WO2017164540A1 - Apparatus for predicting membrane fouling in forward osmosis and method for predicting membrane fouling in forward osmosis - Google Patents

Apparatus for predicting membrane fouling in forward osmosis and method for predicting membrane fouling in forward osmosis Download PDF

Info

Publication number
WO2017164540A1
WO2017164540A1 PCT/KR2017/002427 KR2017002427W WO2017164540A1 WO 2017164540 A1 WO2017164540 A1 WO 2017164540A1 KR 2017002427 W KR2017002427 W KR 2017002427W WO 2017164540 A1 WO2017164540 A1 WO 2017164540A1
Authority
WO
WIPO (PCT)
Prior art keywords
forward osmosis
membrane
osmosis membrane
water
ofi
Prior art date
Application number
PCT/KR2017/002427
Other languages
French (fr)
Korean (ko)
Inventor
홍승관
최병규
김인혁
이상석
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2017164540A1 publication Critical patent/WO2017164540A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • B01D65/109Testing of membrane fouling or clogging, e.g. amount or affinity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a forward osmosis membrane fouling prediction device and a forward osmosis membrane fouling prediction method, and more specifically, a forward osmosis membrane fouling prediction device and forward osmosis, wherein the membrane fouling of the forward osmosis membrane can be predicted by the forward osmosis membrane fouling index. It relates to a membrane fouling prediction method.
  • Reverse osmosis of the membrane filtration process is rapidly increasing its use due to the provision of water quality superior to conventional water treatment methods.
  • the reverse osmosis process uses high pressure as a driving force for membrane separation, a large amount of power consumption is required.
  • the reverse osmosis process is affected by both osmotic pressure and mechanical pressure, densely presses the fouling layer of the reverse osmosis membrane, and reverse osmosis membrane contamination exhibiting irreversible behavior occurs. Therefore, the reverse osmosis process is irreversible membrane fouling phenomenon, only chemical cleaning is possible, physical cleaning is difficult.
  • Reverse osmosis processes require chemical cleaning or pre-treatment of influent, which is less economical and environmentally less than forward osmosis.
  • the membrane fouling layer generated from forward osmosis is reversible, recovering to a certain level through physical cleaning.
  • the forward osmosis process is drawing attention as a next generation water treatment technology that can replace the role of the existing process in the field where the reverse osmosis process was mainly used.
  • the forward osmosis process produces the treated water by the osmotic pressure difference generated without a pressure and between the semipermeable membranes. Since the forward osmosis process is operated in a non-pressurized manner, the membrane fouling mechanism is different from reverse osmosis. In the case of forward osmosis operation using only osmotic pressure difference between influent and induction solution, loose and dispersed membrane fouling layer was observed, unlike reverse osmosis membrane contamination , Generated The membrane fouling layer is reversible, recovering to a certain level through physical cleaning.
  • the forward osmosis process Due to the operation characteristics of the forward osmosis process, the forward osmosis process has a relatively low membrane fouling problem due to pressure, compared with the conventional reverse osmosis process, and is environmentally friendly because the membrane contamination can be physically washed. In addition, the forward osmosis process has a long replacement cycle and / or cleaning cycle of the membrane, and physical cleaning is possible compared to the conventional reverse osmosis process, thereby reducing maintenance costs.
  • the commercialization technology of the forward osmosis process is to improve the quality of the forward osmosis membrane and / or the induction solution, and the development of technology for predicting the membrane fouling cycle of the forward osmosis membrane is insufficient.
  • the membrane fouling measurement method is performed in the pressurized operation mode of the reverse osmosis process.
  • membrane fouling index (SDI, silt density index) is used to measure membrane fouling of the membrane of the reverse osmosis process.
  • the membrane contamination index (SDI, silt density index) is a universal index used as a manufacturer's quality assurance and operation standards in the reverse osmosis membrane.
  • the membrane fouling index (SDI) in the conventional reverse osmosis process is measured by the SDI index measurement equipment. While SDI index measurement equipment has the advantage of being simple and easy to handle, the material and index measurement of the membrane actually used using MF membranes with pores, not RO, is used to predict membrane contamination in reverse osmosis processes. The material used in the process is different.
  • the actual reverse osmosis process is cross-flow (CROSS-FLOW), the SDI index measurement was a dead end test (DEAD-END-TEST) in that there was a problem that the actual operating conditions and exponential experimental conditions are different . Even if such a problem exists, the reverse osmosis process can predict membrane fouling of the reverse osmosis membrane by using the SDI index measurement equipment.
  • the forward osmosis process unlike the reverse osmosis process, does not have a membrane fouling index of the generalized forward osmosis membrane like SDI, so it is difficult to simulate the forward osmosis process because it does not reflect the actual forward osmosis operating conditions. In addition, there is no equipment for measuring the membrane fouling index of the forward osmosis membrane.
  • the operating temperature was set to 25 °C and the recovery rate of the entire process is 50%.
  • the dilution ratio of forward osmosis treated water and seawater is 0.7: 1 (forward osmosis treated water: seawater).
  • SESW and MFSW experiments were performed by diluting with seawater at the same dilution ratio.
  • the SDI values according to the dilution of raw water and seawater derived by such experiments are shown in FIG. 5A.
  • the SDI value of dilution of raw water and seawater is the result of evaluating how much membrane contamination potential the raw water has.
  • SE is a sewage secondary treatment water
  • SESW is an untreated sewage secondary treatment water diluted in seawater
  • MFSW uses MF (Millipore, polypropylene, 0.45 ⁇ m) to sewage secondary treatment water.
  • FOSW is sewage secondary treatment water was diluted in seawater using the osmodilution effect of the forward osmosis membrane.
  • the SDI value of SE is 6.42 ⁇ 0.5, indicating a membrane contamination potential that is much higher than SDI 3 or less, which is generally recommended for operating reverse osmosis membranes.
  • the SDI value of FOSW is 1.28 ⁇ 0.12, which shows the membrane contamination potential that is only suitable for the recommended level below SDI 3. It can be seen.
  • An object of the present invention is to provide a forward osmosis membrane fouling prediction device and a forward osmosis membrane fouling prediction method in which the membrane fouling of the forward osmosis membrane can be predicted by the forward osmosis membrane fouling index.
  • the present invention reflects all the advantages and disadvantages of the membrane fouling index (SDI) measuring device of the conventional reverse osmosis process to calculate the forward osmosis membrane fouling index (OFI) by the membrane fouling of the forward osmosis membrane in the forward osmosis process, the actual forward osmosis
  • SDI membrane fouling index
  • OF forward osmosis membrane fouling index
  • An apparatus for predicting forward osmosis membrane fouling includes a membrane fouling simulation unit provided with a forward osmosis membrane and simulating membrane fouling of the forward osmosis membrane during the forward osmosis process; An inflow water supply unit that provides the first inflow water to the membrane fouling simulation unit during the forward osmosis process, and provides the second inflow water having a flow rate greater than that of the first inflow water to the membrane contamination simulation unit during the washing process; And the first water permeation rate (J1) of the first inflow water at the beginning of the forward osmosis process and the third water permeation rate (J3) of the first inflow water after the washing process are calculated to calculate the forward osmosis membrane contamination index (OFI).
  • OFI forward osmosis membrane contamination index
  • OFI osmosis membrane fouling index
  • J3 third water permeation
  • the forward osmosis membrane contamination index (OFI) is calculated to be greater than 1 (1 ⁇ OFI)
  • the critical reversibility (Rc) is 1 after the washing process for the water permeation rate of the first influent water before the washing process in the state that the membrane contamination of the forward osmosis membrane is not recoverable only by physical washing by the second influent water. It is preferable that it is the recovery rate of the permeation
  • water permeation of the primary influent water before the washing process is the water permeation of the first influent water after the washing process, in the state where the membrane contamination of the forward osmosis membrane cannot be recovered.
  • the membrane fouling predicting part when the water permeation rate of the first inflow water is gradually lower than the first water permeation amount J1 by the adhesion layer is measured, the second water permeation amount J2 is measured, the second At the time when the water permeation amount (J2) is measured, it is preferable to provide the secondary inflow water to the membrane fouling simulation unit so that the adhesion layer is removed by the secondary inflow water so that the forward osmosis membrane is washed.
  • the forward osmosis membrane fouling index (OFI) is calculated by the following equation.
  • J1 is the water permeation rate of the first inflow water through the forward osmosis membrane before the adhesion layer is formed at the beginning of the forward osmosis process
  • J3 is the forward osmosis process after the adhesion layer is removed from the forward osmosis membrane by the washing process. It is the water permeation rate of the primary inflow through the forward osmosis membrane.
  • in the forward osmosis process further comprises an induction solution supply for supplying an induction solution having a concentration higher than the primary influent to the membrane fouling simulation unit, the induction solution supply unit by adjusting the molar concentration of the induction solution
  • the membrane fouling simulation unit it is preferable to accelerate the formation of the adhesion layer in which the organic matter of the primary influent is accumulated on the surface of the forward osmosis membrane.
  • TDS total dissolved solids
  • the membrane fouling simulation unit connected to the induction solution supply, by adjusting the TDS (total dissolved solids) of the induction solution provided to the membrane fouling simulation unit, by the difference between the TDS of the primary influent and the TDS of the induction solution It is preferable to further include a TDS controller for adjusting the water permeation rate.
  • the forward osmosis membrane fouling prediction method for predicting the membrane fouling of the forward osmosis membrane in the forward osmosis process by using the forward osmosis membrane fouling prediction apparatus, (A) the primary influent and induction solution is supplied to the membrane fouling simulation unit, Membrane contamination is simulated by the adhesion layer accumulated on the forward osmosis membrane due to the osmotic pressure difference between the primary influent and the induction solution during the forward osmosis process; (B) providing a second inflow water having a flow rate greater than that of the first inflow water to the membrane fouling simulation unit, and washing the forward osmosis membrane by the second inflow water; And (C) measuring the first water permeation rate (J1) of the first influent water at the beginning of the forward osmosis process, and the third water permeation rate (J3) of the first influent water after the washing process, and the forward osmosis membrane contamination index (OFI) is calculated.
  • A the primary influent and in
  • step (C), (C1) if the forward osmosis membrane contamination index (OFI) is calculated to be greater than 1 (1 ⁇ OFI), the step of predicting that the case of the forward osmosis membrane is damaged; (C2) if the forward osmosis membrane contamination index (OFI) is calculated to be 1 (OFI 1), predicting that the forward osmosis membrane is not contaminated; (C3) predicting membrane fouling of the forward osmosis membrane when the forward osmosis membrane contamination index (OFI) is in the range greater than the critical reversibility (Rc) and less than 1 (Rc ⁇ OFI ⁇ 1); And (C4) when the forward osmosis membrane fouling index (OFI) is less than the critical reversibility (Rc) (Rc> OFI), the step of predicting that the forward osmosis membrane is impossible to recover the membrane fouling only by physical cleaning by the secondary influent.
  • OFI critical reversibility
  • the critical reversibility (Rc) is a water permeation rate of the first influent water after the washing process relative to the water permeation rate of the first influent water before the washing process in a state in which membrane fouling of the forward osmosis membrane cannot be recovered only by physical washing by the second influent. It is preferable that the recovery rate is.
  • the forward osmosis membrane contamination index is preferably calculated by the following formula.
  • J1 is the water permeation rate of the first inflow water through the forward osmosis membrane before the adhesion layer is formed at the beginning of the forward osmosis process
  • J3 is the forward osmosis process after the adhesion layer is removed from the forward osmosis membrane by the washing process. It is the water permeation rate of the primary inflow through the forward osmosis membrane.
  • the critical reversibility Rc is preferably calculated by the following equation.
  • water permeation of the primary influent water before the washing process is the water permeation of the first influent water after the washing process, in the state where the membrane contamination of the forward osmosis membrane cannot be recovered.
  • step (B) the water permeation rate of the primary inflow water passing through the forward osmosis membrane is gradually lower than the first water permeation amount J1 by the adhesion layer.
  • step (B) washing of the forward osmosis membrane by the second influent is performed, and as the adhesion layer is removed from the forward osmosis membrane, membrane fouling of the normal osmosis membrane is preferably restored.
  • step (A) the induction solution is molar concentration is supplied to the membrane fouling simulation unit, it is preferable to accelerate the formation of the adhesion layer.
  • step (A) the induction solution is provided to the membrane fouling simulation unit by adjusting the total dissolved solids (TDS) of the induction solution, the first water permeation (J1) is the first influent TDS It is preferable to be controlled by the difference between the TDS and the induction solution.
  • TDS total dissolved solids
  • J1 the first water permeation
  • the present invention can more accurately measure and predict the contamination phenomenon of the forward osmosis membrane generated by the seawater desalination process, the filtration process, the dehydration process, the concentration process, etc. using the forward osmosis method. That is, the present invention simulates the membrane fouling of the forward osmosis membrane used in the forward osmosis process, calculates the forward osmosis membrane contamination index (OFI), and advances the membrane contamination of the forward osmosis membrane from the forward osmosis membrane contamination index (OFI). Can be predicted.
  • the forward osmosis membrane contamination index (OFI) is calculated by reflecting the membrane fouling data (that is, the water permeability and the characteristics of the forward osmosis membrane) measured in the membrane of the forward osmosis membrane simulated.
  • the present invention can be used to simulate the membrane fouling of the forward osmosis membrane in a short period of time by using the reverse osmosis membrane used in practice, by reducing the membrane fouling time by the forward osmosis process using a reversible, high concentration induction solution of the forward osmosis membrane.
  • Figure 1 schematically shows the configuration of the apparatus for predicting forward osmosis membrane fouling according to an embodiment of the present invention.
  • Figure 2 shows the operating time-membrane fouling reversibility graph according to the molar concentration of the induction solution.
  • 3 is a graph of water permeation rate with time change before and after physical washing according to an embodiment of the present invention.
  • Figure 4 schematically shows a flow chart of a forward osmosis membrane fouling prediction method according to an embodiment of the present invention.
  • Figure 5a is a SDI result according to the dilution method of raw water and seawater in Experiment 1.
  • FIG. 5B is a graph showing the results of water permeation and membrane fouling reversibility according to pressurized or reduced pressure conditions in Experiment 2.
  • FIG. 5C is a graph of fouling reversibility according to the number of operations under the conditions of pressurization and osmotic pressure in Experiment 3.
  • FIG. 5C is a graph of fouling reversibility according to the number of operations under the conditions of pressurization and osmotic pressure in Experiment 3.
  • 5D is a SDI and TDS graph for four sewage treatment plants.
  • FIG. 5E is a graph of the flux of four sewage treatment plant secondary treated water over time under the same TDS (250 mg / L) condition.
  • FIG. 5F shows a graph of fouling reversibility versus the number of operations of four sewage treatment plants.
  • 5G is a graph of concentrations of organics in secondary treated water for four sewage treatment plants.
  • Figure 5h is a graph of the concentration according to the washing cycle of the four organic materials attached to the forward osmosis membrane.
  • 5i is a graph showing results of fouling reversibility of the forward osmosis membrane according to the operating cycle according to the flow rate, which is a physical washing condition.
  • the present invention simulates membrane fouling of the forward osmosis membrane and apply in the field
  • the purpose of this study is to develop the forward osmosis membrane contamination index that reflects the environmental factors, and to measure and predict the membrane contamination of the forward osmosis membrane.
  • the apparatus for predicting forward osmosis membrane contamination includes an inflow water supply unit 110, an induction solution supply unit 120, a membrane contamination simulation unit 130, and a membrane contamination prediction unit. Including the unit 140, to simulate the forward osmosis process and calculate the forward osmosis membrane contamination index.
  • membrane fouling simulation of the forward osmosis membrane 131 by the forward osmosis process is performed by the inflow water supply unit 110, the induction solution supply unit 120 and the membrane contamination simulation unit 130.
  • the inflow water supply unit 110 is connected to the membrane fouling simulation unit 130.
  • the inflow water supply unit 110 includes an inflow water storage tank 111, a first inflow pipe 112, a first pump 113, and a second inflow pipe 114.
  • the inflow water storage tank 111 is a tank in which inflow water is stored.
  • the influent refers to the liquid used in the seawater desalination process, the filtration process, the dewatering process, and the concentration process using the forward osmosis method.
  • the first inlet pipe 112 connects the inlet water storage tank 111 and the first inlet 132a of the membrane fouling simulation unit 130.
  • the inflow water flowing through the first inflow pipe 112 is moved from the inflow water storage tank 111 to the membrane fouling simulation unit 130.
  • the first pump 113 is connected to the first inlet pipe 112 for smooth flow of the inflow water flowing through the first inlet pipe 112.
  • the first pump 113 sucks inflow water stored in the inflow water storage tank 111 and supplies it to the membrane fouling simulation unit 130.
  • the second inflow pipe 114 connects the inflow water storage tank 111 and the first outlet 132b of the membrane fouling simulation unit 130.
  • the inflow water is concentrated water concentrated by the forward osmosis process with the induction solution in the membrane fouling simulation unit 130.
  • the inflow water passes through the second inflow pipe 114 and flows from the membrane fouling simulation unit 130 to the inflow water storage tank 111.
  • the influent supplied in the forward osmosis process will be referred to as 'primary influent' and the influent supplied in the washing process will be referred to as 'secondary influent'.
  • the secondary inflow is faster than the primary inflow.
  • the primary influent is circulated along arrow F1 in the forward osmosis process
  • the secondary influent is circulated along arrow F2 in the washing process.
  • Induction solution supply unit 120 is to provide an induction solution during the forward osmosis process.
  • the induction solution supply unit provides the induced solution membrane fouling simulation unit 130 while controlling the molar concentration of the induction solution.
  • the adhesion layer formation in the forward osmosis membrane 131 is accelerated.
  • the adhesion layer is formed by the osmotic pressure caused by the difference in concentration between the primary influent and the induction solution during the forward osmosis process.In the process of water in the primary inflow flowing through the forward osmosis membrane to the space containing the induction solution, It is formed while accumulating on the surface of the osmosis membrane.
  • the induction solution supply unit 120 includes an induction solution storage tank 121, a first induction solution tube 122, a second pump 123, a second induction solution tube 124, and a TDS controller 125.
  • Induction solution storage tank 121 is a tank in which the induction solution is stored. Induction solutions have a higher concentration than primary influent.
  • the first induction solution pipe 122 connects the induction solution storage tank 121 and the second outlet 133b of the membrane fouling simulation unit 130.
  • the induction solution flowing through the first induction solution tube 122 is moved from the membrane fouling simulation unit 130 to the induction solution storage tank 121.
  • the induction solution flowing through the first induction solution tube 122 is in a diluted state by the forward osmosis process with the primary influent from the membrane fouling simulation unit 130.
  • a second pump 123 is connected to the first induction solution tube 122 for smooth flow of the induction solution flowing through the first induction solution tube 122.
  • the second pump 123 sucks the induction solution discharged from the membrane fouling simulation unit 130 and supplies it to the induction solution storage tank 121.
  • the second induction solution pipe 124 connects the induction solution storage tank 121 and the second inlet 133a of the membrane fouling simulation unit 130.
  • the induction solution flowing through the second induction solution tube 124 is a substance having a higher concentration than the primary influent.
  • the TDS controller 125 is connected to the induction solution storage tank 121.
  • the TDS controller 125 controls the total dissolved solids (TDS) of the induction solution provided to the membrane fouling simulation unit 130.
  • the TDS controller 125 may control the first water permeation amount by adjusting the TDS of the induction solution.
  • the first water permeation rate is based on the difference between the TDS of the primary influent and the TDS of the induction solution.
  • the first water permeation amount J1 is the water permeation rate of the primary inflow water passing through the forward osmosis membrane 131 at the beginning of the forward osmosis process before the adhesion layer is formed on the forward osmosis membrane 131.
  • the membrane fouling simulation unit 130 is to perform a forward osmosis process, to simulate the membrane fouling of the forward osmosis membrane 131 by a repeated forward osmosis process.
  • the membrane fouling simulation unit 130 is provided with a first space 132 and a second space 133 separated by the forward osmosis membrane 131.
  • the membrane fouling simulation unit 130 is provided with a first inlet 132a and a first outlet 132b in a portion where the first space 132 is provided.
  • the first inlet pipe 112 is connected to the first inlet 132a
  • the second inlet pipe 114 is connected to the first outlet 132b.
  • the first space 132 is a space in which the inflow water circulating in the inflow water supply unit 110 is stored.
  • the primary influent flows along the arrow F1 in the inlet storage tank 111-> the first inlet pipe 112-> the first space 132-> the second inlet pipe of the membrane fouling simulation unit 130. (114)-> Circulate the influent storage tank (111).
  • the membrane fouling simulation unit 130 is provided with a second inlet 133a and a second outlet 133b at a portion where the second space 133 is provided.
  • the second induction solution tube 124 is connected to the second inlet 133a, and the first induction solution tube 122 is connected to the second outlet 133b.
  • the second space 133 is a space in which the induction solution circulating in the induction solution supply unit 120 is stored.
  • Induction solution circulates through the induction solution supply unit 120 and the membrane fouling simulation unit 130 along the F3. Specifically, the induction solution along the F3 induction solution storage tank 121-> the second induction solution tube 124-> the second space 133 of the membrane fouling simulation unit 130-> the first induction solution tube ( 122)-> Circulate the induction solution storage tank 121. At this time, the circulation direction F3 of the induction solution is opposite to the circulation direction F1 of the primary influent.
  • the primary influent was cross-flowed while being separated from the induction solution by the forward osmosis membrane 131, and the osmotic pressure applied to the forward osmosis membrane 131 by the concentration difference between the primary influent and the induction solution.
  • the primary influent water at a low concentration is transferred to a high concentration induction solution.
  • the adhesion layer varies in speed at the forward osmosis membrane 131 according to the molar concentration of the induction solution.
  • Figure 2 shows the operating time-membrane fouling reversibility graph according to the molar concentration of the induction solution.
  • membrane fouling reversibility fouling reversibility refers to the recovery ability of the forward osmosis membrane 131 according to the physical wash.
  • Operating time-membrane fouling reversibility graph according to the molar concentration of the induction solution shows that the recovery rate of the forward osmosis membrane 131 recovers before and after the washing process as the forward osmosis process and the washing process are repeatedly performed. The result shows whether or not
  • Critical reversibility is the membrane fouling reversibility (R) in the state that the membrane fouling of the forward osmosis membrane 131 is not recoverable only by physical washing by the second influent according to the repeated osmosis and washing process.
  • the membrane fouling reversibility of the forward osmosis membrane 131 converges to 75% over time when the forward osmosis process is performed using a 2M induction solution, while using an induction solution of 3M or more. It can be seen that the convergence to about 60% when performing the forward osmosis process. In other words, the concentration of 2M did not show sufficient experimental results, and 4M can reduce the time, but considering the chemical cost and equipment corrosion, 3M is the most economical.
  • the secondary inflow water follows the arrow F2 in the inlet water storage tank 111-> the first inlet pipe 112-> the first space 132 of the membrane fouling simulation unit 130-> the second inlet pipe ( 114)-> Circulate the influent storage tank (111).
  • the circulation direction F2 of the secondary inflow is the same as the circulation direction F1 of the primary inflow.
  • the secondary inflow has a higher flow rate than the primary inflow.
  • the secondary inflow water circulates the inflow water supply unit 110 and the membrane fouling simulation unit 130 at a high flow rate, and washes the forward osmosis separation membrane 131.
  • the secondary inflow water is provided to the membrane fouling simulation unit 130 at the time when the second water permeation amount J2 is measured.
  • the induction solution is stopped from the induction solution supply unit 120 to the membrane fouling simulation unit 130.
  • the second water permeation amount J2 is a water permeation rate of the primary inflow water passing through the forward osmosis membrane 131 by an adhesion layer formed on the surface of the forward osmosis membrane 131. Therefore, it is gradually lowered and is a constant convergence of water penetration.
  • the membrane fouling prediction unit 140 predicting membrane fouling of the forward osmosis membrane 131 by measuring the forward osmosis membrane contamination index (OFI) will be described.
  • the membrane contamination prediction unit 140 includes a first water permeation amount J1, a second water permeation amount J2, and a first water permeation amount J1 which is a water permeation rate of the first inflow water passing through the forward osmosis membrane 131 according to the operation time of the forward osmosis process. 3
  • the water permeation rate (J3) is measured, and the forward osmosis membrane contamination index (OFI) is calculated therefrom, and the membrane contamination of the forward osmosis membrane 131 is predicted from the forward osmosis membrane contamination index (OFI).
  • the first water permeation amount J1 is the water permeation rate of the primary inflow water passing through the forward osmosis membrane 131 at the beginning of the forward osmosis process before the adhesion layer is formed on the forward osmosis membrane 131.
  • the second water permeation amount J2 is a number that is constantly converged even if time passes by the first inflow water passing through the forward osmosis membrane 131 by the adhesion layer formed on the surface of the forward osmosis membrane 131. It is a transmission amount.
  • the third water permeation amount J3 is the water permeation rate of the first inflow water passing through the forward osmosis membrane 131 in the forward osmosis process after the adhesion layer of the forward osmosis membrane 131 is removed by the washing process.
  • the forward osmosis membrane contamination index OFI is calculated from the first water permeation amount J1 and the third water permeation amount J3.
  • the forward osmosis membrane contamination index OFI is a recovery rate of the third water permeation amount J3 relative to the first water permeation amount J1.
  • the forward osmosis membrane contamination index is a primary osmosis membrane 131, which is contaminated by an adhesion layer, is washed by secondary inflow water, and then passes through the forward osmosis membrane 131 in the forward osmosis process after washing. It is an index of how much the third water permeation amount J3 of the influent is recovered compared with the first water permeation amount J1 at the beginning of the forward osmosis process.
  • the membrane contamination prediction unit 140 predicts that the forward osmosis membrane contamination index (OFI) is greater than the critical reversibility (Rc) and less than 1 (Rc ⁇ OFI ⁇
  • the critical reversibility is the membrane fouling reversibility in the state that the membrane fouling of the forward osmosis membrane 131 is not recoverable only by physical washing by secondary inflow according to the repeated osmosis process and the washing process.
  • Critical reversibility (Rc) is a value in which membrane fouling reversibility is constantly converged over time.
  • Membrane fouling reversibility is the ability of the forward osmosis membrane 131 to recover according to physical cleaning.
  • Membrane fouling reversibility is the rate of recovery of the water permeation rate of the first influent water after the washing process to the water permeation rate of the first influent water before the washing process.
  • the forward osmosis membrane fouling prediction method is a method of predicting membrane fouling in the forward osmosis process using the forward osmosis membrane fouling prediction apparatus 100.
  • membrane fouling of the forward osmosis membrane 131 by the forward osmosis process is simulated in the membrane fouling simulation unit 130 (S1). That is, due to the osmotic pressure due to the difference in the concentration of the primary inflow of the influent water supply unit 110 supplied to the membrane fouling simulation unit 130 of the forward osmosis membrane fouling prediction device 100 and the induction solution of the induction solution supply unit 120 As the osmosis process is performed, membrane fouling of the forward osmosis membrane 131 by the adhesion layer formed by stacking the organic material of the primary inflow water is simulated on the surface of the forward osmosis membrane 131.
  • the induction solution is supplied to the membrane fouling simulation unit 130 by adjusting the molar concentration, it is possible to accelerate the formation of the adhesion layer.
  • the inductive solution is controlled by the TDS controller 125 to control TDS (total dissolved solids) of the inductive solution provided to the membrane fouling simulation unit 130.
  • the first water permeation rate is controlled by the difference between the TDS of the primary influent and the TDS of the draw solution.
  • the first water permeation amount is the water permeation rate of the primary inflow water passing through the forward osmosis membrane 131 at the beginning of the forward osmosis process before the adhesion layer is formed on the forward osmosis membrane 131.
  • the membrane contamination prediction unit 140 measures the water permeation rate of the primary inflow water passing through the forward osmosis membrane 131 according to the operation time and the number of operation of the forward osmosis process in the membrane contamination simulation unit 130 and From this, the forward osmosis membrane contamination index (OFI) is calculated (S2).
  • the forward osmosis membrane contamination index (OFI) is preferably greater than the critical reversibility (Rc).
  • the forward osmosis membrane fouling index (OFI) is calculated by equation (1).
  • J1 is the first water permeation rate
  • J3 is the primary influent water passing through the forward osmosis membrane 131 in the forward osmosis process after the adhesion layer of the forward osmosis membrane 131 is removed by the washing process.
  • It is the third water transmission amount which is the water transmission amount of.
  • the membrane contamination prediction unit 140 predicts membrane fouling of the forward osmosis membrane 131 from the forward osmosis membrane contamination index (OFI).
  • the prediction process is as follows.
  • the membrane contamination prediction unit 140 predicts that the forward osmosis membrane 131 is damaged (S3). When the forward osmosis membrane 131 is damaged, the forward osmosis process in the membrane fouling simulation unit 130 is stopped.
  • the membrane contamination prediction unit 140 predicts that the forward osmosis membrane 131 is not contaminated (S4). In this case, the forward osmosis process in the membrane fouling simulation unit 130 continues.
  • the membrane fouling predictor 140 When the forward osmosis membrane index (OFI) is in the range greater than the critical reversibility (Rc) and less than 1 (Rc ⁇ OFI ⁇ 1), the membrane fouling predictor 140 is in a state in which the forward osmosis membrane 131 is membrane contaminated. In this case, the forward osmosis membrane 131 is washed (S5). This is to recover the membrane fouling of the normal osmosis membrane as the adhesion layer is removed from the forward osmosis membrane 131 by washing the forward osmosis membrane 131 by the secondary inflow water.
  • Operation of the forward osmosis process is stopped when the forward osmosis membrane 131 is washed. Then, secondary inflow water is provided from the inflow water supply unit 110 to the membrane fouling simulation unit 130, and the forward osmosis separation membrane 131 is washed by the secondary inflow water.
  • the time point at which the washing proceeds is a time point at which the water permeation is converged according to the operation time of the forward osmosis process.
  • the water permeation amount converged as the operation time of the forward osmosis process is referred to as "second water permeation amount".
  • the second water transmission amount J2, J1> J2 is less than the first water transmission amount J1.
  • the critical reversibility (Rc) is the number of primary influent waters before the washing process in a state in which the membrane contamination of the forward osmosis membrane 131 cannot be recovered only by physical washing by the second influent water by repeating the forward osmosis process and the washing process.
  • a recovery ratio of the transmission amount (J before washing) (after cleaning J) cleaning the first influent can permeation amount of the subsequent steps for, is calculated by the equation (2).
  • Critical reversibility is a value in which membrane fouling reversibility is constantly converged over time.
  • Critical reversibility (Rc) is the membrane fouling reversibility (R) in the state that the membrane fouling of the forward osmosis membrane 131 is not recoverable only by physical washing by the second influent according to the repeated osmosis and washing process.
  • Membrane fouling reversibility is a recovery capability of the forward osmosis membrane 131 according to physical washing, and is a recovery rate of the water permeation rate of the first influent water after the washing process with respect to the water permeation rate of the first influent water before the washing process.
  • the water permeation rate of the first inflow water ( before J cleaning ) is the water permeation rate even if the operation number of the forward osmosis process is increased because the adhesion layer accumulated in the forward osmosis membrane 131 is not removed by physical washing. This is a constantly converged value.
  • the first water permeation amount is the water permeation amount before the washing step in the initial operation of the forward osmosis process, and the measured water permeation values differ from each other.
  • the water permeation rate of the first influent is the permeation rate even if the number of operations of the forward osmosis process is increased because the adhesion layer accumulated in the forward osmosis membrane 131 is not removed by physical washing. This is a constantly converged value.
  • the third water permeation rate is the water permeation rate when the adhesion layer is removed from the forward osmosis membrane 131 by washing.
  • the forward osmosis membrane contamination index (OFI) is less than the critical reversibility (Rc) (Rc> OFI)
  • the forward osmosis membrane 131 predicts that the membrane contamination cannot be recovered only by physical cleaning by secondary inflow.
  • the operation of the forward osmosis process is stopped, and a pretreatment process such as chemical cleaning is performed (S6).
  • the present invention simulates the forward osmosis membrane membrane fouling and develops the forward osmosis membrane fouling index reflecting the variables due to environmental factors applied in the field, it is possible to measure and predict the membrane fouling of the forward osmosis membrane.
  • the present invention calculates the forward osmosis membrane contamination index (OFI) for each forward osmosis membrane, and predicts the membrane fouling time of the forward osmosis membrane according to the forward osmosis membrane contamination index (OFI), the forward osmosis membrane to the critical reversible point
  • the pretreatment or washing process may be performed before reaching to increase the operation efficiency and operation period of the forward osmosis process apparatus.
  • the present invention calculates the membrane fouling time of the forward osmosis membrane with the passage of operation time through OFI, the contamination phenomenon of the forward osmosis membrane generated by the seawater desalination process, filtration process, dehydration process, concentration process using the forward osmosis method Can be measured and predicted more accurately in advance.
  • membrane fouling can be simulated according to the conclusion that the existing membrane fouling index cannot be used for membrane fouling of the forward osmosis membrane and a new method for simulating the membrane fouling of the forward osmosis membrane is needed.
  • Experiment 2 was performed on the method.
  • the membrane fouling simulation method using the reduced pressure condition simulated membrane fouling by reducing the pressure to about 1 bar using a vacuum pump in the absence of osmotic pressure without using a draw solution.
  • the membrane fouling simulation method using the pressurized condition simulates membrane fouling by applying a pressure of 1 bar to 9 bar to the forward osmosis membrane using a pump in the same manner as the reverse osmosis membrane is operated.
  • 5b is a graph showing the results of water permeation and reversibility of the forward osmosis membrane according to the pressurized or reduced pressure conditions in Experiment 2.
  • Membrane fouling reversibility was calculated by equation (2).
  • Eq. (2) before J cleaning is the flux when running at 704 h for a flow rate of 8.54 cm / s. After washing J is the flux measured by washing for 10 minutes at 25.62 cm / s with a three-fold increase in flow rate and then driving at 8.54 cm / s.
  • the membrane's ability to recover from physical washing can be expressed as fouling reversibility.
  • the membrane is obtained at 7 bar, which is equivalent to the normal osmotic operating condition, to obtain the initial flux. Pollution reversibility was observed at around 50%.
  • experiment 3 was conducted to verify whether the pressurization condition fully reflected the membrane fouling phenomenon of the forward osmosis condition, and the results for the experiment 3 are shown in FIG. 5C.
  • the pressurization condition is a case where a pressure of 7 bar is applied to the forward osmosis membrane, and the osmotic pressure condition is an induction solution having an osmotic pressure higher than the influent flowing into the apparatus.
  • the first permeation rate is 7 LMH
  • the process run time is 70 minutes
  • the physical washing at triple flow rate is performed without replacing the membrane for 10 minutes.
  • Figure 5c is a graph of fouling reversibility (fouling reversibility) according to the operating cycle in the conditions using the pressurized conditions and osmotic pressure.
  • the forward osmosis membrane operated under the pressurized condition is observed at 50%.
  • the forward osmosis membrane operated using osmotic pressure showed reversibility close to 100% at the first operation, and has 80% reversiblity (fouling reversiblity) even after repeating the operation four times. That is, it can be seen that the forward osmosis membrane operated by using osmotic pressure has a higher reversibility than the forward osmosis membrane under pressurized conditions even if the number of operations increases.
  • the forward osmosis membrane is difficult to operate the forward osmosis process due to lack of driving force when operating under reduced pressure and pressure, when operating the forward osmosis membrane in a reduced pressure.
  • the membrane fouling layer is consolidated, and thus the membrane fouling recovery ability, which is one of the characteristics of the forward osmosis membrane, does not appear, thereby simulating the high fouling reversibility of the forward osmosis membrane.
  • the membrane fouling recovery ability which is one of the characteristics of the forward osmosis membrane
  • Experiment 4 was performed to derive which factors affect the membrane fouling index in the forward osmosis process when using the osmotic pressure to simulate membrane fouling of the forward osmosis membrane.
  • Table 1 shows the results of secondary water quality analysis for four sewage treatment plants.
  • MLE is a Modified Ludzack Ettinger process and A 2 O is an Anaerobic-Anoxic-Aerobic process.
  • the initial permeability is determined by the TDS difference between the feed water and the draw soultion.
  • Experiment 4 was carried out by diluting with DI water (250 mg / L) using DI water (DeIonize water).
  • Toray osmosis membrane used in this experiment was used PA membrane membrane of Toray Co., Ltd. and draw solution was used after filtering seawater from offshore water of Hanga 7 Hangdong, Jung-gu, Incheon, after filtering with 0.45 ⁇ m PP material membrane (TDS 31,900 ⁇ 200 mg / L ).
  • the raw water to be used was diluted with DI water using SDI 5.5 and then subjected to forward osmosis membrane experiment. This experiment was carried out to observe the difference between forward osmosis flux and reversiblity when the membrane fouling index is the same but the pollutants in the raw water are different.
  • TDS and SDI were measured to evaluate the membrane fouling potential of the raw water to be used.
  • all of the sewage treatment waters of the four sewage treatment plants were observed to have SDI 6 or more and TDS 280 mg / L or more.
  • 5D is a SDI and TDS graph for four sewage treatment plants.
  • Figure 5e is a graph of the flux of the four sewage treatment plant secondary treatment water according to the operating time in the same TDS (250 mg / L) conditions.
  • FIG. 5F shows a graph of fouling reversibility versus the number of operations of four sewage treatment plants.
  • the organic material forming the fouling layer after inspecting the surface of the forward osmosis membrane tested with the secondary treatment water of the Tancheon sewage treatment plant showing the lowest fouling reversibility at each washing cycle. Analysis was performed by LC-OCD, and the experimental results were shown in FIG. 5G. 5G is a graph of concentrations of organics in secondary treated water for four sewage treatment plants.
  • the organic matter distribution of the secondary treated water of the four sewage treatment plants is present in a similar ratio, and all of them are based on biological treatment, so that the humics occupy the largest portion, and a trace amount of biopolymer ( biopolymers) are also present.
  • biopolymers biopolymers
  • biopolymers based on proteins or polysaccharides are known to be difficult to remove by physical washing due to their sticky substance.
  • the best method is to measure the concentration of substances in raw water, but it is difficult to cope with immediate membrane contamination because these methods have limitations in in situ application in the field and the measurement time is very long. .
  • FIG. 5i shows a graph showing the results of the fouling reversibility of the forward osmosis membrane according to the operating cycle according to the flow rate, which is a physical washing condition.
  • FIGS. 5F and 5I show that the fouling reversibility of the forward osmosis membrane converges in the fifth to sixth cycles as the operation is repeated. From this, it is possible to set the state in which the forward osmosis membrane is no longer recoverable by physical washing only as 'critical reversibility', and it can be derived from the membrane fouling reversibility to predict the membrane contamination of the forward osmosis membrane.
  • the Forward Osmosis Membrane Contamination Index is an index of membrane fouling of the forward osmosis membrane, and it is determined how much the water permeation rate of the influent flowing through the forward osmosis membrane is recovered over time in a range larger than the critical reversibility (Rc). Can be derived.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

