WO2016140107A1 - Scroll fluid machine - Google Patents

Scroll fluid machine Download PDF

Info

Publication number
WO2016140107A1
WO2016140107A1 PCT/JP2016/055270 JP2016055270W WO2016140107A1 WO 2016140107 A1 WO2016140107 A1 WO 2016140107A1 JP 2016055270 W JP2016055270 W JP 2016055270W WO 2016140107 A1 WO2016140107 A1 WO 2016140107A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
spiral
spiral wrap
pair
tooth bottom
Prior art date
Application number
PCT/JP2016/055270
Other languages
French (fr)
Japanese (ja)
Inventor
貴幸 萩田
孝幸 桑原
藤田 勝博
竹内 真実
源太 慶川
山崎 浩
恵太 北口
創 佐藤
Original Assignee
三菱重工オートモーティブサーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工オートモーティブサーマルシステムズ株式会社 filed Critical 三菱重工オートモーティブサーマルシステムズ株式会社
Priority to DE112016001045.1T priority Critical patent/DE112016001045T5/en
Priority to CN201680013707.3A priority patent/CN107429690B/en
Priority to US15/551,148 priority patent/US20180058451A1/en
Publication of WO2016140107A1 publication Critical patent/WO2016140107A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/02Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F01C1/0207Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F01C1/0215Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0269Details concerning the involute wraps
    • F04C18/0276Different wall heights
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0064Magnetic couplings

