JPS6154489A - Multiple line type 2pi gas flow counter tube for large area ray source - Google Patents

Multiple line type 2pi gas flow counter tube for large area ray source

Info

Publication number
JPS6154489A
JPS6154489A JP17630584A JP17630584A JPS6154489A JP S6154489 A JPS6154489 A JP S6154489A JP 17630584 A JP17630584 A JP 17630584A JP 17630584 A JP17630584 A JP 17630584A JP S6154489 A JPS6154489 A JP S6154489A
Authority
JP
Japan
Prior art keywords
sample
cathode
measurement
anode
line type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17630584A
Other languages
Japanese (ja)
Other versions
JPH056675B2 (en
Inventor
Katsumasa Abe
阿部 勝正
Hiroshi Kondo
拓 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Aluminum Smelting Co
Original Assignee
Sumitomo Aluminum Smelting Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Aluminum Smelting Co filed Critical Sumitomo Aluminum Smelting Co
Priority to JP17630584A priority Critical patent/JPS6154489A/en
Publication of JPS6154489A publication Critical patent/JPS6154489A/en
Publication of JPH056675B2 publication Critical patent/JPH056675B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a charge from being accumulated on the surface of a sample and to nearly eliminate count variation in every measurement by forming a lower cathode which is used as a sample mount in a special shape and providing another sample mount. CONSTITUTION:The sample 5 for measurement is mounted on a lower sample base 8. The sample base 8 is made of a material which contains a small amount of alpha-eay radiating elements and placed on the sample base 8 so that its measurement sample surface and cathode 4 are at an interval of 3-6mm.. An alpha-ray measuring device separates the cathode 4 and measurement sample 5 from each other and consists of an anode 3, multiple line type cathode 4, and sample base, so alpha particles radiated by the sample are emitted between the cathode and anode without boding disturbed by the diverse cathode 4 practically, thereby ionizing counter gas. Positive charges produced by the ionization are acquired by the upper cathode 2 and lower multiple line type cathode 4, so stable counting is performed without accumulating any positive charge on the sample surface practically even when the sample is a molding having no conductivity.

Description

【発明の詳細な説明】 本発明はアルファ線(以下α線と記載する)放射量を測
定する大面積線源用多線式2πガスフロー計数管に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multi-wire type 2π gas flow counter for a large area radiation source that measures the amount of alpha rays (hereinafter referred to as α rays) radiation.

近年、集積回路の高集積化、高密度化に伴い集積回路を
格納する容器等に含有されるウラン、トリウム等より放
出されるα線により集積回路に誤動作が生じることが知
られており、かかる容器の材料としてはα線放射量の極
めて低い材料の選択が重要となる。このためこれら材料
のα線放射量を低レベルα線領域まで容易且つ迅速に評
価できる手段、装置の開発が嘱望されている。
In recent years, as integrated circuits have become more highly integrated and densely packed, it has become known that alpha rays emitted from uranium, thorium, etc. contained in containers that store integrated circuits can cause malfunctions in integrated circuits. As the material for the container, it is important to select a material that emits extremely low amounts of α-rays. Therefore, it is desired to develop means and devices that can easily and quickly evaluate the amount of α-ray radiation of these materials down to the low-level α-ray region.

従来、低レベルα線放射量検出器としては第2図に示す
如く箱型容器1内の上下に面積の大きいステンレス板2
.4よりなる陰極とこの陰極間に両陰極板に対し平行と
なる如くほぼ等間隔で張られたステンレス細線よりなる
陽極3より構成された多線式2πガスフロー計数管が知
られている。
Conventionally, as a low-level α-ray radiation detector, as shown in FIG.
.. A multi-wire type 2π gas flow counter is known, which comprises a cathode 3 made of a stainless steel wire and an anode 3 made of a thin stainless steel wire stretched at approximately equal intervals between the cathodes so as to be parallel to both cathode plates.

(例えば「応用物理」第33巻5号、1964年)該装
置は測定に際し、被測定試料を下部陰極上に直接載置し
、ガス導入口6より計数ガスを箱型容器内に導入、出ロ
アを経て連続的に導出しながら陽極、陰極間に高直流電
圧(例えば2kvを印加して、下部陰極上に置いた試料
表面から放出されるα線を検出するものである。
(For example, "Applied Physics" Vol. 33, No. 5, 1964) During measurement, this device places the sample to be measured directly on the lower cathode, and the counting gas is introduced into the box-shaped container through the gas inlet 6 and then exited. A high DC voltage (for example, 2 kV) is applied between the anode and the cathode while being continuously led out through the lower cathode, and the α rays emitted from the surface of the sample placed on the lower cathode are detected.