An apparatus for predicting membrane fouling in forward osmosis, according to one embodiment of the present invention, comprises: a membrane fouling simulation unit having a forward osmosis separation membrane and simulating fouling of the forward osmosis separation membrane during a forward osmosis process; an influent water supplying unit for providing primary influent water to the membrane fouling simulation unit during the forward osmosis process, and providing, to the membrane fouling simulation unit, secondary influent water having a flow velocity greater than the flow velocity of the primary influent water during a cleaning process; and a membrane fouling prediction unit for calculating a forward osmosis membrane fouling index (OFI) by measuring a first water permeation amount (J1) of the primary influent water at an early stage of the forward osmosis process and a third water permeation amount (J3) of the primary influent water after the cleaning process, and for predicting the fouling of the forward osmosis separation membrane from the forward osmosis membrane fouling index (OFI), wherein it is preferred that the forward osmosis membrane fouling index (OFI) is a recovery ratio of the third water permeation amount (J3) to the first water permeation amount (J1).

Description

정삼투 막오염 예측 장치 및 정삼투 막오염 예측 방법Forward osmosis membrane fouling prediction device and forward osmosis membrane fouling prediction method
본 발명은 정삼투 막오염 예측 장치 및 정삼투 막오염 예측 방법에 관한 것이며, 상세하게는 정삼투분리막의 막오염이 정삼투막오염지수에 의해 예측될 수 있는 정삼투 막오염 예측 장치 및 정삼투 막오염 예측 방법에 관한 것이다. The present invention relates to a forward osmosis membrane fouling prediction device and a forward osmosis membrane fouling prediction method, and more specifically, a forward osmosis membrane fouling prediction device and forward osmosis, wherein the membrane fouling of the forward osmosis membrane can be predicted by the forward osmosis membrane fouling index. It relates to a membrane fouling prediction method.
막 여과 기술을 기반으로 하는 해수 담수화 공정이나 물 재이용 공정은 미래의 물 부족 문제를 해결할 수 있는 가장 이상적인 대안으로 평가받고 있다. 이를 반영하듯 최근 수십 년간 급속도로 발전한 막 여과 공정은 해수담수화(RO/NF), 하수처리 및 물의 재이용(MF/UF, MBR)등 새로운 수자원 확보뿐 아니라, 기존의 정수시스템을 대체할 신개념 수처리 공정(FO)으로 적용범위를 넓혀 가고 있다. Seawater desalination or water reuse processes based on membrane filtration technology are considered the ideal alternative to address future water shortages. As a reflection of this, the membrane filtration process that has developed rapidly in recent decades has not only secured new water resources such as seawater desalination (RO / NF), sewage treatment and water reuse (MF / UF, MBR), but also a new concept water treatment process to replace the existing water purification system. (FO) is expanding the scope of application.
막여과공정 중 역삼투 공정은 기존 재래식 수처리 공법보다 우수한 생산수 수질의 제공으로 인해 그 사용이 급격히 증가하고 있는 추세이다. Reverse osmosis of the membrane filtration process is rapidly increasing its use due to the provision of water quality superior to conventional water treatment methods.
그러나, 역삼투 공정은 막 분리를 위한 구동력으로 고압을 사용하기 때문에 많은 전력사용량이 요구된다. 그리고, 역삼투공정은 삼투압과 기계적 가압의 영향을 모두 받아, 역삼투분리막의 부착층(fouling layer)의 밀도있게 눌려 있어, 비가역적 거동을 보이는 역삼투 막오염이 일어난다. 이에, 역삼투공정은 비가역적 막오염 현상으로 화학적 세척만 가능하고, 물리적 세척이 어렵다. 역삼투공정은 화학세척이나 유입수의 전처리 공정이 요구되어, 정삼투공정에 비해 비경제적 및 비환경적이다.However, since the reverse osmosis process uses high pressure as a driving force for membrane separation, a large amount of power consumption is required. In addition, the reverse osmosis process is affected by both osmotic pressure and mechanical pressure, densely presses the fouling layer of the reverse osmosis membrane, and reverse osmosis membrane contamination exhibiting irreversible behavior occurs. Therefore, the reverse osmosis process is irreversible membrane fouling phenomenon, only chemical cleaning is possible, physical cleaning is difficult. Reverse osmosis processes require chemical cleaning or pre-treatment of influent, which is less economical and environmentally less than forward osmosis.
역삼투공정과는 달리 정삼투에서 발생된 막오염층은 물리적 세척을 통해 일정수준이상 회복되는 가역성을 보인다. 이러한 관점에서, 정삼투 공정은 역삼투 공정이 주로 활용되던 분야에서 기존공정의 한계를 극복하고 그 역할을 대신할 수 있는 차세대 수처리 기술로 주목받고 있다. Unlike the reverse osmosis process, the membrane fouling layer generated from forward osmosis is reversible, recovering to a certain level through physical cleaning. In this respect, the forward osmosis process is drawing attention as a next generation water treatment technology that can replace the role of the existing process in the field where the reverse osmosis process was mainly used.
정삼투 공정은 압력을 가하지 않고, 반투과성 막을 사이에 두고 발생하는 삼투압 차이에 의해 처리수를 생산한다. 정삼투 공정은 비가압 방식으로 운영되기 때문에 역삼투와는 다른 막오염 메커니즘을 보인다. 그리고, 유입수와 유도용액 간의 삼투압 차만을 구동력으로 하는 정삼투 운전의 경우, 느슨하고 분산된 막오염층이 관측되었으며, 역삼투 막오염과는 달리 정삼투에서 발생된 막오염층은 물리적 세척을 통해 일정수준이상 회복되는 가역성을 보인다. The forward osmosis process produces the treated water by the osmotic pressure difference generated without a pressure and between the semipermeable membranes. Since the forward osmosis process is operated in a non-pressurized manner, the membrane fouling mechanism is different from reverse osmosis. In the case of forward osmosis operation using only osmotic pressure difference between influent and induction solution, loose and dispersed membrane fouling layer was observed, unlike reverse osmosis membrane contamination , Generated The membrane fouling layer is reversible, recovering to a certain level through physical cleaning.
이와 같은 정삼투 공정의 운영특성으로 인해, 정삼투 공정은 기존의 역삼투 공정과 비교하여 압력에 의한 막오염 문제가 상대적으로 적어, 막오염을 물리적으로 세척할 수 있어 친환경적이다. 그리고, 정삼투 공정은 기존의 역삼투 공정과 비교하여, 분리막의 교체주기 및/또는 세척주기가 길고, 물리적 세척이 가능하여 유지비용이 절감되는 효과를 가진다. Due to the operation characteristics of the forward osmosis process, the forward osmosis process has a relatively low membrane fouling problem due to pressure, compared with the conventional reverse osmosis process, and is environmentally friendly because the membrane contamination can be physically washed. In addition, the forward osmosis process has a long replacement cycle and / or cleaning cycle of the membrane, and physical cleaning is possible compared to the conventional reverse osmosis process, thereby reducing maintenance costs.
상술한 바와 같은 정삼투공정의 경제적 및 환경적인 효과로 인해, 정삼투 공정의 상용화를 위해 관련 연구가 활발히 이루어지고 있다. 다만, 정삼투 공정의 상용화 기술은 정삼투분리막 및/또는 유도용액의 품질을 향상시키는데 있고, 정삼투분리막의 막오염 주기를 예측하는 기술 개발은 미비한 실정이다. Due to the economic and environmental effects of the forward osmosis process as described above, related studies are actively being made for the commercialization of the forward osmosis process. However, the commercialization technology of the forward osmosis process is to improve the quality of the forward osmosis membrane and / or the induction solution, and the development of technology for predicting the membrane fouling cycle of the forward osmosis membrane is insufficient.
일반적으로, 분리막 막오염 측정방법은 역삼투공정의 가압식 운전 모드에서 이루어지고 있다. 역삼투공정은 막오염지수(SDI, silt density index)를 사용하여 역삼투공정의 분리막의 막오염을 측정한다. 여기서, 막오염지수 (SDI, silt density index)는 역삼투 분리막에서 제조사의 품질보증 및 운전기준으로 사용되는 보편적인 지수이다. In general, the membrane fouling measurement method is performed in the pressurized operation mode of the reverse osmosis process. In the reverse osmosis process, membrane fouling index (SDI, silt density index) is used to measure membrane fouling of the membrane of the reverse osmosis process. Here, the membrane contamination index (SDI, silt density index) is a universal index used as a manufacturer's quality assurance and operation standards in the reverse osmosis membrane.
기존의 역삼투공정에서의 막오염지수(SDI)는 SDI지수측정장비에 의해 측정된다. SDI지수측정장비는 간단하여 다루기 쉬운 장점이 있는 반면, 역삼투공정의 막오염을 예측하는데 역삼투분리막(RO)이 아니라 공극(pore)이 있는 MF막을 사용하여 실제 사용되는 분리막의 재질과 지수측정시 사용되는 막의 재질이 상이하다. The membrane fouling index (SDI) in the conventional reverse osmosis process is measured by the SDI index measurement equipment. While SDI index measurement equipment has the advantage of being simple and easy to handle, the material and index measurement of the membrane actually used using MF membranes with pores, not RO, is used to predict membrane contamination in reverse osmosis processes. The material used in the process is different.
실제 역삼투공정은 크로스-플로우(CROSS-FLOW)로 진행되는데, SDI 지수측정은 데드-엔드-테스트(DEAD-END-TEST)로 진행된다는 점에서 실제 운영조건과 지수 실험조건이 상이한 문제점이 있었다. 이러한 문제점이 존재하더라도, 역삼투공정은 SDI지수측정장비를 이용하여 역삼투분리막의 막오염을 예측할 수 있다. The actual reverse osmosis process is cross-flow (CROSS-FLOW), the SDI index measurement was a dead end test (DEAD-END-TEST) in that there was a problem that the actual operating conditions and exponential experimental conditions are different . Even if such a problem exists, the reverse osmosis process can predict membrane fouling of the reverse osmosis membrane by using the SDI index measurement equipment.
반면, 정삼투공정은 역삼투공정과 달리 SDI와 같이 보편화된 정삼투분리막의 막오염지수가 없어, 실제 정삼투 운영조건을 반영하지 못해 정삼투공정을 모사하기 어려운 실정이다. 또한, 정삼투분리막의 막오염지수를 측정하기 위한 장비도 없다. On the other hand, the forward osmosis process, unlike the reverse osmosis process, does not have a membrane fouling index of the generalized forward osmosis membrane like SDI, so it is difficult to simulate the forward osmosis process because it does not reflect the actual forward osmosis operating conditions. In addition, there is no equipment for measuring the membrane fouling index of the forward osmosis membrane.
이에, 정삼투공정의 막오염을 측정하는데 역삼투공정의 막오염지수(SDI)를 적용하는 것이 부합하는지의 여부에 대한 연구가 진행되었다. 이러한 역삼투공정의 막오염지수인 SDI가 정삼투분리막의 막오염을 나타낼 수 있는지를 검토하기 위해, 하수 2차처리수를 유입수(feed water)로 해수를 유도용액(draw solution)으로 사용하여 정삼투분리막을 운전한 실험 1을 진행하였다.Therefore, a study was conducted to determine whether the application of the membrane fouling index (SDI) of the reverse osmosis process to measure the membrane fouling of the forward osmosis process. In order to examine whether SDI, the membrane fouling index of the reverse osmosis process, can show membrane fouling of the forward osmosis membrane, the sewage secondary treated water is used as feed water and seawater is used as a draw solution. Experiment 1 was carried out to operate the osmosis membrane.
유입수로 제공되는 하수 2차처리수는 구리하수처리장 (A2O 공정)의 2차 침전지 유출수가 사용되었고, 유도용액으로 제공되는 해수는 NaCl 0.6M(TDS 35,000 mg/L)을 이용한 인공 해수가 사용되었다. 실험에 사용된 정삼투분리막은 트리아세틸 셀룰로오스(CTA, cellulose triacetate) 재질의 HTI사의 제품을 사용하였으며, 역삼투 분리막은 DOW filmtec사의 SW30HR-380 제품이 사용되었다.Secondary sewage effluent from the copper sewage treatment plant (A 2 O process) was used as the sewage secondary treated water provided as influent, and artificial seawater using NaCl 0.6M (TDS 35,000 mg / L) was used as the influent solution. Was used. As the forward osmosis membrane used in the experiment, a product of HTI company made of triacetyl cellulose (CTA) was used, and a SW30HR-380 product of DOW filmtec company was used as the reverse osmosis membrane.
그리고, 실험조건으로, 운전 온도는 25 ℃ 로 설정하였으며 전체 공정의 회수율은 50%이다. 이 조건으로 실험을 진행할 경우 정삼투 처리수와 해수의 희석비율은 0.7 : 1 (정삼투 처리수 : 해수)이다. SESW와 MFSW 실험조건에서도 같은 희석비율로 해수와 희석을 하여 실험을 진행하였다. And, as experimental conditions, the operating temperature was set to 25 ℃ and the recovery rate of the entire process is 50%. When the experiment is conducted under these conditions, the dilution ratio of forward osmosis treated water and seawater is 0.7: 1 (forward osmosis treated water: seawater). SESW and MFSW experiments were performed by diluting with seawater at the same dilution ratio.
이와 같은 실험에 의해 도출된 원수와 해수의 희석에 따른 SDI 값은 도 5a에 도시된 바와 같다. 원수와 해수의 희석에 따른 SDI 값은 원수가 얼마만큼의 막오염 포텐셜(potential)을 가지고 있는지를 평가한 결과이다. The SDI values according to the dilution of raw water and seawater derived by such experiments are shown in FIG. 5A. The SDI value of dilution of raw water and seawater is the result of evaluating how much membrane contamination potential the raw water has.
도 5a에서, SE는 하수2차처리수이고, SESW는 처리하지 않은 하수2차처리수를 해수에 희석한 것이고, MFSW는 MF(Millipore, polypropylene, 0.45 ㎛)를 이용하여 하수2차처리수를 여과후 해수에 희석한 것이며, FOSW는 하수2차처리수가 정삼투분리막에 의한 삼투희석효과를 이용하여 해수에 희석된 것이다.In FIG. 5A, SE is a sewage secondary treatment water, and SESW is an untreated sewage secondary treatment water diluted in seawater, and MFSW uses MF (Millipore, polypropylene, 0.45 μm) to sewage secondary treatment water. After filtration was diluted in seawater, FOSW is sewage secondary treatment water was diluted in seawater using the osmodilution effect of the forward osmosis membrane.
도 5a에서 SE의 SDI값은 6.42±0.5로 일반적으로 역삼투 분리막을 운전하기 위해 권고되는 SDI 3 이하보다 매우 높은 막오염 포텐셜을 나타내고 있다. In FIG. 5A, the SDI value of SE is 6.42 ± 0.5, indicating a membrane contamination potential that is much higher than SDI 3 or less, which is generally recommended for operating reverse osmosis membranes.
SESW, MFSW의 SDI 값도 각각 6.11±0.48, 5.04±0.33으로 희석되었음에도 불구하고 SDI 값은 여전히 3이상의 값을 보여주며, 역삼투 분리막에 사용이 어려운 막오염포텐셜을 보여주며 이러한 조건으로 역삼투 분리막을 운전시 전처리 비용이 발생할 수 있다. Although the SDI values of SESW and MFSW were also diluted to 6.11 ± 0.48 and 5.04 ± 0.33, respectively, the SDI values were still more than 3, showing the membrane fouling potential, which is difficult to use in reverse osmosis membranes. The cost of pretreatment may be incurred when operating the engine.
그러나, 하수2차처리수가 정삼투분리막에 의한 삼투희석효과를 이용하여 해수에 희석된 FOSW의 경우, FOSW의 SDI 값은 1.28±0.12로 유일하게 SDI 3이하의 권고 수준에 적합한 막오염 포텐셜을 나타냄을 알 수 있다. However, in the case of FOSW diluted in seawater using the osmotic dilution effect of the sewage secondary treated water, the SDI value of FOSW is 1.28 ± 0.12, which shows the membrane contamination potential that is only suitable for the recommended level below SDI 3. It can be seen.
상기 실험을 통해, 기존의 역삼투공정의 막오염지수인 SDI는 정삼투분리막의 막오염을 측정하는데 사용하는 것은 부접합함을 알 수 있다. Through the experiments, it can be seen that the membrane fouling index of the conventional reverse osmosis process SDI is used to measure the membrane fouling of the forward osmosis membrane is unbonded.
또한, 하수2차처리수(SE)를 정삼투공정(FO, forward osmosis)로 처리한 생산수를 해수에 희석하는 삼투희석 방법이 막오염 측면에서 가장 우수한 방법으로 확인되었다. 그리고, SDI값이 6 이상의 원수도 정삼투분리막을 통해 수처리가 가능하다는 결론을 내릴 수 있다. In addition, the osmotic dilution method of diluting the sewage secondary water (SE) by sea osmosis (FO) was confirmed as the best method in terms of membrane contamination. And, it can be concluded that raw water of SDI value of 6 or more can be treated through the forward osmosis membrane.
이에 따라, 정삼투분리막의 막오염을 모사하고 이로부터 정삼투분리막의 막오염을 예측할 수 있는 정삼투공정에서의 막오염지수를 산출할 수 있는 기술개발이 요구된다. Accordingly, there is a need for a technology development capable of simulating the membrane fouling of the forward osmosis membrane and calculating the membrane fouling index in the forward osmosis process that can predict the membrane fouling of the forward osmosis membrane.
본 발명은 정삼투분리막의 막오염이 정삼투막오염지수에 의해 예측될 수 있는 정삼투 막오염 예측 장치 및 정삼투 막오염 예측 방법을 제공하는 것을 목적으로 한다. An object of the present invention is to provide a forward osmosis membrane fouling prediction device and a forward osmosis membrane fouling prediction method in which the membrane fouling of the forward osmosis membrane can be predicted by the forward osmosis membrane fouling index.
본 발명은 기존의 역삼투공정의 막오염지수(SDI) 측정장치의 장단점을 모두 반영하여 정삼투공정에서 정삼투분리막의 막오염에 의한 정삼투막오염지수(OFI)를 산출하여, 실제 정삼투공정에서 정삼투분리막의 막오염을 예측할 수 있는 정삼투 막오염 예측 방법을 제공하는 것을 목적으로 한다.The present invention reflects all the advantages and disadvantages of the membrane fouling index (SDI) measuring device of the conventional reverse osmosis process to calculate the forward osmosis membrane fouling index (OFI) by the membrane fouling of the forward osmosis membrane in the forward osmosis process, the actual forward osmosis It is an object of the present invention to provide a method for predicting forward osmosis membrane fouling, which can predict membrane fouling of forward osmosis membranes in a process.
본 발명의 일 실시예에 따른 정삼투 막오염 예측 장치는, 정삼투분리막이 구비되고, 정삼투공정시 정삼투분리막의 막오염이 모사되는 막오염모사부; 정삼투공정시 1차유입수를 막오염모사부로 제공하고, 세척공정시 1차유입수의 유속보다 큰 유속을 가진 2차유입수를 막오염모사부로 제공하는 유입수공급부; 및 정삼투공정 초기에 1차유입수의 제 1 수투과량(J1)과, 세척공정 후에 1차유입수의 제 3 수투과량(J3)가 측정되어, 정삼투막오염지수(OFI)가 산출되고, 정삼투막오염지수(OFI)로부터 정삼투분리막의 막오염이 예측되는 막오염예측부를 포함하고, 정삼투막오염지수(OFI)는 제 1 수투과량(J1)에 대한 제 3 수투과량(J3)의 회복율인 것이 바람직하다. An apparatus for predicting forward osmosis membrane fouling according to an embodiment of the present invention includes a membrane fouling simulation unit provided with a forward osmosis membrane and simulating membrane fouling of the forward osmosis membrane during the forward osmosis process; An inflow water supply unit that provides the first inflow water to the membrane fouling simulation unit during the forward osmosis process, and provides the second inflow water having a flow rate greater than that of the first inflow water to the membrane contamination simulation unit during the washing process; And the first water permeation rate (J1) of the first inflow water at the beginning of the forward osmosis process and the third water permeation rate (J3) of the first inflow water after the washing process are calculated to calculate the forward osmosis membrane contamination index (OFI). A membrane fouling predictor where the membrane fouling of the forward osmosis membrane is predicted from the osmosis membrane fouling index (OFI), and the forward osmosis membrane fouling index (OFI) is a ratio of the third water permeation (J3) to the first It is preferable that it is a recovery rate.
본 발명의 일 실시예에 있어서, 막오염예측부에서, 정삼투막오염지수(OFI)가 1보다 크게 산출되면(1<OFI), 정삼투분리막이 손상된 경우라 예측되고, 정삼투막오염지수(OFI)가 1(OFI=1)이라 산출되면, 정삼투분리막이 오염되지 않았다고 예측되고, 정삼투막오염지수(OFI)가 임계가역성(Rc)보다 크고 1보다 작은 범위(Rc< OFI <1)에 속할 때, 정삼투분리막의 막오염이 예측되고, 정삼투막오염지수(OFI)가 임계가역성(Rc)보다 작으면(Rc> OFI), 정삼투분리막이 2차유입수에 의한 물리적 세척만으로 막오염의 회복이 불가능한 상태라 예측되는 것이 바람직하다. In one embodiment of the present invention, in the membrane contamination prediction unit, if the forward osmosis membrane contamination index (OFI) is calculated to be greater than 1 (1 <OFI), it is predicted that the forward osmosis membrane is damaged, the forward osmosis membrane contamination index When (OFI) is calculated to be 1 (OFI = 1), it is predicted that the forward osmosis membrane is not contaminated, and the forward osmosis membrane contamination index (OFI) is greater than the critical reversibility (Rc) and less than 1 (Rc <OFI <1). ), If the membrane osmosis of the forward osmosis membrane is predicted, and if the forward osmosis membrane index (OFI) is less than the critical reversibility (Rc) (Rc> OFI), then the forward osmosis membrane is subjected to physical washing only by secondary inflow. It is desirable to predict that the recovery of membrane contamination is impossible.