Definitions

  • the present invention relates to a scroll fluid machine that can be applied to a compressor, a pump, an expander, and the like.
  • the scroll fluid machine includes a pair of fixed scrolls and orbiting scrolls each having a spiral wrap standing on an end plate, and the pair of fixed scrolls and the spiral scrolls of the orbiting scrolls are opposed to each other, and the phases are shifted by 180 degrees.
  • a pair of compression chambers are formed between both scrolls, and fluid is supplied and discharged.
  • the wrap heights of the spiral wraps of the fixed scroll and the orbiting scroll are made uniform over the entire circumference in the spiral direction, and the volume of the compression chamber is increased from the outer peripheral side to the inner peripheral side.
  • a two-dimensional compression structure is generally used in which the fluid sucked into the compression chamber is compressed while being compressed and compressed in the circumferential direction of the spiral wrap.
  • each step is set at a predetermined position along the spiral direction of the tooth tip surface and the tooth bottom surface of the spiral wrap of the fixed scroll and the orbiting scroll.
  • the height of the wrap on the outer periphery of the spiral wrap is made higher than the height of the wrap on the inner periphery, and the axial height of the compression chamber is set on the inner periphery of the spiral wrap on the outer periphery of the spiral wrap.
  • stepped scroll compressors for example, as shown in Patent Documents 1 and 2, respectively, at a predetermined position along the spiral direction of the tooth tip surface and the tooth bottom surface of the spiral wrap of both the fixed scroll and the orbiting scroll.
  • one of the fixed scroll and the orbiting scroll is placed only at a predetermined position along the spiral direction of the tooth bottom surface of the spiral wrap.
  • a scroll compressor having a one-side step structure in which a scroll having a stepped portion is used and the other is a scroll having a stepped portion only at a predetermined position along the spiral direction of the tooth tip surface of the spiral wrap.
  • the present invention has been made in view of such circumstances, and eliminates the occurrence of mixing loss while enjoying the effects of high efficiency and small size and light weight by increasing the compression volume ratio as a stepped structure.
  • Another object of the present invention is to provide a scroll fluid machine that can achieve higher efficiency.
  • a scroll fluid machine includes a pair of fixed scrolls and orbiting scrolls in which spiral wraps are erected on end plates and the spiral wraps are opposed to each other, and the fixed scrolls and One of the orbiting scrolls has a step portion only at a predetermined position along the spiral direction of the tooth bottom surface of the spiral wrap, and the other is in the spiral direction of the tooth tip surface of the spiral wrap corresponding to the step portion on the tooth bottom side.
  • the internal pressure between the compression portions is disengaged because the internal pressure in both compression chambers is unbalanced.
  • a mixing loss occurs.
  • the position of the stepped portion of the tooth bottom surface is set to a position on the inner circumferential side in the spiral direction by an angle of ⁇ radians from the winding end position of the spiral wrap having the suction deadline or a position on the outer circumferential side from the position.
  • the engagement between the step portions can be removed and both the compression chambers can be brought into a communication state. Therefore, the mixing loss caused by the presence of the step portion only on one side of the pair of compression chambers can be eliminated, and the efficiency can be improved correspondingly.
  • a scroll fluid machine with a stepped structure on one side it is possible to improve the efficiency by reducing the leakage of the working medium by halving the gap of the step mesh from two to one, and to work on the step processing. The cost can be reduced by halving the value.
  • the scroll fluid machine includes a pair of fixed scrolls and orbiting scrolls in which spiral wraps are erected on end plates, and the spiral wraps are opposed to each other, and the fixed scrolls and
  • the orbiting scroll is a double-sided stepped scroll having step portions at predetermined positions along the spiral direction of the tooth tip surface and the tooth bottom surface of the spiral wrap, and the height of each step portion is the fixed scroll and the orbiting scroll.
  • the position of the step provided on the tooth bottom surface is a position on the inner circumferential side of the spiral direction by ⁇ radians at an extension angle from the winding end position of the spiral wrap that has been closed by suction. It is provided at a position on the outer peripheral side of the position.
  • the internal pressure of both compression chambers is unbalanced.
  • a mixing loss occurs.
  • the position of the stepped portion of the tooth bottom surface is set to a position on the inner circumferential side in the spiral direction by an angle of ⁇ radians from the winding end position of the spiral wrap having the suction deadline or a position on the outer circumferential side from the position.
  • the scroll fluid machine according to the present invention is the scroll fluid machine according to any one of the above-described scroll fluid machines, wherein the stepped position of the tooth bottom surface is an extension angle of ⁇ / 2 radians or ⁇ radians from the winding end position of the spiral wrap. It is provided in the range of the inner circumferential side position in the spiral direction.
  • a scroll fluid machine having a one-side stepped structure in which a step is provided only on one side of a pair of compression chambers
  • Both the compression chambers can be brought into a communication state by disengaging the step portions.
  • the mixing loss generated due to the presence of the step portion on only one side of the pair of compression chambers can be eliminated, and the efficiency can be improved correspondingly.
  • the step mesh clearance can be reduced from two to one, thereby reducing the leakage of the working medium by half and improving the efficiency. Cost reduction can be achieved by halving.
  • a scroll fluid machine having a double-sided step structure in which a pair of compression chambers are provided with stepped portions having different heights, when the internal pressure of the pair of compression chambers is substantially the same before the internal pressure changes.
  • the compression chambers can be brought into communication by releasing the engagement between the step portions. For this reason, in the scroll fluid machine having a stepped structure with the stepped portions present in the pair of compression chambers having different heights, the mixing loss due to the difference in the stepped portion height can be eliminated, and the efficiency can be improved accordingly. it can.
  • FIG. 1 is a longitudinal sectional view of a scroll fluid machine according to a first embodiment of the present invention. It is mesh
  • FIG. 3 is an explanatory diagram (A) to (D) of a meshing state corresponding to FIG. 2 of a comparative example. It is a graph which shows the change of the cylinder pressure with respect to the turning angle of the scroll fluid machine which concerns on the said 1st Embodiment. It is a graph which shows the change of the cylinder pressure with respect to the turning angle of the said comparative example.
  • FIG. 1 is a longitudinal sectional view of the scroll fluid machine according to the first embodiment of the present invention
  • FIG. 2 is an explanatory diagram of meshing states at different turning angle positions of the fixed scroll and the turning scroll. It is shown as (A) to FIG. 2 (D).
  • the scroll fluid machine an example in which the present invention is applied to an open scroll compressor (scroll fluid machine) 1 of a type driven by external power will be described.
  • the open-type scroll compressor (scroll fluid machine) 1 includes a housing 2 constituting an outer shell as shown in FIG.
  • the housing 2 has a cylindrical shape with an opening on the front end side and a sealing on the rear end side, and a front housing 3 is fastened and fixed to the opening on the front end side with a bolt 4 to form a sealed space therein.
  • the scroll compression mechanism 5 and the drive shaft 6 are incorporated in the sealed space.
  • the drive shaft 6 is rotatably supported by the front housing 3 via a main bearing 7 and a sub-bearing 8, and has a front end protruding from the front housing 3 via a lip seal (or mechanical seal) 9.
  • a pulley 11 is rotatably connected to the outer peripheral portion of the front housing 3 via a bearing 10 via an electromagnetic clutch 12 so that power can be transmitted from the outside.
  • a crank pin 13 that is eccentric by a predetermined dimension is integrally provided at the rear end of the drive shaft 6, and the orbiting scroll 16 of the scroll compression mechanism 5 to be described later includes a drive bush and a drive bearing whose variable orbiting radius is variable. It is connected via a known driven crank mechanism 14.
  • the scroll compression mechanism 5 forms a pair of compression chambers (compression chambers) 17 between the scrolls 15 and 16 by meshing the pair of fixed scrolls 15 and the orbiting scroll 16 with a phase difference of 180 degrees.
  • the fluid (refrigerant gas) is compressed by moving 17 from the outer peripheral position to the center position while reducing the volume.
  • the fixed scroll 15 includes a discharge port 18 that discharges compressed gas at a central portion, and is fixedly installed on the bottom wall surface of the housing 2 via a bolt 19.
  • the orbiting scroll 16 is connected to the crank pin 13 of the drive shaft 6 via a driven crank mechanism 14 and is supported on a thrust bearing surface of the front housing 3 via a known rotation prevention mechanism 20 so as to be capable of revolution orbiting.
  • An O-ring 21 is provided on the outer periphery of the end plate 15 ⁇ / b> A of the fixed scroll 15, and the O-ring 21 is brought into close contact with the inner peripheral surface of the housing 2, whereby the discharge chamber 22 and the suction chamber 23 pass through the inner space of the housing 2. It is divided into and.
  • a discharge port 18 is opened in the discharge chamber 22 so that the compressed gas from the compression chamber 17 is discharged, and the compressed high-pressure gas is sent out to the refrigeration cycle side. Yes.
  • a suction port 24 provided in the housing 2 is opened in the suction chamber 23 so that the low-pressure gas circulated through the refrigeration cycle is sucked into the compression chamber 17 through the suction chamber 23. It has become.
  • the pair of fixed scroll 15 and orbiting scroll 16 are configured such that spiral wraps 15B and 16B are erected on end plates 15A and 16A, respectively.
  • one of the fixed scroll 15 and the orbiting scroll 16, here, the orbiting scroll 16 is provided only at a predetermined position along the spiral direction of the tooth bottom surface 16D of the spiral wrap 16B.
  • Scroll with The other fixed scroll 15 is only at a predetermined position along the spiral direction of the tooth tip surface 15C of the spiral wrap 15B (a position corresponding to the step portion 16E provided on the tooth bottom surface 16D of the spiral wrap 16B on the orbiting scroll 16 side).
  • the scroll is provided with a step portion 15E.
  • the stepped portion 16E is provided only on the tooth bottom surface 16D of the orbiting scroll 16, and the stepped portion 15E is provided only on the tooth tip surface 15C of the spiral wrap 15B of the fixed scroll 15 corresponding to the stepped portion 16E.
  • the entire surface of the bottom surface 15D of the fixed scroll 15 in which the step portion is not provided on the bottom surface 15D is a flat surface.
  • all the tooth tip surfaces 16C of the spiral wrap 16B of the orbiting scroll 16 have the same height.
  • one of the pair of compression chambers 17 closed by suction is a compression chamber having a stepped portion, and the other is a compression chamber having no stepped portion.
  • the compression chambers are asymmetrical to each other, and the volume is unbalanced.
  • the pair of compression chambers 17 are compression chambers having different compression volume ratios, a differential pressure is generated in the compression process, and when the pair of compression chambers 17 are in communication with each other by disengagement between the step portions, Compression loss due to mixing occurs.
  • the inside of the spiral direction is 1.5 ⁇ radians from the winding end position 16F of the spiral wrap 16B of the orbiting scroll 16 at an extension angle.
  • the stepped portions 16E and 15E are engaged with each other at the position shown in FIG. 3A, and the pair of compression chambers 17 are sealed. Yes.
  • compression is started, and the stepped portions 16E and 15E are still engaged with each other at the position of FIG. 3 (B) advanced by 90 ° in the turning angle, but from the position of FIG. 3 (B) to the position of FIG. 3 (C).
  • the stepped portions 16E and 15E are disengaged from each other, and the compression is advanced and the pair of compression chambers 17 in which the differential pressure is generated communicate with each other. It will be.
  • the position of the step portions 16E and 15E is specified to eliminate the mixing loss that occurs when the engagement of the step portions 16E and 15E is released and the pair of compression chambers 17 communicate with each other. Therefore, as shown in FIG. 2, when the orbiting scroll 16 provided with the step portion 16E on the tooth bottom surface 16D is orbited to the position shown in FIG. A stepped portion 16E of the tooth bottom surface 16D is provided at a position on the inner circumferential side in the spiral direction by an angle of ⁇ radians from the winding end position 16F of 16B or a position on the outer circumferential side with respect to the displacement thereof.
  • a step portion 16E of the tooth bottom surface 16D is provided in a range of the winding end position 16F of the swirl wrap 16B of the orbiting scroll 16 from the winding end position 16F to the inner circumferential side position in the spiral direction by ⁇ / 2 radians or ⁇ radians. It is configured. With this configuration, when the suction is closed at the position shown in FIG. 2A, the step portions 16E and 15E are still engaged with each other, but the position from the position shown in FIG. 2A toward the position shown in FIG. As the turning proceeds, the step portions 16E and 15E are immediately disengaged from each other, and the pair of compression chambers 17 communicate with each other. In this state, since the internal pressure in the pair of compression chambers 17 is substantially the suction pressure and no differential pressure is generated, even if the pair of compression chambers 17 communicate with each other, a mixing loss due to gas mixing occurs. There is no.
  • the graph in FIG. 4 shows the change in the in-cylinder pressure (compression chamber internal pressure) during this period.
  • the comparative example shown in FIG. 5 has a mixing loss when the swivel angle is around 650 °, whereas that of the present embodiment (the winding of the spiral wrap 16B). It can be seen that there is no mixing loss in the case where the stepped portion 16E is provided at the position on the inner circumferential side in the spiral direction by ⁇ radians at the extension angle from the end position.
  • the following operational effects are obtained.
  • the electromagnetic clutch 12 when the electromagnetic clutch 12 is turned on, power is input from the drive source to the drive shaft 6 via the pulley 11 and the electromagnetic clutch 12, and the drive shaft 6 is rotationally driven.
  • the orbiting scroll 16 connected to the crank pin 13 of the drive shaft 6 via the driven crank mechanism 14 including the drive bush is revolved around the fixed scroll 15.
  • the pair of compression chambers 17 closed at the swivel angle position of FIG. 2A sequentially turn 360 ° through the positions of FIG. 2B, FIG. 2C, and FIG. 2D. Then, the position returns to the position shown in FIG.
  • the step 16E provided only on the tooth bottom surface 16D of the spiral wrap 16B of the orbiting scroll 16 is positioned at the position shown in FIG.
  • the configuration is such that ⁇ / 2 radians or ⁇ radians are provided at a position on the inner peripheral side in the spiral direction from the winding end position 16F of the spiral wrap 16B to the expansion angle from the winding end position.
  • the stepped portions 16E and 15E are engaged with each other at the position where the suction is closed in FIG. 2A, but when turning from the position of FIG. 2A toward the position of FIG. 15E are disengaged, and the pair of compression chambers 17 are in communication.
  • the internal pressure in the pair of compression chambers 17 is still the suction pressure, and no differential pressure is generated, so even if the pair of compression chambers 17 communicate with each other and the gases are mixed, As a result, no mixing loss occurs.
  • the step 16E exists only on one side of the pair of compression chambers 17 while the scroll compressor 1 has a one-side stepped structure in which the step 16E is provided only on one side of the pair of compression chambers 17. Therefore, the mixing loss generated due to the fact can be eliminated, and the efficiency can be improved accordingly.
  • the scroll compressor 1 having a stepped structure on one side by reducing the step mesh gap from two to one, the leakage of the working medium can be reduced by half and the efficiency can be improved. Costs can be reduced by reducing labor by half.
  • the position of the step portion 16E provided on the tooth bottom surface 16D side is provided within the range of the position in the spiral direction from the winding end position 16F of the spiral wrap 16B by ⁇ / 2 radians to ⁇ radians in the extension angle. Therefore, the mixing loss generated when the internal pressure of the pair of compression chambers 17 is disengaged and mixed while ensuring the effect of increasing the compression volume ratio by providing the stepped portion 16E. It can be lost. Therefore, the mixing loss can be eliminated and further efficiency can be improved while enjoying the effects of high efficiency and small size and light weight of the scroll compressor (scroll fluid machine) 1 due to the stepped structure.
  • a scroll compressor having a one-sided step structure described in the first embodiment by adopting a configuration in which the opening angle is ⁇ radians from the end position and is provided at a position on the inner peripheral side in the spiral direction or a position on the outer peripheral side than the position.
  • the present invention is not limited to the inventions according to the above-described embodiments, and various modifications can be made without departing from the scope of the invention.
  • the example applied to the open type scroll compressor 1 has been described, but it goes without saying that the present invention can be similarly applied to a scroll expander, a scroll pump, and the like.
  • the present invention is not limited to the open scroll compressor 1 and may be applied to a scroll compressor having a built-in compression mechanism and motor.

Abstract

Provided is a scroll fluid machine comprising a fixed scroll (15) and a rotating scroll (16) which form a pair, wherein the scroll fluid machine is configured to be a one-side stepped scroll and such that one from between the fixed scroll (15) and the rotating scroll (16) is provided with a step part (16E) only at a prescribed position along the spiral direction of a tooth bottom surface (16D) of a spiral wrap (16B), and the other is provided with a step part (15E) only at a prescribed position corresponding to the step part (16E) on the tooth bottom surface (16D) side and along the spiral direction of a tooth tip surface (15C) of a spiral wrap (15B). The step part (16E) provided to the tooth bottom surface (16D) is at a position toward the spiral-direction inner circumference by only π radian of an involute angle from a winding completion position (16F) of the spiral wrap (16B) which has terminated intake, or a position toward the spiral direction outer circumference from such position.