この検出器の測定原理は測定試料からα線が放出される
と計数ガスのイオン化(−次イオン化)が生じ、イオン
化により生成した電子は陽極に、カチオンは陰極に向か
うが、陽極の周辺電場が極めて大きいので、電子は高速
度に加速され、この加速電子が更に周囲ガス分子を・イ
オン化(二次イオン化)し、この二次イオンが更に加速
されて周囲のガス分子をイオン化するいわゆる電子雪崩
現象を起こす。この現象により得られる瞬間電流を電圧
パルスに変換し、外部回路で更に増「1]シて放射され
たα粒子の個数を計数するものである。
The measurement principle of this detector is that when alpha rays are emitted from the measurement sample, ionization (-order ionization) of the counting gas occurs, and the electrons generated by ionization move toward the anode and the cations move toward the cathode, but the electric field around the anode Because the electrons are extremely large, they are accelerated to high speeds, and these accelerated electrons further ionize surrounding gas molecules (secondary ionization), and these secondary ions are further accelerated and ionize surrounding gas molecules, a so-called electron avalanche phenomenon. wake up The instantaneous current obtained by this phenomenon is converted into a voltage pulse, which is further multiplied by 1 in an external circuit to count the number of emitted α particles.

ところか従来の下部陰掘上面に測定試料を載置し測定す
る場合には測定試料が粉末試料の場合には顕著ではない
ものの、測定試料が導電性を有さないセラミック成形体
あるいはプラスチック成形体の場合には、測定を継続す
るに従って試料表面に正電荷の蓄積(帯電現象)が起こ
り、これが原因して正確なα線放射量を検出しなくなり
、その為同一試料の測定毎の計数挙りjが大きく異なる
という不都合を有する。
However, when measuring by placing the sample on the top surface of the conventional lower underground hole, although this is not noticeable when the sample is a powder sample, the sample may be a ceramic molded body or a plastic molded body that does not have conductivity. In this case, as the measurement continues, positive charges accumulate on the sample surface (electrostatic phenomenon), which causes the accurate detection of α-ray radiation amount, which results in an increase in the number of counts for each measurement of the same sample. This has the disadvantage that j is significantly different.

かかる状況下に鑑み、本発明者等は公知の大面積線源用
多線式2πガスフロー比例計数管を基本とし、上述の如
く試料表面に電荷蓄積がなく、測定毎の計数変動の殆ど
ない検出器を開発すべ(観念検討した結果、従来試料載
置台として併用していた下部陰極を特殊形状とし、試料
Q置台は別個に設けることにより上述の目的が全て満足
し得ることを見い出し、本発明を完成するに至った。
In view of this situation, the present inventors based on a known multi-wire type 2π gas flow proportional counter for large-area radiation sources, and as mentioned above, there is no charge accumulation on the sample surface and there is almost no variation in counts from measurement to measurement. As a result of conceptual studies, we discovered that all of the above objects could be satisfied by creating a special shape for the lower cathode, which was conventionally used as a sample holder, and providing a separate sample Q holder, and developed the present invention. I was able to complete it.

すなわち、本発明は大面積線源から放射されるα線の絶
対測定用多線式2πガスフロー計数管において、該計数
管の構成が計数ガス導入出口を有する箱型容器内に上部
より陰極板、多線式陽極、多線式陰極及び試料台と配設
してなることを特徴とする大面積線源用多線式2πガス
フロー計数管を提供するものである。
That is, the present invention provides a multi-wire type 2π gas flow counter for absolute measurement of alpha rays emitted from a large-area radiation source, in which the configuration of the counter is such that a cathode plate is inserted from above into a box-shaped container having a counting gas introduction outlet. The present invention provides a multi-wire 2π gas flow counter for a large-area radiation source, which is characterized by being arranged with a multi-wire anode, a multi-wire cathode, and a sample stage.

なお本発明に於いて大面積線源とは少なくとも100c
n(以上の面積を有する粉状あるいは粒状物、更には成
形体を指す。
In addition, in the present invention, a large area radiation source is at least 100 c
Refers to powder or granular materials, or even molded objects, having an area of n (or more).