본 발명의 일 실시예에 있어서, 임계가역성(Rc)은 2차유입수에 의한 물리적 세척만으로 정삼투분리막의 막오염이 회복불가능한 상태에서, 세척공정 전의 1차유입수의 수투과량에 대한 세척공정 후의 1차유입수의 수투과량의 회복율이고, 임계가역성(Rc)은 아래에 의해 산출되는 것이 바람직하다. In one embodiment of the present invention, the critical reversibility (Rc) is 1 after the washing process for the water permeation rate of the first influent water before the washing process in the state that the membrane contamination of the forward osmosis membrane is not recoverable only by physical washing by the second influent water. It is preferable that it is the recovery rate of the permeation | transmission amount of inflow water, and critical reversibility Rc is computed by the following.
Figure PCTKR2017002427-appb-I000001
Figure PCTKR2017002427-appb-I000001
(J세척전은 정삼투분리막의 막오염의 회복이 불가능한 상태에서, 세척공정 전의 1차유입수의 수투과량이고, J세척후는 세척공정 후의 1차유입수의 수투과량이다.)( Before washing , water permeation of the primary influent water before the washing process is the water permeation of the first influent water after the washing process, in the state where the membrane contamination of the forward osmosis membrane cannot be recovered.)
본 발명의 일 실시예에 있어서, 막오염예측부는, 1차유입수의 수투과량이 부착층에 의해 제 1 수투과량(J1)보다 점차 떨어지다 수렴되는 제 2 수투과량(J2)이 측정되면, 제 2 수투과량(J2)이 측정되는 시점에서, 막오염모사부로 2차유입수를 제공하여, 2차유입수에 의해 부착층이 제거되어 정삼투분리막이 세척되도록 하는 것이 바람직하다. In one embodiment of the present invention, the membrane fouling predicting part, when the water permeation rate of the first inflow water is gradually lower than the first water permeation amount J1 by the adhesion layer is measured, the second water permeation amount J2 is measured, the second At the time when the water permeation amount (J2) is measured, it is preferable to provide the secondary inflow water to the membrane fouling simulation unit so that the adhesion layer is removed by the secondary inflow water so that the forward osmosis membrane is washed.
본 발명의 일 실시예에 있어서, 막오염예측부에서, 정삼투막오염지수(OFI)가 아래식에 의해 산출되는 것이 바람직하다. In one embodiment of the present invention, in the membrane fouling prediction portion, it is preferable that the forward osmosis membrane fouling index (OFI) is calculated by the following equation.
Figure PCTKR2017002427-appb-I000002
Figure PCTKR2017002427-appb-I000002
(J1은 정삼투공정 초기에 부착층이 형성되기 전, 정삼투분리막을 통과하는 1차유입수의 수투과량이고, J3은 세척공정에 의해 부착층이 정삼투분리막에서 제거된 후에, 정삼투공정에서 정삼투분리막을 통과하는 1차유입수의 수투과량이다.)(J1 is the water permeation rate of the first inflow water through the forward osmosis membrane before the adhesion layer is formed at the beginning of the forward osmosis process, and J3 is the forward osmosis process after the adhesion layer is removed from the forward osmosis membrane by the washing process. It is the water permeation rate of the primary inflow through the forward osmosis membrane.)
본 발명의 일 실시예에 있어서, 정삼투공정시 막오염모사부로 1차유입수보다 높은 농도를 가진 유도용액을 공급하는 유도용액 공급부를 더 포함하고, 유도용액 공급부는 유도용액의 몰농도를 조절하여 막오염모사부에서 1차유입수의 유기물이 정삼투분리막의 표면에 쌓여 형성되는 부착층의 형성을 가속화시키는 것이 바람직하다. In one embodiment of the present invention, in the forward osmosis process further comprises an induction solution supply for supplying an induction solution having a concentration higher than the primary influent to the membrane fouling simulation unit, the induction solution supply unit by adjusting the molar concentration of the induction solution In the membrane fouling simulation unit, it is preferable to accelerate the formation of the adhesion layer in which the organic matter of the primary influent is accumulated on the surface of the forward osmosis membrane.
본 발명의 일 실시예에 있어서, 유도용액 공급부에 연결되어, 막오염모사부로 제공되는 유도용액의 TDS(total dissolved solids)를 조절함으로써, 1차유입수의 TDS와 유도용액의 TDS의 차이에 의한 제 1 수투과량을 조절하는 TDS컨트롤러를 더 포함하는 것이 바람직하다. In one embodiment of the present invention, connected to the induction solution supply, by adjusting the TDS (total dissolved solids) of the induction solution provided to the membrane fouling simulation unit, by the difference between the TDS of the primary influent and the TDS of the induction solution It is preferable to further include a TDS controller for adjusting the water permeation rate.
한편, 정삼투 막오염 예측 장치를 이용하여 정삼투공정에서의 정삼투분리막의 막오염을 예측하는 정삼투 막오염 예측 방법은, (A) 막오염모사부로 1차유입수 및 유도용액이 공급되어, 정삼투공정시 1차유입수와 유도용액 간의 삼투압 차이에 의해 정삼투분리막에 쌓인 부착층에 의해 막오염이 모사되는 단계; (B) 1차유입수의 유속보다 큰 유속을 가진 2차유입수가 막오염모사부로 제공되어, 2차유입수에 의해 정삼투분리막이 세척되는 단계; 및 (C) 정삼투공정 초기에 1차유입수의 제 1 수투과량(J1)과, 세척공정 후에 1차유입수의 제 3 수투과량(J3)을 측정하고, 정삼투막오염지수(OFI)가 산출되어, 정삼투막오염지수(OFI)로부터 정삼투분리막의 막오염이 예측되는 단계를 포함하고, 정삼투막오염지수(OFI)는 제 1 수투과량(J1)에 대한 제 3 수투과량(J3)의 회복율인 것이 바람직하다.On the other hand, the forward osmosis membrane fouling prediction method for predicting the membrane fouling of the forward osmosis membrane in the forward osmosis process by using the forward osmosis membrane fouling prediction apparatus, (A) the primary influent and induction solution is supplied to the membrane fouling simulation unit, Membrane contamination is simulated by the adhesion layer accumulated on the forward osmosis membrane due to the osmotic pressure difference between the primary influent and the induction solution during the forward osmosis process; (B) providing a second inflow water having a flow rate greater than that of the first inflow water to the membrane fouling simulation unit, and washing the forward osmosis membrane by the second inflow water; And (C) measuring the first water permeation rate (J1) of the first influent water at the beginning of the forward osmosis process, and the third water permeation rate (J3) of the first influent water after the washing process, and the forward osmosis membrane contamination index (OFI) is calculated. And a step of predicting membrane fouling of the forward osmosis membrane from the forward osmosis membrane contamination index (OFI), wherein the forward osmosis membrane contamination index (OFI) is a third water permeation rate (J3) relative to the first water permeation (J1). It is preferable that the recovery rate is.
본 발명의 일 실시예에 있어서, (C) 단계는, (C1) 정삼투막오염지수(OFI)가 1보다 크게 산출되면(1<OFI), 정삼투분리막이 손상된 경우라 예측되는 단계; (C2) 정삼투막오염지수(OFI)가 1(OFI=1)이라 산출되면, 정삼투분리막이 오염되지 않았다고 예측되는 단계; (C3) 정삼투막오염지수(OFI)가 임계가역성(Rc)보다 크고 1보다 작은 범위(Rc< OFI <1)에 속할 때, 정삼투분리막의 막오염이 예측되는 단계; 및 (C4) 정삼투막오염지수(OFI)가 임계가역성(Rc)보다 작으면(Rc> OFI), 정삼투분리막이 2차유입수에 의한 물리적 세척만으로 막오염의 회복이 불가능한 상태라 예측되는 단계를 포함하고, 임계가역성(Rc)은 2차유입수에 의한 물리적 세척만으로 정삼투분리막의 막오염이 회복불가능한 상태에서, 세척공정 전의 1차유입수의 수투과량에 대한 세척공정 후의 1차유입수의 수투과량의 회복율인 것이 바람직하다.In one embodiment of the present invention, step (C), (C1) if the forward osmosis membrane contamination index (OFI) is calculated to be greater than 1 (1 <OFI), the step of predicting that the case of the forward osmosis membrane is damaged; (C2) if the forward osmosis membrane contamination index (OFI) is calculated to be 1 (OFI = 1), predicting that the forward osmosis membrane is not contaminated; (C3) predicting membrane fouling of the forward osmosis membrane when the forward osmosis membrane contamination index (OFI) is in the range greater than the critical reversibility (Rc) and less than 1 (Rc <OFI <1); And (C4) when the forward osmosis membrane fouling index (OFI) is less than the critical reversibility (Rc) (Rc> OFI), the step of predicting that the forward osmosis membrane is impossible to recover the membrane fouling only by physical cleaning by the secondary influent. The critical reversibility (Rc) is a water permeation rate of the first influent water after the washing process relative to the water permeation rate of the first influent water before the washing process in a state in which membrane fouling of the forward osmosis membrane cannot be recovered only by physical washing by the second influent. It is preferable that the recovery rate is.
본 발명의 일 실시예에 있어서, 막오염모사부에서, 정삼투막오염지수(OFI)가 1보다 크면(1<OFI), 정삼투공정의 운전이 중단되고, 정삼투막오염지수(OFI)가 1(OFI=1)이면, 정삼투공정의 운전이 지속되고, 정삼투막오염지수(OFI)가 임계가역성(Rc)보다 크고 1보다 작으면(Rc< OFI <1), 정삼투공정의 운전이 중단되고, 정삼투분리막에 대한 세척공정이 진행되고, 정삼투막오염지수(OFI)가 임계가역성(Rc)보다 작으면(Rc> OFI), 정삼투공정의 운전이 중단되고, 화학적세정과 같은 전처리공정이 수행되는 것이 바람직하다.In one embodiment of the present invention, in the membrane fouling simulation unit, if the forward osmosis membrane contamination index (OFI) is greater than 1 (1 <OFI), the operation of the forward osmosis process is stopped, the forward osmosis membrane contamination index (OFI) Is 1 (OFI = 1), the operation of the forward osmosis process is continued, and if the forward osmosis membrane contamination index (OFI) is greater than the critical reversibility (Rc) and less than 1 (Rc <OFI <1), If the operation is stopped, the forward osmosis membrane washing process is performed, and the forward osmosis membrane contamination index (OFI) is less than the critical reversibility (Rc) (Rc> OFI), the operation of the forward osmosis process is stopped, and chemical cleaning It is preferable that a pretreatment process such as
본 발명의 일 실시예에 있어서, 정삼투막오염지수(OFI)는 아래식에 의해 산출되는 것이 바람직하다.In one embodiment of the present invention, the forward osmosis membrane contamination index (OFI) is preferably calculated by the following formula.
Figure PCTKR2017002427-appb-I000003
Figure PCTKR2017002427-appb-I000003
(J1은 정삼투공정 초기에 부착층이 형성되기 전, 정삼투분리막을 통과하는 1차유입수의 수투과량이고, J3은 세척공정에 의해 부착층이 정삼투분리막에서 제거된 후에, 정삼투공정에서 정삼투분리막을 통과하는 1차유입수의 수투과량이다.)(J1 is the water permeation rate of the first inflow water through the forward osmosis membrane before the adhesion layer is formed at the beginning of the forward osmosis process, and J3 is the forward osmosis process after the adhesion layer is removed from the forward osmosis membrane by the washing process. It is the water permeation rate of the primary inflow through the forward osmosis membrane.)
본 발명의 일 실시예에 있어서, 임계가역성(Rc)은 아래식에 의해 산출되는 것이 바람직하다.In one embodiment of the present invention, the critical reversibility Rc is preferably calculated by the following equation.
Figure PCTKR2017002427-appb-I000004
Figure PCTKR2017002427-appb-I000004
(J세척전은 정삼투분리막의 막오염의 회복이 불가능한 상태에서, 세척공정 전의 1차유입수의 수투과량이고, J세척후는 세척공정 후의 1차유입수의 수투과량이다.)( Before washing , water permeation of the primary influent water before the washing process is the water permeation of the first influent water after the washing process, in the state where the membrane contamination of the forward osmosis membrane cannot be recovered.)
본 발명의 일 실시예에 있어서, (B) 단계는 정삼투분리막을 통과하는 1차유입수의 수투과량이 부착층에 의해 제 1 수투과량(J1)보다 점차 떨어지다 제 2 수투과량(J2, J1>J2)으로 수렴되는 시점에서, 2차유입수에 의한 정삼투분리막의 세척이 진행되어, 부착층이 정삼투분리막에서 제거됨에 따라 정상투분리막의 막오염이 회복되는 것이 바람직하다.In one embodiment of the present invention, in step (B), the water permeation rate of the primary inflow water passing through the forward osmosis membrane is gradually lower than the first water permeation amount J1 by the adhesion layer. At the time point of convergence to J2), washing of the forward osmosis membrane by the second influent is performed, and as the adhesion layer is removed from the forward osmosis membrane, membrane fouling of the normal osmosis membrane is preferably restored.
본 발명의 일 실시예에 있어서, (A) 단계에서, 유도용액은 몰농도가 조절되어 막오염모사부로 공급되어, 부착층의 형성을 가속화시키는 것이 바람직하다.In one embodiment of the present invention, in step (A), the induction solution is molar concentration is supplied to the membrane fouling simulation unit, it is preferable to accelerate the formation of the adhesion layer.
본 발명의 일 실시예에 있어서, (A) 단계에서, 유도용액은 유도용액의 TDS(total dissolved solids)가 조절되어 막오염모사부로 제공되고, 제 1 수투과량(J1)은 1차유입수의 TDS와 유도용액의 TDS의 차이에 의해 조절되는 것이 바람직하다.In one embodiment of the present invention, in step (A), the induction solution is provided to the membrane fouling simulation unit by adjusting the total dissolved solids (TDS) of the induction solution, the first water permeation (J1) is the first influent TDS It is preferable to be controlled by the difference between the TDS and the induction solution.
본 발명은 정삼투 방식을 이용한 해수담수화 공정이나 여과 공정, 탈수 공정, 농축 공정 등에 의해 발생하는 정삼투분리막의 오염 현상을 보다 정확하게 사전에 측정 및 예측할 수 있다. 즉, 본 발명은 정삼투공정에 사용되는 정삼투분리막의 막오염을 모사하고, 정삼투막오염지수(OFI)를 산출하여, 정삼투막오염지수(OFI)로부터 정삼투분리막의 막오염을 사전에 예측할 수 있다. 여기서, 정삼투막오염지수(OFI)는 막오염이 모사된 정삼투분리막에서 측정된 막오염 데이터(즉, 수투과량과 정삼투분리막의 특성)를 반영하여 산출된다. The present invention can more accurately measure and predict the contamination phenomenon of the forward osmosis membrane generated by the seawater desalination process, the filtration process, the dehydration process, the concentration process, etc. using the forward osmosis method. That is, the present invention simulates the membrane fouling of the forward osmosis membrane used in the forward osmosis process, calculates the forward osmosis membrane contamination index (OFI), and advances the membrane contamination of the forward osmosis membrane from the forward osmosis membrane contamination index (OFI). Can be predicted. Here, the forward osmosis membrane contamination index (OFI) is calculated by reflecting the membrane fouling data (that is, the water permeability and the characteristics of the forward osmosis membrane) measured in the membrane of the forward osmosis membrane simulated.
본 발명은 실제로 사용되는 정삼투분리막을 활용하여, 정삼투분리막의 가역성, 고농도 유도용액을 이용하여 정삼투공정에 의한 막오염시기 단축하여, 단기간에 정삼투분리막의 막오염을 모사할 수 있다. The present invention can be used to simulate the membrane fouling of the forward osmosis membrane in a short period of time by using the reverse osmosis membrane used in practice, by reducing the membrane fouling time by the forward osmosis process using a reversible, high concentration induction solution of the forward osmosis membrane.
도 1은 본 발명의 일 실시예에 따른 정삼투 막오염 예측 장치의 구성도를 개략적으로 도시한 것이다. Figure 1 schematically shows the configuration of the apparatus for predicting forward osmosis membrane fouling according to an embodiment of the present invention.
도 2는 유도용액의 몰농도 변화에 따른 운전시간-막오염 가역성 그래프를 도시한 것이다. Figure 2 shows the operating time-membrane fouling reversibility graph according to the molar concentration of the induction solution.
도 3은 본 발명의 일 실시예에 따른 물리적세척 전후의 시간변화에 따른 수투과량 그래프를 도시한 것이다. 3 is a graph of water permeation rate with time change before and after physical washing according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 정삼투 막오염 예측 방법의 순서도를 개략적으로 도시한 것이다. Figure 4 schematically shows a flow chart of a forward osmosis membrane fouling prediction method according to an embodiment of the present invention.
도 5a는 실험 1에서, 원수 및 해수 희석방법에 따른 SDI 결과이다.Figure 5a is a SDI result according to the dilution method of raw water and seawater in Experiment 1.
도 5b는 실험 2에서, 가압 또는 감압 조건에 따른 정삼투분리막의 수투과량와 막오염 가역성(fouling reversibility)에 대한 결과 그래프이다. FIG. 5B is a graph showing the results of water permeation and membrane fouling reversibility according to pressurized or reduced pressure conditions in Experiment 2. FIG.
도 5c는 실험 3에서, 가압조건과 삼투압을 이용한 조건에서 운전횟수에 따른 막오염 가역성(fouling reversibility) 그래프이다. FIG. 5C is a graph of fouling reversibility according to the number of operations under the conditions of pressurization and osmotic pressure in Experiment 3. FIG.
도 5d는 4개 하수처리장에 대한 SDI와 TDS 그래프이다. 5D is a SDI and TDS graph for four sewage treatment plants.
도 5e는 동일한 TDS (250 mg/L) 조건에서 작동시간에 따른 4개 하수처리장 2차처리수의 수투과량(flux)에 대한 그래프이다.FIG. 5E is a graph of the flux of four sewage treatment plant secondary treated water over time under the same TDS (250 mg / L) condition.
도 5f는 4개의 하수처리장의 운전횟수에 대한 막오염 가역성(fouling reversibility)에 대한 그래프가 도시되어 있다. FIG. 5F shows a graph of fouling reversibility versus the number of operations of four sewage treatment plants.
도 5g은 4개 하수처리장에 대한 2차처리수의 유기물들의 농도 그래프이다. 5G is a graph of concentrations of organics in secondary treated water for four sewage treatment plants.
도 5h는 정삼투분리막에 부착된 4종류의 유기물질의 세척주기에 따른 농도에 대한 그래프이다.Figure 5h is a graph of the concentration according to the washing cycle of the four organic materials attached to the forward osmosis membrane.
도 5i는 물리적 세척조건인 유속에 따라 정삼투분리막의 막오염 가역성(fouling reversibility)가 운전주기에 따른 결과그래프이다. 5i is a graph showing results of fouling reversibility of the forward osmosis membrane according to the operating cycle according to the flow rate, which is a physical washing condition.
이하에서는 첨부도면을 참조하여, 본 발명의 바람직한 실시예에 따른 정삼투 막오염 예측 장치 및 정삼투 막오염 예측 방법에 대해 설명하기로 한다. Hereinafter, with reference to the accompanying drawings, a description will be given of a forward osmosis membrane fouling prediction apparatus and a forward osmosis membrane fouling prediction method according to a preferred embodiment of the present invention.
발명의 배경이 되는 기술에서 설명했듯이, 기존 역삼투공정의 막오염지수인 SDI가 정삼투분리막의 막오염에 사용이 불가능하다는 결론에 따라, 본 발명은 정삼투분리막 막오염을 모사하고 현장에서 적용되는 환경적 요인에 의한 변수가 반영된 정삼투막오염지수를 개발하여, 정삼투분리막의 막오염을 측정 및 예측하기 위한 것이다.As described in the background technology of the invention, according to the conclusion that the membrane contamination index SDI of the conventional reverse osmosis process can not be used for membrane fouling of the forward osmosis membrane, the present invention simulates membrane fouling of the forward osmosis membrane and apply in the field The purpose of this study is to develop the forward osmosis membrane contamination index that reflects the environmental factors, and to measure and predict the membrane contamination of the forward osmosis membrane.
도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 정삼투 막오염 예측 장치(100)는 유입수공급부(110), 유도용액공급부(120), 막오염모사부(130)와 막오염예측부(140)를 포함하여, 정삼투공정을 모사하고 정삼투막오염지수를 산출한다.As shown in FIG. 1, the apparatus for predicting forward osmosis membrane contamination according to an embodiment of the present invention 100 includes an inflow water supply unit 110, an induction solution supply unit 120, a membrane contamination simulation unit 130, and a membrane contamination prediction unit. Including the unit 140, to simulate the forward osmosis process and calculate the forward osmosis membrane contamination index.
우선, 정삼투공정에 의한 정삼투분리막(131)의 막오염모사는, 유입수공급부(110), 유도용액공급부(120)와 막오염모사부(130)에 의해 수행된다. First, membrane fouling simulation of the forward osmosis membrane 131 by the forward osmosis process is performed by the inflow water supply unit 110, the induction solution supply unit 120 and the membrane contamination simulation unit 130.
유입수공급부(110)는 막오염모사부(130)에 연결된다. 유입수공급부(110)는 유입수저장탱크(111), 제 1 유입수관(112), 제 1 펌프(113)와 제 2 유입수관(114)을 포함한다. The inflow water supply unit 110 is connected to the membrane fouling simulation unit 130. The inflow water supply unit 110 includes an inflow water storage tank 111, a first inflow pipe 112, a first pump 113, and a second inflow pipe 114.
