WO2016139433A1 - Method and device for compressing a gas - Google Patents

Method and device for compressing a gas Download PDF

Info

Publication number
WO2016139433A1
WO2016139433A1 PCT/FR2016/050500 FR2016050500W WO2016139433A1 WO 2016139433 A1 WO2016139433 A1 WO 2016139433A1 FR 2016050500 W FR2016050500 W FR 2016050500W WO 2016139433 A1 WO2016139433 A1 WO 2016139433A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
liquid
heat
indirectly
directly
Prior art date
Application number
PCT/FR2016/050500
Other languages
French (fr)
Inventor
Benoît DAVIDIAN
Original Assignee
L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude filed Critical L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Publication of WO2016139433A1 publication Critical patent/WO2016139433A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/011Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/013Carbone dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/014Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/015Carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/016Noble gases (Ar, Kr, Xe)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/016Noble gases (Ar, Kr, Xe)
    • F17C2221/017Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/031Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0146Two-phase
    • F17C2225/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0146Two-phase
    • F17C2225/0153Liquefied gas, e.g. LPG, GPL
    • F17C2225/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/036Very high pressure, i.e. above 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0341Heat exchange with the fluid by cooling using another fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the present invention relates to a method and an apparatus for compressing a gaseous mixture, for example air.
  • a pressurized air gas To produce a pressurized air gas, it is known to vaporize a pressurized liquid withdrawn from a distillation column by heat exchange against another pressurized gas of the process, generally pressurized air at high pressure.
  • This vaporization is generally carried out by sending the pressurized liquid into at least one passage of an exchange line, the other pressurized gas being sent to cool in at least one other passage of this exchange line, the heat transfer latent of the other pressurized gas to the pressurized liquid being indirect, because it is made through the wall of the passage.
  • the pseudo-vaporization replaces the vaporization.
  • the term "vaporization” also covers pseudo-vaporization. If the other gas is pressurized to a supercritical pressure, the pseudo-condensation replaces the condensation. In what follows, the term “condensation” also covers the pseudo-condensation.
  • Magnetic refrigeration is based on the use of magnetic materials having a magnetocaloric effect. Reversible, this effect results in a variation of their temperature when they are subjected to the application of an external magnetic field.
  • the optimal ranges of use of these materials are in the vicinity of their Curie temperature (Te). Indeed, the more the variations of magnetization, and consequently the changes of magnetic entropy, are high, the changes in their temperature are high.
  • the magnetocaloric effect is said to be direct when the temperature of the material increases when it is put in a magnetic field, indirect when it cools when it is put in a magnetic field. The rest of the description will be made for the direct case, but the transposition to the indirect case is obvious to those skilled in the art. There are several thermodynamic cycles based on this principle.
  • a typical magnetic refrigeration cycle consists of i) magnetizing the material to increase its temperature ii) cooling the constant magnetic field material to reject heat iii) demagnetizing the material to cool it and iv) heating the material to constant magnetic field (usually zero) to capture heat.
  • a magnetic refrigeration device uses elements of magnetocaloric material, which generate heat when magnetized and absorb heat when demagnetized. It can implement a magnetocaloric material regenerator to amplify the temperature difference between the "hot source” and the “cold source”: there is then active regenerative magnetic refrigeration.
  • FR 301051 A1 describes the vaporization of a liquid resulting from a separation by reducing the pressure ratio between the gas to be condensed and the liquid to be vaporized normally necessary for a heat exchange through an exchanger, at least a part of the heat required to vaporize the liquid comes from a heat pump using the magnetocaloric effect.
  • US 2013/0305744 A1 discloses a method in which natural gas is cooled in a heat exchanger, cooled and condensed in a cooler, pressurized by a pump and then reheated and / or vaporized in the heat exchanger. If the natural gas is vaporized, the text does not clearly say whether this takes place in the heat exchanger with the cooling of the gas as sole heat source or in another heat exchanger. Since the condensation takes place in the cooler, this means in all cases that the temperature difference between the flows in the exchanger is important and thus the heat exchange is not effective.
  • the present invention aims to reduce the irreversibility of the heat exchange of the prior art.