Description

スクロール流体機械Scroll fluid machinery
 本発明は、圧縮機、ポンプ、膨張機等に適用することができるスクロール流体機械に関するものである。 The present invention relates to a scroll fluid machine that can be applied to a compressor, a pump, an expander, and the like.
 スクロール流体機械は、端板上に渦巻き状ラップを立設した一対の固定スクロールおよび旋回スクロールを備え、その一対の固定スクロールおよび旋回スクロールの渦巻き状ラップ同士を互いに対向させ、180度位相をずらして噛み合わせることにより、両スクロール間に一対の圧縮室を形成し、流体を給・排出する構成とされている。かかるスクロール流体機械において、例えばスクロール圧縮機では、固定スクロールおよび旋回スクロールの渦巻き状ラップのラップ高さを渦巻き方向の全周において一様な高さとし、圧縮室を外周側から内周側に容積を縮小しながら移動させ、圧縮室に吸入された流体を渦巻き状ラップの周方向に圧縮する二次元圧縮構造としたものが一般的である。 The scroll fluid machine includes a pair of fixed scrolls and orbiting scrolls each having a spiral wrap standing on an end plate, and the pair of fixed scrolls and the spiral scrolls of the orbiting scrolls are opposed to each other, and the phases are shifted by 180 degrees. By engaging, a pair of compression chambers are formed between both scrolls, and fluid is supplied and discharged. In such a scroll fluid machine, for example, in a scroll compressor, the wrap heights of the spiral wraps of the fixed scroll and the orbiting scroll are made uniform over the entire circumference in the spiral direction, and the volume of the compression chamber is increased from the outer peripheral side to the inner peripheral side. A two-dimensional compression structure is generally used in which the fluid sucked into the compression chamber is compressed while being compressed and compressed in the circumferential direction of the spiral wrap.
 一方、圧縮容積比を大きくしてスクロール圧縮機を高効率化、小型軽量化するため、固定スクロールおよび旋回スクロールの渦巻き状ラップの歯先面および歯底面の渦巻き方向に沿う所定位置に各々段部を設け、その段部を境に渦巻き状ラップの外周側のラップ高さを内周側のラップ高さよりも高くし、圧縮室の軸線方向高さを渦巻き状ラップの外周側において内周側の高さよりも高くすることにより、流体を渦巻き状ラップの周方向および高さ方向の双方に圧縮する構造とした三次元圧縮構造の段付きスクロール圧縮機が提供されている。 On the other hand, in order to increase the compression volume ratio and to make the scroll compressor more efficient and smaller and lighter, each step is set at a predetermined position along the spiral direction of the tooth tip surface and the tooth bottom surface of the spiral wrap of the fixed scroll and the orbiting scroll. The height of the wrap on the outer periphery of the spiral wrap is made higher than the height of the wrap on the inner periphery, and the axial height of the compression chamber is set on the inner periphery of the spiral wrap on the outer periphery of the spiral wrap. There is provided a stepped scroll compressor having a three-dimensional compression structure in which a fluid is compressed in both the circumferential direction and the height direction of a spiral wrap by making the height higher than the height.
 かかる段付きスクロール圧縮機としては、例えば特許文献1,2に示されるように、固定スクロールおよび旋回スクロールの双方のスクロールの渦巻き状ラップの歯先面および歯底面の渦巻き方向に沿う所定位置に各々段部を設けた両側段付き構造のスクロール圧縮機以外に、特許文献3,4に示されるように、固定スクロールおよび旋回スクロールの一方を渦巻き状ラップの歯底面の渦巻き方向に沿う所定位置のみに段部を備えたスクロールとし、他方を渦巻き状ラップの歯先面の渦巻き方向に沿う所定位置のみに段部を備えたスクロールとした片側段付き構造のスクロール圧縮機が知られている。 As such stepped scroll compressors, for example, as shown in Patent Documents 1 and 2, respectively, at a predetermined position along the spiral direction of the tooth tip surface and the tooth bottom surface of the spiral wrap of both the fixed scroll and the orbiting scroll. In addition to the scroll compressor having a stepped structure on both sides, as shown in Patent Documents 3 and 4, one of the fixed scroll and the orbiting scroll is placed only at a predetermined position along the spiral direction of the tooth bottom surface of the spiral wrap. There is known a scroll compressor having a one-side step structure in which a scroll having a stepped portion is used and the other is a scroll having a stepped portion only at a predetermined position along the spiral direction of the tooth tip surface of the spiral wrap.
特開2002-5053号公報JP 2002-5053 A 特開2009-74461号公報JP 2009-74461 A 特公昭60-17956号公報(第8図参照)Japanese Examined Patent Publication No. 60-17756 (see Fig. 8) 特開平4-121483号公報JP-A-4-121383
 三次元圧縮構造のスクロール圧縮機において、特許文献1,2に示されるように、固定および旋回スクロールの双方に各々段部を設けたものでは、一対の圧縮室が対称形とされており、内圧がバランスしていることから、段部間の噛み合いが外れて両圧縮室が連通することによりガスが混合しても、混合ロスが発生することはない。ところが、両スクロールに段部を設ける必要があるため、加工に手間がかかるとともに、ガス漏れに寄与する段部メッシュ隙間が2箇所に存在することから、ガス漏れ量が多くなり易い等の課題を有する。 In a scroll compressor having a three-dimensional compression structure, as shown in Patent Documents 1 and 2, a pair of compression chambers are symmetrical in the case where each of the fixed and orbiting scrolls is provided with stepped portions. Therefore, even if gas is mixed by disengagement between the stepped portions and the compression chambers communicating with each other, no mixing loss occurs. However, since it is necessary to provide stepped portions on both scrolls, it takes time for processing, and there are two stepped mesh gaps contributing to gas leakage. Therefore, there is a problem that the amount of gas leakage tends to increase. Have.
 一方、特許文献3,4に示されるように、片側段付き構造としたものでは、段部による噛み合いが1箇所となるため、ガス漏れ量を低減することができるとともに、加工の手間を半減することができる。しかしながら、一対の圧縮室が段部の有無によって非対称形となり、容積がアンバランスとなることから、一対の圧縮室が吸入締め切りをして圧縮を開始した後、段部間の噛み合いが外れて両圧縮室が連通したとき、両圧縮室間に差圧が発生する。この差圧により混合ロスが発生することとなり、その分効率が低下する等の課題を有している。 On the other hand, as shown in Patent Documents 3 and 4, with the one-side stepped structure, since the meshing by the stepped portion is one place, the amount of gas leakage can be reduced and the labor of processing is halved. be able to. However, since the pair of compression chambers becomes asymmetric depending on the presence or absence of the stepped portion and the volume becomes unbalanced, after the pair of compression chambers closes the suction and starts compression, the engagement between the stepped portions is released and both When the compression chambers communicate with each other, a differential pressure is generated between the compression chambers. This differential pressure causes a mixing loss, and there is a problem that the efficiency is reduced accordingly.
 本発明は、このような事情に鑑みてなされたものであって、段付き構造として圧縮容積比を大きくすることによる高効率化、小型軽量化効果を享受しつつ、混合ロスの発生を解消して更なる高効率化を達成し得るスクロール流体機械を提供することを目的とする。 The present invention has been made in view of such circumstances, and eliminates the occurrence of mixing loss while enjoying the effects of high efficiency and small size and light weight by increasing the compression volume ratio as a stepped structure. Another object of the present invention is to provide a scroll fluid machine that can achieve higher efficiency.
 上記した課題を解決するために、本発明のスクロール流体機械は、以下の手段を採用している。
 即ち、本発明にかかるスクロール流体機械は、端板上に渦巻き状ラップが立設され、その渦巻き状ラップ同士が互いに対向されて噛み合わされる一対の固定スクロールおよび旋回スクロールを備え、前記固定スクロールおよび旋回スクロールの一方が前記渦巻き状ラップの歯底面の渦巻き方向に沿う所定位置のみに段部を備え、他方が前記歯底面側の段部に対応する前記渦巻き状ラップの歯先面の渦巻き方向に沿う所定位置のみに段部を備えた片側段付きスクロールとされ、前記歯底面に設けられる前記段部の位置が、吸入締め切りをした前記渦巻き状ラップの巻き終わり位置から伸開角でπラジアンだけ渦巻き方向内周側の位置もしくはその位置よりも外周側の位置に設けられている。
In order to solve the above-described problems, the scroll fluid machine of the present invention employs the following means.
That is, a scroll fluid machine according to the present invention includes a pair of fixed scrolls and orbiting scrolls in which spiral wraps are erected on end plates and the spiral wraps are opposed to each other, and the fixed scrolls and One of the orbiting scrolls has a step portion only at a predetermined position along the spiral direction of the tooth bottom surface of the spiral wrap, and the other is in the spiral direction of the tooth tip surface of the spiral wrap corresponding to the step portion on the tooth bottom side. It is a one-side stepped scroll provided with a step portion only at a predetermined position along the position, and the position of the step portion provided on the tooth bottom surface is only π radians at an extension angle from the winding end position of the spiral wrap with suction closed It is provided at a position on the inner peripheral side in the spiral direction or at a position on the outer peripheral side of the position.
 一対の圧縮室の一方側のみに段部が設けられている片側段付き構造のスクロール流体機械では、両圧縮室内の内圧がアンバランスとなることから、その内圧が段部間の噛み合いが外れて混合する際、混合ロスが発生することになる。
 本発明によれば、歯底面の段部位置を、吸入締め切りをした渦巻き状ラップの巻き終わり位置から伸開角でπラジアンだけ渦巻き方向内周側の位置もしくはその位置よりも外周側の位置に設けたことにより、一対の圧縮室の内圧が変わる前の実質的に同一内圧のときに、段部間の噛み合いを外して両圧縮室を連通状態とすることができる。
 従って、一対の圧縮室の一方側のみに段部が存在することに起因して発生する混合ロスを無くし、その分効率を向上させることができる。
 また、片側段付き構造のスクロール流体機械として、段部メッシュ隙間を2箇所から1箇所に減らすことにより、作動媒体の漏れを半減して効率の向上を図ることができるともに、段部加工の手間を半減することにより、コスト低減を図ることができる。
In a scroll fluid machine with a one-side stepped structure in which a step is provided only on one side of a pair of compression chambers, the internal pressure between the compression portions is disengaged because the internal pressure in both compression chambers is unbalanced. When mixing, a mixing loss occurs.
According to the present invention, the position of the stepped portion of the tooth bottom surface is set to a position on the inner circumferential side in the spiral direction by an angle of π radians from the winding end position of the spiral wrap having the suction deadline or a position on the outer circumferential side from the position. By providing, when the internal pressures of the pair of compression chambers are substantially the same before the internal pressure changes, the engagement between the step portions can be removed and both the compression chambers can be brought into a communication state.
Therefore, the mixing loss caused by the presence of the step portion only on one side of the pair of compression chambers can be eliminated, and the efficiency can be improved correspondingly.
Moreover, as a scroll fluid machine with a stepped structure on one side, it is possible to improve the efficiency by reducing the leakage of the working medium by halving the gap of the step mesh from two to one, and to work on the step processing. The cost can be reduced by halving the value.
