WO2016139516A1 - Sistema y procedimiento de control de acceso controlado por medio de un dispositivo óptico de bandas planas - Google Patents

Sistema y procedimiento de control de acceso controlado por medio de un dispositivo óptico de bandas planas Download PDF

Info

Publication number
WO2016139516A1
WO2016139516A1 PCT/IB2015/054846 IB2015054846W WO2016139516A1 WO 2016139516 A1 WO2016139516 A1 WO 2016139516A1 IB 2015054846 W IB2015054846 W IB 2015054846W WO 2016139516 A1 WO2016139516 A1 WO 2016139516A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
light
amplitude
phase
access
Prior art date
Application number
PCT/IB2015/054846
Other languages
English (en)
French (fr)
Inventor
Rodrigo Andrés Vicencio Poblete
Cristian Camilo Mejía Cortés
Luis Esteban Alejandro Morales Inostroza
Camilo Gonzalo Cantillano Carreño
Bastián Maximiliano Real Elgueda
Original Assignee
Universidad De Chile
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Chile filed Critical Universidad De Chile
Priority to US15/321,944 priority Critical patent/US10274677B2/en
Publication of WO2016139516A1 publication Critical patent/WO2016139516A1/es

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/06009Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking
    • G06K19/06037Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking multi-dimensional coding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10712Fixed beam scanning
    • G06K7/10722Photodetector array or CCD scanning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K2007/10485Arrangement of optical elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K2019/06215Aspects not covered by other subgroups
    • G06K2019/06253Aspects not covered by other subgroups for a specific application

