WO2016139809A1 - 粒子分析装置及び粒子分析方法 - Google Patents

粒子分析装置及び粒子分析方法 Download PDF

Info

Publication number
WO2016139809A1
WO2016139809A1 PCT/JP2015/056557 JP2015056557W WO2016139809A1 WO 2016139809 A1 WO2016139809 A1 WO 2016139809A1 JP 2015056557 W JP2015056557 W JP 2015056557W WO 2016139809 A1 WO2016139809 A1 WO 2016139809A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
compartment
pores
charged particles
particle
Prior art date
Application number
PCT/JP2015/056557
Other languages
English (en)
French (fr)
Inventor
樹 高倉
釜堀 政男
小原 賢信
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/056557 priority Critical patent/WO2016139809A1/ja
Publication of WO2016139809A1 publication Critical patent/WO2016139809A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1031Investigating individual particles by measuring electrical or magnetic effects
    • G01N15/12Investigating individual particles by measuring electrical or magnetic effects by observing changes in resistance or impedance across apertures when traversed by individual particles, e.g. by using the Coulter principle

Definitions

  • the present invention relates to a particle analysis apparatus and a particle analysis method.
  • the resistance pulse method is effective as a method for detecting particles in a liquid sample one by one in real time.
  • the ion current of a pore connecting two regions filled with a conductive solution is measured, and a pulse-like change in the current generated when the particle passes through the pore is detected.
  • Count since this current change reflects the volume of the particle, the resistance pulse method can be applied to the particle size distribution measurement of the particle. Since the resistance pulse method detects a change in electrical resistance from one particle, it is suitable for measurement of a sample having a small particle density.
  • the driving force for conveying particles in the resistance pulse method depends on either or both of pressure flow and electrophoresis.
  • a flow is generated in the liquid sample by applying a pressure difference with a pump or the like before and after the pores, and a driving force for passing particles through the pores is given.
  • the latter uses an electric field induced by a voltage applied to the pores to measure ionic current.
  • the particles are driven by electrophoresis to pass through the pores.
  • the pore diameter is smaller than about 1 ⁇ m, the electric field strength in the vicinity of the pores becomes sufficiently large, so that the particles can be transported only by electrophoresis without using a pressure flow.
  • the strength increases in the vicinity of the pores, while the strength decreases as the distance from the pores increases.
  • the number of particles detected per unit time in the resistance pulse method is proportional to the particle density in the sample and the strength of the driving force. Therefore, for a very dilute sample, particles cannot be detected with sufficient frequency by the normal resistance pulse method. This hinders statistical analysis of the properties of many particles.
  • Non-Patent Document 1 a method using two driving forces of pressure flow and electrophoresis is known.
  • the driving force increases, the particle passage speed of the particles also increases. And if particles are driven faster than the time resolution of current measurement, the measurement becomes difficult, so there is a limit to improving the detection efficiency.
  • Non-patent Document 2 a method using solutions having different ionic strengths on the upstream side and the downstream side of the pores has been proposed (Non-patent Document 2).
  • the electrical resistance is increased by relatively reducing the ionic strength on the upstream side of the pore, that is, the sample introduction side, and the electric field strength is improved on the upstream side of the pore.
  • grains drive in a pore upstream is expanded, and it is possible to improve detection efficiency about 10 times.
  • the region in which the particles are driven is still limited to the vicinity of the pores, and in other regions, the particles move in a random direction due to diffusion, so that most particles cannot pass through the pores.
  • the present invention has been made to solve the above-mentioned problems, and a main object of the present invention is to provide a particle analyzer for measuring particles by a resistance pulse method more efficiently on a very dilute sample. It is.
  • the present invention also discloses a particle analysis method realized in this apparatus.
  • the particle analyzer includes a first compartment into which a conductive liquid containing charged particles to be detected is introduced, a second compartment into which the conductive liquid is introduced, a first compartment, and a second compartment.
  • a pore connecting the compartments, a first electrode provided in the first compartment, a second electrode provided in the second compartment, and a first electrode in the first compartment A third electrode provided at a position closer to the pore than the electrode; a control unit for controlling the potential of the first electrode, the second electrode, and the third electrode; and the first electrode or the third electrode
  • a measurement unit that measures a current or electrical resistance flowing between the electrode and the second electrode, and a charged particle is applied in the first compartment by applying a voltage between the first electrode and the third electrode.
  • the charged particles are measured by measuring the current or electrical resistance change associated with the charged particles passing through the pores. That.
  • the particle analysis method also includes a step of introducing a conductive liquid into a container having a first compartment and a second compartment connected by a pore, and charged particles to be detected in the first compartment.
  • the charged particles are allowed to pass through the pores by applying an electrophoretic force in the direction toward the second compartment, and the change in the electric current flowing through the pores or the change in electrical resistance across the pores is measured and passed through the pores. Measuring a charged particle to be measured.
  • the present invention most of the charged particles contained in the sample liquid introduced into the first compartment are concentrated in the region near the pores.
  • the detection efficiency of the charged particles can be greatly improved, and resistance pulse measurement can be performed efficiently even on a dilute sample. it can.
  • the concentration rate of charged particles and the passage time of charged particles through pores can be easily adjusted to a desired level.
  • grain analyzer by this invention The schematic diagram of distribution of the electrophoretic force at the time of concentration operation.
  • Explanatory drawing which shows the flow of a measurement process, the voltage application at that time, the sequence of switch opening and closing, and the data of current measurement.
  • grain analyzer by this invention Explanatory drawing which shows the flow of the measurement process in the case of performing concentration operation and measurement operation simultaneously, the sequence of voltage application, and the data of current measurement.
  • grain analyzer by this invention Explanatory drawing which shows the voltage application sequence and the data of current measurement.
  • grain analyzer by this invention The schematic diagram which shows an example of distribution of the electrophoretic force at the time of measurement operation.
  • the charged particle in the present invention refers to a molecule having a particle size in the range of 1 nm to 10 ⁇ m, preferably 1 nm to 1 ⁇ m, and having a charge in the solution, a particulate substance, and a combination or aggregate thereof.
  • Charged particles include, for example, proteins, nucleic acid molecules, carbon macromolecules, silica powder, metal colloids, polymer beads, viruses, cells, and the like.
  • charged particles in the present invention also include particles having little charge and those having a charge, for example, negatively charged polystyrene particles bonded thereto to give an effective charge.
  • An exemplary embodiment of the present invention includes at least one pore for measuring particles by a resistance pulse method, a first compartment into which a sample liquid containing charged particles is introduced, and a first compartment through the pore.
  • the connected second section, the first electrode provided in the first section, the second electrode provided in the second section, and the first in the first section A third electrode provided at a position closer to the pore than the first electrode.
  • the pores and the inside of the first compartment and the second compartment are each filled with a conductive liquid.
  • An electric field is induced inside the first section by applying a voltage between the first electrode and the third electrode, and charged particles are electrophoresed in this electric field, so that the inside of the first section is fined. Charged particles are concentrated in the area near the hole. After the charged particles are concentrated, an electric field is induced in the region near the pores by applying a voltage between one or both of the first electrode and the third electrode and the second electrode. The resistance pulse measurement is performed on the charged particles concentrated in the region.
  • the width of the pore perpendicular to the traveling direction of the charged particles is a dimension that allows charged particles to pass through. That is, the pore width is in the range of 1 nm to 50 ⁇ m, preferably 1 nm to 5 ⁇ m.