유입수저장탱크(111)는 유입수가 저장된 탱크이다. 유입수는 정삼투 방식을 이용한 해수담수화 공정이나 여과 공정, 탈수 공정, 농축 공정에서 사용되는 액체를 통칭한다.The inflow water storage tank 111 is a tank in which inflow water is stored. The influent refers to the liquid used in the seawater desalination process, the filtration process, the dewatering process, and the concentration process using the forward osmosis method.
제 1 유입수관(112)은 유입수저장탱크(111)와 막오염모사부(130)의 제 1 입구(132a)를 연결한다. 여기서, 제 1 유입수관(112)을 흐르는 유입수는 유입수저장탱크(111)에서 막오염모사부(130)로 이동된다. 제 1 유입수관(112)을 흐르는 유입수의 원활한 흐름을 위해, 제 1 유입수관(112)에는 제 1 펌프(113)가 연결된다. 제 1 펌프(113)는 유입수저장탱크(111)에 저장된 유입수를 빨아들여 막오염모사부(130)로 공급하는 것이다. The first inlet pipe 112 connects the inlet water storage tank 111 and the first inlet 132a of the membrane fouling simulation unit 130. Here, the inflow water flowing through the first inflow pipe 112 is moved from the inflow water storage tank 111 to the membrane fouling simulation unit 130. The first pump 113 is connected to the first inlet pipe 112 for smooth flow of the inflow water flowing through the first inlet pipe 112. The first pump 113 sucks inflow water stored in the inflow water storage tank 111 and supplies it to the membrane fouling simulation unit 130.
제 2 유입수관(114)은 유입수저장탱크(111)와 막오염모사부(130)의 제 1 출구(132b)를 연결한다. 여기서, 유입수는 막오염모사부(130)에서의 유도용액과의 정삼투공정에 의해 농축된 농축수이다. 유입수는 제 2 유입수관(114)을 통과하여, 막오염모사부(130)에서 유입수저장탱크(111)로 유동된다. The second inflow pipe 114 connects the inflow water storage tank 111 and the first outlet 132b of the membrane fouling simulation unit 130. Here, the inflow water is concentrated water concentrated by the forward osmosis process with the induction solution in the membrane fouling simulation unit 130. The inflow water passes through the second inflow pipe 114 and flows from the membrane fouling simulation unit 130 to the inflow water storage tank 111.
본 실시예에서는 설명의 편의를 위하여, 정삼투공정시 공급되는 유입수에 대해 '1차 유입수'라 지칭하고, 세척공정시 공급되는 유입수에 대해 '2차 유입수'라 지칭하기로 한다. 여기서, 2차유입수는 1차유입수보다 유속이 빠르다. 본 예에서, 1차유입수는 정삼투공정시 화살표 F1을 따라 순환되고, 2차유입수는 세척공정시 화살표 F2를 따라 순환된다. In the present embodiment, for convenience of description, the influent supplied in the forward osmosis process will be referred to as 'primary influent' and the influent supplied in the washing process will be referred to as 'secondary influent'. Here, the secondary inflow is faster than the primary inflow. In this example, the primary influent is circulated along arrow F1 in the forward osmosis process, and the secondary influent is circulated along arrow F2 in the washing process.
유도용액공급부(120)는 정삼투공정시 유도용액을 제공하기 위한 것이다. 유도용액 공급부는 유도용액의 몰농도를 조절하면서, 유도용액 막오염모사부(130)로 제공한다. 유도용액의 몰농도가 커질수록, 정삼투분리막(131)에서의 부착층 형성이 가속화된다. 부착층은 정삼투공정시 1차유입수와 유도용액 간의 농도차이에 의한 삼투압에 의해 1차유입수 내의 물이 정삼투분리막을 통해 유도용액이 수용된 공간으로 유동하는 과정에서, 1차유입수의 유기물이 정삼투분리막의 표면에 쌓이면서 형성된다.Induction solution supply unit 120 is to provide an induction solution during the forward osmosis process. The induction solution supply unit provides the induced solution membrane fouling simulation unit 130 while controlling the molar concentration of the induction solution. As the molar concentration of the induction solution increases, the adhesion layer formation in the forward osmosis membrane 131 is accelerated. The adhesion layer is formed by the osmotic pressure caused by the difference in concentration between the primary influent and the induction solution during the forward osmosis process.In the process of water in the primary inflow flowing through the forward osmosis membrane to the space containing the induction solution, It is formed while accumulating on the surface of the osmosis membrane.
유도용액공급부(120)는 유도용액저장탱크(121), 제 1 유도용액관(122), 제 2 펌프(123), 제 2 유도용액관(124)과 TDS컨트롤러(125)를 포함한다. The induction solution supply unit 120 includes an induction solution storage tank 121, a first induction solution tube 122, a second pump 123, a second induction solution tube 124, and a TDS controller 125.
유도용액저장탱크(121)는 유도용액이 저장된 탱크이다. 유도용액은 1차유입수보다 고농도를 가진다. Induction solution storage tank 121 is a tank in which the induction solution is stored. Induction solutions have a higher concentration than primary influent.
제 1 유도용액관(122)은 유도용액저장탱크(121)와 막오염모사부(130)의 제 2 출구(133b)를 연결한다. 여기서, 제 1 유도용액관(122)을 흐르는 유도용액은 막오염모사부(130)에서 유도용액저장탱크(121)로 이동된다. 여기서, 제 1 유도용액관(122)을 흐르는 유도용액은 막오염모사부(130)에서의 상기 1차유입수와의 정삼투공정에 의해 희석된 상태이다. The first induction solution pipe 122 connects the induction solution storage tank 121 and the second outlet 133b of the membrane fouling simulation unit 130. Here, the induction solution flowing through the first induction solution tube 122 is moved from the membrane fouling simulation unit 130 to the induction solution storage tank 121. Here, the induction solution flowing through the first induction solution tube 122 is in a diluted state by the forward osmosis process with the primary influent from the membrane fouling simulation unit 130.
제 1 유도용액관(122)에는 제 1 유도용액관(122)을 흐르는 유도용액의 원활한 흐름을 위해 제 2 펌프(123)가 연결된다. 제 2 펌프(123)는 막오염모사부(130)에서 배출된 유도용액을 빨아들여 유도용액저장탱크(121)로 공급하는 것이다. A second pump 123 is connected to the first induction solution tube 122 for smooth flow of the induction solution flowing through the first induction solution tube 122. The second pump 123 sucks the induction solution discharged from the membrane fouling simulation unit 130 and supplies it to the induction solution storage tank 121.
제 2 유도용액관(124)은 유도용액저장탱크(121)와 막오염모사부(130)의 제 2 입구(133a)를 연결한다. 여기서, 제 2 유도용액관(124)을 흐르는 유도용액은 1차유입수보다 높은 농도를 가진 물질이다. The second induction solution pipe 124 connects the induction solution storage tank 121 and the second inlet 133a of the membrane fouling simulation unit 130. Here, the induction solution flowing through the second induction solution tube 124 is a substance having a higher concentration than the primary influent.
TDS컨트롤러(125)는 유도용액저장탱크(121)에 연결된다. TDS컨트롤러(125)는 막오염모사부(130)로 제공되는 유도용액의 TDS(total dissolved solids)를 조절한다. TDS컨트롤러(125)는 유도용액의 TDS를 조절하여, 제 1 수투과량을 조절할 수 있다. 여기서, 제 1 수투과량은 1차유입수의 TDS와 유도용액의 TDS의 차이에 의한다. 제 1 수투과량(J1)은 정삼투분리막(131)에 부착층이 형성되기 전, 정삼투공정 초기에 정삼투분리막(131)을 통과하는 1차유입수의 수투과량이다. The TDS controller 125 is connected to the induction solution storage tank 121. The TDS controller 125 controls the total dissolved solids (TDS) of the induction solution provided to the membrane fouling simulation unit 130. The TDS controller 125 may control the first water permeation amount by adjusting the TDS of the induction solution. Here, the first water permeation rate is based on the difference between the TDS of the primary influent and the TDS of the induction solution. The first water permeation amount J1 is the water permeation rate of the primary inflow water passing through the forward osmosis membrane 131 at the beginning of the forward osmosis process before the adhesion layer is formed on the forward osmosis membrane 131.
한편, 막오염모사부(130)는 정삼투공정이 수행되고, 반복적인 정삼투공정에 의해 정삼투분리막(131)의 막오염을 모사하는 것이다. 막오염모사부(130)는 정삼투분리막(131)에 의해 구분된 제 1 공간(132)과 제 2 공간(133)이 구비된다. On the other hand, the membrane fouling simulation unit 130 is to perform a forward osmosis process, to simulate the membrane fouling of the forward osmosis membrane 131 by a repeated forward osmosis process. The membrane fouling simulation unit 130 is provided with a first space 132 and a second space 133 separated by the forward osmosis membrane 131.
막오염모사부(130)는 제 1 공간(132)이 마련된 부분에 제 1 입구(132a)와 제 1 출구(132b)가 마련된다. 여기서, 제 1 입구(132a)에는 제 1 유입수관(112)이 연결되고, 제 1 출구(132b)에는 제 2 유입수관(114)이 연결된다. The membrane fouling simulation unit 130 is provided with a first inlet 132a and a first outlet 132b in a portion where the first space 132 is provided. Here, the first inlet pipe 112 is connected to the first inlet 132a, and the second inlet pipe 114 is connected to the first outlet 132b.
제 1 공간(132)은 유입수공급부(110)를 순환하는 유입수가 저장되는 공간이다. 정삼투공정시, 1차유입수는 화살표 F1을 따라 유입수저장탱크(111) -> 제 1 유입수관(112)-> 막오염모사부(130)의 제 1 공간(132) -> 제 2 유입수관(114) -> 유입수저장탱크(111)를 순환한다.The first space 132 is a space in which the inflow water circulating in the inflow water supply unit 110 is stored. In the forward osmosis process, the primary influent flows along the arrow F1 in the inlet storage tank 111-> the first inlet pipe 112-> the first space 132-> the second inlet pipe of the membrane fouling simulation unit 130. (114)-> Circulate the influent storage tank (111).
그리고, 막오염모사부(130)는 제 2 공간(133)이 마련된 부분에 제 2 입구(133a)와 제 2 출구(133b)가 마련된다. 제 2 입구(133a)에는 제 2 유도용액관(124)이 연결되고, 제 2 출구(133b)에는 제 1 유도용액관(122)이 연결된다. 제 2 공간(133)은 유도용액공급부(120)를 순환하는 유도용액이 저장되는 공간이다. In addition, the membrane fouling simulation unit 130 is provided with a second inlet 133a and a second outlet 133b at a portion where the second space 133 is provided. The second induction solution tube 124 is connected to the second inlet 133a, and the first induction solution tube 122 is connected to the second outlet 133b. The second space 133 is a space in which the induction solution circulating in the induction solution supply unit 120 is stored.
유도용액은 F3을 따라 유도용액공급부(120)와 막오염모사부(130)를 순환한다. 구체적으로, 유도용액은 F3을 따라 유도용액저장탱크(121) -> 제 2 유도용액관(124) -> 막오염모사부(130)의 제 2 공간(133) -> 제 1 유도용액관(122) -> 유도용액저장탱크(121)를 순환한다. 이때, 유도용액의 순환방향(F3)은 1차유입수의 순환방향(F1)과 반대방향이다. Induction solution circulates through the induction solution supply unit 120 and the membrane fouling simulation unit 130 along the F3. Specifically, the induction solution along the F3 induction solution storage tank 121-> the second induction solution tube 124-> the second space 133 of the membrane fouling simulation unit 130-> the first induction solution tube ( 122)-> Circulate the induction solution storage tank 121. At this time, the circulation direction F3 of the induction solution is opposite to the circulation direction F1 of the primary influent.
1차유입수는 정삼투분리막(131)에 의해 유도용액과 구분된 상태로 크로스-플로우(CROSS-FLOW)되면서, 1차유입수와 유도용액 간의 농도차이에 의해 정삼투분리막(131)에 걸린 삼투압에 의해, 저농도의 1차유입수가 고농도의 유도용액으로 이동된다. The primary influent was cross-flowed while being separated from the induction solution by the forward osmosis membrane 131, and the osmotic pressure applied to the forward osmosis membrane 131 by the concentration difference between the primary influent and the induction solution. As a result, the primary influent water at a low concentration is transferred to a high concentration induction solution.
이 과정에서, 1차유입수의 물이 제 1 공간(132)에서 제 2 공간(133)으로 이동되는 과정에서, 정삼투분리막(131)의 표면에는 1차유입수 내의 유기질이 쌓여 부착층이 형성된다. 정삼투분리막(131)은 부착층에 의해 막오염된다. In this process, in the process of the first influent water is moved from the first space 132 to the second space 133, an organic layer in the primary influent water is accumulated on the surface of the forward osmosis membrane 131 to form an adhesion layer. . The forward osmosis membrane 131 is membrane fouled by an adhesion layer.
도 2에 도시된 바와 같이, 부착층은 유도용액의 몰농도에 따라, 정삼투분리막(131)에 형성되는 속도가 가변된다. 도 2는 유도용액의 몰농도 변화에 따른 운전시간-막오염 가역성 그래프를 도시한 것이다. 여기서, 막오염 가역성(fouling reversibility)은 물리적 세척에 따른 정삼투분리막(131)의 회복능력을 말한다. As shown in FIG. 2, the adhesion layer varies in speed at the forward osmosis membrane 131 according to the molar concentration of the induction solution. Figure 2 shows the operating time-membrane fouling reversibility graph according to the molar concentration of the induction solution. Here, membrane fouling reversibility (fouling reversibility) refers to the recovery ability of the forward osmosis membrane 131 according to the physical wash.
유도용액의 몰농도 변화에 따른 운전시간-막오염 가역성 그래프는 5분 내지 10분 주기로 정삼투공정과 세척공정이 반복수행됨에 따라, 세척공정전후에 정삼투분리막(131)의 회복율이 얼마만큼 회복되는지를 보여주는 결과값이다. Operating time-membrane fouling reversibility graph according to the molar concentration of the induction solution shows that the recovery rate of the forward osmosis membrane 131 recovers before and after the washing process as the forward osmosis process and the washing process are repeatedly performed. The result shows whether or not
도 2를 참조하면, 3M의 유도용액으로 몰농도로 20~30분 정도의 운전 후 세척을 진행하면 충분한 임계가역성(Rc, critical reversibility)에 도달하는 실험 결과를 얻을 수 있다. 이는, 도 5f의 그래프에서, 해수조건의 유도용액을 이용하여 5번 운전을 반복한 막오염 가역성과 일치하는 결과이다. Referring to FIG. 2, when the washing is performed after driving for about 20 to 30 minutes with a molar concentration of 3M induction solution, an experimental result of reaching a critical critical reversibility (Rc) can be obtained. In the graph of FIG. 5F, the results correspond to the membrane fouling reversibility of repeating the operation 5 times using the induction solution of seawater conditions.
임계가역성(Rc)은 정삼투공정과 세척공정의 반복적인 수행에 따라 2차유입수에 의한 물리적 세척만으로 정삼투분리막(131)의 막오염이 회복불가능한 상태에서의 막오염 가역성(R)이다. Critical reversibility (Rc) is the membrane fouling reversibility (R) in the state that the membrane fouling of the forward osmosis membrane 131 is not recoverable only by physical washing by the second influent according to the repeated osmosis and washing process.
도 2를 참조하면, 정삼투분리막(131)의 막오염 가역성은 2M의 유도용액을 사용하여 정삼투공정을 수행하는 경우에 시간의 경과에 따라 75%로 수렴되는 반면, 3M 이상의 유도용액을 사용하여 정삼투공정을 수행하는 경우에 대략 60%로 수렴됨을 알 수 있다. 즉, 2M의 농도의 경우 충분한 실험결과를 보이지 못하였으며, 4M의 경우 시간을 단축할 수 있지만 약품비용과 장비의 부식 등을 고려하면 3M이 가장 경제적으로 판단된다.Referring to FIG. 2, the membrane fouling reversibility of the forward osmosis membrane 131 converges to 75% over time when the forward osmosis process is performed using a 2M induction solution, while using an induction solution of 3M or more. It can be seen that the convergence to about 60% when performing the forward osmosis process. In other words, the concentration of 2M did not show sufficient experimental results, and 4M can reduce the time, but considering the chemical cost and equipment corrosion, 3M is the most economical.
도 2의 그래프를 통해, 유도용액의 몰농도가 높을수록 정삼투분리막(131)의 막오염 가역성이 급격히 감소함을 알 수 있다. 이에 따라, 유도용액의 몰농도가 높을수록 정삼투분리막(131)에 부착되는 부착층의 속도가 빨라짐을 알 수 있다. 2, it can be seen that the higher the molar concentration of the induction solution, the faster the membrane fouling reversibility of the forward osmosis membrane 131. Accordingly, it can be seen that the higher the molar concentration of the induction solution, the faster the adhesion layer attached to the forward osmosis membrane 131.
상술한 정삼투공정에 의해 정삼투분리막(131)이 막오염되면, 정삼투분리막(131)의 막오염을 회복하기 위해 막오염된 정삼투분리막(131)이 2차유입수에 의해 세척된다. When the forward osmosis membrane 131 is membrane fouled by the above-mentioned forward osmosis process, the membrane fouled forward osmosis membrane 131 is washed by the secondary inflow to recover the membrane contamination of the forward osmosis membrane 131.
세척공정시, 2차유입수는 화살표 F2을 따라 유입수저장탱크(111) -> 제 1 유입수관(112)-> 막오염모사부(130)의 제 1 공간(132) -> 제 2 유입수관(114) -> 유입수저장탱크(111)를 순환한다. 여기서, 2차유입수의 순환방향(F2)은 1차유입수의 순환방향(F1)과 동일하다.In the washing process, the secondary inflow water follows the arrow F2 in the inlet water storage tank 111-> the first inlet pipe 112-> the first space 132 of the membrane fouling simulation unit 130-> the second inlet pipe ( 114)-> Circulate the influent storage tank (111). Here, the circulation direction F2 of the secondary inflow is the same as the circulation direction F1 of the primary inflow.
2차유입수는 1차유입수보다 높은 유속을 가진다. 2차유입수는 빠른 유속으로 유입수공급부(110)와 막오염모사부(130)를 순환하면서, 정삼투분리막(131)을 세척한다.The secondary inflow has a higher flow rate than the primary inflow. The secondary inflow water circulates the inflow water supply unit 110 and the membrane fouling simulation unit 130 at a high flow rate, and washes the forward osmosis separation membrane 131.
2차유입수는 제 2 수투과량(J2)이 측정되는 시점에서, 막오염모사부(130)로 제공된다. 2차유입수가 막오염모사부(130)를 순환할 때, 유도용액은 유도용액공급부(120)의 막오염모사부(130)로의 공급이 중단된다. The secondary inflow water is provided to the membrane fouling simulation unit 130 at the time when the second water permeation amount J2 is measured. When the secondary inflow water circulates through the membrane fouling simulation unit 130, the induction solution is stopped from the induction solution supply unit 120 to the membrane fouling simulation unit 130.
도 3에 도시된 바와 같이, 제 2 수투과량(J2)은 정삼투분리막(131)의 표면에 형성된 부착층에 의해 정삼투분리막(131)을 통과하는 1차유입수의 수투과량이 시간의 경과에 따라 점차 낮아지다가 일정하게 수렴된 수투과량이다. As shown in FIG. 3, the second water permeation amount J2 is a water permeation rate of the primary inflow water passing through the forward osmosis membrane 131 by an adhesion layer formed on the surface of the forward osmosis membrane 131. Therefore, it is gradually lowered and is a constant convergence of water penetration.
이하에서는 정삼투막오염지수(OFI)를 측정하여 정삼투분리막(131)의 막오염을 예측하는 막오염예측부(140)에 대해 설명하기로 한다.Hereinafter, the membrane fouling prediction unit 140 predicting membrane fouling of the forward osmosis membrane 131 by measuring the forward osmosis membrane contamination index (OFI) will be described.
막오염예측부(140)는 정삼투공정의 운전시간 경과에 따라 정삼투분리막(131)을 통과하는 1차유입수의 수투과량인 제 1 수투과량(J1), 제 2 수투과량(J2)과 제 3 수투과량(J3)을 측정하고, 이로부터 정삼투막오염지수(OFI)를 산출하고, 정삼투막오염지수(OFI)로부터 정삼투분리막(131)의 막오염을 예측한다. The membrane contamination prediction unit 140 includes a first water permeation amount J1, a second water permeation amount J2, and a first water permeation amount J1 which is a water permeation rate of the first inflow water passing through the forward osmosis membrane 131 according to the operation time of the forward osmosis process. 3 The water permeation rate (J3) is measured, and the forward osmosis membrane contamination index (OFI) is calculated therefrom, and the membrane contamination of the forward osmosis membrane 131 is predicted from the forward osmosis membrane contamination index (OFI).
제 1 수투과량(J1)은 정삼투분리막(131)에 부착층이 형성되기 전 정삼투공정 초기에 정삼투분리막(131)을 통과하는 1차유입수의 수투과량이다. The first water permeation amount J1 is the water permeation rate of the primary inflow water passing through the forward osmosis membrane 131 at the beginning of the forward osmosis process before the adhesion layer is formed on the forward osmosis membrane 131.
상술했듯이, 제 2 수투과량(J2)은 정삼투분리막(131)의 표면에 형성된 부착층에 의해 정삼투분리막(131)을 통과하는 1차유입수의 수투과량이 시간이 경과하더라도 일정하게 수렴되는 수투과량이다. As described above, the second water permeation amount J2 is a number that is constantly converged even if time passes by the first inflow water passing through the forward osmosis membrane 131 by the adhesion layer formed on the surface of the forward osmosis membrane 131. It is a transmission amount.
제 3 수투과량(J3)은 정삼투분리막(131)의 부착층이 세척공정에 의해 제거된 후의 정삼투공정에서 정삼투분리막(131)을 통과하는 1차유입수의 수투과량이다. The third water permeation amount J3 is the water permeation rate of the first inflow water passing through the forward osmosis membrane 131 in the forward osmosis process after the adhesion layer of the forward osmosis membrane 131 is removed by the washing process.
