WO2016139924A1 - Voltage measuring device - Google Patents

Voltage measuring device Download PDF

Info

Publication number
WO2016139924A1
WO2016139924A1 PCT/JP2016/001087 JP2016001087W WO2016139924A1 WO 2016139924 A1 WO2016139924 A1 WO 2016139924A1 JP 2016001087 W JP2016001087 W JP 2016001087W WO 2016139924 A1 WO2016139924 A1 WO 2016139924A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
value
capacitor
electrode
capacitance
Prior art date
Application number
PCT/JP2016/001087
Other languages
French (fr)
Japanese (ja)
Inventor
健一郎 野坂
佐々木 健二
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2016139924A1 publication Critical patent/WO2016139924A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/04Voltage dividers
    • G01R15/06Voltage dividers having reactive components, e.g. capacitive transformer

Definitions

  • the present invention relates to a voltage measuring device that measures a voltage applied to a conductor in a non-contact manner.
  • a conventional non-contact voltage detection device disclosed in Patent Document 1 includes a first voltage probe, a second voltage probe, a first voltage detection unit, a second voltage detection unit, an arithmetic processing unit, and a signal. And a generator.
  • Each of the voltage probes has a cylindrical internal electrode and a cylindrical external electrode having a diameter larger than that of the internal electrode.
  • the internal electrode is arranged inside the external electrode, and the cable to be measured is inside the internal electrode. It is inserted.
  • the first voltage detector detects a voltage (potential difference) between the internal electrode and the external electrode of the first voltage probe.
  • the second voltage detector detects a voltage (potential difference) between the internal electrode and the external electrode of the second voltage probe.
  • the signal generator generates an AC test voltage.
  • the arithmetic processing unit acquires the detection voltage of the first voltage detection unit and the detection voltage of the second voltage detection unit in a state where the AC test voltage is applied to the external electrode.
  • the arithmetic processing unit acquires the detection voltage of the first voltage detection unit and the detection voltage of the second voltage detection unit in a state where the external electrode is grounded.
  • the arithmetic processing unit calculates the voltage applied to the conductor of the cable to be measured from the detection voltage of the first voltage detection unit and the detection voltage of the second voltage detection unit in each state.
  • the voltage measuring device is configured to measure a target voltage that is a potential difference between a conductor potential and a reference potential.
  • the voltage measuring device includes a first electrode facing the conductor with a gap, a second electrode facing the conductor with a gap, a first capacitor electrically connected to the first electrode and the second electrode, A second capacitor configured to be electrically connected to the second electrode and a reference potential, and a first capacitor configured to measure a first voltage which is a potential difference between the potential of the first electrode and the reference potential.
  • a voltage measurement unit, a second voltage measurement unit configured to measure a second voltage that is a potential difference between the potential of the second electrode and a reference potential, and a target voltage is calculated using the first voltage and the second voltage And an arithmetic processing unit configured to do so.
  • This voltage measuring device is easy to miniaturize.
  • FIG. 1 is a block diagram of a voltage measuring apparatus according to the first embodiment.
  • FIG. 2 is a conceptual diagram for explaining a usage state of the voltage measuring apparatus according to the first embodiment.
  • FIG. 3 is a circuit diagram showing an equivalent circuit of the voltage measuring apparatus according to the first embodiment.
  • FIG. 4 is a circuit diagram showing an equivalent circuit of the voltage measuring apparatus according to the second embodiment.
  • FIG. 5 is a flowchart showing the operation of the voltage measuring apparatus according to the second embodiment.
  • FIG. 6 is a circuit diagram showing a part of an equivalent circuit of the voltage measuring device according to the third and fourth embodiments.
  • FIG. 7 is a block diagram of a voltage measuring apparatus according to the fifth embodiment.
  • FIG. 8 is a flowchart showing the operation of the voltage measuring apparatus according to the fifth embodiment.
  • FIG. 9 is a circuit diagram showing a part of an equivalent circuit of the voltage measuring apparatus according to the sixth embodiment.
  • FIG. 10 is a block diagram of a voltage measuring apparatus according to the seventh embodiment.
  • FIG. 1 is a block diagram of a voltage measuring apparatus 1 according to the first embodiment.
  • the voltage measuring apparatus 1 is used for measuring the voltage of the electric wire 10 for supplying AC power from a system power supply (commercial AC power supply) to a load.
  • the voltage measuring apparatus 1 measures a 50 Hz or 60 Hz AC voltage applied to the conductor 11 of the electric wire 10 as the target voltage Vm.
  • the voltage measuring device 1 may be configured to use an AC voltage as a target voltage, and is not intended to limit the target voltage to the AC voltage supplied from the system power supply.
  • the voltage measuring device 1 is not a line voltage between a pair of wires for supplying AC power, but a potential of the conductor 11 of one wire 10 with respect to a reference potential 1R such as a ground potential, that is, a potential of the conductor 11. And the reference potential 1R is measured as the target voltage Vm.
  • the voltage measuring apparatus 1 As shown in FIG. 1, the voltage measuring apparatus 1 according to the first embodiment includes an electrode 2A, an electrode 2B, a capacitor 3A, a capacitor 3B, a voltage measuring unit 4A, a voltage measuring unit 4B, a voltage measuring unit 4C, an arithmetic processing unit 5, and a buffer. 6 and an output unit 7.
  • the voltage measuring device 1 is configured to measure the target voltage Vm applied to the conductor 11 of the electric wire 10 in a non-contact manner. Therefore, the electrode 2A and the electrode 2B are used in a state where they are not in direct contact with the conductor 11.
  • the electric wire 10 includes a conductor 11 and a coating 12 that covers the conductor 11.
  • the conductor 11 is a single wire made of metal such as copper or copper alloy, for example.
  • the coating 12 is an insulator, and is preferably formed of a synthetic resin material having electrical insulation properties such as vinyl resin.
  • FIG. 2 is a conceptual diagram for explaining the usage state of the voltage measuring apparatus 1.
  • the electrodes 2A and 2B have the same configuration and function as voltage measurement probes.
  • the electrode 2 ⁇ / b> A and the electrode 2 ⁇ / b> B are formed in a sheet shape or a plate shape with a conductive material such as copper, and are arranged so as to be in contact with the surface of the covering 12 of the electric wire 10.
  • the electrodes 2A and 2B are preferably configured to be curved along the outer peripheral surface of the electric wire 10 so as to be in contact with the coating 12 with almost no gap.
  • the electrode 2 ⁇ / b> A and the electrode 2 ⁇ / b> B are arranged so as to face the conductor 11 through the coating 12 without removing the coating 12 in the electric wire 10 having a structure in which the conductor 11 is covered with the coating 12. Therefore, the distance from each of the electrode 2A and the electrode 2B to the conductor 11 is substantially equal to the thickness dimension of the coating 12.
  • the electrodes 2A and 2B are capacitively coupled to the conductor 11 by being spaced from the conductor 11 by the thickness dimension of the covering 12.
  • the electrode 2 ⁇ / b> A and the electrode 2 ⁇ / b> B may be configured to be formed on a plate-like member having no flexibility and pressed against the coating 12.
  • the electrode 2A and the electrode 2B may be arranged inside the synthetic resin clamp and arranged in the vicinity of the coating 12 by sandwiching the coating 12 with the clamp.
  • the electrodes 2A and 2B may be provided integrally with the main body 100 of the voltage measuring device 1, but are provided separately from the main body 100 and electrically connected to the main body 100 with a cable. May be.
  • FIG. 3 shows an equivalent circuit of the voltage measuring apparatus 1.
  • the electrostatic capacity component formed between the electrode 2A and the conductor 11 is called a coupling capacity 20A
  • the electrostatic capacity component formed between the electrode 2B and the conductor 11 is called a coupling capacity 20B (see FIG. 3).
  • the capacitance values of the coupling capacitors 20A and 20B are the distances from the electrodes 2A and 2B to the surface of the conductor 11, and the dielectric constant of the inclusion (coating 12) interposed between the electrodes 2A and 2B and the conductor 11. It depends on.
  • the capacitance values of the coupling capacitors 20A and 20B are not constant, and change depending on the thickness dimension of the coating 12, the material (dielectric constant) of the coating 12, and the like. Note that an interval is formed between each of the electrodes 2A and 2B and the conductor 11 so that the coupling capacitors 20A and 20B are formed. In addition, it is not essential that the coating 12 is interposed between each of the electrode 2A and the electrode 2B and the conductor 11, for example, even if a gap (air) exists between the electrode 2A and the electrode 2B and the conductor 11. Good.
  • the capacitor 3A has a terminal 30A and a terminal 31A, and is composed of a capacitor such as an electrolytic capacitor, a film capacitor, or a ceramic capacitor having a known capacitance value.
  • a terminal 30A of the capacitor 3A is electrically connected to the electrode 2A and the voltage measuring unit 4A.
  • the terminal 31A of the capacitor 3A is electrically connected to the output terminal 6B of the buffer 6 and the voltage measuring unit 4C (see FIG. 1).
  • a terminal 31A of the capacitor 3A is electrically connected to the electrode 2B through the buffer 6.
  • the capacitor 3B has a terminal 30B and a terminal 31B, and is constituted by a capacitor such as an electrolytic capacitor, a film capacitor, or a ceramic capacitor having a known capacitance value.
  • Terminal 30B of capacitor 3B is electrically connected to electrode 2B and voltage measurement unit 4B.
  • the terminal 31B of the capacitor 3B is electrically connected (grounded) to the reference potential 1R.
  • the voltage measuring unit 4A is configured to measure a voltage V1 that is a potential difference between the reference potential 1R and the electrode 2A.
  • the voltage measuring unit 4B is configured to measure a voltage V2 that is a potential difference between the reference potential 1R and the electrode 2B.
  • the voltage measuring unit 4C is configured to measure a voltage V3 that is a potential difference between the potential of the terminal 31A of the capacitor 3A and the reference potential 1R.
  • the buffer 6 is preferably composed of any one of a voltage follower circuit, an inverting amplifier circuit, and a non-inverting amplifier circuit.
  • the input terminal 6A of the buffer 6 is electrically connected to the electrode 2B, and the output terminal 6B of the buffer 6 is electrically connected to the terminal 31A of the capacitor 3A.
  • the buffer 6 is composed of a voltage follower circuit.
  • the arithmetic processing unit 5 includes, for example, a microcontroller and a program executed by the microcontroller.
  • the arithmetic processing unit 5 is configured to calculate the target voltage Vm from the voltage values of the voltage V1, the voltage V2, and the voltage V3 by executing a program with a microcontroller.
  • the output unit 7 has a display device such as a liquid crystal display, for example, and is configured to display the voltage value of the target voltage Vm under the control of the arithmetic processing unit 5 (see FIG. 2).
  • the target voltage Vm is an AC voltage
  • the value displayed on the output unit 7 is, for example, an effective value, an instantaneous value, an amplitude value, or the like of the target voltage Vm.
  • the terminal 30A of the capacitor 3A is capacitively coupled to the conductor 11 via the electrode 2A and the coupling capacitor 20A.
  • the terminal 30B of the capacitor 3B is capacitively coupled to the conductor 11 via the electrode 2B and the coupling capacitor 20B. That is, since the electrode 2A and the electrode 2B are capacitively coupled to the conductor 11 via the coupling capacitance 20A and the coupling capacitance 20B, respectively, the potential of the electrode 2A and the potential of the electrode 2B become the potential of the conductor 11 (target voltage Vm). Correspondingly, it changes like a sine wave.
  • the voltage measuring unit 4A samples (samples) a voltage V1 that is a potential difference between the potential of the electrode 2A and the reference potential 1R, and quantizes each sample value (sampling value), thereby obtaining an instantaneous value of the voltage V1. It is configured to measure a certain voltage value.
  • the voltage measuring unit 4A can also calculate the effective value of the voltage V1 as a voltage value from a plurality of instantaneous values.
  • the voltage measurement unit 4B samples (samples) the voltage V2 which is the potential difference between the potential of the electrode 2B and the reference potential 1R, and quantizes each sample value (sampling value), thereby obtaining an instantaneous value of the voltage V2. It is configured to measure a certain voltage value.
  • the voltage measuring unit 4B can also calculate the effective value of the voltage V2 as a voltage value from a plurality of instantaneous values.
  • the voltage measuring unit 4C samples (samples) a potential difference (voltage V3) between the potential of the terminal 31A of the capacitor 3A and the reference potential 1R, and quantizes each sample value (sampling value). It is configured to measure a voltage value that is an instantaneous value of the voltage V3. Note that the voltage measurement unit 4C can also calculate the effective value of the voltage V3 as a voltage value from a plurality of instantaneous values.
  • the voltage measuring unit 4A, the voltage measuring unit 4B, and the voltage measuring unit 4C output the measured voltage values (the voltage value of the voltage V1, the voltage value of the voltage V2, and the voltage value of the voltage V3) to the arithmetic processing unit 5.
  • the arithmetic processing unit 5 stores the voltage value of the voltage V1, the voltage value of the voltage V2, and the voltage value of the voltage V3 in the memory of the microcontroller, and then reads the voltage values from the memory to calculate the target voltage Vm. Configured as follows.
  • V1”, “V2”, and “V3” in the following equations represent the voltage value of the voltage V1, the voltage value of the voltage V2, and the voltage value of the voltage V3, respectively.
  • the capacitor 3A has a capacitance value Cin1
  • the capacitor 3B has a capacitance value Cin2
  • the coupling capacitor 20A has a capacitance value Cs1
  • the coupling capacitor 20B has a capacitance value Cs2.
  • the buffer 6 is composed of an inverting amplifier circuit and the voltage value is an amplitude value or an effective value, it is necessary to replace “V3” in the following formula with “ ⁇ V3”.
  • the voltage V2 corresponds to a value obtained by dividing the target voltage Vm by the capacitor 3B and the coupling capacitance 20B, and is expressed by the following equation (1).
  • the voltage V1 is equal to the sum of the voltage V3 and the value obtained by dividing the difference between the target voltage Vm and the voltage V3 by the capacitor 3A and the coupling capacitor 20A, and is expressed by the following equation (2).
  • the two capacitance values Cin1 and Cin2 may be equal to each other, and the capacitance value Cs1 of the coupling capacitor 20A and the capacitance value Cs2 of the coupling capacitor 20B may be equal to each other.
  • the capacitance value Cs1 of the coupling capacitor 20A and the capacitance value Cs2 of the coupling capacitor 20B are substantially equal by aligning the shapes, sizes, materials, and the like of the electrodes 2A and 2B.
  • the arithmetic processing unit 5 can calculate the target voltage Vm by substituting the measured voltage value of the voltage V1, the voltage value of the voltage V2, and the voltage value of the voltage V3 into the above equation (5). it can.
  • the amplification degree (gain) ⁇ of the non-inverting amplifier circuit, the inverting amplifier circuit, or the voltage follower circuit used for the buffer 6 is known, the arithmetic processing unit 5 uses the following equation (6): The voltage value of the voltage V3 can be calculated from the voltage value of the voltage V2.
  • the arithmetic processing unit 5 can calculate the target voltage Vm using at least the voltage value of the voltage V1 and the voltage value of the voltage V2. Therefore, the voltage measuring apparatus 1 of the present embodiment may not include the voltage measuring unit 4C.
  • the buffer 6 is configured by a voltage follower circuit or when the buffer 6 is configured by an inverting amplifier circuit.
  • the voltage follower circuit since the output terminal of the operational amplifier is electrically and directly connected to the inverting input terminal of the operational amplifier, the voltage follower circuit is compared with the inverting amplification circuit in which a feedback resistor is connected between the input terminal and the output terminal of the operational amplifier. The error of the amplification degree ⁇ is reduced. Therefore, when the voltage follower circuit is used for the buffer 6, the accuracy in calculating the voltage V3 from the voltage V2 can be improved as compared with the case where the inverting amplifier circuit is used for the buffer 6.
  • the voltage measuring device 1 of the present embodiment measures the voltage V1 and the voltage V2 by the voltage measuring unit 4A and the voltage measuring unit 4B, respectively, in a state where the target voltage Vm is applied to the conductor 11. Then, the arithmetic processing unit 5 calculates the target voltage Vm using the voltage V1 and the voltage V2. Therefore, the voltage measuring apparatus 1 of this embodiment does not need to measure the voltage V1 and the voltage V2 in a state where the AC test voltage is applied to the conductor 11 as in the conventional example. For this reason, the voltage measuring apparatus 1 according to the present embodiment does not require a configuration for generating an AC test voltage, and thus can be more easily reduced in size than the conventional one.
  • the arithmetic processing unit 5 uses the voltage V3 that is a potential difference between the reference potential 1R and the potential of the terminal 31A of the capacitor 3A in addition to the voltage V1 and the voltage V2. It is configured to calculate the voltage Vm.
  • the voltage V3 may be calculated by the calculation processing unit 5 from the voltage V2, or may be measured by the voltage measurement unit 4C.
  • the capacitor 3A and the capacitor 3B are composed of a ratio ⁇ 1 of the capacitance value Cin1 of the capacitor 3A and the capacitance value Cs1 of the coupling capacitor 20A, and the capacitance of the capacitor 3B and the capacitance value Cin2 It is preferable that the ratio ⁇ 2 of the value Cs2 is configured to be equal.
  • the capacitor 3A and the capacitor 3B are preferably configured so that the capacitance values Cin1 and Cin2 are equal to each other.
  • the electrodes 2A and 2B are preferably configured to make the capacitance value Cs1 of the coupling capacitor 20A equal to the capacitance value Cs2 of the coupling capacitor 20B.
  • the voltage measuring device 1 of the present embodiment is configured as described above, an arithmetic expression for calculating the target voltage Vm can be simplified, so that the processing time of the arithmetic processing unit 5 is shortened and the target voltage Vm is calculated. The measurement accuracy can be improved.
  • the voltage measuring device 1 is configured to measure the target voltage Vm that is the potential difference between the potential of the conductor 11 and the reference potential 1R.
  • the voltage measuring apparatus 1 includes electrodes 2A and 2B, capacitors 3A and 3B, voltage measuring units 4A and 4B, and an arithmetic processing unit 5.
  • the electrode 2 ⁇ / b> A is configured to face the conductor 11 with a space therebetween and to generate a coupling capacitance 20 ⁇ / b> A between the conductor 11.
  • the electrode 2B is configured to face the conductor 11 with a space therebetween and to generate a coupling capacitor 20B between the conductor 11 and the electrode 2B.
  • Capacitor 3A has one terminal 30A electrically connected to electrode 2A and the other terminal 31A electrically connected to electrode 2B.
  • Capacitor 3B has one terminal 30B electrically connected to electrode 2B and the other terminal 31B configured to be electrically connected to reference potential 1R.
  • the voltage measuring unit 4A is configured to measure a voltage V1 that is a potential difference between the potential of the electrode 2A and the reference potential 1R.