Definitions

  • the invention consists in the use of photonic crystals with unconventional geometries (which have at least one flat band) to grant or deny controlled access to a place, device or information.
  • photonic crystals or other periodic systems it is possible to form images that do not diffract or destroy, transporting information reliably from one end to the other of the photonic crystal or other periodic systems, regardless of the propagation distance. Reliable transport of information is a critical problem in any technological system.
  • the present invention describes a solution to the problem of granting or denying controlled access to a place, device or information, through identification, by checking a defined physical element, wherein said physical element is a periodic system of light transport, in an optical context and with a low level of power, whereby it is possible to form images that do not diffract or destroy, such as in a photonic crystal of unconventional geometry.
  • the present invention operates at a low level of power since it uses only the linear properties of these crystals, being more economical, and in turn, presenting great spatial flexibility by not depending on a specific region or pattern, in a completely homogeneous and periodic arrangement .
  • the modification of the geometry from a conventional photonic crystal to an unconventional one generates profound changes in the linear properties, and therefore, in the propagation of light through them.
  • a sequence of these patterns are propagated on the glass, obtaining a sequence of images in a CCD camera, (Charge Coupled Device) , docked charging device. Subsequently, these images are analyzed and recognized on a computer, associating a respective number with each pattern.
  • a sequence of N patterns constitutes a password (password) that grants or denies access to a device, place or information to a user.
  • the propagation of images / patterns located in periodic photonic crystals presents, essentially, two practical solutions, although with the same fundamental idea behind.
  • the first theoretical idea is the creation of guides of non-homogeneous photonic crystals (via doping of the material in a particular region or via a variation of the geometric parameters, generally called as impurity or imperfection), which would allow to propagate a specific pattern that would be determined by the spatial distribution of the non-homogeneous crystal.
  • impurity or imperfection a variation of the geometric parameters
  • the non-linear properties allow the auto-location of the light by increasing or decreasing (depending on the application) the refractive index locally and making the light propagate following these self-induced patterns.
  • the present invention describes as a solution to this problem of the art, to use the special linear properties of certain homogeneous photonic crystals, with an origin in a particular unconventional geometry, but without requirements of optical power or propagation distance.
  • Patent application WO2009050448A1 which presents a method for constructing an optically variable safety device.
  • the material of a photonic crystal is supplied and a process is performed on the material, causing deformation thereof to form a first region (A) whereby the incident light that is received by the crystal is selectively reflected or transmitted. to generate a first optically variable effect, and a second region (B) in which the incident light received generates an optical effect, different from the first optically variable effect.
  • the present invention describes how to achieve the combination of these modes coherently, and the sending along the glass of composite images so that they do not suffer distortion by transmission at arbitrary distances (reliable propagation).
  • the invention set forth herein describes a controlled access system, through the use of reliable propagation, of images / composites, at arbitrary distances, as a linear combination of localized modes from the flat band of an unconventional photonic crystal.
  • the present invention presents a solution to the problem of propagation without diffraction of images with a geometry and physiognomy determined by the topology of the specific photonic crystal used.
  • Photonic crystals are specially manufactured optical structures, in which the refractive index (main optical property of a material) is spatially modulated, being higher in the area of light conduction (waveguides), and with a pattern that is repeated periodically (forming a crystalline structure).
  • the main functionality of these devices is to control the propagation of light using the linear properties that arise as a result of the particular geometry of each crystal (it seeks to make a simile of the advances of electronics, but with photons instead of electrons).
  • a typical example is shown in Fig. 1 (a).
  • the differences in refractive index between the guide and the wrapping material can be very small (of the order of 10 ⁇ -4 or 10 ⁇ -3), which ensures that each guide is essentially monomodal and thus allows the propagation of light in terms of its lowest linear spectrum, based on combinations of the fundamental mode of each of the guides that make up the arrangement.
  • ⁇ ( ⁇ ⁇ , ⁇ )
  • the combinations of the modes of each guide will give rise to different super-modes of the arrangement, which for conventional geometries will cover virtually the entire photonic crystal; that is, the linear modes of a typical (conventional) system will be spatially delocalized and occupy a large part of the area of the crystal [see examples in Fig. 1 (c)].
  • photonic crystals that present this type of flat-band property are the Lieb, Kagome, Sawtooth, Stub network, among others. All these geometries have a common property with respect to the minimum description of the periodic structure (unit cell): the unit cell is made up of at least two sites with different short-range interactions. Therefore, there is a certain degree of asymmetry in the coupling / interaction, which produces a geometric distinction between these sites and, therefore, different linear properties associated with each. All unconventional crystals that have at least one flat band would be good candidates to implement the present concept of information transmission.
  • the main focus of the present invention is on the sending of optical information using the linear location properties of these systems;
  • this solution covers every periodic system with unconventional geometries, independent of their physical nature (we can observe a similar phenomenology for electrons, cold atoms, phonons, photons, etc .; where the main thing is the restriction geometry (network ) unconventional, and that the particle under study behaves like a wave).
  • This solution can be applied in electronic systems, cold atoms in optical networks, spintronics, quantum dot arrays, microoscillator arrays, micropillary arrays, protein chains, etc .; in general, in every physical system in which there are periodic restrictions.
  • the inventors have focused on the use of the Lieb network. This essentially due to the robustness of its linear properties. Unlike Kagome or Sawtooth, the natural anisotrophies of the materials or the manufacturing process of the photonic crystal do not modify the linear properties of the Lieb network. Both Kagome and Sawtooth lose the flat band if the distances and / or orientation of the guides are not finely constructed.
  • Typical experimental implementations such as the manufacture of arrangements via burning with femtosecond lasers [see Fig. 3 (a)], produce arrangements with non-symmetrical guides, but with an elliptical geometry, which induce a greater effective coupling in the Ellipticity address.
  • Fig. 4 (d) shows the possibility of superimposing localized modes, in order to generate more complex patterns as a result of a coherent linear combination. It is observed how the "sum" combination of two rings spreads perfectly, with a more intense central site due to the addition of amplitudes in that position. Other combinations were also developed, and all showed excellent propagation of the incident image to the exit face of the crystal. Simulations carried out for a greater propagation distance, show the same phenomenology, there is no destruction of the patterns and, therefore, the long distance images are preserved.
  • amplitude modulation was first performed generating, from a wide optical beam, an amplitude profile corresponding to a set of located beams / points, which in the case of the Lieb crystal correspond to 4 luminous points (ring) in the geometry of this crystal.
  • This amplitude modulated profile is subsequently phase modulated to achieve the desired optical structure, in line with the particular experiment.
  • this pattern / light image is optically brought to the face incident of a photonic crystal (7) of Lieb as shown in Fig. 3 (b).
  • Figure 5 (b) shows the image obtained for the propagation of the Lieb ring, which includes the phase difference ⁇ between neighboring ring amplitudes.
  • the propagation of the ring is stable, non-diffractant, and almost identical to the realistic simulation [Fig.4 (b)] and approximate simulation [Fig.2 (d)].
  • the calculation of similarity for the propagation of several rings in different regions of the photonic crystal gives us an average similarity value of 83% between the initial condition and the final image obtained when propagating.
  • a similarity value of about 75% is considered by the inventors as good, so a propagation can be defined as reliable. This value would be higher if an asymmetric ring in amplitude were injected as an initial condition.
  • the test was defined to define 10 different patterns (ten different linear combinations of 4 ring modes in the Lieb network) and associate them with numbers from 0 to 9.
  • P value a minimum defined similarity value
  • Controlled access consists in allowing a user access to a place, vault, opening security doors, accessing encrypted information, or any other desired controlled access.
  • One embodiment of the present invention is to use the combination of four located rings (Fig. 7 (a)), in a square region of the Lieb network; that is, forming a non-diffracting image via the combination of four modes of the flat band (rings), one in each quadrant (Fig. 7 (b)). All rings have the same frequency, therefore their combination is totally consistent. As the light pattern has amplitude and phase, different combinations of these rings can be made. As the combination involves the superposition of rings in amplitude and phase, in the central demarcated region (Fig. 7 (b)) there may or may not be light. Each central square can have or not light, that is, it can be labeled by a zero (0) or one (1).
  • the access code it is configured according to the 10 best combinations (more symmetrical experimental images) to associate a number from 0 to 9 to each pattern.
  • the recognition process when the final image is taken by the CCD camera ( 8), the presence or absence of light in these four demarcated regions is analyzed, determining the transmitted number defined as a sequence of zeros or ones.
  • an arbitrary length code can be propagated in the photonic crystal, and be recognized within a database, resulting in a recognition of a stored user.
  • the present invention describes and shows in examples the concept of image propagation in photonic crystals of flat bands, where the Lieb network is an example, and works in a good way under realistic conditions, as has been proven numerically and experimentally. In principle, this concept works in any system that presents flat bands, as long as the respective experimental conditions are satisfied.
  • This concept of generating and observing localized states from the particular geometry of systems with flat bands has a broad spectrum of physical systems in which applications could be found.
  • the concept of the present invention encompasses any system that uses wave propagation in periodic crystals, which may occur for light, for electrons, for cold atoms, for oscillators in general, for spintronics, quantum dots, or other subjected physicists to periodic restrictions.
  • the group of figures 1 show the properties and phenomenology typical in conventional networks without flat bands.
  • Figure 1 (a) Three-dimensional sketch of a photonic crystal of "rectangular" geometry.
  • the waveguides are drawn in gray (cylindrical tubes), while the envelope material in another shade of gray.
  • Inset Cross section of this crystalline structure, in which the horizontal and vertical distance between guides (circles) is identical (the lines are only visual aids to demarcate the interaction between nearby waveguides),
  • (b) First band for a photonic crystal of rectangular geometry (c) Examples of global modes of the rectangular photonic crystal, (d) Diffraction profile (below), for an arbitrary propagation distance, for two different initial conditions (above), for a rectangular photonic crystal.
  • the scale of intensities grows from black to gray to white.
  • the group of figures 2 show the properties and phenomenology of the unconventional network of Lieb.
  • Figure 2 Three-dimensional sketch of a photonic crystal of isotropic "Lieb" geometry. The guides are drawn in gray (cylindrical tubes), while the wrapping material in another shade of gray. Inset: Cross section of this crystal, (b) Band structure for photonic Lieb crystal. (c) Examples of global modes of the Lieb photonic crystal, which cover much of the arrangement, except for the ring belonging to the flat band [flat surface in (b)]. (d) Diffraction profile (below) for two different initial conditions (above), for a photonic Lieb crystal.
  • Figure 3 shows a preferred configuration of the assembly for the defined physical element (7) in which this invention is implemented.
  • the group of figures 3 show the experimental manufacturing and assembly technique for the Lieb photonic crystal in which this invention is implemented.
  • Figure 3 (a) Technique of manufacturing photonic crystals writing guides in arbitrary positions, by burning the envelope material (silica) in defined places. Thus, the index of refraction of the material changes and allows the creation of a guide for light conduction. (b) Microscopic image of a Lieb array designed in Chile and manufactured in Germany, with 341 waveguides and a separation between neighboring guides of 20 micrometers. (c) Experimental setup for the creation of the initial image and the study of its propagation along a photonic Lieb crystal. The group of figures 4 show realistic numerical simulations of the propagation of different initial conditions in the photonic crystal of Lieb.
  • the group of figures 5 show experimental images of the propagation of different initial conditions in the photonic crystal of Lieb.
  • the group of figures 6 show the experimental observation of the propagation of various images (patterns) propagated without diffraction in the photonic crystal of Lieb, as well as an example of coding.
  • the group of figures 7 shows a scheme of combinations of four Lieb rings, including the way of measuring light (1) or non-light (0) in four well-marked regions.
  • Figure 7. Configuration of points in pattern of 4 non-diffracting rings with different phase relationship, (a) combination of four located rings; (b) flat band modes (rings), one in each quadrant; (c) Combinations of 4 non-diffractant rings with different phase relationship coding the numbers from 0 to 9.
  • An access control system controlled to a user by means of checking a defined physical element, in an optical context and with a low power level comprising: an assembly (1) for the creation of arbitrary spatial light patterns, with amplitude and phase control; which includes:
  • a light source that emits a beam of light; towards a first objective microscope (11);
  • a spatial light modulator assembly (2) that receives the light from the first objective microscope (11) and said spatial light modulator assembly (2) sends a modulated profile in amplitude and phase that form an image to a BS beam splitter (17 ) dividing the image into an initial CCD camera (6) and a second objective microscope (12);
  • a defined physical element (7) that receives the initial image from the second objective microscope (12), and transmits the image without diffracting it as a final image to a third objective microscope (13);
  • a final CCD camera (8) receives the final image of the third objective microscope (13) and sends it to a computer (300) that compares said final image with the initial image, and performs a similarity calculation between both images to decide to grant access to the user, if the similarity is greater than a predefined value, and deny if the similarity is less than a predefined value.
  • SLM spatial light modulator assembly
  • a first amplitude modulator assembly (3) consisting of polarizers (30, 31), lenses (14a, 14b), a shutter (15), a spatial light modulator (16); a second phase modulator assembly (4), formed by wave retarders (40, 41, 42, 43, 44, 45); the spatial light modulator (16), a lens (14c) and mirrors (5b, 5c), where the light coming from the first objective microscope (1 1) is directed to the first amplitude modulator assembly (3) where It is directed towards the shutter (15), then passing through the lens (14a), and then the polarizer (30) to reach the spatial modulator of the light amplitude (16) in which it generates a modulated profile in amplitude, then this profile amplitude modulation is transmitted by the polarizer (31), then passing through the lens (14b),
  • said amplitude modulated profile crosses the second phase modulator assembly (4) where it passes through the wave retarders (45, 44, 43), to reach the spatial modulator of the light phase (16) which generates a phase modulated profile, subsequently this phase modulated profile is transmitted by the wave retarders (42, 41, 40), and then crosses the lens (14c) so that said image with modulated amplitude and phase is directed to the beam splitter BS (17).
  • the amplitude and phase modulated profile generated in the SLM (2) corresponds to a set of located beams / points and the first, second, and third objective microscope have 20X, 4X, 10X amplification, respectively.
  • the defined physical element is a periodic system with unconventional geometry selected from the group consisting of: photonic crystal, electronic system, cold atom system in optical networks, spintronics, quantum dot arrangements, microoscillator arrangements, micropillary arrangements, chains of proteins
  • the photonic crystal (7) is selected from the group consisting of: Crystal of: Lieb, Kagome, Sawtooth, Stub, other non-homogeneous photonic crystals, wherein the photonic crystal (7) which has at least one unit cell , where at least one unit cell of the photonic crystal (7) is constituted by at least two sites with different interactions at short range.
  • the unconventional photonic crystal (7) has at least one flat band.
  • the defined physical element (7) is contained within a protective and light transmitting device, which is in the form of a cylinder and is preferably flexible, such as an optical fiber.
  • the protective device and light transmitter is a container box with a moving part to let the light pass, which can dye various sizes, ideally transportable such as a card, which can be a credit card or identification card .
  • An access control procedure controlled to a user by means of the verification of a defined physical element, in an optical context and of low power level which consists of the following steps: (a) decide on a desired initial image, which is formed in the spatial light modulator assembly (2),
  • the access control procedure controlled to a user by means of the verification of a defined physical element, in an optical context and of low power level is through code, which comprises the following steps:
  • step (c) Compare by means of a computer (300), if the pattern transmitted through the defined physical element (7) matches the pattern of points coded to numbers corresponding to the code entered in step (b), if they coincide, access is granted, in otherwise access is denied.
  • EXAMPLE 1 Transmission of optically encoded information. Through the propagation of different images it is possible to establish a language / code, whose coding and decoding can generate different types of security systems with different levels of reliability.
  • EXAMPLE 3 Safety plate. By associating each propagating light pattern with a letter or a number, it is possible to send and recognize a password, giving way to any security system, in particular a door plate, the alarm of a house, a safe, etc.
  • EXAMPLE 4 Anti-piracy system. Similarly to example 3, it would be possible to use a code to verify the veracity of a video game, a movie, etc. If the game disc had a built-in photonic crystal, when it was inserted into the console you could test the truth of the game. Copied games legally would not possess this extra photonic crystal and would not be reproduced.
  • EXAMPLE 5 Use the present invention as an interface between the user and the ATM. To operate a security system using the present invention, two basic components, an access key and a photonic crystal are required. Only with the presence of both components could access to the ATM be achieved. The advantage of the photonic crystal is that it could be smaller, and practically irreproducible by some counterfeiter. In addition, having no active components such as the current magnetic cards, it would be impossible to copy or read the information contained in the glass when using it.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Toxicology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Image Input (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

Un sistema de control de acceso controlado a un usuario por medio de la comprobación de un elemento físico definido, en un contexto óptico y de bajo nivel de potencia, que comprende: un montaje (1) para la creación de patrones de luz espaciales arbitrarios, con control de amplitud y fase; que comprende: una fuente de luz (9) que emite un haz de luz; hacia un primer microscopio objetivo (11); un conjunto modulador espacial de luz (2) que recibe la luz del primer microscopio objetivo (1 1) y dicho conjunto modulador espacial de luz (2) envía un perfil modulado en amplitud y fase que forman una imagen a un divisor de haz BS (17) que divide la imagen hacia una cámara inicial CCD (6) y a un segundo microscopio objetivo (12); un elemento físico definido (7) que recibe la imagen inicial desde el segundo microscopio objetivo (12), y transmite la imagen sin difractarla como una imagen final a un tercer microscopio objetivo (13); una cámara final CCD (8), recibe la imagen final del tercer microscopio objetivo (13) y la envía a un computador (300) que compara dicha imagen final con la imagen inicial, y realiza un cálculo de similaridad entre ambas imágenes para decidir otorgar el acceso al usuario, si la similaridad es mayor a un valor predefinido, y negar en caso si la similaridad es menor a un valor predefinido; un procedimiento de control de acceso controlado que compara un patrón de puntos transmitidos a través del elemento físico definido, que codifican a los números 0 al 9 y decide otorgar o negar acceso si coinciden con clave ingresada por usuario.

Description

SISTEMA Y PROCEDIMIENTO DE CONTROL DE ACCESO CONTROLADO POR MEDIO DE UN DISPOSITIVO ÓPTICO DE BANDAS PLANAS.
MEMORIA DESCRIPTIVA
CAMPO DE LA INVENCION
La invención consiste en la utilización de cristales fotónicos con geometrías no convencionales (que cuenten, al menos, con una banda plana) para otorgar o negar un acceso controlado a un lugar, dispositivo o información. Utilizando las propiedades de los cristales fotónicos u otros sistemas periódicos, es posible formar imágenes que no difractan ni se destruyen, transportando información de forma fidedigna desde un extremo al otro del cristal fotónico u otros sistemas periódicos, independientemente de la distancia de propagación. El transporte fidedigno de información es un problema crítico en cualquier sistema tecnológico. La presente invención describe una solución al problema de otorgar o negar un acceso controlado a un lugar, dispositivo o información, a través de la identificación, por medio de la comprobación de un elemento físico definido, en donde dicho elemento físico es un sistema periódico de transporte de luz, en un contexto óptico y de bajo nivel de potencia, por el cual es posible formar imágenes que no difractan ni se destruyen, tal como en un cristal fotónico de geometría no convencional.
La presente invención opera a bajo nivel de potencia ya que utiliza sólo las propiedades lineales de estos cristales, siendo más económico, y a su vez, presentando una gran flexibilidad espacial al no depender de una región o patrón específico, en un arreglo completamente homogéneo y periódico. La modificación de la geometría desde un cristal fotónico convencional a uno no convencional genera cambios profundos en las propiedades lineales, y por ende, en la propagación de la luz a través de ellos.
En general, sistemas no convencionales poseen un conjunto de bandas dispersivas y planas, siendo estas últimas claves para la presente invención. Todos los cristales fotónicos que presenten, al menos, una banda plana son candidatos para la implementación de esta invención. En términos prácticos, la propagación fidedigna de la imagen en el cristal fotónico con banda plana, sirve como método de chequeo de algún patrón a propagar. Sin la presencia del cristal la imagen no se propaga ni es reconocida, y por tanto, el circuito lógico no se activa. La presencia del cristal fotónico y la propagación correcta de un patrón a reconocer, constituyen un método óptico de reconocimiento, de por ejemplo, un usuario. A modo de ejemplo práctico, se seleccionaron 10 patrones diferentes que son asociados a números del 0 al 9. Una secuencia de estos patrones (números) son propagados en el cristal, obteniéndose una secuencia de imágenes en una cámara CCD, (Charge Coupled Device), dispositivo de carga acoplada. Posteriormente, estas imágenes son analizadas y reconocidas en un computador, asociándole un número respectivo a cada patrón. Una secuencia de N patrones constituye una clave (password) que otorga o niega el acceso a un dispositivo, lugar o información a un usuario. ESTADO DEL ARTE
La propagación de imágenes/patrones localizados en cristales fotónicos periódicos presenta, esencialmente, dos soluciones prácticas, aunque con la misma idea fundamental detrás. La primera idea teórica consiste en la creación de guías de cristales fotónicos no homogéneos (vía dopaje del material en una región particular o vía una variación de los parámetros geométricos, generalmente denominado como impureza o imperfección), lo que permitiría propagar un patrón específico que estaría determinado por ¡a distribución espacial del cristal no homogéneo. No se encontraron publicaciones que hayan intentado esta idea teórica en la práctica. Sin embargo, una idea distinta en la forma, pero similar en el fondo, es la desarrollada por J. Yang (201 1). Mediante la respuesta no lineal de un material es posible crear zonas no homogéneas en lugares donde la intensidad óptica es alta. En este caso, las propiedades no lineales permiten la auto-localización de la luz al incrementar o disminuir (dependiendo de la aplicación) el índice de refracción localmente y hacer que la luz se propague siguiendo estos patrones auto-inducidos. Estos autores han demostrado la propagación de imágenes en cristales fotónicos no lineales, la que tiene una fuerte dependencia de las fases y del patrón mismo con tal que la propagación sea estable en una distancia larga. En general, las respuestas no lineales de los materiales se observan al propagar luz de alta potencia, lo que sería económicamente menos favorables. Adicionalmente, la propagación de patrones arbitrarios, complejos, no necesariamente será estable dinámicamente, debido a múltiples resonancias que aparecen en un contexto no lineal y al aumento natural de la complejidad del sistema (pudiéndo incluso ser caótico). Así, como fue expuesto en el trabajo de J. Yang (2011 ), se podría observar una propagación de imágenes complejas en distancias muy acotadas/cortas, lo que restringiría su utilización en la práctica cuando se intentara propagar por distancias mayores a un centímetro.
La presente invención describe como solución a este problema de la técnica, utilizar las propiedades lineales especiales de ciertos cristales fotónicos homogéneos, con un origen en una geometría particular no convencional, pero sin requerimientos de potencia óptica ni de distancia de propagación. Esto hace que la solución descrita en la presente invención sea más económica, y a su vez, más flexible al no depender de una región o patrón específico, ni largo de propagación, en un cristal fotónico completamente homogéneo y periódico. Es decir, las imágenes compuestas podrían ser transmitidas en diferentes regiones del cristal fotónico y por distancias arbitrarias.
Dentro del estado de la técnica los documentos relacionados a la presente invención son los siguientes:
La solicitud de patente WO2009050448A1 que presenta un método para construir un dispositivo de seguridad ópticamente variable. En este método, el material de un cristal fotónico es suministrado y un proceso es realizado en el material, causando deformación del mismo para formar una primera región (A) por la que la luz incidente que es recibida por el cristal es selectivamente reflejada o transmitida para generar un primer efecto ópticamente variable, y una segunda región (B) en la que la luz incidente recibida genera un efecto óptico, diferente que el primer efecto ópticamente variable.
La publicación "Image transmission using stable solitons of arbitrary shapes in photonic lattices" (Optics Letters 36, 772 2011), que divulga una transmisión de imagines usando solitones estables de formas arbitrarias en cristales fotónicos, en donde se demuestra teórica y experimentalmente que redes fotónicas bajo no linealidad desenfocante admiten solitones de gap en variadas formas tales como cruces y letras H. Estos solitones, cuyos picos de intensidad están en fase, son estables frente a perturbaciones, por lo que se propagan robustamente a través de las redes. Basado en esto, se propone la transmisión de imágenes o texto basada en solitones a través de estructuras fotónicas no lineales.
Y la publicación "Nondiffractive propagation of light in photonic crystals"
(PHYSICAL REVIEW E 73, 016601 2006) que menciona la propagación no difractante de luz en cristales fotónicos, que investiga la propagación no difractante de radiación electromagnética, incluyendo luz visible, a través de materiales con una modulación espacial periódica del índice de refracción; es decir, a través de cristales fotónicos. Se calcula analítica y numéricamente los regímenes donde el orden de difracción dominante se anula; es decir, haces de luz de ancho arbitrario se propagan sin ensanchamiento difractivo y, equivalentemente, patrones arbitrarios de luz pueden propagarse sin daño por difracción. Se investiga la propagación de luz subdifractiva, donde la propagación es governada por el cuarto orden de difracción más alto, cuando el orden de difracción dominante es anulado.
Los resultados de la búsqueda de patentes y publicaciones realizada muestran conceptos, en general, separados que, por simple inspección, no podrían ser trivialmente adheridos para generar la innovación expuesta. Por ejemplo, se encontraron publicaciones y patentes referentes a la propagación de imágenes, las que pueden ocurrir en diversos contextos, independiente del tipo de radiación y medio de transmisión. Respecto a cristales fotónicos, existe una diversidad enorme de posibles aplicaciones y/o modificaciones a estos sistemas para controlar sus propiedades de propagación y/o transmisión de datos; sin embargo, no se encontró ninguna acerca de la transmisión perfecta de imágenes. Por último, sistemas con bandas planas son modelos teóricos conocidos hace varios años, con muy pocas corroboraciones experimentales a la fecha. En la publicación de Guzmán-Silva (20 4) se estudiaron las propiedades de transporte en un cristal fotónico con bandas planas, como es el de Lieb. Además, se bosquejó el concepto detrás de la presente invención, acerca de la propagación de modos localizados y la formación de imágenes utilizando las propiedades no difractantes de los modos pertenecientes a las bandas planas. Los contextos físicos en los que se podría aplicar esta invención son todos los que puedan ser descritos ondulatoriamente y en los que se pueda implementar algún tipo de restricción o potencial periódico. Por citar algunos: transporte de electrones en cristales (control de propiedades de conducción eléctrica), espines en estructuras cristalinas (almacenamiento de información magnética en discos duros), átomos fríos en redes ópticas (control espacial de átomos a muy baja temperatura, base para un láser atómico), etc. Por otro lado, en general, los cristales fotónicos no propagarán imágenes sin destruirlas, a no ser que sean fabricados con una geometría no convencional particular. Para esto es absolutamente obligatorio tener un sistema periódico (secuencia ordenada y repetitiva de un elemento base) que presente un espectro lineal (relación entre la energía y la velocidad de propagación de las ondas que son soluciones lineales del sistema) con bandas planas (región del espectro lineal en que la energía de las ondas es constante, independientemente de su velocidad de propagación), para así contar con modos lineales (soluciones del sistema periódico lineal) que se propaguen sin difractar y que sean altamente degenerados (conjunto vasto de modos lineales con igual valor de energía).
En general, la búsqueda del estado del arte realizada llevó a resultados muy diferentes respecto de los que efectivamente compete a la presente invención. Existen diversos sistemas de transmisión de imágenes ópticas; sin embargo, si se quisiera enviar imágenes a través de un cristal fotónico específico, se requeriría de una ingeniería especial del mismo o de la excitación de efectos no lineales en el material. Es conocido que no es posible enviar una imagen desde un extremo a otro en un cristal fotónico convencional (con bandas dispersivas y con una geometría típica: rectangular, hexagonal, grafeno, etc.) sin que esta se destruya debido a la dispersión intrínseca de las ondas que se propagan en este medio.
Es conocido que al enviar una imagen desde un extremo a otro a través de un cristal fotónico convencional (dispersivo) esta imagen se destruye debido a la dispersión intrínseca de las ondas lineales que se propagan en este material, por lo que existe la necesidad de contar con un medio de verificación que al pasar luz por dicho material, no se difracte. Por lo anterior se presenta un sistema de emisión y recepción de ondas electromagnéticas que pasan a través de un cristal fotónico (no convencional), con la finalidad de traspasar dichas ondas electromagnéticas en un patrón específico.
De esta manera, la presente invención describe la forma de conseguir la combinación de estos modos coherentemente, y el envío a lo largo del cristal de imágenes compuestas de modo que no sufran distorsión por transmisión a distancias arbitrarias (propagación fidedigna).
La solución descrita en la presente solicitud, la cual consiste en la utilización de nuevas geometrías (no convencionales, en las que se observen bandas planas) en las cuales se logra que el espectro de soluciones cambie y un conjunto de modos del sistema se propague sin difractar. Esto no es obtenido por casualidad, sino que se requiere de una geometría específica que satisfaga las condiciones de un sistema con bandas planas, esto es, interferencia destructiva, o cancelación de fase a lo largo del cristal. SOLUCIÓN AL PROBLEMA TÉCNICO
La invención aquí expuesta describe un sistema de acceso controlado, por medio de la utilización de una propagación fidedigna, de imágenes/compuestas, a distancias arbitrarias, como combinación lineal de modos localizados provenientes de la banda plana de un cristal fotónico no convencional. La presente invención presenta una solución al problema de propagación sin difracción de imágenes con una geometría y fisonomía determinada por la topología del cristal fotónico específico empleado. Los cristales fotónicos son estructuras ópticas, especialmente fabricadas, en las que el índice de refracción (principal propiedad óptica de un material) es modulado espacialmente, siendo mayor en la zona de conducción de luz (guías de ondas), y con un patrón que es repetido periódicamente (formando una estructura cristalina) . La principal funcionalidad de estos dispositivos consiste en controlar la propagación de luz utilizando las propiedades lineales que surgen como consecuencia de la geometría particular de cada cristal (se busca hacer un símil de los avances de la electrónica, pero con fotones en vez de electrones). Un ejemplo típico se muestra en la Fig.1 (a). Las diferencias de índice de refracción entre la guía y el material envolvente pueden ser muy pequeñas (del orden de 10Λ-4 o 10Λ-3), lo que asegura que cada guía sea esencialmente monomodal y permita así, la propagación de luz en términos de su espectro lineal más bajo, basado en combinaciones del modo fundamental de cada una de las guías que conforman el arreglo. Las soluciones (modos del sistema global o súper-modos) están determinadas por la relación de dispersión β = β(Ι<χ,Ι ), también denominada como estructura de bandas o espectro lineal del sistema [ver Fig.1 (b)]. Dependiendo de la geometría de la estructura cristalina (arreglo ordenado de guías), las combinaciones de los modos de cada guía darán lugar a distintos súper-modos del arreglo, los que para geometrías convencionales abarcarán prácticamente todo el cristal fotónico; es decir, los modos lineales de un sistema típico (convencional) serán espacialmente deslocalizados y ocuparán gran parte del área del cristal [ver ejemplos en la Fig.1 (c)]. Todo sistema periódico posee, en principio, un conjunto infinito de "bandas y gaps", definiendo así las regiones donde hay soluciones propagantes (bandas) y donde no las hay (gaps). Todos los modos globales tienen una constante de propagación β perteneciente a alguna banda del sistema. Si se intentara propagar una imagen o patrón localizado en estos cristales, simplemente se destruiría debido a la excitación simultánea de diversos modos espacialmente extendidos, los que pertenecen a las distintas bandas del sistema; adicionalmente, estos modos presentan distintas constantes de propagación y coeficientes de difracción distintos de cero (curvatura no nula de las bandas). Así la propagación de la luz se da de una forma completamente incoherente en el espacio, con muchos modos difractantes excitados. En la Fig.1 (d) se presentan dos ejemplos numéricos de propagación, en los que un perfil inicialmente localizado en una sola guía del cristal fotónico (arriba, perfil incidente) se destruye (difracta) completamente al propagarse a lo largo del cristal fotónico (abajo, perfil saliente luego de una distancia de propagación arbitraria). Al modificar la geometría del cristal fotónico de una forma no convencional (no típica), las propiedades lineales de estos pueden ser modificadas drásticamente. Por ejemplo, si se remueven ordenada y periódicamente algunas guías de un cristal de geometría rectangular, se puede construir un nuevo cristal fotónico conocido como "Cristal de Lieb", como el mostrado en la Fig.2(a). De esta manera, nuevas propiedades lineales surgen [ver Fig.2(b)], como las de contar con un espectro lineal con dos bandas dispersivas [con modos extendidos como se muestra en la Fig.2(c)], y una banda completamente plana (curvatura nula). Los modos globales pertenecientes a esta banda plana (sin dispersión espacial) lucen como "anillos", compuestos de cuatro sitios con igual amplitud pero con una diferencia de fase π entre amplitudes vecinas [ver Fig.2(c)-abajo-derecha]. Estos modos pueden localizarse en cualquier región del cristal fotónico de Lieb, siempre que haya un conjunto de sitios cerrado (cuadrado de 8 sitios) en el arreglo. Estos modos poseen cero difracción, debido a la curvatura nula de la banda plana a la que pertenecen, por lo que son completamente estáticos en la dirección transversal del cristal. Adicionalmente, todos estos modos poseen exactamente la misma constante de propagación (β = 0) y, por lo tanto, cualquier combinación lineal de ellos será completamente coherente, lo que preservará cualquier patrón combinado hasta el final del sistema de propagación. Es decir, una imagen inicial compuesta inyectada en la cara incidente del cristal fotónico, se propagará establemente a lo largo de éste, observándose la misma imagen en un extremo del cristal [ver Fig.2(d)-derecha]. Además vemos cómo, al excitar el cristal de Lieb con una condición inicial localizada centrada en una sola guía, el patrón de luz generado difracta a través del cristal debido a la excitación de las bandas dispersivas. Esto refuerza el concepto de la formación de imágenes como combinación de los anillos no difractantes pertenecientes a la banda plana del cristal fotónico. Ejemplos de cristales fotónicos que presentan este tipo de propiedad de banda plana son la red de Lieb, de Kagome, de Sawtooth, de Stub, entre otras. Todas estas geometrías poseen una propiedad en común respecto a la descripción mínima de la estructura periódica (celda unitaria): la celda unitaria está constituida por, al menos, dos sitios con interacciones diferentes a corto alcance. Por ende, existe un cierto grado de asimetría en el acoplamiento/interacción, lo que produce una distinción geométrica entre estos sitios y, por lo tanto, propiedades lineales distintas asociadas a cada uno. Todos los cristales no convencionales que presenten, al menos, una banda plana serían buenos candidatos para implementar el presente concepto de transmisión de información. El enfoque principal de la presente invención está en el envío de información óptica utilizando las propiedades de localización lineal de estos sistemas; sin embargo, la presente solución abarca a todo sistema periódico con geometrías no convencionales, independiente de su naturaleza física (podremos observar una fenomenología similar para electrones, átomos fríos, fonones, fotones, etc.; donde lo principal es la geometría de restricción (red) no convencional, y que la partícula bajo estudio se comporte como una onda). Esta solución puede ser aplicada en sistemas electrónicos, átomos fríos en redes ópticas, spintrónica, arreglos de puntos cuánticos, arreglos de microosciladores, arreglos de micropilares, cadenas de proteínas, etc.; en general, en todo sistema físico en que hay restricciones periódicas.
En particular, los inventores se han enfocado en la utilización de la red de Lieb. Esto esencialmente debido a la robustez de sus propiedades lineales. A diferencia de Kagome o Sawtooth, las anisotropías naturales de los materiales o del proceso de fabricación del cristal fotónico no modifican las propiedades lineales de la red de Lieb. Tanto Kagome como Sawtooth pierden la banda plana si es que las distancias y/o orientación de las guías no están finamente construidas. Las implementaciones experimentales típicas, como la fabricación de arreglos vía quemado con láseres de femtosegundos [ver Fig.3(a)], producen arreglos con guías no simétricas, si no que con una geometría elíptica, las que inducen un mayor acoplamiento efectivo en la dirección de la elipticidad. Sin embargo, la red de Lieb es robusta frente a esta anisotropía, preserva la banda plana pero con un modo localizado de perfil asimétrico, dependiendo de la razón de acoplamientos vertical versus horizontal (determinado por la elipticidad de las guías). A continuación se exponen los resultados que han sido recientemente publicados. Primero, se prueban estos conceptos en un contexto realista al realizar una serie de simulaciones numéricas en condiciones similares al experimento, para identificar la posibilidad de la transmisión de los modos localizados en un cristal fotónico real. La diferencia fundamental con lo expuesto anteriormente se relaciona con las aproximaciones utilizadas para entender las propiedades lineales de estos cristales. Lo antes expuesto consideró una interacción débil entre guías vecinas en la que las interacciones a más largo alcance son despreciadas, obteniéndose los resultados presentados en la Fig.2, que son la base de la presente invención. Sin embargo, al estudiar el sistema desde un punto de vista más realista, la interacción con sitios lejanos no necesariamente es nula o despreciable, pudiendo inducirse cambios en la estructura de bandas, y pudiéndose perder la banda plana y, por lo tanto, los modos localizados en los que se basa el concepto de la presente invención. De esta manera, es fundamental hallar las condiciones experimentales adecuadas para observar la fenomenología predicha con la primera aproximación de interacción débil. Para ésto se desarrolló un conjunto de simulaciones numéricas buscando encontrar las condiciones óptimas para la propagación de estos modos en un cristal fotónico, lo que involucra la integración numérica vía un "método de propagación de haces" en un potencial óptico con la geometría de Lieb. En la figura 3(b), se observa que el índice de refracción es constante en la región entre guías y crece rápidamente/abruptamente en la región de guías, que es donde se produce la guía de luz. El parámetro relevante a identificar es el contraste de índice de refracción, el que es necesario para propagar los modos localizados. Este contraste se define como la diferencia entre el índice de refracción entre guías y el máximo en la guía misma. La fabricación de cristales fotónicos vía láseres de femtosegundos, permite un contraste de entre 10Λ-4 y 10Λ-3. Al ser éste muy pequeño, garantiza que las guías tendrán esencialmente un solo modo y que la aproximación inicial (interacción débil) será muy fiel a lo que se observe en el experimento, por supuesto dependiendo de los parámetros de éste. Realizando varias simulaciones, se determina que una buena propagación de modos localizados ocurre a partir de un contraste de 0,65x10Λ-3. En la Fig.4 se muestra un conjunto de simulaciones realizadas para un contraste de 0,7χΛ10-3, con el fin de asegurar una buena propagación de modos localizados.
Numéricamente se estudió cómo la luz difracta al inyectar luz en una sola guía central, en la cara incidente del cristal. En la Fig.4(a) se observa difracción (dispersión espacial), principalmente vertical debido a la anisotropía causada por la elipticidad de las guías, a través del cristal fotónico. Por otro lado, en la Fig.4(b) se observa la imagen final al inyectar una condición inicial correspondiente a un anillo de Lieb simétrico (cuatro puntos de luz con diferencia de fase ττ). Se observa una excelente propagación de este anillo, con una perfecta localización y manifestación de la anisotropía del cristal en la asimetría de las amplitudes finales de este anillo. En la Fig.4(c) se probó la importancia de la estructura de fase en la propagación perfecta del anillo, ya que en este caso la condición inicial fueron cuatro amplitudes todas en fase. Se observa cómo el perfil difracta y pierde su localización inicial. Finalmente, en la Fig.4(d) se muestra la posibilidad de superponer modos localizados, de forma de generar patrones más complejos como resultado de una combinación lineal coherente. Se observa cómo la combinación "suma" de dos anillos se propaga a la perfección, con un sitio central más intenso debido a la adición de amplitudes en esa posición. Se desarrollaron también otras combinaciones, y todas mostraron una excelente propagación de la imagen incidente hasta la cara de salida del cristal. Simulaciones realizadas para una distancia mayor de propagación, muestran la misma fenomenología, no existiendo una destrucción de los patrones y, por lo tanto, conservándose las imágenes a larga distancia. Se muestra experimentalmente la posibilidad de creación de imágenes ópticas arbitrarias, así como también la propagación de éstas en un cristal fotónico de Lieb. Como primer desafío, se desarrolló un montaje (1) experimental para la creación de patrones de luz espaciales arbitrarios, con control de amplitud y fase. En la figura 3(c) se representa un esquema experimental desarrollado para esta invención. El elemento clave de este montaje es el uso de un modulador espacial de luz (SLM) (16), como por ejemplo se usó el de marca Holoeye, modelo LC2012, el cual permite modular la amplitud y la fase de un campo óptico, previa calibración del dispositivo y la utilización crítica de un conjunto de polarizadores y retardadores de ondas, dependiendo de la modulación específica a realizar. En el montaje desarrollado en la presente invención, primero se realizó modulación de amplitud generando, a partir de un haz óptico ancho, un perfil de amplitud correspondiente a un conjunto de haces/puntos localizados, los que en el caso del cristal de Lieb corresponden a 4 puntos luminosos (anillo) en la geometría de este cristal. Este perfil modulado en amplitud es, posteriormente, modulado en fase para lograr la estructura óptica deseada, afín con el experimento particular. Posteriormente, este patrón/imagen de luz es llevado ópticamente a la cara incidente de un cristal fotónico (7) de Lieb como el mostrado en la Fig.3(b). Mediante este procedimiento, se pueden generar diferentes imágenes y propagarlas a través de cualquier cristal fotónico que se inserte en el montaje experimental desarrollado. Mediante una cámara CCD (6) se puede observar la imagen inicial a propagar y chequear su estructura de amplitud y fase. Luego, se observa con cámara final CCD (8) la cara de salida en el cristal fotónico y con un computador (300) se compara la coincidencia de esta imagen con la condición inicial generada, determinando así si la propagación ha sido fidedigna o no, mediante un cálculo de similaridad, en donde este cálculo se refiere a la comparación entre la imagen inicial y la imagen final, y también vía observación directa de la imagen final. En la Fig.5 se agrupan algunos de los resultados experimentales obtenidos. La figura 5(a) muestra difracción a través del arreglo para iluminación de una sola guía en el centro del cristal fotónico, lo que excita las bandas dispersivas produciendo ausencia de localización. En la figura 5(b) se muestra la imagen obtenida para la propagación del anillo de Lieb, el que incluye la diferencia de fase π entre amplitudes del anillo vecinas. Claramente, la propagación del anillo es estable, no difractante, y casi idéntica a la simulación realista [Fig.4(b)] y simulación aproximada [Fig.2(d)]. El cálculo de similaridad para la propagación de varios anillos en distintas regiones del cristal fotónico nos da un valor promedio de similaridad de un 83% entre la condición inicial y la imagen final obtenida al propagar. Un valor de similaridad sobre un 75% es considerado por los inventores como bueno, por lo que se puede definir una propagación como fidedigna. Este valor sería más alto si como condición inicial se inyectara un anillo asimétrico en amplitud. Sin embargo, experimentalmente se ve que esto no tiene consecuencias en la imagen final obtenida, siendo mucho más sencilla la creación de una imagen simétrica como condición inicial. Para probar experimentalmente la dependencia de la estructura de fase, se preparó una condición inicial de cuatro puntos de luz, todos en fase. El resultado obtenido se muestra en la Fig.5(c), observándose una gran difracción y destrucción de la imagen inicial inyectada. Para terminar la comparación con los resultados numéricos, se procedió a preparar una condición inicial que consiste en la suma de dos anillos en la dirección vertical. En la Fig.5(d) se observa cómo la propagación de esta imagen es perfecta y muy similar a la obtenida numéricamente [Fig.4(d)]. Esta es una prueba de la existencia y posibilidad concreta de excitación de los anillos de Lieb y de la capacidad cierta de generar combinaciones lineales de estos modos para crear imágenes más complejas que puedan ser transmitidas en una distancia arbitraria, concepto en que se basa la presente invención. Por último, luego de mostrar y verificar la posibilidad real de observación de las propiedades fundamentales de cristales fotónicos con bandas planas (aparte de la red de Lieb, también se realizaron pruebas con redes de Kagome, de Sawtooth y próximamente con redes de Stub), se contruyeron combinaciones de modos localizados más complejos (patrones o imágenes) en la red de Lieb. Algunos ejemplos se presentan en la Fig.6. La posibilidad de combinaciones y, por lo tanto, de patrones de intensidad diferentes es de 34 combinaciones. Es decir mediante la propagación de estas imágenes compuestas, se pueden generar más de 34 patrones distintos que pueden definir una forma de codificación óptica. Se realizó la prueba de definir 10 patrones distintos (diez combinaciones lineales distintas de 4 modos anillos en la red de Lieb) y asociarlos con números del 0 al 9. Se construyó una base de datos con claves numéricas de 4 dígitos (Ej: 1234) y se realizó la prueba de escribir la clave, generar y propagar las cuatros imágenes asociadas a estos 4 números, grabar las imágenes respectivas y analizarlas para determinar si coinciden con los patrones guardados en una base de datos y que se encuentran asociados a estos números. Si la coincidencia es mayor a un valor mínimo de similaridad definido (valor P), por ejemplo P = 75%, se considera coincidencia correcta y se reconoce la clave ingresada, generando un OK en el circuito que otorga acceso. Es decir, se ha demostrado que es posible utilizar la propagación no difractante de imágenes en cristales fotónicos de bandas planas para el envío de información fidedigna desde un extremo a otro, y adicionalmente, utilizarlo como sistema de control de acceso controlado. Sin la presencia del cristal fotónico, el reconocimiento jamás existiría.
La presente invención propone un sistema de verificación adicional que refuerza la seguridad de cualquier sistema de acceso. El acceso controlado consiste en permitir acceso a un usuario a un lugar, bóveda, abrir puertas de seguridad, acceder a información codificada, o cualquier otro acceso controlado deseado.
Una modalidad de la presente invención es utilizar la combinación de cuatro anillos localizados (Fig.7(a)), en una región cuadrada de la red de Lieb; es decir, formando una imagen no difractante vía la combinación de cuatro modos de la banda plana (anillos), uno en cada cuadrante (Fig. 7 (b)). Todos los anillos tienen igual frecuencia, por lo tanto su combinación es totalmente coherente. Como el patrón luminoso tiene amplitud y fase, se pueden realizar diferentes combinaciones de estos anillos. Como la combinación implica la superposición de anillos en amplitud y fase, en la región central demarcada (Fig.7(b)) puede haber o no haber luz. Cada cuadrado central puede tener o no luz, es decir puede ser rotulada por un cero (0) o uno (1). En total se tienen 2x2x2x2 = 16 combinaciones posibles vía la combinación de 4 anillos no difractantes con distinta relación de fase (Fig.7(c)). Para construir el código de acceso, éste es configurado según las 10 mejores combinaciones (imágenes experimentales más simétricas) para asociar a cada patrón un número del 0 al 9. En el proceso de reconocimiento, cuando la imagen final es tomada por la cámara CCD (8), se analiza la presencia o no de luz en estas cuatro regiones demarcadas, determinando el número transmitido definido como una secuencia de ceros o unos. Así, un código de largo arbitrario puede ser propagado en el cristal fotónico, y ser reconocido dentro de una base de datos, dando lugar a un reconocimiento de un usuario almacenado.
En resumen, la presente invención describe y muestra en ejemplos el concepto de propagación de imágenes en cristales fotónicos de bandas planas, donde la red de Lieb es un ejemplo, y funciona de buena forma en condiciones realistas, como se ha comprobado numérica y experimentalmente. En principio, este concepto funciona en cualquier sistema que presente bandas planas, siempre y cuando se satisfagan las condiciones experimentales respectivas. Este concepto de generación y observación de estados localizados provenientes de la geometría particular de sistemas con bandas planas tiene un espectro amplio de sistemas físicos en los que podría encontrar aplicaciones. El concepto de la presente invención abarca cualquier sistema que utilice la propagación de ondas en cristales periódicos, lo que puede ocurrir para la luz, para los electrones, para átomos fríos, para osciladores en general, para spintrónica, puntos cuánticos, u otros físicos sometidos a restricciones periódicas.
DESCRIPCIÓN DE LAS FIGURAS
El grupo de figuras 1 muestran las propiedades y fenomenología típica en redes convencionales sin bandas planas.
Figura 1 : (a) Bosquejo tridimensional de un cristal fotónico de geometría "rectangular". Las guías de ondas son dibujadas en gris (tubos cilindricos), mientras el material envolvente en otro tono de gris. Inset: Corte transversal de esta estructura cristalina, en que la distancia horizontal y vertical entre guías (círculos) es idéntica (las líneas son sólo ayudas visuales para demarcar la interacción entre guías de ondas cercanas), (b) Primera banda para un cristal fotónico de geometría rectangular, (c) Ejemplos de modos globales del cristal fotónico rectangular, (d) Perfil de difracción (abajo), para una distancia de propagación arbitraria, para dos condiciones iniciales distintas (arriba), para un cristal fotónico rectangular. En (c) y (d) la escala de intensidades crece desde el negro pasando por el gris hasta el blanco. El grupo de figuras 2 muestran las propiedades y fenomenología de la red no convencional de Lieb.
Figura 2. (a) Bosquejo tridimensional de un cristal fotónico de geometría "Lieb" isotrópico. Las guías son dibujadas en gris (tubos cilindricos), mientras que el material envolvente en otro tono de gris. Inset: Corte transversal de este cristal, (b) Estructura de bandas para cristal fotónico de Lieb. (c) Ejemplos de modos globales del cristal fotónico de Lieb, los que abarcan gran parte del arreglo, exceptuando el anillo perteneciente a la banda plana [superficie plana en (b)]. (d) Perfil de difracción (abajo) para dos condiciones iniciales diferentes (arriba), para un cristal fotónico de Lieb.
La figura 3 muestra una configuración preferente del montaje para el elemento físico definido (7) en el que se implementa esta invención.
El grupo de figuras 3 muestran la técnica de fabricación y montaje experimental para el cristal fotónico de Lieb en el que se implementa esta invención.