 また、本発明にかかるスクロール流体機械は、端板上に渦巻き状ラップが立設され、その渦巻き状ラップ同士が互いに対向されて噛み合わされる一対の固定スクロールおよび旋回スクロールを備え、前記固定スクロールおよび前記旋回スクロールが渦巻き状ラップの歯先面および歯底面の渦巻き方向に沿う所定位置に各々段部を備えた両側段付きスクロールとされ、前記各段部の高さが前記固定スクロールと前記旋回スクロールとで異なる高さとされるとともに、前記歯底面に設けられる前記段部の位置が、吸入締め切りをした前記渦巻き状ラップの巻き終わり位置から伸開角でπラジアンだけ渦巻き方向内周側の位置もしくはその位置よりも外周側の位置に設けられている。 Further, the scroll fluid machine according to the present invention includes a pair of fixed scrolls and orbiting scrolls in which spiral wraps are erected on end plates, and the spiral wraps are opposed to each other, and the fixed scrolls and The orbiting scroll is a double-sided stepped scroll having step portions at predetermined positions along the spiral direction of the tooth tip surface and the tooth bottom surface of the spiral wrap, and the height of each step portion is the fixed scroll and the orbiting scroll. And the position of the step provided on the tooth bottom surface is a position on the inner circumferential side of the spiral direction by π radians at an extension angle from the winding end position of the spiral wrap that has been closed by suction. It is provided at a position on the outer peripheral side of the position.
 一対の圧縮室に高さの異なる段部が設けられている両側段付き構造のスクロール流体機械では、両圧縮室内の内圧がアンバランスとなることから、その内圧が段部間の噛み合いが外れて混合する際、混合ロスが発生することになる。
 本発明によれば、歯底面の段部位置を、吸入締め切りをした渦巻き状ラップの巻き終わり位置から伸開角でπラジアンだけ渦巻き方向内周側の位置もしくはその位置よりも外周側の位置に設けたことにより、一対の圧縮室の内圧が変わる前の実質的に同一内圧のときに、段部間の噛み合いを外して両圧縮室を連通状態とすることができる。
 従って、一対の圧縮室に存在する段部を異なる高さとした両側段付き構造のスクロール流体機械において、段部高さが異なることに起因する混合ロスを無くし、その分効率を向上させることができる。
In a scroll fluid machine with a double-sided step structure in which a pair of compression chambers are provided with stepped portions having different heights, the internal pressure of both compression chambers is unbalanced. When mixing, a mixing loss occurs.
According to the present invention, the position of the stepped portion of the tooth bottom surface is set to a position on the inner circumferential side in the spiral direction by an angle of π radians from the winding end position of the spiral wrap having the suction deadline or a position on the outer circumferential side from the position. By providing, when the internal pressures of the pair of compression chambers are substantially the same before the internal pressure changes, the engagement between the step portions can be removed and both the compression chambers can be brought into a communication state.
Therefore, in a scroll fluid machine having a double-sided step structure in which the step portions existing in the pair of compression chambers have different heights, the mixing loss due to the difference in the step portion height can be eliminated, and the efficiency can be improved correspondingly. .
 さらに、本発明のスクロール流体機械は、上述のいずれかのスクロール流体機械において、前記歯底面の前記段部位置が前記渦巻き状ラップの巻き終わり位置から伸開角でπ/2ラジアンないしπラジアンだけ渦巻き方向内周側位置の範囲に設けられている。 Furthermore, the scroll fluid machine according to the present invention is the scroll fluid machine according to any one of the above-described scroll fluid machines, wherein the stepped position of the tooth bottom surface is an extension angle of π / 2 radians or π radians from the winding end position of the spiral wrap. It is provided in the range of the inner circumferential side position in the spiral direction.
 本発明によれば、段部を設けることによって圧縮容積比を大きくしたことによる効果を確保しながら、一対の圧縮室の内圧が段部間の噛み合いが外れて混合するときに発生する混合ロスを無くすことができる。
 従って、段付き構造としたことによるスクロール流体機械の高効率化、小型軽量化効果を享受しつつ、混合ロスを解消して更なる高効率化を図ることができる。
According to the present invention, the mixing loss that occurs when the internal pressure of the pair of compression chambers is disengaged and mixed while ensuring the effect of increasing the compression volume ratio by providing the stepped portion. It can be lost.
Therefore, the mixing loss can be eliminated and further efficiency can be improved while enjoying the high efficiency and small size and light weight effect of the scroll fluid machine due to the stepped structure.
 本発明によると、一対の圧縮室の一方側のみに段部が設けられている片側段付き構造のスクロール流体機械において、一対の圧縮室の内圧が変わる前の実質的に同一内圧のときに、段部間の噛み合いを外して両圧縮室を連通状態とすることができる。
 このため、一対の圧縮室の一方側のみに段部が存在することに起因して発生する混合ロスを無くし、その分効率を向上させることができる。
 しかも片側段付き構造のスクロール流体機械として、段部メッシュ隙間を2箇所から1箇所に減らすことにより、作動媒体の漏れを半減して効率の向上を図ることができるともに、段部加工の手間を半減することにより、コスト低減を図ることができる。
According to the present invention, in a scroll fluid machine having a one-side stepped structure in which a step is provided only on one side of a pair of compression chambers, when the internal pressure of the pair of compression chambers is substantially the same before the internal pressure changes, Both the compression chambers can be brought into a communication state by disengaging the step portions.
For this reason, the mixing loss generated due to the presence of the step portion on only one side of the pair of compression chambers can be eliminated, and the efficiency can be improved correspondingly.
Moreover, as a scroll fluid machine with a one-sided step structure, the step mesh clearance can be reduced from two to one, thereby reducing the leakage of the working medium by half and improving the efficiency. Cost reduction can be achieved by halving.
 また、本発明によると、一対の圧縮室に高さの異なる段部が設けられている両側段付き構造のスクロール流体機械において、一対の圧縮室の内圧が変わる前の実質的に同一内圧のときに、段部間の噛み合いを外して両圧縮室を連通状態とすることができる。
 このため、一対の圧縮室に存在する段部を異なる高さとした両側段付き構造のスクロール流体機械において、段部高さが異なることに起因する混合ロスを無くし、その分効率を向上させることができる。
Further, according to the present invention, in a scroll fluid machine having a double-sided step structure in which a pair of compression chambers are provided with stepped portions having different heights, when the internal pressure of the pair of compression chambers is substantially the same before the internal pressure changes. In addition, the compression chambers can be brought into communication by releasing the engagement between the step portions.
For this reason, in the scroll fluid machine having a stepped structure with the stepped portions present in the pair of compression chambers having different heights, the mixing loss due to the difference in the stepped portion height can be eliminated, and the efficiency can be improved accordingly. it can.
本発明の第1実施形態に係るスクロール流体機械の縦断面図である。1 is a longitudinal sectional view of a scroll fluid machine according to a first embodiment of the present invention. 上記スクロール流体機械の固定スクロールと旋回スクロールの異なる旋回角位置での噛み合い状態説明図(A)ないし(D)である。It is mesh | engagement explanatory drawing (A) thru | or (D) in the turning angle position from which the fixed scroll and turning scroll of the said scroll fluid machine differ. 比較例の図2に対応する噛み合い状態説明図(A)ないし(D)である。FIG. 3 is an explanatory diagram (A) to (D) of a meshing state corresponding to FIG. 2 of a comparative example. 上記第1実施形態に係るスクロール流体機械の旋回角に対する筒内圧の変化を示すグラフである。It is a graph which shows the change of the cylinder pressure with respect to the turning angle of the scroll fluid machine which concerns on the said 1st Embodiment. 上記比較例の旋回角に対する筒内圧の変化を示すグラフである。It is a graph which shows the change of the cylinder pressure with respect to the turning angle of the said comparative example.
 以下に、本発明にかかる実施形態について、図面を参照して説明する。
[第1実施形態]
 以下、本発明の第1実施形態について、図1ないし図5を用いて説明する。
 図1には、本発明の第1実施形態に係るスクロール流体機械の縦断面図が示され、図2には、その固定スクロールと旋回スクロールの異なる旋回角位置での噛み合い状態説明図が図2(A)ないし図2(D)として示されている。
 ここでは、スクロール流体機械の一例として、外部からの動力で駆動されるタイプの開放型スクロール圧縮機(スクロール流体機械)1に適用した場合の例について説明する。
Embodiments according to the present invention will be described below with reference to the drawings.
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. 1 to 5.
FIG. 1 is a longitudinal sectional view of the scroll fluid machine according to the first embodiment of the present invention, and FIG. 2 is an explanatory diagram of meshing states at different turning angle positions of the fixed scroll and the turning scroll. It is shown as (A) to FIG. 2 (D).
Here, as an example of the scroll fluid machine, an example in which the present invention is applied to an open scroll compressor (scroll fluid machine) 1 of a type driven by external power will be described.
 開放型スクロール圧縮機(スクロール流体機械)1は、図1に示されるように、外郭を構成するハウジング2を備えている。このハウジング2は、前端側が開口され、後端側が密閉された円筒形状をなすものであり、前端側の開口にフロントハウジング3をボルト4で締め付け固定することにより内部に密閉空間を形成し、その密閉空間にスクロール圧縮機構5および駆動軸6が組み込まれる構成とされている。 The open-type scroll compressor (scroll fluid machine) 1 includes a housing 2 constituting an outer shell as shown in FIG. The housing 2 has a cylindrical shape with an opening on the front end side and a sealing on the rear end side, and a front housing 3 is fastened and fixed to the opening on the front end side with a bolt 4 to form a sealed space therein. The scroll compression mechanism 5 and the drive shaft 6 are incorporated in the sealed space.
 駆動軸6は、フロントハウジング3に主軸受7および副軸受8を介して回転自在に支持されており、フロントハウジング3からリップシール(またはメカニカルシール)9を介して外部に突出された前端部に、フロントハウジング3の外周部に軸受10を介して回転自在に設置されたプーリ11が電磁クラッチ12を介して連結され、外部から動力が伝達可能とされている。この駆動軸6の後端には、所定寸法だけ偏心したクランクピン13が一体に設けられ、後述するスクロール圧縮機構5の旋回スクロール16が、その旋回半径を可変とするドライブブッシュおよびドライブ軸受を含む公知の従動クランク機構14を介して連結されるようになっている。 The drive shaft 6 is rotatably supported by the front housing 3 via a main bearing 7 and a sub-bearing 8, and has a front end protruding from the front housing 3 via a lip seal (or mechanical seal) 9. A pulley 11 is rotatably connected to the outer peripheral portion of the front housing 3 via a bearing 10 via an electromagnetic clutch 12 so that power can be transmitted from the outside. A crank pin 13 that is eccentric by a predetermined dimension is integrally provided at the rear end of the drive shaft 6, and the orbiting scroll 16 of the scroll compression mechanism 5 to be described later includes a drive bush and a drive bearing whose variable orbiting radius is variable. It is connected via a known driven crank mechanism 14.
 スクロール圧縮機構5は、一対の固定スクロール15と旋回スクロール16とを180度位相をずらして噛み合わせることにより両スクロール15,16間に一対の圧縮室(圧縮室)17を形成し、その圧縮室17を外周位置から中心位置へと容積を減少しながら移動させることにより流体(冷媒ガス)を圧縮するものである。固定スクロール15は、中心部位に圧縮したガスを吐出する吐出ポート18を備えており、ハウジング2の底壁面にボルト19を介して固定設置されている。旋回スクロール16は、駆動軸6のクランクピン13に従動クランク機構14を介して連結され、フロントハウジング3のスラスト軸受面に公知の自転阻止機構20を介して公転旋回駆動自在に支持されている。 The scroll compression mechanism 5 forms a pair of compression chambers (compression chambers) 17 between the scrolls 15 and 16 by meshing the pair of fixed scrolls 15 and the orbiting scroll 16 with a phase difference of 180 degrees. The fluid (refrigerant gas) is compressed by moving 17 from the outer peripheral position to the center position while reducing the volume. The fixed scroll 15 includes a discharge port 18 that discharges compressed gas at a central portion, and is fixedly installed on the bottom wall surface of the housing 2 via a bolt 19. The orbiting scroll 16 is connected to the crank pin 13 of the drive shaft 6 via a driven crank mechanism 14 and is supported on a thrust bearing surface of the front housing 3 via a known rotation prevention mechanism 20 so as to be capable of revolution orbiting.
 固定スクロール15の端板15Aの外周には、Oリング21が設けられ、そのOリング21がハウジング2の内周面に密接されることにより、ハウジング2の内部空間を吐出チャンバー22と吸入チャンバー23とに区画している。吐出チャンバー22には、吐出ポート18が開口され、圧縮室17からの圧縮ガスが吐出されるようになっており、そこから圧縮された高圧ガスが冷凍サイクル側へと送出されるようになっている。吸入チャンバー23には、ハウジング2に設けられた吸入ポート24が開口されており、冷凍サイクルを循環した低圧ガスが吸込まれ、その低圧ガスが吸入チャンバー23を経て圧縮室17内に吸入されるようになっている。 An O-ring 21 is provided on the outer periphery of the end plate 15 </ b> A of the fixed scroll 15, and the O-ring 21 is brought into close contact with the inner peripheral surface of the housing 2, whereby the discharge chamber 22 and the suction chamber 23 pass through the inner space of the housing 2. It is divided into and. A discharge port 18 is opened in the discharge chamber 22 so that the compressed gas from the compression chamber 17 is discharged, and the compressed high-pressure gas is sent out to the refrigeration cycle side. Yes. A suction port 24 provided in the housing 2 is opened in the suction chamber 23 so that the low-pressure gas circulated through the refrigeration cycle is sucked into the compression chamber 17 through the suction chamber 23. It has become.
 一対の固定スクロール15および旋回スクロール16は、それぞれ端板15A,16A上に渦巻き状ラップ15B,16Bを立設した構成とされている。本実施形態では、図2に示されるように、固定スクロール15および旋回スクロール16の一方、ここでは、旋回スクロール16が渦巻き状ラップ16Bの歯底面16Dの渦巻き方向に沿う所定位置のみに段部16Eを備えたスクロールとされている。他方の固定スクロール15は渦巻き状ラップ15Bの歯先面15Cの渦巻き方向に沿う所定位置(旋回スクロール16側の渦巻き状ラップ16Bの歯底面16Dに設けられた段部16Eに対応する位置)のみに段部15Eを備えたスクロールとされている。 The pair of fixed scroll 15 and orbiting scroll 16 are configured such that spiral wraps 15B and 16B are erected on end plates 15A and 16A, respectively. In the present embodiment, as shown in FIG. 2, one of the fixed scroll 15 and the orbiting scroll 16, here, the orbiting scroll 16 is provided only at a predetermined position along the spiral direction of the tooth bottom surface 16D of the spiral wrap 16B. Scroll with The other fixed scroll 15 is only at a predetermined position along the spiral direction of the tooth tip surface 15C of the spiral wrap 15B (a position corresponding to the step portion 16E provided on the tooth bottom surface 16D of the spiral wrap 16B on the orbiting scroll 16 side). The scroll is provided with a step portion 15E.
 上記の如く、旋回スクロール16の歯底面16Dのみに段部16Eを設けるとともに、その段部16Eに対応して固定スクロール15の渦巻き状ラップ15Bの歯先面15Cのみに段部15Eを設けた。また、歯底面15Dに段部を設けていない固定スクロール15の歯底面15Dの全面をフラットな面とした。更に、旋回スクロール16の渦巻き状ラップ16Bの歯先面16Cを全て同一高さとした。これによって、一方の圧縮室17側のみに段部を備えた片側段付き構造のスクロール圧縮機1を構成している。 As described above, the stepped portion 16E is provided only on the tooth bottom surface 16D of the orbiting scroll 16, and the stepped portion 15E is provided only on the tooth tip surface 15C of the spiral wrap 15B of the fixed scroll 15 corresponding to the stepped portion 16E. In addition, the entire surface of the bottom surface 15D of the fixed scroll 15 in which the step portion is not provided on the bottom surface 15D is a flat surface. Furthermore, all the tooth tip surfaces 16C of the spiral wrap 16B of the orbiting scroll 16 have the same height. Thereby, the scroll compressor 1 having a one-sided stepped structure having a stepped portion only on one compression chamber 17 side is configured.
 かかる構成とした片側段付き構造のスクロール圧縮機1では、吸入締め切りされた一対の圧縮室17の一方は、段部を有する圧縮室、他方は、段部を有しない圧縮室とされることから、互いに非対称形の圧縮室となって容積がアンバランスとなる。このため、一対の圧縮室17は、圧縮容積比が異なる圧縮室とされ、圧縮過程において差圧が発生し、段部間の噛み合いが外れて一対の圧縮室17が連通状態とされたとき、混合による圧縮ロスが発生することになる。 In the scroll compressor 1 having a one-sided step structure having such a configuration, one of the pair of compression chambers 17 closed by suction is a compression chamber having a stepped portion, and the other is a compression chamber having no stepped portion. As a result, the compression chambers are asymmetrical to each other, and the volume is unbalanced. For this reason, the pair of compression chambers 17 are compression chambers having different compression volume ratios, a differential pressure is generated in the compression process, and when the pair of compression chambers 17 are in communication with each other by disengagement between the step portions, Compression loss due to mixing occurs.
 例えば、図3に示されるように、吸入締め切りされた図3(A)の状態において、旋回スクロール16の渦巻き状ラップ16Bの巻き終わり位置16Fから伸開角で1.5πラジアンだけ渦巻き方向の内周側位置に歯底面16D側の段部16Eを設けたものでは、図3(A)の位置において、段部16E,15Eは互いに噛み合っており、一対の圧縮室17間はシール状態とされている。この状態から圧縮が開始され、旋回角で90°進んだ図3(B)位置では段部16E,15E同士はまだ噛み合いを保っているが、図3(B)位置から図3(C)位置へと90°旋回角が進むときに、段部16E,15E同士の噛み合いが外れ、圧縮が進んで差圧が発生していた一対の圧縮室17同士が連通することから、混合ロスが発生することになる。 For example, as shown in FIG. 3, in the state of FIG. 3 (A) in which the suction is closed, the inside of the spiral direction is 1.5π radians from the winding end position 16F of the spiral wrap 16B of the orbiting scroll 16 at an extension angle. In the case where the stepped portion 16E on the tooth bottom surface 16D side is provided at the circumferential side position, the stepped portions 16E and 15E are engaged with each other at the position shown in FIG. 3A, and the pair of compression chambers 17 are sealed. Yes. In this state, compression is started, and the stepped portions 16E and 15E are still engaged with each other at the position of FIG. 3 (B) advanced by 90 ° in the turning angle, but from the position of FIG. 3 (B) to the position of FIG. 3 (C). When the 90 ° turning angle advances, the stepped portions 16E and 15E are disengaged from each other, and the compression is advanced and the pair of compression chambers 17 in which the differential pressure is generated communicate with each other. It will be.
 この状態は、図5の筒内圧(圧縮室の内圧)の変化を示すグラフにも表示されている通りであり、かかる混合ロスは効率の低下をもたらすこととなる。図3(C)位置から旋回角で90°進んだ図3(D)位置で再び段部16E,15E同士が噛み合い、更に旋回角が90°進むと、360°旋回して図3(A)の状態に戻る。これにより、先の図3(A)位置で吸入締め切りされた一対の圧縮室17は、一回り内周側の圧縮室位置に移動し、更に旋回が進むことによって一対の圧縮室17は合流し、圧縮されたガスは吐出ポート18を経て吐出チャンバー22内に吐出されることになる。なお、図5は、旋回角が大きい方から小さい方へと旋回が進むように表示されたものとなっている。 This state is as shown in the graph showing the change in the in-cylinder pressure (compression chamber internal pressure) in FIG. 5, and such a mixing loss results in a decrease in efficiency. The stepped portions 16E and 15E mesh with each other again at the position of FIG. 3D, which has advanced 90 ° from the position of FIG. 3C, and when the angle of rotation further advances by 90 °, it turns 360 ° and turns to FIG. 3A. Return to the state. As a result, the pair of compression chambers 17 closed at the previous position in FIG. 3A are moved to the compression chamber position on the inner circumference side, and the pair of compression chambers 17 are joined by further turning. The compressed gas is discharged into the discharge chamber 22 through the discharge port 18. Note that FIG. 5 is displayed so that the turn proceeds from the larger turning angle to the smaller turning angle.
 本実施形態は、段部16E,15Eの位置を特定することにより、段部16E,15Eの噛み合いが外れて一対の圧縮室17が連通したときに発生する混合ロスを解消しようとものである。そのため、図2に示されるように、歯底面16Dに段部16Eを設けた旋回スクロール16が、図2(A)に示す位置、すなわち吸入締め切りされた位置に旋回されたとき、その渦巻き状ラップ16Bの巻き終わり位置16Fから伸開角でπラジアンだけ渦巻き方向内周側の位置もしくはその移置よりも外周側の位置に歯底面16Dの段部16Eを設けた構成としている。 In this embodiment, the position of the step portions 16E and 15E is specified to eliminate the mixing loss that occurs when the engagement of the step portions 16E and 15E is released and the pair of compression chambers 17 communicate with each other. Therefore, as shown in FIG. 2, when the orbiting scroll 16 provided with the step portion 16E on the tooth bottom surface 16D is orbited to the position shown in FIG. A stepped portion 16E of the tooth bottom surface 16D is provided at a position on the inner circumferential side in the spiral direction by an angle of π radians from the winding end position 16F of 16B or a position on the outer circumferential side with respect to the displacement thereof.
 具体的には、旋回スクロール16の渦巻き状ラップ16Bの巻き終わり位置16Fから伸開角でπ/2ラジアンないしπラジアンだけ渦巻き方向内周側位置の範囲に歯底面16Dの段部16Eを設けた構成としている。かかる構成とすることによって、図2(A)位置で吸入締め切りされたとき、段部16E,15E同士は未だ噛み合っているが、図2(A)の位置から図2(B)の位置に向って旋回が進むと、直ちに段部16E,15E同士の噛み合いが外れ、一対の圧縮室17同士が連通することとなる。この状態では、一対の圧縮室17内の内圧は略吸入圧であって差圧が発生していないため、一対の圧縮室17同士が連通しても、ガスの混合による混合ロスが発生することはない。 Specifically, a step portion 16E of the tooth bottom surface 16D is provided in a range of the winding end position 16F of the swirl wrap 16B of the orbiting scroll 16 from the winding end position 16F to the inner circumferential side position in the spiral direction by π / 2 radians or π radians. It is configured. With this configuration, when the suction is closed at the position shown in FIG. 2A, the step portions 16E and 15E are still engaged with each other, but the position from the position shown in FIG. 2A toward the position shown in FIG. As the turning proceeds, the step portions 16E and 15E are immediately disengaged from each other, and the pair of compression chambers 17 communicate with each other. In this state, since the internal pressure in the pair of compression chambers 17 is substantially the suction pressure and no differential pressure is generated, even if the pair of compression chambers 17 communicate with each other, a mixing loss due to gas mixing occurs. There is no.
 図2(A)の位置から図2(B)の位置を経て図2(C)の位置まで180°旋回する間、段部16E,15E同士の噛み合いは外れており、この間一対の圧縮室17は互いに連通された状態のまま圧縮工程が進み、図2(C)位置で段部16E,15E同士が再び噛み合い、更に90°旋回角が進むと、360°旋回して図2(A)の状態に戻ることになる。これによって、先の図2(A)位置で吸入締め切りされた一対の圧縮室17は、一回り内周側の圧縮室位置に移動し、更に旋回が進むことによって一対の圧縮室17は合流し、圧縮されたガスは吐出ポート18を経て吐出チャンバー22内に吐出されることになる。 While turning 180 ° from the position shown in FIG. 2A to the position shown in FIG. 2C from the position shown in FIG. 2B, the stepped portions 16E and 15E are disengaged from each other. 2C, the step 16E and 15E are re-engaged with each other at the position shown in FIG. 2 (C), and when the turning angle further advances by 90 °, the step turns 360 ° and moves as shown in FIG. 2 (A). It will return to the state. As a result, the pair of compression chambers 17 closed at the previous position in FIG. 2A are moved to the compression chamber position on the inner circumference side, and the pair of compression chambers 17 are joined by further turning. The compressed gas is discharged into the discharge chamber 22 through the discharge port 18.
 図4のグラフには、この間の筒内圧(圧縮室の内圧)の変化が示されている。図5に示した比較例のものと対比すると、比較例のものは、旋回角が650°付近で混合ロスが発生しているのに対して、本実施形態のもの(渦巻き状ラップ16Bの巻き終わり位置から伸開角でπラジアンだけ渦巻き方向内周側の位置に段部16Eを設けたもの)では、混合ロスが発生していないことが解る。 The graph in FIG. 4 shows the change in the in-cylinder pressure (compression chamber internal pressure) during this period. In contrast to the comparative example shown in FIG. 5, the comparative example has a mixing loss when the swivel angle is around 650 °, whereas that of the present embodiment (the winding of the spiral wrap 16B). It can be seen that there is no mixing loss in the case where the stepped portion 16E is provided at the position on the inner circumferential side in the spiral direction by π radians at the extension angle from the end position.
 斯くして、本実施形態によれば、以下の作用効果を奏する。
 上記スクロール圧縮機1において、電磁クラッチ12を通電オン状態にすると、駆動源からプーリ11および電磁クラッチ12を介して駆動軸6に動力が入力され、駆動軸6が回転駆動される。これによって、駆動軸6のクランクピン13にドライブブッシュを含む従動クランク機構14を介して連結されている旋回スクロール16が固定スクロール15の周りに公転旋回駆動されることになる。
Thus, according to the present embodiment, the following operational effects are obtained.
In the scroll compressor 1, when the electromagnetic clutch 12 is turned on, power is input from the drive source to the drive shaft 6 via the pulley 11 and the electromagnetic clutch 12, and the drive shaft 6 is rotationally driven. As a result, the orbiting scroll 16 connected to the crank pin 13 of the drive shaft 6 via the driven crank mechanism 14 including the drive bush is revolved around the fixed scroll 15.
 こうしてスクロール圧縮機1が駆動されると、冷凍サイクル側から吸入ポート24を介して吸入チャンバー23内に低圧の冷媒ガスが吸い込まれ、その冷媒ガスが旋回スクロール16の旋回駆動により一対の圧縮室17内に吸入される。この冷媒ガスは、旋回スクロール16が旋回駆動し、圧縮室17が外周側から中心側へと容積を減少しながら移動されることにより圧縮され、固定スクロール15の中心部位に設けられている吐出ポート18を介して吐出チャンバー22に吐出され、そこから冷凍サイクル側へと送出される。 When the scroll compressor 1 is driven in this way, a low-pressure refrigerant gas is sucked into the suction chamber 23 from the refrigeration cycle side via the suction port 24, and the refrigerant gas is driven by the orbiting scroll 16 so as to rotate. Inhaled. The refrigerant gas is compressed when the orbiting scroll 16 is driven to rotate, and the compression chamber 17 is moved from the outer peripheral side to the center side while reducing the volume, and the refrigerant gas is discharged at the central portion of the fixed scroll 15. 18 is discharged into the discharge chamber 22 through 18 and sent from there to the refrigeration cycle side.
 この間、図2(A)の旋回角位置において吸入締め切りされた一対の圧縮室17は、順次図2(B)位置、図2(C)位置、図2(D)位置を経て360°旋回し、再び図2(A)位置に戻ることになる。本実施形態の片側段付きスクロール圧縮機1は、旋回スクロール16の渦巻き状ラップ16Bの歯底面16Dのみに設けた段部16Eを、吸入締め切りされた図2(A)位置において、旋回スクロール16の渦巻き状ラップ16Bの巻き終わり位置16Fから伸開角巻き終わり位置から伸開角でπ/2ラジアンないしπラジアンだけ渦巻き方向内周側の位置に設けた構成としている。 During this time, the pair of compression chambers 17 closed at the swivel angle position of FIG. 2A sequentially turn 360 ° through the positions of FIG. 2B, FIG. 2C, and FIG. 2D. Then, the position returns to the position shown in FIG. In the scroll compressor 1 with one side of the present embodiment, the step 16E provided only on the tooth bottom surface 16D of the spiral wrap 16B of the orbiting scroll 16 is positioned at the position shown in FIG. The configuration is such that π / 2 radians or π radians are provided at a position on the inner peripheral side in the spiral direction from the winding end position 16F of the spiral wrap 16B to the expansion angle from the winding end position.
 このため、吸入締め切りされた図2(A)位置では、段部16E,15Eは噛み合っているが、図2(A)位置から図2(B)位置に向って旋回すると、直に段部16E,15Eの噛み合いが外れ、一対の圧縮室17は連通状態となる。しかし、このとき、一対の圧縮室17内の内圧は、未だ吸入圧であり、差圧が発生していないことから、一対の圧縮室17同士が連通して互いのガスが混合しても、それによって混合ロスが発生することはない。 For this reason, the stepped portions 16E and 15E are engaged with each other at the position where the suction is closed in FIG. 2A, but when turning from the position of FIG. 2A toward the position of FIG. 15E are disengaged, and the pair of compression chambers 17 are in communication. However, at this time, the internal pressure in the pair of compression chambers 17 is still the suction pressure, and no differential pressure is generated, so even if the pair of compression chambers 17 communicate with each other and the gases are mixed, As a result, no mixing loss occurs.
 これによって、一対の圧縮室17の一方側のみに段部16Eが設けられている片側段付き構造のスクロール圧縮機1でありながら、一対の圧縮室17の一方側のみに段部16Eが存在することに起因して発生する混合ロスを無くし、その分効率を向上させることができる。また、片側段付き構造のスクロール圧縮機1として、段部メッシュ隙間を2箇所から1箇所に減らすことにより、作動媒体の漏れを半減して効率の向上を図ることができるともに、段部加工の手間を半減することにより、コスト低減を図ることができる。 As a result, the step 16E exists only on one side of the pair of compression chambers 17 while the scroll compressor 1 has a one-side stepped structure in which the step 16E is provided only on one side of the pair of compression chambers 17. Therefore, the mixing loss generated due to the fact can be eliminated, and the efficiency can be improved accordingly. Moreover, as the scroll compressor 1 having a stepped structure on one side, by reducing the step mesh gap from two to one, the leakage of the working medium can be reduced by half and the efficiency can be improved. Costs can be reduced by reducing labor by half.
 また、歯底面16D側に設ける段部16Eの位置が、渦巻き状ラップ16Bの巻き終わり位置16Fから伸開角でπ/2ラジアンないしπラジアンだけ渦巻き方向内周側位置の範囲に設けられているため、段部16Eを設けて圧縮容積比を大きくしたことによる効果を確保しながら、一対の圧縮室17の内圧が段部16E,15E間の噛み合いが外れて混合するときに発生する混合ロスを無くすことができる。従って、段付き構造としたことによるスクロール圧縮機(スクロール流体機械)1の高効率化、小型軽量化効果を享受しつつ、混合ロスを解消して更なる高効率化を図ることができる。 Further, the position of the step portion 16E provided on the tooth bottom surface 16D side is provided within the range of the position in the spiral direction from the winding end position 16F of the spiral wrap 16B by π / 2 radians to π radians in the extension angle. Therefore, the mixing loss generated when the internal pressure of the pair of compression chambers 17 is disengaged and mixed while ensuring the effect of increasing the compression volume ratio by providing the stepped portion 16E. It can be lost. Therefore, the mixing loss can be eliminated and further efficiency can be improved while enjoying the effects of high efficiency and small size and light weight of the scroll compressor (scroll fluid machine) 1 due to the stepped structure.
[その他実施形態]
(1)上記した第1実施形態では、旋回スクロール16側の渦巻き状ラップ16Bの歯底面16Dのみに段部16Eを設けた片側段付き構造の開放型スクロール圧縮機1について説明したが、固定スクロール15側の渦巻き状ラップ15Bの歯底面15Dのみに段部を設けた片側段付き構造としてもよく、これによっても第1実施形態と同様の作用効果を得ることができる。
[Other embodiments]
(1) In the first embodiment described above, the open scroll compressor 1 having a one-side stepped structure in which the stepped portion 16E is provided only on the tooth bottom surface 16D of the spiral wrap 16B on the orbiting scroll 16 side has been described. A single-sided stepped structure in which a stepped portion is provided only on the tooth bottom surface 15D of the spiral wrap 15B on the 15th side can provide the same effect as that of the first embodiment.
(2)また、上記第1実施形態では、片側段付き構造のスクロール圧縮機1に適用した例について説明したが、両側段付き構造のスクロール圧縮機であっても、固定スクロール15と旋回スクロール16に設けられる段部の高さが異なるものの場合、段部の高さが異なることにより、一対の圧縮室17間に差圧が発生することから、段部間の噛み合いが外れて両圧縮室17が連通したとき、上述の如く混合ロスが発生することになる。 (2) In the first embodiment, the example applied to the scroll compressor 1 having a one-sided step structure has been described. However, even if the scroll compressor has a double-sided step structure, the fixed scroll 15 and the orbiting scroll 16 are used. In the case where the heights of the step portions provided in the two are different, a difference in pressure is generated between the pair of compression chambers 17 due to the difference in height of the step portions. When communicating, mixing loss occurs as described above.
 このため、両側段付き構造のスクロール圧縮機であって、両スクロールに設ける段部の高さが異なるものの場合は、歯底面側に設けられる段部の位置を吸入締め切りされた渦巻き状ラップの巻き終わり位置から伸開角でπラジアンだけ渦巻き方向内周側の位置もしくはその位置よりも外周側の位置に設けた構成とすることにより、第1実施形態で説明した片側段付き構造のスクロール圧縮機1の場合と同様、混合ロスを解消し、効率を向上することができる等の効果を得ることができる。 For this reason, in the case of a scroll compressor having a stepped structure on both sides, the height of the stepped portions provided on both scrolls is different, so that the position of the stepped portion provided on the tooth bottom side is wound by a spiral wrap with the suction closed. A scroll compressor having a one-sided step structure described in the first embodiment by adopting a configuration in which the opening angle is π radians from the end position and is provided at a position on the inner peripheral side in the spiral direction or a position on the outer peripheral side than the position. As in the case of 1, effects such as elimination of mixing loss and improvement of efficiency can be obtained.
 なお、本発明は、上記各実施形態に係る発明に限定されるものではなく、その要旨を逸脱しない範囲において、適宜変形が可能である。例えば、上記実施形態では、開放型のスクロール圧縮機1に適用した例について説明したが、スクロール膨張機やスクロールポンプ等にも同様に適用できることは云うまでもない。また、開放型スクロール圧縮機1に限らず、圧縮機構とモータを内蔵したタイプのスクロール圧縮機に適用してもよいことは勿論である。 Note that the present invention is not limited to the inventions according to the above-described embodiments, and various modifications can be made without departing from the scope of the invention. For example, in the above embodiment, the example applied to the open type scroll compressor 1 has been described, but it goes without saying that the present invention can be similarly applied to a scroll expander, a scroll pump, and the like. Of course, the present invention is not limited to the open scroll compressor 1 and may be applied to a scroll compressor having a built-in compression mechanism and motor.
1 スクロール圧縮機(スクロール流体機械)
15 固定スクロール
16 旋回スクロール
15A,16A 端板
15B,16B 渦巻き状ラップ
15C,16C 歯先面
15D,16D 歯底面
15E 歯先面の段部
16E 歯底面の段部
16F 巻き終り位置
1 Scroll compressor (scroll fluid machine)
15 fixed scroll 16 orbiting scroll 15A, 16A end plate 15B, 16B spiral wrap 15C, 16C tooth tip surface 15D, 16D tooth bottom surface 15E tooth tip surface step 16E tooth bottom step 16F winding end position