以下本発明の装置を更に詳細に説明する。The apparatus of the present invention will be explained in more detail below.

第1図AおよびBはそれぞれ本発明の多線式2πガスフ
ロー計数管の正面概略図、側面1既略図であり、図中1
は箱型容器、2および4は陰極、3は陽極、5は試料、
6ば計数ガス導入口、7は該ガスの導出口、8は試料台
を示す。
1A and 1B are a schematic front view and a schematic side view of a multi-wire 2π gas flow counter according to the present invention, respectively;
is a box-shaped container, 2 and 4 are cathodes, 3 is an anode, 5 is a sample,
Reference numeral 6 indicates a counting gas inlet, 7 indicates an outlet for the gas, and 8 indicates a sample stage.

本発明において陰極2の材料はα線放射元素含有景の少
ない導電性材料で、その材質は特に制限されるものでは
ないが例えばプラスチック仮に銅、アルミニウム等の超
高純度金属を真空算着したもの、超高純度金属メッキ板
あるいはカーボンファイバーの成形機等が適当である。
In the present invention, the material of the cathode 2 is a conductive material with a low content of alpha-ray emitting elements, and the material is not particularly limited, but for example, it may be made of plastic or ultra-high purity metal such as copper or aluminum that is vacuum-calculated. , ultra-high purity metal plated plate or carbon fiber molding machine, etc. are suitable.

また陰極2の形状は平成あるいは陽極細線の平行平面上
にα線放射元素含量の小さい導電性材料をシマ状に加工
したものでも良いが、後者の場合計数効率を低下させな
いためにはシマ状加工材料の総面積は板状総面積の2以
上の総面積を有するように加工する必要がある。
In addition, the shape of the cathode 2 may be one in which a conductive material with a small content of alpha-ray emitting elements is processed into stripes on a plane parallel to the Heisei or anode thin wire, but in the latter case, stripes should be processed in order not to reduce the counting efficiency. The total area of the material needs to be processed so that it has a total area that is two or more of the total area of the plate.

第1図の陽極細線3は線径10〜200μm、好ましく
は30〜80μmでα線放射元素含量の小さい導電性材
料が適用される。また細線は弛緩のないように張る必要
があるのである程度抗張力を有する材料が好ましい。こ
のような材料としてはステンレススチール、銅等が挙げ
られる。陽極3を構成する各細線の間隔は特に制限はな
いが、通常は2〜3 cm、陽極、陰極間の各電極間間
隔は通常1〜2cmの範囲に設定される。これら線間隔
、各電極間間隔は固定式でもよいが、外部からネジ機構
等を利用して可変式にすることも可能である。
The fine anode wire 3 in FIG. 1 has a wire diameter of 10 to 200 μm, preferably 30 to 80 μm, and is made of a conductive material with a small content of α-ray emitting elements. Further, since the thin wire needs to be stretched so as not to loosen, a material having a certain degree of tensile strength is preferable. Such materials include stainless steel, copper, and the like. Although there is no particular restriction on the spacing between the thin wires constituting the anode 3, it is usually set to 2 to 3 cm, and the spacing between the anode and cathode is usually set in the range of 1 to 2 cm. The line spacing and the spacing between each electrode may be fixed, but may also be variable from the outside using a screw mechanism or the like.

下部陰極4もα線放射元素含量の少ない導電性材料であ
ればよく、陽極と同一材料でもよし)。線径ば50〜1
00μm程度のものが好ましく、線間隔は5〜2Qmm
間隔に平行状、もしくはクロス状に張ったもののいずれ
であってもよい。線間隔が20龍を越える場合には陰極
としての機能が低下し、計数効率が小さくなり好ましく
ない。他方5間より狭い場合には測定試料から放射され
るα線の計数域への浸入を妨害阻止するため計数効率が
低下するとともに検出器のα線バ・ツクグランドが高く
なるので好ましくない。
The lower cathode 4 may also be made of a conductive material with a low content of alpha-ray emitting elements, and may be made of the same material as the anode). Wire diameter: 50~1
00μm is preferable, and the line spacing is 5 to 2Qmm.
They may be stretched in parallel or in a cross pattern. If the line spacing exceeds 20 yen, the function as a cathode will deteriorate and the counting efficiency will decrease, which is not preferable. On the other hand, if it is narrower than 5, the alpha rays emitted from the measurement sample are obstructed and prevented from entering the counting region, which lowers the counting efficiency and increases the alpha ray background of the detector, which is not preferable.