정삼투막오염지수(OFI)는 상기 제 1 수투과량(J1)과 제 3 수투과량(J3)으로부터 산출된다. 정삼투막오염지수(OFI)는 제 1 수투과량(J1)에 대한 제 3 수투과량(J3)의 회복율이다. The forward osmosis membrane contamination index OFI is calculated from the first water permeation amount J1 and the third water permeation amount J3. The forward osmosis membrane contamination index OFI is a recovery rate of the third water permeation amount J3 relative to the first water permeation amount J1.
정삼투막오염지수(OFI)는 부착층에 의해 막오염된 정삼투분리막(131)이 2차유입수에 의한 세척에 의해, 세척후의 정삼투공정에서의 정삼투분리막(131)을 통과하는 1차유입수의 제 3 수투과량(J3)이 정삼투공정 초기의 제 1 수투과량(J1)과 비교하여 얼마만큼 회복되었는지에 대한 지수이다. The forward osmosis membrane contamination index (OFI) is a primary osmosis membrane 131, which is contaminated by an adhesion layer, is washed by secondary inflow water, and then passes through the forward osmosis membrane 131 in the forward osmosis process after washing. It is an index of how much the third water permeation amount J3 of the influent is recovered compared with the first water permeation amount J1 at the beginning of the forward osmosis process.
막오염예측부(140)는 정삼투막오염지수(OFI)가 임계가역성(Rc)보다 크고 1보다 작을 때(Rc< OFI <1), 정삼투분리막(131)이 막오염되었다고 예측한다. The membrane contamination prediction unit 140 predicts that the forward osmosis membrane contamination index (OFI) is greater than the critical reversibility (Rc) and less than 1 (Rc < OFI <
상술했듯이, 임계가역성(Rc)은 정삼투공정과 세척공정의 반복적인 수행에 따라 2차유입수에 의한 물리적 세척만으로 정삼투분리막(131)의 막오염이 회복불가능한 상태에서의 막오염 가역성이다. 임계가역성(Rc)은 시간의 경과에 따라 막오염 가역성이 일정하게 수렴되는 수치이다. As described above, the critical reversibility (Rc) is the membrane fouling reversibility in the state that the membrane fouling of the forward osmosis membrane 131 is not recoverable only by physical washing by secondary inflow according to the repeated osmosis process and the washing process. Critical reversibility (Rc) is a value in which membrane fouling reversibility is constantly converged over time.
막오염 가역성(fouling reversibility)은 물리적 세척에 따른 정삼투분리막(131)의 회복능력이다. 막오염 가역성은 세척공정 전의 1차유입수의 수투과량에 대한 세척공정 후의 1차유입수의 수투과량의 회복율이다. Membrane fouling reversibility is the ability of the forward osmosis membrane 131 to recover according to physical cleaning. Membrane fouling reversibility is the rate of recovery of the water permeation rate of the first influent water after the washing process to the water permeation rate of the first influent water before the washing process.
이하에서는 도 4를 참조하여, 본 발명의 일 실시예에 따른 정삼투 막오염 예측 방법에 대해 설명하기로 한다. 정삼투 막오염 예측 방법은 정삼투 막오염 예측 장치(100)를 이용하여 정삼투공정에서의 막오염을 예측하는 방법이다. Hereinafter, a method for predicting forward osmosis membrane fouling according to an embodiment of the present invention will be described with reference to FIG. 4. The forward osmosis membrane fouling prediction method is a method of predicting membrane fouling in the forward osmosis process using the forward osmosis membrane fouling prediction apparatus 100.
우선, 변수를 고려한 실제 운전조건이 적용되어, 막오염모사부(130)에서 정삼투공정에 의한 정삼투분리막(131)의 막오염이 모사된다(S1). 즉, 정삼투 막오염 예측 장치(100)의 막오염모사부(130)로 공급된 유입수공급부(110)의 1차유입수와 유도용액공급부(120)의 유도용액의 농도차이에 의한 삼투압에 의해 정삼투공정이 수행되면서, 정삼투분리막(131)의 표면에는 1차유입수의 유기물이 쌓여 형성된 부착층에 의한 정삼투분리막(131)의 막오염이 모사된다. First, actual operating conditions in consideration of variables are applied, and membrane fouling of the forward osmosis membrane 131 by the forward osmosis process is simulated in the membrane fouling simulation unit 130 (S1). That is, due to the osmotic pressure due to the difference in the concentration of the primary inflow of the influent water supply unit 110 supplied to the membrane fouling simulation unit 130 of the forward osmosis membrane fouling prediction device 100 and the induction solution of the induction solution supply unit 120 As the osmosis process is performed, membrane fouling of the forward osmosis membrane 131 by the adhesion layer formed by stacking the organic material of the primary inflow water is simulated on the surface of the forward osmosis membrane 131.
이때, 유도용액은 몰농도가 조절되어 막오염모사부(130)로 공급되어, 부착층의 형성을 가속화시킬 수 있다. 그리고, 유도용액은 TDS컨트롤러(125)에 의해 막오염모사부(130)로 제공되는 유도용액의 TDS(total dissolved solids)가 조절된다. 제 1 수투과량은 1차유입수의 TDS와 유도용액의 TDS의 차이에 의해 조절된다. 여기서, 제 1 수투과량은 정삼투분리막(131)에 부착층이 형성되기 전, 정삼투공정 초기에 정삼투분리막(131)을 통과하는 1차유입수의 수투과량이다. At this time, the induction solution is supplied to the membrane fouling simulation unit 130 by adjusting the molar concentration, it is possible to accelerate the formation of the adhesion layer. In addition, the inductive solution is controlled by the TDS controller 125 to control TDS (total dissolved solids) of the inductive solution provided to the membrane fouling simulation unit 130. The first water permeation rate is controlled by the difference between the TDS of the primary influent and the TDS of the draw solution. Here, the first water permeation amount is the water permeation rate of the primary inflow water passing through the forward osmosis membrane 131 at the beginning of the forward osmosis process before the adhesion layer is formed on the forward osmosis membrane 131.
이후, 막오염예측부(140)는 상기 막오염모사부(130)에서의 정삼투공정의 운전시간 경과 및 운전횟수에 따라 정삼투분리막(131)을 통과하는 1차유입수의 수투과량을 측정하고, 이로부터 정삼투막오염지수(OFI)가 산출된다(S2). 정삼투막오염지수(OFI)는 임계가역성(Rc)보다 큰 것이 바람직하다. Thereafter, the membrane contamination prediction unit 140 measures the water permeation rate of the primary inflow water passing through the forward osmosis membrane 131 according to the operation time and the number of operation of the forward osmosis process in the membrane contamination simulation unit 130 and From this, the forward osmosis membrane contamination index (OFI) is calculated (S2). The forward osmosis membrane contamination index (OFI) is preferably greater than the critical reversibility (Rc).
정삼투막오염지수(OFI)는 식 (1)에 의해 산출된다. The forward osmosis membrane fouling index (OFI) is calculated by equation (1).
Figure PCTKR2017002427-appb-I000005
..........................식(1)
Figure PCTKR2017002427-appb-I000005
Equation (1)
상기 식(1)에서, J1은 제 1 수투과량이고, J3는 정삼투분리막(131)의 부착층이 세척공정에 의해 제거된 후의 정삼투공정에서 정삼투분리막(131)을 통과하는 1차유입수의 수투과량인 제 3 수투과량이다. In Equation (1), J1 is the first water permeation rate, J3 is the primary influent water passing through the forward osmosis membrane 131 in the forward osmosis process after the adhesion layer of the forward osmosis membrane 131 is removed by the washing process. It is the third water transmission amount which is the water transmission amount of.
그리고, 막오염예측부(140)는 정삼투막오염지수(OFI)로부터 정삼투분리막(131)의 막오염여부가 예측된다. 예측과정은 다음과 같다.The membrane contamination prediction unit 140 predicts membrane fouling of the forward osmosis membrane 131 from the forward osmosis membrane contamination index (OFI). The prediction process is as follows.
정삼투막오염지수(OFI)가 1보다 크게 산출되면(1<OFI), 막오염예측부(140)는 정삼투분리막(131)이 손상된 경우라 예측한다(S3). 정삼투분리막(131)이 손상된 경우에, 막오염모사부(130)에서의 정삼투공정은 중단된다.If the forward osmosis membrane contamination index (OFI) is calculated to be greater than 1 (1 <OFI), the membrane contamination prediction unit 140 predicts that the forward osmosis membrane 131 is damaged (S3). When the forward osmosis membrane 131 is damaged, the forward osmosis process in the membrane fouling simulation unit 130 is stopped.
다음으로, 정삼투막오염지수(OFI)가 1(OFI=1)이라 산출되면, 막오염예측부(140)는 정삼투분리막(131)이 오염되지 않았다고 예측한다(S4). 이 경우에, 막오염모사부(130)에서의 정삼투공정이 지속된다. Next, when the forward osmosis membrane contamination index (OFI) is calculated to be 1 (OFI = 1), the membrane contamination prediction unit 140 predicts that the forward osmosis membrane 131 is not contaminated (S4). In this case, the forward osmosis process in the membrane fouling simulation unit 130 continues.
정삼투막오염지수(OFI)가 임계가역성(Rc)보다 크고 1보다 작은 범위(Rc< OFI <1)에 속할 때, 막오염예측부(140)는 정삼투분리막(131)이 막오염된 상태라 예측하고, 이때, 정삼투분리막(131)의 세척이 수행된다(S5). 이는, 2차유입수에 의한 정삼투분리막(131)의 세척에 의해, 부착층이 정삼투분리막(131)에서 제거됨에 따라 정상투분리막의 막오염을 회복하기 위함이다. When the forward osmosis membrane index (OFI) is in the range greater than the critical reversibility (Rc) and less than 1 (Rc <OFI <1), the membrane fouling predictor 140 is in a state in which the forward osmosis membrane 131 is membrane contaminated. In this case, the forward osmosis membrane 131 is washed (S5). This is to recover the membrane fouling of the normal osmosis membrane as the adhesion layer is removed from the forward osmosis membrane 131 by washing the forward osmosis membrane 131 by the secondary inflow water.
정삼투분리막(131)의 세척시 정삼투공정의 운전은 중단된다. 그리고, 유입수공급부(110)에서 막오염모사부(130)로 2차유입수가 제공되어, 2차유입수에 의해 정삼투분리막(131)이 세척된다. 세척이 진행되는 시점은 정삼투공정의 운전시간 경과에 따라 수투과량이 수렴되는 시점이다. Operation of the forward osmosis process is stopped when the forward osmosis membrane 131 is washed. Then, secondary inflow water is provided from the inflow water supply unit 110 to the membrane fouling simulation unit 130, and the forward osmosis separation membrane 131 is washed by the secondary inflow water. The time point at which the washing proceeds is a time point at which the water permeation is converged according to the operation time of the forward osmosis process.
본 실시예에서는 설명의 편의를 위해, 정삼투공정의 운전시간의 경과에 따라 수렴되는 수투과량에 대해 "제 2 수투과량"이라 지칭한다. 제 2 수투과량(J2, J1>J2)은 제 1 수투과량(J1)보다 적다. In the present embodiment, for convenience of description, the water permeation amount converged as the operation time of the forward osmosis process is referred to as "second water permeation amount". The second water transmission amount J2, J1> J2 is less than the first water transmission amount J1.
임계가역성(Rc)은 정삼투공정과 세척공정의 반복적인 수행에 의해 2차유입수에 의한 물리적 세척만으로 정삼투분리막(131)의 막오염의 회복이 불가능한 상태에서, 세척공정 전의 1차유입수의 수투과량(J세척전)에 대한 세척공정 후의 1차유입수의 수투과량(J세척후)의 회복율로서, 식(2)에 의해 산출된다. The critical reversibility (Rc) is the number of primary influent waters before the washing process in a state in which the membrane contamination of the forward osmosis membrane 131 cannot be recovered only by physical washing by the second influent water by repeating the forward osmosis process and the washing process. a recovery ratio of the transmission amount (J before washing) (after cleaning J) cleaning the first influent can permeation amount of the subsequent steps for, is calculated by the equation (2).
Figure PCTKR2017002427-appb-I000006
............................식 (2)
Figure PCTKR2017002427-appb-I000006
Equation (2)
임계가역성(Rc)은 시간의 경과에 따라 막오염 가역성이 일정하게 수렴되는 수치이다. 임계가역성(Rc)은 정삼투공정과 세척공정의 반복적인 수행에 따라 2차유입수에 의한 물리적 세척만으로 정삼투분리막(131)의 막오염이 회복불가능한 상태에서의 막오염 가역성(R)이다. 막오염 가역성(fouling reversibility)은 물리적 세척에 따른 정삼투분리막(131)의 회복능력으로서, 세척공정 전의 1차유입수의 수투과량에 대한 세척공정 후의 1차유입수의 수투과량의 회복율이다. Critical reversibility (Rc) is a value in which membrane fouling reversibility is constantly converged over time. Critical reversibility (Rc) is the membrane fouling reversibility (R) in the state that the membrane fouling of the forward osmosis membrane 131 is not recoverable only by physical washing by the second influent according to the repeated osmosis and washing process. Membrane fouling reversibility is a recovery capability of the forward osmosis membrane 131 according to physical washing, and is a recovery rate of the water permeation rate of the first influent water after the washing process with respect to the water permeation rate of the first influent water before the washing process.
임계가역성에 적용되는 세척공정 전, 1차유입수의 수투과량(J세척전)은 정삼투분리막(131)에 쌓인 부착층이 물리적 세척에 의해 제거되지 않아 정삼투공정의 운전횟수가 증가해도 수투과량이 일정하게 수렴된 값이다. 반면, 제 1 수투과량은 정삼투공정의 초기 운전에서의 세척공정 전의 수투과량으로서, 측정된 수투과량의 값이 서로 차이가 난다. Before the washing process applied to the critical reversibility, the water permeation rate of the first inflow water ( before J cleaning ) is the water permeation rate even if the operation number of the forward osmosis process is increased because the adhesion layer accumulated in the forward osmosis membrane 131 is not removed by physical washing. This is a constantly converged value. On the other hand, the first water permeation amount is the water permeation amount before the washing step in the initial operation of the forward osmosis process, and the measured water permeation values differ from each other.
임계가역성에 적용되는 세척공정 후, 1차유입수의 수투과량(J세척후)은 정삼투분리막(131)에 쌓인 부착층이 물리적 세척에 의해 제거되지 않아 정삼투공정의 운전횟수가 증가해도 수투과량이 일정하게 수렴된 값이다. 반면, 제 3 수투과량은 세척에 의해 정삼투분리막(131)에서 부착층이 제거될 때의 수투과량이다. After the washing process applied to the critical reversibility, the water permeation rate of the first influent ( after washing J) is the permeation rate even if the number of operations of the forward osmosis process is increased because the adhesion layer accumulated in the forward osmosis membrane 131 is not removed by physical washing. This is a constantly converged value. On the other hand, the third water permeation rate is the water permeation rate when the adhesion layer is removed from the forward osmosis membrane 131 by washing.
한편, 정삼투막오염지수(OFI)가 임계가역성(Rc)보다 작으면(Rc> OFI), 정삼투분리막(131)이 2차유입수에 의한 물리적 세척만으로 막오염의 회복이 불가능한 상태라 예측하여, 정삼투공정의 운전이 중단되고, 화학적세정과 같은 전처리공정이 수행된다(S6).On the other hand, if the forward osmosis membrane contamination index (OFI) is less than the critical reversibility (Rc) (Rc> OFI), the forward osmosis membrane 131 predicts that the membrane contamination cannot be recovered only by physical cleaning by secondary inflow. The operation of the forward osmosis process is stopped, and a pretreatment process such as chemical cleaning is performed (S6).
본 발명은 정삼투분리막 막오염을 모사하고 현장에서 적용되는 환경적 요인에 의한 변수가 반영된 정삼투막오염지수를 개발하여, 정삼투분리막의 막오염을 측정 및 예측할 수 있다. The present invention simulates the forward osmosis membrane membrane fouling and develops the forward osmosis membrane fouling index reflecting the variables due to environmental factors applied in the field, it is possible to measure and predict the membrane fouling of the forward osmosis membrane.
본 발명은 정삼투분리막마다 정삼투막오염지수(OFI)를 산출하고, 정삼투막오염지수(OFI)에 따라 정삼투분리막의 막오염시기를 사전에 예측하여, 정삼투분리막이 임계가역점에 도달하기 전에 전처리 또는 세척공정을 진행하여, 정삼투공정장치의 운전효율 및 운전기간을 증대시킬 수 있다. The present invention calculates the forward osmosis membrane contamination index (OFI) for each forward osmosis membrane, and predicts the membrane fouling time of the forward osmosis membrane according to the forward osmosis membrane contamination index (OFI), the forward osmosis membrane to the critical reversible point The pretreatment or washing process may be performed before reaching to increase the operation efficiency and operation period of the forward osmosis process apparatus.
환경정책상, 폐수를 해양으로 흘려보는 것은 금지되고 있는 실정인데, 정삼투공정의 농축공정은 폐수를 무방류하는 기술에 적용된다. 정삼투공정에 의한 수처리기술은 환경적 측면, 경제적 측면에서 그 활용도가 점차 증대되고 있다. Due to environmental policy, it is forbidden to spill wastewater into the ocean, and the concentration of the forward osmosis process is applied to the technology to discharge the wastewater. Water treatment technology by forward osmosis process is increasingly used in environmental and economic aspects.
본 발명은 운전시간의 경과에 따른 정삼투분리막의 막오염시기를 OFI를 통해 산출하여, 정삼투 방식을 이용한 해수담수화 공정이나 여과 공정, 탈수 공정, 농축 공정 등에 의해 발생하는 정삼투분리막의 오염 현상을 보다 정확하게 사전에 측정 및 예측할 수 있다. The present invention calculates the membrane fouling time of the forward osmosis membrane with the passage of operation time through OFI, the contamination phenomenon of the forward osmosis membrane generated by the seawater desalination process, filtration process, dehydration process, concentration process using the forward osmosis method Can be measured and predicted more accurately in advance.
이하에서는, 막오염모사부에서 정삼투분리막의 막오염 모사가 왜 삼투압에 의해 수행되는지에 대한 실험결과 도출과, 정삼투막오염지수(OFI)를 산출하는 수식을 도출하는데 적용되는 실험에 대해 설명하기로 한다. Hereinafter, the experimental results derived from why the membrane fouling simulation of the forward osmosis membrane in the membrane fouling simulation unit is performed by osmotic pressure, and the experiment applied to derive the formula for calculating the forward osmosis membrane contamination index (OFI) will be described. Let's do it.
발명의 배경이 되는 기술에서 상술했듯이 기존 막오염 지수가 정삼투분리막의 막오염에 사용이 불가능하며 정삼투분리막 막오염을 모사할 수 있는 새로운 방법이 필요하다는 결론에 따라, 막오염을 모사할 수 있는 방법에 대하여 실험 2를 진행하였다. As described in the background technology of the present invention, membrane fouling can be simulated according to the conclusion that the existing membrane fouling index cannot be used for membrane fouling of the forward osmosis membrane and a new method for simulating the membrane fouling of the forward osmosis membrane is needed. Experiment 2 was performed on the method.
분리막의 막오염을 모사할 수 있는 방법으로 가압, 감압, 삼투압에 의한 막오염 모사방법이 있는데, 여기서, 실험 2는 가압 또는 감압 조건에서 정삼투분리막에 막오염을 모사하는 것이다. As a method for simulating membrane fouling of the membrane, there is a membrane fouling simulation method by pressurization, decompression, and osmotic pressure, in which Experiment 2 simulates membrane fouling on the forward osmosis membrane under pressure or reduced pressure.
실험 2에서, 감압조건을 이용한 막오염 모사 방법은 유도용액(Draw solution)을 사용하지 않는 삼투압이 없는 조건에서 진공펌프를 이용하여 압력을 약 1 bar까지 감압하여 막오염을 모사한 것이다. In Experiment 2, the membrane fouling simulation method using the reduced pressure condition simulated membrane fouling by reducing the pressure to about 1 bar using a vacuum pump in the absence of osmotic pressure without using a draw solution.
그리고, 가압조건을 이용한 막오염 모사 방법은 역삼투 분리막이 운전되는 방식과 동일하게 펌프를 이용하여 1bar 내지 9 bar의 압력을 정삼투분리막에 가하여 막오염을 모사하는 것이다. The membrane fouling simulation method using the pressurized condition simulates membrane fouling by applying a pressure of 1 bar to 9 bar to the forward osmosis membrane using a pump in the same manner as the reverse osmosis membrane is operated.
도 5b는 실험 2에서, 가압 또는 감압 조건에 따른 정삼투분리막의 수투과량와 가역성에 대한 결과 그래프이다. 5b is a graph showing the results of water permeation and reversibility of the forward osmosis membrane according to the pressurized or reduced pressure conditions in Experiment 2.
막오염 가역성(R, fouling reversibility)는 식(2)에 의해 산출하였다. 식(2)에서, J세척전은 유속을 8.54 cm/s로 70시간 운전할 때의 수투과량(flux)이다. J세척후은 25.62 cm/s로 유속을 3배 증가 시켜 10분간 세척한 뒤 다시 8.54 cm/s로 운전을 하면서 측정된 수투과량(flux)이다.Membrane fouling reversibility (R) was calculated by equation (2). In Eq. (2), before J cleaning is the flux when running at 704 h for a flow rate of 8.54 cm / s. After washing J is the flux measured by washing for 10 minutes at 25.62 cm / s with a three-fold increase in flow rate and then driving at 8.54 cm / s.