  • the length of the pores along the traveling direction of the charged particles is typically in the range of about 1/10 to 10 times the pore width.
  • the widths of the first compartment and the second compartment perpendicular to the traveling direction of the charged particles are such that the sample liquid and the conductive liquid can be introduced and are sufficiently larger than the width of the pores. That is, the width of the first section and the second section is in the range of 1 ⁇ m to 100 mm, preferably 10 ⁇ m to 10 mm. Further, the length of the first section and the second section along the traveling direction of the charged particles is typically in the range of 100 ⁇ m to 1000 mm, preferably 1 mm to 100 mm.
  • FIG. 1 is a schematic diagram of an embodiment of a particle analyzer according to the present invention.
  • the apparatus includes a first compartment 101 and a second compartment 102, and a pore 103 connecting them.
  • a conductive liquid is accommodated in each of the first compartment, the second compartment, and the pores.
  • a first electrode 111 and a second electrode 112 are provided in the first compartment and the second compartment, respectively.
  • a third electrode 113 is further provided inside the first partition, and the third electrode 113 is located in a region closer to the pore 103 than the first electrode 111.
  • All electrodes are in electrical contact with the conductive liquid.
  • at least one of the voltage source and the switch is connected to all the electrodes, and the potential of each electrode and the connection state to the circuit can be controlled using them. Therefore, the voltage source is preferably a variable voltage source.
  • An ammeter or resistance meter is connected to at least one of the first, second, and third electrodes, and the current flowing through the pore or the electrical resistance across the pore can be measured. In order to enable such measurement, an ammeter or an ohmmeter is preferably connected to the second electrode.
  • FIG. 1 shows an embodiment in which a variable voltage source 121 is connected to the first electrode 111 and an ammeter 120 is connected to the second electrode 112.
  • Each electrode is provided with open / close switches S 1 , S 2 , S 3 and can be arbitrarily switched on / off.
  • the opening / closing of the switches S 1 , S 2 , S 3 and the set voltage of the variable voltage source 121 are controlled by the control unit 140.
  • the sample liquid is introduced into the first compartment 101.
  • the sample liquid includes charged particles 104 to be detected.
  • a conductive liquid is introduced into the second compartment 102, but this conductive liquid may be the sample liquid itself.
  • the first section 101 and the second section 102 are not necessarily sealed. Therefore, a port for installing a flow path or an electrode for introducing a conductive liquid or a sample liquid is connected, and the terminal portion may be open.
  • the first stage of the measurement process is a charged particle concentration operation.
  • FIG. 2 is a schematic diagram showing the distribution of electrophoretic force inside the apparatus during the charged particle concentration operation in the embodiment shown in FIG.
  • a voltage V conc is applied between the first electrode 111 and the third electrode 113.
  • the charged particles 104 move according to [Equation 1].
  • the polarity of the voltage is the direction in which the charged particles to be detected are driven to the third electrode 113. That is, for example, for particles having a negative zeta potential, the voltage source 121 is set to a negative value.
  • FIG. 3 is a schematic diagram showing the distribution of electrophoretic force inside the apparatus during the charged particle measurement operation in the embodiment shown in FIG.
  • the charged particle 104 is introduced into the pore 103 by inducing a measurement electric field region 202 in the vicinity of the pore 103, and resistance pulse measurement is performed.
  • This measurement operation is performed by, for example, performing current measurement in a state where the switches S 1 and S 2 are turned on and the switch S 3 is turned off and the voltage V meas is applied between the first electrode 111 and the second electrode 112. Can be implemented.
  • the concentration rate can be controlled more precisely.
  • FIG. 4 is a schematic diagram showing a potential distribution in the particle motion direction in the measurement process described above.
  • FIG. 4A shows the potential distribution in the conventional method
  • FIG. 4B shows the potential distribution in this embodiment.
  • most of the voltage applied to both ends of the pore is applied to the pore region, and the potential gradient outside the pore is typically 10 ⁇ 2 to 10 ⁇ 3 compared to the inside of the pore. It is about the size.
  • all of the voltage V conc can be applied in the first compartment in the concentration process. Therefore, a potential gradient larger by about 10 2 to 10 3 can be formed in the first section than the conventional method, and a concentration effect of about 10 2 to 10 3 can be obtained.
  • FIG. 5 is an explanatory diagram showing a flow of the measurement process described above, a voltage application and switch opening / closing sequence at that time, and data of current measurement.
  • the particle analysis process includes a step of introducing a conductive liquid into a container having a first compartment and a second compartment connected by pores, and charged particles to be detected in the first compartment.
  • a charged liquid concentration step of concentrating charged particles near the pores of the first compartment by applying an electrophoretic force directed toward the pores to the first compartment, The charged particles are passed through the pore by applying an electrophoretic force in the direction from the compartment to the second compartment through the pore, and the change in the current flowing through the pore or the change in the electrical resistance across the pore is measured.
  • a charged particle measuring step of measuring charged particles passing through the pores is measured.
  • the switches S 1 and S 3 are turned on and the switch S 2 is turned off to form a potential gradient only in the first section.
  • the switches S 1 and S 2 are turned on. forming a potential gradient in a region including the pores by turning off the switch S 3.
  • the relationship between the voltage V conc applied in the charged particle concentration step and the voltage V meas applied in the charged particle measurement step will be described later. In this way, current measurement data is obtained in the charged particle measurement process.
  • FIG. 6 is an explanatory diagram showing the influence of the applied voltage V meas during the measurement operation on the particle detection frequency and the particle passage time.
  • FIGS. 6A , 6B, and 6C show changes in current measurement data when the absolute value
  • the particle passage time t pass and the particle detection event interval t interval are inversely proportional to
  • the particle detection frequency is given by the reciprocal of t interval .
  • FIG. 6C shows a case where the particle passage time is shorter than the band of the measuring device. If the particles pass through the pores faster than the bandwidth of the measuring device, the measuring device cannot follow the signal change and the signal value becomes smaller than the true value. Therefore, in order to appropriately perform the measurement operation, it is desirable to reduce
  • FIG. 7 is an explanatory view showing the influence of the applied voltage V conc during the concentration operation on the particle detection frequency and the particle passage time.
  • FIG. 7A and FIG. 7B show changes in current measurement data when the absolute value
  • the particle detection event interval t interval is inversely proportional to the particle density near the pores. Since the particle concentration rate is approximately proportional to
  • the particle detection frequency is given by the reciprocal of t interval and is proportional to the product of
  • the pore passage time t pass of the particles is inversely proportional only to
  • At least one voltage source is required, but unlike the example shown in FIG. 1, a configuration in which the voltage source is connected to the second electrode or the third electrode can be adopted. It is clear that the same measurement is possible even when a voltage source is connected to a plurality of the first, second and third electrodes.
  • FIG. 8 shows an embodiment in which a voltage source 122 is connected to the third electrode 113 in addition to the first electrode 111.
  • FIG. 5 illustrates the measurement process in which the concentration operation and the measurement operation are separated, but these two operations can be performed simultaneously without being separated. That is, the concentration operation and the measurement operation can be performed simultaneously by applying a voltage to all of the first, second, and third electrodes simultaneously. Such a measurement can be performed, for example, in the apparatus configuration shown in FIG.
  • FIG. 8 is a schematic view of an embodiment of the particle analyzer according to the present invention.
  • the variable voltage source 121 is connected to the first electrode 111 and the variable voltage source 122 is also connected to the third electrode 113.
  • the voltage applied to the third electrode is preferably a value between the voltages applied to the first electrode and the second electrode.