  • the present invention consists of liquefying the gas to be compressed, then compressing it with the aid of a liquid pump, and vaporizing it to produce the gas under pressure, using at least one heat pump using the magnetocaloric effect.
  • a heat pump is a thermodynamic device for transferring a quantity of heat from a medium considered as “transmitter” said “cold source” from which the heat is extracted to a medium considered as “receiver” said "hot source Where the heat is supplied, the cold source being at a colder temperature than the hot source.
  • An ambient temperature is the temperature of the ambient air in which the process is located, or a temperature of a cooling water circuit related to the air temperature.
  • a subambient temperature is at least 10 ° C below room temperature, for example below 0 ° C.
  • a cryogenic temperature is below -50 ° C.
  • a method of compressing a gas in which a gas is cooled, then condensed to form a liquid, the liquid is then compressed, then heated, warming during which it is vaporized, for forming a compressed gas characterized in that a first heat pump using the magnetocaloric effect exchanges heat directly or indirectly between a first part of the cooled gas which condenses directly or indirectly to its cold source and a cooling fluid external to the process which is heated directly or indirectly to its hot source, and in that at least one second heat pump using the magnetocaloric effect exchanges heat directly or indirectly between at least a second part of the cooled gas which condenses directly or indirectly to its cold source and the compressed liquid that vaporizes directly or indirectly at its hot source e.
  • the liquid is constituted by at least a part of the first part of the condensed gas and / or at least a part of the second part of the condensed gas -
  • the condensation of the gas to form a liquid is carried out at a subambient temperature or cryogenic;
  • the cooling fluid external to the process is at a room temperature
  • the cooling fluid external to the process is at a subambient or even cryogenic temperature
  • At least one third heat pump using the magnetocaloric effect exchanges heat directly or indirectly between at least a third part of the cooled gas which condenses directly or indirectly at its cold source and the compressed liquid which de-subcooled or the gas that overheats itself directly or indirectly at its hot source;
  • the gas is cooled in a heat exchanger and the compressed liquid is at least partially, or even completely reheated in the same heat exchanger;
  • the heat exchanger exchanges heat between only the gas and the compressed liquid
  • the compressed gas is air, or nitrogen, or oxygen, or argon, or carbon dioxide, or methane, or carbon monoxide, or hydrogen, or helium, or a mixture of at least two of these compounds;
  • a portion of the liquid can be withdrawn, before or after compression, as a liquid product, and possibly be sent to a storage;
  • a fluid possibly coming from the gas to be compressed, is brought into direct contact with a magnetocaloric material of one of the heat pumps using the magnetocaloric effect;
  • the heat exchange is at least partly carried out between at least one fluid, possibly from the gas to be compressed, and a heat transfer fluid in contact with a magnetocaloric material of a heat pump using the magnetocaloric effect through an exchanger;
  • the heat exchanges are at least partly carried out between at least one fluid, possibly derived from the gas to be compressed, and a heat transfer fluid that has been in contact with a magnetocaloric material of one of the heat pumps using the magnetocaloric effect through an intermediate heat transfer circuit;
  • the first and second and possibly third condensed portions are mixed to form the liquid to be compressed.
  • the gas is cooled in a heat exchanger and the liquid is heated in the heat exchanger
  • the liquid is vaporized at an intermediate temperature of the heat exchanger and then reheated in the heat exchanger by heat exchange with the cooling gas.
  • the liquid to be vaporised is withdrawn at an intermediate temperature of the heat exchanger and returned to the heat exchanger at a higher intermediate temperature thereof.
  • an apparatus for compressing a gas comprising a heat exchanger, means for sending the gas into the exchanger where it cools, means for condensing the gas to form a gas.
  • liquid means for compressing the liquid, means for sending the compressed liquid into the heat exchanger where it heats up, a first heat pump using the magnetocaloric effect exchanging heat directly or indirectly between a first part of the gas cooled which condenses directly or indirectly to its cold source and a cooling fluid external to the process that heats directly or indirectly to its hot source, at least a second heat pump using the magnetocaloric effect exchanging heat directly or indirectly between at least a second portion of the cooled gas that condenses directly or indirectly to its cold source and the liquid co mime that vaporizes directly or indirectly at its hot source.