도 5b를 참조하여, 감압조건의 실험결과를 살펴보면, 정삼투분리막에서 수투과량(flux)는 거의 발생하지 않음을 확인할 수 있으며, 수투과량(flux)가 매우 낮아 분리막 표면에 부착층(fouling layer)이 형성되지 않았기 때문에 막오염 가역성(fouling reversibility)이 거의 100%에 가깝게 측정되었다. 이 결과에 따라 감압방식으로 막오염을 모사할 경우 정삼투분리막의 운전이 어려우며 막오염을 발생할 수 없다는 결론을 내릴 수 있다.Referring to FIG. 5B, when the experimental results of the decompression condition are examined, it can be seen that flux is almost never generated in the forward osmosis membrane, and the flux is very low, and the fouling layer is attached to the surface of the separator. Since no formation was made the fouling reversibility was measured close to 100%. Based on these results, it can be concluded that the operation of forward osmosis membrane is difficult and membrane fouling cannot occur when the membrane fouling is simulated by the reduced pressure method.
도 5b를 참조하여, 가압조건의 실험결과를 살펴보면, 1bar의 압력조건에서는 매우 적은 약 1 LMH 수투과량(flux)가 발생하였으며, 7 bar의 압력조건에서는 7 LMH 수투과량(flux)를 얻을 수 있음을 알 수 있다.Referring to FIG. 5B, the experimental results of the pressurization condition showed that very little about 1 LMH flux occurred at a pressure of 1 bar, and 7 LMH flux was obtained at a pressure of 7 bar. It can be seen.
그리고, 물리적 세척에 따른 분리막의 회복능력을 막오염 가역성(fouling reversibility)로 나타낼 수 있는데 그림 1b의 결과에 따르면 정삼투 운전조건과 동일한 초기 수투과량(initial flux)를 얻기 위한 조건인 7 bar에서 막오염 가역성(fouling reversibility)은 50% 정도로 관찰되었다. In addition, the membrane's ability to recover from physical washing can be expressed as fouling reversibility. According to the results in Fig. 1b, the membrane is obtained at 7 bar, which is equivalent to the normal osmotic operating condition, to obtain the initial flux. Pollution reversibility was observed at around 50%.
이후, 가압조건이 정삼투 조건의 막오염 현상을 충분히 반영을 했는지 검증을 위해 실험 3이 진행되었고, 실험 3에 대한 결과는 도 5c에 도시된다.Subsequently, experiment 3 was conducted to verify whether the pressurization condition fully reflected the membrane fouling phenomenon of the forward osmosis condition, and the results for the experiment 3 are shown in FIG. 5C.
실험 3에서, 가압조건은 정삼투분리막에 7bar의 압력이 가해진 경우이고, 삼투압을 이용한 조건은 장치로 유입되는 유입수보다 높은 삼투압을 가진 유도용액을 이용하는 경우이다. 가압조건과 삼투압을 이용한 조건에서, 제 1 투과량는 7 LMH이고, 공정운행시간은 70분이며, 3배 유속의 물리적 세척은 10분 동안 분리막 교체 없이 수행된 경우이다. In Experiment 3, the pressurization condition is a case where a pressure of 7 bar is applied to the forward osmosis membrane, and the osmotic pressure condition is an induction solution having an osmotic pressure higher than the influent flowing into the apparatus. Under pressurized conditions and osmotic conditions, the first permeation rate is 7 LMH, the process run time is 70 minutes, and the physical washing at triple flow rate is performed without replacing the membrane for 10 minutes.
도 5c는 가압조건과 삼투압을 이용한 조건에서 작동주기에 따른 막오염 가역성(fouling reversibility) 그래프이다. Figure 5c is a graph of fouling reversibility (fouling reversibility) according to the operating cycle in the conditions using the pressurized conditions and osmotic pressure.
도 5c를 참조하면, 가압 조건으로 운전한 정삼투분리막은 첫 번째 운전부터 가역성(reversiblity)이 50%로 관찰됨을 알 수 있다. 반면, 삼투압을 이용하여 운전한 정삼투분리막은 첫번째 운전시 거의 100%에 근접한 가역성을 보이고, 이후 운전을 4번 반복했음에도 불구하고 80%의 가역성(fouling reversiblity)을 가진다. 즉, 삼투압을 이용하여 운전한 정삼투분리막은 운전횟수가 증가하더라도, 가압조건에서의 정삼투분리막보다 높은 가역성을 가짐을 알 수 있다. Referring to FIG. 5C, it can be seen that the reversiblity of the forward osmosis membrane operated under the pressurized condition is observed at 50%. On the other hand, the forward osmosis membrane operated using osmotic pressure showed reversibility close to 100% at the first operation, and has 80% reversiblity (fouling reversiblity) even after repeating the operation four times. That is, it can be seen that the forward osmosis membrane operated by using osmotic pressure has a higher reversibility than the forward osmosis membrane under pressurized conditions even if the number of operations increases.
위의 실험결과들에 따르면, 정삼투분리막은 감압과 가압의 조건으로 운전할 경우, 감압식으로 정삼투분리막을 운전할 경우에는 구동력의 부족으로 정삼투 공정의 운전에 어려움이 있다. 그리고, 가압식으로 정삼투분리막을 운전할 경우에는 막오염층의 압밀이 일어나 정삼투분리막의 특성 중 하나인 막오염 회복능력이 나타나지 않는다는 점에서, 정삼투분리막의 높은 막오염 가역성(fouling reversibility)를 모사하기 어렵다고 판단할 수 있다. 이에, 정삼투분리막의 막오염을 모사하기 위해서는 삼투압이 이용되어야 한다는 결과가 도출된다. According to the above experimental results, the forward osmosis membrane is difficult to operate the forward osmosis process due to lack of driving force when operating under reduced pressure and pressure, when operating the forward osmosis membrane in a reduced pressure. In addition, when the forward osmosis membrane is operated under pressure, the membrane fouling layer is consolidated, and thus the membrane fouling recovery ability, which is one of the characteristics of the forward osmosis membrane, does not appear, thereby simulating the high fouling reversibility of the forward osmosis membrane. We can judge that it is hard to do. Thus, in order to simulate the membrane fouling of the forward osmosis membrane, the result that the osmotic pressure should be used is derived.
이에 따라, 삼투압을 이용하여 정삼투분리막의 막오염을 모사할 경우 어떠한 인자가 정삼투공정에서의 막오염지수에 영향을 미치는지를 도출하기 위해 실험 4가 수행되었다. Accordingly, Experiment 4 was performed to derive which factors affect the membrane fouling index in the forward osmosis process when using the osmotic pressure to simulate membrane fouling of the forward osmosis membrane.
실험 4를 위해, 서울인근의 4개 하수처리장 (중랑, 탄천, 난지, 구리)의 하수2차처리수가 채수되었다. 이는, 용량이 매우 큰 규모의 하수처리장부터 중소 규모의 하수처리장을 선택함으로써 사용된 원수에 대한 대표성을 확보하기 위함이다. For Experiment 4, secondary sewage treatment water from four sewage treatment plants (Jungnang, Tancheon, Nanji, and Copper) near Seoul was collected. This is to ensure the representativeness of the raw water used by selecting the sewage treatment plant of very large capacity to the sewage treatment plant of small and medium scale.
표 1에는 4개 하수처리장 2차처리수 수질분석 결과가 나타난다. Table 1 shows the results of secondary water quality analysis for four sewage treatment plants.
표 1
하수처리장 처리공법 처리용량(만 m3/d) BOD COD SS T-N T-P
중랑 A2O+응집 159 5.7±0.1 12.4±0.3 7.6±0.4 9.3±0.6 0.18±0.02
탄천 MLE+응집 90 5.4±0.3 10.9±0.5 9.4±0.6 7.3±0.7 0.15±0.08
난지 MLE+응집 86 6.8±0.2 13.4±0.5 4.7±0.5 8.3±0.2 0.17±0.05
구리 A2O+응집 11 4.6±0.2 10.4±0.4 6.3±0.5 7.4±0.5 0.12±0.05
Table 1
Sewage Treatment Plant Treatment method Capacity (million m 3 / d) BOD COD SS TN TP
Jungnang A 2 O + aggregation 159 5.7 ± 0.1 12.4 ± 0.3 7.6 ± 0.4 9.3 ± 0.6 0.18 ± 0.02
Tancheon MLE + aggregation 90 5.4 ± 0.3 10.9 ± 0.5 9.4 ± 0.6 7.3 ± 0.7 0.15 ± 0.08
Nanji MLE + aggregation 86 6.8 ± 0.2 13.4 ± 0.5 4.7 ± 0.5 8.3 ± 0.2 0.17 ± 0.05
Copper A 2 O + aggregation 11 4.6 ± 0.2 10.4 ± 0.4 6.3 ± 0.5 7.4 ± 0.5 0.12 ± 0.05
표 1에서, MLE는 Modified Ludzack Ettinger process이고, A2O는 Anaerobic-Anoxic-Aerobic process이다. In Table 1, MLE is a Modified Ludzack Ettinger process and A 2 O is an Anaerobic-Anoxic-Aerobic process.
정삼투 공정은 유입수(feed water)와 유도용액(draw soultion)의 TDS차에 의하여 초기 수투과량가 결정되기 때문에 같은 조건의 초기 수투과량로 실험하기 위하여 4개 하수처리장의 2차처리수를 같은 농도 (TDS 250 mg/L)로 DI 워터(DeIonize water)을 이용하여 희석하여 실험 4을 진행하였다. In the forward osmosis process, the initial permeability is determined by the TDS difference between the feed water and the draw soultion. Experiment 4 was carried out by diluting with DI water (250 mg / L) using DI water (DeIonize water).
실험에 사용된 정삼투분리막은 Toray사의 PA 재질의 분리막을 사용하였으며 draw solution은 인천 중구 항동 7가 근해의 해수를 채수 후 0.45 ㎛ PP제질의 분리막으로 여과 후 사용하였다(TDS 31,900±200 mg/L). Toray osmosis membrane used in this experiment was used PA membrane membrane of Toray Co., Ltd. and draw solution was used after filtering seawater from offshore water of Hanga 7 Hangdong, Jung-gu, Incheon, after filtering with 0.45 ㎛ PP material membrane (TDS 31,900 ± 200 mg / L ).
사용하고자하는 원수를 SDI 5.5로 DI 워터를 이용하여 희석한 후 정삼투분리막 실험을 진행하였다. 이 실험은 막오염지수는 동일하지만 원수에 존재하는 오염원(foulant)의 성상이 다른 경우 정삼투 수투과량(flux)과 가역성(reversiblity)의 차이를 관찰하기 위하여 진행되었다. The raw water to be used was diluted with DI water using SDI 5.5 and then subjected to forward osmosis membrane experiment. This experiment was carried out to observe the difference between forward osmosis flux and reversiblity when the membrane fouling index is the same but the pollutants in the raw water are different.
실험 4에서, 사용될 원수의 막오염 포텐셜을 평가하기 위하여 TDS와 SDI를 측정하였다. 도 5d를 참조하면, 4개 하수처리장의 하수2차처리수 모두 SDI 6 이상, TDS 280 mg/L 이상으로 관찰되었다. 도 5d는 4개 하수처리장에 대한 SDI와 TDS 그래프이다. In Experiment 4, TDS and SDI were measured to evaluate the membrane fouling potential of the raw water to be used. Referring to FIG. 5D, all of the sewage treatment waters of the four sewage treatment plants were observed to have SDI 6 or more and TDS 280 mg / L or more. 5D is a SDI and TDS graph for four sewage treatment plants.
한편, 도 5e를 참조하면, 동일한 삼투압 조건으로 초기 수투과량을 약 25 LMH로 동일하게 조절한 결과 수투과량(flux)만으로는 막오염 경향을 관찰하기 어려운 것으로 나타났다. 정삼투분리막의 경우, 단기간 운전으로는 막오염 경향이 나타나지 않기 때문에 장기간 운전으로 막오염 경향을 분석할 필요성이 도출된다. 여기서, 도 5e는 동일한 TDS (250 mg/L) 조건에서 작동시간에 따른 4개 하수처리장 2차처리수의 수투과량(flux)에 대한 그래프이다.On the other hand, referring to Figure 5e, it was found that it is difficult to observe the tendency of membrane fouling only by the flux of the initial water permeation of about 25 LMH under the same osmotic conditions. In the case of forward osmosis membranes, there is no need to analyze the membrane fouling tendency with long term operation because the membrane fouling tendency is not shown with short term operation. Here, Figure 5e is a graph of the flux of the four sewage treatment plant secondary treatment water according to the operating time in the same TDS (250 mg / L) conditions.
그러나 장기간 관찰을 통한 막오염 예측은 막오염에 대한 대응이 즉각적으로 필요한 현장에서는 적용이 어렵고, 이미 막오염이 진행되어버린 후의 예측은 불필요하기 때문에 새로 개발하고 하는 정삼투막오염지수에는 인위적으로 높은 삼투압을 발생하여 막오염을 가속화하여 측정시간을 단축하는 방법을 적용해야 할 것이다. 이에, 본 발명에서는 상술했듯이 막오염 측정시간을 단축하기 위해 고농도의 유도용액이 사용된다.However, the long-term observation of membrane fouling prediction is difficult to apply in the field where immediate response to membrane fouling is required, and the prediction after membrane fouling is not necessary. The osmotic pressure should be applied to accelerate the membrane contamination and shorten the measurement time. Thus, in the present invention, a high concentration induction solution is used to shorten the measurement time of membrane fouling.
도 5f를 참조하면, 물리적 세척 (유속 3배, 10분) 후 분리막 교체 없이 지속적으로 10번 반복하여 운전한 결과, 막오염 가역성(fouling reversibility)이 최대 55%까지 떨어졌으며, 동일한 SDI 값임에도 불구하고 각 원수별로 다른 막오염 가역성(fouling reversibility)을 나타냄을 알 수 있다. 도 5f는 4개의 하수처리장의 운전횟수에 대한 막오염 가역성(fouling reversibility)에 대한 그래프가 도시되어 있다. Referring to FIG. 5F, after 10 times of continuous washing without physical membrane replacement after physical washing (3 times flow rate, 10 minutes), membrane fouling reversibility dropped up to 55%, despite the same SDI value. It can be seen that each raw water exhibits different fouling reversibility. FIG. 5F shows a graph of fouling reversibility versus the number of operations of four sewage treatment plants.
도 5f에 도시된 그래프를 통해, 기존 역삼투공정에서 사용되는 막오염 지수 활용이 불가능함을 알 수 있다. 이에 따라, 원수안에 있는 오염원(foulant)의 특성, 즉 정삼투분리막의 가역성 차이를 발생하게 하는 인자를 정삼투 막오염 지수에 반영해야 정확한 막오염 모사를 할 수 있음이 도출된다. Through the graph shown in Figure 5f, it can be seen that it is impossible to utilize the membrane fouling index used in the conventional reverse osmosis process. Accordingly, accurate membrane fouling can be derived by reflecting the characteristics of a foulant in raw water, that is, a factor causing the difference in reversibility of the forward osmosis membrane, in the forward osmosis membrane fouling index.
한편, 도 5f를 참조하면, 탄천하수처리장이 다른 하수처리장에 비하여, 막오염 가역성(fouling reversibility)의 회복율도 가장 낮고, 최저 회복율에 빨리 근접하는 것을 알 수 있다. On the other hand, referring to Figure 5f, compared to other sewage treatment plants in the Tancheon sewage treatment plant has a lower recovery rate of fouling (fouling reversibility), it can be seen that close to the minimum recovery rate.
이에, 막오염 가역성(fouling reversibility)이 가장 낮은 결과를 보여준 탄천하수처리장의 2차처리수로 실험한 정삼투분리막의 표면을 각 세척주기마다 검사한 후 부착층(fouling layer)을 형성하고 있는 유기물 분석을 LC-OCD로 수행되고, 수행된 실험결과는 도 5g에 도시되어 있다. 도 5g은 4개 하수처리장에 대한 2차처리수의 유기물들의 농도 그래프이다. Therefore, the organic material forming the fouling layer after inspecting the surface of the forward osmosis membrane tested with the secondary treatment water of the Tancheon sewage treatment plant showing the lowest fouling reversibility at each washing cycle. Analysis was performed by LC-OCD, and the experimental results were shown in FIG. 5G. 5G is a graph of concentrations of organics in secondary treated water for four sewage treatment plants.
도 5g를 참조하면, 4개 하수처리장의 2차처리수의 유기물 분포는 비슷한 비율로 존재하고 있으며 모두 생물학적 처리를 기반으로 하고 있어 부식질(humics)이 가장 많은 비율을 차지하고 있으며, 미량의 바이오폴리머(biopolymers)도 존재함을 알 수 있다. Referring to FIG. 5G, the organic matter distribution of the secondary treated water of the four sewage treatment plants is present in a similar ratio, and all of them are based on biological treatment, so that the humics occupy the largest portion, and a trace amount of biopolymer ( biopolymers) are also present.
도 5h를 참조하면, 바이오폴리머(Biopolymers), 부식질(humics), 빌딩블록(building blocks), low MW neutrals 4종류 유기물질은 모두 물리적 세척만으로 정삼투분리막 표면에서 제거가 잘되는 것을 관찰할 수 있다. 그러나 세척주기마다 미량의 양으로 정삼투분리막 표면 위에 물질이 쌓이는 것을 관찰할 수 있는데, 특히 3번째 세척부터 바이오폴리머(biopolymers)와 부식질(humics)의 양이 많이 관찰됨을 알 수 있다. Referring to FIG. 5H, four types of biopolymers, humics, building blocks, and low MW neutrals may be easily removed from the surface of the forward osmosis membrane by physical cleaning only. However, it can be observed that the accumulation of substances on the surface of the forward osmosis membrane in trace amounts in each cleaning cycle, especially from the third wash, a large amount of biopolymers and humics are observed.
정삼투분리막의 표면에 쌓이는 유기물의 경향을 살펴보면, 바이오폴리머(biopolymers)가 가장 많이 정삼투분리막의 표면에 잔존함을 알 수 있다. 일반적으로, 단백질(Protein)이나 다당류(polysaccharide)로 구성된 바이오폴리머(biopolymers) 계열의 물질들은 끈적거리는 물질특성상 물리적 세척만으로 제거 어렵다고 알려져있다. Looking at the tendency of organic matter to accumulate on the surface of the forward osmosis membrane, it can be seen that the most of the biopolymers (biopolymers) remaining on the surface of the forward osmosis membrane. In general, biopolymers based on proteins or polysaccharides are known to be difficult to remove by physical washing due to their sticky substance.
이러한 바이오폴리머(biopolymers)와 같은 비가역(irreversible)한 막오염 물질이 정삼투분리막의 성능의 저하하게 되는 현상은 정삼투막오염지수에 반영되어야 함은 물론이다. The phenomenon that the irreversible membrane fouling material such as biopolymers deteriorates the performance of the forward osmosis membrane should be reflected in the forward osmosis membrane contamination index.
원수 안에 존재하는 물질의 농도를 측정하는 방법이 가장 좋은 방법이지만 이러한 방법은 현장에 in-situ 방식으로 적용하는 것에는 한계가 있으며 측정시간도 매우 길기 때문에 즉각적인 막오염 현상에 대응하기에 어려움이 따른다. The best method is to measure the concentration of substances in raw water, but it is difficult to cope with immediate membrane contamination because these methods have limitations in in situ application in the field and the measurement time is very long. .
따라서 위 실험과 동일한 방법으로 물리적 세척을 통해 정삼투분리막의 막오염 가역성(fouling reversibility)을 측정하여, 간접적으로 원수에 존재하는 바이오폴리머(biopolymers)와 같은 비가역(irreversible)한 막오염 물질의 양을 파악하여 전처리강도에 대한 신호를 전처리 공정에 줄 수 있는 막오염지수가 가장 합리적인 방법이라고 판단된다.Therefore, by measuring the fouling reversibility of the forward osmosis membrane by physical washing in the same manner as the above experiment, the amount of irreversible membrane pollutants such as biopolymers in the raw water indirectly It is judged that the membrane fouling index that can provide the signal for pretreatment strength to the pretreatment process is the most reasonable method.
그리고, 정삼투분리막의 막오염 지수의 개발에 막오염 가역성(fouling reversibility)을 반영을 하기 위해서는 물리적 세척 조건에 따른 영향을 분석하는 것의 필수적으로 포함되어야 한다. 도 5i에는 물리적 세척조건인 유속에 따라 정삼투분리막의 막오염 가역성(fouling reversibility)이 운전주기에 따른 결과그래프가 도시된다. In addition, in order to reflect membrane fouling reversibility (fouling reversibility) in the development of the membrane fouling index of the forward osmosis membrane, it is essential to analyze the effects of physical washing conditions. FIG. 5i shows a graph showing the results of the fouling reversibility of the forward osmosis membrane according to the operating cycle according to the flow rate, which is a physical washing condition.
정삼투 공정이 8.54 cm/s의 유속으로 70시간 수행된 후, 정삼투분리막의 물리적 세척이 10분간 진행된다. 이때, 물리적세척의 유속은 17.08cm/s, 25.62cm/s, 34.16cm/s, 그리고 42.70 cm/s에서 운전주기별로 수행된다. After the forward osmosis process is performed for 70 hours at a flow rate of 8.54 cm / s, physical washing of the forward osmosis membrane proceeds for 10 minutes. At this time, the flow rate of the physical cleaning is carried out for each operating cycle at 17.08 cm / s, 25.62 cm / s, 34.16 cm / s, and 42.70 cm / s.
도 5i를 참조하면, 정삼투분리막이 25.62 cm/s 이하로 세척될 경우, 정삼투분리막의 부착층(fouling layer)이 정삼투분리막에서 충분히 제거되지 않아 낮은 막오염 가역성(fouling reversibility)이 관찰됨을 알 수 있다. Referring to FIG. 5I, when the forward osmosis membrane is washed to 25.62 cm / s or less, the fouling layer of the forward osmosis membrane is not sufficiently removed from the forward osmosis membrane, so that low fouling reversibility is observed. Able to know.
도 5f과 도 5i에서 동일하게 관찰되는 결과는 정삼투분리막의 막오염 가역성(fouling reversibility)이 운전이 반복됨에 따라 5~6번째 주기에서 수렴을 하고 있는 점이다. 이로부터, 정삼투분리막이 물리적 세척만으로 더이상 회복이 불가능한 상태를 '임계가역성(critical reversibility)'으로 설정할 수 있고, 막오염 가역성으로부터 정삼투분리막의 막오염 여부를 예측할 수 있음을 도출할 수 있다. The same observed results in FIGS. 5F and 5I show that the fouling reversibility of the forward osmosis membrane converges in the fifth to sixth cycles as the operation is repeated. From this, it is possible to set the state in which the forward osmosis membrane is no longer recoverable by physical washing only as 'critical reversibility', and it can be derived from the membrane fouling reversibility to predict the membrane contamination of the forward osmosis membrane.
정삼투막오염지수(OFI)는 정삼투분리막의 막오염을 지수화한 것으로서, 임계가역성(Rc)보다 큰 범위에서 정삼투분리막을 통과하는 유입수의 수투과량이 시간의 경과에 따라 얼마나 회복되는지 여부로 도출될 수 있다. The Forward Osmosis Membrane Contamination Index (OFI) is an index of membrane fouling of the forward osmosis membrane, and it is determined how much the water permeation rate of the influent flowing through the forward osmosis membrane is recovered over time in a range larger than the critical reversibility (Rc). Can be derived.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명백할 것이다.The present invention described above is not limited to the above-described embodiment and the accompanying drawings, and various substitutions, modifications, and changes are possible within the scope without departing from the technical spirit of the present invention. It will be evident to those who have knowledge of.