  • FIG. 9 is an explanatory diagram illustrating a measurement process flow, a voltage application sequence, and current measurement data when the concentration operation and the measurement operation are performed simultaneously in the embodiment illustrated in FIG. 8.
  • the applied voltage for the concentration operation corresponds to
  • the applied voltage for the measurement operation corresponds to
  • FIG. 10 is a schematic diagram showing an embodiment of a particle analyzer provided with a feedback control unit in addition to the apparatus configuration shown in FIG.
  • the current measurement data is analyzed by the control unit 140, and the applied voltage is adjusted according to the analysis result, whereby the desired particle detection frequency and pore passage time can be obtained.
  • FIG. 11 is an explanatory diagram showing an example of voltage application sequence and current measurement data in the embodiment shown in FIG. First, while increasing
  • the concentration operation is performed by fixing
  • the desired particle detection frequency is obtained, measurement is performed with
  • the positional relationship between the third electrode and the pore will be described.
  • charged particles are unevenly distributed in the concentration region 201 in the vicinity of the third electrode 113, and in the measurement operation, particles that have reached the inside of the measurement electric field region 202 induced in the vicinity of the pore 103 are introduced into the pore 103. Is done. Therefore, in order to obtain sufficient detection efficiency, it is preferable that the third electrode 113 is in the vicinity of the pore 103 in the first section 101.
  • a suitable distance between the third electrode 113 and the pore 103 is typically within about the diameter of the pore. In order to realize such a structure, a semiconductor microfabrication technique is effective.
  • the third electrode 113 is an annular electrode provided so as to surround the pore 103.
  • Such a structure is formed, for example, by forming a thin film on a semiconductor substrate and finely processing the through-hole and the third electrode on the thin film.
  • the first electrode 111, the second electrode 112, and the pores 103 are not necessarily provided on the same axis, and can be arranged orthogonally as shown in FIG.
  • Such a structure is formed, for example, by finely processing the channel structure, pores, and electrodes on the surface of the semiconductor substrate by lithography.
  • FIG. 13 is a schematic diagram showing an example of the distribution of electrophoretic force during charged particle measurement operation in another embodiment of the particle analyzer according to the present invention.
  • the electrical conductivity of the conductive liquid contained in the first compartment 101 is smaller than the electrical conductivity of the conductive liquid contained in the second compartment 102.
  • the measurement electric field region 202 induced in the vicinity of the pore 103 is asymmetric between the first section 101 side and the second section 102 side. That is, the measurement electric field region 202 expands on the first partition 101 side and decreases on the second partition 102 side, compared to the case where the electrical conductivity is equal in the first partition and the second partition.
  • Detection efficiency is improved.
  • FIG. 14 is a schematic diagram showing an example of the distribution of the electrophoretic force 301 in the first compartment when charged particles are concentrated in another embodiment of the particle analyzer according to the present invention.
  • the present embodiment at the stage of the concentration operation, there are a region 211 where the electrophoretic velocity of the charged particles 104 is larger and a region 212 where the electrophoresis speed of the charged particles 104 is smaller. That is, there is a region 212 where the electrophoretic force 301 that drives the charged particles 104 in the direction of the third electrode 113 is reduced at a position close to the pore 103. At this time, the charged particles 104 stay at the interface 203 where the electrophoresis speed decreases. Therefore, the charged particles 104 are concentrated in the vicinity of the interface 203.
  • the charged particles 104 concentrated at the interface 203 continue to be driven by electrophoresis in the region 212 and eventually reach the vicinity of the pores 103. Thereafter, the charged particles can be detected with high efficiency by performing a measurement operation.
  • the embodiment shown in FIG. 14 can be implemented in combination with the embodiment shown in FIG. That is, in the embodiment shown in FIG. 14, the electrical conductivity of the conductive liquid filled in the second compartment is made larger than the electrical conductivity of the conductive liquid filled in the first compartment. . At this time, the concentration effect shown in the embodiment of FIG. 14 and the detection efficiency improvement effect in the measurement operation shown in the embodiment of FIG. 13 are obtained at the same time. Efficiency is further improved.
  • FIG. 15 shows one embodiment corresponding to the example shown in FIG.
  • the electrical conductivity of the conductive liquid contained in the region outside the region into which the sample liquid is introduced and closer to the pores 103 inside the first section 101 is It is characterized by being greater than the electrical conductivity.
  • Such liquid interfaces having different electrical conductivities are formed by performing a liquid introduction operation as follows.
  • three liquid introduction ports 141, 142, and 143 are provided in the first compartment 101.
  • the liquid introduction port 141 is provided at a position away from the pore 103, and the liquid introduction port 143 is provided near the pore 103.
  • the liquid introduction port 142 is provided between the two liquid introduction ports 141 and 143.
  • the figure shows an example in which the liquid introduction port 142 is provided on the side surface opposite to the other liquid introduction ports, it is not important whether the liquid introduction port 142 is located on the opposite side surface located on the same side surface. Only the positional relationship between the three liquid introduction ports 141, 142, and 143 in the traveling direction of the charged particles in the first section 101 is important.
  • the liquid introduction ports 141, 142, and 143 are opened, and a conductive liquid having an electric conductivity larger than that of the sample liquid is introduced from any of these, thereby filling the first compartment 101 with the conductive liquid.
  • the liquid introduction port 143 is closed, a sample liquid containing charged particles is introduced from one of the liquid introduction ports 141 and 142, and the conductive liquid pushed out by introduction of the sample liquid is discharged from the other liquid introduction port, The area 151 from the liquid introduction port 141 to 142 is replaced with the sample liquid.
  • the region 151 from the liquid introduction ports 141 to 142 is filled with the sample liquid
  • the region 152 from the liquid introduction ports 142 to 143 is filled with the conductive liquid having a higher electrical conductivity.
  • an electric field is induced by applying a voltage having a polarity in which the electrophoretic force is directed to the third electrode 113 with respect to the first electrode 111 and the third electrode 113.
  • the electric resistivity is higher in the region 151. Therefore, the electric field strength in the region 151 is larger than the electric field strength in the region 152.
  • the electric field strength in each region is proportional to the electrical resistivity of that region.
  • the electrophoresis speed is proportional to the electric field strength at that position. Therefore, the electrophoresis speed is reduced at the interface 203 between the region 151 and the region 152, and charged particles are retained and concentrated. Further, by continuing to apply a voltage between the first electrode 111 and the third electrode 113, the particles are driven to the vicinity of the pore 103 while being concentrated.
  • the width of the first section 101 is preferably 100 ⁇ m or less.
  • FIG. 16 is a schematic cross-sectional view showing one of the embodiments corresponding to the example shown in FIG. This embodiment is characterized in that a bottleneck portion 161 is provided between the first electrode 111 and the third electrode 113 inside the first section 101.
  • a voltage is applied between the first electrode 111 and the third electrode 113, an electric field distribution is generated in the first section 101.
  • the electric field strength is relatively larger in the narrow portion 161 and smaller outside the narrow portion 161.
  • the electrophoresis speed is relatively increased in the bottleneck portion 161. Since the electrophoresis speed decreases on the outlet side of the bottleneck part 161, the charged particles 104 stay and concentrate near the outlet of the bottleneck part 161.
  • FIG. 15 and the embodiment shown in FIG. 16 can be implemented in combination.
  • a bottleneck portion can be provided between the liquid introduction port 143 and the third electrode 113.
  • the region between the bottleneck portion 161 and the third electrode 113 can be filled with a solution having a higher electrical conductivity than the sample liquid.
  • concentration efficiency can be further improved by combining the two embodiments.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