本発明の装置においては測定用試料5は陰極4の下部の
試料台8上に載置される。該試料台もα線放射元素含量
の少ない材料、例えばアクリル樹脂板等により構成され
、陰極4との間隔は試料台に測定試料を置き、測定試料
面と陰極4との間隔が3〜5 inとなるように設置さ
れる。
In the apparatus of the present invention, a measurement sample 5 is placed on a sample stage 8 below the cathode 4. The sample stand is also made of a material with a low content of α-ray emitting elements, such as an acrylic resin plate, and the distance between the measurement sample and the cathode 4 is such that the measurement sample is placed on the sample stand and the distance between the measurement sample surface and the cathode 4 is 3 to 5 inches. It will be set up so that

本発明において電極の取付は冶具および箱型容器もでき
る限り検出器自体のα線バンクグランドを低減するため
α線放射元素含量の少ないプラスチック材料を使用する
か、もしくは金属材料にα線放射元素含量の少ないコー
ティング剤(例えば銅、アルミニウム等)をコートシた
ものを使用することが望ましい。
In the present invention, the electrodes are mounted using a jig and a box-shaped container.In order to reduce the α-ray bank ground of the detector itself as much as possible, a plastic material with a low α-ray emitting element content is used, or a metal material with a low α-ray emitting element content is used. It is desirable to use a coating coated with a coating agent (for example, copper, aluminum, etc.) with a small amount.

以上詳述した本発明のα線測定装置は陰極4と測定試料
5とを分離し、陽極3−多線式陰極4−試料台8と構成
したことにより試料より放射されるα粒子は多線式の陰
極4に実質的に邪魔されることなく陰極、陽極間に放出
され、計数ガスをイオン化するとともにイオン化により
生成した正電荷は上方陰極2および下方の多線式陰極4
に捕捉されるため例え試料が導電性を有さない成形体で
あっても試料表面に正電荷の蓄積を実質的に起こさず安
定した計数を可能ならしめたものであり、その産業的価
値は頗る大なるものである。
The α-ray measuring device of the present invention described in detail above separates the cathode 4 and the measurement sample 5, and is configured as an anode 3 - multiwire cathode 4 - sample stage 8, so that α particles emitted from the sample are multiwire. The positive charge generated by the ionization is emitted between the cathode and the anode substantially unhindered by the cathode 4 of the equation, and ionizes the counting gas.
Even if the sample is a molded object with no conductivity, stable counting is possible without substantially causing accumulation of positive charges on the sample surface, and its industrial value is It's a huge deal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図AおよびBは本発明の多線式2πガスフロー計数
管の正面および側面概略図であり、第2図AおよびBは
従来公知の多線式2πガスフロー計数管の正面および側
面概略図である。図中1は箱型容器    2.4は陰
極 3は陽極      5は試料 6は計数ガス導入口 7は計数ガス導出口8ば試料台 を示ず。
1A and B are schematic front and side views of a multi-wire 2π gas flow counter of the present invention, and FIGS. 2 A and B are schematic front and side views of a conventionally known multi-wire 2π gas flow counter. It is a diagram. In the figure, 1 is a box-shaped container, 2.4 is a cathode, 3 is an anode, 5 is a sample 6 is a counting gas inlet, 7 is a counting gas outlet 8, and the sample stage is not shown.

Claims (1)

【特許請求の範囲】[Claims] 大面積線源から放射されるα線の絶対測定用多線式2π
ガスフロー計数管において、該計数管の構成が計数ガス
導入出口を有する箱型容器内に上部より陰極板、多線式
陽極、多線式陰極及び試料台と配設してなることを特徴
とする大面積線源用多線式2πガスフロー計数管
Multi-wire system 2π for absolute measurement of α-rays emitted from large-area sources
The gas flow counter is characterized in that the counter is configured such that a cathode plate, a multi-wire anode, a multi-wire cathode, and a sample stage are arranged from above in a box-shaped container having a counting gas inlet and outlet. Multi-wire 2π gas flow counter for large area radiation source
JP17630584A 1984-08-24 1984-08-24 Multiple line type 2pi gas flow counter tube for large area ray source Granted JPS6154489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17630584A JPS6154489A (en) 1984-08-24 1984-08-24 Multiple line type 2pi gas flow counter tube for large area ray source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17630584A JPS6154489A (en) 1984-08-24 1984-08-24 Multiple line type 2pi gas flow counter tube for large area ray source