Claims (15)

  1. 정삼투분리막이 구비되고, 정삼투공정시 상기 정삼투분리막의 막오염이 모사되는 막오염모사부; Membrane contamination simulation unit provided with a forward osmosis membrane, the membrane fouling of the forward osmosis membrane during the forward osmosis process;
    정삼투공정시 1차유입수를 상기 막오염모사부로 제공하고, 세척공정시 상기 1차유입수의 유속보다 큰 유속을 가진 2차유입수를 상기 막오염모사부로 제공하는 유입수공급부; 및 An inflow water supply unit providing a first inflow water to the membrane fouling simulation unit during a forward osmosis process, and a second inflow water having a flow rate greater than that of the first inflow water to the membrane fouling simulation unit during a washing process; And
    상기 정삼투공정 초기에 상기 1차유입수의 제 1 수투과량(J1)과, 상기 세척공정 후에 상기 1차유입수의 제 3 수투과량(J3)가 측정되어, 정삼투막오염지수(OFI)가 산출되고, 상기 정삼투막오염지수(OFI)로부터 상기 정삼투분리막의 막오염이 예측되는 막오염예측부를 포함하고, At the beginning of the forward osmosis step, the first water permeation rate (J1) of the primary inflow water and the third water permeation rate (J3) of the primary inflow water after the washing process are measured to calculate the forward osmosis membrane contamination index (OFI). And a membrane fouling prediction unit for predicting membrane fouling of the forward osmosis membrane from the forward osmosis membrane fouling index (OFI),
    상기 정삼투막오염지수(OFI)는 상기 제 1 수투과량(J1)에 대한 상기 제 3 수투과량(J3)의 회복율인 것을 특징으로 하는 정삼투 막오염 예측 장치. The forward osmosis membrane contamination index (OFI) is a forward osmosis membrane contamination prediction apparatus, characterized in that the recovery rate of the third water penetration amount (J3) to the first water penetration amount (J1).
  2. 제 1 항에 있어서, 상기 막오염예측부에서, The membrane fouling prediction unit according to claim 1,
    상기 정삼투막오염지수(OFI)가 1보다 크게 산출되면(1<OFI), 상기 정삼투분리막이 손상된 경우라 예측되고, When the forward osmosis membrane contamination index (OFI) is calculated to be greater than 1 (1 <OFI), it is predicted that the forward osmosis membrane is damaged,
    상기 정삼투막오염지수(OFI)가 1(OFI=1)이라 산출되면, 상기 정삼투분리막이 오염되지 않았다고 예측되고, When the forward osmosis membrane contamination index (OFI) is calculated to be 1 (OFI = 1), it is predicted that the forward osmosis membrane is not contaminated,
    상기 정삼투막오염지수(OFI)가 임계가역성(Rc)보다 크고 1보다 작은 범위(Rc< OFI <1)에 속할 때, 상기 정삼투분리막의 막오염이 예측되고, When the forward osmosis membrane contamination index (OFI) is in the range larger than the critical reversibility (Rc) and less than 1 (Rc <OFI <1), membrane fouling of the forward osmosis membrane is predicted,
    상기 정삼투막오염지수(OFI)가 상기 임계가역성(Rc)보다 작으면(Rc> OFI), 상기 정삼투분리막이 상기 2차유입수에 의한 물리적 세척만으로 상기 막오염의 회복이 불가능한 상태라 예측되는 것을 특징으로 하는 정삼투 막오염 예측 장치. If the forward osmosis membrane contamination index (OFI) is less than the critical reversibility (Rc) (Rc> OFI), the membrane is predicted to be unable to recover the membrane contamination only by physical cleaning by the secondary influent. Forward osmosis membrane fouling prediction device, characterized in that.
  3. 제 2 항에 있어서, The method of claim 2,
    상기 임계가역성(Rc)은 상기 2차유입수에 의한 물리적 세척만으로 상기 정삼투분리막의 막오염이 회복불가능한 상태에서, 상기 세척공정 전의 상기 1차유입수의 수투과량에 대한 상기 세척공정 후의 상기 1차유입수의 수투과량의 회복율이고, The critical reversibility (Rc) is the first influent water after the washing step for the water permeation rate of the first influent water before the washing step in a state in which the membrane contamination of the forward osmosis membrane cannot be recovered only by physical washing by the second influent water. Is the recovery rate of
    상기 임계가역성(Rc)이 식 (2)에 의해 산출되는 것을 특징으로 하는 정삼투 막오염 예측 장치. The critical reversible membrane contamination prediction device, characterized in that the critical reversibility (Rc) is calculated by equation (2).
    Figure PCTKR2017002427-appb-I000007
    Figure PCTKR2017002427-appb-I000007
    (J세척전은 상기 정삼투분리막의 막오염의 회복이 불가능한 상태에서, 상기 세척공정 전의 상기 1차유입수의 수투과량이고, J세척후는 상기 세척공정 후의 상기 1차유입수의 수투과량이다.)(J before washing is a film after at not possible contamination recovery state, wherein the first number of transmission amount of incoming water prior to the washing process, washing J is the number of the first inlet water after the cleaning process the permeation amount of the forward osmosis membrane.)
  4. 제 2 항에 있어서, 상기 막오염예측부는,The membrane fouling prediction unit according to claim 2,
    상기 1차유입수의 수투과량이 상기 부착층에 의해 상기 제 1 수투과량(J1)보다 점차 떨어지다 수렴되는 제 2 수투과량(J2)이 측정되면, When the water permeation rate of the primary inflow water is gradually lowered than the first water permeation amount J1 by the adhesion layer, when the second water permeation amount J2 converged is measured,
    상기 제 2 수투과량(J2)이 측정되는 시점에서, 상기 막오염모사부로 상기 2차유입수를 제공하여, 상기 2차유입수에 의해 상기 부착층이 제거되어 상기 정삼투분리막이 세척되도록 하는 것을 특징으로 하는 정삼투 막오염 예측 장치. At the time point when the second water permeation J2 is measured, the secondary inflow water is provided to the membrane fouling simulation unit, so that the adhesion layer is removed by the secondary inflow water so that the forward osmosis membrane is washed. Forward osmosis membrane fouling prediction device.
  5. 제 1 항에 있어서, 상기 막오염예측부에서, The membrane fouling prediction unit according to claim 1,
    상기 정삼투막오염지수(OFI)가 아래식에 의해 산출되는 것을 특징으로 하는 정삼투 막오염 예측 장치. The forward osmosis membrane fouling index (OFI) is calculated by the following equation.
    Figure PCTKR2017002427-appb-I000008
    Figure PCTKR2017002427-appb-I000008
    (J1은 상기 정삼투공정 초기에 상기 부착층이 형성되기 전, 상기 정삼투분리막을 통과하는 상기 1차유입수의 수투과량이고, J3은 상기 세척공정에 의해 상기 부착층이 상기 정삼투분리막에서 제거된 후에, 상기 정삼투공정에서 상기 정삼투분리막을 통과하는 상기 1차유입수의 수투과량이다.)(J1 is the water permeation rate of the primary inflow water passing through the forward osmosis membrane before the adhesion layer is formed at the beginning of the forward osmosis process, and J3 is the adhesion layer removed from the forward osmosis membrane by the washing process). After the water is passed through the forward osmosis membrane in the forward osmosis process, the water permeation rate of the primary influent.)
  6. 제 1 항에 있어서,The method of claim 1,
    상기 정삼투공정시 상기 막오염모사부로 상기 1차유입수보다 높은 농도를 가진 유도용액을 공급하는 유도용액 공급부를 더 포함하고, Further comprising an induction solution supply for supplying an induction solution having a concentration higher than the primary inlet to the membrane fouling simulation unit in the forward osmosis process,
    상기 유도용액 공급부는 상기 유도용액의 몰농도를 조절하여 상기 막오염모사부에서 상기 1차유입수의 유기물이 상기 정삼투분리막의 표면에 쌓여 형성되는 부착층의 형성을 가속화시키는 것을 특징으로 하는 정삼투 막오염 예측 장치. The induction solution supply unit adjusts the molar concentration of the induction solution and forward osmosis, characterized in that to accelerate the formation of the adhesion layer formed by the organic matter of the primary influent in the membrane fouling simulation unit stacked on the surface of the forward osmosis membrane Membrane fouling prediction device.
  7. 제 6 항에 있어서, The method of claim 6,
    상기 유도용액 공급부에 연결되어, 상기 막오염모사부로 제공되는 상기 유도용액의 TDS(total dissolved solids)를 조절함으로써, 상기 1차유입수의 TDS와 상기 유도용액의 TDS의 차이에 의한 상기 제 1 수투과량을 조절하는 TDS컨트롤러를 더 포함하는 것을 특징으로 하는 정삼투 막오염 예측 장치. The first water permeation rate due to the difference between the TDS of the first influent and the TDS of the induction solution by controlling the TDS (total dissolved solids) of the induction solution, which is connected to the induction solution supply unit and provided to the membrane fouling simulation unit. Forward osmosis membrane fouling prediction device further comprising a TDS controller for controlling the.
  8. 제 1 항의 정삼투 막오염 예측 장치를 이용하여 정삼투공정에서의 정삼투분리막의 막오염을 예측하는 정삼투 막오염 예측 방법에 있어서, In the forward osmosis membrane fouling prediction method for predicting the membrane fouling of the forward osmosis membrane in the forward osmosis step using the forward osmosis membrane fouling prediction apparatus of claim 1,
    (A) 막오염모사부로 1차유입수 및 유도용액이 공급되어, 상기 정삼투공정시 상기 1차유입수와 상기 유도용액 간의 삼투압 차이에 의해 상기 정삼투분리막에 쌓인 부착층에 의해 상기 막오염이 모사되는 단계;(A) The first inflow and induction solution is supplied to the membrane fouling simulation unit, the membrane contamination is simulated by the adhesion layer accumulated on the forward osmosis membrane by the osmotic pressure difference between the first inflow and the induction solution during the forward osmosis process Becoming;
    (B) 상기 1차유입수의 유속보다 큰 유속을 가진 2차유입수가 상기 막오염모사부로 제공되어, 상기 2차유입수에 의해 상기 정삼투분리막이 세척되는 단계; 및(B) providing a second influent water having a flow rate greater than that of the first influent water to the membrane fouling simulation unit, and washing the forward osmosis membrane by the second influent water; And
    (C) 상기 정삼투공정 초기에 상기 1차유입수의 제 1 수투과량(J1)과, 상기 세척공정 후에 상기 1차유입수의 제 3 수투과량(J3)을 측정하고, 정삼투막오염지수(OFI)가 산출되어, 상기 정삼투막오염지수(OFI)로부터 상기 정삼투분리막의 막오염이 예측되는 단계를 포함하고, (C) measuring the first water permeation rate (J1) of the primary inflow water at the beginning of the forward osmosis process, and the third water permeation rate (J3) of the primary inflow water after the washing process, and the forward osmosis membrane contamination index (OFI). ) Is calculated to predict the membrane fouling of the forward osmosis membrane from the forward osmosis membrane contamination index (OFI),
    상기 정삼투막오염지수(OFI)는 상기 제 1 수투과량(J1)에 대한 상기 제 3 수투과량(J3)의 회복율인 것을 특징으로 하는 정삼투 막오염 예측 방법.The forward osmosis membrane contamination index (OFI) is a forward osmosis membrane contamination prediction method, characterized in that the recovery rate of the third water penetration amount (J3) to the first water penetration amount (J1).
  9. 제 8 항에 있어서, 상기 (C) 단계는, According to claim 8, wherein (C) step,
    (C1) 상기 정삼투막오염지수(OFI)가 1보다 크게 산출되면(1<OFI), 상기 정삼투분리막이 손상된 경우라 예측되는 단계;(C1) if the forward osmosis membrane contamination index (OFI) is calculated to be greater than 1 (1 <OFI), predicting that the forward osmosis membrane is damaged;
    (C2) 상기 정삼투막오염지수(OFI)가 1(OFI=1)이라 산출되면, 상기 정삼투분리막이 오염되지 않았다고 예측되는 단계; (C2) if the forward osmosis membrane contamination index (OFI) is calculated to be 1 (OFI = 1), predicting that the forward osmosis membrane is not contaminated;
    (C3) 상기 정삼투막오염지수(OFI)가 임계가역성(Rc)보다 크고 1보다 작은 범위(Rc< OFI <1)에 속할 때, 상기 정삼투분리막의 막오염이 예측되는 단계; 및(C3) predicting membrane fouling of the forward osmosis membrane when the forward osmosis membrane contamination index (OFI) belongs to a range larger than the critical reversibility (Rc) and less than 1 (Rc <OFI <1); And
    (C4) 상기 정삼투막오염지수(OFI)가 상기 임계가역성(Rc)보다 작으면(Rc> OFI), 상기 정삼투분리막이 상기 2차유입수에 의한 물리적 세척만으로 상기 막오염의 회복이 불가능한 상태라 예측되는 단계를 포함하고, (C4) When the forward osmosis membrane contamination index (OFI) is less than the critical reversibility (Rc) (Rc> OFI), the membrane may not recover the membrane contamination only by physical washing with the secondary influent. D) a step of being predicted,
    상기 임계가역성(Rc)은 상기 2차유입수에 의한 물리적 세척만으로 상기 정삼투분리막의 막오염이 회복불가능한 상태에서, 상기 세척공정 전의 상기 1차유입수의 수투과량에 대한 상기 세척공정 후의 상기 1차유입수의 수투과량의 회복율인 것을 특징으로 하는 정삼투 막오염 예측 방법.The critical reversibility (Rc) is the first influent water after the washing step for the water permeation rate of the first influent water before the washing step in a state in which the membrane contamination of the forward osmosis membrane cannot be recovered only by physical washing by the second influent water. The forward osmosis membrane fouling prediction method, characterized in that the recovery rate of permeation.
  10. 제 9 항에 있어서, 상기 막오염모사부에서, The method according to claim 9, wherein in the membrane fouling simulation unit,
    상기 정삼투막오염지수(OFI)가 1보다 크면(1<OFI), 상기 정삼투공정의 운전이 중단되고, If the forward osmosis membrane contamination index (OFI) is greater than 1 (1 <OFI), the operation of the forward osmosis process is stopped,
    상기 정삼투막오염지수(OFI)가 1(OFI=1)이면, 상기 정삼투공정의 운전이 지속되고, If the forward osmosis membrane contamination index (OFI) is 1 (OFI = 1), the operation of the forward osmosis process is continued,
    상기 정삼투막오염지수(OFI)가 임계가역성(Rc)보다 크고 1보다 작으면(Rc< OFI <1), 상기 정삼투공정의 운전이 중단되고, 상기 정삼투분리막에 대한 상기 세척공정이 진행되고, If the forward osmosis membrane contamination index (OFI) is greater than the critical reversibility (Rc) and less than 1 (Rc <OFI <1), the operation of the forward osmosis process is stopped, and the washing process for the forward osmosis membrane proceeds. Become,
    상기 정삼투막오염지수(OFI)가 상기 임계가역성(Rc)보다 작으면(Rc> OFI), 상기 정삼투공정의 운전이 중단되고, 화학적세정과 같은 전처리공정이 수행되는 것을 특징으로 하는 정삼투 막오염 예측 방법.When the forward osmosis membrane contamination index (OFI) is less than the critical reversibility (Rc) (Rc> OFI), the operation of the forward osmosis process is stopped, the forward osmosis, characterized in that the pretreatment process such as chemical cleaning is performed How to predict membrane fouling.
  11. 제 9 항에 있어서, The method of claim 9,
    상기 정삼투막오염지수(OFI)는 아래식에 의해 산출되는 것을 특징으로 하는 정삼투 막오염 예측 방법.The forward osmosis membrane contamination index (OFI) is a forward osmosis membrane fouling prediction method, characterized in that calculated by the following equation.
    Figure PCTKR2017002427-appb-I000009
    Figure PCTKR2017002427-appb-I000009
    (J1은 상기 정삼투공정 초기에 상기 부착층이 형성되기 전, 상기 정삼투분리막을 통과하는 상기 1차유입수의 수투과량이고, J3은 상기 세척공정에 의해 상기 부착층이 상기 정삼투분리막에서 제거된 후에, 상기 정삼투공정에서 상기 정삼투분리막을 통과하는 상기 1차유입수의 수투과량이다.)(J1 is the water permeation rate of the primary inflow water passing through the forward osmosis membrane before the adhesion layer is formed at the beginning of the forward osmosis process, and J3 is the adhesion layer removed from the forward osmosis membrane by the washing process). After the water is passed through the forward osmosis membrane in the forward osmosis process, the water permeation rate of the primary influent.)
  12. 제 9 항에 있어서, The method of claim 9,
    상기 임계가역성(Rc)은 아래식에 의해 산출되는 것을 특징으로 하는 정삼투 막오염 예측 방법.The critical reversibility (Rc) is a forward osmosis membrane fouling prediction method, characterized in that calculated by the following equation.
    Figure PCTKR2017002427-appb-I000010
    Figure PCTKR2017002427-appb-I000010
    (J세척전은 상기 정삼투분리막의 막오염의 회복이 불가능한 상태에서, 상기 세척공정 전의 상기 1차유입수의 수투과량이고, J세척후는 상기 세척공정 후의 상기 1차유입수의 수투과량이다.)(J before washing is a film after at not possible contamination recovery state, wherein the first number of transmission amount of incoming water prior to the washing process, washing J is the number of the first inlet water after the cleaning process the permeation amount of the forward osmosis membrane.)
  13. 제 8 항에 있어서, 상기 (B) 단계는 The method of claim 8, wherein step (B)
    상기 정삼투분리막을 통과하는 상기 1차유입수의 수투과량이 상기 부착층에 의해 상기 제 1 수투과량(J1)보다 점차 떨어지다 제 2 수투과량(J2, J1>J2)으로 수렴되는 시점에서, 상기 2차유입수에 의한 상기 정삼투분리막의 세척이 진행되어, 상기 부착층이 상기 정삼투분리막에서 제거됨에 따라 상기 정상투분리막의 막오염이 회복되는 것을 특징으로 하는 정삼투 막오염 예측 방법.When the water permeation rate of the primary inflow water passing through the forward osmosis membrane is gradually lower than the first water permeation amount J1 by the adhesion layer, at the point of convergence to the second water permeation rate J2, J1> J2, the second Washing of the forward osmosis membrane by the inflow of the primary water is in progress, the membrane fouling prediction method of the normal osmosis membrane, characterized in that the membrane fouling of the normal osmosis membrane is recovered as the adhesion layer is removed from the forward osmosis membrane.
  14. 제 8 항에 있어서, 상기 (A) 단계에서, The method of claim 8, wherein in the step (A),
    상기 유도용액은 몰농도가 조절되어 상기 막오염모사부로 공급되어, 상기 부착층의 형성을 가속화시키는 것을 특징으로 하는 정삼투 막오염 예측 방법. The induction solution is molar concentration is controlled is supplied to the membrane fouling simulation unit, forward osmosis membrane fouling prediction method, characterized in that to accelerate the formation of the adhesion layer.
  15. 제 8 항에 있어서, 상기 (A) 단계에서, The method of claim 8, wherein in the step (A),
    상기 유도용액은 상기 유도용액의 TDS(total dissolved solids)가 조절되어 상기 막오염모사부로 제공되고, The induction solution is provided to the membrane fouling simulation unit by adjusting the total dissolved solids (TDS) of the induction solution,
    상기 제 1 수투과량(J1)은 1차유입수의 TDS와 상기 유도용액의 TDS의 차이에 의해 조절되는 것을 특징으로 하는 정삼투 막오염 예측 방법. The first water permeation (J1) is a forward osmosis membrane fouling prediction method, characterized in that controlled by the difference between the TDS of the first influent and the TDS of the induction solution.
PCT/KR2017/002427 2016-03-21 2017-03-07 Apparatus for predicting membrane fouling in forward osmosis and method for predicting membrane fouling in forward osmosis WO2017164540A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160033315A KR101897864B1 (en) 2016-03-21 2016-03-21 Measurement method and apparatus for forward osmosis membrane fouling pollution index
KR10-2016-0033315 2016-03-21