 粒子密度が希薄な試料に対して、粒子を濃縮することでより効率的に抵抗パルス法で粒子測定を行うために、細孔103によって接続された第1の区画101と第2の区画102を有する容器に導電性液体を導入し、第1の区画に検出対象となる荷電粒子104を含む試料液体を導入し、第1の区画に細孔に向かう向きの電気泳動力を作用させて荷電粒子を第1の区画内で濃縮し、第1の区画から細孔を介して第2の区画に向かう向きの電気泳動力を作用させて荷電粒子を細孔に通過させ、細孔を流れる電流の変化あるいは細孔をまたぐ電気抵抗の変化を測定して細孔を通過する荷電粒子を計測する。

Description

粒子分析装置及び粒子分析方法
 本発明は、粒子分析装置及び粒子分析方法に関する。
 液体試料中の粒子をリアルタイムに1個ずつ検出する方法として、抵抗パルス法が有効である。抵抗パルス法では、導電性溶液で満たされた2つの領域を連結する細孔のイオン電流を計測し、粒子が細孔を通過する際に発生する電流のパルス的な変化を検出することで粒子を計数する。また、この電流変化は粒子の体積を反映することから、抵抗パルス法を粒子の粒度分布測定に適用することも可能である。抵抗パルス法は粒子1個からの電気抵抗変化を検出するため、粒子密度が希薄な試料の測定に適している。
 抵抗パルス法において粒子を搬送する駆動力は、圧力流と電気泳動のいずれか、又は両方に依る。前者は、細孔の前後にポンプ等で圧力差を与えることで液体試料に流れを生じさせ、粒子が細孔を通過する駆動力を与える。後者は、イオン電流を測定するため細孔に印加した電圧によって誘起された電場を用いる。この時、粒子が帯電している場合には電気泳動によって粒子が細孔を通過するように駆動される。特に、細孔径が1μm程度よりも小さい場合には細孔近傍における電場強度が十分に大きくなるため、圧力流を用いることなく電気泳動のみで粒子を搬送することが可能である。上記駆動力のいずれも細孔の近傍ほど強度が大きく、一方で細孔からの距離が大きくなるほどその強度は減衰する。
Lan, W. J. et al.: The Journal of Physical Chemistry C 2011, 115, 18445-18452 Wanunu, M. et al.: Nature Nanotechnology 2010, 5, 160-165
 抵抗パルス法において単位時間当たりに検出される粒子数は、試料中の粒子密度と駆動力の強度に比例する。したがって、非常に希薄な試料に対しては、通常の抵抗パルス法では十分な頻度で粒子を検出することができない。このことは、多数の粒子の性質を統計的に解析する際の妨げとなる。
 検出効率を向上させるために、圧力流と電気泳動の二つの駆動力を併用する方法が知られている(非特許文献1)。しかし、駆動力の増大に伴って粒子の細孔通過速度も増大する。そして電流計測の時間分解能よりも高速に粒子を駆動すると計測が困難になるため、検出効率の向上には限界があった。
 検出効率を向上させる他の手法として、細孔の上流側と下流側で異なるイオン強度の溶液を用いる方法が提案されている(非特許文献2)。この方法においては、細孔上流側、すなわち試料導入側のイオン強度を相対的に低下させることで電気抵抗を増大させ、細孔上流側において電場強度を向上させる。これにより、細孔上流側で粒子が駆動される領域が拡大され、検出効率を10倍程度向上させることが可能である。しかし、粒子が駆動される領域は依然として細孔近傍に限られており、その他の領域では粒子は拡散によってランダムな方向に運動するため、大部分の粒子は細孔を通過することができない。
 本発明は上記課題を解決するために成されたものであり、その主な目的は、非常に希薄な試料に対してより効率的に抵抗パルス法で粒子測定を行う粒子分析装置を提供することである。本発明は、他にもこの装置において実現される粒子分析方法も開示する。
 本発明による粒子分析装置は、検出対象となる荷電粒子を含む導電性液体が導入される第1の区画と、導電性液体が導入される第2の区画と、第1の区画と第2の区画を接続する細孔と、第1の区画の内部に設けられた第1の電極と、第2の区画の内部に設けられた第2の電極と、第1の区画の内部において第1の電極よりも細孔に近接した位置に設けられた第3の電極と、第1の電極、第2の電極及び第3の電極の電位を制御する制御部と、第1の電極又は第3の電極と第2の電極との間に流れる電流又は電気抵抗を測定する測定部と、を備え、第1の電極と第3の電極の間に電圧を印加して第1の区画内で荷電粒子を濃縮し、荷電粒子が細孔を通過することに伴う電流又は電気抵抗の変化を測定部で測定することにより荷電粒子を計測する。
 また、本発明による粒子分析方法は、細孔によって接続された第1の区画と第2の区画を有する容器に導電性液体を導入する工程と、第1の区画に検出対象となる荷電粒子を含む試料液体を導入する工程と、第1の区画に細孔に向かう向きの電気泳動力を作用させて荷電粒子を第1の区画内で濃縮する濃縮工程と、第1の区画から細孔を介して第2の区画に向かう向きの電気泳動力を作用させて荷電粒子を細孔に通過させ、細孔を流れる電流の変化あるいは細孔をまたぐ電気抵抗の変化を測定して細孔を通過する荷電粒子を計測する計測工程と、を有する。
 本発明によれば、第1の区画の内部に導入された試料液体に含まれる荷電粒子の大部分が細孔近傍の領域に濃縮される。荷電粒子を細孔近傍に濃縮してから細孔に導入することで、荷電粒子の検出効率を格段に向上させることができ、希薄な試料に対しても効率的に抵抗パルス測定を行うことができる。また、電極間に印加する電圧を制御することで、荷電粒子の濃縮率及び荷電粒子の細孔通過時間を容易に所望の程度に調整することができる。
 上記以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明による粒子分析装置の一実施例の模式図。 濃縮操作時の電気泳動力の分布の模式図。 計測操作時の電気泳動力の分布の模式図。 測定プロセスにおける粒子運動方向の電位分布を示す模式図。 計測プロセスのフロー、その際の電圧印加及びスイッチ開閉のシーケンス、及び電流計測のデータを示す説明図。 計測操作時における印加電圧が粒子の検出頻度及び細孔通過時間に与える影響を示す説明図。 濃縮操作時における印加電圧が粒子の検出頻度及び粒子の細孔通過時間に与える影響を示す説明図。 本発明による粒子分析装置の一実施例の模式図。 濃縮操作と計測操作を同時に行う場合の測定プロセスのフロー、電圧印加のシーケンス、及び電流計測のデータを示す説明図。 本発明による粒子分析装置の一実施例の模式図。 電圧印加シーケンス、及び電流計測のデータを示す説明図。 本発明による粒子分析装置の一実施例の模式図。 計測操作時の電気泳動力の分布の一例を示す模式図。 濃縮操作時の電気泳動力の分布の一例を示す模式図。 本発明による粒子分析装置の一実施例の模式図。 本発明による粒子分析装置の一実施例の模式図。
 本発明における荷電粒子とは、粒径が1nm~10μm、好ましくは1nm~1μmの範囲にあって、溶液中で電荷をもつ分子、粒子状物質、及びそれらの結合体又は凝集体をさす。荷電粒子には例えば、たんぱく質、核酸分子、炭素巨大分子、シリカ粉末、金属コロイド、高分子ビーズ、ウイルス、細胞などが含まれる。さらに、電荷をほとんど持たない粒子に対して、電荷を持つ粒子、例えば負に帯電したポリスチレン粒子を結合させて実効的な電荷を付与したものも、本発明における荷電粒子に含まれる。
 本発明の代表的な形態は、抵抗パルス法によって粒子を測定するための少なくとも1つの細孔と、荷電粒子を含む試料液体が導入される第1の区画と、細孔によって第1の区画と接続された第2の区画と、第1の区画の内部に設けられた第1の電極と、第2の区画の内部に設けられた第2の電極と、第1の区画の内部において第1の電極よりも細孔に近接した位置に設けられた第3の電極を具備する。
 細孔及び第1の区画と第2の区画の内部はそれぞれ導電性の液体で満たされる。第1の電極と第3の電極の間に電圧を印加することで第1の区画の内部に電場を誘起し、この電場中で荷電粒子を電気泳動させることで第1の区画の内部の細孔近傍の領域に荷電粒子を濃縮する。荷電粒子を濃縮した後に、第1の電極と第3の電極のいずれか又は両方と第2の電極の間に電圧を印加することで、細孔近傍の領域に電場を誘起し、細孔近傍の領域において濃縮された荷電粒子に対して抵抗パルス測定を行う。
 荷電粒子の進行方向に垂直な細孔の幅は、荷電粒子が通過できる程度の寸法である。すなわち、細孔の幅は1nm~50μm、好ましくは1nm~5μmの範囲である。また、荷電粒子の進行方向に沿った細孔の長さは、典型的には細孔の幅に対して10分の1から10倍程度の範囲である。
 荷電粒子の進行方向に垂直な第1の区画及び第2の区画の幅は、試料液体及び導電性の液体を導入でき、なおかつ細孔の幅よりも十分に大きい程度の寸法である。すなわち、第1の区画及び第2の区画の幅は1μm~100mm、好ましくは10μm~10mmの範囲である。また、荷電粒子の進行方向に沿った第1の区画及び第2の区画の長さは、典型的には100μm~1000mm、好ましくは1mm~100mmの範囲である。
 従来の公知の方法においては、2つの電極が第1の区画と第2の区画にそれぞれ1つずつ設けられていた。そのため、2つの電極間に印加した電圧は、その大部分が細孔部での電圧降下に寄与し、第1の区画及び第2の区画の内部にはほとんど実効電圧が印加されなかった。しかし、本発明においては第3の電極を設けることで第1の区画内においても効果的に電圧を印加することができ、試料液体中の粒子の大部分を駆動して細孔の近傍まで運搬することが可能である。