  • the apparatus may include:
  • a liquid pump for compressing the liquid means for withdrawing the partially heated compressed liquid at an intermediate level of the heat exchanger
  • At least one third heat pump using the magnetocaloric effect exchanging heat directly or indirectly between at least a third part of the cooled gas which condenses directly or indirectly at its cold source and the compressed liquid which de-subcooled or the gas that overheats itself directly or indirectly at its hot source;
  • the heat exchange is at least partly carried out between at least one fluid, possibly from the gas to be compressed, and a heat transfer fluid in contact with a magnetocaloric material of a heat pump using the magnetocaloric effect through an exchanger;
  • the heat exchanges are at least partly carried out between at least one fluid, possibly derived from the gas to be compressed, and the coolant having been in contact with a magnetocaloric material of one of the heat pumps using the magnetocaloric effect through a intermediate heat transport circuit;
  • a gas to be compressed 1 cools in a heat exchanger 20. It is then divided into two. One part 2 serves as a cold source for a first heat pump using the magnetocaloric effect 41 and another part 3 serves as a cold source for a second heat pump using the magnetocaloric effect 31. Part 2 cools and liquefies by heat exchange in the first heat pump using the magnetocaloric effect 41 to form the liquid 12, a cooling fluid external to the process, for example the ambient, serving as a hot source. Similarly, the other part 3 cools and liquefies by heat exchange in the second heat pump using the magnetocaloric effect 31 to form the liquid 13.
  • the liquids 12 and 13 are joined to form the liquid 60, which is pressurized by a pump 25 and partially reheated in the heat exchanger 20. Then the heated liquid 60 is removed from the heat exchanger 20, vaporized at least partially in the second heat pump using the magnetocaloric effect 31 where it serves as a hot source and returned to the heat exchanger 20, either to complete the vaporization and to heat up or only to heat up.
  • the gas 61 thus obtained is the desired compressed gas.
  • a portion of the liquid 60 may be, before or after compression in the pump 25, extracted in liquid form as a product, and be sent for example to a storage.
  • the compressed liquid 60 is first withdrawn from the still sub-cooled heat exchanger and then sent to a second heat pump using the magnetocaloric effect 31 where it finishes de-subcooling, then is vaporized.
  • the compressed liquid 60 thus vaporized is then sent to a third heat pump using the magnetocaloric effect 32 where it is superheated, then returns to the heat exchanger 20 where it continues to heat up against the gas to be compressed.
  • gas 61 thus obtained is the desired compressed gas.
  • the gas to be compressed 1 cooled in a heat exchanger 20 is divided into three.
  • Part 2 serves as a cold source for a first heat pump using the magnetocaloric effect 41
  • another part 3 serves as a cold source for the second heat pump using the magnetocaloric effect 31
  • a last part 4 serves as a cold source for the third heat pump using the magnetocaloric effect 32.
  • Part 2 cools and liquefies by heat exchange in the first heat pump using the magnetocaloric effect 41 to form the liquid 12, a cooling fluid external to the process, for example ambient, serving as a hot source.
  • the other parts 3 and 4 cool and liquefy by heat exchange in the second and third heat pumps using the magnetocaloric effect 31 and 32 to form the liquids 13 and 14.
  • the liquids 12, 13 and 14 are combined to form the liquid 60, which is pressurized by a pump 25 and vaporized by the second and third heat pumps and partially reheated in the heat exchanger 20.
  • Heat pumps using the magnetocaloric effect 31 and 32 or 41 can be combined into a single machine.
  • the compressed liquid 60 is withdrawn from the heat exchanger 20 just for its vaporization in a second heat pump using the magnetocaloric effect 31, liquefying a portion 13 of the gas to be compressed 1 the heat exchanger 20 is cooled.
  • Part of the gas to be compressed 1 during cooling in the heat exchanger 20 is withdrawn at a temperature level close to that of the vaporization stage of the compressed liquid 60, passes through a third heat pump using the magnetocaloric effect 33 where this part heats up, the third heat pump using the magnetocaloric effect 33 liquefying a portion 15 of the gas to be compressed 1 cooled the heat exchanger 20, then this part returns again to in the heat exchanger 20.
  • Another part of the gas to be compressed 1 cooled the heat exchanger 20 is withdrawneau bout cold end of the heat exchanger 20, e t passes through a fourth heat pump using the magnetocaloric effect 32 where this other part heats up, the fourth heat pump using the magnetocaloric effect 32 liquefying a portion 14 of the gas to be compressed 1 cooled the heat exchanger 20, then this other part returns to cool again in the heat exchanger 20.
  • the rest of the gas to be compressed 1 cooled the heat exchanger 20 is condensed to form the liquid 12 in a first heat pump using the magnetocaloric effect 41 , a cooling fluid external to the process, for example ambient, serving as a hot source.
  • the liquids 12, 13, 14 and 15 are combined to form the liquid 60, which is pressurized by the pump 25.
  • the liquid 60 compressed in a pump 25 is sent into the heat exchanger 20 where it de-subcooled, vaporized, and overheated.
  • the gas 61 thus obtained is the desired compressed gas.
  • the gas to be compressed 1 cools in the heat exchanger 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

In a method for compressing a gas, a gas is cooled, then condensed to form a liquid, the liquid then being compressed, then reheated; during said reheating it is vaporised to form a compressed gas, a first heat pump, using the magnetocaloric effect, exchanging heat between a first portion of the cooled gas, which condenses at the cold source of same, and a cooling fluid external to the process, which heats up at the hot source of same, and a second heat pump, using the magnetocaloric effect, exchanging heat between a second portion of the cooled gas, which condenses at the cold source of same, and the compressed liquid, which vaporises at the hot source of same.

Description

Procédé et appareil de compression d'un gaz  Method and apparatus for compressing a gas
La présente invention est relative à un procédé et à un appareil de compression d'un mélange gazeux, par exemple l'air. The present invention relates to a method and an apparatus for compressing a gaseous mixture, for example air.
Pour produire un gaz sous pression, il est classique d'utiliser un compresseur. Certains gaz comburants, comme l'oxygène, sont coûteux à comprimer dans un compresseur, à cause des solutions techniques mise en œuvre pour éviter une combustion / explosion du compresseur en cas d'incident. De même, certains gaz légers, comme l'hydrogène ou l'hélium, sont difficiles à comprimer, notamment dans des compresseurs centrifuges plus économiques et plus performants que des compresseurs volumétriques.  To produce a gas under pressure, it is conventional to use a compressor. Some oxidizing gases, such as oxygen, are expensive to compress in a compressor, because of the technical solutions implemented to avoid combustion / explosion of the compressor in case of incident. Similarly, some light gases, such as hydrogen or helium, are difficult to compress, especially in centrifugal compressors more economical and more efficient than volumetric compressors.
Pour produire un gaz de l'air sous pression, il est connu de vaporiser un liquide pressurisé soutiré d'une colonne de distillation par échange de chaleur contre un autre gaz pressurisé du procédé, généralement de l'air pressurisé à haute pression. Cette vaporisation s'effectue généralement en envoyant le liquide pressurisé dans au moins un passage d'une ligne d'échange, l'autre gaz pressurisé étant envoyé se refroidir dans au moins un autre passage de cette ligne d'échange, le transfert de chaleur latente de l'autre gaz pressurisé au liquide pressurisé étant indirect, car il s'effectue à travers la paroi du passage.  To produce a pressurized air gas, it is known to vaporize a pressurized liquid withdrawn from a distillation column by heat exchange against another pressurized gas of the process, generally pressurized air at high pressure. This vaporization is generally carried out by sending the pressurized liquid into at least one passage of an exchange line, the other pressurized gas being sent to cool in at least one other passage of this exchange line, the heat transfer latent of the other pressurized gas to the pressurized liquid being indirect, because it is made through the wall of the passage.
Si le liquide est pressurisé à une pression supercritique, la pseudo-vaporisation remplace la vaporisation. Dans ce qui suit, le terme « vaporisation » couvre également la pseudo-vaporisation. Si l'autre gaz est pressurisé à une pression supercritique, la pseudo-condensation remplace la condensation. Dans ce qui suit, le terme « condensation » couvre également la pseudo-condensation.  If the liquid is pressurized to supercritical pressure, the pseudo-vaporization replaces the vaporization. In what follows, the term "vaporization" also covers pseudo-vaporization. If the other gas is pressurized to a supercritical pressure, the pseudo-condensation replaces the condensation. In what follows, the term "condensation" also covers the pseudo-condensation.
La réfrigération magnétique repose sur l'utilisation de matériaux magnétiques présentant un effet magnétocalorique. Réversible, cet effet se traduit par une variation de leur température lorsqu'ils sont soumis à l'application d'un champ magnétique externe. Les plages optimales d'utilisation de ces matériaux se situent au voisinage de leur température de Curie (Te). En effet, plus les variations d'aimantation, et par conséquent les changements d'entropie magnétique, sont élevés, plus les changements de leur température sont élevés. L'effet magnétocalorique est dit direct lorsque la température du matériau augmente quand il est mis dans un champ magnétique, indirect lorsqu'il se refroidit quand il est mis dans un champ magnétique. La suite de la description sera faite pour le cas direct, mais la transposition au cas indirect est évidente pour l'homme de l'art. Il existe plusieurs cycles thermodynamiques basés sur ce principe. Un cycle classique de réfrigération magnétique consiste i) à magnétiser le matériau pour en augmenter la température ii) à refroidir le matériau à champ magnétique constant pour rejeter de la chaleur iii) à démagnétiser le matériau pour le refroidir et iv) à chauffer le matériau à champ magnétique constant (en général, nul) pour capter la chaleur. Magnetic refrigeration is based on the use of magnetic materials having a magnetocaloric effect. Reversible, this effect results in a variation of their temperature when they are subjected to the application of an external magnetic field. The optimal ranges of use of these materials are in the vicinity of their Curie temperature (Te). Indeed, the more the variations of magnetization, and consequently the changes of magnetic entropy, are high, the changes in their temperature are high. The magnetocaloric effect is said to be direct when the temperature of the material increases when it is put in a magnetic field, indirect when it cools when it is put in a magnetic field. The rest of the description will be made for the direct case, but the transposition to the indirect case is obvious to those skilled in the art. There are several thermodynamic cycles based on this principle. A typical magnetic refrigeration cycle consists of i) magnetizing the material to increase its temperature ii) cooling the constant magnetic field material to reject heat iii) demagnetizing the material to cool it and iv) heating the material to constant magnetic field (usually zero) to capture heat.
Un dispositif de réfrigération magnétique met en œuvre des éléments en matériau magnétocalorique, qui génèrent de la chaleur lorsqu'ils sont magnétisés et absorbent de la chaleur lorsqu'ils sont démagnétisés. Il peut mettre en œuvre un régénérateur à matériau magnétocalorique pour amplifier la différence de température entre la « source chaude » et la « source froide » : on parie alors de réfrigération magnétique à régénération active.  A magnetic refrigeration device uses elements of magnetocaloric material, which generate heat when magnetized and absorb heat when demagnetized. It can implement a magnetocaloric material regenerator to amplify the temperature difference between the "hot source" and the "cold source": there is then active regenerative magnetic refrigeration.
FR 301051 1 A1 décrit la vaporisation d'un liquide issu d'une séparation en réduisant le rapport de pression entre le gaz à condenser et le liquide à vaporiser normalement nécessaire pour un échange de chaleur à travers un échangeur, au moins une partie de la chaleur requise pour vaporiser le liquide provient d'une pompe à chaleur utilisant l'effet magnétocalorique.  FR 301051 A1 describes the vaporization of a liquid resulting from a separation by reducing the pressure ratio between the gas to be condensed and the liquid to be vaporized normally necessary for a heat exchange through an exchanger, at least a part of the heat required to vaporize the liquid comes from a heat pump using the magnetocaloric effect.
US 2013/0305744 A1 décrit un procédé dans lequel du gaz naturel est refroidi dans un échangeur de chaleur, refroidi et condensé dans un refroidisseur, pressurisé par une pompe et ensuite réchauffé et/ou vaporisé dans l'échangeur de chaleur. Si le gaz naturel est vaporisé, le texte ne dit pas clairement si ceci a lieu dans l'échangeur de chaleur avec le refroidissement du gaz comme seule source de chaleur ou dans un autre échangeur. Puisque la condensation a lieu dans le refroidisseur, ceci veut dire dans tous les cas que la différence de température entre les débits dans l'échangeur est importante et ainsi l'échange de chaleur n'est pas efficace.  US 2013/0305744 A1 discloses a method in which natural gas is cooled in a heat exchanger, cooled and condensed in a cooler, pressurized by a pump and then reheated and / or vaporized in the heat exchanger. If the natural gas is vaporized, the text does not clearly say whether this takes place in the heat exchanger with the cooling of the gas as sole heat source or in another heat exchanger. Since the condensation takes place in the cooler, this means in all cases that the temperature difference between the flows in the exchanger is important and thus the heat exchange is not effective.
La présente invention vise à réduire l'irréversibilité de l'échange thermique de l'art antérieur. La présente invention consiste à liquéfier le gaz à comprimer, puis à le comprimer à l'aide d'une pompe liquide, et à le vaporiser pour produire le gaz sous pression, en utilisant au moins une pompe à chaleur utilisant l'effet magnétocalorique. The present invention aims to reduce the irreversibility of the heat exchange of the prior art. The present invention consists of liquefying the gas to be compressed, then compressing it with the aid of a liquid pump, and vaporizing it to produce the gas under pressure, using at least one heat pump using the magnetocaloric effect.
Une pompe à chaleur est un dispositif thermodynamique permettant de transférer une quantité de chaleur d'un milieu considéré comme « émetteur » dit « source froide » d'où l'on extrait la chaleur vers un milieu considéré comme « récepteur » dit « source chaude » où l'on fournit la chaleur, la source froide étant à une température plus froide que la source chaude.  A heat pump is a thermodynamic device for transferring a quantity of heat from a medium considered as "transmitter" said "cold source" from which the heat is extracted to a medium considered as "receiver" said "hot source Where the heat is supplied, the cold source being at a colder temperature than the hot source.
Une température ambiante est la température de l'air ambiant dans lequel se situe le procédé, ou encore une température d'un circuit d'eau de refroidissement en lien avec la température d'air.  An ambient temperature is the temperature of the ambient air in which the process is located, or a temperature of a cooling water circuit related to the air temperature.
Une température subambiante est au moins 10°C inférieure à la température ambiante, par exemple inférieure à 0°C.  A subambient temperature is at least 10 ° C below room temperature, for example below 0 ° C.
Une température cryogénique est inférieure à -50°C.  A cryogenic temperature is below -50 ° C.
Selon un objet de l'invention, il est prévu un procédé de compression d'un gaz dans lequel un gaz est refroidi, puis condensé pour former un liquide, le liquide est ensuite comprimé, puis réchauffé, réchauffement au cours duquel il est vaporisé, pour former un gaz comprimé, caractérisé en ce qu'une première pompe à chaleur utilisant l'effet magnétocalorique échange de la chaleur directement ou indirectement entre une première partie du gaz refroidi qui se condense directement ou indirectement à sa source froide et un fluide de refroidissement externe au procédé qui se réchauffe directement ou indirectement à sa source chaude, et en ce qu'au moins une deuxième pompe à chaleur utilisant l'effet magnétocalorique échange de la chaleur directement ou indirectement entre au moins une deuxième partie du gaz refroidi qui se condense directement ou indirectement à sa source froide et le liquide comprimé qui se vaporise directement ou indirectement à sa source chaude.  According to one object of the invention, there is provided a method of compressing a gas in which a gas is cooled, then condensed to form a liquid, the liquid is then compressed, then heated, warming during which it is vaporized, for forming a compressed gas, characterized in that a first heat pump using the magnetocaloric effect exchanges heat directly or indirectly between a first part of the cooled gas which condenses directly or indirectly to its cold source and a cooling fluid external to the process which is heated directly or indirectly to its hot source, and in that at least one second heat pump using the magnetocaloric effect exchanges heat directly or indirectly between at least a second part of the cooled gas which condenses directly or indirectly to its cold source and the compressed liquid that vaporizes directly or indirectly at its hot source e.