Claims (3)

  1.  端板上に渦巻き状ラップが立設され、その渦巻き状ラップ同士が互いに対向されて噛み合わされる一対の固定スクロールおよび旋回スクロールを備え、
     前記固定スクロールおよび旋回スクロールの一方が前記渦巻き状ラップの歯底面の渦巻き方向に沿う所定位置のみに段部を備え、他方が前記歯底面側の段部に対応する前記渦巻き状ラップの歯先面の渦巻き方向に沿う所定位置のみに段部を備えた片側段付きスクロールとされ、
     前記歯底面に設けられる前記段部の位置が、吸入締め切りをした前記渦巻き状ラップの巻き終わり位置から伸開角でπラジアンだけ渦巻き方向内周側の位置もしくはその位置よりも外周側の位置に設けられているスクロール流体機械。
    A spiral wrap is erected on the end plate, and the spiral wrap is provided with a pair of fixed scroll and orbiting scroll in which the spiral wraps face each other and mesh with each other,
    One of the fixed scroll and the orbiting scroll has a step portion only at a predetermined position along the spiral direction of the tooth bottom surface of the spiral wrap, and the other has a tooth tip surface of the spiral wrap corresponding to the step portion on the tooth bottom surface side. It is a one-side stepped scroll provided with a step portion only at a predetermined position along the spiral direction of
    The position of the step provided on the tooth bottom surface is a position on the inner peripheral side in the spiral direction by an angle of π radians from the winding end position of the spiral wrap that has been closed by suction, or a position on the outer peripheral side than that position. A scroll fluid machine provided.
  2.  端板上に渦巻き状ラップが立設され、その渦巻き状ラップ同士が互いに対向されて噛み合わされる一対の固定スクロールおよび旋回スクロールを備え、
     前記固定スクロールおよび前記旋回スクロールが渦巻き状ラップの歯先面および歯底面の渦巻き方向に沿う所定位置に各々段部を備えた両側段付きスクロールとされ、
     前記各段部の高さが前記固定スクロールと前記旋回スクロールとで異なる高さとされるとともに、前記歯底面に設けられる前記段部の位置が、吸入締め切りをした前記渦巻き状ラップの巻き終わり位置から伸開角でπラジアンだけ渦巻き方向内周側の位置もしくはその位置よりも外周側の位置に設けられているスクロール流体機械。
    A spiral wrap is erected on the end plate, and the spiral wrap is provided with a pair of fixed scroll and orbiting scroll in which the spiral wraps face each other and mesh with each other,
    The fixed scroll and the orbiting scroll are both-side stepped scrolls each provided with a step portion at a predetermined position along the spiral direction of the tooth tip surface and the tooth bottom surface of the spiral wrap,
    The height of each stepped portion is different between the fixed scroll and the orbiting scroll, and the position of the stepped portion provided on the tooth bottom surface is from the winding end position of the spiral wrap that has been closed by suction. A scroll fluid machine provided at a position on the inner circumferential side of the spiral direction by an angle of spread of π radians or a position on the outer circumferential side of the position.
  3.  前記歯底面の前記段部位置が前記渦巻き状ラップの巻き終わり位置から伸開角でπ/2ラジアンないしπラジアンだけ渦巻き方向内周側位置の範囲に設けられている請求項1または2に記載のスクロール流体機械。 3. The step position of the tooth bottom surface is provided in a range of a position in the spiral direction inner circumferential side by π / 2 radians or π radians in an extension angle from a winding end position of the spiral wrap. Scroll fluid machine.
PCT/JP2016/055270 2015-03-05 2016-02-23 Scroll fluid machine WO2016140107A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112016001045.1T DE112016001045T5 (en) 2015-03-05 2016-02-23 SPIRAL FLUID MACHINE
CN201680013707.3A CN107429690B (en) 2015-03-05 2016-02-23 Scroll fluid machine having a plurality of scroll members
US15/551,148 US20180058451A1 (en) 2015-03-05 2016-02-23 Scroll fluid machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-043522 2015-03-05
JP2015043522A JP6529787B2 (en) 2015-03-05 2015-03-05 Scroll fluid machine