  • the voltage measuring unit 4B is configured to measure a voltage V2 that is a potential difference between the potential of the electrode 2B and the reference potential 1R.
  • the arithmetic processing unit 5 is configured to calculate the target voltage Vm using the voltages V1 and V2.
  • the arithmetic processing unit 5 may be configured to calculate the target voltage Vm using the voltages V1 and V2 and the voltage V3 that is a potential difference between the reference potential 1R and the potential of the other terminal 31A of the capacitor 3A. .
  • the voltage measuring device 1 may further include a voltage measuring unit 4C configured to measure the voltage V3.
  • the calculation processing unit 5 may be configured to calculate the voltage V3 from the voltage V2.
  • the ratio of the capacitance value Cin1 of the capacitor 3A and the capacitance value Cs1 of the coupling capacitor 20A may be equal to the ratio of the capacitance value Cin2 of the capacitor 3B and the capacitance value Cs2 of the coupling capacitor 20B.
  • the capacitance value Cin1 of the capacitor 3A may be equal to the capacitance value Cin2 of the capacitor 3B.
  • the electrodes 2A and 2B may be configured such that the capacitance value Cs1 of the coupling capacitor 20A is equal to the capacitance value Cs2 of the coupling capacitor 20B.
  • the voltage measuring apparatus 1 further includes a buffer 6 that is a voltage follower circuit having an input terminal 6A electrically connected to the electrode 2B and an output terminal 6B electrically connected to the other terminal 31A of the capacitor 3A. It may be.
  • the voltage measuring apparatus 1 further includes a buffer 6 that is an inverting amplifier circuit having an input terminal 6A electrically connected to the electrode 2B and an output terminal 6B electrically connected to the other terminal 31A of the capacitor 3A. It may be.
  • FIG. 4 is a circuit diagram showing an equivalent circuit of the voltage measuring apparatus 1A according to the second embodiment.
  • the same reference numerals are assigned to the same parts as those of the voltage measuring apparatus 1 according to the first embodiment shown in FIGS.
  • the voltage measurement device 1 ⁇ / b> A according to the second embodiment is different from the voltage measurement device 1 of the first embodiment in that it further includes a control unit 8 and a switching unit 9.
  • the circuit configuration other than the control unit 8 and the switching unit 9 is common to the circuit configuration of the voltage measuring apparatus 1 of the first embodiment.
  • the switching unit 9 includes, for example, an analog switch having one common contact 90 and two switching contacts 91 and 92.
  • the switching unit 9 is not limited to an analog switch, and may be configured by, for example, a mechanical relay such as an electromagnetic relay or a semiconductor relay.
  • the common contact 90 is electrically connected to the terminal 31A of the capacitor 3A.
  • the switching contact 91 is electrically connected to the output terminal 6 ⁇ / b> B of the buffer 6.
  • the switching contact 92 is electrically connected (grounded) to the reference potential 1R.
  • the switching unit 9 connects the common contact 90 to the switching contact 91 and disconnects from the switching contact 92, and the second connection connects the common contact 90 to the switching contact 92 and disconnects from the switching contact 91.
  • the state can be switched.
  • the switching unit 9 can selectively connect one of the switching contacts 91 and 92 to the common contact 90.
  • the control unit 8 is configured to control the switching unit 9 in response to an instruction from the arithmetic processing unit 5 and to switch the switching unit 9 between the first connection state and the second connection state.
  • the control unit 8 may be configured by a microcontroller that constitutes the arithmetic processing unit 5, or may be configured by a logic circuit independent of the arithmetic processing unit 5.
  • the output unit 7 is connected to the arithmetic processing unit 5 via the control unit 8, but the output unit 7 may be directly connected to the arithmetic processing unit 5.
  • FIG. 5 is a flowchart showing the operation of the voltage measuring apparatus 1 ⁇ / b> A and shows the processing of the arithmetic processing unit 5.
  • the arithmetic processing unit 5 instructs the control unit 8 to switch the switching unit 9 to the second connection state (step S1).
  • the arithmetic processing unit 5 causes the voltage measurement unit 4A and the voltage measurement unit 4B to measure the voltage V1 and the voltage V2, respectively, and takes in the voltage values of the voltage V1 and the voltage V2 (step S2).
  • the arithmetic processing unit 5 stores the acquired voltage value in a memory.
  • the arithmetic processing unit 5 instructs the control unit 8 to switch the switching unit 9 to the first connection state (step S3).
  • the arithmetic processing unit 5 causes the voltage measurement unit 4A, the voltage measurement unit 4B, and the voltage measurement unit 4C to measure the voltage V1, the voltage V2, and the voltage V3, respectively, and the measured voltage V1 and voltage V2 are measured.
  • the voltage value of voltage V3 is taken in (step S4).
  • the arithmetic processing unit 5 stores the acquired voltage value in a memory.
  • the calculation processing unit 5 reads the voltage value stored in the memory and calculates the target voltage Vm by the following calculation (step S5).
  • the voltage value Vmb of the target voltage Vm, the voltage value V1b of the voltage V1, and the voltage value V2b of the voltage V2 in the second connection state satisfy the following Expression 7 and Expression 8.
  • Eq. 9 is obtained by eliminating Vmb from Eq. 7 and Eq.
  • the voltage value Vma of the target voltage Vm, the voltage value V1a of the voltage V1, and the voltage value V2a of the voltage V2 in the first connection state satisfy the following Expression 10 and Expression 11.
  • the voltage value Vma of the target voltage Vm in the first connection state and the voltage value Vmb of the target voltage Vm in the second connection state are obtained by substituting the formula 13 into the formula 11 and the formula 7. They are obtained from the following formulas 14 and 15, respectively.
  • the voltage measuring unit 4C may not be provided. .
  • the voltage measuring apparatus 1A includes the first connection state in which the other terminal 31A of the capacitor 3A is electrically connected to the capacitor 3B, and the other terminal 31A of the capacitor 3A is disconnected from the capacitor 3B. Is further provided with a switching unit 9 configured to switch between the second connection state and the second connection state.
  • the arithmetic processing unit 5 is configured to calculate the target voltage Vm using at least the voltages V1 and V2 in the first connection state and the voltages V1 and V2 in the second connection state.
  • FIG. 6 is an equivalent circuit around the capacitors 3A and 3B of the voltage measuring apparatus 1B according to the third embodiment.
  • the same reference numerals are assigned to the same parts as those of the voltage measuring apparatus 1 according to the first embodiment shown in FIG.
  • the voltage measuring device 1B has a circuit configuration common to the voltage measuring device 1 according to the first embodiment.
  • stray capacitance may occur between the electrodes 2A and 2B and the ground, or between the wiring connecting the electrodes 2A and 2B to the main body 100 and the ground (FIG. 2).
  • these stray capacitances are taken into consideration.
  • the stray capacitance 21A is generated between the electrode 2A or the wiring from the electrode 2A to the main body 100 and the reference potential 1R.
  • a stray capacitance 21B is generated between the electrode 2B or the wiring from the electrode 2B to the main body 100 and the reference potential 1R (see FIG. 6).
  • the voltage measurement apparatus 1B is configured to suppress a decrease in measurement accuracy by calculating the target voltage Vm in consideration of the stray capacitance 21A and the stray capacitance 21B.
  • the stray capacitance 21A has a capacitance value Cf1
  • the stray capacitance 21B has a capacitance value Cf2.
  • the capacitance value Cf1 of the stray capacitance 21A is equal to the capacitance value Cf2 of the stray capacitance 21B.
  • FIG. 6 shows a portion including only the electrode 2A, the electrode 2B, the capacitor 3A, the capacitor 3B, the coupling capacitors 20A and 20B, and the stray capacitors 21A and 21B in the equivalent circuit of the voltage measuring apparatus 1B according to the third embodiment.
  • the target voltage Vm is divided by the parallel circuit of the capacitor 3B and the stray capacitance 21B and the coupling capacitance 20B, and the voltage division ratio ⁇ m is expressed by the following equation (16). Is done.
  • the voltage V1 and the voltage V2 are expressed by the following equations 18 and 19 using the voltage dividing ratios ⁇ m and ⁇ r.
  • the partial pressure ratio ⁇ m is expressed as the following formula 22 by deleting Cs1 from the formula 16 and the formula 17 and substituting the formula 21.
  • the target voltage Vm is obtained from the following equation (23) from the equation (19) and the equation (22).
  • the arithmetic processing unit 5 can calculate the target voltage Vm as long as the capacitance value Cf1 of the stray capacitance 21A is known.
  • a correction program for performing processing for calculating the capacitance value Cf1 or the capacitance value Cf2 may be stored in the memory of the microcontroller that constitutes the arithmetic processing unit 5.
  • the correction program is executed by the microcontroller of the arithmetic processing unit 5 in a state where an AC reference voltage having a known voltage value (target voltage Vm) is applied to the conductor 11.
  • the arithmetic processing unit 5 calculates Equation 23 from the measured voltage value of the voltage V1, the voltage value of the voltage V2, the voltage value of the voltage V3, the capacitance value Cin1 of the capacitor 3A, and the voltage value of the target voltage Vm. Using this, the capacitance value Cf1 is calculated.
  • the microcontroller of the arithmetic processing unit 5 stores the calculated capacitance value Cf1 in the memory of the microcontroller, and then ends the execution of the correction program.
  • the voltage measurement device 1B calculates the capacitance value Cf1 of the stray capacitance 21A in advance as described above, so that the calculated capacitance can be obtained even when the stray capacitance 21A and the stray capacitance 21B exist.
  • the target voltage Vm can be measured with high accuracy based on the value Cf1 and the equation of Equation 23, and a decrease in measurement accuracy can be suppressed.
  • the arithmetic processing unit 5 includes the capacitance value Cf1 of the stray capacitance 21A generated between the electrode 2A and the reference potential 1R, and the capacitance value Cf2 of the stray capacitance 21B generated between the electrode 2B and the reference potential 1R. Is used to correct the calculated target voltage Vm.
  • the arithmetic processing unit 5 is configured to calculate the capacitance values Cf1 and Cf2 of the stray capacitances 21A and 21B using the voltages V1 and V2 and the known voltage in a state where a known voltage is applied to the conductor. It may be.
  • the stray capacitance 21A and the stray capacitance 21B are provided between the electrodes 2A and 2B and the ground, or between the wiring connecting the electrodes 2A and 2B to the main body 100 and the ground. May occur.
  • the voltage measurement device takes into account the stray capacitance 21A and the stray capacitance 21B, and the voltage value Vma of the target voltage Vm in the first connection state and the voltage value of the target voltage Vm in the second connection state. By calculating Vmb, it is configured to suppress a decrease in measurement accuracy.
  • the stray capacitance 21A has a capacitance value Cf1
  • the stray capacitance 21B has a capacitance value Cf2.
  • the partial pressure ratio ⁇ 1m is expressed by the following equation (24).
  • the voltage value Vmb of the target voltage Vm, the voltage value V1b of the voltage V1, and the voltage value V2b of the voltage V2 in the second connection state are expressed by the following equations (27) and (28). Fulfill.
  • the voltage value Vma of the target voltage Vm, the voltage value V1a of the voltage V1, and the voltage value V1b of the voltage V2 in the first connection state satisfy the following Expression 30 and Expression 31.
  • the partial pressure ratio ⁇ 1m is expressed as the following equation 34 by deleting Cs1 from the equations 24 and 26 and substituting the equation 33.
  • the voltage value Vma of the target voltage Vm in the first connection state can be obtained from the following equation 35 obtained by substituting the equation 29 and the equation 34 into the equation 31.
  • the voltage value Vmb of the target voltage Vm in the second connection state can be obtained from the following equation 36 obtained by substituting the equation 34 into the equation 27.
  • the arithmetic processing unit 5 can calculate the voltage values Vma and Vmb of the target voltage Vm. However, as in the third embodiment, it is preferable that the arithmetic processing unit 5 calculates the capacitance value Cf1 of the stray capacitance 21A in advance by executing the correction program.
  • FIG. 7 is a circuit diagram showing an equivalent circuit of the voltage measuring apparatus 1C according to the fifth embodiment.
  • the voltage measuring device 1C is electrically connected to the input terminal 106A electrically connected to the electrode 2B and the other terminal 31A of the capacitor 3A instead of the buffer 6 of the voltage measuring device 1 shown in FIGS.
  • a variable gain amplifier circuit 106 having an output terminal 106B.
  • the variable gain amplifier circuit 106 has a variable amplification factor ⁇ V.
  • Voltage measurement apparatus 1 ⁇ / b> C further includes a control unit 108 that controls amplification factor ⁇ V of variable gain amplification circuit 106.
  • FIG. 8 is a flowchart showing the operation of the voltage measuring apparatus 1C.
  • the control unit 108 sets the amplification factor ⁇ V of the variable gain amplifier circuit 106 to the amplification factor ⁇ A (step S101).
  • the voltage measuring units 4A, 4B, and 4C measure the voltage values V1A, V2A, and V3A of the voltages V1, V2, and V3 when the amplification factor ⁇ V of the variable gain amplifier circuit 106 is the amplification factor ⁇ A (step S102).
  • the control unit 108 sets the gain ⁇ V of the variable gain amplifier circuit 106 to the gain ⁇ B (step S103).
  • the voltage measuring units 4A, 4B, and 4C measure the voltage values V1B, V2B, and V3B of the voltages V1, V2, and V3 when the amplification factor ⁇ V of the variable gain amplifier circuit 106 is the amplification factor ⁇ B (step S104).
  • the arithmetic processing unit 5 obtains the voltage values V1A and V1B of the voltage V1, the voltage values V2A and V2B of the voltage V2, and the voltage values V3A and V3B of the voltage V3.
  • the arithmetic processing unit 5 calculates the target voltage Vm based on the voltage values V1A and V1B of the voltage V1, the voltage values V2A and V2B of the voltage V2, and the voltage values V3A and V3B of the voltage V3 (step S105).
  • the voltage measuring apparatus 1C may not include the voltage measuring unit 4C.
  • the voltage measuring apparatus 1C can obtain the voltage values V3A and V3B of the voltage V3 by multiplying the voltage values V1A and V2B of the voltage V2 by the amplification factors ⁇ A and ⁇ B, respectively.
  • the voltage values V1A and V1B of the voltage V1 and the voltage V2 by the voltage dividing ratios ⁇ 1 and ⁇ 2 expressed using the capacitance values Cin1 and Cin2 of the capacitors 3A and 3B and the capacitance values Cs1 and Cs2 of the coupling capacitors 20A and 20B.
  • Values V2A and V2B are expressed by equations 37 to 40.
  • V1A is expressed as follows when substituted into the equation (37).
  • the voltage division ratio ⁇ 2 is obtained from the voltages V1 to V3 to be measured.
  • the voltage values VmA and VmB can be obtained without measuring the voltage values V3A and V3B.
  • the voltage measuring device 1 ⁇ / b> C does not need to include an AC voltage generation unit, and can measure the AC voltage of the conductor 11 with a simple configuration without being directly connected to the conductor 11 of the wire 10. Become.
  • the voltage values V3A and V3B of the voltage V3 can be calculated from the amplification factors ⁇ A and ⁇ B and the voltage values V2A and V2B of the voltage V2.
  • the target voltage Vm can be measured with a simple configuration with high accuracy.
  • FIG. 9 is an equivalent circuit around the capacitors 3A and 3B of the voltage measuring apparatus 1D according to the sixth embodiment. 9, the same reference numerals are assigned to the same portions as those of the voltage measuring device 1C according to the fifth embodiment shown in FIG.
  • the voltage measuring device 1D has a common circuit configuration with the voltage measuring device 1D according to the fifth embodiment.
  • stray capacitance may occur between the electrodes 2A and 2B and the ground, or between the wiring connecting the electrodes 2A and 2B to the main body 100 and the ground.
  • these stray capacitances are taken into consideration.
  • the stray capacitance 21A is generated between the electrode 2A or the wiring from the electrode 2A to the main body 100 and the reference potential 1R.
  • the stray capacitances 21A and 21B in which the stray capacitance 21B is generated between the electrode 2B or the wiring from the electrode 2B to the main body 100 and the reference potential 1R have capacitance values Cf1 and Cf2, respectively.
  • the target voltage Vm is divided by the capacitance value Cs1 with respect to the parallel combined capacitance (Cin1 + Cf1) of the capacitance values Cin1 and Cf1, and thus a voltage division ratio that is a ratio between the target voltage Vm and the voltage V1.
  • ⁇ 1m is expressed by the equation (46).
  • the target voltage Vm is divided by the capacitance value Cs2 with respect to the parallel combined capacitance (Cin2 + Cf2) of the capacitance values Cin2 and Cf2, so that the ratio of the target voltage Vm to the voltage V2 is obtained.
  • a certain partial pressure ratio ⁇ 2m is expressed by the equation (47).
  • V3 is divided by the capacitance value Cin1 with respect to the parallel combined capacitance value (Cs1 + Cf1) of the capacitance values Cs1 and Cf1, so if the voltage dividing ratio between the voltage V3 and the voltage V1 is (1 ⁇ 1r), ⁇ 1r Is as shown in the equation 48.
  • the voltage values V1A and V1B of the voltage V1 and the voltage values V2A and V2B of the voltage V2 are expressed by equations 49 to 52.
  • Mathematical formula 55 is obtained similarly from mathematical formulas 51 and 52.
  • Equation 56 is obtained by eliminating ⁇ 1m and ⁇ 2m from the equations 54 and 55 and rearranging ⁇ 1r.
  • Equation 57 is obtained by eliminating Cs1 from the equations 46 and 48 and organizing ⁇ 1m.
  • the capacitance value Cf1 of the stray capacitance 21A is known from the formulas 60 and 62, the voltage values VmA and VmB of the target voltage Vm can be calculated.
  • the capacitance of the stray capacitance 21A is calculated from the formulas 60 and 62.
  • the value Cf1 can be determined.
  • the target voltage Vm can be corrected by the stray capacitance 21A that affects the voltage estimation accuracy, and the voltage estimation accuracy can be improved.
  • FIG. 10 is a block diagram of a voltage measuring apparatus 1E according to the seventh embodiment. 10, the same parts as those of the voltage measuring apparatus 1C according to the fifth embodiment shown in FIG.
  • the voltage measuring device 1E includes a variable gain amplifying circuit 406 instead of the variable gain amplifying circuit 106 of the voltage measuring device 1C according to the fifth embodiment shown in FIG.
  • the variable gain amplifier circuit 406 includes amplifier circuits 206 and 306 and a switching unit 109.
  • the amplifier circuit 206 has an input terminal 206A electrically connected to the electrode 2B and an output terminal 206B.
  • the amplifier circuit 206 has an amplification factor ⁇ A.
  • the amplifier circuit 306 has an input terminal 306A electrically connected to the electrode 2B, and an output terminal 306B.
  • the amplifier circuit 306 has an amplification factor ⁇ B.
  • the switching unit 109 has switching contacts 191 and 192 and a common contact 190.
  • the control unit 108 switches the common contact 190 from the first connection state in which the common contact 190 is disconnected from the switching contact 192 and connected to the switching contact 191. It is configured to switch between the second connection state disconnected from the contact 191 and connected to the switching contact 192. In the first connection state, the other terminal 31A of the capacitor 3A is disconnected from the output terminal 306B of the amplifier circuit 306 and electrically connected to the output terminal 206B of the amplifier circuit 206.
  • variable gain amplifier circuit 406 operates in the same manner as the variable gain amplifier circuit 106 according to the fifth embodiment, and the same effect can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