Publications (1)

Publication Number Publication Date
WO2017164540A1 true WO2017164540A1 (en) 2017-09-28

Family

ID=59900657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/002427 WO2017164540A1 (en) 2016-03-21 2017-03-07 Apparatus for predicting membrane fouling in forward osmosis and method for predicting membrane fouling in forward osmosis

Country Status (2)

Country Link
KR (1) KR101897864B1 (en)
WO (1) WO2017164540A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114887491A (en) * 2022-04-28 2022-08-12 劲牌有限公司 Method for judging membrane performance

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101988742B1 (en) * 2017-11-24 2019-06-12 주식회사 포스코 System and method for controlling forward osmosis process
US11474021B2 (en) * 2019-08-22 2022-10-18 Korea University Research And Business Foundation System for measuring properties of mass transport behavior in membrane and solutions
KR102251254B1 (en) * 2019-11-22 2021-05-11 세종대학교산학협력단 Intermittent forward osmosis method and osmosis device for wastewater treatment
JP2023040506A (en) * 2021-09-10 2023-03-23 東洋紡株式会社 Forward osmosis treatment method and forward osmosis treatment device
CN115193263B (en) * 2022-08-03 2023-04-18 广西大学 Rotary membrane filtration and purification device, application thereof and camellia oil purification method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100720139B1 (en) * 2005-09-26 2007-05-21 주식회사 태영건설 Operation control system using water analysis of membrane filtration device and method thereof
KR100970842B1 (en) * 2010-02-04 2010-07-16 코오롱베니트 주식회사 Equipment and method of treating fluid using filtering membrane
KR101085504B1 (en) * 2009-04-21 2011-11-23 한국건설기술연구원 System and method for automatic control of coagulant does
KR101418006B1 (en) * 2012-09-17 2014-08-06 한국수자원공사 Membrane cleaning index measuring apparatus
KR101542617B1 (en) * 2012-12-03 2015-08-06 삼성에스디아이 주식회사 Cleaning system of separation membrane and method using the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9156006B2 (en) * 2009-12-03 2015-10-13 Yale University High flux thin-film composite forward osmosis and pressure-retarded osmosis membranes
KR101222073B1 (en) * 2010-12-17 2013-01-15 한국건설기술연구원 Apparatus and Method of Improving Forward Osmosis Membrane Process Performance using Ultrasonic Waves
KR101346384B1 (en) * 2012-02-27 2014-01-06 고려대학교 산학협력단 Method and apparatus for evaluating performance of forward osmosis membrane
KR101318578B1 (en) * 2012-05-29 2013-10-16 고려대학교 산학협력단 Apparatus for evaluating membrane fouling potential using forward osmosis and flow field flow fractionation
KR101348235B1 (en) * 2012-09-26 2014-01-08 한국화학연구원 The device for measuring osmosis pressure and the method of measuring osmosis pressure thereby
KR101560524B1 (en) * 2015-03-05 2015-10-15 성균관대학교산학협력단 A assembly and method of real-time fouling monitoring in forward osmosis membrane vessel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100720139B1 (en) * 2005-09-26 2007-05-21 주식회사 태영건설 Operation control system using water analysis of membrane filtration device and method thereof
KR101085504B1 (en) * 2009-04-21 2011-11-23 한국건설기술연구원 System and method for automatic control of coagulant does
KR100970842B1 (en) * 2010-02-04 2010-07-16 코오롱베니트 주식회사 Equipment and method of treating fluid using filtering membrane
KR101418006B1 (en) * 2012-09-17 2014-08-06 한국수자원공사 Membrane cleaning index measuring apparatus
KR101542617B1 (en) * 2012-12-03 2015-08-06 삼성에스디아이 주식회사 Cleaning system of separation membrane and method using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114887491A (en) * 2022-04-28 2022-08-12 劲牌有限公司 Method for judging membrane performance

Also Published As

Publication number Publication date
KR101897864B1 (en) 2018-10-04
KR20170109332A (en) 2017-09-29

Similar Documents

Publication Publication Date Title
WO2017164540A1 (en) Apparatus for predicting membrane fouling in forward osmosis and method for predicting membrane fouling in forward osmosis
CN1329106C (en) Method of monitoring membrane separation processes
WO2013105728A1 (en) Device for measuring pollution index of filtration membrane
KR101609795B1 (en) Seawater desalination-power generation system for controlling membrane and draw solution hydraulic pump using multi-channel pressure retarded osmosis evaluating device, and method using the same
WO2016140412A1 (en) Device and method for real-time membrane fouling monitoring in forward osmosis membrane vessel
Wang et al. Application of response surface methodology to the chemical cleaning process of ultrafiltration membrane
CN100506361C (en) Detergent for selectively permeable film and method of cleaning
WO2014092383A1 (en) Filtration membrane fouling index measuring method
CN103210046B (en) Water treatment in at least one membrane filtration unit for assisted recovery of hydrocarbons
CA2242162A1 (en) Method of filtering the organic solutions arising in the production of circuit boards
WO2018025583A1 (en) Film processing method and polarizing film production method
CN100537464C (en) Method for reclaiming and utilizing paper-making industrial waste water
De Florio et al. Nanofiltration of low-contaminated textile rinsing effluents for on-site treatment and reuse
Zhang et al. Pilot test of UF pretreatment prior to RO for cooling tower blowdown reuse of power plant
CN108939923B (en) A kind of reverse osmosis functional membrane of RO of high-throughput strong anti-pollution
KR20180100011A (en) A method for physical washing using osmotic pressure back washing in FO-RO process
JP5428324B2 (en) Developing apparatus and developing method
CN109499383A (en) A kind of RO film healant and method for repairing and mending
Zaidi et al. Recent advances in the application of membrane technology for the removal of oil and suspended solids from produced waters
KR20090052145A (en) Device and method for testing the fouling of hollow fiber membrane
Nederlof et al. Integrity of membrane elements, vessels and systems
JP2005169238A (en) Reversal washing method for membrane filtrate treatment equipment
CN114272761B (en) Deep cleaning method for unrecoverable pollution in micro/ultrafiltration membrane based on green solvent
WO2016043428A1 (en) Seawater desalination apparatus and seawater desalination method
WO2021060872A1 (en) Method of concentrating high-salinity raw water

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17770511

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17770511

Country of ref document: EP

Kind code of ref document: A1