 以下、本発明の実施例について図面を用いて説明する。なお、以下に説明する実施例は一例であり、本発明の要旨を逸脱しない範囲で変形実施することが可能である。また、1つの例示的な態様と共に図示又は記述される特色を、他の態様の特色と組み合わせてもよい。各実施例の図面において既に説明した構成要素については同じ符号を付して対応関係を明確にしている。
 図1は、本発明による粒子分析装置の一実施例の模式図である。本装置は、第1の区画101と第2の区画102、及びそれらを連結する細孔103を備える。第1の区画と第2の区画と細孔の内部にはそれぞれ導電性の液体が収容される。第1の区画の内部及び第2の区画の内部には、それぞれ第1の電極111及び第2の電極112が設けられている。また、第1の区画の内部にはさらに第3の電極113が設けられ、第3の電極113は第1の電極111よりも細孔103に近い領域に位置する。
 全ての電極は導電性の液体に対して電気的に接触している。また、全ての電極に対して電圧源及びスイッチの少なくともどちらかが接続されており、それらを用いて各電極の電位及び回路への接続状態を制御できる。したがって、電圧源は可変電圧源であることが好ましい。第1、第2、第3の電極の少なくとも一つには電流計又は抵抗計が接続されており、細孔を流れる電流あるいは細孔をまたぐ電気抵抗を測定することができる。このような測定を可能にするためには、第2の電極に電流計又は抵抗計が接続されていることが好ましい。
 図1では、第1の電極111に可変電圧源121が接続され、第2の電極112に電流計120が接続された実施例を示している。また、それぞれの電極には開閉スイッチS1,S2,S3が設けられ、オン/オフを任意に切り替えられる。スイッチS1,S2,S3の開閉及び可変電圧源121の設定電圧は制御部140によって制御される。
 試料液体は第1の区画101に導入される。試料液体には検出対象となる荷電粒子104が含まれる。第2の区画102には導電性液体が導入されるが、この導電性液体は試料液体そのものであってもよい。
 第1の区画101と第2の区画102は必ずしも密閉されている必要はない。したがって、導電性液体や試料液体を導入するため流路や電極を設置するためのポートが接続されており、その終端部は開放されていてもよい。
 測定プロセスの第1段階は荷電粒子の濃縮操作である。図2は、図1に示した実施例における荷電粒子濃縮操作中の装置内部の電気泳動力の分布を示す模式図である。試料液体が第1の区画101に導入された後、第1の電極111と第3の電極113の間に電圧Vconcを印加する。第1の区画101の内部で荷電粒子104は[式1]に従って運動する。電圧の極性は、検出対象の荷電粒子を第3の電極113へと駆動する向きとする。すなわち、例えば負のゼータ電位をもつ粒子に対しては、電圧源121を負の値に設定する。以上のように各電極の状態を制御することで、荷電粒子が第1の電極111から第3の電極113へ向かう方向に電気泳動によって駆動され、第3の電極近傍の濃縮領域201に荷電粒子104が偏在する。
[式1]
  u=εEζ/η
   u:電気泳動速度ベクトル
   ε:導電性液体の誘電率
   E:電場ベクトル
   ζ:荷電粒子のゼータ電位
   η:導電性液体の粘性係数
 測定プロセスの第2段階は荷電粒子の計測操作である。図3は、図1に示した実施例における荷電粒子の計測操作中の装置内部の電気泳動力の分布を示す模式図である。濃縮操作を行った後、細孔103の近傍に測定電場領域202を誘起することで荷電粒子104を細孔103に導入し、抵抗パルス測定を行う。この計測操作は、例えばスイッチS1,S2をオン、スイッチS3をオフとし、第1の電極111と第2の電極112の間に電圧Vmeasを印加した状態で電流測定を行うことで実施することができる。
 濃縮操作中にスイッチS2をオフにすることで、電場が誘起される領域を第1の区画101の内部のみに限定することができる。すなわち、荷電粒子104が細孔103を通過するような電気泳動力が発生せず、荷電粒子の濃縮操作と計測操作を分離することができる。これにより、濃縮率の制御をより精密に行うことができる。
 図4は、以上で説明した測定プロセスにおける粒子運動方向の電位分布を示す模式図である。図4(a)は従来法における電位分布を示し、図4(b)は本実施例における電位分布を示す。従来法では、細孔の両端に印加した電圧は大部分が細孔領域に印加され、細孔の外部での電位勾配は細孔内部と比較して典型的には10-2~10-3程度の大きさである。一方、本実施例においては、濃縮プロセスにおいて電圧Vconcのすべてを第1の区画内に印加することができる。したがって、従来法と比較して第1の区画内において102~103程度大きな電位勾配を形成することができ、102~103程度の濃縮効果が得られる。
 図5は、以上に説明した計測プロセスのフロー、その際の電圧印加及びスイッチ開閉のシーケンス、及び電流計測のデータを示す説明図である。
 図5に示すように、粒子分析プロセスは、細孔によって接続された第1の区画と第2の区画を有する容器に導電性液体を導入する工程、第1の区画に検出対象となる荷電粒子を含む試料液体を導入する工程、第1の区画に細孔に向かう向きの電気泳動力を作用させて荷電粒子を第1の区画の細孔の近くに濃縮する荷電粒子濃縮工程、第1の区画から細孔を介して第2の区画に向かう向きの電気泳動力を作用させて荷電粒子を細孔に通過させ、細孔を流れる電流の変化あるいは細孔をまたぐ電気抵抗の変化を測定して細孔を通過する荷電粒子を計測する荷電粒子計測工程と、を有する。
 荷電粒子濃縮工程ではスイッチS1,S3をオン、スイッチS2をオフにすることによって第1の区画にのみ電位勾配を形成し、荷電粒子計測工程では例えばスイッチS1,S2をオン、スイッチS3をオフにすることによって細孔を含む領域に電位勾配を形成する。荷電粒子濃縮工程で印加する電圧Vconcと荷電粒子計測工程で印加する電圧Vmeasの関係については後述する。こうして荷電粒子計測工程において、電流計測データが得られる。
 次に、本発明で開示される粒子分析装置を用いて、粒子の検出頻度と粒子の細孔通過時間を調整する方法について説明する。
 図6は、計測操作時における印加電圧Vmeasが粒子の検出頻度及び粒子の細孔通過時間に与える影響を示す説明図である。図6(a)、図6(b)、図6(c)は印加電圧の絶対値|Vmeas|を大きくしていった時の電流測定データの変化を示す。粒子の細孔通過時間tpass及び粒子の検出イベントの間隔tintervalは|Vmeas|に反比例する。ここで、粒子検出頻度はtintervalの逆数で与えられる。
 図6(c)は粒子の細孔通過時間が測定装置の帯域よりも短い場合を示している。測定装置の帯域よりも粒子が速く細孔を通過した場合、測定装置が信号変化に追随しきれず、信号値は真の値よりも小さくなる。したがって、計測操作を適切に行うためには、粒子の通過が正確に測定できる程度まで|Vmeas|を小さくすることが望ましい。
 図7は、濃縮操作時における印加電圧Vconcが粒子の検出頻度及び粒子の細孔通過時間に与える影響を示す説明図である。図7(a)、図7(b)は印加電圧の絶対値|Vconc|を大きくしていった時の電流測定データの変化を示す。粒子の検出イベントの間隔tintervalは、細孔近傍の粒子密度に反比例する。粒子の濃縮率はおよそ|Vconc|に比例するため、tintervalは|Vconc|に反比例する。一方、粒子の細孔通過時間tpassは|Vconc|によらない。
 以上より、粒子検出頻度はtintervalの逆数で与えられ、|Vmeas|と|Vconc|の積に比例する。一方、粒子の細孔通過時間tpassは|Vmeas|のみに反比例する。したがって、VmeasとVconcを調整することで、粒子の検出頻度と細孔通過時間を独立に制御することが可能である。
 電圧源は少なくとも一つ必要であるが、図1で示した例とは異なり、第2の電極又は第3の電極に対して電圧源が接続された構成をとることもできる。また、第1、第2、第3の電極の複数に電圧源が接続されていても同様の測定が可能であることは明らかである。図8には、第1の電極111に加え、さらに第3の電極113に対して電圧源122を接続した実施例を示した。このように複数の電圧源を備えることで、全ての電極間の電圧を同時かつ独立に制御でき、粒子の検出頻度及び粒子の細孔通過時間を調整することが容易となる。
 図5では、濃縮操作と計測操作を分離した測定プロセスについて説明したが、これらの二つの操作を分離せずに同時に実行することも可能である。すなわち、第1、第2、第3の電極の全てに同時に電圧を印加することで、濃縮操作と計測操作を同時に実行することができる。このような測定は、例えば図8に示した装置構成において実施することができる。
 図8は、本発明による粒子分析装置の一実施例の模式図である。本実施例では、第1の電極111に可変電圧源121が接続されるとともに、第3の電極113にも可変電圧源122が接続されている。この際、第3の電極に印加する電圧は第1の電極と第2の電極に印加する電圧の間の値であることが好ましい。
 図9は、図8に示した実施例において、濃縮操作と計測操作を同時に行う場合の測定プロセスのフロー、その際の電圧印加のシーケンス、さらに電流計測のデータを示す説明図である。本実施例では、濃縮操作の印加電圧は|V1-V2|に対応し、計測操作の印加電圧は|V2|に対応する。測定開始後、細孔を通過する粒子の検出が始まるが、同時に濃縮過程も進行するため、粒子の検出頻度は時間とともに増大する。