This voltage measuring device is configured to measure a voltage to be measured, i.e., a potential difference between a reference potential and the potential of a conductor. The voltage measuring device is provided with: a first electrode facing the conductor with a space therebetween; a second electrode facing the conductor with a space therebetween; a first capacitor electrically connected to the first electrode and the second electrode; a second capacitor configured to be electrically connected to the second electrode and the reference potential; a first voltage measuring unit configured to measure a first voltage, i.e., a potential difference between the reference potential and the potential of the first electrode; a second voltage measuring unit configured to measure a second voltage, i.e., a potential difference between the reference potential and the potential of the second electrode; and an arithmetic processing unit configured to calculate, using the first voltage and the second voltage, the voltage to be measured. The size of the voltage measuring device can be easily reduced.

Description

電圧測定装置Voltage measuring device
 本発明は、導体に印加される電圧を非接触で測定する電圧測定装置に関する。 The present invention relates to a voltage measuring device that measures a voltage applied to a conductor in a non-contact manner.
 特許文献1に開示されている従来例の非接触型電圧検出装置は、第1の電圧プローブと第2の電圧プローブと第1の電圧検出部と第2の電圧検出部と演算処理部と信号発生部とを有している。電圧プローブのそれぞれは、円筒形の内部電極と、内部電極よりも径の大きい円筒形の外部電極とを有し、外部電極の内側に内部電極が配置され、内部電極の内側に被測定ケーブルが挿通される。 A conventional non-contact voltage detection device disclosed in Patent Document 1 includes a first voltage probe, a second voltage probe, a first voltage detection unit, a second voltage detection unit, an arithmetic processing unit, and a signal. And a generator. Each of the voltage probes has a cylindrical internal electrode and a cylindrical external electrode having a diameter larger than that of the internal electrode. The internal electrode is arranged inside the external electrode, and the cable to be measured is inside the internal electrode. It is inserted.
 第1の電圧検出部は、第1の電圧プローブの内部電極と外部電極の間の電圧(電位差)を検出する。第2の電圧検出部は、第2の電圧プローブの内部電極と外部電極の間の電圧(電位差)を検出する。また、信号発生部は、交流試験電圧を発生する。 The first voltage detector detects a voltage (potential difference) between the internal electrode and the external electrode of the first voltage probe. The second voltage detector detects a voltage (potential difference) between the internal electrode and the external electrode of the second voltage probe. The signal generator generates an AC test voltage.
 演算処理部は、交流試験電圧が外部電極に印加されている状態において、第1の電圧検出部の検出電圧及び第2の電圧検出部の検出電圧を取得する。また、演算処理部は、外部電極が接地されている状態において、第1の電圧検出部の検出電圧及び第2の電圧検出部の検出電圧を取得する。そして、演算処理部は、それぞれの状態における第1の電圧検出部の検出電圧及び第2の電圧検出部の検出電圧から、被測定ケーブルの導体に印加されている電圧を算出する。 The arithmetic processing unit acquires the detection voltage of the first voltage detection unit and the detection voltage of the second voltage detection unit in a state where the AC test voltage is applied to the external electrode. The arithmetic processing unit acquires the detection voltage of the first voltage detection unit and the detection voltage of the second voltage detection unit in a state where the external electrode is grounded. The arithmetic processing unit calculates the voltage applied to the conductor of the cable to be measured from the detection voltage of the first voltage detection unit and the detection voltage of the second voltage detection unit in each state.
特開2006-242855号公報JP 2006-242855 A
 電圧測定装置は、導体の電位と基準電位との電位差である対象電圧を測定するように構成されている。その電圧測定装置は、間隔を空けて導体と対向する第1電極と、間隔を空けて導体と対向する第2電極と、第1電極と第2電極に電気的に接続された第1コンデンサと、第2電極と基準電位に電気的に接続されるように構成された第2コンデンサと、第1電極の電位と基準電位との電位差である第1電圧を測定するように構成された第1電圧測定部と、第2電極の電位と基準電位との電位差である第2電圧を測定するように構成された第2電圧測定部と、第1電圧及び第2電圧を用いて対象電圧を演算するように構成された演算処理部とを備える。 The voltage measuring device is configured to measure a target voltage that is a potential difference between a conductor potential and a reference potential. The voltage measuring device includes a first electrode facing the conductor with a gap, a second electrode facing the conductor with a gap, a first capacitor electrically connected to the first electrode and the second electrode, A second capacitor configured to be electrically connected to the second electrode and a reference potential, and a first capacitor configured to measure a first voltage which is a potential difference between the potential of the first electrode and the reference potential. A voltage measurement unit, a second voltage measurement unit configured to measure a second voltage that is a potential difference between the potential of the second electrode and a reference potential, and a target voltage is calculated using the first voltage and the second voltage And an arithmetic processing unit configured to do so.
 この電圧測定装置は小型化が図り易い。 This voltage measuring device is easy to miniaturize.
図1は実施形態1に係る電圧測定装置のブロック図である。FIG. 1 is a block diagram of a voltage measuring apparatus according to the first embodiment. 図2は実施形態1に係る電圧測定装置の使用状態を説明するための概念図である。FIG. 2 is a conceptual diagram for explaining a usage state of the voltage measuring apparatus according to the first embodiment. 図3は実施形態1に係る電圧測定装置の等価回路を示す回路図である。FIG. 3 is a circuit diagram showing an equivalent circuit of the voltage measuring apparatus according to the first embodiment. 図4は実施形態2に係る電圧測定装置の等価回路を示す回路図である。FIG. 4 is a circuit diagram showing an equivalent circuit of the voltage measuring apparatus according to the second embodiment. 図5は実施形態2に係る電圧測定装置の動作を示すフローチャートである。FIG. 5 is a flowchart showing the operation of the voltage measuring apparatus according to the second embodiment. 図6は実施形態3及び実施形態4に係る電圧測定装置の等価回路の一部を示す回路図である。FIG. 6 is a circuit diagram showing a part of an equivalent circuit of the voltage measuring device according to the third and fourth embodiments. 図7は実施形態5に係る電圧測定装置のブロック図である。FIG. 7 is a block diagram of a voltage measuring apparatus according to the fifth embodiment. 図8は実施形態5に係る電圧測定装置の動作を示すフローチャートである。FIG. 8 is a flowchart showing the operation of the voltage measuring apparatus according to the fifth embodiment. 図9は実施形態6に係る電圧測定装置の等価回路の一部を示す回路図である。FIG. 9 is a circuit diagram showing a part of an equivalent circuit of the voltage measuring apparatus according to the sixth embodiment. 図10は実施形態7に係る電圧測定装置のブロック図である。FIG. 10 is a block diagram of a voltage measuring apparatus according to the seventh embodiment.
 図1は実施形態1に係る電圧測定装置1のブロック図である。電圧測定装置1は、系統電源(商用交流電源)から負荷へ交流電力を給電するための電線10の電圧を測定する用途に用いられる。電圧測定装置1は、電線10の導体11に印加される50Hz又は60Hzの交流電圧を対象電圧Vmとして測定する。ただし、電圧測定装置1は、交流電圧を対象電圧とする構成であればよく、対象電圧を系統電源から供給される交流電圧に限定する趣旨ではない。また、電圧測定装置1は、交流電力を給電するための一対の電線の線間電圧ではなく、グランド電位等の基準電位1Rに対する、一方の電線10の導体11の電位、すなわち、導体11の電位と基準電位1Rとの電位差を対象電圧Vmとして測定する。 FIG. 1 is a block diagram of a voltage measuring apparatus 1 according to the first embodiment. The voltage measuring apparatus 1 is used for measuring the voltage of the electric wire 10 for supplying AC power from a system power supply (commercial AC power supply) to a load. The voltage measuring apparatus 1 measures a 50 Hz or 60 Hz AC voltage applied to the conductor 11 of the electric wire 10 as the target voltage Vm. However, the voltage measuring device 1 may be configured to use an AC voltage as a target voltage, and is not intended to limit the target voltage to the AC voltage supplied from the system power supply. In addition, the voltage measuring device 1 is not a line voltage between a pair of wires for supplying AC power, but a potential of the conductor 11 of one wire 10 with respect to a reference potential 1R such as a ground potential, that is, a potential of the conductor 11. And the reference potential 1R is measured as the target voltage Vm.
 (実施形態1)
 実施形態1の電圧測定装置1は、図1に示すように、電極2Aと電極2Bとコンデンサ3Aとコンデンサ3Bと電圧測定部4Aと電圧測定部4Bと電圧測定部4Cと演算処理部5とバッファ6と出力部7とを備える。
(Embodiment 1)
As shown in FIG. 1, the voltage measuring apparatus 1 according to the first embodiment includes an electrode 2A, an electrode 2B, a capacitor 3A, a capacitor 3B, a voltage measuring unit 4A, a voltage measuring unit 4B, a voltage measuring unit 4C, an arithmetic processing unit 5, and a buffer. 6 and an output unit 7.
 電圧測定装置1は、電線10の導体11に印加される対象電圧Vmを非接触で測定するように構成されている。そのため、電極2A及び電極2Bは導体11に直接接触しない状態で使用される。電線10は、導体11と、導体11を覆う被覆12とで構成される。導体11は、例えば、銅又は銅合金などの金属製の単線である。被覆12は絶縁体であり、例えば、ビニル樹脂などの電気絶縁性を有する合成樹脂材料で形成されることが好ましい。 The voltage measuring device 1 is configured to measure the target voltage Vm applied to the conductor 11 of the electric wire 10 in a non-contact manner. Therefore, the electrode 2A and the electrode 2B are used in a state where they are not in direct contact with the conductor 11. The electric wire 10 includes a conductor 11 and a coating 12 that covers the conductor 11. The conductor 11 is a single wire made of metal such as copper or copper alloy, for example. The coating 12 is an insulator, and is preferably formed of a synthetic resin material having electrical insulation properties such as vinyl resin.
 図2は電圧測定装置1の使用状態を説明するための概念図である。電極2A及び電極2Bは同一の構成を有し、電圧測定用のプローブとして機能する。電極2A及び電極2Bは、図2に示すように、銅などの導電性材料にてシート状あるいは板状に形成されており、電線10の被覆12の表面に接触するように配置される。電極2A及び電極2Bは、被覆12に対して殆ど隙間なく接するように、電線10の外周面に沿って湾曲するように構成されることが好ましい。言い換えれば、電極2A及び電極2Bは、導体11が被覆12にて覆われた構造の電線10において、被覆12を取り除くことなく被覆12を介して導体11と対向するように配置される。したがって、電極2A及び電極2Bのそれぞれから導体11までの距離は被覆12の厚み寸法にほぼ等しくなる。このように、電極2A及び電極2Bは、導体11に対して被覆12の厚み寸法の分だけ間隔を空けて配置されることにより、導体11に対して容量結合される。ただし、電極2A及び電極2Bは、可撓性を有しない板状の部材に形成されて被覆12に押し当てられるように構成されてもよい。あるいは、電極2A及び電極2Bは、合成樹脂製のクランプの内側に配置され、クランプで被覆12を挟み込むことで被覆12の近傍に配置されるように構成されてよい。なお、電極2A及び電極2Bは、電圧測定装置1の本体100と一体的に設けられていてもよいが、本体100とは別に設けられて本体100とケーブルで電気的に接続された構成であってもよい。 FIG. 2 is a conceptual diagram for explaining the usage state of the voltage measuring apparatus 1. The electrodes 2A and 2B have the same configuration and function as voltage measurement probes. As shown in FIG. 2, the electrode 2 </ b> A and the electrode 2 </ b> B are formed in a sheet shape or a plate shape with a conductive material such as copper, and are arranged so as to be in contact with the surface of the covering 12 of the electric wire 10. The electrodes 2A and 2B are preferably configured to be curved along the outer peripheral surface of the electric wire 10 so as to be in contact with the coating 12 with almost no gap. In other words, the electrode 2 </ b> A and the electrode 2 </ b> B are arranged so as to face the conductor 11 through the coating 12 without removing the coating 12 in the electric wire 10 having a structure in which the conductor 11 is covered with the coating 12. Therefore, the distance from each of the electrode 2A and the electrode 2B to the conductor 11 is substantially equal to the thickness dimension of the coating 12. Thus, the electrodes 2A and 2B are capacitively coupled to the conductor 11 by being spaced from the conductor 11 by the thickness dimension of the covering 12. However, the electrode 2 </ b> A and the electrode 2 </ b> B may be configured to be formed on a plate-like member having no flexibility and pressed against the coating 12. Alternatively, the electrode 2A and the electrode 2B may be arranged inside the synthetic resin clamp and arranged in the vicinity of the coating 12 by sandwiching the coating 12 with the clamp. The electrodes 2A and 2B may be provided integrally with the main body 100 of the voltage measuring device 1, but are provided separately from the main body 100 and electrically connected to the main body 100 with a cable. May be.
 図3は電圧測定装置1の等価回路を示す。電極2Aと導体11との間に形成される静電容量成分を結合容量20Aと呼び、電極2Bと導体11との間に形成される静電容量成分を結合容量20Bと呼ぶ(図3参照)。なお、結合容量20A、20Bの容量値は、電極2A及び電極2Bから導体11の表面までの距離や、電極2A及び電極2Bと導体11との間に介在する介在物(被覆12)の誘電率によって決まる。つまり、結合容量20A、20Bの容量値は一定ではなく、被覆12の厚み寸法や被覆12の材質(誘電率)などによって変化する。なお、電極2A及び電極2Bのそれぞれと導体11との間には結合容量20A、20Bが形成される程度の間隔が設けられている。また、電極2A及び電極2Bのそれぞれと導体11との間に被覆12が介在することは必須でなく、例えば、電極2A及び電極2Bと導体11との間に隙間(空気)が存在してもよい。 FIG. 3 shows an equivalent circuit of the voltage measuring apparatus 1. The electrostatic capacity component formed between the electrode 2A and the conductor 11 is called a coupling capacity 20A, and the electrostatic capacity component formed between the electrode 2B and the conductor 11 is called a coupling capacity 20B (see FIG. 3). . The capacitance values of the coupling capacitors 20A and 20B are the distances from the electrodes 2A and 2B to the surface of the conductor 11, and the dielectric constant of the inclusion (coating 12) interposed between the electrodes 2A and 2B and the conductor 11. It depends on. That is, the capacitance values of the coupling capacitors 20A and 20B are not constant, and change depending on the thickness dimension of the coating 12, the material (dielectric constant) of the coating 12, and the like. Note that an interval is formed between each of the electrodes 2A and 2B and the conductor 11 so that the coupling capacitors 20A and 20B are formed. In addition, it is not essential that the coating 12 is interposed between each of the electrode 2A and the electrode 2B and the conductor 11, for example, even if a gap (air) exists between the electrode 2A and the electrode 2B and the conductor 11. Good.
 コンデンサ3Aは端子30Aと端子31Aとを有し、既知の容量値を有する電解コンデンサ、フィルムコンデンサ、セラミックコンデンサなどのコンデンサで構成される。コンデンサ3Aの端子30Aは、電極2A及び電圧測定部4Aと電気的に接続されている。また、コンデンサ3Aの端子31Aは、バッファ6の出力端子6Bと電圧測定部4Cと電気的に接続される(図1参照)。コンデンサ3Aの端子31Aは、バッファ6を介して電極2Bに電気的に接続されている。コンデンサ3Bは端子30Bと端子31Bとを有し、既知の容量値を有する電解コンデンサ、フィルムコンデンサ、セラミックコンデンサなどのコンデンサで構成される。コンデンサ3Bの端子30Bは、電極2B及び電圧測定部4Bと電気的に接続される。また、コンデンサ3Bの端子31Bは、基準電位1Rと電気的に接続される(接地される)。 The capacitor 3A has a terminal 30A and a terminal 31A, and is composed of a capacitor such as an electrolytic capacitor, a film capacitor, or a ceramic capacitor having a known capacitance value. A terminal 30A of the capacitor 3A is electrically connected to the electrode 2A and the voltage measuring unit 4A. The terminal 31A of the capacitor 3A is electrically connected to the output terminal 6B of the buffer 6 and the voltage measuring unit 4C (see FIG. 1). A terminal 31A of the capacitor 3A is electrically connected to the electrode 2B through the buffer 6. The capacitor 3B has a terminal 30B and a terminal 31B, and is constituted by a capacitor such as an electrolytic capacitor, a film capacitor, or a ceramic capacitor having a known capacitance value. Terminal 30B of capacitor 3B is electrically connected to electrode 2B and voltage measurement unit 4B. The terminal 31B of the capacitor 3B is electrically connected (grounded) to the reference potential 1R.
 電圧測定部4Aは、基準電位1Rと電極2Aとの電位差である電圧V1を測定するように構成される。同様に、電圧測定部4Bは、基準電位1Rと電極2Bとの電位差である電圧V2を測定するように構成される。電圧測定部4Cは、コンデンサ3Aの端子31Aの電位と基準電位1Rとの電位差である電圧V3を測定するように構成される。 The voltage measuring unit 4A is configured to measure a voltage V1 that is a potential difference between the reference potential 1R and the electrode 2A. Similarly, the voltage measuring unit 4B is configured to measure a voltage V2 that is a potential difference between the reference potential 1R and the electrode 2B. The voltage measuring unit 4C is configured to measure a voltage V3 that is a potential difference between the potential of the terminal 31A of the capacitor 3A and the reference potential 1R.
 バッファ6は、ボルテージフォロワ回路、反転増幅回路、若しくは非反転増幅回路のいずれかで構成されることが好ましい。バッファ6の入力端子6Aが電極2Bと電気的に接続され、バッファ6の出力端子6Bがコンデンサ3Aの端子31Aと電気的に接続されている。なお、以下の説明においては、バッファ6がボルテージフォロワ回路で構成されているものとする。 The buffer 6 is preferably composed of any one of a voltage follower circuit, an inverting amplifier circuit, and a non-inverting amplifier circuit. The input terminal 6A of the buffer 6 is electrically connected to the electrode 2B, and the output terminal 6B of the buffer 6 is electrically connected to the terminal 31A of the capacitor 3A. In the following description, it is assumed that the buffer 6 is composed of a voltage follower circuit.
 演算処理部5は、例えば、マイクロコントローラと、マイクロコントローラで実行されるプログラムとで構成される。演算処理部5は、マイクロコントローラでプログラムを実行することにより、電圧V1、電圧V2及び電圧V3のそれぞれの電圧値から対象電圧Vmを演算するように構成される。 The arithmetic processing unit 5 includes, for example, a microcontroller and a program executed by the microcontroller. The arithmetic processing unit 5 is configured to calculate the target voltage Vm from the voltage values of the voltage V1, the voltage V2, and the voltage V3 by executing a program with a microcontroller.
 出力部7は、例えば、液晶表示器などの表示デバイスを有し、演算処理部5に制御されて対象電圧Vmの電圧値を表示するように構成される(図2参照)。ただし、対象電圧Vmは交流電圧であるから、出力部7に表示される値は、例えば、対象電圧Vmの実効値、瞬時値、振幅値などである。 The output unit 7 has a display device such as a liquid crystal display, for example, and is configured to display the voltage value of the target voltage Vm under the control of the arithmetic processing unit 5 (see FIG. 2). However, since the target voltage Vm is an AC voltage, the value displayed on the output unit 7 is, for example, an effective value, an instantaneous value, an amplitude value, or the like of the target voltage Vm.
 図3に示すように、コンデンサ3Aの端子30Aが、電極2A及び結合容量20Aを介して導体11と容量結合される。また、コンデンサ3Bの端子30Bが、電極2B及び結合容量20Bを介して導体11と容量結合される。つまり、電極2A及び電極2Bが、結合容量20A及び結合容量20Bを介して導体11とそれぞれ容量結合されるため、電極2Aの電位及び電極2Bの電位が、導体11の電位(対象電圧Vm)に対応して正弦波状に変化する。 As shown in FIG. 3, the terminal 30A of the capacitor 3A is capacitively coupled to the conductor 11 via the electrode 2A and the coupling capacitor 20A. The terminal 30B of the capacitor 3B is capacitively coupled to the conductor 11 via the electrode 2B and the coupling capacitor 20B. That is, since the electrode 2A and the electrode 2B are capacitively coupled to the conductor 11 via the coupling capacitance 20A and the coupling capacitance 20B, respectively, the potential of the electrode 2A and the potential of the electrode 2B become the potential of the conductor 11 (target voltage Vm). Correspondingly, it changes like a sine wave.
 電圧測定部4Aは、電極2Aの電位と基準電位1Rとの電位差である電圧V1を標本化(サンプリング)し、かつ各標本値(サンプリング値)を量子化することによって、電圧V1の瞬時値である電圧値を測定するように構成される。なお、電圧測定部4Aは、複数の瞬時値から電圧V1の実効値を電圧値として算出することも可能である。 The voltage measuring unit 4A samples (samples) a voltage V1 that is a potential difference between the potential of the electrode 2A and the reference potential 1R, and quantizes each sample value (sampling value), thereby obtaining an instantaneous value of the voltage V1. It is configured to measure a certain voltage value. The voltage measuring unit 4A can also calculate the effective value of the voltage V1 as a voltage value from a plurality of instantaneous values.
 電圧測定部4Bは、電極2Bの電位と基準電位1Rとの電位差である電圧V2を標本化(サンプリング)し、かつ各標本値(サンプリング値)を量子化することによって、電圧V2の瞬時値である電圧値を測定するように構成される。なお、電圧測定部4Bは、複数の瞬時値から電圧V2の実効値を電圧値として算出することも可能である。 The voltage measurement unit 4B samples (samples) the voltage V2 which is the potential difference between the potential of the electrode 2B and the reference potential 1R, and quantizes each sample value (sampling value), thereby obtaining an instantaneous value of the voltage V2. It is configured to measure a certain voltage value. The voltage measuring unit 4B can also calculate the effective value of the voltage V2 as a voltage value from a plurality of instantaneous values.
