막오염 물질의 정도를 효과적으로 예측하고 평가하는 방법의 중요성은 날로 높아져가고 있다. 종래에 이를 위한 다양한 방법들이 제안되고 사용되고 있는바, 구체적으로 검토한다.Therefore, it is very important to perform cleaning at an appropriate time, and for this purpose, the importance of a method for effectively predicting and evaluating the extent of membrane fouling materials is increasing day by day. Various methods for this purpose have been proposed and used in the related art, and will be discussed in detail.
현재 가장 널리 사용되는 방법은, SDI(Silt Density Index) 지수 측정 방법이라 할 수 있다.At present, the most widely used method may be referred to as a method for measuring a Si Den Density Index (SDI) index.
이는, 유입원수의 SDI를 측정함으로써 획득되는 SDI 지수는 현재 역삼투막과 나노여과막을 사용하는 담수화 공정에서 유입원수의 막오염 경향을 예측하는 방법이다. 일반적으로, SDI 지수값이 2~3 미만이면 막오염은 심하지 않은 유입원수라고 것으로 판단하고, SDI 지수값이 5 이상이 될 경우 막오염 발생이 심한 유입원수라고 판단한다.The SDI index obtained by measuring the SDI of the influent is a method of predicting the membrane fouling tendency of the influent in the desalination process using the reverse osmosis membrane and the nanofiltration membrane. In general, when the SDI index value is less than 2 to 3, it is determined that the membrane contamination is not severe inflow source water, and when the SDI index value is 5 or more, it is determined that the membrane contamination is an influent source.
다만, SDI 지수는 막오염의 가능성을 간접적으로 측정하는 방법에 불과하며, 특히 직경 47 mm(달리 말하면, 0.45 공경(pore size))의 분리막을 이용하여 30psi의 압력으로 유입수를 통과시켜 측정하기 때문에 이보다 작은 크기의 콜로이드나 유기물 등의 영향을 평가할 수 없다는 큰 문제가 있다.However, the SDI index is only a method of indirectly measuring the possibility of membrane contamination, and in particular, it is measured by passing the influent at a pressure of 30 psi using a separator having a diameter of 47 mm (or 0.45 pore size). There is a big problem that the impact of colloids or organic matter of a smaller size can not be evaluated.
또한, 역삼투막과 나노여과막을 주로 사용하는 담수화 공정은 유입수가 흐르는 방향과 여과막의 투과 방향이 서로 직교하는 방향으로 운전되는 십자류(Cross-flow) 여과 모드를 사용하기 때문에, 전량여과(Dead-end) 모드와 여과 원리가 상이하다는 문제점이 있다.In addition, since the desalination process mainly using the reverse osmosis membrane and the nanofiltration membrane uses a cross-flow filtration mode in which the inflow direction and the permeation direction of the filtration membrane are orthogonal to each other, the dead-end ) And the filtration principle is different.
이에, SDI 지수의 한계를 극복하기 위해 MFI(Modified fouling index) 측정 방법, MFI-UF(Modified fouling index by Ultrafilter) 측정 방법, MFI-NF(Modified fouling index by Nanofilter) 측정 방법 등이 제안되기도 하였으나, 이들 모두 한 개의 분리막을 사용하고, 마찬가지로 전량여과 모드로서 측정되기 때문에, 실제 담수화 공정에서의 십자류 여과모드와 상이하다는 문제점이 해결되지 않는다.In order to overcome the limitations of the SDI index, a modified fouling index (MFI) measurement method, a modified fouling index by ultrafilter (MFI-UF) measurement method, and a modified fouling index by nanofilter (MFI-NF) measurement method have been proposed. Since all of them use one separator and are similarly measured as full filtration mode, the problem of being different from the cross-flow filtration mode in the actual desalination process is not solved.
이와 관련하여, 특허문헌을 먼저 검토하면 다음과 같다.In this regard, the patent literature is first reviewed as follows.
한국공개특허 제10-2011-0089710호, 한국공개특허 제10-2014-0016417호, 한국공개특허 제10-2010-0057262호, 한국공개특허 제10-2013-0081436호, 한국공개특허 제10-2014-0076197호는 다양한 정밀여과(MF), 한외여과(UF), 나노여과(NF) 분리막을 조합 사용하여, 입자물질, 콜로이드물질, 유기물질 등의 의한 막오염 현상을 정량적인 막오염 지수로서 구분하고 막오염원별로 예측할 수 있도록 하는 방법을 제안한다.Korean Patent Publication No. 10-2011-0089710, Korean Patent Publication No. 10-2014-0016417, Korean Patent Publication No. 10-2010-0057262, Korean Patent Publication No. 10-2013-0081436, Korean Patent Publication No. 10- 2014-0076197 is a quantitative membrane fouling index for membrane fouling caused by particulate matter, colloidal material, organic matter, etc., using a variety of microfiltration (MF), ultrafiltration (UF), and nanofiltration (NF) separation membranes. We propose a method to classify and predict by membrane source.
측정 휴대성을 강화하고, 막오염 지수의 측정 정확도를 높이고, 측정 시간을 단축하기 위해 복수의 분리막으로 직렬 방식에서 병렬 방식으로 측정할 수 있게 한다는 점이 장점이다.In order to enhance the measurement portability, increase the measurement accuracy of the membrane fouling index, and shorten the measurement time, it is possible to measure in series and in parallel with a plurality of separators.
그러나, 이러한 방법들 역시 SDI 지수와 동일하게 0.45 공경의 막을 사용한다는 문제와, 실제 담수화 공정에서의 십자류 여과모드와 상이하다는 문제가 해결되지 않는다. However, these methods also do not solve the problem of using 0.45 pore membranes in the same way as the SDI index and the difference from the cross-flow filtration mode in the actual desalination process.
한국공개특허 제10-2014-0054670호는, 정밀여과(MF)과 한외여과(UF)의 저압으로 운전되는 막여과 공정에서 막오염 지수를 실시간으로 순간 막간 차압(TMP, trans-membrane pressure)의 변화율을 이용하여 산출하고, 산출된 막오염 지수에 따른 최적의 화학세정(CIP)을 선택적으로 수행할 수 있는 막오염 지수를 이용한 막오염을 제어할 수 있는 장치 및 방법을 제안한다.Korean Patent Laid-Open Publication No. 10-2014-0054670 discloses a membrane fouling index (TMP, trans-membrane pressure) in real time in a membrane filtration process operated at low pressure of microfiltration (MF) and ultrafiltration (UF). The present invention proposes an apparatus and method for controlling membrane fouling using a membrane fouling index that can be calculated using a rate of change and can selectively perform optimal chemical cleaning (CIP) according to the calculated membrane fouling index.
마찬가지로, SDI 지수와 동일하게 0.45 공경의 분리막을 사용한다는 문제, 와, 실제 담수화 공정에서의 십자류 여과모드와 상이하다는 문제가 해결되지 않는다.Similarly, the problem of using a 0.45 pore separator in the same manner as the SDI index and the problem of differing from the cross-flow filtration mode in the actual desalination process are not solved.
한국공개특허 제10-2013-0085220호는, 해수담수화 설비의 유량계, 압력계 등 센서로부터 측정 정보를 수신하여 역삼투막의 막오염 정도를 산출하여 제어부를 통해 진단 및 제어하는 실시간 모니터링 장치를 제안한다.Korean Patent Laid-Open No. 10-2013-0085220 proposes a real-time monitoring device that receives measurement information from sensors such as a flowmeter and a pressure gauge of a seawater desalination plant, calculates a membrane fouling degree of a reverse osmosis membrane, and diagnoses and controls it through a control unit.
막오염의 조기 진단을 가능하게 한다는 점이 장점이나, 결과적으로 유량계, 압력계, pH 미터, 온도계 등 센서의 실시간 측정 및 정보를 해석을 통한 간접적인 막오염 진단이라는 점이 한계이다.Its advantage is that it enables early diagnosis of membrane fouling, but the limitation is that it is indirect membrane fouling diagnosis through real-time measurement and analysis of sensors such as flow meters, pressure gauges, pH meters and thermometers.
한국등록특허 제10-0811199호, 한국등록특허 제10-1318578호 및 한국공개특허 제10-2011-0102750호는, 크로마토그래피처럼 분자량 및 입자 크기 분포의 측정에 유용한 흐름장 흐름 분획(Flow Field Flow Fractionation) 기법을 활용하여, 자연유기물질의 분리 크로마토그램의 면적을 계산하여 막의 특성에 따른 흡착 정도를 분석하는 평가 방법을 제안한다. 또한, 역삼투막과 나노여과막의 다이나믹 히스테리시스(Dynamic hysteresis)를 측정하여 분리막의 막오염을 예측 및 화학적, 물리적 불균일성을 동시에 또는 개별적으로 측정할 수 있는 예측 방법을 제안한다.Korean Patent Registration No. 10-0811199, Korean Patent Registration No. 10-1318578, and Korean Patent Publication No. 10-2011-0102750 are flow field flow fractions useful for the measurement of molecular weight and particle size distribution, such as chromatography. We propose an evaluation method that analyzes the degree of adsorption according to the characteristics of the membrane by calculating the area of the separated chromatogram of natural organic substances using the fractionation technique. In addition, by measuring the dynamic hysteresis of the reverse osmosis membrane and nanofiltration membrane (Physical hysteresis), we propose a prediction method that can predict the membrane fouling of the membrane and simultaneously or separately the chemical and physical non-uniformity.
그러나, 이는 유기 막오염에 한정된다는 점, 직접적인 측정 압력 범위에 한계가 있어 연속 측정이 불가능하다는 점이 문제이어서, 실제 담수화 시설에서 적용하기 불가능하다.However, this is a problem that it is limited to organic membrane fouling, and that there is a limitation in the direct measurement pressure range, so that continuous measurement is impossible, and thus it is impossible to apply in actual desalination facilities.
한국공개특허 제10-2014-0037357호는, 막오염 지수를 통해 막오염 정도를 예측하는 것뿐만 아니라, 오염된 분리막을 세정하여 수처리 공정을 정상화 시키는 것 또한 매우 중요하다는 점에 착안하여, 오염된 막을 세정하는 과정에서 사용되는 세정제의 선정 및 세정 성능에 관한 가이드라인 등의 객관적 근거를 확보하기 위한 방법을 제안한다. 즉, 오염된 상태의 분리막 표면에 세정제를 공급하고, 분리막에 세정수를 흘려줌으로써, 세정제에 의해 이물질에 제거되는 상태에 따라 분리막을 통과하는 세정수의 양을 측정하여 계산되는 막세척 지수와 막세척 지수 측정 장치를 제안한다.Korean Patent Publication No. 10-2014-0037357 focuses on the fact that it is very important not only to predict membrane fouling through membrane fouling index, but also to normalize the water treatment process by cleaning contaminated separators. We propose a method for securing an objective basis such as guidelines for the selection of cleaning agents and cleaning performance used in the process of cleaning the membrane. That is, the membrane cleaning index and the membrane calculated by measuring the amount of the washing water passing through the membrane in accordance with the state that is removed to the foreign matter by the detergent by supplying the cleaning agent to the surface of the membrane in the contaminated state, and flowing the washing water to the separator. A washing index measuring device is proposed.
그러나, 0.45 공경 이하의 막오염 확인이 어렵다는 점, 세정제 종류와 양 등이 모두 전처리 정밀여과(MF) 분리막의 여과 메커니즘에 기반을 두고 있어 실제 담수화 공정에서의 공경이 없는 나노여과(MF) 및 역삼투(RO) 분리막의 세정 조건과는 상이하기에 적용이 어렵다는 점이 문제이다.However, it is difficult to identify membrane contamination below 0.45 pore size, and the type and amount of detergent are all based on the filtration mechanism of pre-filtered microfiltration (MF) membrane, so nanofiltration (MF) and reverse osmosis without pore in actual desalination process The problem is that application is difficult because the RO membrane is different from the cleaning conditions.
이러한 문제점은, 용질과 용매 확산이동 원리에 의해 고압으로 운전되는 나노여과 분리막과 역삼투 분리막은 공경을 갖고 있지 않기 때문에, 공경을 갖고 체거름 방식 원리에 의해 저압으로 운전되는 정밀여과 분리막과 한외여과 분리막의 여과 메커니즘은 차이가 있다는 것에 기인한다. This problem is because the microfiltration membrane and the reverse osmosis membrane operated at high pressure by the solute and solvent diffusion and transfer principle do not have a pore size, and thus the microfiltration membrane and ultrafiltration membrane having the pore size and operated at low pressure by the sieving method principle. The filtration mechanism of the membrane is due to the difference.
즉, 나노여과 분리막과 역삼투 분리막은 정밀여과 분리막과 한외여과 분리막과 달리 일반적으로 화학약품을 첨가한 수세정 또는 에어스크라빙 등의 방법으로 공경을 막고 있는 입자물질, 유기물질, 무기물(스케일링), 생물 막오염에 대해 역세정이 불가능하다는 점에서, 여기에 제안된 기술을 역삼투와 같은 담수화 설비에 적용하는 것이 사실상 불가능하다.In other words, nanofiltration membranes and reverse osmosis membranes, unlike microfiltration membranes and ultrafiltration membranes, are generally particles, organic materials, and inorganic materials (scaling) that are blocking pore size by means of water washing or air scribing with chemicals. In other words, it is virtually impossible to apply the techniques proposed here to desalination plants, such as reverse osmosis, because backwashing is not possible for biofilm fouling.
다음, 관련된 실제 상용화된 기기를 검토하면 다음과 같다.Next, the actual commercially available devices are reviewed as follows.
도 2는 담수화 설비에서 역삼투막 베셀의 막오염을 감지하는 설비를 도시한다(www.rowaterpurifiers.com 참조). 실제 대부분의 담수화 설비는 하루에 수천 내지 수만 톤을 처리하기에, 주된 설비에 영향을 주지 않으면서도 담수화 설비를 모사할 수 있는 도 2와 같은 별도의 스키드(skid) 설비가 사용된다. 2 shows a facility for detecting membrane fouling of a reverse osmosis membrane vessel in a desalination plant (see www.rowaterpurifiers.com). In practice, most desalination plants process thousands to tens of thousands of tonnes per day, so a separate skid facility such as FIG. 2 is used that can simulate the desalination plant without affecting the main plant.
실제 역삼투막 처리 장치에는 다수의 역삼투막 베셀이 포함되기에, 도 2에 도시된 바와 같은 스키드 설비는 실제 역삼투막 처리 장치에 적용된 역삼투막 베셀 1개 정도 채택한다. 1개의 역삼투막 베셀의 막오염 정도를 살펴보면서, 실제 역삼투막 베셀의 막오염 정도를 추정한다.Since the actual reverse osmosis membrane treatment apparatus includes a plurality of reverse osmosis membrane vessels, the skid facility as shown in FIG. 2 employs about one reverse osmosis membrane vessel applied to the actual reverse osmosis membrane treatment apparatus. By examining the degree of membrane fouling of one reverse osmosis membrane vessel, the degree of membrane contamination of the reverse osmosis membrane vessel is estimated.
그러나 이 경우 실제 역삼투막 베셀이 적용된다는 점, 해당 베셀에 투입되는 원수를 조절하기 위한 다수의 설비들이 부착된다는 점 등으로 인하여, 초기 설치비 및 운영비가 높으며, 그럼에도 운영이 어려워서 실제 역삼투막 처리 장치의 막오염을 효과적으로 모사하지 못한다.However, in this case, due to the fact that the actual reverse osmosis membrane vessel is applied, and that a number of facilities for controlling the raw water input to the vessel is attached, the initial installation cost and operating costs are high, and even difficult to operate, the membrane contamination of the actual reverse osmosis membrane treatment device Does not effectively simulate
(특허문헌 1) 한국공개특허 제10-2011-0089710호(Patent Document 1) Korean Patent Publication No. 10-2011-0089710
(특허문헌 2) 한국공개특허 제10-2014-0016417호(Patent Document 2) Korean Patent Publication No. 10-2014-0016417
(특허문헌 3) 한국공개특허 제10-2010-0057262호(Patent Document 3) Korean Patent Publication No. 10-2010-0057262
(특허문헌 4) 한국공개특허 제10-2013-0081436호(Patent Document 4) Korean Patent Publication No. 10-2013-0081436
(특허문헌 5) 한국공개특허 제10-2014-0076197호(Patent Document 5) Korean Patent Publication No. 10-2014-0076197
(특허문헌 6) 한국공개특허 제10-2014-0054670호(Patent Document 6) Korean Patent Publication No. 10-2014-0054670
(특허문헌 7) 한국공개특허 제10-2013-0085220호(Patent Document 7) Korean Patent Publication No. 10-2013-0085220
(특허문헌 8) 한국등록특허 제10-0811199호(Patent Document 8) Korean Patent Registration No. 10-0811199
(특허문헌 9) 한국등록특허 제10-1318578호(Patent Document 9) Korean Registered Patent No. 10-1318578
(특허문헌 10) 한국공개특허 제10-2011-0102750호(Patent Document 10) Korean Patent Publication No. 10-2011-0102750
(특허문헌 11) 한국공개특허 제10-2014-0037357호(Patent Document 11) Korean Patent Publication No. 10-2014-0037357
이에, 본 발명은 전술한 바와 같이 특히 역삼투막 처리 공정에 있어서 역삼투막의 막오염 정도를 실시간으로 효과적이고 정확하게 감시할 수 있는 장치 및 방법을 제안하고자 한다.Accordingly, the present invention is to propose a device and method that can effectively and accurately monitor the degree of membrane fouling of the reverse osmosis membrane in the reverse osmosis membrane treatment process as described above.
특히, 나노여과(NF) 분리막과 역삼투(RO) 분리막이 적용된 고압으로 운전되는 제염의 담수화 수처리 설비에서 발생하는 베셀 내 유입 원수의 입자물질 막오염, 유기물질 막오염, 무기물질 막오염, 생물 막오염 현상에 대해 실시간으로 감시 및 막오염을 재현하는 소형의 연속 담수화 장치 및 방법을 제안하고자 한다.Particularly, the membrane fouling of raw water, the organic membrane fouling, inorganic membrane fouling, and biological substances generated in the vessels generated from desalination water treatment facilities operated at high pressure with nanofiltration (NF) membrane and reverse osmosis (RO) membrane. A small continuous desalination apparatus and method for monitoring membrane fouling in real time and reproducing membrane fouling are proposed.
한편, 도 1b를 다시 참조하여 역삼투막 베셀을 보다 상세히 설명하면, 일반적으로 3~10 개의 분리막 엘리먼트(element)가 연속적으로 집적되어 있다. 도 1b는 7개의 분리막 엘리먼트로 구성되어 있는 예를 도시하나, 그 개수에 제한되지 않음은 물론이다. 여기에서 첫 번째의 엘리먼트와 마지막 엘리먼트가 중요하다. 첫 번째의 리드 엘리먼트(lead element)는 처리수량이 가장 많고, 입자 막오염, 유기(생물) 막오염이 지배적인 막오염 현상이 유발된다. 마지막의 엔드 엘리먼트(end element)는 이전 엘리먼트들의 여과에 의한 농축이 가속화되어 삼투압의 상승에 따라 처리수량이 가장 적고, 무기(스케일) 막오염이 지배적인 막오염 현상이 유발되어 그 양상이 다르다. 본 발명은 이러한 특성을 충분히 반영하여 효과적이고 정확한 막오염 현상을 예측하는 장치 및 방법을 제안하고자 한다.Meanwhile, referring to FIG. 1B, the reverse osmosis membrane vessel is described in more detail. Generally, 3 to 10 separator elements are continuously integrated. FIG. 1B shows an example composed of seven separator elements, but is not limited thereto. The first and last elements are important here. The first lead element has the largest amount of water to be treated and causes a membrane fouling phenomenon in which particle membrane fouling and organic (biological) membrane fouling dominate. The last end element (end element) is accelerated by the filtration of the previous elements to increase the osmotic pressure to the least amount of water treatment, inorganic (scale) membrane fouling is the dominant membrane fouling phenomenon is different. The present invention proposes an apparatus and method for predicting effective and accurate membrane fouling phenomenon by sufficiently reflecting these characteristics.
또한, 도 1b의 예시에서 두 번째 엘리먼트부터 여섯 번째 엘리먼트까지의 미들 엘리먼트(middle element)는 막오염이 진행되는 과정의 엘리먼트이기에, 이를 모사하는데 있어서 빠르고 순차적인 순환 반복의 여과주기(filtration cycle)를 갖게 하는 것이 바람직한바, 이를 통하여 신속한 예측하는 장치 및 방법을 제안하고자 한다.In addition, in the example of FIG. 1B, the middle element from the second element to the sixth element is an element of a membrane contamination process, and thus, in order to simulate this, a filtration cycle of rapid and sequential cyclic repetition is simulated. Since it is desirable to have, it is to propose a device and method for rapid prediction through this.
상기와 같은 과제를 해결하기 위하여, 본 발명의 일 실시예는, 유입수 저장부(100); 및 상기 유입수 저장부(100)에 저장된 유입수가 유입되며, 역삼투막 베셀을 모사하여 이를 RO 처리함으로써 처리수와 농축수로 구분하는 RO 처리 모사부(300)를 포함하며, 상기 RO 처리 모사부(300)에서 구분된 농축수는 상기 유입수 저장부(100)로 재유입되며, 상기 RO 처리 모사부(300)는 제 1 RO 셀(310), 제 2 RO 셀(320) 및 제 3 RO 셀(370)을 포함하며, 상기 유입수 저장부(100)의 수위에 따라, 상기 유입수 저장부(100)로부터의 유입수가 상기 제 1 RO 셀(310), 제 2 RO 셀(320) 및 제 3 RO 셀(370) 중 어느 하나로 유입되는, 역삼투막 베셀 내 실시간 막오염 감시 장치를 제안한다.In order to solve the above problems, an embodiment of the present invention, the influent storage unit 100; And an inflow water stored in the inflow water storage unit 100, and an RO treatment simulation unit 300 that divides the reverse osmosis membrane vessel into RO treatment and divides the treated water and concentrated water into the RO treatment simulation unit 300. The concentrated water separated from) is re-introduced into the inflow water storage unit 100, and the RO treatment simulation unit 300 includes a first RO cell 310, a second RO cell 320, and a third RO cell 370. And inflow water from the influent storage unit 100 according to the water level of the influent storage unit 100, wherein the first RO cell 310, the second RO cell 320, and the third RO cell ( 370) proposes a real-time membrane fouling monitoring device in the reverse osmosis membrane vessel.
또한, 상기 제 1 RO 셀(310), 제 2 RO 셀(320) 및 제 3 RO 셀(370)은 서로 구분되어 있는 것이 바람직하다.In addition, the first RO cell 310, the second RO cell 320, and the third RO cell 370 are preferably separated from each other.
또한, 상기 유입수 저장부(100)로 유입수가 유입되는 라인에 구비된 밸브(V1); 상기 유입수 저장부(100)로부터 드레인되는 라인에 구비된 밸브(V2); 상기 제 1 RO 셀(310), 제 2 RO 셀(320) 및 제 3 RO 셀(370)로 유입수가 유입되는 라인에 각각 구비된 밸브(V3, V4, V5); 및 상기 유입수 저장부(100)로부터 유입수가 유출되는 라인에 구비된 고압펌프(HP)를 더 포함하는 것이 바람직하다.In addition, a valve (V1) provided in the line inflowing the inflow water into the inflow water storage unit 100; A valve (V2) provided in a line drained from the inflow water storage unit (100); Valves (V3, V4, V5) respectively provided in a line into which the inflow water flows into the first RO cell 310, the second RO cell 320, and the third RO cell 370; And a high pressure pump (HP) provided in a line through which the inflow water flows out from the inflow water storage unit 100.
*또한, 상기 밸브들(V1, V2, V3, V4, V5)은 상기 유입수 저장부(100)의 수위에 따라 그 개폐가 결정되며, 상기 고압펌프(HP)는 상기 유입수 저장부(100)의 수위에 따라 그 작동이 결정되는 것이 바람직하다.In addition, the valves (V1, V2, V3, V4, V5) is opened and closed depending on the level of the influent storage unit 100, the high-pressure pump (HP) of the influent storage unit 100 It is preferable that the operation is determined by the water level.
또한, 상기 유입수 저장부(100)의 수위를 감지하는 수위센서(LS)를 더 포함하는 것이 바람직하다.In addition, it is preferable to further include a water level sensor (LS) for detecting the water level of the influent storage unit 100.
또한, 상기 RO 처리 모사부(300)에서 처리된 처리수가 저장되는 처리수 저장부(400)를 더 포함하며, 상기 처리수 저장부(400)의 수위를 감지함으로써, 상기 유입수 저장부(100)의 수위가 연산되는 것이 바람직하다.In addition, the RO treatment simulation unit 300 further includes a treatment water storage unit 400 for storing the processed water, and by detecting the water level of the treated water storage unit 400, the inflow water storage unit 100 It is preferable that the level of is calculated.
또한, 상기 유입수 저장부(100) 내의 원수 온도를 조절하는 수온조절장치(H); 및 상기 유입수 저장부(100) 내의 원수를 교반하기 위한 구동기(M)를 더 포함하는 것이 바람직하다.In addition, the water temperature control device for adjusting the raw water temperature in the inlet water storage unit (H); And it is preferable to further include a driver (M) for stirring the raw water in the inflow water storage unit (100).
상기와 같은 과제를 해결하기 위하여, 본 발명의 다른 실시예는, 전술한 감시 장치; 원수가 유입되어 전전처리되는 전전처리부(10); 상기 전전처리부(10)로부터 전전처리수가 유입되는 전처리부(20); 및 상기 전처리부(20)로부터 전처리수가 유입되어 RO 처리되어 처리수를 유출시키는 RO 처리부(30)를 포함하며, 상기 RO 처리부(30)는 역삼투막 베셀로서, 서로 연결된 다수의 RO 엘리먼트(element)(31~37)로 이루어지며, 상기 다수의 RO 엘리먼트(31~37)은 전처리수가 유입되는 최선단의 리드 엘리먼트(lead element)(31), 농축수가 유출되는 엔드 엘리먼트(end element)(37) 및 상기 리드 엘리먼트(31)와 상기 엔드 엘리먼트(37) 사이에 위치하는 다수의 미들 엘리먼트(middle element)(32~36)로 이루어지며, 상기 RO 처리 모사부(300) 중 상기 제 2 RO 셀(320)의 비율은, 상기 RO 처리부(30) 중 상기 다수의 미들 엘리먼트(32~36)의 비율에 상응하는 것이 바람직하다.In order to solve the above problems, another embodiment of the present invention, the above-described monitoring device; Pre-processing unit 10 is pre-processed by the raw water flow; A pretreatment unit 20 into which pretreatment water flows from the pretreatment unit 10; And a RO processing unit 30 which pretreatment water flows from the pretreatment unit 20 and is RO treated to discharge the treated water. The RO processing unit 30 is a reverse osmosis membrane vessel, and includes a plurality of RO elements connected to each other ( 31 to 37, wherein the plurality of RO elements 31 to 37 may include a lead element 31 at which the pretreatment water is introduced, an end element 37 at which the concentrated water is discharged, and It is composed of a plurality of middle elements 32 to 36 positioned between the lead element 31 and the end element 37, and the second RO cell 320 of the RO processing simulation unit 300. The ratio of) corresponds to the ratio of the plurality of middle elements 32 to 36 in the RO processing unit 30.
또한, 상기 유입수 저장부(100)의 전체 수위에 대비하여 현재 수위의 감소된 비율은, 상기 RO 처리부(30)의 회수율에 상응하는 것이 바람직하다.In addition, the reduced ratio of the current water level relative to the total water level of the influent storage unit 100, preferably corresponds to the recovery rate of the RO processing unit 30.
또한, 상기 실시간 막오염 감시 장치의 상기 유입수 저장부(100)에 저장되는 유입수는, 상기 RO 처리부(30)에 유입되는 전처리수와 동일한 것이 바람직하다.In addition, the inflow water stored in the inflow water storage unit 100 of the real-time membrane fouling monitoring device is preferably the same as the pretreatment water flowing into the RO processing unit 30.
상기와 같은 과제를 해결하기 위하여, 본 발명의 또 다른 실시예는, (a) 상기 유입수 저장부(100)의 수위가 기 설정된 만수위(L0)인 경우, 유입수가 제 1 RO 셀(310)에 유입되는 단계; (b) 상기 유입수 저장부(100)의 수위가 기 설정된 제 1 수위(L1)인 경우, 제 1 RO 셀(310)로의 유입이 중단되고, 유입수가 제 2 RO 셀(320)로 유입되는 단계; 및 (c) 상기 유입수 저장부(100)의 수위가 기 설정된 제 2 수위(L2)인 경우, 제 2 RO 셀(320)로의 유입이 중단되고, 유입수가 제 3 RO 셀(370)로 유입되는 단계를 포함하는, 실시간 막오염 감시 방법을 제공한다.In order to solve the above problems, another embodiment of the present invention, (a) when the water level of the inflow water storage unit 100 is a predetermined full water level (L0), the inflow water to the first RO cell 310 Incoming step; (b) when the water level of the inflow water storage unit 100 is a predetermined first water level L1, the inflow into the first RO cell 310 is stopped, and the inflow water flows into the second RO cell 320. ; And (c) when the water level of the inflow water storage unit 100 is the preset second water level L2, the inflow into the second RO cell 320 is stopped, and the inflow water flows into the third RO cell 370. It provides a real-time membrane fouling monitoring method comprising the steps.
또한, 상기 (c) 단계 이후에, (d) 상기 유입수 저장부(100)의 수위가 기 설정된 제 3 수위(L3)인 경우, 제 3 RO 셀(370)로의 유입이 중단되고, 상기 유입수 저장부(100)에 남은 유체가 드레인되는 단계를 더 포함하는 것이 바람직하다.In addition, after the step (c), (d) when the water level of the inflow water storage unit 100 is the third level L3, the inflow into the third RO cell 370 is stopped, the inflow water storage It is preferable to further include the step of draining the fluid remaining in the portion (100).
또한, 상기 (a) 단계 이전에, (0) 상기 유입수 저장부(100)의 수위가 기 설정된 만수위(L0)에 이르도록, 원수가 상기 유입수 저장부(100)로 유입되는 단계를 더 포함하는 것이 바람직하다.In addition, before the step (a), (0) further comprises the step of introducing the raw water into the inflow water storage unit 100 so that the water level of the inflow water storage unit 100 reaches a preset full water level (L0). It is preferable.
또한, 상기 (0) 단계는, 제어부가 밸브(V1)를 개방하는 단계를 포함하며, 상기 (a) 단계는, 상기 제어부가 밸브(V3)를 개방하며 상기 고압펌프(HP)를 작동시키는 단계를 포함하며, 상기 (b) 단계는, 상기 제어부가 밸브(V4)를 개방하고 밸브(V3)를 폐쇄하는 단계를 포함하며, 상기 (c) 단계는, 상기 제어부가 밸브(V5)를 개방하고폐쇄하며 밸브(V4)를 폐쇄하는 단계를 포함하며, 그리고 상기 (d) 단계는, 상기 제어부가 상기 고압펌프(HP)의 작동을 중지시키며 밸브(V2)를 개방하고 밸브(V5)를 폐쇄하는 단계를 포함하는 것이 바람직하다.In addition, the (0) step, the control unit includes the step of opening the valve (V1), the step (a), the control unit opens the valve (V3) to operate the high pressure pump (HP) Wherein the step (b) includes the step of opening the valve V4 and closing the valve V3, and the step (c) includes the opening of the valve V5. Closing the valve V4, and the step (d) includes the control unit stopping the operation of the high pressure pump HP, opening the valve V2, and closing the valve V5. It is preferred to include the step.
또한, 상기 (d) 단계 이후, 상기 유입수 저장부(100)에 남은 유체가 모두 드레인되었음을 확인한 후, 상기 (0) 단계로 회귀하는 것이 바람직하다.In addition, after the step (d), after confirming that all the fluid remaining in the influent storage unit 100 is drained, it is preferable to return to the step (0).
또한, 상기 RO 처리 모사부(300)의 막오염 상태에 따라, 상기 RO 처리부(30)의 막오염 상태가 감지되는 것이 바람직하다.In addition, it is preferable that the membrane contamination state of the RO processing unit 30 is detected according to the membrane contamination state of the RO processing simulation unit 300.
본 발명을 통해 실제 담수화 설비의 역삼투막 베셀로 유입되는 유입수가 여과되는 처리수량과 막오염을 상용 분리막보다 수백 배 작은 막면적을 갖는 소형의 3개의 셀이 장착된 연속 담수화 장치를 통해 직접적으로 실시간으로 감시하고 재현할 수 있다. Through the present invention in real time directly through a continuous desalination apparatus equipped with three small cells having a membrane area of several hundred times smaller than the commercial separation membrane and the amount of treated water and membrane contamination flowing into the reverse osmosis membrane vessel of the actual desalination plant Can be monitored and reproduced
이를 통하여, 막오염을 제거하기 위한 세정 시점에서 실제 주처리 공정인 담수화 설비에 적용할 수 있도록 베셀 내 막오염 특성에 따른 정보를 제공할 수 있어서, 물리세정 및 화학세정 방법을 효과적으로 적용할 수 있다.Through this, it is possible to provide information according to the membrane fouling characteristics in the vessel so that it can be applied to the desalination plant which is the actual main treatment process at the time of cleaning to remove the membrane fouling, it is possible to effectively apply the physical cleaning and chemical cleaning methods .
결과적으로, 본 발명을 통해 세정 공정시 소요되는 세정시간, 투입인력, 약품사용량, 세정폐액 발생량을 최소화가 가능하여 획기적으로 전체 담수화 설비 가동의 안정적 운영과 유지관리비의 경제적 절감효과를 달성할 수 있다.As a result, it is possible to minimize the cleaning time, input manpower, chemical usage, the amount of cleaning waste generated during the cleaning process through the present invention can achieve a significant economic savings of the stable operation of the entire desalination plant operation and maintenance costs .
도 1a는 종래의 일반적인 역삼투막 장치로서, 특히 해수 담수화 공정을 설명하기 위한 개념도이다. Figure 1a is a conventional general reverse osmosis membrane device, in particular a conceptual diagram for explaining the seawater desalination process.
도 1b는 도 1a에 도시된 역삼투막 장치를 이루는 역삼투막 베셀인 RO 처리부 내의 엘리먼트를 구분하여 설명하기 위한 개념도이다.FIG. 1B is a conceptual view for explaining the elements in the RO processing unit which is the reverse osmosis membrane vessel forming the reverse osmosis membrane device shown in FIG. 1A.
도 2는 역삼투막 베셀의 막오염을 모니터링하기 위한 종래 장치인 역삼투막 스키드의 사진이다. 2 is a photograph of a reverse osmosis membrane skid, which is a conventional apparatus for monitoring membrane fouling of a reverse osmosis membrane vessel.
도 3은 본 발명에 따른 실시간 막오염 감시 장치를 설명하기 위한 개념도이다.3 is a conceptual diagram illustrating a real-time membrane fouling monitoring apparatus according to the present invention.
도 4a 및 도 4b는 본 발명에 따른 실시간 막오염 감시 장치의 RO 셀을 설명하기 위한 사진이다. 4a and 4b are photographs for explaining the RO cell of the real-time membrane fouling monitoring apparatus according to the present invention.
도 5는 본 발명에 따른 실시간 막오염 감시 방법을 설명하기 위한 순서도이다.5 is a flowchart illustrating a real-time membrane fouling monitoring method according to the present invention.
도 6은 본 발명에 따른 실시간 막오염 감시 방법을 설명하기 위하여, 밸브와 고압펌프의 작동/개폐 여부를 설명하기 위한 표이다.6 is a table for explaining the operation of the valve and the high-pressure pump in order to explain the real-time membrane fouling monitoring method according to the present invention.
이하에서, "원수"는 역삼투막 베셀에서 여과되도록 투입되는 유체를 의미한다. 해수 담수화 장치에서 원수는 해수일 수 있으나, 본 발명에 따른 감시 장치는 이에 제한되지 않음은 물론이다.Hereinafter, "raw water" means a fluid introduced to be filtered in the reverse osmosis membrane vessel. In the seawater desalination apparatus, raw water may be seawater, but the monitoring apparatus according to the present invention is not limited thereto.
이하에서, RO 모사 처리부에 유입되는 "유입수"는 실제 역삼투막 베셀의 RO 처리부에 유입되는 유체와 동일한 유체의 개념이다.Hereinafter, the "influent water" flowing into the RO simulation processing unit is a concept of the same fluid as the fluid flowing into the RO processing unit of the actual reverse osmosis membrane vessel.
이하에서, "RO 엘리먼트(RO element)"는 역삼투막 베셀을 이루는 단위를 의미하며, "RO 모듈(module)"로 지칭되기도 한다.Hereinafter, "RO element" refers to a unit constituting the reverse osmosis membrane vessel, and may also be referred to as "RO module".
이하에서, "수위센서(LS)"는 유입수의 수위만을 감지하는 수단만을 의미하는 것이 아니라, 수위, 무게, 유량 등의 정보를 감지하는 모든 수단을 의미하며, 예를 들면 수위센서, 무게센서, 유량계 등을 포함할 수 있으나, 이에 한정되지 않는다.Hereinafter, the "level sensor (LS)" does not mean only means for detecting the level of the influent, but means all means for detecting information such as water level, weight, flow rate, for example, water level sensor, weight sensor, It may include a flow meter, but is not limited thereto.
1. 역삼투막 베셀 내 실시간 막오염 감시 장치의 설명1. Description of real-time membrane fouling monitoring device in reverse osmosis membrane vessel
도 3을 참조하여, 본 발명에 따른 역삼투막 베셀 내 실시간 막오염 감시 장치를 설명한다. Referring to Figure 3, the real-time membrane fouling monitoring apparatus in the reverse osmosis membrane vessel according to the present invention.
먼저, 역삼투막 처리 장치를 설명한다. First, the reverse osmosis membrane treatment apparatus will be described.
도 3의 상측에는 일반적인 역삼투막 처리 장치가 도시된다. 도 1a를 참조하여 전술한 바와 같은 것으로, 종래의 어떠한 역삼투막 처리 장치에도 적용될 수 있다. 원수가 유입되는 전전처리부(10), 여기에서 전전처리된 전전처리수가 유입되는 전처리부(20), 여기에서 전처리된 전처리수가 유입되어 실제 역삼투막 여과가 이루어지는 RO 처리부(30)를 포함한다. 3, the general reverse osmosis membrane treatment apparatus is shown. As described above with reference to Figure 1a, it can be applied to any conventional reverse osmosis membrane treatment apparatus. The pretreatment unit 10 into which the raw water is introduced, the pretreatment unit 20 into which the pretreatment pretreated water is introduced, and the RO treatment unit 30 into which the pretreatment pretreated water is introduced to perform reverse osmosis membrane filtration.
RO 처리부(30)는 역삼투막 베셀로 지칭될 수 있으며, 도 1b에 도시된 바와 같이 다수의 엘리먼트(31~37)로 이루어진다. 일반적으로 하나의 역삼투막 베셀은 3~10개의 엘리먼트로 이루어지며, 여기에서는 예시적으로 7개의 엘리먼트로 이루어진 경우를 설명한다. The RO processor 30 may be referred to as a reverse osmosis membrane vessel, and is composed of a plurality of elements 31 to 37 as shown in FIG. 1B. In general, one reverse osmosis membrane vessel is composed of 3 to 10 elements, which will be described here as an example of 7 elements.
RO 엘리먼트(31~37)은 전처리수가 유입되는 최선단의 리드 엘리먼트(lead element)(31), 처리수가 유출되는 최후단의 엔드 엘리먼트(end element)(37) 및 그 사이에 위치하는 다수의 미들 엘리먼트(middle element)(32~36)로 이루어진다. 도시된 미들 엘리먼트(32~36)는 5개이나, 그 개수에 제한이 없음은 전술한 바와 같다.The RO elements 31 to 37 are the lead elements 31 at which the pretreatment water flows in, the end elements 37 at the end of which the treated water flows out, and a plurality of middle parts disposed therebetween. Middle elements 32 to 36. There are five middle elements 32 to 36 shown, but there is no limit to the number as described above.
여기에서, 리드 엘리먼트(31)과 엔드 엘리먼트(37)가 중요하다. 전처리수가 각각의 엘리먼트를 순차적으로 통과하기에, 역삼투막 처리 장치가 가동된 후 많은 시간이 경과하면 두 엘리먼트의 막오염 양상이 극명하게 다르기 때문이다. Here, the lead element 31 and the end element 37 are important. Since the pretreatment water passes through each element sequentially, the membrane fouling pattern of the two elements is significantly different after a long time since the reverse osmosis membrane treatment apparatus is operated.
전처리수가 바로 유입되는 리드 엘리먼트(31)과, 선단의 엘리먼트들에서 어느 정도 처리가 이루어진 후 유입되는 엔드 엘리먼트(37)의 막오염 상태는 당연히 다를 수 밖에 없다. The membrane fouling state of the lead element 31 into which pretreatment water flows in immediately, and the end element 37 which flows in after some treatment in the elements of the front end is inevitably different.
역삼투막 처리 장치의 막오염 상태를 확인하고 세정 타이밍 및 주기를 결정하여야 하는 실제 현장에서도 최선단과 최후단의 엘리먼트 오염 정도를 확인하는 것이 대단히 중요하다.It is very important to check the degree of element contamination at the very end and the end even in the actual site where the membrane contamination status of the reverse osmosis membrane treatment device should be checked and the cleaning timing and cycle should be determined.
구체적인 막오염 양상을 살펴보면, 전처리수가 유입되는 리드 엘리먼트(31)는 주로 입자막오염, 유기막오염이 이루어지며, 최후단의 엔드 엘리먼트(37)의 경우 주로 무기막오염(스케일링)이 이루어진다. Looking at the specific membrane fouling pattern, the lead element 31 into which the pretreatment water flows is mainly made of particle fouling and organic membrane fouling. In the case of the end element 37 of the last end, inorganic membrane fouling (scaling) is mainly performed.
이에, 본 발명은, 이와 같은 점에 착안하여, 리드 엘리먼트(31)에 대응하는 제 1 RO 셀(310)과 엔드 엘리먼트(37)에 대응하는 제 3 RO 셀(370)을 별도로 구분하며, 그 사이의 미들 엘리먼트(32~36)는 하나의 제 2 RO 셀(320)로 설정한다. Therefore, in view of the above, the present invention separates the first RO cell 310 corresponding to the lead element 31 and the third RO cell 370 corresponding to the end element 37 separately. Middle elements 32 to 36 between are set to one second RO cell 320.