 粒子の検出頻度及び細孔通過時間を調整するために、得られた測定結果をフィードバックし、印加電圧を制御することが有効である。図10は、図8に示した装置構成に加えて、フィードバック制御部を設けた粒子分析装置の実施例を示す模式図である。本実施例では、制御部140で電流測定データを解析し、その解析結果に応じて印加電圧を調整することで、所望の粒子の検出頻度と細孔通過時間を得ることができる。
 図11は、図10で示した実施例における電圧印加のシーケンスと電流計測のデータの一例を示す説明図である。まず、|V1|と|V2|を同時に増加させながら、粒子の細孔通過時間を短縮していく。所望の細孔通過時間が得られたら、|V2|を固定し、|V1|をさらに増大させることで濃縮操作を行う。所望の粒子の検出頻度が得られたら、|V1|を固定して測定を行う。このようにして、最終的に所望の粒子の検出頻度と細孔通過時間を得ることができる。
 次に、第3の電極と細孔の位置関係について説明する。濃縮操作では荷電粒子は第3の電極113の近傍の濃縮領域201に偏在し、また測定操作では細孔103の近傍に誘起された測定電場領域202の内部に到達した粒子が細孔103に導入される。したがって、十分な検出効率を得るためには第3の電極113は第1の区画101の内部において細孔103のごく近傍にあることが好ましい。第3の電極113と細孔103の間の好適な距離は、典型的には細孔の径と同程度以内である。このような構造を実現するために、半導体微細加工技術が有効である。
 図1の例では、第3の電極113は細孔103を囲むように設けられた環状電極である。このような構造は、例えば半導体基板上に薄膜を形成し、該薄膜上に貫通細孔と第3の電極を微細加工することで形成される。また、第1の電極111と第2の電極112と細孔103は必ずしも同軸上に設ける必要はなく、図12で示すような直交配置をとることもできる。このような構造は、例えば半導体基板表面にリソグラフィによって流路構造・細孔・電極を微細加工することで形成される。
 図13は、本発明による粒子分析装置の他の実施例における荷電粒子の計測操作時の電気泳動力の分布の一例を示す模式図である。本実施例では、第1の区画101に含まれる導電性液体の電気伝導度は、第2の区画102に含まれる導電性液体の電気伝導度よりも小さい。このとき、細孔103の近傍に誘起される測定電場領域202は第1の区画101側と第2の区画102側で非対称となる。すなわち、電気伝導度が第1の区画と第2の区画において等しい場合と比較して、測定電場領域202は第1の区画101側で拡大し、第2の区画102側で縮小する。第1の区画101においてより多くの粒子が測定電場領域202に取り込まれる結果、より多くの荷電粒子が細孔103に導入されることとなり、図1で示した実施例と比較して計測操作における検出効率が向上する。
 図14は、本発明による粒子分析装置の他の実施例において、荷電粒子を濃縮操作する時の第1の区画内における電気泳動力301の分布の一例を示す模式図である。本実施例では、濃縮操作の段階において、第1の区画101の内部で荷電粒子104の電気泳動速度がより大きい領域211とより小さい領域212が存在する。すなわち、荷電粒子104を第3の電極113の方向へ駆動する電気泳動力301が細孔103に対して近接した位置において低減する領域212が存在する。このとき、電気泳動速度が減少する界面203において荷電粒子104が滞留することとなる。したがって、界面203の近傍に荷電粒子104が濃縮される。
 領域211における電気泳動速度が大きいほど、荷電粒子は速やかに濃縮される。界面203において濃縮された荷電粒子104は、引き続き領域212において電気泳動で駆動され、やがて細孔103の近傍に到達する。その後、計測操作を行うことで、高効率で荷電粒子を検出することができる。
 また、界面203と細孔103の位置が近接するように流路の設計を最適化することで、さらに速やかに荷電粒子を細孔103に導入することが可能となる。
 図14で示した実施例は、図13で示した実施例と組み合わせて実施することができる。すなわち、図14で示した実施例において、第2の区画の内部に充填される導電性液体の電気伝導度を第1の区画の内部に充填される導電性液体の電気伝導度よりも大きくする。このとき、図14の実施例で示した濃縮効果と、図13の実施例で示した計測操作における検出効率向上効果が同時に得られ、それぞれを単独で実施した場合と比較して最終的な検出効率がさらに向上する。
 図15は、図14で示した実施例に対応した実施形態の一つである。本実施例では、第1の区画101の内部において、試料液体が導入された領域の外部でかつ細孔103に対してより近接した領域に含まれる導電性液体の電気伝導度が、試料液体の電気伝導度よりも大きいことを特徴とする。
 このような電気伝導度の異なる液体の界面は、以下のように液体導入操作を行うことで形成される。本実施例では、第1の区画101に3個の液体導入ポート141,142,143が設けられている。図示のように、液体導入ポート141は細孔103から離れた位置に設けられ、液体導入ポート143は細孔103の近くに設けられている。液体導入ポート142は、2つの液体導入ポート141,143の間に設けられている。図には液体導入ポート142を他の液体導入ポートとは反対側の側面に設けた例を示したが、同じ側面に位置する反対側の側面に位置するかは重要ではない。第1の区画101内での荷電粒子の進行方向における3個の液体導入ポート141,142,143の位置関係だけが重要である。
 まず、液体導入ポート141,142,143を開放し、これらのいずれかから試料液体よりも大きな電気伝導度を有する導電性液体を導入することで、第1の区画101を該導電性液体で充填する。その後、液体導入ポート143を閉め、液体導入ポート141,142の一方から荷電粒子を含む試料液体を導入し、試料液体の導入によって押し出される導電性液体を他方の液体導入ポートから排出することで、液体導入ポート141から142までの領域151を試料液体で置換する。以上の操作により、液体導入ポート141から142までの領域151は試料液体が充填され、液体導入ポート142から143までの領域152はより大きな電気伝導度を有する導電性液体で充填される。
 以上のように試料液体が導入された状態において、第1の電極111と第3の電極113に対して電気泳動力が第3の電極113に向かう極性の電圧を印加して電場を誘起する。領域151と領域152では、その電気抵抗率は領域151においてより大きい。したがって、領域151での電場強度は領域152での電場強度より大きくなる。第1の区画101の幅が均一である場合には、各領域における電場強度はその領域の電気抵抗率に比例する。
 式(1)に記述されるとおり、電気泳動速度はその位置における電場強度に比例する。したがって、領域151と領域152の界面203では電気泳動速度が低下し、荷電粒子が滞留・濃縮される。さらに第1の電極111と第3の電極113間に電圧を印加し続けることで、粒子は濃縮されたまま細孔103の近傍へと駆動される。
 領域151と領域152の界面203を保つために、対流による2液の混合の影響を低減することが望ましい。そのためには第1の区画101の幅を小さくすることが有効であり、好ましくは100μm以下である。
 図16は、図14で示した実施例に対応した実施形態の一つを示す断面模式図である。本実施例では、第1の区画101の内部において、第1の電極111と第3の電極113の間に隘路部161があることを特徴とする。第1の電極111と第3の電極113の間に電圧を印加すると、第1の区画101内に電場分布が生じる。この時、電場強度は隘路部161においては相対的により大きくなり、また隘路部161の外部においてはより小さくなる。したがって、隘路部161において電気泳動速度は相対的に大きくなる。隘路部161の出口側において電気泳動速度が低下するため、隘路部161の出口近傍に荷電粒子104は滞留・濃縮される。
 図16で示した実施例においては、隘路部161において比較的大きな電圧降下が生じる。そのため、計測操作時に細孔103に効果的に電圧を印加するために、第2の電極と第3の電極の間に電圧を印加することが望ましい。
 図15で示した実施形態と図16で示した実施形態は、組み合わせて実施することが可能である。例えば、図15で示した実施形態において、液体導入ポート143と第3の電極113の間に隘路部を設けることができる。また、図16で示した実施形態において、隘路部161と第3の電極113の間の領域を試料液体よりも電気伝導度の大きな溶液で満たすことができる。このように二つの実施形態を組み合わせることで、さらに濃縮効率を向上させることができる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
101 第1の区画
102 第2の区画
103 細孔
104 荷電粒子
111 第1の電極
112 第2の電極
113 第3の電極
120 電流計
121,122 電圧源
140 制御部
141,142,143 液体導入ポート
151 試料液体で満たされた領域
152 試料液体でない導電性液体で満たされた領域
161 隘路部
201 濃縮領域
202 測定電場領域
211 電気泳動速度がより大きな領域
212 電気泳動速度がより小さな領域
301 電気泳動力