 同様に、電圧測定部4Cは、コンデンサ3Aの端子31Aの電位と基準電位1Rとの電位差(電圧V3)を標本化(サンプリング)し、かつ各標本値(サンプリング値)を量子化することによって、電圧V3の瞬時値である電圧値を測定するように構成される。なお、電圧測定部4Cは、複数の瞬時値から電圧V3の実効値を電圧値として算出することも可能である。 Similarly, the voltage measuring unit 4C samples (samples) a potential difference (voltage V3) between the potential of the terminal 31A of the capacitor 3A and the reference potential 1R, and quantizes each sample value (sampling value). It is configured to measure a voltage value that is an instantaneous value of the voltage V3. Note that the voltage measurement unit 4C can also calculate the effective value of the voltage V3 as a voltage value from a plurality of instantaneous values.
 電圧測定部4A、電圧測定部4B及び電圧測定部4Cは、それぞれの測定した電圧値(電圧V1の電圧値、電圧V2の電圧値及び電圧V3の電圧値)を演算処理部5に出力する。 The voltage measuring unit 4A, the voltage measuring unit 4B, and the voltage measuring unit 4C output the measured voltage values (the voltage value of the voltage V1, the voltage value of the voltage V2, and the voltage value of the voltage V3) to the arithmetic processing unit 5.
 演算処理部5は、電圧V1の電圧値、電圧V2の電圧値及び電圧V3の電圧値を、マイクロコントローラのメモリに格納した後、それらの電圧値をメモリから読み出して、対象電圧Vmを演算するように構成される。 The arithmetic processing unit 5 stores the voltage value of the voltage V1, the voltage value of the voltage V2, and the voltage value of the voltage V3 in the memory of the microcontroller, and then reads the voltage values from the memory to calculate the target voltage Vm. Configured as follows.
 次に、演算処理部5における対象電圧Vmの演算処理について、詳しく説明する。ただし、以下の数式中の「V1」、「V2」、「V3」は、それぞれ電圧V1の電圧値、電圧V2の電圧値、電圧V3の電圧値を表す。また、コンデンサ3Aは容量値Cin1を有し、コンデンサ3Bは容量値Cin2を有し、結合容量20Aは容量値Cs1を有し、結合容量20Bは容量値Cs2を有する。ただし、バッファ6が反転増幅回路で構成され、かつ電圧値が振幅値又は実効値である場合においては、以下の数式中の「V3」を「-V3」に置き換える必要がある。 Next, the calculation processing of the target voltage Vm in the calculation processing unit 5 will be described in detail. However, “V1”, “V2”, and “V3” in the following equations represent the voltage value of the voltage V1, the voltage value of the voltage V2, and the voltage value of the voltage V3, respectively. The capacitor 3A has a capacitance value Cin1, the capacitor 3B has a capacitance value Cin2, the coupling capacitor 20A has a capacitance value Cs1, and the coupling capacitor 20B has a capacitance value Cs2. However, when the buffer 6 is composed of an inverting amplifier circuit and the voltage value is an amplitude value or an effective value, it is necessary to replace “V3” in the following formula with “−V3”.
 電圧V2は、対象電圧Vmをコンデンサ3B及び結合容量20Bで分圧した値に一致し、下記の数1の式で表される。 The voltage V2 corresponds to a value obtained by dividing the target voltage Vm by the capacitor 3B and the coupling capacitance 20B, and is expressed by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 また、電圧V1は、対象電圧Vmと電圧V3の差分をコンデンサ3A及び結合容量20Aで分圧した値と、電圧V3との和に一致し、下記の数2の式で表される。 The voltage V1 is equal to the sum of the voltage V3 and the value obtained by dividing the difference between the target voltage Vm and the voltage V3 by the capacitor 3A and the coupling capacitor 20A, and is expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、コンデンサ3Aの容量値Cin1及びコンデンサ3Bの容量値Cin2を適当に設定することにより、β1=β2の関係を満足させることができる。例えば、2つの容量値Cin1、Cin2を互いに等しい値とし、さらに、結合容量20Aの容量値Cs1と結合容量20Bの容量値Cs2を等しい値とすればよい。なお、結合容量20Aの容量値Cs1と結合容量20Bの容量値Cs2は、電極2Aと電極2Bの形状、大きさ、材料などを揃えることでほぼ等しい値となる。 Here, the relationship of β1 = β2 can be satisfied by appropriately setting the capacitance value Cin1 of the capacitor 3A and the capacitance value Cin2 of the capacitor 3B. For example, the two capacitance values Cin1 and Cin2 may be equal to each other, and the capacitance value Cs1 of the coupling capacitor 20A and the capacitance value Cs2 of the coupling capacitor 20B may be equal to each other. Note that the capacitance value Cs1 of the coupling capacitor 20A and the capacitance value Cs2 of the coupling capacitor 20B are substantially equal by aligning the shapes, sizes, materials, and the like of the electrodes 2A and 2B.
 β1=β2=βとして、数1の式から数2の式を減算して対象電圧Vmを消去すると、下記の数3の式が得られる。 When β1 = β2 = β and subtracting the formula 2 from the formula 1 to delete the target voltage Vm, the following formula 3 is obtained.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 上記数3の式より、以下の数4の式が得られる。 The following formula 4 is obtained from the formula 3 above.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 上記数4の式を数1の式に代入して整理すると、数5の式が得られる。 When the above formula 4 is substituted into the formula 1 and rearranged, the formula 5 is obtained.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 したがって、演算処理部5は、測定した電圧V1の電圧値と、電圧V2の電圧値と、電圧V3の電圧値とを上記数5の式に代入することにより、対象電圧Vmを演算することができる。ただし、バッファ6に使用される非反転増幅回路や反転増幅回路、あるいはボルテージフォロワ回路の増幅度(利得)αが既知であるから、演算処理部5は、下記の数6の式を用いて、電圧V2の電圧値から電圧V3の電圧値を演算することができる。 Therefore, the arithmetic processing unit 5 can calculate the target voltage Vm by substituting the measured voltage value of the voltage V1, the voltage value of the voltage V2, and the voltage value of the voltage V3 into the above equation (5). it can. However, since the amplification degree (gain) α of the non-inverting amplifier circuit, the inverting amplifier circuit, or the voltage follower circuit used for the buffer 6 is known, the arithmetic processing unit 5 uses the following equation (6): The voltage value of the voltage V3 can be calculated from the voltage value of the voltage V2.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 したがって、演算処理部5は、少なくとも電圧V1の電圧値及び電圧V2の電圧値を用いて、対象電圧Vmを演算することができる。ゆえに、本実施形態の電圧測定装置1は、電圧測定部4Cを備えていなくても構わない。 Therefore, the arithmetic processing unit 5 can calculate the target voltage Vm using at least the voltage value of the voltage V1 and the voltage value of the voltage V2. Therefore, the voltage measuring apparatus 1 of the present embodiment may not include the voltage measuring unit 4C.
 ここで、バッファ6がボルテージフォロワ回路で構成される場合と、バッファ6が反転増幅回路で構成される場合とで、それぞれ異なる利点がある。ボルテージフォロワ回路は、オペアンプの出力端子がオペアンプの反転入力端子に電気的かつ直接に接続されるため、オペアンプの入力端子と出力端子との間に帰還抵抗などを接続する反転増幅回路に比較して、増幅度αの誤差が低減される。ゆえに、ボルテージフォロワ回路がバッファ6に用いられる場合、反転増幅回路がバッファ6に用いられる場合と比較して、電圧V2から電圧V3を演算する際の精度の向上を図ることができる。 Here, there are different advantages depending on whether the buffer 6 is configured by a voltage follower circuit or when the buffer 6 is configured by an inverting amplifier circuit. In the voltage follower circuit, since the output terminal of the operational amplifier is electrically and directly connected to the inverting input terminal of the operational amplifier, the voltage follower circuit is compared with the inverting amplification circuit in which a feedback resistor is connected between the input terminal and the output terminal of the operational amplifier. The error of the amplification degree α is reduced. Therefore, when the voltage follower circuit is used for the buffer 6, the accuracy in calculating the voltage V3 from the voltage V2 can be improved as compared with the case where the inverting amplifier circuit is used for the buffer 6.
 一方、反転増幅回路がバッファ6に用いられる場合は、ボルテージフォロワ回路及び非反転増幅回路がバッファ6に用いられる場合と比較して、対象電圧Vmの測定範囲の上限(最大値)を高くすることができる。つまり、反転増幅回路の出力の極性が反転し、数3の式の右辺の第2項の符号がマイナスとなるので、電圧V1が電圧V2よりも低くなる。ゆえに、対象電圧Vmの測定範囲の上限は、電圧V2を測定する電圧測定部4Bの測定範囲の上限によって決まる。電圧測定部4Bの測定範囲の上限値Vx2により、対象電圧Vmの測定範囲の上限値Vmaxは、数1の式から、Vmax=Vx2/βで表される。 On the other hand, when the inverting amplifier circuit is used for the buffer 6, the upper limit (maximum value) of the measurement range of the target voltage Vm is made higher than when the voltage follower circuit and the non-inverting amplifier circuit are used for the buffer 6. Can do. That is, the polarity of the output of the inverting amplifier circuit is inverted, and the sign of the second term on the right side of Equation 3 is negative, so that the voltage V1 is lower than the voltage V2. Therefore, the upper limit of the measurement range of the target voltage Vm is determined by the upper limit of the measurement range of the voltage measurement unit 4B that measures the voltage V2. From the upper limit value Vx2 of the measurement range of the voltage measurement unit 4B, the upper limit value Vmax of the measurement range of the target voltage Vm is expressed by Vmax = Vx2 / β from the equation (1).
 バッファ6がボルテージフォロワ回路又は非反転増幅回路の場合、電圧V1が電圧V2よりも高くなる。ゆえに、対象電圧Vmの測定範囲の上限は、電圧V1を測定する電圧測定部4Aの測定範囲の上限によって決まる。電圧測定部4Aの測定範囲の上限値Vx1により、対象電圧Vmの測定範囲の上限値Vmaxは、数2の式と数6の式から、Vmax=Vx1/{(1+α)×β}で表され、反転増幅回路がバッファ6に用いられる場合よりも低くなる。 When the buffer 6 is a voltage follower circuit or a non-inverting amplifier circuit, the voltage V1 is higher than the voltage V2. Therefore, the upper limit of the measurement range of the target voltage Vm is determined by the upper limit of the measurement range of the voltage measurement unit 4A that measures the voltage V1. Based on the upper limit value Vx1 of the measurement range of the voltage measuring unit 4A, the upper limit value Vmax of the measurement range of the target voltage Vm is expressed by Vmax = Vx1 / {(1 + α) × β} from the formulas 2 and 6. This is lower than when the inverting amplifier circuit is used for the buffer 6.
 上述のように本実施形態の電圧測定装置1は、導体11に対象電圧Vmが印加されている状態において、電圧測定部4A及び電圧測定部4Bで電圧V1及び電圧V2をそれぞれ測定する。そして、演算処理部5は、電圧V1及び電圧V2を用いて、対象電圧Vmを演算する。したがって、本実施形態の電圧測定装置1は、従来例のように交流試験電圧を導体11に印加した状態で電圧V1及び電圧V2を測定する必要がない。そのため、本実施形態の電圧測定装置1は、交流試験電圧を発生する構成が不要であるから、従来よりも小型化が図り易くなる。 As described above, the voltage measuring device 1 of the present embodiment measures the voltage V1 and the voltage V2 by the voltage measuring unit 4A and the voltage measuring unit 4B, respectively, in a state where the target voltage Vm is applied to the conductor 11. Then, the arithmetic processing unit 5 calculates the target voltage Vm using the voltage V1 and the voltage V2. Therefore, the voltage measuring apparatus 1 of this embodiment does not need to measure the voltage V1 and the voltage V2 in a state where the AC test voltage is applied to the conductor 11 as in the conventional example. For this reason, the voltage measuring apparatus 1 according to the present embodiment does not require a configuration for generating an AC test voltage, and thus can be more easily reduced in size than the conventional one.
 また、本実施形態の電圧測定装置1では、演算処理部5が、電圧V1及び電圧V2に加えて、基準電位1Rとコンデンサ3Aの端子31Aの電位との電位差である電圧V3を用いて、対象電圧Vmを演算するように構成される。なお、電圧V3は、演算処理部5が電圧V2から演算するようにしてもよいし、電圧測定部4Cで測定されるようにしてもよい。 Further, in the voltage measuring apparatus 1 of the present embodiment, the arithmetic processing unit 5 uses the voltage V3 that is a potential difference between the reference potential 1R and the potential of the terminal 31A of the capacitor 3A in addition to the voltage V1 and the voltage V2. It is configured to calculate the voltage Vm. The voltage V3 may be calculated by the calculation processing unit 5 from the voltage V2, or may be measured by the voltage measurement unit 4C.
 さらに、本実施形態の電圧測定装置1において、コンデンサ3A及びコンデンサ3Bは、コンデンサ3Aの容量値Cin1と結合容量20Aの容量値Cs1の比率β1と、コンデンサ3Bの容量値Cin2と結合容量20Bの容量値Cs2の比率β2とが等しくなるように構成されることが好ましい。特に、コンデンサ3A及びコンデンサ3Bは、容量値Cin1、Cin2を互いに等しくするように構成されることが好ましい。電極2A及び電極2Bは、結合容量20Aの容量値Cs1と結合容量20Bの容量値Cs2を等しくするように構成されることが好ましい。 Further, in the voltage measuring apparatus 1 of the present embodiment, the capacitor 3A and the capacitor 3B are composed of a ratio β1 of the capacitance value Cin1 of the capacitor 3A and the capacitance value Cs1 of the coupling capacitor 20A, and the capacitance of the capacitor 3B and the capacitance value Cin2 It is preferable that the ratio β2 of the value Cs2 is configured to be equal. In particular, the capacitor 3A and the capacitor 3B are preferably configured so that the capacitance values Cin1 and Cin2 are equal to each other. The electrodes 2A and 2B are preferably configured to make the capacitance value Cs1 of the coupling capacitor 20A equal to the capacitance value Cs2 of the coupling capacitor 20B.
 本実施形態の電圧測定装置1が上述のように構成されれば、対象電圧Vmを演算する演算式を簡略化することができるので、演算処理部5の処理時間を短縮し、かつ対象電圧Vmの測定精度の向上を図ることができる。 If the voltage measuring device 1 of the present embodiment is configured as described above, an arithmetic expression for calculating the target voltage Vm can be simplified, so that the processing time of the arithmetic processing unit 5 is shortened and the target voltage Vm is calculated. The measurement accuracy can be improved.
 上述のように、電圧測定装置1は導体11の電位と基準電位1Rとの電位差である対象電圧Vmを測定するように構成されている。電圧測定装置1は、電極2A、2Bとコンデンサ3A、3Bと電圧測定部4A、4Bと演算処理部5とを備える。電極2Aは、間隔を空けて導体11と対向し、かつ導体11との間に結合容量20Aを生じるように構成されている。電極2Bは、間隔を空けて導体11と対向し、かつ導体11との間に結合容量20Bを生じるように構成されている。コンデンサ3Aは、電極2Aに電気的に接続された一方の端子30Aと、電極2Bに電気的に接続された他方の端子31Aとを有する。コンデンサ3Bは、電極2Bに電気的に接続された一方の端子30Bと、基準電位1Rに電気的に接続されるように構成された他方の端子31Bとを有する。電圧測定部4Aは、電極2Aの電位と基準電位1Rとの電位差である電圧V1を測定するように構成されている。電圧測定部4Bは、電極2Bの電位と基準電位1Rとの電位差である電圧V2を測定するように構成されている。演算処理部5は、電圧V1、V2を用いて対象電圧Vmを演算するように構成されている。 As described above, the voltage measuring device 1 is configured to measure the target voltage Vm that is the potential difference between the potential of the conductor 11 and the reference potential 1R. The voltage measuring apparatus 1 includes electrodes 2A and 2B, capacitors 3A and 3B, voltage measuring units 4A and 4B, and an arithmetic processing unit 5. The electrode 2 </ b> A is configured to face the conductor 11 with a space therebetween and to generate a coupling capacitance 20 </ b> A between the conductor 11. The electrode 2B is configured to face the conductor 11 with a space therebetween and to generate a coupling capacitor 20B between the conductor 11 and the electrode 2B. Capacitor 3A has one terminal 30A electrically connected to electrode 2A and the other terminal 31A electrically connected to electrode 2B. Capacitor 3B has one terminal 30B electrically connected to electrode 2B and the other terminal 31B configured to be electrically connected to reference potential 1R. The voltage measuring unit 4A is configured to measure a voltage V1 that is a potential difference between the potential of the electrode 2A and the reference potential 1R. The voltage measuring unit 4B is configured to measure a voltage V2 that is a potential difference between the potential of the electrode 2B and the reference potential 1R. The arithmetic processing unit 5 is configured to calculate the target voltage Vm using the voltages V1 and V2.
 演算処理部5は、電圧V1、V2と、基準電位1Rとコンデンサ3Aの他方の端子31Aの電位との電位差である電圧V3とを用いて対象電圧Vmを演算するように構成されていてもよい。 The arithmetic processing unit 5 may be configured to calculate the target voltage Vm using the voltages V1 and V2 and the voltage V3 that is a potential difference between the reference potential 1R and the potential of the other terminal 31A of the capacitor 3A. .
 電圧測定装置1は、電圧V3を測定するように構成された電圧測定部4Cをさらに備えていてもよい。 The voltage measuring device 1 may further include a voltage measuring unit 4C configured to measure the voltage V3.
 演算処理部5は、電圧V2から電圧V3を演算するように構成されていてもよい。 The calculation processing unit 5 may be configured to calculate the voltage V3 from the voltage V2.
 コンデンサ3Aの容量値Cin1と結合容量20Aの容量値Cs1の比率は、コンデンサ3Bの容量値Cin2と結合容量20Bの容量値Cs2の比率と等しくてもよい。 The ratio of the capacitance value Cin1 of the capacitor 3A and the capacitance value Cs1 of the coupling capacitor 20A may be equal to the ratio of the capacitance value Cin2 of the capacitor 3B and the capacitance value Cs2 of the coupling capacitor 20B.
 コンデンサ3Aの容量値Cin1はコンデンサ3Bの容量値Cin2に等しくてもよい。さらに、電極2A、2Bは、結合容量20Aの容量値Cs1が結合容量20Bの容量値Cs2と等しくなるように構成されていてもよい。 The capacitance value Cin1 of the capacitor 3A may be equal to the capacitance value Cin2 of the capacitor 3B. Furthermore, the electrodes 2A and 2B may be configured such that the capacitance value Cs1 of the coupling capacitor 20A is equal to the capacitance value Cs2 of the coupling capacitor 20B.
 電圧測定装置1は、電極2Bと電気的に接続された入力端子6Aと、コンデンサ3Aの他方の端子31Aと電気的に接続された出力端子6Bとを有するボルテージフォロワ回路であるバッファ6をさらに備えていてもよい。 The voltage measuring apparatus 1 further includes a buffer 6 that is a voltage follower circuit having an input terminal 6A electrically connected to the electrode 2B and an output terminal 6B electrically connected to the other terminal 31A of the capacitor 3A. It may be.
 電圧測定装置1は、電極2Bと電気的に接続された入力端子6Aと、コンデンサ3Aの他方の端子31Aと電気的に接続された出力端子6Bとを有する反転増幅回路であるバッファ6をさらに備えていてもよい。 The voltage measuring apparatus 1 further includes a buffer 6 that is an inverting amplifier circuit having an input terminal 6A electrically connected to the electrode 2B and an output terminal 6B electrically connected to the other terminal 31A of the capacitor 3A. It may be.
 (実施形態2)
 図4は実施形態2に係る電圧測定装置1Aの等価回路を示す回路図である。図4において、図1から図3に示す実施形態1にかかる電圧測定装置1と同じ部分には同じ参照番号を付す。実施形態2に係る電圧測定装置1Aは、図4に示すように、制御部8と切替部9をさらに備える点が実施形態1の電圧測定装置1と相違する。ただし、制御部8と切替部9以外の回路構成は、実施形態1の電圧測定装置1の回路構成と共通する。
(Embodiment 2)
FIG. 4 is a circuit diagram showing an equivalent circuit of the voltage measuring apparatus 1A according to the second embodiment. In FIG. 4, the same reference numerals are assigned to the same parts as those of the voltage measuring apparatus 1 according to the first embodiment shown in FIGS. As shown in FIG. 4, the voltage measurement device 1 </ b> A according to the second embodiment is different from the voltage measurement device 1 of the first embodiment in that it further includes a control unit 8 and a switching unit 9. However, the circuit configuration other than the control unit 8 and the switching unit 9 is common to the circuit configuration of the voltage measuring apparatus 1 of the first embodiment.
 切替部9は、例えば、1つの共通接点90と、2つの切替接点91、92を有するアナログスイッチからなる。ただし、切替部9は、アナログスイッチに限定されず、例えば、電磁リレーなどのメカニカルリレーや半導体リレーなどで構成されてもよい。共通接点90は、コンデンサ3Aの端子31Aと電気的に接続される。切替接点91は、バッファ6の出力端子6Bと電気的に接続されている。切替接点92は、基準電位1Rと電気的に接続(接地)されている。切替部9は、共通接点90を切替接点91に接続して切替接点92から切断する第1の接続状態と、共通接点90を切替接点92に接続して切替接点91から切断する第2の接続状態とを切替可能に構成される。切替部9は切替接点91、92のうちの1つを選択的に共通接点90に接続することができる。 The switching unit 9 includes, for example, an analog switch having one common contact 90 and two switching contacts 91 and 92. However, the switching unit 9 is not limited to an analog switch, and may be configured by, for example, a mechanical relay such as an electromagnetic relay or a semiconductor relay. The common contact 90 is electrically connected to the terminal 31A of the capacitor 3A. The switching contact 91 is electrically connected to the output terminal 6 </ b> B of the buffer 6. The switching contact 92 is electrically connected (grounded) to the reference potential 1R. The switching unit 9 connects the common contact 90 to the switching contact 91 and disconnects from the switching contact 92, and the second connection connects the common contact 90 to the switching contact 92 and disconnects from the switching contact 91. The state can be switched. The switching unit 9 can selectively connect one of the switching contacts 91 and 92 to the common contact 90.
 制御部8は、演算処理部5からの指示を受けて切替部9を制御し、切替部9を第1の接続状態と第2の接続状態に相互に切り替えるように構成される。なお、制御部8は、演算処理部5を構成するマイクロコントローラで構成されてもよいし、演算処理部5とは独立した論理回路などで構成されてもよい。また、図4に示す等価回路では、出力部7が制御部8を介して演算処理部5に接続されているが、出力部7が演算処理部5に直接接続されても構わない。 The control unit 8 is configured to control the switching unit 9 in response to an instruction from the arithmetic processing unit 5 and to switch the switching unit 9 between the first connection state and the second connection state. The control unit 8 may be configured by a microcontroller that constitutes the arithmetic processing unit 5, or may be configured by a logic circuit independent of the arithmetic processing unit 5. In the equivalent circuit shown in FIG. 4, the output unit 7 is connected to the arithmetic processing unit 5 via the control unit 8, but the output unit 7 may be directly connected to the arithmetic processing unit 5.
 次に、実施形態2に係る電圧測定装置1Aの動作を説明する。図5は電圧測定装置1Aの動作を示すフローチャートであり、演算処理部5の処理を示している。 Next, the operation of the voltage measuring apparatus 1A according to the second embodiment will be described. FIG. 5 is a flowchart showing the operation of the voltage measuring apparatus 1 </ b> A and shows the processing of the arithmetic processing unit 5.
 まず、演算処理部5は、制御部8に指示して切替部9を第2の接続状態に切り替える(ステップS1)。そして、第2の接続状態において、演算処理部5は、電圧測定部4A及び電圧測定部4Bに電圧V1及び電圧V2をそれぞれ測定させ、電圧V1及び電圧V2の電圧値を取り込む(ステップS2)。なお、演算処理部5は、取り込んだ電圧値をメモリに記憶する。 First, the arithmetic processing unit 5 instructs the control unit 8 to switch the switching unit 9 to the second connection state (step S1). In the second connection state, the arithmetic processing unit 5 causes the voltage measurement unit 4A and the voltage measurement unit 4B to measure the voltage V1 and the voltage V2, respectively, and takes in the voltage values of the voltage V1 and the voltage V2 (step S2). The arithmetic processing unit 5 stores the acquired voltage value in a memory.
 続いて、演算処理部5は、制御部8に指示して切替部9を第1の接続状態に切り替える(ステップS3)。そして、第1の接続状態において、演算処理部5は、電圧測定部4A、電圧測定部4B及び電圧測定部4Cに電圧V1、電圧V2及び電圧V3をそれぞれ測定させ、測定した電圧V1、電圧V2及び電圧V3の電圧値を取り込む(ステップS4)。なお、演算処理部5は、取り込んだ電圧値をメモリに記憶する。 Subsequently, the arithmetic processing unit 5 instructs the control unit 8 to switch the switching unit 9 to the first connection state (step S3). In the first connection state, the arithmetic processing unit 5 causes the voltage measurement unit 4A, the voltage measurement unit 4B, and the voltage measurement unit 4C to measure the voltage V1, the voltage V2, and the voltage V3, respectively, and the measured voltage V1 and voltage V2 are measured. And the voltage value of voltage V3 is taken in (step S4). The arithmetic processing unit 5 stores the acquired voltage value in a memory.
 演算処理部5は、メモリに記憶した電圧値を読み出し、以下の演算によって、対象電圧Vmを算出する(ステップS5)。 The calculation processing unit 5 reads the voltage value stored in the memory and calculates the target voltage Vm by the following calculation (step S5).
 第2の接続状態における対象電圧Vmの電圧値Vmb、電圧V1の電圧値V1b、電圧V2の電圧値V2bは以下の数7の式及び数8の式を満たす。 The voltage value Vmb of the target voltage Vm, the voltage value V1b of the voltage V1, and the voltage value V2b of the voltage V2 in the second connection state satisfy the following Expression 7 and Expression 8.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 数7の式及び数8の式からVmbを消去すると数9の式が得られる。 Eq. 9 is obtained by eliminating Vmb from Eq. 7 and Eq.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 一方、第1の接続状態における対象電圧Vmの電圧値Vma、電圧V1の電圧値V1a、電圧V2の電圧値V2aは、以下の数10の式及び数11の式を満たす。 On the other hand, the voltage value Vma of the target voltage Vm, the voltage value V1a of the voltage V1, and the voltage value V2a of the voltage V2 in the first connection state satisfy the following Expression 10 and Expression 11.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 数9の式を数11の式に代入して整理すると数12の式が得られる。 If the formula of formula 9 is substituted into the formula of formula 11 and rearranged, the formula of formula 12 is obtained.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 数12の式を数10の式に代入して整理すると数13の式が得られる。 When the formula of formula 12 is substituted into the formula of formula 10 and rearranged, the formula of formula 13 is obtained.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 したがって、第1の接続状態における対象電圧Vmの電圧値Vma、並びに第2の接続状態における対象電圧Vmの電圧値Vmbは、数13の式を数11の式及び数7の式に代入して整理した、以下の数14の式、数15の式からそれぞれ求められる。 Therefore, the voltage value Vma of the target voltage Vm in the first connection state and the voltage value Vmb of the target voltage Vm in the second connection state are obtained by substituting the formula 13 into the formula 11 and the formula 7. They are obtained from the following formulas 14 and 15, respectively.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 数14の式及び数15の式には、コンデンサ3Aの容量値Cin1やコンデンサ3Bの容量値Cin2、並びに結合容量20Aの容量値Cs1や結合容量20Bの容量値Cs2が含まれず、電圧V1、電圧V2及び電圧V3の電圧値のみが含まれる。したがって、演算処理部5が上記数14の式及び数15の式から対象電圧Vmの電圧値Vma、Vmbを演算することにより、β1=β2の関係を満足することが困難である場合においても、対象電圧Vmの測定精度の低下を抑制することができる。ただし、実施形態2に係る電圧測定装置1Aにおいても、電圧V2の電圧値にバッファ6の増幅度αを乗算した値を、電圧V3の電圧値に用いれば、電圧測定部4Cを備えなくともよい。 The expressions 14 and 15 do not include the capacitance value Cin1 of the capacitor 3A, the capacitance value Cin2 of the capacitor 3B, the capacitance value Cs1 of the coupling capacitor 20A, and the capacitance value Cs2 of the coupling capacitor 20B. Only the voltage values of V2 and V3 are included. Therefore, even when it is difficult for the arithmetic processing unit 5 to satisfy the relationship of β1 = β2 by calculating the voltage values Vma and Vmb of the target voltage Vm from the formulas (14) and (15), A decrease in measurement accuracy of the target voltage Vm can be suppressed. However, even in the voltage measuring apparatus 1A according to the second embodiment, if the value obtained by multiplying the voltage value of the voltage V2 by the amplification degree α of the buffer 6 is used as the voltage value of the voltage V3, the voltage measuring unit 4C may not be provided. .
 上述のように、電圧測定装置1Aは、コンデンサ3Aの他方の端子31Aをコンデンサ3Bと電気的に接続する第1の接続状態と、コンデンサ3Aの他方の端子31Aをコンデンサ3Bから切り離して基準電位1Rと電気的に接続する第2の接続状態とを切り替えるように構成された切替部9をさらに備える。演算処理部5は、少なくとも、第1の接続状態における電圧V1、V2と、第2の接続状態における電圧V1、V2とを用いて、対象電圧Vmを演算するように構成されている。 As described above, the voltage measuring apparatus 1A includes the first connection state in which the other terminal 31A of the capacitor 3A is electrically connected to the capacitor 3B, and the other terminal 31A of the capacitor 3A is disconnected from the capacitor 3B. Is further provided with a switching unit 9 configured to switch between the second connection state and the second connection state. The arithmetic processing unit 5 is configured to calculate the target voltage Vm using at least the voltages V1 and V2 in the first connection state and the voltages V1 and V2 in the second connection state.
 (実施形態3)
 図6は実施形態3に係る電圧測定装置1Bのコンデンサ3A、3Bの周囲の等価回路である。図6において、図1に示す実施形態1に係る電圧測定装置1と同じ部分には同じ参照番号を付す。電圧測定装置1Bは実施形態1にかかる電圧測定装置1と共通の回路構成を有する。
(Embodiment 3)
FIG. 6 is an equivalent circuit around the capacitors 3A and 3B of the voltage measuring apparatus 1B according to the third embodiment. In FIG. 6, the same reference numerals are assigned to the same parts as those of the voltage measuring apparatus 1 according to the first embodiment shown in FIG. The voltage measuring device 1B has a circuit configuration common to the voltage measuring device 1 according to the first embodiment.
 実施形態1の電圧測定装置1において、電極2A及び電極2Bとグランドとの間、若しくは、電極2A及び電極2Bを本体100に接続する配線とグランドとの間に浮遊容量が生じることがある(図2参照)。実施形態3に係る電圧測定装置1Bでは、これらの浮遊容量を考慮する。電圧測定装置1Bでは、電極2A又は電極2Aから本体100への配線と基準電位1Rとの間に浮遊容量21Aが生じている。同様に、電極2B又は電極2Bから本体100への配線と基準電位1Rとの間に浮遊容量21Bが生じている(図6参照)。浮遊容量21A、21Bが、コンデンサ3Aやコンデンサ3Bの容量値、並びに結合容量20Aや結合容量20Bの容量値に対して無視できない値を持つ場合、実施形態1及び実施形態2で説明した演算では、測定精度の低下を招く。 In the voltage measuring apparatus 1 of the first embodiment, stray capacitance may occur between the electrodes 2A and 2B and the ground, or between the wiring connecting the electrodes 2A and 2B to the main body 100 and the ground (FIG. 2). In the voltage measurement apparatus 1B according to the third embodiment, these stray capacitances are taken into consideration. In the voltage measuring apparatus 1B, the stray capacitance 21A is generated between the electrode 2A or the wiring from the electrode 2A to the main body 100 and the reference potential 1R. Similarly, a stray capacitance 21B is generated between the electrode 2B or the wiring from the electrode 2B to the main body 100 and the reference potential 1R (see FIG. 6). When the stray capacitances 21A and 21B have non-negligible values with respect to the capacitance values of the capacitors 3A and 3B and the capacitance values of the coupling capacitance 20A and the coupling capacitance 20B, in the calculations described in the first and second embodiments, Measurement accuracy is reduced.
 そこで、実施形態3に係る電圧測定装置1Bは、浮遊容量21A及び浮遊容量21Bを考慮して対象電圧Vmを演算することにより、測定精度の低下を抑制するように構成される。 Therefore, the voltage measurement apparatus 1B according to the third embodiment is configured to suppress a decrease in measurement accuracy by calculating the target voltage Vm in consideration of the stray capacitance 21A and the stray capacitance 21B.
 次に、演算処理部5における対象電圧Vmの演算処理について、詳しく説明する。ただし、以下の説明においては、浮遊容量21Aは容量値Cf1を有し、浮遊容量21Bは容量値Cf2を有する。実施形態3では、浮遊容量21Aの容量値Cf1と、浮遊容量21Bの容量値Cf2とが等しいと仮定する。 Next, the calculation processing of the target voltage Vm in the calculation processing unit 5 will be described in detail. However, in the following description, the stray capacitance 21A has a capacitance value Cf1, and the stray capacitance 21B has a capacitance value Cf2. In the third embodiment, it is assumed that the capacitance value Cf1 of the stray capacitance 21A is equal to the capacitance value Cf2 of the stray capacitance 21B.
 図6は、実施形態3に係る電圧測定装置1Bの等価回路のうち、電極2A、電極2B、コンデンサ3A、コンデンサ3B、結合容量20A、20B、浮遊容量21A、21Bのみを含む部分を示している。図6の等価回路から判るように、対象電圧Vmは、コンデンサ3Bと浮遊容量21Bの並列回路と結合容量20Bとで分圧されるので、その分圧比βmは、下記の数16の式で表される。 FIG. 6 shows a portion including only the electrode 2A, the electrode 2B, the capacitor 3A, the capacitor 3B, the coupling capacitors 20A and 20B, and the stray capacitors 21A and 21B in the equivalent circuit of the voltage measuring apparatus 1B according to the third embodiment. . As can be seen from the equivalent circuit of FIG. 6, the target voltage Vm is divided by the parallel circuit of the capacitor 3B and the stray capacitance 21B and the coupling capacitance 20B, and the voltage division ratio βm is expressed by the following equation (16). Is done.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 電圧V3は、結合容量20Aと浮遊容量21Aの並列回路とコンデンサ3Aとで分圧されるので、その分圧比を(1-βr)とすると、βrは、下記の数17の式で表される。 Since the voltage V3 is divided by the parallel circuit of the coupling capacitance 20A and the stray capacitance 21A and the capacitor 3A, if the voltage division ratio is (1-βr), βr is expressed by the following equation (17). .
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 また、電圧V1及び電圧V2は、上記分圧比βm、βrを用いて、下記の数18の式、数19の式のように表される。 Further, the voltage V1 and the voltage V2 are expressed by the following equations 18 and 19 using the voltage dividing ratios βm and βr.
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 さらに、数18の式から数19の式を減算して整理すると、下記の数20の式が得られる。 Further, subtracting the formula 19 from the formula 18 and rearranging the formula yields the following formula 20.
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
 上記数20の式より、下記の数21の式が得られる。 From the above equation (20), the following equation (21) is obtained.
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
 分圧比βmは、数16の式及び数17の式からCs1を消去し、かつ数21の式を代入することにより、下記の数22の式のように表される。 The partial pressure ratio βm is expressed as the following formula 22 by deleting Cs1 from the formula 16 and the formula 17 and substituting the formula 21.
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
 さらに、数19の式及び数22の式より、対象電圧Vmは、下記の数23の式より求まる。 Further, the target voltage Vm is obtained from the following equation (23) from the equation (19) and the equation (22).
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
 上記数23の式において、浮遊容量21Aの容量値Cf1さえ判れば、演算処理部5は、対象電圧Vmを算出することができる。 In the above equation 23, the arithmetic processing unit 5 can calculate the target voltage Vm as long as the capacitance value Cf1 of the stray capacitance 21A is known.
 そこで、実施形態3に係る電圧測定装置1Bにおいて、演算処理部5を構成するマイクロコントローラのメモリに、容量値Cf1又は容量値Cf2を算出するための処理を行う補正プログラムを記憶しておくことが好ましい。例えば、電圧測定装置1Bの製造工場において、電圧値(対象電圧Vm)が既知である交流の基準電圧を導体11に印加した状態で、演算処理部5のマイクロコントローラに補正プログラムを実行させる。そして、演算処理部5は、測定した電圧V1の電圧値、電圧V2の電圧値、電圧V3の電圧値及びコンデンサ3Aの容量値Cin1と、対象電圧Vmの電圧値とから、数23の式を用いて、容量値Cf1を算出する。演算処理部5のマイクロコントローラは、算出した容量値Cf1をマイクロコントローラのメモリに格納した後、補正プログラムの実行を終了する。 Therefore, in the voltage measurement device 1B according to the third embodiment, a correction program for performing processing for calculating the capacitance value Cf1 or the capacitance value Cf2 may be stored in the memory of the microcontroller that constitutes the arithmetic processing unit 5. preferable. For example, in the manufacturing factory of the voltage measuring device 1B, the correction program is executed by the microcontroller of the arithmetic processing unit 5 in a state where an AC reference voltage having a known voltage value (target voltage Vm) is applied to the conductor 11. Then, the arithmetic processing unit 5 calculates Equation 23 from the measured voltage value of the voltage V1, the voltage value of the voltage V2, the voltage value of the voltage V3, the capacitance value Cin1 of the capacitor 3A, and the voltage value of the target voltage Vm. Using this, the capacitance value Cf1 is calculated. The microcontroller of the arithmetic processing unit 5 stores the calculated capacitance value Cf1 in the memory of the microcontroller, and then ends the execution of the correction program.
 実施形態3に係る電圧測定装置1Bは、上述のようにして、あらかじめ浮遊容量21Aの容量値Cf1を算出しておくことにより、浮遊容量21A及び浮遊容量21Bが存在する場合でも、算出された容量値Cf1と数23の式とに基づき対象電圧Vmを高精度に測定することができ、測定精度の低下を抑制することができる。 The voltage measurement device 1B according to the third embodiment calculates the capacitance value Cf1 of the stray capacitance 21A in advance as described above, so that the calculated capacitance can be obtained even when the stray capacitance 21A and the stray capacitance 21B exist. The target voltage Vm can be measured with high accuracy based on the value Cf1 and the equation of Equation 23, and a decrease in measurement accuracy can be suppressed.
 上述のように、演算処理部5は、電極2Aと基準電位1Rとの間に生じる浮遊容量21Aの容量値Cf1と、電極2Bと基準電位1Rとの間に生じる浮遊容量21Bの容量値Cf2とを用いて、演算された対象電圧Vmを補正するように構成されている。 As described above, the arithmetic processing unit 5 includes the capacitance value Cf1 of the stray capacitance 21A generated between the electrode 2A and the reference potential 1R, and the capacitance value Cf2 of the stray capacitance 21B generated between the electrode 2B and the reference potential 1R. Is used to correct the calculated target voltage Vm.
 演算処理部5は、既知の電圧が導体に印加されている状態において、電圧V1、V2と上記既知の電圧とを用いて浮遊容量21A、21Bの容量値Cf1、Cf2を演算するように構成されていてもよい。 The arithmetic processing unit 5 is configured to calculate the capacitance values Cf1 and Cf2 of the stray capacitances 21A and 21B using the voltages V1 and V2 and the known voltage in a state where a known voltage is applied to the conductor. It may be.
 (実施形態4)
 実施形態4に係る電圧測定装置は、実施形態2に係る電圧測定装置1Aと共通の回路構成を有するので、共通の構成要素には同一の符号を付して図示及び説明を省略する。
(Embodiment 4)
Since the voltage measuring device according to the fourth embodiment has a common circuit configuration with the voltage measuring device 1A according to the second embodiment, the same components are denoted by the same reference numerals, and illustration and description thereof are omitted.
 実施形態2の電圧測定装置1Aにおいても、電極2A及び電極2Bとグランドとの間、若しくは、電極2A及び電極2Bを本体100に接続する配線とグランドとの間に浮遊容量21A及び浮遊容量21Bが生じることがある。 Also in the voltage measurement apparatus 1A of the second embodiment, the stray capacitance 21A and the stray capacitance 21B are provided between the electrodes 2A and 2B and the ground, or between the wiring connecting the electrodes 2A and 2B to the main body 100 and the ground. May occur.
 そこで、実施形態4に係る電圧測定装置は、浮遊容量21A及び浮遊容量21Bを考慮して、第1の接続状態における対象電圧Vmの電圧値Vma及び第2の接続状態における対象電圧Vmの電圧値Vmbを演算することにより、測定精度の低下を抑制するように構成される。 Therefore, the voltage measurement device according to the fourth embodiment takes into account the stray capacitance 21A and the stray capacitance 21B, and the voltage value Vma of the target voltage Vm in the first connection state and the voltage value of the target voltage Vm in the second connection state. By calculating Vmb, it is configured to suppress a decrease in measurement accuracy.
 次に、演算処理部5における対象電圧Vmの電圧値Vma、Vmbの演算処理について、詳しく説明する。ただし、以下の説明においては、浮遊容量21Aは容量値Cf1を有し、浮遊容量21Bは容量値Cf2を有する。 Next, the calculation processing of the voltage values Vma and Vmb of the target voltage Vm in the calculation processing unit 5 will be described in detail. However, in the following description, the stray capacitance 21A has a capacitance value Cf1, and the stray capacitance 21B has a capacitance value Cf2.
 分圧比β1mは、下記の数24の式で表される。 The partial pressure ratio β1m is expressed by the following equation (24).
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
 同様に、分圧比β2mは、下記の数25の式で表される。 Similarly, the partial pressure ratio β2m is expressed by the following equation (25).
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
 一方、分圧比βrは、下記の数26の式で表される。 On the other hand, the partial pressure ratio βr is expressed by the following equation (26).
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
 実施形態2で説明したように、第2の接続状態における対象電圧Vmの電圧値Vmb、電圧V1の電圧値V1b、電圧V2の電圧値V2bは、以下の数27の式及び数28の式を満たす。 As described in the second embodiment, the voltage value Vmb of the target voltage Vm, the voltage value V1b of the voltage V1, and the voltage value V2b of the voltage V2 in the second connection state are expressed by the following equations (27) and (28). Fulfill.
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000028
 数27の式及び数28の式から電圧値Vmbを消去すると数29の式が得られる。 When the voltage value Vmb is deleted from the equation (27) and the equation (28), the equation (29) is obtained.
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000029
 一方、第1の接続状態における対象電圧Vmの電圧値Vma、電圧V1の電圧値V1a、電圧V2の電圧値V1bは以下の数30の式及び数31の式を満たす。 On the other hand, the voltage value Vma of the target voltage Vm, the voltage value V1a of the voltage V1, and the voltage value V1b of the voltage V2 in the first connection state satisfy the following Expression 30 and Expression 31.
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000031
Figure JPOXMLDOC01-appb-M000031
 数29の式を数31の式に代入して整理すると数32の式が得られる。 When the formula of formula 29 is substituted into the formula of formula 31 and rearranged, the formula of formula 32 is obtained.
Figure JPOXMLDOC01-appb-M000032
Figure JPOXMLDOC01-appb-M000032
 数32の式を数30の式に代入して整理すると数33の式が得られる。 When the formula of formula 32 is substituted into the formula of formula 30 and rearranged, the formula of formula 33 is obtained.
Figure JPOXMLDOC01-appb-M000033
Figure JPOXMLDOC01-appb-M000033
 分圧比β1mは、数24の式及び数26の式からCs1を消去し、かつ数33の式を代入することにより、下記の数34の式のように表される。 The partial pressure ratio β1m is expressed as the following equation 34 by deleting Cs1 from the equations 24 and 26 and substituting the equation 33.
Figure JPOXMLDOC01-appb-M000034
Figure JPOXMLDOC01-appb-M000034