여기에서, 제 2 RO 셀(320)의 크기는 실제 막오염 상태를 확인하고자 하는 미들 엘리먼트(32~36)의 크기 내지 용량에 상응하게 설정된다. Here, the size of the second RO cell 320 is set corresponding to the size or capacity of the middle element (32 to 36) to check the actual film contamination state.
전술한 역삼투막 처리 장치를 모사하여 실시간 막오염 감시를 이루고자 하는 장치를 설명한다. An apparatus for real-time membrane fouling monitoring by simulating the reverse osmosis membrane treatment apparatus described above will be described.
본 발명에 따른 실시간 막오염 감시 장치는, 실제 작동 중인 역삼투막 처리 장치와 비교하여 그 처리 절대량만을 감소시켜 동일한 수준으로서 작동하게 된다. 즉, 본 발명에 따른 RO 처리 모사부(300)의 각 RO 셀(310, 320, 370)의 막오염 정도를 확인함으로써, 실제 작동 중인 역삼투막 처리 장치의 막오염 정도를 해당 장치를 분해하거나 분석하지 않고도 추정할 수 있으며, 최적의 세정 효과를 거두기 위한 세정 방법 역시 추정 가능하다.The real-time membrane fouling monitoring apparatus according to the present invention is operated at the same level by reducing only the absolute amount of the treatment compared to the reverse osmosis membrane treatment apparatus in operation. That is, by checking the membrane fouling degree of each RO cell (310, 320, 370) of the RO treatment simulation unit 300 according to the present invention, the membrane fouling degree of the reverse osmosis membrane treatment device in operation is not decomposed or analyzed. It can be estimated without any need, and a cleaning method for obtaining an optimal cleaning effect can also be estimated.
이와 같은 기능을 하는 핵심 부품은 RO 처리 모사부(300)이다. 이는, 실제 역삼투막 처리 장치의 RO 처리부(30)의 처리 과정을 모사하여 작동한다. The core component having such a function is the RO processing simulation unit 300. This works by simulating the processing of the RO processing unit 30 of the actual reverse osmosis membrane treatment apparatus.
전술한 바와 같이, RO 처리부(30)의 리드 엘리먼트(31)에 대응하는 제 1 RO 셀(310), 엔드 엘리먼트(37)에 대응하는 제 3 RO 셀(370), 그 사이의 미들 엘리먼트(32~36)는 하나의 제 2 RO 셀(320)로 이루어진다. As described above, the first RO cell 310 corresponding to the lead element 31 of the RO processor 30, the third RO cell 370 corresponding to the end element 37, and the middle element 32 therebetween. 36 consists of one second RO cell 320.
도 4a와 도 4b는 RO 셀(310, 320, 370)을 이루는 멤브레인을 도시한다.4A and 4B show the membrane that constitutes the RO cells 310, 320, 370.
도 4a의 좌측 도면은 역삼투막 중에서도 나선 방식 멤브레인(spiral wound membrane)의 예시이다. 이러한 종류의 내측에는 다수의 멤브레인이 감겨져 있는바, 그 일부를 작은 크기로 절취한 멤브레인 섹션을 이용하여 RO 셀(310, 320, 370)을 구성한다.4A is an illustration of a spiral wound membrane among reverse osmosis membranes. Inside this kind of a number of membranes are wound, the RO cells 310, 320, 370 are constructed using a membrane section cut a portion of which is small.
즉, 도 4b에 도시된 바와 같이, 역삼투막의 일부를 절취하여 멤브레인 섹션을 준비하고, 그 상단 및 하단에 하우징(도 4b의 좌측 하단)을 부착하고 유로를 설정함으로써, 도 4b의 우측 하단에 도시된 바와 같은 RO 셀(310, 320, 370)을 구성할 수 있다.That is, as shown in Figure 4b, by cutting a portion of the reverse osmosis membrane to prepare a membrane section, by attaching the housing (bottom left side of Figure 4b) and setting the flow path to the top and bottom thereof, shown in the lower right of Figure 4b RO cells 310, 320, 370 as described above may be configured.
도 4b의 우측 하단에 도시된 예시에서는 총 3개의 RO 셀(310, 320, 370)이 구비되는데, 각각의 하우징 크기는 유사한 것을 알 수 있다. 이 중에서 가운데의 RO 셀이 제 2 RO 셀(320)에 해당하며, 내측에 포함되는 멤브레인 섹션의 크기를 조절함으로써, 전술한 바와 같이 미들 엘리먼트(32~36)의 크기, 개수, 또는 용량에 상응하게 맞추어준다. In the example shown at the bottom right of FIG. 4B, a total of three RO cells 310, 320, and 370 are provided, and each housing size is similar. Among these, the center RO cell corresponds to the second RO cell 320, and by adjusting the size of the membrane section included therein, the size corresponds to the size, number, or capacity of the middle elements 32 to 36 as described above. To match.
다른 실시예에서는, 다수의 멤브레인 섹션의 크기를 유사하게 하되, 제 2 RO 셀(320)을 다수 사용하거나, 또는 적층하여 사용할 수도 있다.In other embodiments, the size of the plurality of membrane sections may be similar, but a plurality of second RO cells 320 may be used or stacked.
멤브레인의 크기에 비례를 이용하여, 이와 같이 구성된 RO 처리 모사부(300)에 역삼투막 처리 장치에 투입되는 원수(또는 전처리수)에 상응하는 양의 유입수를 주입시키면, 결과적으로 RO 처리 모사부(300)의 막오염 진행은 실제 역삼투막 처리 장치의 RO 처리부(30)의 막오염 진행과 유사하게 이루어진다.By using the proportional to the size of the membrane, if the inflow of the amount corresponding to the raw water (or pre-treatment water) to be injected into the reverse osmosis membrane treatment apparatus is injected into the RO treatment simulation unit 300 configured as described above, as a result, the RO treatment simulation unit 300 Membrane contamination progress of the) is made similar to the membrane contamination progress of the RO treatment unit 30 of the actual reverse osmosis membrane treatment apparatus.
이제, RO 처리 모사부(300)에 유입되는 유입수가 저장되는 유입수 저장부(100)를 설명한다. Now, the inflow water storage unit 100 in which the inflow water flowing into the RO processing simulation unit 300 is stored will be described.
RO 처리 모사부(300)가 RO 처리부(30)를 근사하게 모사하기 위하여, RO 처리부(30)에 주입되는 전처리수가 유입수로 사용되는 것이 바람직하다. In order for the RO treatment simulation unit 300 to approximate the RO treatment unit 30, it is preferable that the pretreatment water injected into the RO treatment unit 30 is used as the inflow water.
유입수 저장부(100)에는, 원수 온도를 조절하는 수온조절장치(H), 원수를 교반하기 위한 구동기(M)가 구비될 수 있다. 온도와 교반 정도를 별도의 제어부(미도시)를 이용하여 제어함으로써, RO 처리 모사부(300)가 RO 처리부(30)를 근사하게 모사할 수 있다. Inflow water storage unit 100, a water temperature control device (H) for adjusting the raw water temperature, may be provided with a driver (M) for stirring the raw water. By controlling the temperature and the degree of stirring by using a separate controller (not shown), the RO processing simulation unit 300 can approximate the RO processing unit 30.
유입수 저장부(100)에서 RO 처리 모사부(300)로 투입되는 유입수는, 유입수 저장부(100)의 수위를 감지함으로써 제어된다. 유입수 저장부(100)에는 그 수위를 감지하기 위한 수위센서(LS)가 구비된다. The inflow water introduced from the inflow water storage unit 100 to the RO processing simulation unit 300 is controlled by sensing the level of the inflow water storage unit 100. The inflow water storage unit 100 is provided with a water level sensor (LS) for detecting the water level.
또한, 유입수 저장부(100)로 유입수가 유입되는 라인에 밸브(V1)가 구비되고, 유입수 저장부(100)로부터 드레인되는 라인에 다른 밸브(V2)가 구비되고, 제 1 RO 셀(310), 제 2 RO 셀(320) 및 제 3 RO 셀(370)로 유입수가 유입되는 라인에 각각 다른 밸브(V3, V4, V5)가 구비된다.In addition, a valve V1 is provided in a line into which the influent flows into the influent storage unit 100, another valve V2 is provided in a line draining from the influent storage unit 100 and the first RO cell 310. The second RO cell 320 and the third RO cell 370 are provided with different valves V3, V4, and V5 respectively in the inflow line.
또한, 제 1 RO 셀(310), 제 2 RO 셀(320) 및 제 3 RO 셀(370)로 유입수가 유입되는 라인에는 별도의 고압펌프(HP)가 더 구비된다.In addition, a separate high pressure pump HP is further provided in a line into which the inflow water flows into the first RO cell 310, the second RO cell 320, and the third RO cell 370.
제어부(미도시)는 이러한 밸브들(V1, V2, V3, V4, V5)과 고압펌프(HP)를 유입수 저장부(100)의 수위에 따라 조절하게 된다.  The controller (not shown) adjusts the valves V1, V2, V3, V4, and V5 and the high pressure pump HP according to the level of the influent storage unit 100.
RO 처리 모사부(300)에서 RO 처리가 이루어지면 유입수는 농축수와 처리수로 구분된다. 처리수는 별도의 처리수 저장부(400)에 저장되는데, 농축수가 다시 유입수 저장부(100)로 재유입되어야 한다는 점이 중요하다. 농축수가 재유입되어야 전술한 바와 같이 엘리먼트별로 다른 막오염 정도를 모사할 수 있기 때문이다. When RO treatment is performed in the RO treatment simulation unit 300, the influent is divided into concentrated water and treated water. Treated water is stored in a separate treated water storage unit 400, it is important that the concentrated water must be re-introduced back to the inlet water storage unit (100). This is because the concentrated water must be re-introduced to simulate the degree of membrane fouling for each element as described above.
한편, 농축수가 재유입되기에 유입수 저장부(100)의 수위는 결국 처리수 저장부(400)에 저장되는 처리수의 양에 상응하게 되며, 다시 말하면 유입수 저장부(100)의 수위의 변화는 RO 처리 모사부(300)의 회수율에 상응하며, 또 다르게 표현하면 RO 처리 모사부(300)의 처리수량 내지 농축율에 상응하다고 할 수 있다.On the other hand, since the concentrated water is re-introduced, the water level of the inflow water storage unit 100 eventually corresponds to the amount of treated water stored in the treated water storage unit 400, that is, the change in the water level of the inflow water storage unit 100 Corresponding to the recovery rate of the RO treatment simulation unit 300, and in other words, it may correspond to the treatment amount or the concentration rate of the RO treatment simulation unit 300.