Claims (12)

  1.  検出対象となる荷電粒子を含む導電性液体が導入される第1の区画と、
     導電性液体が導入される第2の区画と、
     前記第1の区画と前記第2の区画を接続する細孔と、
     前記第1の区画の内部に設けられた第1の電極と、
     前記第2の区画の内部に設けられた第2の電極と、
     前記第1の区画の内部において前記第1の電極よりも前記細孔に近接した位置に設けられた第3の電極と、
     前記第1の電極、前記第2の電極及び前記第3の電極の電位を制御する制御部と、
     前記第1の電極又は前記第3の電極と前記第2の電極との間に流れる電流又は電気抵抗を測定する測定部と、を備え、
     前記第1の電極と前記第3の電極の間に電圧を印加して前記第1の区画内で荷電粒子を濃縮し、
     荷電粒子が前記細孔を通過することに伴う電流又は電気抵抗の変化を前記測定部で測定することにより荷電粒子を計測する、粒子分析装置。
  2.  前記第1の区画に含まれる導電性液体の電気伝導度が、前記第2の区画に含まれる導電性液体の電気伝導度よりも小さい、請求項1に記載の粒子分析装置。
  3.  前記第1の区画の内部の前記細孔に対して近接した領域において荷電粒子を前記第3の電極の方向へ駆動する電気泳動力が低減している、請求項1に記載の粒子分析装置。
  4.  前記第1の区画の内部において、試料液体が導入された領域外でかつ前記細孔に対してより近接した領域に含まれる液体の電気伝導度が試料液体の電気伝導度よりも大きい、請求項3に記載の粒子分析装置。
  5.  前記第1の区画は前記第1の電極と前記第3の電極の間に隘路部を有する、請求項3に記載の粒子分析装置。
  6.  前記第3の電極は前記細孔を囲むように設けられた環状電極である、請求項1に記載の粒子分析装置。
  7.  細孔によって接続された第1の区画と第2の区画を有する容器に導電性液体を導入する工程と、
     前記第1の区画に検出対象となる荷電粒子を含む試料液体を導入する工程と、
     前記第1の区画に前記細孔に向かう向きの電気泳動力を作用させて荷電粒子を前記第1の区画内で濃縮する濃縮工程と、
     前記第1の区画から前記細孔を介して前記第2の区画に向かう向きの電気泳動力を作用させて荷電粒子を前記細孔に通過させ、前記細孔を流れる電流の変化あるいは前記細孔をまたぐ電気抵抗の変化を測定して前記細孔を通過する荷電粒子を計測する計測工程と、
     を有する粒子分析方法。
  8.  前記濃縮工程では、前記第1の区画の内部に設けられた第1の電極と、前記第1の区画の内部において前記第1の電極よりも前記細孔に近接した位置に設けられた第3の電極との間に電圧を印加し、
     前記計測工程では、前記第1の電極又は前記第3の電極と前記第2の電極の間に電圧を印加する、
     請求項7に記載の粒子分析方法。
  9.  前記濃縮工程と前記計測工程を同時に行う、請求項7に記載の粒子分析方法。
  10.  前記第1の電極又は前記第3の電極と前記第2の電極の間に印加する電圧を制御して荷電粒子の細孔通過時間を調整し、前記第1の電極と前記第3の電極の間に印加する電圧を制御して荷電粒子の検出頻度を調整する、請求項8に記載の粒子分析方法。
  11.  前記荷電粒子の細孔通過時間及び前記荷電粒子の検出頻度の測定結果を前記電極間の電圧にフィードバックすることで、前記細孔通過時間及び検出頻度が所望の程度になるように制御する、請求項10に記載の粒子分析方法。
  12.  前記導電性液体は試料液体より大きな電気伝導度を有し、前記試料液体を導入する工程では、前記第1の区画のうち前記細孔から遠い側の領域の前記導電性液体を前記試料液体で置換する、請求項7に記載の粒子分析方法。
PCT/JP2015/056557 2015-03-05 2015-03-05 粒子分析装置及び粒子分析方法 WO2016139809A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/056557 WO2016139809A1 (ja) 2015-03-05 2015-03-05 粒子分析装置及び粒子分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/056557 WO2016139809A1 (ja) 2015-03-05 2015-03-05 粒子分析装置及び粒子分析方法