 したがって、第1の接続状態における対象電圧Vmの電圧値Vmaは、数29の式及び数34の式を数31の式に代入して整理した、下記の数35の式から求められる。 Therefore, the voltage value Vma of the target voltage Vm in the first connection state can be obtained from the following equation 35 obtained by substituting the equation 29 and the equation 34 into the equation 31.
Figure JPOXMLDOC01-appb-M000035
Figure JPOXMLDOC01-appb-M000035
 同様に、第2の接続状態における対象電圧Vmの電圧値Vmbは、数27の式に数34の式を代入して整理した、下記の数36の式から求められる。 Similarly, the voltage value Vmb of the target voltage Vm in the second connection state can be obtained from the following equation 36 obtained by substituting the equation 34 into the equation 27.
Figure JPOXMLDOC01-appb-M000036
Figure JPOXMLDOC01-appb-M000036
 上記数35の式及び数36の式において、浮遊容量21Aの容量値Cf1さえ判れば、演算処理部5は、対象電圧Vmの電圧値Vma、Vmbをそれぞれ算出することができる。ただし、実施形態3と同様に、演算処理部5が、補正プログラムを実行することによって、あらかじめ浮遊容量21Aの容量値Cf1を算出しておくことが好ましい。 If the capacitance value Cf1 of the stray capacitance 21A is found in the equation 35 and the equation 36, the arithmetic processing unit 5 can calculate the voltage values Vma and Vmb of the target voltage Vm. However, as in the third embodiment, it is preferable that the arithmetic processing unit 5 calculates the capacitance value Cf1 of the stray capacitance 21A in advance by executing the correction program.
 (実施形態5)
 図7は実施形態5に係る電圧測定装置1Cの等価回路を示す回路図である。図7において、図1と図3に示す実施形態1にかかる電圧測定装置1と同じ部分には同じ参照番号を付す。電圧測定装置1Cは、図1と図3に示す電圧測定装置1のバッファ6の代わりに、電極2Bと電気的に接続された入力端子106Aと、コンデンサ3Aの他方の端子31Aと電気的に接続された出力端子106Bとを有する可変利得増幅回路106を備える。可変利得増幅回路106は可変の増幅率αVを有する。電圧測定装置1Cは、可変利得増幅回路106の増幅率αVを制御する制御部108をさらに備える。
(Embodiment 5)
FIG. 7 is a circuit diagram showing an equivalent circuit of the voltage measuring apparatus 1C according to the fifth embodiment. In FIG. 7, the same reference numerals are assigned to the same parts as those of the voltage measuring apparatus 1 according to the first embodiment shown in FIGS. The voltage measuring device 1C is electrically connected to the input terminal 106A electrically connected to the electrode 2B and the other terminal 31A of the capacitor 3A instead of the buffer 6 of the voltage measuring device 1 shown in FIGS. And a variable gain amplifier circuit 106 having an output terminal 106B. The variable gain amplifier circuit 106 has a variable amplification factor αV. Voltage measurement apparatus 1 </ b> C further includes a control unit 108 that controls amplification factor αV of variable gain amplification circuit 106.
 図8は電圧測定装置1Cの動作を示すフローチャートである。制御部108は可変利得増幅回路106の増幅率αVを増幅率αAに設定する(ステップS101)。電圧測定部4A、4B、4Cは、可変利得増幅回路106の増幅率αVが増幅率αAであるときの電圧V1、V2、V3の電圧値V1A、V2A、V3Aを測定する(ステップS102)。制御部108は可変利得増幅回路106の増幅率αVを増幅率αBに設定する(ステップS103)。電圧測定部4A、4B、4Cは、可変利得増幅回路106の増幅率αVが増幅率αBであるときの電圧V1、V2、V3の電圧値V1B、V2B、V3Bを測定する(ステップS104)。これにより、演算処理部5は電圧V1の電圧値V1A、V1Bと、電圧V2の電圧値V2A、V2Bと、電圧V3の電圧値V3A、V3Bとを得る。演算処理部5は、電圧V1の電圧値V1A、V1Bと、電圧V2の電圧値V2A、V2Bと、電圧V3の電圧値V3A、V3Bとに基づき、対象電圧Vmを算出する(ステップS105)。 FIG. 8 is a flowchart showing the operation of the voltage measuring apparatus 1C. The control unit 108 sets the amplification factor αV of the variable gain amplifier circuit 106 to the amplification factor αA (step S101). The voltage measuring units 4A, 4B, and 4C measure the voltage values V1A, V2A, and V3A of the voltages V1, V2, and V3 when the amplification factor αV of the variable gain amplifier circuit 106 is the amplification factor αA (step S102). The control unit 108 sets the gain αV of the variable gain amplifier circuit 106 to the gain αB (step S103). The voltage measuring units 4A, 4B, and 4C measure the voltage values V1B, V2B, and V3B of the voltages V1, V2, and V3 when the amplification factor αV of the variable gain amplifier circuit 106 is the amplification factor αB (step S104). Thereby, the arithmetic processing unit 5 obtains the voltage values V1A and V1B of the voltage V1, the voltage values V2A and V2B of the voltage V2, and the voltage values V3A and V3B of the voltage V3. The arithmetic processing unit 5 calculates the target voltage Vm based on the voltage values V1A and V1B of the voltage V1, the voltage values V2A and V2B of the voltage V2, and the voltage values V3A and V3B of the voltage V3 (step S105).
 なお、電圧測定装置1Cは電圧測定部4Cを備えていなくてもよい。この場合には、電圧測定装置1Cは、電圧V2の電圧値V1A、V2Bに増幅率αA、αBをそれぞれ乗算して電圧V3の電圧値V3A、V3Bを得ることができる。 Note that the voltage measuring apparatus 1C may not include the voltage measuring unit 4C. In this case, the voltage measuring apparatus 1C can obtain the voltage values V3A and V3B of the voltage V3 by multiplying the voltage values V1A and V2B of the voltage V2 by the amplification factors αA and αB, respectively.
 ステップS105において演算処理部5が対象電圧Vmを算出する動作を以下に説明する。 The operation in which the arithmetic processing unit 5 calculates the target voltage Vm in step S105 will be described below.
 コンデンサ3A、3Bの容量値Cin1、Cin2と、結合容量20A、20Bの容量値Cs1、Cs2を用いて表される分圧比β1、β2により、電圧V1の電圧値V1A、V1Bと、電圧V2の電圧値V2A、V2Bは数37から数40の式で表される。 The voltage values V1A and V1B of the voltage V1 and the voltage V2 by the voltage dividing ratios β1 and β2 expressed using the capacitance values Cin1 and Cin2 of the capacitors 3A and 3B and the capacitance values Cs1 and Cs2 of the coupling capacitors 20A and 20B. Values V2A and V2B are expressed by equations 37 to 40.
Figure JPOXMLDOC01-appb-M000037
Figure JPOXMLDOC01-appb-M000037
Figure JPOXMLDOC01-appb-M000038
Figure JPOXMLDOC01-appb-M000038
Figure JPOXMLDOC01-appb-M000039
Figure JPOXMLDOC01-appb-M000039
Figure JPOXMLDOC01-appb-M000040
Figure JPOXMLDOC01-appb-M000040
 数38の式よりVmA=V2A/β2が成り立つので、数37の式に代入すると以下のように電圧値V1Aが表される。 Since VmA = V2A / β2 is established from the equation (38), the voltage value V1A is expressed as follows when substituted into the equation (37).
Figure JPOXMLDOC01-appb-M000041
Figure JPOXMLDOC01-appb-M000041
 数41の式をβ1について整理すると数42の式が得られる。 If the formula of formula 41 is arranged with respect to β1, the formula of formula 42 is obtained.
Figure JPOXMLDOC01-appb-M000042
Figure JPOXMLDOC01-appb-M000042
 数39と数40の式より同様に以下の式が得られる。 Similarly, the following formula is obtained from the formulas 39 and 40.
Figure JPOXMLDOC01-appb-M000043
Figure JPOXMLDOC01-appb-M000043
 数42と数43の式よりβ1を消去しβ2について整理すると以下の数44の式が得られる。 If β1 is deleted from the equations 42 and 43 and β2 is arranged, the following equation 44 is obtained.
Figure JPOXMLDOC01-appb-M000044
Figure JPOXMLDOC01-appb-M000044
 数44の式が示すように分圧比β2は測定する電圧V1~V3から求められる。 As shown in Equation 44, the voltage division ratio β2 is obtained from the voltages V1 to V3 to be measured.
 従って、求めた分圧比β2と数38と数40の式より、増幅率αVが増幅率αAの状態と、増幅率αVが増幅率αBの状態での導体11の対象電圧Vmの電圧値VmA、VmBが求められる。 Therefore, the voltage value VmA of the target voltage Vm of the conductor 11 in the state where the amplification factor αV is the amplification factor αA and the amplification factor αV is the amplification factor αB, from the obtained voltage dividing ratio β2, Equations 38, and Equation 40. VmB is required.
Figure JPOXMLDOC01-appb-M000045
Figure JPOXMLDOC01-appb-M000045
 また、V3A=αA×V2A、V3B=αB×V2Bであるので、電圧値V3A、V3Bを測定せずに電圧値VmA、VmBを求めることが可能である。 Since V3A = αA × V2A and V3B = αB × V2B, the voltage values VmA and VmB can be obtained without measuring the voltage values V3A and V3B.
 このように、実施形態5における電圧測定装置1Cは、交流電圧発生部を備える必要がなく、簡単な構成で、電線10の導体11に直接接続することなく導体11の交流電圧の測定が可能となる。 As described above, the voltage measuring device 1 </ b> C according to the fifth embodiment does not need to include an AC voltage generation unit, and can measure the AC voltage of the conductor 11 with a simple configuration without being directly connected to the conductor 11 of the wire 10. Become.
 また、電圧V3の電圧値V3A、V3Bは増幅率αA、αBと電圧V2の電圧値V2A、V2Bにより算出することができる。しかし、電圧測定部4Cで電圧V3を直接測定することにより増幅による誤差なく電圧V3を求めることができるため、簡単な構成で高精度な対象電圧Vmの測定が可能となる。 The voltage values V3A and V3B of the voltage V3 can be calculated from the amplification factors αA and αB and the voltage values V2A and V2B of the voltage V2. However, since the voltage V3 can be obtained without error due to amplification by directly measuring the voltage V3 by the voltage measuring unit 4C, the target voltage Vm can be measured with a simple configuration with high accuracy.
 (実施形態6)
 図9は実施形態6に係る電圧測定装置1Dのコンデンサ3A、3Bの周囲の等価回路である。図9において、図7に示す実施形態5に係る電圧測定装置1Cと同じ部分には同じ参照番号を付す。電圧測定装置1Dは実施形態5にかかる電圧測定装置1Dと共通の回路構成を有する。
(Embodiment 6)
FIG. 9 is an equivalent circuit around the capacitors 3A and 3B of the voltage measuring apparatus 1D according to the sixth embodiment. 9, the same reference numerals are assigned to the same portions as those of the voltage measuring device 1C according to the fifth embodiment shown in FIG. The voltage measuring device 1D has a common circuit configuration with the voltage measuring device 1D according to the fifth embodiment.
 実施形態5の電圧測定装置1Dにおいて、電極2A及び電極2Bとグランドとの間、若しくは、電極2A及び電極2Bを本体100に接続する配線とグランドとの間に浮遊容量が生じることがある。実施形態6に係る電圧測定装置1Dでは、これらの浮遊容量を考慮する。電圧測定装置1Dでは、電極2A又は電極2Aから本体100への配線と基準電位1Rとの間に浮遊容量21Aが生じている。同様に、電極2B又は電極2Bから本体100への配線と基準電位1Rとの間に浮遊容量21Bが生じている浮遊容量21A、21Bは容量値Cf1、Cf2をそれぞれ有する。浮遊容量21Aが存在する場合、対象電圧Vmは、容量値Cin1、Cf1の並列合成容量(Cin1+Cf1)に対して容量値Cs1で分圧されるため、対象電圧Vmと電圧V1の比である分圧比β1mは数46の式で表される。 In the voltage measurement apparatus 1D of the fifth embodiment, stray capacitance may occur between the electrodes 2A and 2B and the ground, or between the wiring connecting the electrodes 2A and 2B to the main body 100 and the ground. In the voltage measurement apparatus 1D according to the sixth embodiment, these stray capacitances are taken into consideration. In the voltage measuring device 1D, the stray capacitance 21A is generated between the electrode 2A or the wiring from the electrode 2A to the main body 100 and the reference potential 1R. Similarly, the stray capacitances 21A and 21B in which the stray capacitance 21B is generated between the electrode 2B or the wiring from the electrode 2B to the main body 100 and the reference potential 1R have capacitance values Cf1 and Cf2, respectively. When the stray capacitance 21A exists, the target voltage Vm is divided by the capacitance value Cs1 with respect to the parallel combined capacitance (Cin1 + Cf1) of the capacitance values Cin1 and Cf1, and thus a voltage division ratio that is a ratio between the target voltage Vm and the voltage V1. β1m is expressed by the equation (46).
Figure JPOXMLDOC01-appb-M000046
Figure JPOXMLDOC01-appb-M000046
 同様に、浮遊容量21Bが存在する場合、対象電圧Vmは、容量値Cin2、Cf2の並列合成容量(Cin2+Cf2)に対して容量値Cs2で分圧されるため、対象電圧Vmと電圧V2の比である分圧比β2mは数47の式で表される。 Similarly, when the stray capacitance 21B exists, the target voltage Vm is divided by the capacitance value Cs2 with respect to the parallel combined capacitance (Cin2 + Cf2) of the capacitance values Cin2 and Cf2, so that the ratio of the target voltage Vm to the voltage V2 is obtained. A certain partial pressure ratio β2m is expressed by the equation (47).
Figure JPOXMLDOC01-appb-M000047
Figure JPOXMLDOC01-appb-M000047
 一方、V3は、容量値Cs1、Cf1の並列合成容量値(Cs1+Cf1)に対して容量値Cin1で分圧されるため、電圧V3と電圧V1の分圧比を(1-β1r)とおくと、β1rは数48の式の通りとなる。 On the other hand, V3 is divided by the capacitance value Cin1 with respect to the parallel combined capacitance value (Cs1 + Cf1) of the capacitance values Cs1 and Cf1, so if the voltage dividing ratio between the voltage V3 and the voltage V1 is (1−β1r), β1r Is as shown in the equation 48.
Figure JPOXMLDOC01-appb-M000048
Figure JPOXMLDOC01-appb-M000048
 電圧V1の電圧値V1A、V1Bと、電圧V2の電圧値V2A、V2Bは数49から数52の式で表される。 The voltage values V1A and V1B of the voltage V1 and the voltage values V2A and V2B of the voltage V2 are expressed by equations 49 to 52.
Figure JPOXMLDOC01-appb-M000049
Figure JPOXMLDOC01-appb-M000049
Figure JPOXMLDOC01-appb-M000050
Figure JPOXMLDOC01-appb-M000050
Figure JPOXMLDOC01-appb-M000051
Figure JPOXMLDOC01-appb-M000051
Figure JPOXMLDOC01-appb-M000052
Figure JPOXMLDOC01-appb-M000052
 数50の式よりVmA=V2A/β2mが成り立つので、数49の式に代入すると以下の式が得られる。 Since VmA = V2A / β2m is established from the formula 50, the following formula is obtained by substituting into the formula 49.
Figure JPOXMLDOC01-appb-M000053
Figure JPOXMLDOC01-appb-M000053
 この式をβ1m、β2mについて整理すると数54の式が得られる。 If this formula is arranged for β1m and β2m, the formula 54 is obtained.
Figure JPOXMLDOC01-appb-M000054
Figure JPOXMLDOC01-appb-M000054
 数51と数52の式より同様に数55の式が得られる。 Mathematical formula 55 is obtained similarly from mathematical formulas 51 and 52.
Figure JPOXMLDOC01-appb-M000055
Figure JPOXMLDOC01-appb-M000055
 数54と数55の式よりβ1m、β2mを消去しβ1rについて整理すると数56の式が得られる。 [Equation 56 is obtained by eliminating β1m and β2m from the equations 54 and 55 and rearranging β1r.
Figure JPOXMLDOC01-appb-M000056
Figure JPOXMLDOC01-appb-M000056
 数46と数48の式よりCs1を消去しβ1mについて整理すると数57の式が得られる。 [Equation 57 is obtained by eliminating Cs1 from the equations 46 and 48 and organizing β1m.
Figure JPOXMLDOC01-appb-M000057
Figure JPOXMLDOC01-appb-M000057
 数57の式に数56の式を代入すると数58の式が得られる。 When the formula 56 is substituted into the formula 57, the formula 58 is obtained.
Figure JPOXMLDOC01-appb-M000058
Figure JPOXMLDOC01-appb-M000058
 数49の式より以下の式が得られる。 The following formula is obtained from the formula of Formula 49.
Figure JPOXMLDOC01-appb-M000059
Figure JPOXMLDOC01-appb-M000059
 したがって数56と数58の式を代入し整理すると数60の式が得られる。 Therefore, when formulas 56 and 58 are substituted and arranged, formula 60 is obtained.
Figure JPOXMLDOC01-appb-M000060
Figure JPOXMLDOC01-appb-M000060
 数51の式より以下が得られる。 The following is obtained from the equation of Formula 51.
Figure JPOXMLDOC01-appb-M000061
Figure JPOXMLDOC01-appb-M000061
 したがって数56と数58の式を代入し整理すると以下の式が得られる。 Therefore, substituting and arranging the formulas 56 and 58 yields the following formula.
Figure JPOXMLDOC01-appb-M000062
Figure JPOXMLDOC01-appb-M000062
 数60と数62の式より浮遊容量21Aの容量値Cf1がわかれば、対象電圧Vmの電圧値VmA、VmBを算出できる。 If the capacitance value Cf1 of the stray capacitance 21A is known from the formulas 60 and 62, the voltage values VmA and VmB of the target voltage Vm can be calculated.
 また、事前に製造工程などで既知の電圧値を有する対象電圧Vmを印加した電圧V1~V3を測定し、既知の容量値Cin1と合わせれば、数60と数62の式から浮遊容量21Aの容量値Cf1を求めることができる。 Further, if the voltages V1 to V3 to which the target voltage Vm having a known voltage value is applied in the manufacturing process or the like are measured in advance and are combined with the known capacitance value Cin1, the capacitance of the stray capacitance 21A is calculated from the formulas 60 and 62. The value Cf1 can be determined.
 このように、浮遊容量21Aの容量値Cf1が分かれば、電圧推定精度に影響を与える浮遊容量21Aによる補正が可能となり、電圧推定精度を向上させることができる。 Thus, if the capacitance value Cf1 of the stray capacitance 21A is known, correction by the stray capacitance 21A that affects the voltage estimation accuracy is possible, and the voltage estimation accuracy can be improved.
 浮遊容量21Aの容量値Cf1が不明の場合でも、電圧推定精度に影響を与える浮遊容量21Aによる対象電圧Vmの補正が可能となり、電圧推定精度を向上させることができる。 Even when the capacitance value Cf1 of the stray capacitance 21A is unknown, the target voltage Vm can be corrected by the stray capacitance 21A that affects the voltage estimation accuracy, and the voltage estimation accuracy can be improved.
 (実施形態7)
 図10は実施形態7に係る電圧測定装置1Eのブロック図である。図10において、図7に示す実施形態5に係る電圧測定装置1Cと同じ部分には同じ参照番号を付す。電圧測定装置1Eは、図7に示す実施形態5に係る電圧測定装置1Cの可変利得増幅回路106の代わりに可変利得増幅回路406を備える。可変利得増幅回路406は、増幅回路206、306と切替部109とを有する。増幅回路206は、電極2Bと電気的に接続された入力端子206Aと、出力端子206Bとを有する。増幅回路206は増幅率αAを有する。増幅回路306は、電極2Bと電気的に接続された入力端子306Aと、出力端子306Bとを有する。増幅回路306は増幅率αBを有する。切替部109は、切替接点191、192と共通接点190を有し、制御部108により共通接点190を切替接点192から切り離して切替接点191と接続する第1の接続状態と、共通接点190を切替接点191から切り離して切替接点192と接続する第2の接続状態とを切り替えるように構成されている。第1の接続状態では、コンデンサ3Aの他方の端子31Aを増幅回路306の出力端子306Bから切り離して増幅回路206の出力端子206Bに電気的に接続する。第2の接続状態では、コンデンサ3Aの他方の端子31Aを増幅回路206の出力端子206Bから切り離して増幅回路306の出力端子306Bに電気的に接続する。これにより、可変利得増幅回路406は実施形態5に係る可変利得増幅回路106と同様に動作して同様の効果が得られる。
(Embodiment 7)
FIG. 10 is a block diagram of a voltage measuring apparatus 1E according to the seventh embodiment. 10, the same parts as those of the voltage measuring apparatus 1C according to the fifth embodiment shown in FIG. The voltage measuring device 1E includes a variable gain amplifying circuit 406 instead of the variable gain amplifying circuit 106 of the voltage measuring device 1C according to the fifth embodiment shown in FIG. The variable gain amplifier circuit 406 includes amplifier circuits 206 and 306 and a switching unit 109. The amplifier circuit 206 has an input terminal 206A electrically connected to the electrode 2B and an output terminal 206B. The amplifier circuit 206 has an amplification factor αA. The amplifier circuit 306 has an input terminal 306A electrically connected to the electrode 2B, and an output terminal 306B. The amplifier circuit 306 has an amplification factor αB. The switching unit 109 has switching contacts 191 and 192 and a common contact 190. The control unit 108 switches the common contact 190 from the first connection state in which the common contact 190 is disconnected from the switching contact 192 and connected to the switching contact 191. It is configured to switch between the second connection state disconnected from the contact 191 and connected to the switching contact 192. In the first connection state, the other terminal 31A of the capacitor 3A is disconnected from the output terminal 306B of the amplifier circuit 306 and electrically connected to the output terminal 206B of the amplifier circuit 206. In the second connection state, the other terminal 31A of the capacitor 3A is disconnected from the output terminal 206B of the amplifier circuit 206 and electrically connected to the output terminal 306B of the amplifier circuit 306. Thereby, the variable gain amplifier circuit 406 operates in the same manner as the variable gain amplifier circuit 106 according to the fifth embodiment, and the same effect can be obtained.
1,1A,1B  電圧測定装置
1R  基準電位
2A  電極(第1電極)
2B  電極(第2電極)
3A  コンデンサ(第1コンデンサ)
3B  コンデンサ(第2コンデンサ)
4A  電圧測定部(第1電圧測定部)
4B  電圧測定部(第2電圧測定部)
4C  電圧測定部(第3電圧測定部)
5  演算処理部
6  バッファ(ボルテージフォロワ回路、反転増幅回路)
9  切替部
10  電線
11  導体
20A  結合容量(第1の結合容量)
20B  結合容量(第2の結合容量)
21A  浮遊容量(第1の浮遊容量)
21B  浮遊容量(第2の浮遊容量)
106  可変利得増幅回路
206  増幅回路(第1の増幅回路)
306  増幅回路(第2の増幅回路)
406  可変利得増幅回路
109  切替部
Vm  対象電圧
V1  電圧(第1電圧)
V2  電圧(第2電圧)
V3  電圧(第3電圧)
1, 1A, 1B Voltage measuring device 1R Reference potential 2A Electrode (first electrode)
2B electrode (second electrode)
3A capacitor (first capacitor)
3B capacitor (second capacitor)
4A Voltage measurement unit (first voltage measurement unit)
4B Voltage measurement unit (second voltage measurement unit)
4C voltage measurement unit (third voltage measurement unit)
5 Arithmetic processor 6 Buffer (Voltage follower circuit, inverting amplifier circuit)
9 Switching unit 10 Electric wire 11 Conductor 20A Coupling capacity (first coupling capacity)
20B coupling capacity (second coupling capacity)
21A stray capacitance (first stray capacitance)
21B stray capacitance (second stray capacitance)
106 variable gain amplifier circuit 206 amplifier circuit (first amplifier circuit)
306 Amplifier circuit (second amplifier circuit)
406 Variable gain amplifier circuit 109 switching unit Vm target voltage V1 voltage (first voltage)
V2 voltage (second voltage)
V3 voltage (third voltage)