Publications (2)

Publication Number Publication Date
JPS6154489A true JPS6154489A (en) 1986-03-18
JPH056675B2 JPH056675B2 (en) 1993-01-27

Family

ID=16011259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17630584A Granted JPS6154489A (en) 1984-08-24 1984-08-24 Multiple line type 2pi gas flow counter tube for large area ray source

Country Status (1)

Country Link
JP (1) JPS6154489A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002542587A (en) * 1999-04-20 2002-12-10 コミツサリア タ レネルジー アトミーク Ionization chamber, sequence for measuring activity of β-ray emitting gas and method of using the same
JP2005156463A (en) * 2003-11-27 2005-06-16 Mitsubishi Heavy Ind Ltd Alpha-radioactivity measuring apparatus and ionization chamber for apparatus
JP2007057426A (en) * 2005-08-25 2007-03-08 Hitachi Ltd Charged particle measuring device
WO2019208477A1 (en) * 2018-04-26 2019-10-31 三菱マテリアル株式会社 α-RAY MEASURING DEVICE

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002542587A (en) * 1999-04-20 2002-12-10 コミツサリア タ レネルジー アトミーク Ionization chamber, sequence for measuring activity of β-ray emitting gas and method of using the same
JP2005156463A (en) * 2003-11-27 2005-06-16 Mitsubishi Heavy Ind Ltd Alpha-radioactivity measuring apparatus and ionization chamber for apparatus
JP2007057426A (en) * 2005-08-25 2007-03-08 Hitachi Ltd Charged particle measuring device
JP4638792B2 (en) * 2005-08-25 2011-02-23 株式会社日立製作所 Charged particle measuring apparatus and operation method of charged particle measuring apparatus
WO2019208477A1 (en) * 2018-04-26 2019-10-31 三菱マテリアル株式会社 α-RAY MEASURING DEVICE
CN112041703A (en) * 2018-04-26 2020-12-04 三菱综合材料株式会社 Alpha ray measuring apparatus
US10996346B2 (en) 2018-04-26 2021-05-04 Mitsubishi Materials Corporation α-ray measuring device
TWI736879B (en) * 2018-04-26 2021-08-21 日商三菱綜合材料股份有限公司 α-ray measuring device
CN112041703B (en) * 2018-04-26 2022-05-17 三菱综合材料株式会社 Alpha ray measuring apparatus

Also Published As

Publication number Publication date
JPH056675B2 (en) 1993-01-27

Similar Documents

Publication Publication Date Title
US8729487B2 (en) Neutron detector and method of making
US8973257B2 (en) Method of making a neutron detector
Cantini et al. Long-term operation of a double phase LAr LEM Time Projection Chamber with a simplified anode and extraction-grid design
JPH11513530A (en) High-resolution detector for the position of ionized particles at high flow rates
Breskin et al. On the low-pressure operation of multistep avalanche chambers
US4289967A (en) Multianode cylindrical proportional counter for high count rates
JPH0812249B2 (en) Device for detecting uncharged particles and determining their position
Parkes et al. The use of cascaded channel plates as high gain electron multipliers
JPS6154489A (en) Multiple line type 2pi gas flow counter tube for large area ray source
Saito et al. Simultaneous measurements of absolute numbers of electrons and scintillation photons produced by 5.49 MeV alpha particles in rare gases
Allison et al. An electrodeless drift chamber
US3603831A (en) Radiation detector with gas-permeable radiation window
Anderson et al. High counting rate resistive-plate chamber
Walenta A system of large multiwire driftchambers
US20050194541A1 (en) Large area ionization detector and methods for detecting low level radiation
Derré et al. Recent experimental results with MICROMEGAS
Breskin et al. A solution to the right-left ambiguity in drift chambers
Forsberg et al. Experimental limitations in microdosimetry measurements using the variance technique
US2485516A (en) Shallow plane proportional counter
Somer et al. Spiraltron Matrices as windowless photon detectors for soft x-ray and extreme UV
Khazins et al. A parallel-plate resistive-anode gaseous detector for x-ray imaging
Green et al. Fast-timing measurements using a Chevron microchannel plate electron multiplier
Batley et al. A highly segmented NaI (Tl) detector with vacuum photodiode readout for measuring electromagnetic showers at the CERN ISR
US2536314A (en) Radiation detector
Forck et al. Detectors for slowly extracted heavy ions at the GSI facility

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term