Publications (1)

Publication Number Publication Date
WO2016139809A1 true WO2016139809A1 (ja) 2016-09-09

Family

ID=56849269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056557 WO2016139809A1 (ja) 2015-03-05 2015-03-05 粒子分析装置及び粒子分析方法

Country Status (1)

Country Link
WO (1) WO2016139809A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109580716A (zh) * 2018-11-23 2019-04-05 浙江大学 基于静电检测的循环流化床提升段气固流型的识别方法
GB2588422A (en) * 2019-10-23 2021-04-28 Univ Loughborough Shape analysis device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49117090U (ja) * 1973-01-31 1974-10-05
JPS57203356U (ja) * 1973-10-12 1982-12-24
JP2002508077A (ja) * 1997-07-03 2002-03-12 コールター インターナショナル コーポレイション 粒子を感知して特性表示する方法及び装置
US6426615B1 (en) * 1998-02-13 2002-07-30 Shailesh Mehta Apparatus and method for analyzing particles
US20030159932A1 (en) * 2000-05-03 2003-08-28 Betts Walter Bernard Method and apparatus for analysing low concentrations of particles
JP2008523402A (ja) * 2004-12-13 2008-07-03 オーストラロ・リミテッド 粒子および電磁放射線の検出、測定および制御
JP2013518268A (ja) * 2010-01-27 2013-05-20 アイゾン・サイエンス・リミテッド アパーチャにおける粒子流れの制御

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49117090U (ja) * 1973-01-31 1974-10-05
JPS57203356U (ja) * 1973-10-12 1982-12-24
JP2002508077A (ja) * 1997-07-03 2002-03-12 コールター インターナショナル コーポレイション 粒子を感知して特性表示する方法及び装置
US6426615B1 (en) * 1998-02-13 2002-07-30 Shailesh Mehta Apparatus and method for analyzing particles
US20030159932A1 (en) * 2000-05-03 2003-08-28 Betts Walter Bernard Method and apparatus for analysing low concentrations of particles
JP2008523402A (ja) * 2004-12-13 2008-07-03 オーストラロ・リミテッド 粒子および電磁放射線の検出、測定および制御
JP2013518268A (ja) * 2010-01-27 2013-05-20 アイゾン・サイエンス・リミテッド アパーチャにおける粒子流れの制御

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MENI WANUNU ET AL.: "Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient", NATURE NANOTECHNOLOGY, 23 February 2010 (2010-02-23), pages 160 - 165, XP055134839, DOI: doi:10.1038/nnano.2009.379 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109580716A (zh) * 2018-11-23 2019-04-05 浙江大学 基于静电检测的循环流化床提升段气固流型的识别方法
CN109580716B (zh) * 2018-11-23 2020-10-30 浙江大学 基于静电检测的循环流化床提升段气固流型的识别方法
GB2588422A (en) * 2019-10-23 2021-04-28 Univ Loughborough Shape analysis device

Similar Documents

Publication Publication Date Title
Martinez‐Duarte et al. Dielectrophoresis of lambda‐DNA using 3D carbon electrodes
US11298699B2 (en) Separation and analysis of samples bymicrofluidic free-flow electrophoresis
KR100624460B1 (ko) 나노 내지 마이크로 크기의 포어가 형성되어 있는 막을 포함하는 미세유동장치 및 그를 이용하여 분극성 물질을 분리하는 방법
Ko et al. Electroosmotic flow of non‐Newtonian fluids in a constriction microchannel
US8702940B2 (en) Increased molecule capture rate into a nanopore
KR101581099B1 (ko) 분자 디스펜서들
CA2667463A1 (en) Novel methods, kits and devices for isotachophoresis applications
JP2006017731A5 (ja)
WO2016139809A1 (ja) 粒子分析装置及び粒子分析方法
JP2017090393A (ja) イオン移動度分離装置
Solsona et al. Gradient in the electric field for particle position detection in microfluidic channels
Gillams et al. Electrokinetic deterministic lateral displacement for fractionation of vesicles and nano-particles
Klepárník et al. Analyte transport in liquid junction nano‐electrospray interface between capillary electrophoresis and mass spectrometry
Stanke et al. Fluid streaming above interdigitated electrodes in dielectrophoresis experiments
Regtmeier et al. Continuous‐flow separation of nanoparticles by electrostatic sieving at a micro‐nanofluidic interface
US7708871B2 (en) Nanodevice for controlled charged particle flow and method for producing same
KR101034350B1 (ko) 평판 전극의 전류 밀도 차이를 이용한 입자 농축 및 분리 장치
Plecis et al. Flow field effect transistors with polarisable interface for EOF tunable microfluidic separation devices
Zhang et al. Electric field control and analyte transport in Si/SiO 2 fluidic nanochannels
US8287712B2 (en) Stationary separation system for mixture components
Wu et al. Charge-selective gate of arrayed MWCNTs for ultra high-efficient biomolecule enrichment by nano-electrostatic sieving (NES)
JP4045242B2 (ja) 交流電場とtチャンネルとを利用してゼータ電位を測定する方法及び装置
Song et al. A novel method for measuring zeta potentials of solid–liquid interfaces
JP7405226B2 (ja) 検出装置
EP1542788A1 (en) Nanodevice for controlled charged particle flow and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15883976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP