WO2016140112A1 - Geiger-müller counter and radiation measuring meter - Google Patents

Geiger-müller counter and radiation measuring meter Download PDF

Info

Publication number
WO2016140112A1
WO2016140112A1 PCT/JP2016/055323 JP2016055323W WO2016140112A1 WO 2016140112 A1 WO2016140112 A1 WO 2016140112A1 JP 2016055323 W JP2016055323 W JP 2016055323W WO 2016140112 A1 WO2016140112 A1 WO 2016140112A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
geiger
muller counter
anode electrode
tube
Prior art date
Application number
PCT/JP2016/055323
Other languages
French (fr)
Japanese (ja)
Inventor
竹内敏晃
濱口邦夫
福島孝晴
木村悟利
Original Assignee
日本電波工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電波工業株式会社 filed Critical 日本電波工業株式会社
Publication of WO2016140112A1 publication Critical patent/WO2016140112A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/18Measuring radiation intensity with counting-tube arrangements, e.g. with Geiger counters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J47/00Tubes for determining the presence, intensity, density or energy of radiation or particles
    • H01J47/08Geiger-Müller counter tubes

Definitions

  • the present invention relates to a Geiger-Muller counter having a flat cathode electrode and an anode electrode and a radiation measuring instrument.
  • the Geiger-Muller counter is a component mainly used for radiation measurement.
  • the GM tube is formed, for example, by placing an anode electrode and a cathode electrode in an enclosed tube such as a glass tube and enclosing an inert gas or the like.
  • the GM tube is used by applying a high voltage between the anode electrode and the cathode electrode.
  • the radiation that has entered the sealed tube ionizes the inert gas into electrons and ions, and the ionized electrons and ions are accelerated toward the anode electrode and the cathode electrode, respectively. This energizes between the anode electrode and the cathode electrode to generate a pulse signal.
  • Patent Document 1 discloses a GM tube including a rod-shaped anode electrode and a cylindrical cathode electrode surrounding the anode electrode and formed of a metal sheet.
  • Patent Document 1 since the cylindrical cathode electrode formed of a metal sheet blocks ⁇ -rays having no transmission power, the detection sensitivity of ⁇ -rays is low. Further, there is an electric field intensity attenuation around the rod-shaped anode electrode depending on the distance from the anode electrode, and the measurement sensitivity is likely to fluctuate and the measurement result may become unstable.
  • An object of the present invention is to provide a Geiger-Muller counter and a radiation meter that can perform stable radiation measurement and have high ⁇ -ray measurement sensitivity.
  • a Geiger-Muller counter tube is a sealed tube having a sealed space, an anode electrode disposed in the space and formed in a flat plate shape, formed in a flat plate shape, and parallel to the anode electrode in the space, A cathode electrode disposed at a predetermined interval from the anode electrode; and an inert gas and a quench gas sealed in the space.
  • At least one of the anode electrode and the cathode electrode is formed of a metal mesh in which a plurality of metal wires are knitted in a net shape.
  • At least one of the anode electrode and the cathode electrode is formed of a metal plate.
  • the metal plate is formed with a plurality of through holes penetrating the metal plate.
  • At least one of the anode electrode and the cathode electrode is formed into a flat plate shape by bending one metal wire.
  • a Geiger-Muller counter tube is the first to fifth aspects of the Geiger-Muller counter tube, in which the cathode electrode is composed of two plate-like electrodes parallel to each other, and the anode electrode is sandwiched between the two plate-like electrodes. It is.
  • a Geiger-Muller counter tube is the first to fifth aspects, wherein the anode electrode is composed of a plurality of flat electrodes, the cathode electrode is composed of a plurality of flat electrodes, And the flat electrodes of the cathode electrode are arranged so as to alternately overlap each other.
  • the Geiger-Muller counter tube is the first to seventh aspects, wherein the space includes a first electrode pair formed by an anode electrode and a cathode electrode and fixed to one end of the enclosing tube, and a first electrode pair. And a second electrode pair fixed to the other end of the sealed tube, and the first electrode pair and the second electrode pair are arranged on the same plane.
  • a Geiger-Muller counter tube includes a shielding portion that surrounds the first electrode pair from the outside of the enclosing tube and shields ⁇ rays in the eighth aspect.
  • a Geiger-Muller counter tube is the first to seventh aspects, wherein the space includes a first electrode pair formed by an anode electrode and a cathode electrode and fixed to one end of the enclosing tube, and a first electrode pair. And a second electrode pair fixed to the other end of the enclosing tube, and a plane including the anode electrode of the first electrode pair and a plane including the anode electrode of the second electrode pair are mutually connected Intersect at right angles.
  • a radiation meter includes a Geiger-Muller counter tube according to the first aspect to the tenth aspect, one high voltage circuit unit that applies a predetermined high voltage between the anode electrode and the cathode electrode, and a high voltage circuit And a counter that counts the pulse signal measured by the Geiger-Muller counter and a calculation unit that converts the pulse signal counted by the counter into a radiation dose.
  • the Geiger-Muller counter and the radiation meter of the present invention stable radiation measurement can be performed and ⁇ -ray detection sensitivity can be increased.
  • FIG. 1A is a schematic partial perspective view of a Geiger-Muller counter tube 100.
  • FIG. FIG. 4B is a partial plan view of the cathode electrode 130.
  • C is a schematic side view of the Geiger-Muller counter tube 100.
  • FIG. 1 is a schematic configuration diagram of a radiation meter 10.
  • A) is a general
  • (B) is a graph showing the relationship between the electric field ⁇ (r) and the distance r.
  • (C) is a graph showing the relationship between the electric field ⁇ (x) and the distance x.
  • A) is a schematic partial perspective view of the Geiger-Muller counter tube 200.
  • FIG. 1A is a schematic partial perspective view of the Geiger-Muller counter tube 200.
  • FIG. (B) is a schematic partial perspective view of the Geiger-Muller counter tube 300.
  • FIG. 2 is a schematic partial perspective view of a Geiger-Muller counter tube 400.
  • FIG. (A) is a schematic partial perspective view of the Geiger-Muller counter tube 500.
  • FIG. (B) is a schematic side view of the Geiger-Muller counter tube 500.
  • FIG. (A) is a schematic partial perspective view of the Geiger-Muller counter tube 600.
  • FIG. (B) is a schematic side view of the Geiger-Muller counter tube 600.
  • FIG. (A) is a schematic partial side view of the Geiger-Muller counter tube 700.
  • FIG. FIG. 5B is a schematic side view of the Geiger-Muller counter tube 700 attached to the substrate 150.
  • FIG. 2 is a schematic configuration diagram of a radiation meter 70.
  • FIG. (A) is a schematic side view of the Geiger-Muller counter tube 800.
  • FIG. (B) is a schematic block diagram of the radiation meter 80.
  • 2 is a schematic partial perspective view of a Geiger-Muller counter tube 900.
  • FIG. 1A is a schematic partial perspective view of the Geiger-Muller counter tube 100.
  • the Geiger-Muller counter tube 100 is mainly formed by an enclosure tube 110, an anode electrode 120 enclosed in the enclosure tube 110, and a cathode electrode 130 enclosed in the enclosure tube 110.
  • the enclosure tube 110 is a glass tube having a cylindrical outer shape, for example.
  • the direction in which the sealed tube 110 extends is the Z-axis direction
  • the diameter direction of the sealed tube 110 and the direction perpendicular to the Z-axis direction is the X-axis direction
  • the diameter direction of the sealed tube 110 is also the X-axis direction and Z A direction perpendicular to the axial direction is taken as a Y-axis direction.
  • the anode electrode 120 and the cathode electrode 130 are formed in a rectangular flat plate shape, and are configured as a wire mesh in which a plurality of metal wires are knitted in a mesh shape.
  • the anode electrode 120 and the cathode electrode 130 are both formed on the XZ plane, and are arranged so that their main surfaces face each other and overlap in the Y-axis direction.
  • a linear anode conductor 121 is joined to the anode electrode 120, and a linear cathode conductor 131 is joined to the cathode electrode 130.
  • An inert gas and a quench gas are sealed in the internal space 111 of the sealed tube 110 together with the anode electrode 120 and the cathode electrode 130.
  • a rare gas such as helium (He), neon (Ne), or argon (Ar) is used.
  • argon (Ar) is used as the inert gas.
  • a halogen-based gas such as fluorine (F), bromine (Br), or chlorine (Cl) is used.
  • FIG. 1B is a partial plan view of the cathode electrode 130.
  • the cathode electrode 130 is formed as a wire mesh by knitting a plurality of metal wires 151 arranged in parallel with the X axis and the Z axis into a net shape.
  • a plurality of meshes 152 are formed in the metal mesh, and the meshes 152 are through holes that penetrate the cathode electrode 130 in the Y-axis direction.
  • the anode conductor 120 is also formed in the same manner as the cathode conductor 130.
  • the metal wire 151 is made of, for example, metal Kovar or stainless steel, which is an alloy of iron, nickel, and cobalt.
  • FIG. 1 (c) is a schematic side view of the Geiger-Muller counter tube 100. Both ends of the enclosing tube 110 in the Z-axis direction are closed, and the cathode conductor 131 and the anode conductor 121 pass through the ⁇ Z-axis end of the enclosing tube 110 and are drawn to the outside of the enclosing tube 110.
  • the anode electrode 120 and the cathode electrode 130 are arranged in parallel with a distance d therebetween. Further, a region sandwiched between the anode electrode 120 and the cathode electrode 130 is a radiation detection space 112 for detecting radiation.
  • ⁇ -ray which is one of the radiations, has a low transmission power, it is easily blocked by a shield.
  • a mesh 152 serving as a through hole is formed in the anode electrode 120 and the cathode electrode 130. ⁇ rays incident on the Geiger-Muller counter 100 from the axis side and the ⁇ Y axis side can be guided to the radiation detection space 112 via the mesh 152.
  • an electric field is formed in the radiation detection space 112 by applying a voltage of, for example, several hundred volts between the anode electrode 120 and the cathode electrode.
  • the radiation ionizes the inert gas into positively charged ions and negatively charged electrons, and the ionized ions and electrons are the cathode electrode 130 and the anode electrode 120, respectively. Accelerate towards The accelerated ions collide with other inert gases and ionize the other inert gases. By repeating such ionization, ionized ions and electrons increase in an avalanche state in the radiation detection space 112 and a pulse current flows.
  • Such avalanche-like electrons are called electronic avalanches.
  • the radiation measuring instrument 10 (see FIG. 2) having the Geiger-Muller counter 100 can measure the radiation dose by measuring the number of pulses of the pulse signal by such a pulse current. Further, when such a current flows continuously, the number of pulses cannot be measured. To prevent this, a quench gas is enclosed in the internal space 111 together with an inert gas. The quench gas serves to lose the energy of ions.
  • FIG. 2 is a schematic configuration diagram of the radiation meter 10.
  • the radiation measuring instrument 10 includes a Geiger-Muller counter tube 100.
  • the anode conductor 121 and the cathode conductor 131 are connected to the high voltage circuit unit 21, and a high voltage is applied between the two conductors.
  • the high voltage circuit unit 21 is connected to the counter 22, and the pulse signal detected in the radiation detection space 112 of the Geiger-Muller counter tube 100 is counted by the counter 22.
  • the count at the counter 22 is converted into a radiation dose by the calculation unit 23, and the converted radiation dose is displayed on the display unit 24.
  • the calculator 23 is supplied with electric power when the power source 25 is connected thereto.
  • FIG. 3A is a schematic partial perspective view of a conventional Geiger-Muller counter tube 100a.
  • the Geiger-Muller counter tube 100a includes a rod-shaped anode electrode 120a extending in the Z-axis direction and a cylindrical cathode electrode 130a surrounding the anode electrode 120a.
  • An anode conductor 121 is joined to the anode electrode 120a, and a cathode conductor 131 is joined to the cathode electrode 130a.
  • a region surrounded by the cathode electrode 130a is a radiation detection space 112a.
  • the anode electrode 120a is disposed on the central axis of the cathode electrode 130a.
  • the radius of the anode electrode 120a is a
  • half the inner diameter of the cathode electrode 130a is b
  • the distance from the central axis of the cathode electrode 130a at an arbitrary position in the radiation detection space 112a is r
  • the anode electrode 120a and the cathode electrode 130a Assuming that the voltage between and is V 0 , the electric field ⁇ (r) at an arbitrary position in the radiation detection space 112a is expressed by the following equation (1).
  • ⁇ (r) V 0 / (r ⁇ ln (b / a)) (1)
  • FIG. 3B is a graph showing the relationship between the electric field ⁇ (r) and the distance r.
  • the horizontal axis indicates the distance r
  • the vertical axis indicates the electric field ⁇ (r).
  • FIG. 3B shows a solid line 160 represented by the expression (1).
  • the minimum electric field size necessary for causing an avalanche is ⁇ 1 and the distance r in Equation (1) at this time is c
  • the electron avalanche occurs in the range of a ⁇ r ⁇ c. Become.
  • FIG. 3C is a graph showing the relationship between the electric field ⁇ (x) and the distance x.
  • the horizontal axis indicates the distance x
  • the vertical axis indicates the electric field ⁇ (x).
  • the electric field ⁇ (x) indicates the magnitude of the electric field at an arbitrary position when the distance from the anode electrode 120 is x in the radiation detection space 112 of the Geiger-Muller counter tube 100 (see FIG. 1C). ing.
  • the distance x is 0 ⁇ x ⁇ d.
  • the electric field ⁇ (x) is expressed by the following formula (2), where V 0 is the voltage between the anode electrode 120 and the cathode electrode 130, and d is the distance between the anode electrode 120 and the cathode electrode 130.
  • ⁇ (x) V 0 / d (2)
  • FIG. 3C shows a solid line 161 expressed by the equation (2).
  • the magnitude of the electric field ⁇ (x) does not depend on the distance x and takes a constant value. Therefore, when the electric field epsilon (x) is greater than epsilon 1, the radiation can be detected in the entire region of the radiation detection space 112 (see FIG. 1 (c)).
  • Measured radiation mainly includes ⁇ -rays and ⁇ -rays, but ⁇ -rays are not as strong as ⁇ -rays, so they are not as problematic as ⁇ -rays as external exposure factors.
  • ⁇ -rays are not as strong as ⁇ -rays, so they are not as problematic as ⁇ -rays as external exposure factors.
  • radioactive strontium is a radioactive substance that emits ⁇ -rays, but if radioactive strontium is taken into the body, it accumulates in the bone and continues to emit radiation, which is dangerous.
  • radioactive strontium poses a danger to the human body, it is necessary to know the presence or absence of radioactive strontium. However, since radioactive strontium only emits ⁇ -rays, it could not be detected by a Geiger-Muller counter specialized for measuring ⁇ -rays. Further, the conventional Geiger-Muller counter tube 100a as shown in FIG. 3A uses a thin metal sheet for the cathode electrode 130a, so that some ⁇ -rays pass, but the ⁇ -rays are greatly attenuated when passing through the metal sheet. The ⁇ -ray detection sensitivity was low.
  • a mesh 152 serving as a through-hole is formed in each of the anode electrode 120 and the cathode electrode 130, so that ⁇ -rays are incident into the radiation detection space 112 through the mesh 152. be able to. As a result, it is possible to measure ⁇ rays without greatly reducing the detection sensitivity of ⁇ rays.
  • the conventional Geiger-Muller counter tube 100a (see FIG. 3A), between the radiation detection space 112a and the internal space 111 other than the radiation detection space 112a due to ionization of an inert gas due to radiation in the sealed tube 110. In some cases, a difference in concentration of inert gas or the like is likely to occur, and the detection sensitivity of radiation may be lowered.
  • the mesh 152 is formed in each of the anode electrode 120 and the cathode electrode 130, whereby the gas flow between the radiation detection space 112 and the internal space 111 other than the radiation detection space 112 is improved. The flow of gas in the tube 110 is easily promoted.
  • the concentration difference of inert gas or the like between the radiation detection space 112 and the internal space 111 other than the radiation detection space 112 is alleviated, and a decrease in radiation detection sensitivity is prevented. Yes.
  • the Geiger-Muller counter tube 100 when the areas of the anode electrode 120 and the cathode electrode 130 are large, the amount of ⁇ -rays detected is highest when measuring ⁇ -rays flying from the Y-axis direction. Therefore, the direction in which the radiation comes can be identified by directing the Geiger-Muller counter tube 100 in various directions and examining the direction in which the detected amount of radiation increases.
  • the measurement sensitivity may fluctuate due to the electric field intensity attenuation depending on the distance from the anode electrode 120a, and the measurement results may vary.
  • the radiation detection space 112 is constant without attenuation of the electric field strength, and the size of the region where the electron avalanche occurs is also constant. Therefore, the Geiger-Muller counter tube 100 can perform stable measurement of radiation including ⁇ rays.
  • At least one of the anode electrode and the cathode electrode may be composed of other than a metal net.
  • a modified example of the Geiger-Muller counter tube in which at least one of the anode electrode and the cathode electrode is formed of a material other than the metal net is shown.
  • the same parts as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and the description thereof is omitted.
  • FIG. 4A is a schematic partial perspective view of the Geiger-Muller counter tube 200.
  • the Geiger-Muller counter tube 200 mainly includes an enclosure tube 110, an anode electrode 220 disposed in the enclosure tube 110, and an inside of the enclosure tube 110 so as to overlap with the anode electrode 220 by a predetermined distance in the + Y-axis direction. And a cathode electrode 230 disposed on the substrate.
  • An anode conductor 121 is joined to the anode electrode 220, and a cathode conductor 131 is joined to the cathode electrode 230.
  • the Geiger-Muller counter tube 200 has a configuration in which the anode electrode 120 is replaced with the anode electrode 220 and the cathode electrode 130 is replaced with the cathode electrode 230 in the Geiger-Muller counter tube 100.
  • a metal plate may be used for the anode electrode 120 and the cathode electrode 130 instead of the wire mesh.
  • the metal plate can be formed of, for example, a metal Kovar that is an alloy of iron, nickel, or cobalt, or a stainless steel rectangular metal plate.
  • metal plates are used for the anode electrode 220 and the cathode electrode 230, and a plurality of through holes 221 are formed in the anode electrode 220. Through-holes 231 are formed.
  • the Geiger-Muller counter tube 200 by using flat metal plates for the anode electrode 220 and the cathode electrode 230, it is possible to perform stable measurement of radiation including ⁇ -rays, and by forming through holes in each electrode. Improvement of ⁇ -ray measurement sensitivity is achieved.
  • FIG. 4B is a schematic partial perspective view of the Geiger-Muller counter tube 300.
  • the Geiger-Muller counter tube 300 mainly includes an enclosing tube 110, an anode electrode 320 disposed in the enclosing tube 110, and an inside of the enclosing tube 110 so as to overlap the anode electrode 320 by a predetermined distance in the + Y axis direction. And a cathode electrode 330 disposed on the substrate.
  • the anode electrode 320 is formed in a planar shape, and the anode electrode 320 and the anode conductor 321 connected to the anode electrode 320 are integrally formed by bending one bar.
  • the cathode electrode 330 and the cathode conductor 331 connected to the cathode electrode 330 are also formed in the same shape as the anode electrode 320 and the anode conductor 321.
  • the anode electrode 320 and the cathode electrode 330 are formed in a flat plate shape, but each electrode is formed by bending one rod so that the density is sparse. Many gaps are formed as shown in b). This gap serves as a through hole for each electrode, thereby improving the ⁇ -ray measurement sensitivity.
  • FIG. 5 is a schematic partial perspective view of the Geiger-Muller counter tube 400.
  • the Geiger-Muller counter tube 400 is configured by replacing the anode electrode 120 with an anode electrode 420 formed of a rectangular metal plate in the Geiger-Muller counter tube 100 shown in FIG. That is, the Geiger-Muller counter tube 100 and the Geiger-Muller counter tube 400 differ only in the configuration of the anode electrode.
  • the Geiger-Muller counter tube 100 when detecting ⁇ -rays flying from the ⁇ Y-axis direction, the amount of ⁇ -rays detected is the highest.
  • ⁇ -rays flying from the ⁇ Y-axis side are anode electrodes 420. Therefore, when detecting ⁇ rays flying from the + Y axis side, the detection amount of ⁇ rays is the highest. Therefore, in the Geiger-Muller counter tube 400, the direction in which ⁇ rays come in can be specified by examining the direction in which the detection amount of ⁇ rays becomes the highest.
  • a plurality of anode electrodes and / or cathode electrodes may be arranged.
  • the Geiger-Muller counter tube in which a plurality of at least one of the anode electrode and the cathode electrode are arranged is shown below.
  • the same parts as those in the first embodiment or the second embodiment are denoted by the same reference numerals as those in the first embodiment or the second embodiment, and the description thereof is omitted.
  • FIG. 6A is a schematic partial perspective view of the Geiger-Muller counter tube 500.
  • the Geiger-Muller counter tube 500 mainly includes an enclosed tube 510 having an internal space 511, an anode electrode 120 disposed in the internal space 511, and a cathode electrode 530a disposed on the + Y axis side of the anode electrode 120 in the internal space 511.
  • the cathode electrode 530b disposed on the ⁇ Y-axis side of the anode electrode 120 in the internal space 511.
  • the anode conductor 121 is joined to the anode electrode 120, the cathode conductor 531a is joined to the cathode electrode 530a, and the cathode conductor 531b is joined to the cathode electrode 530b.
  • the cathode electrode 530a and the cathode electrode 530b are formed with the same configuration as the cathode electrode 130 (see FIG. 1A), and the cathode conductor 531a and the cathode conductor 531b have the same configuration as the cathode conductor 131 (see FIG. 1A). It is formed by.
  • FIG. 6B is a schematic side view of the Geiger-Muller counter tube 500.
  • the anode electrode 120, the cathode electrode 530a, and the cathode electrode 530b are arranged so as to overlap in the Y-axis direction. Further, the distance between the cathode electrode 530a and the anode electrode 120 and the distance between the cathode electrode 530b and the anode electrode 120 are arranged to be the distance d2.
  • the cathode conductor 531a and the cathode conductor 531b are electrically connected to each other, whereby a constant voltage is applied between the anode electrode 120 and the cathode electrodes 530a and 530b.
  • the electric field ⁇ (x) when the voltage V 0 is not changed, the electric field ⁇ (x) increases as the distance d between the electrodes is shortened. Therefore, in the Geiger-Muller counter tube 100 (see FIG. 1C), the electric field ⁇ (x) can be adjusted to be larger than ⁇ 1 by adjusting the distance d between the electrodes. However, when the distance d is too short, the radiation passes through the radiation detection space 112 without causing an electron avalanche, and the radiation detection sensitivity is lowered. In addition, if the distance d between the electrodes is too wide, the electric force lines between the electrodes protrude outside the electrodes and the size of the region for detecting ⁇ -rays becomes unstable, and the measurement accuracy may be lowered.
  • the distance between the electrodes is adjusted to a distance at which the electric lines of force between the electrodes are kept uniform, and the electrodes are arranged so as to overlap each other in the Y-axis direction of the radiation detection space.
  • the length is increased, so that ⁇ -rays can be captured more reliably in the radiation detection space.
  • FIG. 7A is a schematic partial perspective view of the Geiger-Muller counter tube 600.
  • the Geiger-Muller counter 600 mainly includes a sealed tube 610 having an internal space 611, a plurality of anode electrodes 620a to 620d disposed in the internal space 611, and a plurality of cathode electrodes 630a to 630d disposed in the internal space 611. , Is configured.
  • the anode electrodes 620a to 620d and the cathode electrodes 630a to 630d are alternately arranged such that the main surfaces of the electrodes are directed in the Z-axis direction, and the anode electrode and the cathode electrode are spaced apart and overlap in the Z-axis direction. .
  • the anode electrodes 620a to 620d are joined to the anode conductor 621, and the cathode electrodes 630a to 630d are joined to the cathode conductor 631.
  • the sealed tube 610 is formed of, for example, a cylindrical glass tube extending in the Z-axis direction.
  • the plurality of anode electrodes 620a to 620d and the plurality of cathode electrodes 630a to 630d are each formed in a flat plate shape by bending a single metal wire into a spiral shape.
  • Each electrode has a substantially disk shape, and the main surface of each electrode is arranged in the Z-axis direction, so that the size of the outer shape of the sealed tube 610 does not increase. Can be placed well.
  • a gap is formed between the metal wires. By this gap, ⁇ rays flying from the Z-axis direction can be captured, and the gas flow in the sealed tube 610 can be improved.
  • FIG. 7B is a schematic side view of the Geiger-Muller counter 600.
  • the anode electrode and the cathode electrode are arranged in the order of the cathode electrode 630a, the anode electrode 620a, the cathode electrode 630b, the anode electrode 620b, the cathode electrode 630c, the anode electrode 620c, the cathode electrode 630d, and the anode electrode 620d from the + Z-axis side. ing.
  • the disk-shaped electrodes are arranged side by side in the Z-axis direction, the outer shape of the radiation detection space 612 formed between the electrodes is formed in a cylindrical shape extending in the Z-axis direction.
  • the radiation detection space 612 for detecting ⁇ rays is formed long in the Z-axis direction, so that radiation flying from the Z-axis direction can be captured and observed more reliably. Further, as shown in FIG. 7B, when the radiation detection space 612 is viewed from the diameter direction of the sealed tube 610, the density of the electrodes is low, and therefore ⁇ rays flying from the diameter direction of the sealed tube 610 are measured. In this case, ⁇ -rays are hardly blocked by each electrode, so that the detection sensitivity of ⁇ -rays can be increased.
  • a plurality of electrode pairs formed by a combination of the anode electrode and the cathode electrode may be arranged in the sealed tube.
  • a Geiger-Muller counter tube in which a plurality of electrode pairs are arranged in an enclosed tube will be described.
  • the same parts as those in the first to third embodiments are denoted by the same reference numerals as those in the first to third embodiments, and the description thereof is omitted.
  • FIG. 8A is a schematic partial side view of the Geiger-Muller counter 700.
  • the Geiger-Muller counter tube 700 mainly includes a sealed tube 710 formed of a cylindrical glass tube extending in the Z-axis direction and having an internal space 711, a first electrode pair 760a disposed in the internal space 711, and an internal space 711.
  • the second electrode pair 760b is arranged.
  • the first electrode pair 760 a is formed by a combination of the anode electrode 120 and the cathode electrode 130, the anode conductor 121 is joined to the anode electrode 120, and the cathode conductor 131 is joined to the cathode electrode 130.
  • the configuration of the first electrode pair 760a is the same as the combination of the anode electrode 120 and the cathode electrode 130 of the Geiger-Muller counter tube 100 (see FIG. 1C).
  • the first electrode pair 760a is disposed on the ⁇ Z-axis side of the internal space 711 of the enclosed tube 710, and the anode conductor 121 and the cathode conductor 131 are drawn out of the enclosed tube 710 from the ⁇ Z-axis side end of the enclosed tube 710. Yes.
  • the second electrode pair 760b is formed by a combination of an anode electrode 720 and a cathode electrode 730.
  • An anode conductor 721 is joined to the anode electrode 720
  • a cathode conductor 731 is joined to the cathode electrode 730.
  • the anode electrode 720, cathode electrode 730, anode conductor 721, and cathode conductor 731 are formed in the same shape as the anode electrode 120, cathode electrode 130, anode conductor 121, and cathode conductor 131, respectively, and the second electrode pair 760b is the first electrode. It is formed in the same shape as the pair 760a.
  • the second electrode pair 760 b is disposed on the + Z axis side of the internal space 711, and the anode conductor 721 and the cathode conductor 731 are drawn to the outside of the enclosure tube 710 from the + Z axis side end of the enclosure tube 710.
  • the anode electrode 120 and the anode electrode 720 are disposed on the ⁇ Y axis side of the cathode electrode 130 and the cathode electrode 730, and the anode electrode 120 and the anode electrode 720 are disposed on the same plane.
  • the cathode electrode 130 and the cathode electrode 730 are disposed on the same plane.
  • the anode electrodes and the cathode electrodes are arranged on the same plane, even if the distance between the first electrode pair 760a and the second electrode pair 760b is narrowed, the anode electrode and the cathode electrode are short-circuited, or The electric field of the first electrode pair 760a and the second electrode pair 760b is prevented from being disturbed.
  • the accuracy of radiation detection may be reduced due to individual differences in the sensitivity of individual Geiger-Muller counters.
  • the radiation detection sensitivity is increased by arranging two pairs of electrodes in one Geiger-Muller counter.
  • the inert gas and quench gas of each electrode pair are used in common, the ratio of the inert gas and quench gas in each electrode pair is the same. Therefore, the Geiger-Muller counter tube 700 can improve the accuracy of radiation detection compared to the case where two sets of Geiger-Muller counter tubes are used.
  • FIG. 8B is a schematic side view of the Geiger-Muller counter tube 700 attached to the substrate 150.
  • the Geiger-Muller counter tube 700 is used by being fixed to the substrate 150, for example.
  • the electrode is drawn out only from one end of the enclosed tube, and is fixed to the substrate or the like only by one end of the Geiger-Muller counter tube.
  • electrodes are drawn from both ends of the enclosed tube 710, and as shown in FIG. 8B, both ends on the + Z-axis side and the ⁇ Z-axis side of the Geiger-Muller counter tube 700 are shown.
  • the Geiger-Muller counter tube 700 can be firmly and stably fixed to the substrate 150 or the like as compared with the conventional Geiger-Muller counter tube.
  • FIG. 9 is a schematic configuration diagram of the radiation meter 70.
  • the radiation measuring instrument 70 includes a Geiger-Muller counter tube 700.
  • the anode conductor 121 and the cathode conductor 131 are connected to the first high voltage circuit portion 21a, and a high voltage is applied between the two conductors.
  • the anode conductor 721 and the cathode conductor 731 are connected to the second high voltage circuit unit 21b, and a high voltage is applied between the two conductors.
  • the first high voltage circuit unit 21a is connected to the first counter 22a
  • the second high voltage circuit unit 21b is connected to the second counter 22b.
  • the pulse signals detected by the first electrode pair 760a and the second electrode pair 760b of the Geiger-Muller counter 700 are respectively counted by the first counter 22a and the second counter 22b, converted into a radiation dose by the calculation unit 23, and converted.
  • the radiation dose is displayed on the display unit 24.
  • the calculator 23 is supplied with electric power when the power source 25 is connected thereto.
  • the first electrode pair 760a and the second electrode pair 760b are individually connected to different high voltage circuit units and counters to individually detect the radiation dose. However, even if the first electrode pair 760a and the second electrode pair 760b are connected in parallel to one high voltage circuit unit and a counter and the radiation dose as a whole of the first electrode pair 760a and the second electrode pair 760b is detected. Good.
  • the radiation dose detected by the Geiger-Muller counter 700 is measured as the total value of the radiation doses of both ⁇ rays and ⁇ rays.
  • the Geiger-Muller counter 800 and the radiation meter 80 for measuring each radiation dose of ⁇ rays and ⁇ rays will be described.
  • the same parts as those in the first to fourth embodiments are denoted by the same reference numerals as those in the first to fourth embodiments, and the description thereof is omitted.
  • FIG. 10A is a schematic side view of the Geiger-Muller counter tube 800.
  • the Geiger-Muller counter tube 800 is formed by attaching a shielding portion 153 that shields ⁇ rays so as to surround the first electrode pair 760 a of the Geiger-Muller counter tube 700 from the outside of the enclosing tube 710.
  • the shield 153 can be formed as an aluminum cylindrical tube, for example.
  • ⁇ rays and ⁇ rays can be detected in the second electrode pair 760b that is not covered with the shielding portion 153.
  • ⁇ rays are shielded by the shielding part 153, so that only ⁇ rays can be detected.
  • the radiation dose of ⁇ rays can be obtained by subtracting the radiation dose of the first electrode pair 760a from the radiation dose of the second electrode pair 760b.
  • One Geiger-Muller counter tube is placed in an aluminum tube or the like to block ⁇ rays and measure only ⁇ rays. Further, ⁇ rays and ⁇ rays are measured with the other Geiger-Muller counter tube. The ⁇ ray is obtained by subtracting the radiation dose of one Geiger-Muller counter tube from the radiation dose of the other Geiger-Muller counter tube.
  • the Geiger-Muller counter 800 can simultaneously measure both ⁇ -ray and ⁇ -ray radiation with a single Geiger-Muller counter. Therefore, it is possible to save the trouble of preparing a plurality of Geiger-Muller counter tubes, so that the measurement becomes easy. Further, similarly to the Geiger-Muller counter tube 700, since the inert gas and the quench gas are commonly used in the first electrode pair 760a and the second electrode pair 760b, compared to the case where two sets of Geiger-Muller counter tubes are used. Can also increase the accuracy of radiation detection.
  • FIG. 10B is a schematic configuration diagram of the radiation meter 80.
  • the Geiger-Muller counter tube 800 is used instead of the Geiger-Muller counter tube 700 in the radiation measuring instrument 70 shown in FIG. 9, and a position determination unit 26 for determining the position of the shielding unit 153 is provided. It has been.
  • the first counter 22a connected to the first electrode pair 760a shielded by the shield 153 detects the radiation dose of only ⁇ rays.
  • the second counter 22b connected to the second electrode pair 760b detects the total radiation dose of ⁇ rays and ⁇ rays.
  • the radiation meter 80 detects the radiation dose of ⁇ rays based on the radiation dose of the first electrode pair 760a, and subtracts the radiation dose of the first electrode pair 760a from the radiation dose of the second electrode pair 760b.
  • the radiation dose can be detected.
  • the radiation measuring instrument 80 is formed so that the shielding portion 153 can be freely detached from and attached to the first electrode pair 760a.
  • the first electrode pair 760a and the second electrode pair 760b are measured under the same conditions by moving the shield 153 from the state of FIG. 10B in the ⁇ Z-axis direction to expose the first electrode pair 760a. It can be carried out. By performing measurement in this state, it is possible to calibrate the radiation dose detection value between the first electrode pair 760a and the second electrode pair 760b.
  • a sensor (not shown) for detecting whether the Geiger-Muller counter tube 800 is attached or detached is attached to the shielding part 153, so that the attachment / detachment of the shielding part 153 is automatically determined. You may let them.
  • the sensor is connected to a position determination unit 26 that determines the position of the shielding unit 153, and the position determination unit 26 is connected to the calculation unit 23.
  • the calculation unit 23 detects ⁇ -rays from the first electrode pair 760a, and detects from the second electrode pair 760b ⁇ rays are automatically detected by subtracting the radiation dose of one electrode pair 760a.
  • the position determination unit 26 determines that the Geiger-Muller counter tube 800 is not equipped with the shielding unit 153, the radiation amount of the first electrode pair 760a and the second electrode pair 760b is displayed on the display unit 24.
  • the display on the display unit 24 may display an average of the radiation doses of the first electrode pair 760a and the second electrode pair 760b.
  • Geiger-Muller counters in which the anode and cathode electrodes are formed in a flat plate shape, vary greatly in the amount of radiation detected depending on the angle in which the radiation comes in. You may want to relax.
  • the Geiger-Muller counter 900 in which the angle dependency of the radiation detection amount is relaxed will be described below.
  • the same parts as those in the first to fifth embodiments are denoted by the same reference numerals as those in the first to fifth embodiments, and the description thereof is omitted.
  • FIG. 11 is a schematic partial perspective view of the Geiger-Muller counter tube 900.
  • the Geiger-Muller counter tube 900 mainly includes an enclosing tube 710, a first electrode pair 960a disposed in the enclosing tube 710, and a second electrode pair 960b disposed in the enclosing tube 710.
  • the first electrode pair 960a is formed so that the anode electrode 920a and the cathode electrode 930a overlap each other with a distance in the Y-axis direction, the anode conductor 920a is joined to the anode electrode 920a, and the cathode electrode 930a is joined to the cathode electrode 930a.
  • the conductor 931a is joined.
  • the second electrode pair 960b is formed such that an anode electrode 920b (not shown) and a cathode electrode 930b overlap each other with a distance in the Y-axis direction, and an anode conductor 921b (not shown) is joined to the anode electrode 920b.
  • the cathode conductor 931b is joined to the cathode electrode 930b.
  • the anode electrode 920a of the first electrode pair 960a and the anode electrode of the second electrode pair 960b are formed in the same shape as the anode electrode 120 (see FIG. 1A), and the cathode electrode 930a and the cathode electrode 930b are formed of the cathode electrode 130 (FIG. 1 (a)).
  • the first electrode pair 960a and the second electrode pair 960b are formed in the same shape, but the anode electrode 920a and the cathode electrode 930a constituting the first electrode pair 960a are arranged in parallel to the XZ plane, and the second electrode pair
  • the anode electrode 920b and the cathode electrode 930b constituting the 960b are arranged in parallel to the YZ plane. That is, the second electrode pair 960b is arranged in a state in which the first electrode pair 960a is rotated 90 degrees about the Z axis as a rotation axis.
  • the Geiger-Muller counter formed by the flat anode and cathode electrodes has a radiation detection space formed in a rectangular parallelepiped, so the radiation detection sensitivity varies greatly depending on which direction the Geiger-Muller counter is facing, In some cases, almost no radiation is detected.
  • the second electrode pair 960b is rotated by 90 degrees with respect to the first electrode pair 960a, so that radiation can be detected from any direction in the diameter direction of the enclosed tube. can do.
  • the sealed tube shown in the above embodiment is cylindrical, but can be formed in various shapes other than cylindrical.
  • the enclosed tube of the Geiger-Muller counter tube 100 shown in FIG. 1A may be shaped like a rectangular parallelepiped in accordance with the shapes of the anode electrode and the cathode electrode.
  • Cathode conductor 150 ... Substrate 151 ... Metal wire 152 ... Mesh 153 ... Shielding part 160 ... Solid line 161 representing the equation (1) ... Solid line representing the equation (2) 760a, 960a ...

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

The objective of the present invention is to provide a Geiger-Müller counter and a radiation measuring meter with which stable radiation measurement can be performed, and having a high β-ray measuring sensitivity. This Geiger-Müller counter (100) is provided with: an enclosed tube (110) having a hermetically sealed space; an anode (120) which is disposed inside the space and is formed in the shape of a flat plate; a cathode (130) which is formed in the shape of a flat plate and is disposed inside the space, parallel to the anode, a prescribed distance from the anode; and an inert gas and a quenching gas which are hermetically sealed inside the space.

Description

ガイガーミュラー計数管及び放射線計測計Geiger-Muller counter and radiation meter
 本発明は、平板状の陰極電極及び陽極電極を有するガイガーミュラー計数管及び放射線計測計に関する。 The present invention relates to a Geiger-Muller counter having a flat cathode electrode and an anode electrode and a radiation measuring instrument.
 ガイガーミュラー計数管(GM管)は、主に放射線の計測に用いられる部品である。GM管は、例えばガラス管等の封入管内に陽極電極及び陰極電極が配置され、不活性ガス等が封入されることにより形成される。GM管は、陽極電極及び陰極電極の間に高い電圧がかけられることにより使用される。封入管の中に侵入した放射線は不活性ガスを電子とイオンとに電離し、電離した電子及びイオンはそれぞれ陽極電極及び陰極電極に向かって加速される。これにより陽極電極と陰極電極との間が通電され、パルス信号が発生する。例えば、特許文献1には、棒状の陽極電極と、陽極電極の周りを取り囲み金属シートで形成された円筒状の陰極電極と、を備えるGM管が示されている。 The Geiger-Muller counter (GM tube) is a component mainly used for radiation measurement. The GM tube is formed, for example, by placing an anode electrode and a cathode electrode in an enclosed tube such as a glass tube and enclosing an inert gas or the like. The GM tube is used by applying a high voltage between the anode electrode and the cathode electrode. The radiation that has entered the sealed tube ionizes the inert gas into electrons and ions, and the ionized electrons and ions are accelerated toward the anode electrode and the cathode electrode, respectively. This energizes between the anode electrode and the cathode electrode to generate a pulse signal. For example, Patent Document 1 discloses a GM tube including a rod-shaped anode electrode and a cylindrical cathode electrode surrounding the anode electrode and formed of a metal sheet.
特開2014-55817号公報JP 2014-55817 A
 しかし、特許文献1では、金属シートで形成される円筒状の陰極電極が透過力の無いβ線を遮るため、β線の検出感度が低い。また、棒状の陽極電極の周りに陽極電極からの距離に依存した電界強度減衰があり、測定感度が変動し易く測定結果が不安定になる場合があった。 However, in Patent Document 1, since the cylindrical cathode electrode formed of a metal sheet blocks β-rays having no transmission power, the detection sensitivity of β-rays is low. Further, there is an electric field intensity attenuation around the rod-shaped anode electrode depending on the distance from the anode electrode, and the measurement sensitivity is likely to fluctuate and the measurement result may become unstable.
 本発明では、安定した放射線の測定を行うことができ、β線の測定感度が高いガイガーミュラー計数管及び放射線計測計を提供することを目的とする。 An object of the present invention is to provide a Geiger-Muller counter and a radiation meter that can perform stable radiation measurement and have high β-ray measurement sensitivity.
 第1観点のガイガーミュラー計数管は、密封された空間を有する封入管と、空間内に配置され平板状に形成される陽極電極と、平板状に形成され、空間内で陽極電極に平行に、陽極電極と所定の間隔で配置される陰極電極と、空間内に密封される不活性ガス及びクエンチガスと、を備える。 A Geiger-Muller counter tube according to a first aspect is a sealed tube having a sealed space, an anode electrode disposed in the space and formed in a flat plate shape, formed in a flat plate shape, and parallel to the anode electrode in the space, A cathode electrode disposed at a predetermined interval from the anode electrode; and an inert gas and a quench gas sealed in the space.
 第2観点のガイガーミュラー計数管は、第1観点において、陽極電極及び陰極電極の少なくとも一方が、複数の金属線材が網状に編み込まれた金網により形成される。 In the Geiger-Muller counter tube according to the second aspect, in the first aspect, at least one of the anode electrode and the cathode electrode is formed of a metal mesh in which a plurality of metal wires are knitted in a net shape.
 第3観点のガイガーミュラー計数管は、第1観点において、陽極電極及び陰極電極の少なくとも一方が、金属板により形成される。 In the Geiger-Muller counter tube according to the third aspect, in the first aspect, at least one of the anode electrode and the cathode electrode is formed of a metal plate.
 第4観点のガイガーミュラー計数管は、第3観点において、金属板には、金属板を貫通する複数の貫通孔が形成されている。 In the Geiger-Muller counter tube according to the fourth aspect, in the third aspect, the metal plate is formed with a plurality of through holes penetrating the metal plate.
 第5観点のガイガーミュラー計数管は、第1観点において、陽極電極及び陰極電極の少なくとも一方が、1本の金属線材が折り曲げられることにより平板状に形成される。 In the Geiger-Muller counter tube according to the fifth aspect, in the first aspect, at least one of the anode electrode and the cathode electrode is formed into a flat plate shape by bending one metal wire.
 第6観点のガイガーミュラー計数管は、第1観点から第5観点において、陰極電極が互いに平行な2枚の平板状の電極により構成され、2枚の平板状の電極の間に陽極電極が挟み込まれている。 A Geiger-Muller counter tube according to a sixth aspect is the first to fifth aspects of the Geiger-Muller counter tube, in which the cathode electrode is composed of two plate-like electrodes parallel to each other, and the anode electrode is sandwiched between the two plate-like electrodes. It is.
 第7観点のガイガーミュラー計数管は、第1観点から第5観点において、陽極電極が複数の平板状の電極により構成され、陰極電極が複数の平板状の電極により構成され、陽極電極の各平板状の電極と陰極電極の各平板状の電極とが互いに交互に重なるように配置されている。 A Geiger-Muller counter tube according to a seventh aspect is the first to fifth aspects, wherein the anode electrode is composed of a plurality of flat electrodes, the cathode electrode is composed of a plurality of flat electrodes, And the flat electrodes of the cathode electrode are arranged so as to alternately overlap each other.
 第8観点のガイガーミュラー計数管は、第1観点から第7観点において、空間内には、陽極電極及び陰極電極により形成され封入管の一端に固定される第1電極対と、第1電極対と同一の構成を有し封入管の他端に固定される第2電極対と、が配置され、第1電極対と第2電極対とが同一平面上に配置される。 The Geiger-Muller counter tube according to an eighth aspect is the first to seventh aspects, wherein the space includes a first electrode pair formed by an anode electrode and a cathode electrode and fixed to one end of the enclosing tube, and a first electrode pair. And a second electrode pair fixed to the other end of the sealed tube, and the first electrode pair and the second electrode pair are arranged on the same plane.
 第9観点のガイガーミュラー計数管は、第8観点において、封入管の外側から第1電極対の周りを囲みβ線を遮蔽する遮蔽部を備える。 A Geiger-Muller counter tube according to a ninth aspect includes a shielding portion that surrounds the first electrode pair from the outside of the enclosing tube and shields β rays in the eighth aspect.
 第10観点のガイガーミュラー計数管は、第1観点から第7観点において、空間内には、陽極電極及び陰極電極により形成され封入管の一端に固定される第1電極対と、第1電極対と同一の構成を有し封入管の他端に固定される第2電極対と、が配置され、第1電極対の陽極電極を含む平面と第2電極対の陽極電極を含む平面とが互いに直角に交わる。 A Geiger-Muller counter tube according to a tenth aspect is the first to seventh aspects, wherein the space includes a first electrode pair formed by an anode electrode and a cathode electrode and fixed to one end of the enclosing tube, and a first electrode pair. And a second electrode pair fixed to the other end of the enclosing tube, and a plane including the anode electrode of the first electrode pair and a plane including the anode electrode of the second electrode pair are mutually connected Intersect at right angles.
 第11観点の放射線計測計は、第1観点から第10観点のガイガーミュラー計数管と、陽極電極と陰極電極との間に所定の高電圧を印加する1つの高電圧回路部と、高電圧回路部に接続され、ガイガーミュラー計数管で計測されたパルス信号をカウントするカウンターと、カウンターでカウントされたパルス信号を放射線量に換算する算出部と、を備える。 A radiation meter according to an eleventh aspect includes a Geiger-Muller counter tube according to the first aspect to the tenth aspect, one high voltage circuit unit that applies a predetermined high voltage between the anode electrode and the cathode electrode, and a high voltage circuit And a counter that counts the pulse signal measured by the Geiger-Muller counter and a calculation unit that converts the pulse signal counted by the counter into a radiation dose.
 本発明のガイガーミュラー計数管及び放射線計測計によれば、安定した放射線の測定を行うことができ、β線の検出感度を高くすることができる。 According to the Geiger-Muller counter and the radiation meter of the present invention, stable radiation measurement can be performed and β-ray detection sensitivity can be increased.
(a)は、ガイガーミュラー計数管100の概略部分斜視図である。(b)は、陰極電極130の部分平面図である。(c)は、ガイガーミュラー計数管100の概略側面図である。1A is a schematic partial perspective view of a Geiger-Muller counter tube 100. FIG. FIG. 4B is a partial plan view of the cathode electrode 130. (C) is a schematic side view of the Geiger-Muller counter tube 100. FIG. 放射線計測計10の概略構成図である。1 is a schematic configuration diagram of a radiation meter 10. (a)は、従来のガイガーミュラー計数管100aの概略部分斜視図である。(b)は、電場ε(r)と距離rとの関係が示されたグラフである。(c)は、電場ε(x)と距離xとの関係が示されたグラフである。(A) is a general | schematic fragmentary perspective view of the conventional Geiger-Muller counter tube 100a. (B) is a graph showing the relationship between the electric field ε (r) and the distance r. (C) is a graph showing the relationship between the electric field ε (x) and the distance x. (a)は、ガイガーミュラー計数管200の概略部分斜視図である。(b)は、ガイガーミュラー計数管300の概略部分斜視図である。(A) is a schematic partial perspective view of the Geiger-Muller counter tube 200. FIG. (B) is a schematic partial perspective view of the Geiger-Muller counter tube 300. FIG. ガイガーミュラー計数管400の概略部分斜視図である。2 is a schematic partial perspective view of a Geiger-Muller counter tube 400. FIG. (a)は、ガイガーミュラー計数管500の概略部分斜視図である。(b)は、ガイガーミュラー計数管500の概略側面図である。(A) is a schematic partial perspective view of the Geiger-Muller counter tube 500. FIG. (B) is a schematic side view of the Geiger-Muller counter tube 500. FIG. (a)は、ガイガーミュラー計数管600の概略部分斜視図である。(b)は、ガイガーミュラー計数管600の概略側面図である。(A) is a schematic partial perspective view of the Geiger-Muller counter tube 600. FIG. (B) is a schematic side view of the Geiger-Muller counter tube 600. FIG. (a)は、ガイガーミュラー計数管700の概略部分側面図である。(b)は、基板150に取り付けられたガイガーミュラー計数管700の概略側面図である。(A) is a schematic partial side view of the Geiger-Muller counter tube 700. FIG. FIG. 5B is a schematic side view of the Geiger-Muller counter tube 700 attached to the substrate 150. 放射線計測計70の概略構成図である。2 is a schematic configuration diagram of a radiation meter 70. FIG. (a)は、ガイガーミュラー計数管800の概略側面図である。(b)は、放射線計測計80の概略構成図である。(A) is a schematic side view of the Geiger-Muller counter tube 800. FIG. (B) is a schematic block diagram of the radiation meter 80. ガイガーミュラー計数管900の概略部分斜視図である。2 is a schematic partial perspective view of a Geiger-Muller counter tube 900. FIG.
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、本発明の範囲は以下の説明において特に本発明を限定する旨の記載がない限り、これらの形態に限られるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. It should be noted that the scope of the present invention is not limited to these forms unless otherwise specified in the following description.
(第1実施形態)
<ガイガーミュラー計数管100の構成>
 図1(a)は、ガイガーミュラー計数管100の概略部分斜視図である。ガイガーミュラー計数管100は主に、封入管110と、封入管110内に封入される陽極電極120と、封入管110内に封入される陰極電極130と、により形成されている。封入管110は、例えば円筒形の外形を有するガラス管である。以下の説明では、封入管110が伸びる方向をZ軸方向、封入管110の直径方向でありZ軸方向に垂直な方向をX軸方向、同じく封入管110の直径方向でありX軸方向及びZ軸方向に垂直な方向をY軸方向とする。
(First embodiment)
<Configuration of Geiger-Muller counter 100>
FIG. 1A is a schematic partial perspective view of the Geiger-Muller counter tube 100. The Geiger-Muller counter tube 100 is mainly formed by an enclosure tube 110, an anode electrode 120 enclosed in the enclosure tube 110, and a cathode electrode 130 enclosed in the enclosure tube 110. The enclosure tube 110 is a glass tube having a cylindrical outer shape, for example. In the following description, the direction in which the sealed tube 110 extends is the Z-axis direction, the diameter direction of the sealed tube 110 and the direction perpendicular to the Z-axis direction is the X-axis direction, and the diameter direction of the sealed tube 110 is also the X-axis direction and Z A direction perpendicular to the axial direction is taken as a Y-axis direction.
 陽極電極120及び陰極電極130は、矩形の平板状に形成されており、複数の金属線材が網状に編み込まれた金網として構成されている。陽極電極120及び陰極電極130は、共にXZ平面上に形成されており、互いの主面が向かい合い、Y軸方向に全体が重なるように配置されている。また、陽極電極120には線状の陽極導体121が接合され、陰極電極130には線状の陰極導体131が接合されている。 The anode electrode 120 and the cathode electrode 130 are formed in a rectangular flat plate shape, and are configured as a wire mesh in which a plurality of metal wires are knitted in a mesh shape. The anode electrode 120 and the cathode electrode 130 are both formed on the XZ plane, and are arranged so that their main surfaces face each other and overlap in the Y-axis direction. A linear anode conductor 121 is joined to the anode electrode 120, and a linear cathode conductor 131 is joined to the cathode electrode 130.
 封入管110の内部空間111には、陽極電極120及び陰極電極130と共に、不活性ガス及びクエンチガスが封入される。不活性ガスには、例えばヘリウム(He)、ネオン(Ne)、又はアルゴン(Ar)などの希ガスが用いられる。また、クエンチガスには、例えば、フッ素(F)、臭素(Br)又は塩素(Cl)等のハロゲン系のガスが用いられる。 An inert gas and a quench gas are sealed in the internal space 111 of the sealed tube 110 together with the anode electrode 120 and the cathode electrode 130. As the inert gas, for example, a rare gas such as helium (He), neon (Ne), or argon (Ar) is used. As the quench gas, for example, a halogen-based gas such as fluorine (F), bromine (Br), or chlorine (Cl) is used.
 図1(b)は、陰極電極130の部分平面図である。陰極電極130は、例えば図1(b)に示されるように、X軸及びZ軸に平行に並べられた複数の金属線材151が互いに網状に編み込まれることにより金網として形成されている。金網には複数の網目152が形成されており、網目152は陰極電極130をY軸方向に貫通する貫通孔となっている。陽極導体120も陰極導体130と同様に形成されている。また、金属線材151は、例えば鉄、ニッケル、コバルトの合金である金属コバール又はステンレスにより形成される。 FIG. 1B is a partial plan view of the cathode electrode 130. For example, as shown in FIG. 1B, the cathode electrode 130 is formed as a wire mesh by knitting a plurality of metal wires 151 arranged in parallel with the X axis and the Z axis into a net shape. A plurality of meshes 152 are formed in the metal mesh, and the meshes 152 are through holes that penetrate the cathode electrode 130 in the Y-axis direction. The anode conductor 120 is also formed in the same manner as the cathode conductor 130. The metal wire 151 is made of, for example, metal Kovar or stainless steel, which is an alloy of iron, nickel, and cobalt.
 図1(c)は、ガイガーミュラー計数管100の概略側面図である。封入管110のZ軸方向の両端は閉じられており、陰極導体131及び陽極導体121が封入管110の-Z軸側の端を貫通して封入管110の外側に引き出されている。陽極電極120と陰極電極130とは互いに間隔dだけ離れて平行に配置されている。また、陽極電極120と陰極電極130とに挟まれた領域が放射線を検出する放射線検出空間112となっている。放射線の1つであるβ線は透過力が低いため遮蔽物で容易に遮られるが、ガイガーミュラー計数管100では陽極電極120及び陰極電極130に貫通孔となる網目152が形成されるため、+Y軸側及び-Y軸側からガイガーミュラー計数管100に入射するβ線を、網目152を介して放射線検出空間112に導くことができる。 FIG. 1 (c) is a schematic side view of the Geiger-Muller counter tube 100. Both ends of the enclosing tube 110 in the Z-axis direction are closed, and the cathode conductor 131 and the anode conductor 121 pass through the −Z-axis end of the enclosing tube 110 and are drawn to the outside of the enclosing tube 110. The anode electrode 120 and the cathode electrode 130 are arranged in parallel with a distance d therebetween. Further, a region sandwiched between the anode electrode 120 and the cathode electrode 130 is a radiation detection space 112 for detecting radiation. Since β-ray, which is one of the radiations, has a low transmission power, it is easily blocked by a shield. However, in the Geiger-Muller counter tube 100, a mesh 152 serving as a through hole is formed in the anode electrode 120 and the cathode electrode 130. Β rays incident on the Geiger-Muller counter 100 from the axis side and the −Y axis side can be guided to the radiation detection space 112 via the mesh 152.
 ガイガーミュラー計数管100では、陽極電極120と陰極電極130との間に例えば数百Vの電圧がかけられることにより放射線検出空間112に電場が形成される。この放射線検出空間112に放射線が侵入した場合には、放射線が不活性ガスを正に帯電したイオンと負に帯電した電子とに電離させ、電離したイオン及び電子がそれぞれ陰極電極130及び陽極電極120に向かって加速する。加速されたイオンは、他の不活性ガスに衝突して他の不活性ガスを電離させる。このような電離の繰り返しにより、放射線検出空間112には電離したイオン及び電子が雪崩状に増大してパルス電流が流れる。このような雪崩状の電子を電子雪崩という。ガイガーミュラー計数管100を有する放射線計測計10(図2参照)は、このようなパルス電流によるパルス信号のパルスの回数を計測することにより放射線量を測定することができる。また、このような電流が連続的に流れるとパルスの回数を計測できなくなるが、これを防ぐためにクエンチガスが不活性ガスと共に内部空間111に封入されている。クエンチガスはイオンが有するエネルギーを失わせる働きをする。 In the Geiger-Muller counter tube 100, an electric field is formed in the radiation detection space 112 by applying a voltage of, for example, several hundred volts between the anode electrode 120 and the cathode electrode. When radiation enters the radiation detection space 112, the radiation ionizes the inert gas into positively charged ions and negatively charged electrons, and the ionized ions and electrons are the cathode electrode 130 and the anode electrode 120, respectively. Accelerate towards The accelerated ions collide with other inert gases and ionize the other inert gases. By repeating such ionization, ionized ions and electrons increase in an avalanche state in the radiation detection space 112 and a pulse current flows. Such avalanche-like electrons are called electronic avalanches. The radiation measuring instrument 10 (see FIG. 2) having the Geiger-Muller counter 100 can measure the radiation dose by measuring the number of pulses of the pulse signal by such a pulse current. Further, when such a current flows continuously, the number of pulses cannot be measured. To prevent this, a quench gas is enclosed in the internal space 111 together with an inert gas. The quench gas serves to lose the energy of ions.
<放射線計測計10の構成>
 図2は、放射線計測計10の概略構成図である。放射線計測計10は、ガイガーミュラー計数管100を含んで構成されている。陽極導体121及び陰極導体131は高電圧回路部21に接続されており、両導体間には高電圧がかけられる。高電圧回路部21はカウンター22に接続されており、ガイガーミュラー計数管100の放射線検出空間112で検出されたパルス信号がカウンター22でカウントされる。カウンター22でのカウントは算出部23で放射線量に換算され、換算された放射線量が表示部24に表示される。算出部23には電源25が接続されることにより電力が供給される。
<Configuration of radiation meter 10>
FIG. 2 is a schematic configuration diagram of the radiation meter 10. The radiation measuring instrument 10 includes a Geiger-Muller counter tube 100. The anode conductor 121 and the cathode conductor 131 are connected to the high voltage circuit unit 21, and a high voltage is applied between the two conductors. The high voltage circuit unit 21 is connected to the counter 22, and the pulse signal detected in the radiation detection space 112 of the Geiger-Muller counter tube 100 is counted by the counter 22. The count at the counter 22 is converted into a radiation dose by the calculation unit 23, and the converted radiation dose is displayed on the display unit 24. The calculator 23 is supplied with electric power when the power source 25 is connected thereto.
<ガイガーミュラー計数管100と従来のガイガーミュラー計数管100aとの比較>
 図3(a)は、従来のガイガーミュラー計数管100aの概略部分斜視図である。ガイガーミュラー計数管100aは封入管110内にZ軸方向に伸びる棒状の陽極電極120aと、陽極電極120aの周りを囲む円筒形の陰極電極130aと、を含んで構成されている。陽極電極120aには陽極導体121が接合され、陰極電極130aには陰極導体131が接合されている。ガイガーミュラー計数管100aでは、陰極電極130aで囲まれた領域が放射線検出空間112aとなっている。
<Comparison between Geiger-Muller counter tube 100 and conventional Geiger-Muller counter tube 100a>
FIG. 3A is a schematic partial perspective view of a conventional Geiger-Muller counter tube 100a. The Geiger-Muller counter tube 100a includes a rod-shaped anode electrode 120a extending in the Z-axis direction and a cylindrical cathode electrode 130a surrounding the anode electrode 120a. An anode conductor 121 is joined to the anode electrode 120a, and a cathode conductor 131 is joined to the cathode electrode 130a. In the Geiger-Muller counter tube 100a, a region surrounded by the cathode electrode 130a is a radiation detection space 112a.
 陽極電極120aは、陰極電極130aの中心軸上に配置されている。陽極電極120aの半径をaとし、陰極電極130aの内径の半分をbとし、放射線検出空間112a内の任意の位置の陰極電極130aの中心軸からの距離をrとし、陽極電極120aと陰極電極130aとの間の電圧をVとすると、放射線検出空間112a内の任意の位置における電場ε(r)は、以下の式(1)で表される。ε(r)=V/(r×ln(b/a))・・・・・・(1) The anode electrode 120a is disposed on the central axis of the cathode electrode 130a. The radius of the anode electrode 120a is a, half the inner diameter of the cathode electrode 130a is b, the distance from the central axis of the cathode electrode 130a at an arbitrary position in the radiation detection space 112a is r, and the anode electrode 120a and the cathode electrode 130a Assuming that the voltage between and is V 0 , the electric field ε (r) at an arbitrary position in the radiation detection space 112a is expressed by the following equation (1). ε (r) = V 0 / (r × ln (b / a)) (1)
 図3(b)は、電場ε(r)と距離rとの関係が示されたグラフである。図3(b)では、横軸に距離rが示され、縦軸に電場ε(r)が示されている。また、図3(b)には式(1)で表される実線160が示されている。実線160で示されるように、電場ε(r)の大きさは、陽極電極120aの表面であるr=aの位置から距離rの増加と共に小さくなる。また、電子雪崩を起こすために最低限必要な電場の大きさをεとし、このときの式(1)における距離rをcとすると、電子雪崩はa<r≦cの範囲で起こることになる。すなわち、c<bである場合には、陰極電極130aで囲まれた全領域で放射線を検出する訳ではなく、陽極電極120aの周囲のみで電子雪崩が起きる。このように、ガイガーミュラー計数管100aでは、陽極電極120aの周りに陽極電極120aからの距離に依存した電界強度減衰があるため、陽極電極120aと陰極電極130aとの相対位置のずれ又は電圧Vの僅かな変化等により電子雪崩が起きる領域が変化し、測定感度が変動して測定結果が不安定になる場合がある。 FIG. 3B is a graph showing the relationship between the electric field ε (r) and the distance r. In FIG. 3B, the horizontal axis indicates the distance r, and the vertical axis indicates the electric field ε (r). FIG. 3B shows a solid line 160 represented by the expression (1). As indicated by the solid line 160, the magnitude of the electric field ε (r) decreases with increasing distance r from the position r = a, which is the surface of the anode electrode 120a. In addition, when the minimum electric field size necessary for causing an avalanche is ε 1 and the distance r in Equation (1) at this time is c, the electron avalanche occurs in the range of a <r ≦ c. Become. That is, when c <b, radiation is not detected in the entire region surrounded by the cathode electrode 130a, but an electron avalanche occurs only around the anode electrode 120a. Thus, in the Geiger-Muller counter tube 100a, since there is an electric field intensity attenuation around the anode electrode 120a depending on the distance from the anode electrode 120a, the relative position shift or voltage V 0 between the anode electrode 120a and the cathode electrode 130a. A region where an electronic avalanche occurs due to a slight change in the amount of change may cause measurement sensitivity to fluctuate, resulting in unstable measurement results.
 図3(c)は、電場ε(x)と距離xとの関係が示されたグラフである。図3(c)では、横軸に距離xが示され、縦軸に電場ε(x)が示されている。電場ε(x)は、ガイガーミュラー計数管100の放射線検出空間112内(図1(c)参照)において、陽極電極120との距離がxである場合の任意の位置の電場の大きさを示している。距離xは、0≦x≦dである。電場ε(x)は、陽極電極120と陰極電極130との間の電圧をVとし、陽極電極120と陰極電極130との間隔をdとすると、以下の式(2)で示される。ε(x)=V/d・・・・・・(2) FIG. 3C is a graph showing the relationship between the electric field ε (x) and the distance x. In FIG. 3C, the horizontal axis indicates the distance x, and the vertical axis indicates the electric field ε (x). The electric field ε (x) indicates the magnitude of the electric field at an arbitrary position when the distance from the anode electrode 120 is x in the radiation detection space 112 of the Geiger-Muller counter tube 100 (see FIG. 1C). ing. The distance x is 0 ≦ x ≦ d. The electric field ε (x) is expressed by the following formula (2), where V 0 is the voltage between the anode electrode 120 and the cathode electrode 130, and d is the distance between the anode electrode 120 and the cathode electrode 130. ε (x) = V 0 / d (2)
 図3(c)には、式(2)で表される実線161が示されている。式(2)及び実線161で示されるように、電場ε(x)の大きさは距離xに依存せず一定の値を取る。そのため、電場ε(x)がεよりも大きい場合には、放射線検出空間112(図1(c)参照)の全領域で放射線を検出することができる。 FIG. 3C shows a solid line 161 expressed by the equation (2). As indicated by the equation (2) and the solid line 161, the magnitude of the electric field ε (x) does not depend on the distance x and takes a constant value. Therefore, when the electric field epsilon (x) is greater than epsilon 1, the radiation can be detected in the entire region of the radiation detection space 112 (see FIG. 1 (c)).
 測定する放射線には主にβ線とγ線とが含まれるが、β線はγ線のように透過力が強いわけではないので外部被爆要因としてはγ線ほど問題にはならない。しかし、β線を放射する放射性物質が体内に取り込まれた場合には放射エネルギーが全て吸収されるため、γ線核種が体内に取り込まれた場合よりも人体に大きなダメージとなる。例えば、β線を放つ放射性物質としては放射性ストロンチウム等があるが、放射性ストロンチウムが体内に取り込まれると骨に蓄積されて放射線を出し続けるため危険である。 Measured radiation mainly includes β-rays and γ-rays, but β-rays are not as strong as γ-rays, so they are not as problematic as γ-rays as external exposure factors. However, when a radioactive substance that emits β-rays is taken into the body, all of the radiant energy is absorbed, so that the human body is more damaged than when γ-ray nuclides are taken into the body. For example, radioactive strontium is a radioactive substance that emits β-rays, but if radioactive strontium is taken into the body, it accumulates in the bone and continues to emit radiation, which is dangerous.
 放射性ストロンチウムは人体に危険を及ぼすため、放射性ストロンチウムの存在の有無などを把握する必要がある。しかし、放射性ストロンチウムはβ線しか放射しないためγ線の測定に特化したガイガーミュラー計数管では検出できなかった。また、図3(a)に示されるような従来のガイガーミュラー計数管100aは、陰極電極130aに薄い金属シートを使用することで多少のβ線は通すものの金属シートの透過時にβ線の大きな減衰が生じ、β線の検出感度が低かった。 Since radioactive strontium poses a danger to the human body, it is necessary to know the presence or absence of radioactive strontium. However, since radioactive strontium only emits β-rays, it could not be detected by a Geiger-Muller counter specialized for measuring γ-rays. Further, the conventional Geiger-Muller counter tube 100a as shown in FIG. 3A uses a thin metal sheet for the cathode electrode 130a, so that some β-rays pass, but the β-rays are greatly attenuated when passing through the metal sheet. The β-ray detection sensitivity was low.
 ガイガーミュラー計数管100(図1(a)参照)では、陽極電極120及び陰極電極130にそれぞれ貫通孔となる網目152が形成されるため、網目152を通して放射線検出空間112内にβ線を入射させることができる。これにより、β線の検出感度を大きく落とすことなくβ線の測定を行うことができる。 In the Geiger-Muller counter 100 (see FIG. 1A), a mesh 152 serving as a through-hole is formed in each of the anode electrode 120 and the cathode electrode 130, so that β-rays are incident into the radiation detection space 112 through the mesh 152. be able to. As a result, it is possible to measure β rays without greatly reducing the detection sensitivity of β rays.
 また、従来のガイガーミュラー計数管100a(図3(a)参照)では、封入管110内において放射線による不活性ガスの電離等により放射線検出空間112aと放射線検出空間112a以外の内部空間111との間に不活性ガス等の濃度差が生じ易く、放射線の検出感度が低下する場合がある。ガイガーミュラー計数管100では、陽極電極120及び陰極電極130にそれぞれ網目152が形成されることによって放射線検出空間112と放射線検出空間112以外の内部空間111との間のガスの通気が良くなり、封入管110内でのガスの流れが促され易い。これによって、ガイガーミュラー計数管100では、放射線検出空間112と放射線検出空間112以外の内部空間111との間の不活性ガス等の濃度差が緩和され、放射線の検出感度の低下が防がれている。 Further, in the conventional Geiger-Muller counter tube 100a (see FIG. 3A), between the radiation detection space 112a and the internal space 111 other than the radiation detection space 112a due to ionization of an inert gas due to radiation in the sealed tube 110. In some cases, a difference in concentration of inert gas or the like is likely to occur, and the detection sensitivity of radiation may be lowered. In the Geiger-Muller counter tube 100, the mesh 152 is formed in each of the anode electrode 120 and the cathode electrode 130, whereby the gas flow between the radiation detection space 112 and the internal space 111 other than the radiation detection space 112 is improved. The flow of gas in the tube 110 is easily promoted. As a result, in the Geiger-Muller counter tube 100, the concentration difference of inert gas or the like between the radiation detection space 112 and the internal space 111 other than the radiation detection space 112 is alleviated, and a decrease in radiation detection sensitivity is prevented. Yes.
 また、ガイガーミュラー計数管100では、陽極電極120及び陰極電極130の面積が大きい場合には、Y軸方向から飛来するβ線を測定する場合に最もβ線の検出量が高くなる。そのため、ガイガーミュラー計数管100を様々な方向に向けて放射線の検出量が高くなる方向を調べることにより、放射線の飛来方向を特定することができる。 Also, in the Geiger-Muller counter tube 100, when the areas of the anode electrode 120 and the cathode electrode 130 are large, the amount of β-rays detected is highest when measuring β-rays flying from the Y-axis direction. Therefore, the direction in which the radiation comes can be identified by directing the Geiger-Muller counter tube 100 in various directions and examining the direction in which the detected amount of radiation increases.
 また、従来のガイガーミュラー計数管100aでは、陽極電極120aからの距離に依存した電界強度減衰に起因して測定感度が変動し、測定結果にばらつきを生じる場合があった。これに対して、ガイガーミュラー計数管100では放射線検出空間112に電界強度減衰がなく一定であり、電子雪崩が起きる領域の大きさも一定であるため、測定感度が変動する要因が少ない。そのため、ガイガーミュラー計数管100では、β線を含む放射線の安定した測定を行うことができる。 Further, in the conventional Geiger-Muller counter tube 100a, the measurement sensitivity may fluctuate due to the electric field intensity attenuation depending on the distance from the anode electrode 120a, and the measurement results may vary. On the other hand, in the Geiger-Muller counter tube 100, the radiation detection space 112 is constant without attenuation of the electric field strength, and the size of the region where the electron avalanche occurs is also constant. Therefore, the Geiger-Muller counter tube 100 can perform stable measurement of radiation including β rays.
(第2実施形態)
 陽極電極及び陰極電極の少なくとも一方は、金属網以外により構成されても良い。以下に、陽極電極及び陰極電極の少なくとも一方が金属網以外で形成されたガイガーミュラー計数管の変形例を示す。また、以下の説明では、第1実施形態と同じ部分に関しては第1実施形態と同じ符号を付してその説明を省略する。
(Second Embodiment)
At least one of the anode electrode and the cathode electrode may be composed of other than a metal net. Hereinafter, a modified example of the Geiger-Muller counter tube in which at least one of the anode electrode and the cathode electrode is formed of a material other than the metal net is shown. In the following description, the same parts as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and the description thereof is omitted.
<ガイガーミュラー計数管200の構成>
 図4(a)は、ガイガーミュラー計数管200の概略部分斜視図である。ガイガーミュラー計数管200は主に、封入管110と、封入管110内に配置された陽極電極220と、陽極電極220に対して+Y軸方向に所定の距離だけ離れて重なるように封入管110内に配置された陰極電極230と、により構成されている。また、陽極電極220には陽極導体121が接合され、陰極電極230には陰極導体131が接合されている。すなわち、ガイガーミュラー計数管200はガイガーミュラー計数管100において、陽極電極120を陽極電極220に代え、陰極電極130を陰極電極230に代えた構成となっている。
<Configuration of Geiger-Muller counter 200>
FIG. 4A is a schematic partial perspective view of the Geiger-Muller counter tube 200. The Geiger-Muller counter tube 200 mainly includes an enclosure tube 110, an anode electrode 220 disposed in the enclosure tube 110, and an inside of the enclosure tube 110 so as to overlap with the anode electrode 220 by a predetermined distance in the + Y-axis direction. And a cathode electrode 230 disposed on the substrate. An anode conductor 121 is joined to the anode electrode 220, and a cathode conductor 131 is joined to the cathode electrode 230. That is, the Geiger-Muller counter tube 200 has a configuration in which the anode electrode 120 is replaced with the anode electrode 220 and the cathode electrode 130 is replaced with the cathode electrode 230 in the Geiger-Muller counter tube 100.
 図1(a)に示されるガイガーミュラー計数管100では、陽極電極120及び陰極電極130に、金網の代わりに金属板が用いられても良い。金属板は、例えば鉄、ニッケル、コバルトの合金である金属コバール又はステンレスの矩形形状の金属の板等により形成されることができる。図4(a)に示されるガイガーミュラー計数管200では陽極電極220及び陰極電極230に金属板を用いており、更に陽極電極220には複数の貫通孔221が形成され、陰極電極230には複数の貫通孔231が形成されている。 In the Geiger-Muller counter tube 100 shown in FIG. 1A, a metal plate may be used for the anode electrode 120 and the cathode electrode 130 instead of the wire mesh. The metal plate can be formed of, for example, a metal Kovar that is an alloy of iron, nickel, or cobalt, or a stainless steel rectangular metal plate. In the Geiger-Muller counter tube 200 shown in FIG. 4A, metal plates are used for the anode electrode 220 and the cathode electrode 230, and a plurality of through holes 221 are formed in the anode electrode 220. Through-holes 231 are formed.
 ガイガーミュラー計数管200では、陽極電極220及び陰極電極230に平板状の金属板を用いることでβ線を含む放射線の安定した測定を行うことができ、さらに各電極に貫通孔を形成することでβ線の測定感度の向上が図られている。 In the Geiger-Muller counter tube 200, by using flat metal plates for the anode electrode 220 and the cathode electrode 230, it is possible to perform stable measurement of radiation including β-rays, and by forming through holes in each electrode. Improvement of β-ray measurement sensitivity is achieved.
<ガイガーミュラー計数管300の構成>
 図4(b)は、ガイガーミュラー計数管300の概略部分斜視図である。ガイガーミュラー計数管300は主に、封入管110と、封入管110内に配置された陽極電極320と、陽極電極320に対して+Y軸方向に所定の距離だけ離れて重なるように封入管110内に配置された陰極電極330と、により構成されている。陽極電極320は平面状に形成され、陽極電極320及び陽極電極320に接続される陽極導体321は1本の棒が折り曲げられることにより一体的に形成されている。陰極電極330及び陰極電極330に接続される陰極導体331も陽極電極320及び陽極導体321と同様の形状に形成されている。
<Configuration of Geiger-Muller counter 300>
FIG. 4B is a schematic partial perspective view of the Geiger-Muller counter tube 300. The Geiger-Muller counter tube 300 mainly includes an enclosing tube 110, an anode electrode 320 disposed in the enclosing tube 110, and an inside of the enclosing tube 110 so as to overlap the anode electrode 320 by a predetermined distance in the + Y axis direction. And a cathode electrode 330 disposed on the substrate. The anode electrode 320 is formed in a planar shape, and the anode electrode 320 and the anode conductor 321 connected to the anode electrode 320 are integrally formed by bending one bar. The cathode electrode 330 and the cathode conductor 331 connected to the cathode electrode 330 are also formed in the same shape as the anode electrode 320 and the anode conductor 321.
 ガイガーミュラー計数管300では、陽極電極320及び陰極電極330が平板状に形成されるが、各電極は1本の棒が密度が疎になるように折り曲げられて形成されているため、図4(b)に示されるように多くの隙間が形成される。この隙間が各電極の貫通孔となり、β線の測定感度の向上が図られている。 In the Geiger-Muller counter tube 300, the anode electrode 320 and the cathode electrode 330 are formed in a flat plate shape, but each electrode is formed by bending one rod so that the density is sparse. Many gaps are formed as shown in b). This gap serves as a through hole for each electrode, thereby improving the β-ray measurement sensitivity.
<ガイガーミュラー計数管400の構成>
 図5は、ガイガーミュラー計数管400の概略部分斜視図である。ガイガーミュラー計数管400は、図1(a)に示されたガイガーミュラー計数管100において、陽極電極120を矩形形状の金属板により構成される陽極電極420に取り換えることにより構成されている。すなわち、ガイガーミュラー計数管100とガイガーミュラー計数管400とは陽極電極の構成のみが異なっている。
<Configuration of Geiger-Muller Counter 400>
FIG. 5 is a schematic partial perspective view of the Geiger-Muller counter tube 400. The Geiger-Muller counter tube 400 is configured by replacing the anode electrode 120 with an anode electrode 420 formed of a rectangular metal plate in the Geiger-Muller counter tube 100 shown in FIG. That is, the Geiger-Muller counter tube 100 and the Geiger-Muller counter tube 400 differ only in the configuration of the anode electrode.
 ガイガーミュラー計数管100では±Y軸方向から飛来するβ線を検出する場合に最もβ線の検出量が高くなるが、ガイガーミュラー計数管400では-Y軸側から飛来するβ線が陽極電極420により妨げられるため、+Y軸側から飛来するβ線を検出する場合に最もβ線の検出量が高くなる。そのため、ガイガーミュラー計数管400では、β線の検出量が最も高くなる方向を調べることにより、β線が飛来する方向を特定することができる。 In the Geiger-Muller counter tube 100, when detecting β-rays flying from the ± Y-axis direction, the amount of β-rays detected is the highest. However, in the Geiger-Muller counter tube 400, β-rays flying from the −Y-axis side are anode electrodes 420. Therefore, when detecting β rays flying from the + Y axis side, the detection amount of β rays is the highest. Therefore, in the Geiger-Muller counter tube 400, the direction in which β rays come in can be specified by examining the direction in which the detection amount of β rays becomes the highest.
(第3実施形態)
 陽極電極及び陰極電極の少なくとも一方は、複数枚配置されていても良い。以下に、陽極電極及び陰極電極の少なくとも一方が複数枚配置されたガイガーミュラー計数管を示す。また、以下の説明では、第1実施形態又は第2実施形態と同じ部分に関しては第1実施形態又は第2実施形態と同じ符号を付してその説明を省略する。
(Third embodiment)
A plurality of anode electrodes and / or cathode electrodes may be arranged. The Geiger-Muller counter tube in which a plurality of at least one of the anode electrode and the cathode electrode are arranged is shown below. In the following description, the same parts as those in the first embodiment or the second embodiment are denoted by the same reference numerals as those in the first embodiment or the second embodiment, and the description thereof is omitted.
<ガイガーミュラー計数管500の構成>
 図6(a)は、ガイガーミュラー計数管500の概略部分斜視図である。ガイガーミュラー計数管500は主に、内部空間511を有する封入管510と、内部空間511に配置された陽極電極120と、内部空間511で陽極電極120の+Y軸側に配置された陰極電極530aと、内部空間511で陽極電極120の-Y軸側に配置された陰極電極530bと、により構成されている。陽極電極120には陽極導体121が接合され、陰極電極530aには陰極導体531aが接合され、陰極電極530bには陰極導体531bが接合される。また、陰極電極530a及び陰極電極530bは陰極電極130(図1(a)参照)と同じ構成により形成され、陰極導体531a及び陰極導体531bは陰極導体131(図1(a)参照)と同じ構成により形成されている。
<Configuration of Geiger-Muller counter 500>
FIG. 6A is a schematic partial perspective view of the Geiger-Muller counter tube 500. The Geiger-Muller counter tube 500 mainly includes an enclosed tube 510 having an internal space 511, an anode electrode 120 disposed in the internal space 511, and a cathode electrode 530a disposed on the + Y axis side of the anode electrode 120 in the internal space 511. The cathode electrode 530b disposed on the −Y-axis side of the anode electrode 120 in the internal space 511. The anode conductor 121 is joined to the anode electrode 120, the cathode conductor 531a is joined to the cathode electrode 530a, and the cathode conductor 531b is joined to the cathode electrode 530b. The cathode electrode 530a and the cathode electrode 530b are formed with the same configuration as the cathode electrode 130 (see FIG. 1A), and the cathode conductor 531a and the cathode conductor 531b have the same configuration as the cathode conductor 131 (see FIG. 1A). It is formed by.
 図6(b)は、ガイガーミュラー計数管500の概略側面図である。陽極電極120、陰極電極530a、及び陰極電極530bは、Y軸方向に重なるように配置されている。また、陰極電極530aと陽極電極120との間の距離、及び陰極電極530bと陽極電極120との間の距離が、それぞれ距離d2となるように配置されている。ガイガーミュラー計数管500では、例えば陰極導体531a及び陰極導体531bが互いに電気的に接続されることにより、陽極電極120と陰極電極530a、530bとの間に一定の電圧が印加される。 FIG. 6B is a schematic side view of the Geiger-Muller counter tube 500. The anode electrode 120, the cathode electrode 530a, and the cathode electrode 530b are arranged so as to overlap in the Y-axis direction. Further, the distance between the cathode electrode 530a and the anode electrode 120 and the distance between the cathode electrode 530b and the anode electrode 120 are arranged to be the distance d2. In the Geiger-Muller counter tube 500, for example, the cathode conductor 531a and the cathode conductor 531b are electrically connected to each other, whereby a constant voltage is applied between the anode electrode 120 and the cathode electrodes 530a and 530b.
 式(2)において、電圧Vを変えない場合、電極間の距離dを短くすると電場ε(x)の大きさが大きくなる。そのため、ガイガーミュラー計数管100(図1(c)参照)では、電極間の距離dを調整することにより、電場ε(x)がεよりも大きくなるように調整することができる。しかし、距離dが短すぎる場合には放射線が電子雪崩を起こさないまま放射線検出空間112を通過してしまい、放射線の検出感度が低くなる。また、電極間の距離dを開きすぎると、電極間の電気力線が電極間の外側にはみ出してβ線を検出する領域の大きさが不安定になり、測定精度が低くなる場合がある。 In the equation (2), when the voltage V 0 is not changed, the electric field ε (x) increases as the distance d between the electrodes is shortened. Therefore, in the Geiger-Muller counter tube 100 (see FIG. 1C), the electric field ε (x) can be adjusted to be larger than ε 1 by adjusting the distance d between the electrodes. However, when the distance d is too short, the radiation passes through the radiation detection space 112 without causing an electron avalanche, and the radiation detection sensitivity is lowered. In addition, if the distance d between the electrodes is too wide, the electric force lines between the electrodes protrude outside the electrodes and the size of the region for detecting β-rays becomes unstable, and the measurement accuracy may be lowered.
 ガイガーミュラー計数管500では、電極間の距離が電極間の電気力線が一様に保たれる距離に調整されると共に、電極が重ねられて配置されることで放射線検出空間のY軸方向の長さが長くされ、これにより放射線検出空間でより確実にβ線を捉えることができる。 In the Geiger-Muller counter tube 500, the distance between the electrodes is adjusted to a distance at which the electric lines of force between the electrodes are kept uniform, and the electrodes are arranged so as to overlap each other in the Y-axis direction of the radiation detection space. The length is increased, so that β-rays can be captured more reliably in the radiation detection space.
<ガイガーミュラー計数管600の構成>
 図7(a)は、ガイガーミュラー計数管600の概略部分斜視図である。ガイガーミュラー計数管600は主に、内部空間611を有する封入管610と、内部空間611に配置された複数の陽極電極620a~620dと、内部空間611に配置された複数の陰極電極630a~630dと、により構成されている。陽極電極620a~620dと陰極電極630a~630dとは、各電極の主面がZ軸方向に向いて、陽極電極と陰極電極とが離間してZ軸方向に重なるように交互に配置されている。また、陽極電極620a~620dは陽極導体621に接合され、陰極電極630a~630dは陰極導体631に接合されている。
<Configuration of Geiger-Muller counter 600>
FIG. 7A is a schematic partial perspective view of the Geiger-Muller counter tube 600. The Geiger-Muller counter 600 mainly includes a sealed tube 610 having an internal space 611, a plurality of anode electrodes 620a to 620d disposed in the internal space 611, and a plurality of cathode electrodes 630a to 630d disposed in the internal space 611. , Is configured. The anode electrodes 620a to 620d and the cathode electrodes 630a to 630d are alternately arranged such that the main surfaces of the electrodes are directed in the Z-axis direction, and the anode electrode and the cathode electrode are spaced apart and overlap in the Z-axis direction. . The anode electrodes 620a to 620d are joined to the anode conductor 621, and the cathode electrodes 630a to 630d are joined to the cathode conductor 631.
 封入管610は、例えばZ軸方向に伸びる円筒形のガラス管により形成される。また、複数の陽極電極620a~620d及び複数の陰極電極630a~630dは、それぞれ1本の金属線材が渦巻状に疎巻に曲げられ平板状に形成されている。各電極は、その外形が略円盤状であり、各電極の主面がZ軸方向に向けて配置されることにより、封入管610の外形の大きさが大きくならないように封入管610内に効率よく配置することができる。また、各電極は疎巻に巻かれているため金属線材の間に隙間ができている。この隙間により、Z軸方向から飛来するβ線を捕捉することができ、封入管610内のガスの流れを良くすることができる。 The sealed tube 610 is formed of, for example, a cylindrical glass tube extending in the Z-axis direction. The plurality of anode electrodes 620a to 620d and the plurality of cathode electrodes 630a to 630d are each formed in a flat plate shape by bending a single metal wire into a spiral shape. Each electrode has a substantially disk shape, and the main surface of each electrode is arranged in the Z-axis direction, so that the size of the outer shape of the sealed tube 610 does not increase. Can be placed well. Moreover, since each electrode is wound loosely, a gap is formed between the metal wires. By this gap, β rays flying from the Z-axis direction can be captured, and the gas flow in the sealed tube 610 can be improved.
 図7(b)は、ガイガーミュラー計数管600の概略側面図である。陽極電極及び陰極電極の各電極は、+Z軸側から陰極電極630a、陽極電極620a、陰極電極630b、陽極電極620b、陰極電極630c、陽極電極620c、陰極電極630d、陽極電極620d、の順に配置されている。このように、円盤形の電極がZ軸方向に並んで配置されるため、各電極間に形成される放射線検出空間612の外形はZ軸方向に伸びる円柱型に形成される。 FIG. 7B is a schematic side view of the Geiger-Muller counter 600. The anode electrode and the cathode electrode are arranged in the order of the cathode electrode 630a, the anode electrode 620a, the cathode electrode 630b, the anode electrode 620b, the cathode electrode 630c, the anode electrode 620c, the cathode electrode 630d, and the anode electrode 620d from the + Z-axis side. ing. Thus, since the disk-shaped electrodes are arranged side by side in the Z-axis direction, the outer shape of the radiation detection space 612 formed between the electrodes is formed in a cylindrical shape extending in the Z-axis direction.
 ガイガーミュラー計数管600では、β線を検出する放射線検出空間612がZ軸方向に長く形成されるため、Z軸方向から飛来する放射線をより確実に捕捉し観測することができる。また、図7(b)に示されるように、放射線検出空間612を封入管610の直径方向から見た場合には電極の密度が低いため、封入管610の直径方向から飛来するβ線を測定する場合には、β線が各電極に遮られることが少ないため、β線の検出感度を上げることができる。 In the Geiger-Muller counter 600, the radiation detection space 612 for detecting β rays is formed long in the Z-axis direction, so that radiation flying from the Z-axis direction can be captured and observed more reliably. Further, as shown in FIG. 7B, when the radiation detection space 612 is viewed from the diameter direction of the sealed tube 610, the density of the electrodes is low, and therefore β rays flying from the diameter direction of the sealed tube 610 are measured. In this case, β-rays are hardly blocked by each electrode, so that the detection sensitivity of β-rays can be increased.
(第4実施形態)
 陽極電極と陰極電極との組み合わせにより形成される電極対は、封入管内に複数配置されていても良い。以下に、封入管内に複数の電極対が配置されたガイガーミュラー計数管について説明する。また、以下の説明では、第1実施形態から第3実施形態と同じ部分に関しては第1実施形態から第3実施形態と同じ符号を付してその説明を省略する。
(Fourth embodiment)
A plurality of electrode pairs formed by a combination of the anode electrode and the cathode electrode may be arranged in the sealed tube. Hereinafter, a Geiger-Muller counter tube in which a plurality of electrode pairs are arranged in an enclosed tube will be described. In the following description, the same parts as those in the first to third embodiments are denoted by the same reference numerals as those in the first to third embodiments, and the description thereof is omitted.
<ガイガーミュラー計数管700の構成>
 図8(a)は、ガイガーミュラー計数管700の概略部分側面図である。ガイガーミュラー計数管700は主に、Z軸方向に伸びる円筒形のガラス管により形成され内部空間711を有する封入管710と、内部空間711に配置された第1電極対760aと、内部空間711に配置された第2電極対760bと、により構成されている。
<Configuration of Geiger-Muller counter 700>
FIG. 8A is a schematic partial side view of the Geiger-Muller counter 700. FIG. The Geiger-Muller counter tube 700 mainly includes a sealed tube 710 formed of a cylindrical glass tube extending in the Z-axis direction and having an internal space 711, a first electrode pair 760a disposed in the internal space 711, and an internal space 711. The second electrode pair 760b is arranged.
 第1電極対760aは陽極電極120と陰極電極130との組み合わせにより形成され、陽極電極120には陽極導体121が接合され、陰極電極130には陰極導体131が接合されている。第1電極対760aの構成は、ガイガーミュラー計数管100(図1(c)参照)の陽極電極120と陰極電極130との組み合わせと同じ構成である。第1電極対760aは封入管710の内部空間711の-Z軸側に配置され、陽極導体121及び陰極導体131は封入管710の-Z軸側の端より封入管710の外側に引き出されている。 The first electrode pair 760 a is formed by a combination of the anode electrode 120 and the cathode electrode 130, the anode conductor 121 is joined to the anode electrode 120, and the cathode conductor 131 is joined to the cathode electrode 130. The configuration of the first electrode pair 760a is the same as the combination of the anode electrode 120 and the cathode electrode 130 of the Geiger-Muller counter tube 100 (see FIG. 1C). The first electrode pair 760a is disposed on the −Z-axis side of the internal space 711 of the enclosed tube 710, and the anode conductor 121 and the cathode conductor 131 are drawn out of the enclosed tube 710 from the −Z-axis side end of the enclosed tube 710. Yes.
 第2電極対760bは陽極電極720と陰極電極730との組み合わせにより形成され、陽極電極720には陽極導体721が接合され、陰極電極730には陰極導体731が接合されている。陽極電極720、陰極電極730、陽極導体721、及び陰極導体731はそれぞれ陽極電極120、陰極電極130、陽極導体121、及び陰極導体131と同一形状に形成され、第2電極対760bは第1電極対760aと同一の形状に形成される。第2電極対760bは内部空間711の+Z軸側に配置され、陽極導体721及び陰極導体731が封入管710の+Z軸側の端より封入管710の外側に引き出されている。 The second electrode pair 760b is formed by a combination of an anode electrode 720 and a cathode electrode 730. An anode conductor 721 is joined to the anode electrode 720, and a cathode conductor 731 is joined to the cathode electrode 730. The anode electrode 720, cathode electrode 730, anode conductor 721, and cathode conductor 731 are formed in the same shape as the anode electrode 120, cathode electrode 130, anode conductor 121, and cathode conductor 131, respectively, and the second electrode pair 760b is the first electrode. It is formed in the same shape as the pair 760a. The second electrode pair 760 b is disposed on the + Z axis side of the internal space 711, and the anode conductor 721 and the cathode conductor 731 are drawn to the outside of the enclosure tube 710 from the + Z axis side end of the enclosure tube 710.
 第1電極対760a及び第2電極対760bでは、陽極電極120及び陽極電極720が陰極電極130及び陰極電極730の-Y軸側に配置され、陽極電極120及び陽極電極720が同一平面上に配置され、陰極電極130及び陰極電極730が同一平面上に配置されている。陽極電極同士及び陰極電極同士がそれぞれ同一平面上に配置されるため、第1電極対760aと第2電極対760bとの間の間隔が狭くなっても陽極電極と陰極電極とが短絡し、又は第1電極対760a及び第2電極対760bの電場が乱れることが防がれる。 In the first electrode pair 760a and the second electrode pair 760b, the anode electrode 120 and the anode electrode 720 are disposed on the −Y axis side of the cathode electrode 130 and the cathode electrode 730, and the anode electrode 120 and the anode electrode 720 are disposed on the same plane. The cathode electrode 130 and the cathode electrode 730 are disposed on the same plane. Since the anode electrodes and the cathode electrodes are arranged on the same plane, even if the distance between the first electrode pair 760a and the second electrode pair 760b is narrowed, the anode electrode and the cathode electrode are short-circuited, or The electric field of the first electrode pair 760a and the second electrode pair 760b is prevented from being disturbed.
 放射線の検出感度を上げるため等の理由で複数のガイガーミュラー計数管を使用する場合には、個々のガイガーミュラー計数管の感度の個体差により、放射線検出の精度が低くなる場合がある。ガイガーミュラー計数管700では1つのガイガーミュラー計数管内に二組の電極対を配置することにより放射線の検出感度を上げている。また、ガイガーミュラー計数管700では各電極対の不活性ガス及びクエンチガスが共通して使用されるため、各電極対における不活性ガス及びクエンチガスの比が同一になる。そのため、ガイガーミュラー計数管700では、二組のガイガーミュラー計数管を使用する場合よりも放射線検出の精度を上げることができる。 When using multiple Geiger-Muller counters for reasons such as increasing the radiation detection sensitivity, the accuracy of radiation detection may be reduced due to individual differences in the sensitivity of individual Geiger-Muller counters. In the Geiger-Muller counter 700, the radiation detection sensitivity is increased by arranging two pairs of electrodes in one Geiger-Muller counter. Moreover, in the Geiger-Muller counter 700, since the inert gas and quench gas of each electrode pair are used in common, the ratio of the inert gas and quench gas in each electrode pair is the same. Therefore, the Geiger-Muller counter tube 700 can improve the accuracy of radiation detection compared to the case where two sets of Geiger-Muller counter tubes are used.
 図8(b)は、基板150に取り付けられたガイガーミュラー計数管700の概略側面図である。ガイガーミュラー計数管700は、例えば基板150に固定されて用いられる。従来のガイガーミュラー計数管100a(図3(a)参照)では封入管の一方の端からのみ電極が引き出されており、ガイガーミュラー計数管の一方の端のみで基板等に固定されていた。これに対して、ガイガーミュラー計数管700では封入管710の両端から電極が引き出されており、図8(b)に示されるようにガイガーミュラー計数管700の+Z軸側及び-Z軸側の両端で基板150に固定される。そのため、ガイガーミュラー計数管700では従来のガイガーミュラー計数管に比べて強固に安定して基板150等に固定されることができる。 FIG. 8B is a schematic side view of the Geiger-Muller counter tube 700 attached to the substrate 150. The Geiger-Muller counter tube 700 is used by being fixed to the substrate 150, for example. In the conventional Geiger-Muller counter tube 100a (see FIG. 3A), the electrode is drawn out only from one end of the enclosed tube, and is fixed to the substrate or the like only by one end of the Geiger-Muller counter tube. In contrast, in the Geiger-Muller counter tube 700, electrodes are drawn from both ends of the enclosed tube 710, and as shown in FIG. 8B, both ends on the + Z-axis side and the −Z-axis side of the Geiger-Muller counter tube 700 are shown. To be fixed to the substrate 150. Therefore, the Geiger-Muller counter tube 700 can be firmly and stably fixed to the substrate 150 or the like as compared with the conventional Geiger-Muller counter tube.
<放射線計測計70の構成>
 図9は、放射線計測計70の概略構成図である。放射線計測計70は、ガイガーミュラー計数管700を含んで構成されている。陽極導体121及び陰極導体131は第1高電圧回路部21aに接続されており、両導体間には高電圧がかけられる。また、陽極導体721及び陰極導体731は第2高電圧回路部21bに接続されており、両導体間には高電圧がかけられる。第1高電圧回路部21aは第1カウンター22aに接続されており、第2高電圧回路部21bは第2カウンター22bに接続されている。ガイガーミュラー計数管700の第1電極対760a及び第2電極対760bで検出されたパルス信号は、第1カウンター22a及び第2カウンター22bでそれぞれカウントされ、算出部23で放射線量に換算され、換算された放射線量が表示部24に表示される。算出部23には電源25が接続されることにより電力が供給される。
<Configuration of radiation meter 70>
FIG. 9 is a schematic configuration diagram of the radiation meter 70. The radiation measuring instrument 70 includes a Geiger-Muller counter tube 700. The anode conductor 121 and the cathode conductor 131 are connected to the first high voltage circuit portion 21a, and a high voltage is applied between the two conductors. The anode conductor 721 and the cathode conductor 731 are connected to the second high voltage circuit unit 21b, and a high voltage is applied between the two conductors. The first high voltage circuit unit 21a is connected to the first counter 22a, and the second high voltage circuit unit 21b is connected to the second counter 22b. The pulse signals detected by the first electrode pair 760a and the second electrode pair 760b of the Geiger-Muller counter 700 are respectively counted by the first counter 22a and the second counter 22b, converted into a radiation dose by the calculation unit 23, and converted. The radiation dose is displayed on the display unit 24. The calculator 23 is supplied with electric power when the power source 25 is connected thereto.
 放射線計測計70では、第1電極対760a及び第2電極対760bがそれぞれ異なる高電圧回路部及びカウンターに接続されることにより個別に放射線量を検出している。しかし、第1電極対760a及び第2電極対760bは並列に1つの高電圧回路部及びカウンターに接続されて第1電極対760a及び第2電極対760bの全体としての放射線量が検出されてもよい。 In the radiation measuring instrument 70, the first electrode pair 760a and the second electrode pair 760b are individually connected to different high voltage circuit units and counters to individually detect the radiation dose. However, even if the first electrode pair 760a and the second electrode pair 760b are connected in parallel to one high voltage circuit unit and a counter and the radiation dose as a whole of the first electrode pair 760a and the second electrode pair 760b is detected. Good.
(第5実施形態)
 ガイガーミュラー計数管700で検出される放射線量はβ線及びγ線の両方の放射線量の合計値として計測される。一方、β線及びγ線の各放射線量を測定したい場合がある。以下に、β線及びγ線の各放射線量を測定するためのガイガーミュラー計数管800及び放射線計測計80について説明する。また、以下の説明では、第1実施形態から第4実施形態と同じ部分に関しては第1実施形態から第4実施形態と同じ符号を付してその説明を省略する。
(Fifth embodiment)
The radiation dose detected by the Geiger-Muller counter 700 is measured as the total value of the radiation doses of both β rays and γ rays. On the other hand, there is a case where it is desired to measure each radiation dose of β rays and γ rays. Below, the Geiger-Muller counter 800 and the radiation meter 80 for measuring each radiation dose of β rays and γ rays will be described. In the following description, the same parts as those in the first to fourth embodiments are denoted by the same reference numerals as those in the first to fourth embodiments, and the description thereof is omitted.
<ガイガーミュラー計数管800の構成>
 図10(a)は、ガイガーミュラー計数管800の概略側面図である。ガイガーミュラー計数管800は、ガイガーミュラー計数管700の第1電極対760aを封入管710の外側から取り囲むようにβ線を遮蔽する遮蔽部153が取り付けられることにより形成されている。遮蔽部153は、例えばアルミニウムの円筒管として形成されることができる。
<Configuration of Geiger-Muller counter 800>
FIG. 10A is a schematic side view of the Geiger-Muller counter tube 800. The Geiger-Muller counter tube 800 is formed by attaching a shielding portion 153 that shields β rays so as to surround the first electrode pair 760 a of the Geiger-Muller counter tube 700 from the outside of the enclosing tube 710. The shield 153 can be formed as an aluminum cylindrical tube, for example.
 ガイガーミュラー計数管800では、遮蔽部153で覆われていない第2電極対760bにおいてβ線及びγ線を検出することができる。また、遮蔽部153で覆われている第1電極対760aでは、β線が遮蔽部153で遮蔽されるため、γ線のみを検出することができる。β線の放射線量は、第2電極対760bの放射線量から第1電極対760aの放射線量を差し引くことにより求めることができる。 In the Geiger-Muller counter 800, β rays and γ rays can be detected in the second electrode pair 760b that is not covered with the shielding portion 153. In the first electrode pair 760a covered with the shielding part 153, β rays are shielded by the shielding part 153, so that only γ rays can be detected. The radiation dose of β rays can be obtained by subtracting the radiation dose of the first electrode pair 760a from the radiation dose of the second electrode pair 760b.
 従来、γ線とβ線とを同時に測定する場合には、ガイガーミュラー計数管を2本用意していた。一方のガイガーミュラー計数管はアルミ管等に入れることによりβ線を遮断してγ線のみを測定する。また、他方のガイガーミュラー計数管でβ線とγ線とを測定する。そして、β線は、他方のガイガーミュラー計数管の放射線量から一方のガイガーミュラー計数管の放射線量を差し引くことにより求める。 Conventionally, two Geiger-Muller counters have been prepared for simultaneous measurement of γ rays and β rays. One Geiger-Muller counter tube is placed in an aluminum tube or the like to block β rays and measure only γ rays. Further, β rays and γ rays are measured with the other Geiger-Muller counter tube. The β ray is obtained by subtracting the radiation dose of one Geiger-Muller counter tube from the radiation dose of the other Geiger-Muller counter tube.
 これに対して、ガイガーミュラー計数管800では1本のガイガーミュラー計数管でβ線及びγ線の両方の放射線量を同時に測定することができる。そのため、複数のガイガーミュラー計数管を用意する手間を省くことができるため、測定が容易になる。また、ガイガーミュラー計数管700と同様に、第1電極対760a及び第2電極対760bにおいて不活性ガス及びクエンチガスが共通して使用されるため、二組のガイガーミュラー計数管を使用する場合よりも放射線検出の精度を上げることができる。 On the other hand, the Geiger-Muller counter 800 can simultaneously measure both β-ray and γ-ray radiation with a single Geiger-Muller counter. Therefore, it is possible to save the trouble of preparing a plurality of Geiger-Muller counter tubes, so that the measurement becomes easy. Further, similarly to the Geiger-Muller counter tube 700, since the inert gas and the quench gas are commonly used in the first electrode pair 760a and the second electrode pair 760b, compared to the case where two sets of Geiger-Muller counter tubes are used. Can also increase the accuracy of radiation detection.
<放射線計測計80の構成>
 図10(b)は、放射線計測計80の概略構成図である。放射線計測計80では、図9に示される放射線計測計70において、ガイガーミュラー計数管700の代わりにガイガーミュラー計数管800が用いられ、遮蔽部153の位置を判断するための位置判断部26が設けられている。図10(b)に示されている状態では、遮蔽部153で遮蔽される第1電極対760aに接続される第1カウンター22aではγ線のみの放射線量が検出される。また、第2電極対760bに接続される第2カウンター22bではγ線及びβ線の合計の放射線量が検出される。そのため、放射線計測計80では、第1電極対760aの放射線量によりγ線の放射線量を検出し、第2電極対760bの放射線量から第1電極対760aの放射線量を引くことによりβ線の放射線量を検出することができる。これらの計算は算出部23で行われ、さらに結果を表示部24に表示することができる。
<Configuration of radiation meter 80>
FIG. 10B is a schematic configuration diagram of the radiation meter 80. In the radiation measuring instrument 80, the Geiger-Muller counter tube 800 is used instead of the Geiger-Muller counter tube 700 in the radiation measuring instrument 70 shown in FIG. 9, and a position determination unit 26 for determining the position of the shielding unit 153 is provided. It has been. In the state shown in FIG. 10B, the first counter 22a connected to the first electrode pair 760a shielded by the shield 153 detects the radiation dose of only γ rays. The second counter 22b connected to the second electrode pair 760b detects the total radiation dose of γ rays and β rays. Therefore, the radiation meter 80 detects the radiation dose of γ rays based on the radiation dose of the first electrode pair 760a, and subtracts the radiation dose of the first electrode pair 760a from the radiation dose of the second electrode pair 760b. The radiation dose can be detected. These calculations are performed by the calculation unit 23, and the results can be further displayed on the display unit 24.
 また、放射線計測計80では、遮蔽部153を第1電極対760aから自由に取り外し及び装着できるように形成されている。例えば、遮蔽部153を図10(b)の状態から-Z軸方向に移動させて第1電極対760aを露出することにより、第1電極対760a及び第2電極対760bを同じ条件で測定を行うことができる。この状態で測定を行うことにより、第1電極対760aと第2電極対760bとの間の放射線量検出値を校正すること等ができる。 Further, the radiation measuring instrument 80 is formed so that the shielding portion 153 can be freely detached from and attached to the first electrode pair 760a. For example, the first electrode pair 760a and the second electrode pair 760b are measured under the same conditions by moving the shield 153 from the state of FIG. 10B in the −Z-axis direction to expose the first electrode pair 760a. It can be carried out. By performing measurement in this state, it is possible to calibrate the radiation dose detection value between the first electrode pair 760a and the second electrode pair 760b.
 さらに、遮蔽部153には、例えば、ガイガーミュラー計数管800に装着されているか取り外されているかを検知するためのセンサー(不図示)が取り付けられることにより、遮蔽部153の脱着を自動的に判断させても良い。センサーは、遮蔽部153の位置を判断する位置判断部26に接続され、位置判断部26は算出部23に接続されている。算出部23では、位置判断部26がガイガーミュラー計数管800に遮蔽部153が装着されていると判断した場合には、第1電極対760aからγ線を検出し、第2電極対760bから第1電極対760aの放射線量を差し引くことによりβ線を自動的に検出する。また、位置判断部26がガイガーミュラー計数管800に遮蔽部153が装着されていないと判断した場合には、第1電極対760a及び第2電極対760bの放射線量を表示部24に表示させる。表示部24への表示は、第1電極対760a及び第2電極対760bの放射線量の加算平均を表示しても良い。 Further, for example, a sensor (not shown) for detecting whether the Geiger-Muller counter tube 800 is attached or detached is attached to the shielding part 153, so that the attachment / detachment of the shielding part 153 is automatically determined. You may let them. The sensor is connected to a position determination unit 26 that determines the position of the shielding unit 153, and the position determination unit 26 is connected to the calculation unit 23. When the position determination unit 26 determines that the shielding unit 153 is attached to the Geiger-Muller counter tube 800, the calculation unit 23 detects γ-rays from the first electrode pair 760a, and detects from the second electrode pair 760b Β rays are automatically detected by subtracting the radiation dose of one electrode pair 760a. When the position determination unit 26 determines that the Geiger-Muller counter tube 800 is not equipped with the shielding unit 153, the radiation amount of the first electrode pair 760a and the second electrode pair 760b is displayed on the display unit 24. The display on the display unit 24 may display an average of the radiation doses of the first electrode pair 760a and the second electrode pair 760b.
(第6実施形態)
 陽極電極と陰極電極とが平板状に形成されるガイガーミュラー計数管は、放射線の飛来方向にどの角度で向けるかによって放射線の検出量が大きく変わるが、このような放射線検出量の角度依存性を緩和したい場合がある。以下に、放射線検出量の角度依存性が緩和されたガイガーミュラー計数管900について説明する。また、以下の説明では、第1実施形態から第5実施形態と同じ部分に関しては第1実施形態から第5実施形態と同じ符号を付してその説明を省略する。
(Sixth embodiment)
Geiger-Muller counters, in which the anode and cathode electrodes are formed in a flat plate shape, vary greatly in the amount of radiation detected depending on the angle in which the radiation comes in. You may want to relax. The Geiger-Muller counter 900 in which the angle dependency of the radiation detection amount is relaxed will be described below. In the following description, the same parts as those in the first to fifth embodiments are denoted by the same reference numerals as those in the first to fifth embodiments, and the description thereof is omitted.
<ガイガーミュラー計数管900の構成>
 図11は、ガイガーミュラー計数管900の概略部分斜視図である。ガイガーミュラー計数管900は主に、封入管710と、封入管710内に配置された第1電極対960aと、封入管710内に配置された第2電極対960bと、により構成されている。
<Configuration of Geiger-Muller counter 900>
FIG. 11 is a schematic partial perspective view of the Geiger-Muller counter tube 900. The Geiger-Muller counter tube 900 mainly includes an enclosing tube 710, a first electrode pair 960a disposed in the enclosing tube 710, and a second electrode pair 960b disposed in the enclosing tube 710.
 第1電極対960aは陽極電極920aと陰極電極930aとがY軸方向に距離をおいて重なるように配置されて形成され、陽極電極920aには陽極導体921aが接合され、陰極電極930aには陰極導体931aが接合されている。第2電極対960bは陽極電極920b(不図示)と陰極電極930bとがY軸方向に距離をおいて重なるように配置されて形成され、陽極電極920bには陽極導体921b(不図示)が接合され、陰極電極930bには陰極導体931bが接合されている。 The first electrode pair 960a is formed so that the anode electrode 920a and the cathode electrode 930a overlap each other with a distance in the Y-axis direction, the anode conductor 920a is joined to the anode electrode 920a, and the cathode electrode 930a is joined to the cathode electrode 930a. The conductor 931a is joined. The second electrode pair 960b is formed such that an anode electrode 920b (not shown) and a cathode electrode 930b overlap each other with a distance in the Y-axis direction, and an anode conductor 921b (not shown) is joined to the anode electrode 920b. The cathode conductor 931b is joined to the cathode electrode 930b.
 第1電極対960aの陽極電極920a及び第2電極対960bの陽極電極は陽極電極120(図1(a)参照)と同一形状に形成され、陰極電極930a及び陰極電極930bは陰極電極130(図1(a)参照)と同一形状に形成されている。第1電極対960aと第2電極対960bとは同一の形状に形成されるが、第1電極対960aを構成する陽極電極920a及び陰極電極930aはXZ平面に平行に配置され、第2電極対960bを構成する陽極電極920b及び陰極電極930bはYZ平面に平行に配置されている。すなわち、第2電極対960bは第1電極対960aをZ軸を回転軸として90度回転した状態で配置される。 The anode electrode 920a of the first electrode pair 960a and the anode electrode of the second electrode pair 960b are formed in the same shape as the anode electrode 120 (see FIG. 1A), and the cathode electrode 930a and the cathode electrode 930b are formed of the cathode electrode 130 (FIG. 1 (a)). The first electrode pair 960a and the second electrode pair 960b are formed in the same shape, but the anode electrode 920a and the cathode electrode 930a constituting the first electrode pair 960a are arranged in parallel to the XZ plane, and the second electrode pair The anode electrode 920b and the cathode electrode 930b constituting the 960b are arranged in parallel to the YZ plane. That is, the second electrode pair 960b is arranged in a state in which the first electrode pair 960a is rotated 90 degrees about the Z axis as a rotation axis.
 平板状の陽極電極及び陰極電極により形成されるガイガーミュラー計数管は、放射線検出空間が直方体に形成されるため、ガイガーミュラー計数管がどの方向を向くかによって放射線の検出感度が大きく変わり、向く方向によっては放射線が殆ど検出されない場合がある。ガイガーミュラー計数管900では、第2電極対960bを第1電極対960aに対して90度回転して配置することにより、封入管の直径方向のどの方向から放射線が飛来しても、放射線を検出することができる。 The Geiger-Muller counter formed by the flat anode and cathode electrodes has a radiation detection space formed in a rectangular parallelepiped, so the radiation detection sensitivity varies greatly depending on which direction the Geiger-Muller counter is facing, In some cases, almost no radiation is detected. In the Geiger-Muller counter tube 900, the second electrode pair 960b is rotated by 90 degrees with respect to the first electrode pair 960a, so that radiation can be detected from any direction in the diameter direction of the enclosed tube. can do.
 以上、本発明の最適な実施形態について詳細に説明したが、当業者に明らかなように、本発明はその技術的範囲内において実施形態に様々な変更・変形を加えて実施することができる。また、各実施形態の特徴を様々に組み合わせて実施することができる。 As described above, the optimal embodiment of the present invention has been described in detail. However, as will be apparent to those skilled in the art, the present invention can be implemented with various modifications and variations within the technical scope thereof. Moreover, the features of each embodiment can be implemented in various combinations.
 例えば、上記実施形態で示される封入管は円筒形であるが、円筒形以外の様々な形状に形成されることができる。例えば、図1(a)に示されるガイガーミュラー計数管100の封入管は、陽極電極及び陰極電極の形状に合わせて直方体に近い形状にされても良い。 For example, the sealed tube shown in the above embodiment is cylindrical, but can be formed in various shapes other than cylindrical. For example, the enclosed tube of the Geiger-Muller counter tube 100 shown in FIG. 1A may be shaped like a rectangular parallelepiped in accordance with the shapes of the anode electrode and the cathode electrode.
 10、70、80 … 放射線計測計
 21 … 高電圧回路部
 21a … 第1高電圧回路部
 21b … 第2高電圧回路部
 22 … カウンター
 22a … 第1カウンター
 22b … 第2カウンター
 23 … 算出部
 24 … 表示部
 25 … 電源
 26 … 位置判断部
 100、200、300、400、500、600、700、800、900 … ガイガーミュラー計数管
 100a … 従来のガイガーミュラー計数管
 110、510、610、710 … 封入管
 111、511、611、711 … 内部空間
 112、112a、612 … 放射線検出空間
 120、120a、220、320、420、620a~620d、720、920a … 陽極電極
 121、321、621、721、921a … 陽極導体
 130、130a、230、330、530a、530b、630a~630d、730、930a、930b … 陰極電極
 131、331、531a、531b、631、731、931a、931b … 陰極導体
 150 … 基板
 151 … 金属線材
 152 … 網目
 153 … 遮蔽部
 160 … 式(1)を示す実線
 161 … 式(2)を示す実線
 760a、960a … 第1電極対
 760b、960b … 第2電極対
 a … 陽極電極120aの半径
 b … 陰極電極130aの内径の半分
 c … ε(r)=εのときの距離rの値
 d … 陽極電極120と陰極電極130との間隔
 
DESCRIPTION OF SYMBOLS 10, 70, 80 ... Radiation meter 21 ... High voltage circuit part 21a ... 1st high voltage circuit part 21b ... 2nd high voltage circuit part 22 ... Counter 22a ... 1st counter 22b ... 2nd counter 23 ... Calculation part 24 ... Display unit 25 ... Power supply 26 ... Position determination unit 100, 200, 300, 400, 500, 600, 700, 800, 900 ... Geiger-Muller counter tube 100a ... Conventional Geiger- Muller counter tube 110, 510, 610, 710 ... Encapsulated tube 111, 511, 611, 711 ... Internal space 112, 112a, 612 ... Radiation detection space 120, 120a, 220, 320, 420, 620a to 620d, 720, 920a ... Anode electrode 121, 321, 621, 721, 921a ... Anode Conductor 130, 130a, 230, 330, 5 0a, 530b, 630a to 630d, 730, 930a, 930b ... Cathode electrode 131, 331, 531a, 531b, 631, 731, 931a, 931b ... Cathode conductor 150 ... Substrate 151 ... Metal wire 152 ... Mesh 153 ... Shielding part 160 ... Solid line 161 representing the equation (1) ... Solid line representing the equation (2) 760a, 960a ... First electrode pair 760b, 960b ... Second electrode pair a ... Radius of the anode electrode 120a b ... Half of the inner diameter of the cathode electrode 130a c ... The value of the distance r when ε (r) = ε 1 d... Distance between the anode electrode 120 and the cathode electrode 130

Claims (11)

  1.  密封された空間を有する封入管と、
     前記空間内に配置され平板状に形成される陽極電極と、
     平板状に形成され、前記空間内で前記陽極電極に平行に、前記陽極電極と所定の間隔で配置される陰極電極と、
     前記空間内に密封される不活性ガス及びクエンチガスと、を備えるガイガーミュラー計数管。
    An enclosed tube having a sealed space;
    An anode electrode disposed in the space and formed in a flat plate shape;
    A cathode electrode formed in a flat plate shape and disposed in parallel with the anode electrode in the space at a predetermined interval from the anode electrode;
    A Geiger-Muller counter provided with an inert gas and a quench gas sealed in the space.
  2.  前記陽極電極及び前記陰極電極の少なくとも一方は、複数の金属線材が網状に編み込まれた金網により形成される請求項1に記載のガイガーミュラー計数管。 2. The Geiger-Muller counter tube according to claim 1, wherein at least one of the anode electrode and the cathode electrode is formed of a wire mesh in which a plurality of metal wires are knitted in a mesh shape.
  3.  前記陽極電極及び前記陰極電極の少なくとも一方は、金属板により形成される請求項1に記載のガイガーミュラー計数管。 The Geiger-Muller counter tube according to claim 1, wherein at least one of the anode electrode and the cathode electrode is formed of a metal plate.
  4.  前記金属板には、前記金属板を貫通する複数の貫通孔が形成されている請求項3に記載のガイガーミュラー計数管。 The Geiger-Muller counter tube according to claim 3, wherein the metal plate is formed with a plurality of through holes penetrating the metal plate.
  5.  前記陽極電極及び前記陰極電極の少なくとも一方は、1本の金属線材が折り曲げられることにより平板状に形成される請求項1に記載のガイガーミュラー計数管。 The Geiger-Muller counter tube according to claim 1, wherein at least one of the anode electrode and the cathode electrode is formed in a flat plate shape by bending one metal wire.
  6.  前記陰極電極は互いに平行な2枚の平板状の電極により構成され、前記2枚の平板状の電極の間に前記陽極電極が挟み込まれている請求項1から請求項5のいずれか一項に記載のガイガーミュラー計数管。 6. The cathode electrode according to claim 1, wherein the cathode electrode is constituted by two plate-like electrodes parallel to each other, and the anode electrode is sandwiched between the two plate-like electrodes. The Geiger-Muller counter as described.
  7.  前記陽極電極は複数の平板状の電極により構成され、
     前記陰極電極は複数の平板状の電極により構成され、
     前記陽極電極の各平板状の電極と前記陰極電極の各平板状の電極とが互いに交互に重なるように配置されている請求項1から請求項5のいずれか一項に記載のガイガーミュラー計数管。
    The anode electrode is composed of a plurality of flat electrodes,
    The cathode electrode is composed of a plurality of flat electrodes,
    The Geiger-Muller counter tube according to any one of claims 1 to 5, wherein each plate-like electrode of the anode electrode and each plate-like electrode of the cathode electrode are arranged so as to alternately overlap each other. .
  8.  前記空間内には、前記陽極電極及び前記陰極電極により形成され前記封入管の一端に固定される第1電極対と、前記第1電極対と同一の構成を有し前記封入管の他端に固定される第2電極対と、が配置され、
     前記第1電極対と前記第2電極対とが同一平面上に配置される請求項1から請求項7のいずれか一項に記載のガイガーミュラー計数管。
    In the space, a first electrode pair formed by the anode electrode and the cathode electrode and fixed to one end of the enclosure tube, and having the same configuration as the first electrode pair, the other end of the enclosure tube A second electrode pair to be fixed, and
    The Geiger-Muller counter tube according to any one of claims 1 to 7, wherein the first electrode pair and the second electrode pair are arranged on the same plane.
  9.  前記封入管の外側から前記第1電極対の周りを囲みβ線を遮蔽する遮蔽部を備える請求項8に記載のガイガーミュラー計数管。 The Geiger-Muller counter tube according to claim 8, further comprising a shielding portion that surrounds the first electrode pair from the outside of the enclosure tube and shields β rays.
  10.  前記空間内には、前記陽極電極及び前記陰極電極により形成され前記封入管の一端に固定される第1電極対と、前記第1電極対と同一の構成を有し前記封入管の他端に固定される第2電極対と、が配置され、
     前記第1電極対の陽極電極を含む平面と前記第2電極対の陽極電極を含む平面とが互いに直角に交わる請求項1から請求項7のいずれか一項に記載のガイガーミュラー計数管。
    In the space, a first electrode pair formed by the anode electrode and the cathode electrode and fixed to one end of the enclosure tube, and having the same configuration as the first electrode pair, the other end of the enclosure tube A second electrode pair to be fixed, and
    The Geiger-Muller counter tube according to any one of claims 1 to 7, wherein a plane including the anode electrode of the first electrode pair and a plane including the anode electrode of the second electrode pair intersect at a right angle.
  11.  請求項1から請求項10のいずれか一項に記載のガイガーミュラー計数管と、
     前記陽極電極と前記陰極電極との間に所定の高電圧を印加する1つの高電圧回路部と、
     前記高電圧回路部に接続され、前記ガイガーミュラー計数管で計測されたパルス信号をカウントするカウンターと、
     前記カウンターでカウントされた前記パルス信号を放射線量に換算する算出部と、を備える放射線計測計。
    Geiger-Muller counter tube according to any one of claims 1 to 10,
    One high voltage circuit section for applying a predetermined high voltage between the anode electrode and the cathode electrode;
    A counter connected to the high-voltage circuit unit and counting a pulse signal measured by the Geiger-Muller counter;
    A radiation meter comprising: a calculation unit that converts the pulse signal counted by the counter into a radiation dose.
PCT/JP2016/055323 2015-03-04 2016-02-24 Geiger-müller counter and radiation measuring meter WO2016140112A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015042064A JP2016161468A (en) 2015-03-04 2015-03-04 Geiger-muller counter and radiation measurement device
JP2015-042064 2015-03-04

Publications (1)

Publication Number Publication Date
WO2016140112A1 true WO2016140112A1 (en) 2016-09-09

Family

ID=56845030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055323 WO2016140112A1 (en) 2015-03-04 2016-02-24 Geiger-müller counter and radiation measuring meter

Country Status (2)

Country Link
JP (1) JP2016161468A (en)
WO (1) WO2016140112A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107870345A (en) * 2017-12-06 2018-04-03 南京三乐集团有限公司 A kind of high box hat counting tube of reliability

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS564081A (en) * 1979-06-26 1981-01-16 Univ Nagoya High action stabilizing system of compound spark chamber
US5502354A (en) * 1992-07-31 1996-03-26 Correa; Paulo N. Direct current energized pulse generator utilizing autogenous cyclical pulsed abnormal glow discharges
JP2007520865A (en) * 2004-02-03 2007-07-26 オルガニゼイション ユーロピエンヌ プール ラ レシェルシェ ニュークリエル Radiation detector
US20120049054A1 (en) * 2010-08-31 2012-03-01 Schlumberger Technology Corporation Nano-tips based gas ionization chamber for neutron detection
US20120286172A1 (en) * 2011-05-12 2012-11-15 Sefe, Inc. Collection of Atmospheric Ions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS564081A (en) * 1979-06-26 1981-01-16 Univ Nagoya High action stabilizing system of compound spark chamber
US5502354A (en) * 1992-07-31 1996-03-26 Correa; Paulo N. Direct current energized pulse generator utilizing autogenous cyclical pulsed abnormal glow discharges
JP2007520865A (en) * 2004-02-03 2007-07-26 オルガニゼイション ユーロピエンヌ プール ラ レシェルシェ ニュークリエル Radiation detector
US20120049054A1 (en) * 2010-08-31 2012-03-01 Schlumberger Technology Corporation Nano-tips based gas ionization chamber for neutron detection
US20120286172A1 (en) * 2011-05-12 2012-11-15 Sefe, Inc. Collection of Atmospheric Ions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107870345A (en) * 2017-12-06 2018-04-03 南京三乐集团有限公司 A kind of high box hat counting tube of reliability

Also Published As

Publication number Publication date
JP2016161468A (en) 2016-09-05

Similar Documents

Publication Publication Date Title
Giomataris Development and prospects of the new gaseous detector “Micromegas”
US10031244B2 (en) Detectors, system and method for detecting ionizing radiation using high energy current
US9190250B2 (en) Radiation measurement apparatus
WO2013184020A1 (en) A detector for radiation, particularly high energy electromagnetic radiation
WO2016140112A1 (en) Geiger-müller counter and radiation measuring meter
JP2013124899A (en) Neutron detector
Borkowski et al. Recent improvements to RC-line encoded position-sensitive proportional counters
JP6308876B2 (en) Geiger-Muller counter and radiation meter
US9209002B2 (en) Geiger-Muller counter tube and radiation measurement apparatus
Fan et al. Study of a bulk-Micromegas with a resistive anode
US9378935B2 (en) Geiger-Muller counter tube and radiation measurement apparatus
US2835839A (en) Wide range proportional counter tube
JPS6032243A (en) Radiation detector
JP2006147554A (en) Elliptic gas filling type detector for radiation detection
Va'vra et al. Soft X-ray production in spark discharges in hydrogen, nitrogen, air, argon and xenon gases
Forck et al. Detectors for slowly extracted heavy ions at the GSI facility
JP2011191295A (en) Ionizing radiation detector
Silva et al. Electrical Characterization of the Amplification Plate of a Thick-Gem Detector For Low Energy X Radiation Dosimetry
Protection et al. DOSIMETRY OF THE VERY WEAK X-RADIATION GENERATED IN TELEVISION RECEIVERS AND X-RAY DIFFRACTION APPARATUS
JP2007240467A (en) Open window ionization chamber
KR102461458B1 (en) X-ray Dose Area Product Meter
JPS6154489A (en) Multiple line type 2pi gas flow counter tube for large area ray source
Beal et al. Gas-Based Detectors
Ball et al. Progress in the development of a plasma panel detector
Yoshizumi et al. Comparative study of the response stability of monitor ionization chambers in X-radiation beams

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16758806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16758806

Country of ref document: EP

Kind code of ref document: A1