Figura 3. (a) Técnica de fabricación de cristales fotónicos escribiendo guías en posiciones arbitrarias, al quemar el material envolvente (silica) en lugares definidos. Así, el índice de refracción del material cambia y permite la creación de una guía para conducción de luz. (b) Imagen microscópica de un arreglo de Lieb diseñado en Chile y fabricado en Alemania, con 341 guías de ondas y una separación entre guías vecinas de 20 micrómetros. (c) Montaje experimental para la creación de la imagen inicial y el estudio de su propagación a lo largo de un cristal fotónico de Lieb. El grupo de figuras 4 muestran simulaciones numéricas realistas de la propagación de distintas condiciones iniciales en el cristal fotónico de Lieb.
Figura 4. Simulación numérica de patrones de intensidad a la salida de un cristal de Lieb para diversas condiciones iniciales: (a) Excitación central de una sola guía, (b) Cuatro sitios con diferencia de fase π (anillo de Lieb), (c) Cuatro sitios con diferencia de fase 0, y (d) Dos anillos de Lieb sumados. Longitud de onda λ = 532nm.
El grupo de figuras 5 muestran imágenes experimentales de la propagación de distintas condiciones iniciales en el cristal fotónico de Lieb.
Figura 5. Observación experimental de patrones de intensidad a la salida de un cristal de Lieb para diversas condiciones iniciales: (a) Excitación central de una sola guía, (b) Cuatro sitios con diferencia de fase π (anillo de Lieb), (c) Cuatro sitios con diferencia de fase 0, y (d) Dos anillos de Lieb sumados. Longitud de onda λ = 532nm.
El grupo de figuras 6 muestran la observación experimental de la propagación de diversas imágenes (patrones) propagados sin difracción en el cristal fotónico de Lieb, así como un ejemplo de codificación.
Figura 6. Arriba: Observación experimental para combinaciones de anillos de Lieb en diversas configuraciones: (a) Dos anillos en diagonal, (b) 4 anillos en suma, (c) 4 anillos con suma horizontal y resta vertical, y (d) 4 anillos con tres sumados y uno restado. Abajo: Ejemplo de un esquema simplificado de combinaciones (codificación).
El grupo de figuras 7 muestran un esquema de combinaciones de cuatro anillos de Lieb, incluyendo la forma de medición de luz (1) o no luz (0) en cuatro regiones bien demarcadas. Figura 7. Configuración de puntos en patrón de 4 anillos no difractantes con distinta relación de fase, (a) combinación de cuatro anillos localizados; (b) modos de la banda plana (anillos), uno en cada cuadrante; (c) Combinaciones de 4 anillos no difractantes con distinta relación de fase codificando los números del 0 al 9. DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Un sistema de control de acceso controlado a un usuario por medio de la comprobación de un elemento físico definido, en un contexto óptico y de bajo nivel de potencia, que comprende: un montaje (1) para la creación de patrones de luz espaciales arbitrarios, con control de amplitud y fase; que comprende:
una fuente de luz (9) que emite un haz de luz; hacia un primer microscopio objetivo (11);
un conjunto modulador espacial de luz (2) que recibe la luz del primer microscopio objetivo (11) y dicho conjunto modulador espacial de luz (2) envía un perfil modulado en amplitud y fase que forman una imagen a un divisor de haz BS (17) que divide la imagen hacia una cámara inicial CCD (6) y a un segundo microscopio objetivo (12);
un elemento físico definido (7) que recibe la imagen inicial desde el segundo microscopio objetivo (12), y transmite la imagen sin difractarla como una imagen final a un tercer microscopio objetivo (13);
una cámara final CCD (8), recibe la imagen final del tercer microscopio objetivo (13) y la envía a un computador (300) que compara dicha imagen final con la imagen inicial, y realiza un cálculo de similaridad entre ambas imágenes para decidir otorgar el acceso al usuario, si la similaridad es mayor a un valor predefinido, y negar en caso si la similaridad es menor a un valor predefinido.
En donde el conjunto modulador espacial de luz (SLM) (2) está constituido por:
un primer conjunto modulador de amplitud (3), formado por polarizadores (30, 31), lentes (14a, 14b), un obturador (15), un modulador espacial de luz (16); un segundo conjunto modulador de fase (4), formado por retardadores de ondas (40, 41 , 42, 43, 44, 45); el modulador espacial de luz (16), un lente (14c) y unos espejos (5b, 5c), en donde la luz que proviene del primer microscopio objetivo (1 1) se dirige al primer conjunto modulador de amplitud (3) en donde se dirige hacia el obturador (15), atravesando luego el lente (14a), y luego el polarizador (30) para llegar al modulador espacial de la amplitud de luz (16) en el cual genera un perfil modulado en amplitud, posteriormente este perfil modulado en amplitud se transmite por el polarizador (31), atravesando luego el lente (14b),
el perfil modulado en amplitud es redirigido en sentido opuesto por los espejos (5b, 5c),
luego dicho perfil modulado en amplitud atraviesa el segundo conjunto modulador de fase (4) en donde pasa por los retardadores de onda (45, 44, 43), para llegar al modulador espacial de la fase de luz (16) el cual genera un perfil modulado en fase, posteriormente este perfil modulado en fase se transmite por los retardadores de onda (42, 41 ,40), y luego atraviesa el lente (14c) para que dicha imagen con amplitud y fase moduladas se dirija al divisor de haz BS (17).
El perfil modulado en amplitud y fase generado en el SLM (2) corresponde a un conjunto de haces/puntos localizados y el primer, segundo, y tercer microscopio objetivo poseen amplificación 20X, 4X, 10X, respectivamente.
El elemento físico definido es un sistema periódico con geometría no convencional seleccionado del grupo que consiste de: cristal fotónico, .sistema electrónico, sistema de átomos fríos en redes ópticas, spintrónica, arreglos de puntos cuánticos, arreglos de microosciladores, arreglos de micropilares, cadenas de proteínas.
En una configuración preferente el cristal fotónico (7) es seleccionado del grupo que consiste de: Cristal de: Lieb, Kagome, Sawtooth, Stub, otros cristales fotónicos no homogéneos, en donde el cristal fotónico (7) que posee al menos una celda unitaria, en donde al menos una celda unitaria del cristal fotónico (7) está constituida por al menos dos sitios con interacciones diferentes a corto alcance. El cristal fotónico (7) no convencional presenta, al menos, una banda plana.
En otra configuración preferente el elemento físico definido (7) está contenido al interior de un dispositivo protector y transmisor de luz, el que tiene forma de cilindro y preferentemente es flexible, tal como una fibra óptica.
En otra configuración preferente el dispositivo protector y transmisor de luz es una caja contenedora con una parte móvil para deja pasar la luz, que puede teñe diversos tamaños, idealmente transportable tal como una tarjeta, la que puede ser una tarjeta de crédito o tarjeta de identificación.
Un procedimiento de control de acceso controlado a un usuario por medio de la comprobación de un elemento físico definido, en un contexto óptico y de bajo nivel de potencia, que consiste en las siguientes etapas: (a) decidir una imagen inicial deseada, la cual se forma en el conjunto modulador espacial de luz (2),
(b) observar con cámara CCD inicial (6) la imagen inicial generada en (a), y chequear que su estructura de amplitud y fase coincida con la imagen deseada. Si no coinciden, corregir la imagen generada por el modulador espacial de luz (2) hasta que ésta coincida con la imagen deseada;
(c) hacer pasar el haz de luz modulado a través del elemento físico definido (7);
(d) observar con cámara CCD final (8) la imagen final de salida desde el elemento físico definido (7);
(e) comparar con un computador (300) la coincidencia de la imagen final captada con cámara CCD final (8) con la imagen inicial captada con cámara CCD inicial(6) mediante un cálculo de similaridad:
si la similaridad es >= P , se permite acceso;
si la similaridad es < P, se niega acceso; y
en donde P = 75%.
En otra configuración preferente el procedimiento de control de acceso controlado a un usuario por medio de la comprobación de un elemento físico definido, en un contexto óptico y de bajo nivel de potencia es a través de código, el que comprende las siguientes etapas:
(a) Introducir un elemento físico definido (7) entre el segundo microscopio objetivo (12) y el tercer microscopio objetivo (13);
(b) Digitar código numérico en un tablero de ingreso;
(c) Comparar mediante un computador (300), si el patrón transmitido a través del elemento físico definido (7) coincide con el patrón de puntos codificados a números correspondientes al código digitado en paso (b), si coinciden se concede acceso, en caso contrario se niega acceso.
EJEMPLOS DE APLICACIÓN
EJEMPLO 1. Transmisión de información codificada ópticamente. Mediante la propagación de distintas imágenes es posible establecer un lenguaje/código, cuya codificación y decodificación puede generar distintos tipos de sistemas de seguridad con distintos niveles de confiabilidad. EJEMPLO 2. Transmisión de información codificada ópticamente. Mediante la propagación de distintas imágenes es posible establecer un lenguaje lógico/código, que podría servir de base para generar una corriente de información óptica que sentara las bases de un hipotético computador óptico.
EJEMPLO 3. Chapa de seguridad. Al asociar cada patrón de luz propagante a una letra o a un número, es posible enviar y reconocer una contraseña, dando paso a cualquier sistema de seguridad, en particular una chapa de puerta, la alarma de una casa, una caja fuerte, etc.
EJEMPLO 4. Sistema anti-piratería. Análogamente al ejemplo 3, sería posible utilizar un código para verificar la veracidad de un juego de video, una película, etc. Si el disco del juego contase con un cristal fotónico incorporado, al ser insertado en la consola se podría probar la veracidad del juego. Juegos copiados ¡legalmente no poseerían este cristal fotónico extra y no serían reproducidos.
EJEMPLO 5. Cajero automático: Utilizar la presente invención como interface entre el usuario y el cajero automático. Para operar un sistema de seguridad utilizando la presente invención, se requieren de dos componentes básicas, una clave de acceso y un cristal fotónico. Sólo con la presencia de ambas componentes se podría lograr un acceso al cajero automático. La ventaja del cristal fotónico es que podría ser más pequeño, y prácticamente irreproducible por algún falsificador. Además, al no tener componentes activos como las actuales tarjetas magnéticas, sería imposible copiar o leer la información contenida en el cristal al momento de utilizarlo.
No es posible mediante la observación de la luz propagada sin cristal determinar el cristal fotónico necesario para lograr el acceso. Se requiere de información adicional avanzada en cuanto a geometrías de cristales en física para poder dilucidar y llegar a deducir el cristal necesario que debe ser instalado para poder lograr propagar las imágenes correspondientes. De hecho, es de la experiencia de los inventores en dinámica de ondas en cristales fotónicos y de expertos en el área en todo el mundo, que sería prácticamente imposible determinar la geometría particular necesaria para que las imágenes se propaguen correctamente y puedan ser reconocidas, sin conocer la geometría de la red específica. Errores geométricos o de dimensiones causarían la destrucción de la imagen incidente y el no reconocimiento del patrón. En los ejemplos recién expuestos se puede apreciar una fuerte analogía entre el sistema de creación de un patrón de luz específico y una llave, y entre un cristal no convencional (que posea banda plana) y un candado o chapa. Mediante el modulador espacial de luz (16) podemos configurar muchas posibles combinaciones de anillos, por ejemplo en zonas distintas del mismo cristal, permitiendo un número muy grande de posibles llaves para un mismo cristal (candado). Esto permitiría codificar la información en patrones tan complejos como se requiera para aumentar la seguridad del sistema de accionamiento.

Claims

REIVINDICACIONES
1. Un sistema de control de acceso controlado a un usuario por medio de la comprobación de un elemento físico definido, en un contexto óptico y de bajo nivel de potencia, CARACTERIZADO porque comprende:
un montaje (1) para la creación de patrones de luz espaciales arbitrarios, con control de amplitud y fase; que comprende:
una fuente de luz (9) que emite un haz de luz; hacia un primer microscopio objetivo (11);
un conjunto modulador espacial de luz (2) que recibe la luz del primer microscopio objetivo (11) y dicho conjunto modulador espacial de luz (2) envía un perfil modulado en amplitud y fase que forman una imagen a un divisor de haz BS (17) que divide la imagen hacia una cámara inicial CCD (6) y a un segundo microscopio objetivo (12);
un elemento físico definido (7) que recibe la imagen inicial desde el segundo microscopio objetivo (12), y transmite la imagen sin difractarla como una imagen final a un tercer microscopio objetivo (13); y
una cámara final CCD (8), recibe la imagen final del tercer microscopio objetivo (13) y la envía a un computador (300) que compara dicha imagen final con la imagen inicial, y realiza un cálculo de similaridad entre ambas imágenes para decidir otorgar el acceso al usuario, si la similaridad es mayor a un valor predefinido, y negar en caso si la similaridad es menor a un valor predefinido.
2. El sistema de control de la reivindicación 1 , CARACTERIZADO porque: el conjunto modulador espacial de luz (SLM) (2) está constituido por:
un primer conjunto modulador de amplitud (3), formado por polarizadores (30, 31), lentes (14a, 14b), un obturador (15), un modulador espacial de luz (16); un segundo conjunto modulador de fase (4), formado por retardadores de ondas (40, 41 , 42, 43, 44, 45); el modulador espacial de luz (16), un lente
(14c) y unos espejos (5b, 5c), en donde la luz que proviene del primer microscopio objetivo (11) se dirige al primer conjunto modulador de amplitud (3) en donde se dirige hacia el obturador (15), atravesando luego el lente (14a), y luego el polarizador (30) para llegar al modulador espacial de la amplitud de luz (16) en el cual genera un perfil modulado en amplitud, posteriormente este perfil modulado en amplitud se transmite por el polarizador (31), atravesando luego el lente (14b), el perfil modulado en amplitud es redirigido en sentido opuesto por los espejos (5b, 5c),
luego dicho perfil modulado en amplitud atraviesa el segundo conjunto modulador de fase (4) en donde pasa por los retardadores de onda (45, 44,
43), para llegar al modulador espacial de la fase de luz (16) el cual genera un perfil modulado en fase, posteriormente este perfil modulado en fase se transmite por los retardadores de onda (42, 41 ,40), y luego atraviesa el lente (14c) para que dicha imagen con amplitud y fase moduladas se dirija al divisor de haz BS (17).
3. El sistema de control de la reivindicación 1 , CARACTERIZADO porque el perfil modulado en amplitud y fase generado en el SLM (2) corresponde a un conjunto de haces/puntos localizados.
4 El sistema de control de la reivindicación 1 , CARACTERIZADO porque el primer, segundo, y tercer microscopio objetivo poseen amplificación 20X, 4X, 10X, respectivamente.
5. El Sistema según la reivindicación 1 , CARACTERIZADO porque el elemento físico definido es un sistema periódico con geometría no convencional seleccionado del grupo que consiste de: cristal fotónico, .sistema electrónico, sistema de átomos fríos en redes ópticas, spintrónica, arreglos de puntos cuánticos, arreglos de microosciladores, arreglos de micropilares, cadenas de proteínas.
6. El Sistema según la reivindicación 5, CARACTERIZADO porque el cristal fotónico (7) es seleccionado del grupo que consiste de: Cristal de: Lieb, Kagome, Sawtooth, Stub, otros cristales fotónicos no homogéneos.
7. El Sistema según la reivindicación 5, CARACTERIZADO porque el cristal fotónico (7) que posee al menos una celda unitaria.
8. El Sistema según la reivindicación 5, CARACTERIZADO porque la al menos una celda unitaria del cristal fotónico (7) está constituida por al menos dos sitios con interacciones diferentes a corto alcance.
9. El Sistema según la reivindicación 5, CARACTERIZADO porque el cristal fotónico (7) no convencional presenta, al menos, una banda plana.
10. El Sistema según la reivindicación 1 , CARACTERIZADO porque el elemento físico definido (7) está contenido al interior de un dispositivo protector y transmisor de luz.
11. El Sistema según la reivindicación 10, CARACTERIZADO porque el dispositivo protector y transmisor de luz tiene forma de cilindro.
12. El Sistema según la reivindicación 10, CARACTERIZADO porque el dispositivo protector y transmisor de luz es flexible.
13. El Sistema según la reivindicación 10, CARACTERIZADO porque el transmisor de luz del dispositivo protector y transmisor es una fibra óptica.
14. El Sistema según la reivindicación 13, CARACTERIZADO porque el dispositivo protector y transmisor de luz es una caja contenedora con una parte móvil para deja pasar la luz.
15. El Sistema según la reivindicación 14, CARACTERIZADO porque el dispositivo protector y transmisor de luz es una caja contenedora es una tarjeta.
16. El Sistema según la reivindicación 15, CARACTERIZADO porque la tarjeta es una tarjeta de crédito o tarjeta de identificación.
17. Un procedimiento de control de acceso controlado a un usuario por medio de la comprobación de un elemento físico definido, en un contexto óptico y de bajo nivel de potencia, CARACTERIZADO porque consiste en las siguientes etapas:
(a) decidir una imagen inicial deseada, la cual se forma en el conjunto modulador espacial de luz (2);
(b) observar con cámara CCD inicial (6) la imagen inicial generada en (a), y chequear que su estructura de amplitud y fase coincida con la imagen deseada. Si no coinciden, corregir la imagen generada por el modulador espacial de luz (2) hasta que ésta coincida con la imagen deseada; (c) hacer pasar el haz de luz modulado a través del elemento físico definido (7);
(d) observar con cámara CCD final (8) la imagen final de salida desde el elemento físico definido (7); y
(e) comparar con un computador (300) la coincidencia de la imagen final captada con cámara CCD final (8) con la imagen inicial captada con cámara
CCD inicial(6) mediante un cálculo de similaridad:
si la similaridad es >= P , se permite acceso;
si la similaridad es < P, se niega acceso; 18. Un procedimiento de control de acceso controlado de acuerdo a la reivindicación 17, CARACTERIZADO porque en la etapa e) el parámetro de similaridad P es = 75%.
19. Un procedimiento de control de acceso controlado a un usuario por medio de la comprobación de un elemento físico definido, en un contexto óptico y de bajo nivel de potencia a través de código, CARACTERIZADO porque consiste en las siguientes etapas:
(a) Introducir un elemento físico definido (7) entre el segundo microscopio objetivo (12) y el tercer microscopio objetivo (13);
(b) Digitar código numérico en un tablero de ingreso; y
(c) Comparar mediante un computador (300), si el patrón transmitido a través del elemento físico definido (7) coincide con el patrón de puntos codificados a números correspondientes al código digitado en paso (b), si coinciden se concede acceso, en caso contrario se niega acceso.
PCT/IB2015/054846 2015-03-02 2015-06-26 Sistema y procedimiento de control de acceso controlado por medio de un dispositivo óptico de bandas planas WO2016139516A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/321,944 US10274677B2 (en) 2015-03-02 2015-06-26 Control system and procedure for controlled access by means of an optical device based on flat bands

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562127032P 2015-03-02 2015-03-02
US62/127,032 2015-03-02
CL2015001871A CL2015001871A1 (es) 2015-03-02 2015-06-26 Sistema y procedimiento de control de acceso controlado por medio de un dispositivo óptico de bandas planas
CL1871-2015 2015-06-26

Publications (1)

Publication Number Publication Date
WO2016139516A1 true WO2016139516A1 (es) 2016-09-09

Family

ID=56080992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2015/054846 WO2016139516A1 (es) 2015-03-02 2015-06-26 Sistema y procedimiento de control de acceso controlado por medio de un dispositivo óptico de bandas planas

Country Status (3)

Country Link
US (1) US10274677B2 (es)
CL (1) CL2015001871A1 (es)
WO (1) WO2016139516A1 (es)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11351710B2 (en) 2018-11-05 2022-06-07 Case Western Reserve University Multilayered structures and uses thereof in security markings
US11194094B2 (en) * 2018-11-05 2021-12-07 Case Western Reserve University Multilayered structures and uses thereof in security markings
CN110286425B (zh) * 2019-06-13 2021-05-18 浙江工业大学 一种类Lieb光子晶格布洛赫平带的控制方法
CN111913718B (zh) * 2020-06-22 2022-02-11 西安交通大学 基于基本块上下文信息的二进制函数差分分析方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6570708B1 (en) * 2000-09-18 2003-05-27 Institut National D'optique Image processing apparatus and method with locking feature
US20070188838A1 (en) * 2006-01-17 2007-08-16 California Institute Of Technology Real-time pattern recognition processor using holographic photopolymer and method of use thereof
EP2107498B1 (en) * 1999-08-19 2013-07-31 Physical Optics Corporation Authentication system and method
US20140183269A1 (en) * 2012-09-07 2014-07-03 Lawrence F. Glaser Communication device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3914877A (en) * 1974-04-08 1975-10-28 Marion E Hines Image scrambling technique
US6865001B2 (en) * 2001-08-07 2005-03-08 Pacific Holographics, Inc. System and method for encoding and decoding an image or document and document encoded thereby
GB0720550D0 (en) 2007-10-19 2007-11-28 Rue De Int Ltd Photonic crystal security device multiple optical effects

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2107498B1 (en) * 1999-08-19 2013-07-31 Physical Optics Corporation Authentication system and method
US6570708B1 (en) * 2000-09-18 2003-05-27 Institut National D'optique Image processing apparatus and method with locking feature
US20070188838A1 (en) * 2006-01-17 2007-08-16 California Institute Of Technology Real-time pattern recognition processor using holographic photopolymer and method of use thereof
US20140183269A1 (en) * 2012-09-07 2014-07-03 Lawrence F. Glaser Communication device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GUZMAN-SILVA ET AL.: "Experimental observation of bulk and edge transport in photonic Lieb lattices.", NEW JOURNAL OF PHYSICS., vol. 16, no. 6, June 2014 (2014-06-01), pages 063061 *

Also Published As

Publication number Publication date
US20180210150A1 (en) 2018-07-26
US10274677B2 (en) 2019-04-30
CL2015001871A1 (es) 2015-11-27

Similar Documents

Publication Publication Date Title
WO2016139516A1 (es) Sistema y procedimiento de control de acceso controlado por medio de un dispositivo óptico de bandas planas
Mihalache et al. Stable spatiotemporal solitons in Bessel optical lattices
Carnicer et al. Optical encryption in the longitudinal domain of focused fields
Song et al. Printing polarization and phase at the optical diffraction limit: near-and far-field optical encryption
CN105404912A (zh) 一种可重构并防窥探的光学puf
Anaya Carvajal et al. Generation of perfect optical vortices by using a transmission liquid crystal spatial light modulator
KR102637100B1 (ko) 인증 구조체 및 이를 이용한 인증 방법
Smirnov et al. Self-diffraction at a dynamic photonic crystal formed in a colloidal solution of quantum dots
ES2345651B2 (es) Marca de seguridad optica que comprende metamateriales con respuesta magnetica, procedimiento de autentificacion usando la marca y uso de la marca aplicada en un articulo.
He et al. Generation and control of multiple optical bottles from chirped Airy–Gaussian vortex beams: theory and experiment
Zhang et al. Space‐Time Projection Enabled Ultrafast All‐Optical Diffractive Neural Network
Vasiljević et al. Elliptical vortex necklaces in Mathieu lattices
CN113742796A (zh) 用于智能卡的光学加密安全装置、加密方法及智能卡
Zerom et al. Self-focusing, conical emission, and other self-action effects in atomic vapors
Cheng Ultracold Fermi Gases in a Bichromatic Optical Superlattice
ES2369109T3 (es) Filtro óptico conmutable con cristales fotónicos.
RIQUELME PINCHEIRA Theoretical and experimental study of the lévy statistics and photonic spin glass phase in random lasers
Leung Phase transition due to PT symmetry breaking at optical frequency in waveplates
Andreoli Multiple light scattering in atomic media: from metasurfaces to the ultimate refractive index
Poppe Jr Physical Applications of the Geometric Minimum Action Method
Carnicer González et al. Optical encryption in the axial domain using beams with arbitrary polarization
Wang et al. Dressed Airy Vortex Beam in a Hot Atomic Medium
Romanov Collisions of spatial solitons in optically induced lattices
Sharma In search of photonic bound entanglement: using hyperentanglement to study mixed entangled states
Arecchi et al. Chaos in optics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883860

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15321944

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15883860

Country of ref document: EP

Kind code of ref document: A1