Claims (16)

  1. 導体の電位と基準電位との電位差である対象電圧を測定するように構成された電圧測定装置であって、
     間隔を空けて導体と対向し、かつ前記導体との間に第1の結合容量を生じるように構成された第1電極と、
     間隔を空けて前記導体と対向し、かつ前記導体との間に第2の結合容量を生じるように構成された第2電極と、
     前記第1電極に電気的に接続された一方の端子と、前記第2電極に電気的に接続された他方の端子とを有する第1コンデンサと、
     前記第2電極に電気的に接続された一方の端子と、前記基準電位に電気的に接続されるように構成された他方の端子とを有する第2コンデンサと、
     前記第1電極の電位と前記基準電位との電位差である第1電圧を測定するように構成された第1電圧測定部と、
     前記第2電極の電位と前記基準電位との電位差である第2電圧を測定するように構成された第2電圧測定部と、
     前記第1電圧及び前記第2電圧を用いて前記対象電圧を演算するように構成された演算処理部と、
    を備えた電圧測定装置。
    A voltage measuring device configured to measure a target voltage that is a potential difference between a potential of a conductor and a reference potential,
    A first electrode configured to face the conductor at an interval and to create a first coupling capacitance with the conductor;
    A second electrode configured to face the conductor at an interval and to generate a second coupling capacitance between the conductor;
    A first capacitor having one terminal electrically connected to the first electrode and the other terminal electrically connected to the second electrode;
    A second capacitor having one terminal electrically connected to the second electrode and the other terminal configured to be electrically connected to the reference potential;
    A first voltage measuring unit configured to measure a first voltage that is a potential difference between the potential of the first electrode and the reference potential;
    A second voltage measuring unit configured to measure a second voltage that is a potential difference between the potential of the second electrode and the reference potential;
    An arithmetic processing unit configured to calculate the target voltage using the first voltage and the second voltage;
    A voltage measuring device comprising:
  2. 前記演算処理部は、前記第1電圧と、前記第2電圧と、前記基準電位と前記第1のコンデンサの前記他方の端子の電位との電位差である第3電圧とを用いて前記対象電圧を演算するように構成された、請求項1に記載の電圧測定装置。 The arithmetic processing unit calculates the target voltage using the first voltage, the second voltage, and a third voltage that is a potential difference between the reference potential and the potential of the other terminal of the first capacitor. The voltage measuring device according to claim 1, wherein the voltage measuring device is configured to calculate.
  3. 前記第3電圧を測定するように構成された第3電圧測定部をさらに備えた、請求項2に記載の電圧測定装置。 The voltage measurement device according to claim 2, further comprising a third voltage measurement unit configured to measure the third voltage.
  4. 前記演算処理部は、前記第2電圧から前記第3電圧を演算するように構成されている、請求項2に記載の電圧測定装置。 The voltage measurement device according to claim 2, wherein the arithmetic processing unit is configured to calculate the third voltage from the second voltage.
  5. 前記第1のコンデンサの前記他方の端子を前記第2コンデンサと電気的に接続する第1の接続状態と、前記第1のコンデンサの前記他方の端子を前記第2コンデンサから切り離して前記基準電位と電気的に接続する第2の接続状態とを切り替えるように構成された切替部をさらに備え、
    前記演算処理部は、少なくとも、前記第1の接続状態における前記第1電圧の電圧値及び前記第2電圧の電圧値と、前記第2の接続状態における前記第1電圧の電圧値及び前記第2電圧の電圧値とを用いて、前記対象電圧を演算するように構成された、請求項1から4のいずれか1項に記載の電圧測定装置。
    A first connection state in which the other terminal of the first capacitor is electrically connected to the second capacitor; and the other terminal of the first capacitor is disconnected from the second capacitor and the reference potential is A switching unit configured to switch between a second connection state and an electrical connection state;
    The arithmetic processing unit includes at least the voltage value of the first voltage and the voltage value of the second voltage in the first connection state, and the voltage value of the first voltage and the second voltage value in the second connection state. The voltage measuring device according to any one of claims 1 to 4, wherein the voltage measurement device is configured to calculate the target voltage using a voltage value of a voltage.
  6. 前記第1コンデンサの容量値と前記第1の結合容量の容量値の比率は、前記第2コンデンサの容量値と前記第2の結合容量の容量値の比率と等しい、請求項1から5のいずれか1項に記載の電圧測定装置。 The ratio between the capacitance value of the first capacitor and the capacitance value of the first coupling capacitance is equal to the ratio of the capacitance value of the second capacitor and the capacitance value of the second coupling capacitance. The voltage measuring device according to claim 1.
  7. 前記第1コンデンサの容量値は前記第2コンデンサの容量値に等しく、
    前記第1電極及び前記第2電極は、前記第1の結合容量の容量値が前記第2の結合容量の容量値と等しくするように構成されている、請求項6に記載の電圧測定装置。
    The capacitance value of the first capacitor is equal to the capacitance value of the second capacitor,
    The voltage measurement device according to claim 6, wherein the first electrode and the second electrode are configured such that a capacitance value of the first coupling capacitance is equal to a capacitance value of the second coupling capacitance.
  8. 前記第2電極と電気的に接続された入力端子と、前記第1のコンデンサの前記他方の端子と電気的に接続された出力端子とを有するボルテージフォロワ回路をさらに備えた、請求項1から7のいずれか1項に記載の電圧測定装置。 The voltage follower circuit further comprising: an input terminal electrically connected to the second electrode; and an output terminal electrically connected to the other terminal of the first capacitor. The voltage measuring device according to any one of the above.
  9. 前記第2電極と電気的に接続された入力端子と、前記第1のコンデンサの前記他方の端子と電気的に接続された出力端子とを有する反転増幅回路をさらに備えた、請求項1から7のいずれか1項に記載の電圧測定装置。 The inverting amplifier circuit further comprising an input terminal electrically connected to the second electrode and an output terminal electrically connected to the other terminal of the first capacitor. The voltage measuring device according to any one of the above.
  10. 前記第2電極と電気的に接続された入力端子と、前記第1のコンデンサの前記他方の端子と電気的に接続された出力端子とを有して可変の増幅率を有する可変利得増幅回路をさらに備え、
    前記演算処理部は、少なくとも、前記可変利得増幅回路の前記増幅率が第1の増幅率であるときの前記第1電圧の電圧値と前記第2電圧の電圧値と、前記可変利得増幅回路の前記増幅率が前記第1の増幅率とは異なる第2の増幅率であるときの前記第1電圧の電圧値と前記第2電圧の電圧値とを用いて前記対象電圧を演算するように構成されている、請求項1に記載の電圧測定装置。
    A variable gain amplifier circuit having an input terminal electrically connected to the second electrode and an output terminal electrically connected to the other terminal of the first capacitor and having a variable gain. In addition,
    The arithmetic processing unit includes at least a voltage value of the first voltage and a voltage value of the second voltage when the amplification factor of the variable gain amplification circuit is a first amplification factor, and the variable gain amplification circuit. The target voltage is calculated using the voltage value of the first voltage and the voltage value of the second voltage when the amplification factor is a second amplification factor different from the first amplification factor. The voltage measuring device according to claim 1, wherein
  11. 前記演算処理部は、少なくとも、前記可変利得増幅回路の前記増幅率が前記第1の増幅率であるときの前記第1電圧の電圧値と、前記第2電圧の電圧値と、前記第1コンデンサの前記他方の端子の電位と前記基準電位との電位差である第3電圧の電圧値と、前記可変利得増幅回路の前記増幅率が前記第2の増幅率であるときの前記第1電圧の電圧値と前記第2電圧の電圧値と前記第3電圧の電圧値とを用いて前記対象電圧を演算するように構成されている、請求項10に記載の電圧測定装置。 The arithmetic processing unit includes at least the voltage value of the first voltage, the voltage value of the second voltage, and the first capacitor when the gain of the variable gain amplifier circuit is the first gain. A voltage value of a third voltage that is a potential difference between the potential of the other terminal of the second terminal and the reference potential, and a voltage of the first voltage when the amplification factor of the variable gain amplifier circuit is the second amplification factor. The voltage measurement device according to claim 10, configured to calculate the target voltage using a value, a voltage value of the second voltage, and a voltage value of the third voltage.
  12. 前記第3電圧を測定する第3の電圧測定部をさらに備えた、請求項11に記載の電圧測定装置。 The voltage measuring device according to claim 11, further comprising a third voltage measuring unit that measures the third voltage.
  13. 前記演算処理部は、前記第2電圧から前記第3電圧を演算するように構成されている、請求項11に記載の電圧測定装置。 The voltage measurement device according to claim 11, wherein the arithmetic processing unit is configured to calculate the third voltage from the second voltage.
  14. 前記可変利得増幅回路は、
     前記第2電極と電気的に接続された入力端子と、出力端子とを有して前記第1の増幅率を有する第1の増幅回路と、
     前記第2電極と電気的に接続された入力端子と、出力端子とを有して前記第2の増幅率を有する第2の増幅回路と、
     前記第1のコンデンサの前記他方の端子を前記第2の増幅回路の前記出力端子から切り離して前記第1の増幅回路の前記出力端子に電気的に接続する第1の接続状態と、前記第1のコンデンサの前記他方の端子を前記第1の増幅回路の前記出力端子から切り離して前記第2の増幅回路の前記出力端子に電気的に接続する第2の接続状態とを切り替えるように構成された切替部と、
    を有する、請求項10から13のいずれか1項に記載の電圧測定装置。
    The variable gain amplifier circuit includes:
    A first amplifier circuit having an input terminal electrically connected to the second electrode and an output terminal and having the first amplification factor;
    A second amplifier circuit having an input terminal electrically connected to the second electrode and an output terminal and having the second amplification factor;
    A first connection state in which the other terminal of the first capacitor is disconnected from the output terminal of the second amplifier circuit and electrically connected to the output terminal of the first amplifier circuit; The other terminal of the capacitor is disconnected from the output terminal of the first amplifier circuit and switched to a second connection state in which the capacitor is electrically connected to the output terminal of the second amplifier circuit. A switching unit;
    The voltage measuring device according to claim 10, comprising:
  15. 前記演算処理部は、前記第1電極と前記基準電位との間に生じる第1の浮遊容量の容量値と、前記第2電極と前記基準電位との間に生じる第2の浮遊容量の容量値とを用いて前記演算された対象電圧を補正するように構成されている、請求項1から14のいずれか1項に記載の電圧測定装置。 The arithmetic processing unit includes a capacitance value of a first stray capacitance generated between the first electrode and the reference potential, and a capacitance value of a second stray capacitance generated between the second electrode and the reference potential. The voltage measurement device according to claim 1, wherein the voltage measurement device is configured to correct the calculated target voltage using the.
  16. 前記演算処理部は、既知の電圧が前記導体に印加されている状態において、前記第1電圧と前記第2電圧と前記既知の電圧とを用いて前記第1の浮遊容量の容量値と前記第2の浮遊容量の容量値を演算するように構成されている、請求項15に記載の電圧測定装置。 The arithmetic processing unit uses the first voltage, the second voltage, and the known voltage in a state where a known voltage is applied to the conductor, and the capacitance value of the first stray capacitance and the first voltage The voltage measurement device according to claim 15, wherein the voltage measurement device is configured to calculate a capacitance value of two stray capacitances.
PCT/JP2016/001087 2015-03-03 2016-03-01 Voltage measuring device WO2016139924A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015041535A JP2016161449A (en) 2015-03-03 2015-03-03 Voltmeter
JP2015-041535 2015-03-03

Publications (1)

Publication Number Publication Date
WO2016139924A1 true WO2016139924A1 (en) 2016-09-09

Family

ID=56844893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001087 WO2016139924A1 (en) 2015-03-03 2016-03-01 Voltage measuring device

Country Status (2)

Country Link
JP (1) JP2016161449A (en)
WO (1) WO2016139924A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018092188A1 (en) * 2016-11-15 2018-05-24 株式会社日立製作所 Non-contact voltage measurement device and diagnosis system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174856A (en) * 1982-04-08 1983-10-13 Yokogawa Hokushin Electric Corp Combined electrode for contactless voltmeter
JPH04113274A (en) * 1990-09-04 1992-04-14 Toshiba Corp Voltage detector
JP2006084380A (en) * 2004-09-17 2006-03-30 Yokogawa Electric Corp Noncontact voltage measuring system
JP2006242855A (en) * 2005-03-04 2006-09-14 Nippon Telegraph & Telephone East Corp Noncontact-type voltage detection method and noncontact-type voltage detection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174856A (en) * 1982-04-08 1983-10-13 Yokogawa Hokushin Electric Corp Combined electrode for contactless voltmeter
JPH04113274A (en) * 1990-09-04 1992-04-14 Toshiba Corp Voltage detector
JP2006084380A (en) * 2004-09-17 2006-03-30 Yokogawa Electric Corp Noncontact voltage measuring system
JP2006242855A (en) * 2005-03-04 2006-09-14 Nippon Telegraph & Telephone East Corp Noncontact-type voltage detection method and noncontact-type voltage detection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018092188A1 (en) * 2016-11-15 2018-05-24 株式会社日立製作所 Non-contact voltage measurement device and diagnosis system
JPWO2018092188A1 (en) * 2016-11-15 2019-06-24 株式会社日立製作所 Non-contact voltage measuring device and diagnostic system
US11047882B2 (en) 2016-11-15 2021-06-29 Hitachi, Ltd. Non-contact voltage measurement device and diagnosis system

Also Published As

Publication number Publication date
JP2016161449A (en) 2016-09-05

Similar Documents

Publication Publication Date Title
CN107533091B (en) Non-contact voltage measuring device
US10254313B2 (en) Noncontact voltage measurement apparatus
WO2016189864A1 (en) Probe and voltage measuring device using same
CN110161350B (en) Multi-core cable inspection device and method, and multi-core cable assembly manufacturing method
WO2017168608A1 (en) Contactless voltage measurement device and contactless voltage measurement method
WO2015182187A1 (en) Voltage measurement device and voltage measurement method
WO2016139924A1 (en) Voltage measuring device
JP2015206783A (en) Bending amount measuring device
JP2017161366A (en) Voltage measuring device
KR20160088779A (en) Apparatus for measuring electrical characteristics
US20220364942A1 (en) Diaphragm vacuum gauge
JP2005140506A (en) Noncontact voltage measuring apparatus
WO2015133212A1 (en) Voltage measuring apparatus and voltage measuring method
JP6989346B2 (en) Voltage measuring device
JP2019174129A (en) Insulated type voltage measuring device
WO2021090479A1 (en) Measurement assistance device, non-contact voltage observation device, and non-contact voltage observation system
JP2005156492A (en) Movable apparatus, measuring device, electrostatic capacity typed range finder and positioning device
JP6171866B2 (en) Distance sensor
JP2016099207A (en) Voltage measuring device
JP2017040526A (en) Voltage detection sensor and measurement device
JP7292555B2 (en) Non-contact voltage sensor device
JP5615463B1 (en) Voltage detection apparatus and voltage detection method
JP2018205032A (en) Electrified plate monitor device
JP2022176609A (en) Diaphragm gauge
JPH0547382Y2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16758623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16758623

Country of ref document: EP

Kind code of ref document: A1