따라서, RO 처리 모사부(300)에 유입되는 유입수의 미리 설정된 비율에 따른 유입수 저장부(100)의 수위에 따라 제어함으로써, 실제 RO 처리부(30)의 처리량에 상응하여 RO 처리 모사부(300)의 처리량을 제어할 수 있으며, 이를 통하여 RO 처리 모사부(300)의 막오염 진행은 RO 처리부(30)의 막오염 진행에 상응하게 진행될 것이다.Therefore, by controlling according to the water level of the influent storage unit 100 according to a preset ratio of the influent flowing into the RO processing unit 300, the RO processing unit 300 corresponds to the throughput of the actual RO processing unit 30. Throughput can be controlled, through which the membrane contamination progress of the RO treatment simulation unit 300 will proceed in accordance with the membrane contamination progress of the RO processing unit (30).
다른 실시예에서는, 유입수 저장부(100)의 수위의 감소는 결국 처리수 저장부(400)의 수위 증가에 상응하므로, 처리수 저장부(400)에 별도 센서(미도시)가 구비되어 이를 기준으로 유입수 저장부(100)의 수위를 추정하여 밸브와 고압펌프들을 제어할 수도 있다.In another embodiment, since the decrease in the water level of the influent storage unit 100 corresponds to the increase in the water level of the treated water storage unit 400, a separate sensor (not shown) is provided in the treated water storage unit 400 and based on this. By estimating the water level of the influent storage unit 100 may control the valve and the high pressure pump.
2. 역삼투막 베셀 내 실시간 막오염 감시 방법의 설명2. Description of real-time membrane fouling monitoring method in reverse osmosis membrane vessel
도 5 및 도 6을 참조하여 본 발명에 따른 실시간 막오염 감시 방법을 설명한다. 도 6은 제어부(미도시)가 제어하는 밸브(V1, V2, V3, V4, V5)의 개폐와 고압펌프(HP)의 작동을 도시한 것이다. 아래의 설명에서는 제어부에 대한 표현은 생략하도록 한다.5 and 6 will be described a real-time membrane fouling monitoring method according to the present invention. 6 illustrates the opening and closing of the valves V1, V2, V3, V4, and V5 controlled by the controller (not shown) and the operation of the high pressure pump HP. In the following description, the expression of the controller will be omitted.
먼저, 준비 단계로서, 밸브(V1)를 개방하여 유입수 저장부(100)에 유입수가 유입된다(S10). 유입되는 유입수는 RO 처리부(30)에 유입되는 것과 동일하게 전처리수인 것이 바람직하다. 유입수 저장부(100)의 수위가 미리 설정된 만수위(L0)에 이른 경우(S20), 밸브(V1)가 폐쇄된다. First, as a preparation step, the inlet water is introduced into the influent water storage unit 100 by opening the valve V1 (S10). Inflow water is preferably a pre-treatment water in the same way as flowing into the RO processing unit (30). When the water level of the inflow water storage unit 100 reaches the preset full water level L0 (S20), the valve V1 is closed.
이제, 리드 엘리먼트(31)를 모사하는 제 1 RO 셀(310)에 유입수가 유입된다(S100). 이를 위하여, 밸브(V3)가 개방되고 고압펌프(HP)가 작동한다. Inflow water flows into the first RO cell 310 that simulates the lead element 31 (S100). For this purpose, the valve V3 is opened and the high pressure pump HP is operated.
유입수가 유입되면 제 1 RO 셀(310)에서 RO 처리가 이루어져서 처리수와 농축수로 구분되며, 처리수는 처리수 저장부(400)에 저장되고, 농축수는 유입수 저장부(100)에 재유입된다. 이 과정에서 제 1 RO 셀(310)의 막오염이 진행되며, 유입수 저장부(100)의 수위는 점차 낮아진다. When the influent flows in, the RO treatment is performed in the first RO cell 310 to be divided into the treated water and the concentrated water, the treated water is stored in the treated water storage unit 400, and the concentrated water is returned to the influent storage unit 100. Inflow. In this process, the membrane contamination of the first RO cell 310 proceeds, and the water level of the influent storage unit 100 gradually decreases.
유입수 저장부(100)의 수위가 미리 결정한 수위(L1)까지 낮아진 경우(L110) 제 1 RO 셀(310)은 미리 설정한 만큼의 막오염이 진행된 것이므로, 이제 제 2 RO 셀(320)로 진행한다. When the water level of the influent storage unit 100 is lowered to a predetermined level L1 (L110), since the first RO cell 310 has a predetermined amount of membrane contamination, the flow proceeds to the second RO cell 320. do.
미들 엘리먼트(32~36)를 모사하는 제 2 RO 셀(320)에 유입수가 유입된다(S200). 이를 위하여, 밸브(V4)가 개방되고, 밸브(V3)는 폐쇄된다. 고압펌프(HP)는 계속 작동 중이다.Inflow water flows into the second RO cell 320 that simulates the middle elements 32 to 36 (S200). To this end, the valve V4 is opened and the valve V3 is closed. The high pressure pump (HP) is still in operation.
이 때에 유입되는 유입수는 제 1 RO 셀(310)에 유입되는 유입수인 전처리수와 달리, 제 1 RO 셀(310)에서 처리수와 구분된 농축수가 포함된 유입수이므로, 실제 미들 엘리먼트(32~36)로 유입되는 유입수와 유사하다. At this time, the influent flowing in is different from the pretreated water flowing into the first RO cell 310, and thus, the inflow water including the concentrated water separated from the treated water in the first RO cell 310 is actually a middle element 32 to 36. Similar to the influent flow into).
유입수가 유입되면 제 2 RO 셀(320)에서 RO 처리가 이루어져서 처리수와 농축수로 구분되며, 처리수는 처리수 저장부(400)에 저장되고, 농축수는 유입수 저장부(100)에 재유입된다. 이 과정에서 제 2 RO 셀(320)의 막오염이 진행되며, 유입수 저장부(100)의 수위는 점차 낮아진다. When the influent flows in, the RO treatment is performed in the second RO cell 320 to be divided into the treated water and the concentrated water, the treated water is stored in the treated water storage unit 400, and the concentrated water is re-used in the influent storage unit 100. Inflow. In this process, the membrane contamination of the second RO cell 320 proceeds, and the water level of the influent storage unit 100 gradually decreases.
유입수 저장부(100)의 수위가 미리 결정한 수위(L2)까지 낮아진 경우(L210) 제 2 RO 셀(320)은 미리 설정한 만큼의 막오염이 진행된 것이므로, 이제 제 3 RO 셀(370)로 진행한다. When the water level of the influent storage unit 100 is lowered up to a predetermined level L2 (L210), since the second RO cell 320 has a predetermined amount of membrane contamination, the flow proceeds to the third RO cell 370. do.
마지막으로, 엔드 엘리먼트(37)를 모사하는 제 3 RO 셀(370)에 유입수가 유입된다(S300). 이를 위하여, 밸브(V5)는 개방되고, 밸브(V4)가 폐쇄된다. 고압펌프(HP)는 계속 작동 중이다.Finally, inflow water flows into the third RO cell 370 that simulates the end element 37 (S300). To this end, the valve V5 is opened and the valve V4 is closed. The high pressure pump (HP) is still in operation.
이 때에 유입되는 유입수는 제 1 RO 셀(310)에 유입되는 유입수인 전처리수나 제 2 RO 셀(320)로 유입되는 유입수와 달리, 제 2 RO 셀(320)에서 처리수와 구분된 농축수가 포함된 유입수이므로, 실제 엔드 엘리먼트(37)로 유입되는 유입수와 유사하다. At this time, the influent flowing in, unlike the influent flowing into the first RO cell 310 or the inflow flowing into the second RO cell 320, the influent includes a concentrated water separated from the treated water in the second RO cell (320). Influent, similar to the inflow into the actual end element 37.
유입수가 유입되면 제 3 RO 셀(370)에서 RO 처리가 이루어져서 처리수와 농축수로 구분되며, 처리수는 처리수 저장부(400)에 저장되고, 농축수는 유입수 저장부(100)에 재유입된다. 이 과정에서 제 3 RO 셀(370)의 막오염이 진행되며, 유입수 저장부(100)의 수위는 점차 낮아진다. When the influent flows in, the RO treatment is performed in the third RO cell 370 to be divided into the treated water and the concentrated water. Inflow. In this process, the membrane contamination of the third RO cell 370 proceeds, and the water level of the influent storage unit 100 gradually decreases.
유입수 저장부(100)의 수위가 미리 결정한 수위(L3)까지 낮아진 경우(L310) 제 3 RO 셀(320)은 미리 설정한 만큼의 막오염이 모두 진행된 것이다.When the water level of the inflow water storage unit 100 is lowered to a predetermined level L3 (L310), the third RO cell 320 has all of the membrane contaminations set in advance.
이와 같이 1회의 사이클이 모두 완료되면, 밸브(V5)가 폐쇄되고 고압펌프(HP)는 작동을 정지하며, 유입수 저장부(100)를 드레인하기 위하여 밸브(V2)가 개방된다(S500). As such, once all of the cycles are completed, the valve V5 is closed, the high pressure pump HP is stopped, and the valve V2 is opened to drain the influent storage 100 (S500).
추가 작동이 필요한 경우(S600) 다시 S10 단계로 진행한다.If further operation is required (S600), the process proceeds to step S10 again.
이상, 본 명세서에는 본 발명을 당업자가 용이하게 이해하고 재현할 수 있도록 도면에 도시한 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당업자라면 본 발명의 실시예로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 보호범위는 특허청구범위에 의해서 정해져야 할 것이다. In the present specification, the present invention has been described with reference to the embodiments shown in the drawings so that those skilled in the art can easily understand and reproduce the present invention, which is merely exemplary, and those skilled in the art can make various modifications and equivalents from the embodiments of the present invention. It will be appreciated that embodiments are possible. Therefore, the protection scope of the present invention will be defined by the claims.
(부호의 설명)(Explanation of the sign)
10: 전전처리부10: pre-processing unit
20: 전처리부20: preprocessing unit
30: RO 처리부30: RO processing unit
31, 32, 33, 34, 35, 36, 37: RO 엘리먼트31, 32, 33, 34, 35, 36, 37: RO element
100: 유입수 저장부100: influent storage unit
300: RO 처리 모사부300: RO treatment replica
310: 제 1 RO 셀310: first RO cell
320: 제 2 RO 셀320: second RO cell
370: 제 3 RO 셀370: third RO cell
400: 처리수 저장부400: treated water storage unit
V1, V2, V3, V4, V5: 밸브V1, V2, V3, V4, V5: Valve
HP: 고압펌프HP: High Pressure Pump
LS: 수위센서LS: water level sensor
H: 수온조절장치H: water temperature controller
M: 구동기M: Driver

Claims (16)

  1. 유입수 저장부(100); 및Influent storage unit 100; And
    상기 유입수 저장부(100)에 저장된 유입수가 유입되며, 역삼투막 베셀을 모사하여 이를 RO 처리함으로써 처리수와 농축수로 구분하는 RO 처리 모사부(300)를 포함하며, Inflow water stored in the inflow water storage unit 100 is introduced, and includes a RO treatment simulation unit 300 for simulating the reverse osmosis membrane vessel and RO treatment to separate the treated water and concentrated water,
    상기 RO 처리 모사부(300)에서 구분된 농축수는 상기 유입수 저장부(100)로 재유입되며, The concentrated water separated by the RO treatment simulation unit 300 is re-introduced into the influent storage unit 100,
    상기 RO 처리 모사부(300)는 제 1 RO 셀(310), 제 2 RO 셀(320) 및 제 3 RO 셀(370)을 포함하며, The RO processing simulation unit 300 includes a first RO cell 310, a second RO cell 320 and a third RO cell 370,
    상기 유입수 저장부(100)의 수위에 따라, 상기 유입수 저장부(100)로부터의 유입수가 상기 제 1 RO 셀(310), 제 2 RO 셀(320) 및 제 3 RO 셀(370) 중 어느 하나로 유입되는, According to the water level of the influent storage unit 100, inflow water from the influent storage unit 100 is any one of the first RO cell 310, the second RO cell 320, and the third RO cell 370. Influx,
    역삼투막 베셀 내 실시간 막오염 감시 장치.Real-time membrane contamination monitoring device in reverse osmosis membrane vessel.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 제 1 RO 셀(310), 제 2 RO 셀(320) 및 제 3 RO 셀(370)은 서로 구분되어 있는, The first RO cell 310, the second RO cell 320 and the third RO cell 370 are separated from each other,
    역삼투막 베셀 내 실시간 막오염 감시 장치.Real-time membrane contamination monitoring device in reverse osmosis membrane vessel.
  3. 제 2 항에 있어서, The method of claim 2,
    상기 유입수 저장부(100)로 유입수가 유입되는 라인에 구비된 밸브(V1);A valve (V1) provided in a line through which the inflow water flows into the inflow water storage unit 100;
    상기 유입수 저장부(100)로부터 드레인되는 라인에 구비된 밸브(V2); A valve (V2) provided in a line drained from the inflow water storage unit (100);
    상기 제 1 RO 셀(310), 제 2 RO 셀(320) 및 제 3 RO 셀(370)로 유입수가 유입되는 라인에 각각 구비된 밸브(V3, V4, V5); 및Valves (V3, V4, V5) respectively provided in a line into which the inflow water flows into the first RO cell 310, the second RO cell 320, and the third RO cell 370; And
    상기 유입수 저장부(100)로부터 유입수가 유출되는 라인에 구비된 고압펌프(HP)를 더 포함하는, Further comprising a high pressure pump (HP) provided in the line from which the inflow water is discharged from the inflow water storage unit 100,
    역삼투막 베셀 내 실시간 막오염 감시 장치.Real-time membrane contamination monitoring device in reverse osmosis membrane vessel.
  4. 제 3 항에 있어서, The method of claim 3, wherein
    상기 밸브들(V1, V2, V3, V4, V5)은 상기 유입수 저장부(100)의 수위에 따라 그 개폐가 결정되며, 상기 고압펌프(HP)는 상기 유입수 저장부(100)의 수위에 따라 그 작동이 결정되는, The valves V1, V2, V3, V4, and V5 are opened and closed according to the level of the influent storage unit 100, and the high pressure pump HP is based on the level of the influent storage unit 100. Whose operation is determined,
    역삼투막 베셀 내 실시간 막오염 감시 장치.Real-time membrane contamination monitoring device in reverse osmosis membrane vessel.
  5. 제 3 항에 있어서, The method of claim 3, wherein
    상기 유입수 저장부(100)의 수위를 감지하는 수위센서(LS)를 더 포함하는, Further comprising a water level sensor (LS) for detecting the water level of the inflow water storage unit 100,
    역삼투막 베셀 내 실시간 막오염 감시 장치.Real-time membrane contamination monitoring device in reverse osmosis membrane vessel.
  6. 제 3 항에 있어서, The method of claim 3, wherein
    상기 RO 처리 모사부(300)에서 처리된 처리수가 저장되는 처리수 저장부(400)를 더 포함하며, Further comprising a treated water storage unit 400 for storing the processed water processed by the RO treatment simulation unit 300,
    상기 처리수 저장부(400)의 수위를 감지함으로써, 상기 유입수 저장부(100)의 수위가 연산되는, By detecting the water level of the treated water storage unit 400, the water level of the influent water storage unit 100 is calculated,
    역삼투막 베셀 내 실시간 막오염 감시 장치.Real-time membrane contamination monitoring device in reverse osmosis membrane vessel.
  7. 제 3 항에 있어서, The method of claim 3, wherein
    상기 유입수 저장부(100) 내의 원수 온도를 조절하는 수온조절장치(H); 및A water temperature control device (H) for controlling the raw water temperature in the inflow water storage unit 100; And
    상기 유입수 저장부(100) 내의 원수를 교반하기 위한 구동기(M)를 더 포함하는, Further comprising a driver (M) for stirring the raw water in the inflow water storage unit 100,
    역삼투막 베셀 내 실시간 막오염 감시 장치.Real-time membrane contamination monitoring device in reverse osmosis membrane vessel.
  8. 제 3 항 내지 제 7 항 중 어느 한 항에 따른 실시간 막오염 감시 장치; A real-time membrane fouling monitoring apparatus according to any one of claims 3 to 7;
    원수가 유입되어 전전처리되는 전전처리부(10); Pre-processing unit 10 is pre-processed by the raw water flow;
    상기 전전처리부(10)로부터 전전처리수가 유입되는 전처리부(20); 및A pretreatment unit 20 into which pretreatment water flows from the pretreatment unit 10; And
    상기 전처리부(20)로부터 전처리수가 유입되어 RO 처리되어 처리수를 유출시키는 RO 처리부(30)를 포함하며, It includes a RO processing unit 30 for pre-treatment water flows from the pre-treatment unit 20 to RO treatment to flow out the treated water,
    상기 RO 처리부(30)는 역삼투막 베셀로서, 서로 연결된 다수의 RO 엘리먼트(element)(31~37)로 이루어지며, The RO processor 30 is a reverse osmosis membrane vessel, and is composed of a plurality of RO elements 31 to 37 connected to each other.
    상기 다수의 RO 엘리먼트(31~37)은 전처리수가 유입되는 최선단의 리드 엘리먼트(lead element)(31), 농축수가 유출되는 엔드 엘리먼트(end element)(37) 및 상기 리드 엘리먼트(31)와 상기 엔드 엘리먼트(37) 사이에 위치하는 다수의 미들 엘리먼트(middle element)(32~36)로 이루어지며, The plurality of RO elements 31 to 37 may include a lead element 31 at which the pretreatment water is introduced, an end element 37 at which concentrated water flows out, and the lead element 31 and the lead element 31. It consists of a plurality of middle elements (32 to 36) positioned between the end element 37,
    상기 RO 처리 모사부(300) 중 상기 제 2 RO 셀(320)의 비율은, 상기 RO 처리부(30) 중 상기 다수의 미들 엘리먼트(32~36)의 비율에 상응하는, The ratio of the second RO cell 320 of the RO processing unit 300 corresponds to the ratio of the plurality of middle elements 32 to 36 of the RO processing unit 30,
    역삼투막 처리 장치.Reverse osmosis membrane treatment device.
  9. 제 8 항에 있어서, The method of claim 8,
    상기 유입수 저장부(100)의 전체 수위에 대비하여 현재 수위의 감소된 비율은, 상기 RO 처리부(30)의 회수율에 상응하는, The reduced ratio of the current water level relative to the total water level of the inflow water storage unit 100 corresponds to the recovery rate of the RO processing unit 30,
    역삼투막 처리 장치.Reverse osmosis membrane treatment device.
  10. 제 8 항에 있어서, The method of claim 8,
    상기 실시간 막오염 감시 장치의 상기 유입수 저장부(100)에 저장되는 유입수는, 상기 RO 처리부(30)에 유입되는 전처리수와 동일한, The inflow water stored in the inflow water storage unit 100 of the real-time membrane fouling monitoring device is the same as the pretreatment water flowing into the RO processing unit 30,
    역삼투막 처리 장치.Reverse osmosis membrane treatment device.
  11. 제 8 항에 따른 역삼투막 처리 장치에서 역삼투막 베셀의 막오염을 실시간으로 감지하는 방법으로서, A method for detecting membrane fouling of a reverse osmosis membrane vessel in a reverse osmosis membrane treatment apparatus according to claim 8,
    (a) 상기 유입수 저장부(100)의 수위가 기 설정된 만수위(L0)인 경우, 유입수가 제 1 RO 셀(310)에 유입되는 단계; (a) when the water level of the inflow water storage unit 100 is a predetermined full water level (L0), inflow water flows into the first RO cell 310;
    (b) 상기 유입수 저장부(100)의 수위가 기 설정된 제 1 수위(L1)인 경우, 제 1 RO 셀(310)로의 유입이 중단되고, 유입수가 제 2 RO 셀(320)로 유입되는 단계; 및(b) when the water level of the inflow water storage unit 100 is a predetermined first water level L1, the inflow into the first RO cell 310 is stopped, and the inflow water flows into the second RO cell 320. ; And
    (c) 상기 유입수 저장부(100)의 수위가 기 설정된 제 2 수위(L2)인 경우, 제 2 RO 셀(320)로의 유입이 중단되고, 유입수가 제 3 RO 셀(370)로 유입되는 단계를 포함하는, (c) when the water level of the inflow water storage unit 100 is the preset second water level L2, the inflow into the second RO cell 320 is stopped, and the inflow water flows into the third RO cell 370. Including,
    실시간 막오염 감시 방법.Real time membrane contamination monitoring method.
  12. 제 11 항에 있어서,The method of claim 11,
    상기 (c) 단계 이후에, After step (c),
    (d) 상기 유입수 저장부(100)의 수위가 기 설정된 제 3 수위(L3)인 경우, 제 3 RO 셀(370)로의 유입이 중단되고, 상기 유입수 저장부(100)에 남은 유체가 드레인되는 단계를 더 포함하는, (d) When the level of the inflow water storage unit 100 is the third level L3, the inflow into the third RO cell 370 is stopped, and the remaining fluid in the inflow water storage unit 100 is drained. Further comprising the steps,
    실시간 막오염 감시 방법.Real time membrane contamination monitoring method.
  13. 제 12 항에 있어서, The method of claim 12,
    상기 (a) 단계 이전에, Before step (a) above,
    (0) 상기 유입수 저장부(100)의 수위가 기 설정된 만수위(L0)에 이르도록, 원수가 상기 유입수 저장부(100)로 유입되는 단계를 더 포함하는, (0) further comprising the step of introducing the raw water into the inflow water storage unit 100 so that the water level of the inflow water storage unit 100 reaches a preset full water level (L0),
    실시간 막오염 감시 방법.Real time membrane contamination monitoring method.
  14. 제 13 항에 있어서, The method of claim 13,
    상기 (0) 단계는, 제어부가 밸브(V1)를 개방하는 단계를 포함하며, Step (0) includes the step of the control unit to open the valve (V1),
    상기 (a) 단계는, 상기 제어부가 밸브(V3)를 개방하며 상기 고압펌프(HP)를 작동시키는 단계를 포함하며, The step (a) includes the step of operating the high pressure pump HP by the control unit opening the valve V3,
    상기 (b) 단계는, 상기 제어부가 밸브(V4)를 개방하고, 밸브(V3)를 폐쇄하는 단계를 포함하며, The step (b) may include the step of the control unit opening the valve (V4), closing the valve (V3),
    상기 (c) 단계는, 상기 제어부가 밸브(V5)를 개방하고, 밸브(V4)를 폐쇄하는 단계를 포함하며, 그리고The step (c) includes the control unit opening the valve V5 and closing the valve V4, and
    상기 (d) 단계는, 상기 제어부가 상기 고압펌프(HP)의 작동을 중지시키며 밸브(V2)를 개방하고 밸브(V5)를 폐쇄하는 단계를 포함하는, The step (d) includes the step of the control unit stopping the operation of the high pressure pump HP, opening the valve V2 and closing the valve V5,
    실시간 막오염 감시 방법.Real time membrane contamination monitoring method.
  15. 제 14 항에 있어서, The method of claim 14,
    상기 (d) 단계 이후, After the step (d),
    상기 유입수 저장부(100)에 남은 유체가 모두 드레인되었음을 확인한 후, 상기 (0) 단계로 회귀하는, After confirming that all the remaining fluid in the inflow water storage unit 100 is drained, returning to step (0),
    실시간 막오염 감시 방법.Real time membrane contamination monitoring method.
  16. 제 11 항에 있어서, The method of claim 11,
    상기 RO 처리 모사부(300)의 막오염 상태에 따라, 상기 RO 처리부(30)의 막오염 상태가 감지되는, According to the membrane fouling state of the RO processing simulation unit 300, the membrane fouling state of the RO processing unit 30 is detected,
    실시간 막오염 감시 방법.Real time membrane contamination monitoring method.
PCT/KR2015/008387 2015-03-05 2015-08-11 Device and method for real-time membrane fouling monitoring in reverse osmosis membrane vessel WO2016140411A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150031156A KR101533554B1 (en) 2015-03-05 2015-03-05 A assembly and method of real-time fouling monitoring in reverse osmosis membrane vessel
KR10-2015-0031156 2015-03-05

Publications (1)

Publication Number Publication Date
WO2016140411A1 true WO2016140411A1 (en) 2016-09-09

Family

ID=53788467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008387 WO2016140411A1 (en) 2015-03-05 2015-08-11 Device and method for real-time membrane fouling monitoring in reverse osmosis membrane vessel

Country Status (2)

Country Link
KR (1) KR101533554B1 (en)
WO (1) WO2016140411A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI820133B (en) * 2018-05-21 2023-11-01 日商栗田工業股份有限公司 Diagnostic device for reverse osmosis systems
CN118125673A (en) * 2024-05-07 2024-06-04 山东中大环境科技有限公司 Membrane method production water treatment system for injection

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101612231B1 (en) 2015-08-25 2016-04-14 성균관대학교산학협력단 A assembly and method for cleaning diagnosis in reverse osmosis membrane vessel
KR101674831B1 (en) * 2015-10-02 2016-11-23 성균관대학교산학협력단 A assembly and method for cleaning diagnosis in forward osmosis membrane vessel
KR101913658B1 (en) 2017-02-10 2018-10-31 한국과학기술원 A water treatment apparatus having a separation membrane, system for monitoring the separation membrane, and method for monitoring the separation membrane using the same
KR101963124B1 (en) 2017-11-29 2019-04-01 한국건설기술연구원 Remote diagnosing and managing system for small-scaled desalination equipment being separately installed in island area, and method for the same
KR102029013B1 (en) * 2018-02-26 2019-11-08 건국대학교 산학협력단 Membrane filtration system with on-site detection apparatus of biofouling in membrane filtration system and detection method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0929070A (en) * 1995-07-24 1997-02-04 Tohoku Electric Power Co Inc Membrane separator for water treatment
KR20110067744A (en) * 2009-12-15 2011-06-22 한국건설기술연구원 Monitoring method real-time fouling potential in reverse osmosis process for seawater desalination and desalination equipment having such monitoring function
KR20110089710A (en) * 2010-02-01 2011-08-09 고려대학교 산학협력단 Predicting apparatus for filtration membrane fouling index
KR20130056711A (en) * 2011-11-22 2013-05-30 엘지전자 주식회사 High efficient reverse osmosis apparatus having reduced flux difference among ro membrane elements inside vessel and water treatment method using the same
KR20130085220A (en) * 2012-01-19 2013-07-29 엘지전자 주식회사 Monitoring method real-time fouling potential in reverse osmosis process for seawater desalination and desalination equipment having such monitoring function

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101478878B1 (en) * 2012-10-29 2015-01-02 도레이케미칼 주식회사 Membrane filtration process system using of relative fouling index ratio and the method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0929070A (en) * 1995-07-24 1997-02-04 Tohoku Electric Power Co Inc Membrane separator for water treatment
KR20110067744A (en) * 2009-12-15 2011-06-22 한국건설기술연구원 Monitoring method real-time fouling potential in reverse osmosis process for seawater desalination and desalination equipment having such monitoring function
KR20110089710A (en) * 2010-02-01 2011-08-09 고려대학교 산학협력단 Predicting apparatus for filtration membrane fouling index
KR20130056711A (en) * 2011-11-22 2013-05-30 엘지전자 주식회사 High efficient reverse osmosis apparatus having reduced flux difference among ro membrane elements inside vessel and water treatment method using the same
KR20130085220A (en) * 2012-01-19 2013-07-29 엘지전자 주식회사 Monitoring method real-time fouling potential in reverse osmosis process for seawater desalination and desalination equipment having such monitoring function

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI820133B (en) * 2018-05-21 2023-11-01 日商栗田工業股份有限公司 Diagnostic device for reverse osmosis systems
CN118125673A (en) * 2024-05-07 2024-06-04 山东中大环境科技有限公司 Membrane method production water treatment system for injection

Also Published As

Publication number Publication date
KR101533554B1 (en) 2015-07-03

Similar Documents

Publication Publication Date Title
WO2016140411A1 (en) Device and method for real-time membrane fouling monitoring in reverse osmosis membrane vessel
WO2013105728A1 (en) Device for measuring pollution index of filtration membrane
WO2016140412A1 (en) Device and method for real-time membrane fouling monitoring in forward osmosis membrane vessel
KR100429744B1 (en) Filtration Monitoring and Control System
CN101384342B (en) Method and system for monitoring reverse osmosis membranes
JP4576428B2 (en) Filtrated water monitoring device and filtered water monitoring system
WO2017164540A1 (en) Apparatus for predicting membrane fouling in forward osmosis and method for predicting membrane fouling in forward osmosis
WO2014092383A1 (en) Filtration membrane fouling index measuring method
KR101612231B1 (en) A assembly and method for cleaning diagnosis in reverse osmosis membrane vessel
JP2001190938A (en) Method of detecting breakage of water treating membrane
JPWO2008047926A1 (en) Filtrated water monitoring device and filtered water monitoring system
JP3028447B2 (en) Water purification equipment
JPH05137977A (en) Detection of separation membrane breakage for membrane filter
KR20180034839A (en) Method for predicting fouling
KR20180100011A (en) A method for physical washing using osmotic pressure back washing in FO-RO process
KR20150138940A (en) Hollow fiber membrane and method of detecting damage of membrane thereof
KR101674831B1 (en) A assembly and method for cleaning diagnosis in forward osmosis membrane vessel
KR101766457B1 (en) Measuring apparatus for membrane fouling index
JP4591702B2 (en) Film processing apparatus and film damage detection method
KR20110127011A (en) Method for membrane integrity test using reduction of surface tension
JPH07248290A (en) Leak detector at time of damage of membrane in membrane filter apparatus
WO2015126066A1 (en) Immersed continuous flow membrane filtration device and method for backwashing same
JP2003334551A (en) Membrane filtration device and membrane filtration method
Johnson et al. Issues of operational integrity in membrane drinking water plants
JP2004188252A (en) Membrane filtration apparatus and its operating method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884077

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15884077

Country of ref document: EP

Kind code of ref document: A1