Publications (1)

Publication Number Publication Date
WO2016140107A1 true WO2016140107A1 (en) 2016-09-09

Family

ID=56844467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055270 WO2016140107A1 (en) 2015-03-05 2016-02-23 Scroll fluid machine

Country Status (5)

Country Link
US (1) US20180058451A1 (en)
JP (1) JP6529787B2 (en)
CN (1) CN107429690B (en)
DE (1) DE112016001045T5 (en)
WO (1) WO2016140107A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6679634B2 (en) * 2018-02-21 2020-04-15 三菱重工サーマルシステムズ株式会社 Scroll member processing method
CN114017319A (en) * 2021-11-02 2022-02-08 北京理工大学 Gradual change profile of tooth scroll compressor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5862395A (en) * 1981-10-12 1983-04-13 Sanden Corp Scroll type compressor
JP2002070769A (en) * 2000-08-28 2002-03-08 Mitsubishi Heavy Ind Ltd Scroll compressor
JP2006342775A (en) * 2005-06-10 2006-12-21 Mitsubishi Heavy Ind Ltd Scroll compressor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100460396B1 (en) * 2000-06-22 2004-12-08 미츠비시 쥬고교 가부시키가이샤 Scroll compressor
KR100695822B1 (en) * 2004-12-23 2007-03-20 엘지전자 주식회사 Apparatus for varying capacity in scroll compressor
JP4814189B2 (en) * 2007-09-21 2011-11-16 三菱重工業株式会社 Scroll compressor
JP5851851B2 (en) * 2012-01-13 2016-02-03 三菱重工業株式会社 Scroll compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5862395A (en) * 1981-10-12 1983-04-13 Sanden Corp Scroll type compressor
JP2002070769A (en) * 2000-08-28 2002-03-08 Mitsubishi Heavy Ind Ltd Scroll compressor
JP2006342775A (en) * 2005-06-10 2006-12-21 Mitsubishi Heavy Ind Ltd Scroll compressor

Also Published As

Publication number Publication date
JP2016160912A (en) 2016-09-05
CN107429690B (en) 2020-01-14
DE112016001045T5 (en) 2017-11-23
US20180058451A1 (en) 2018-03-01
CN107429690A (en) 2017-12-01
JP6529787B2 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
JP6180860B2 (en) Scroll compressor
WO2016136185A1 (en) Scroll-type compressor
JP5386219B2 (en) Scroll compressor
WO2013105368A1 (en) Scroll compressor
WO2016140107A1 (en) Scroll fluid machine
JP2011252479A (en) Scroll compressor and method for processing discharge port thereof
WO2011040341A1 (en) Scroll fluid machine
JP6906887B2 (en) Scroll fluid machine
US8475149B2 (en) Scroll fluid machine having multiple discharge ports
JP6532713B2 (en) Scroll compressor
US20220220960A1 (en) Scroll compressor including end-plate side stepped portions of each of the scrolls corresponding to wall-portion side stepped portions of each of the scrolls
JP2010275895A (en) Scroll compressor
JP6470000B2 (en) Scroll type fluid machinery
JP2017089490A (en) Scroll compressor
JP6932797B2 (en) Scroll compressor
JP5791316B2 (en) Scroll type fluid machinery
JP6599099B2 (en) Scroll fluid machinery
JP6352109B2 (en) Horizontal stepped scroll compressor
JP6008516B2 (en) Scroll compressor
KR101727498B1 (en) Scroll compressor with split type orbitting scroll
JPH0953577A (en) Scroll type fluid machinery
JP2014005775A (en) Compressor
JP2003065265A (en) Scroll fluid machinery
JP2004340060A (en) Two-screw type compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16758801

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15551148

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016001045

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16758801

Country of ref document: EP

Kind code of ref document: A1