Selon d'autres caractéristiques facultatives :  According to other optional features:
- le liquide est constitué par au moins une partie de la première partie du gaz condensé et/ou au moins une partie de la deuxième partie du gaz condensé - la condensation du gaz pour former un liquide s'effectue à une température subambiante, voire cryogénique ; the liquid is constituted by at least a part of the first part of the condensed gas and / or at least a part of the second part of the condensed gas - The condensation of the gas to form a liquid is carried out at a subambient temperature or cryogenic;
- le fluide de refroidissement externe au procédé est à une température ambiante ;  the cooling fluid external to the process is at a room temperature;
- le fluide de refroidissement externe au procédé est à une température subambiante, voire cryogénique ;  the cooling fluid external to the process is at a subambient or even cryogenic temperature;
- au moins une troisième pompe à chaleur utilisant l'effet magnétocalorique échange de la chaleur directement ou indirectement entre au moins une troisième partie du gaz refroidi qui se condense directement ou indirectement à sa source froide et le liquide comprimé qui se de-sous-refroidit ou le gaz qui se sur-réchauffe directement ou indirectement à sa source chaude ;  at least one third heat pump using the magnetocaloric effect exchanges heat directly or indirectly between at least a third part of the cooled gas which condenses directly or indirectly at its cold source and the compressed liquid which de-subcooled or the gas that overheats itself directly or indirectly at its hot source;
- le gaz est refroidi dans un échangeur de chaleur et le liquide comprimé est au moins partiellement, voire totalement réchauffé dans le même échangeur de chaleur;  the gas is cooled in a heat exchanger and the compressed liquid is at least partially, or even completely reheated in the same heat exchanger;
- l'échangeur de chaleur échange de la chaleur entre seulement le gaz et le liquide comprimé  the heat exchanger exchanges heat between only the gas and the compressed liquid
- au moins deux pompes à chaleur utilisant l'effet magnétocalorique sont combinées en une seule machine ;  at least two heat pumps using the magnetocaloric effect are combined into a single machine;
- le gaz comprimé est de l'air, ou de l'azote, ou de l'oxygène, ou de l'argon, ou du dioxyde de carbone, ou du méthane, ou monoxyde de carbone, ou de l'hydrogène, ou de l'hélium, ou un mélange d'au moins deux de ces composés ;  the compressed gas is air, or nitrogen, or oxygen, or argon, or carbon dioxide, or methane, or carbon monoxide, or hydrogen, or helium, or a mixture of at least two of these compounds;
- une partie du liquide peut être soutirée, avant ou après compression, comme produit liquide, et éventuellement être envoyée vers un stockage ;  - A portion of the liquid can be withdrawn, before or after compression, as a liquid product, and possibly be sent to a storage;
- un fluide, éventuellement issu du gaz à comprimer, est mis en contact direct avec un matériau magnétocalorique d'une des pompes à chaleur utilisant l'effet magnétocalorique ;  a fluid, possibly coming from the gas to be compressed, is brought into direct contact with a magnetocaloric material of one of the heat pumps using the magnetocaloric effect;
- les échanges thermiques sont au moins en partie réalisés entre au moins un fluide, éventuellement issu du gaz à comprimer, et un fluide caloporteur en contact avec un matériau magnétocalorique d'une des pompes à chaleur utilisant l'effet magnétocalorique à travers un échangeur ;  - The heat exchange is at least partly carried out between at least one fluid, possibly from the gas to be compressed, and a heat transfer fluid in contact with a magnetocaloric material of a heat pump using the magnetocaloric effect through an exchanger;
- les échanges thermiques sont au moins en partie réalisé entre au moins un fluide, éventuellement issu du gaz à comprimer, et un fluide caloporteur ayant été en contact avec un matériau magnétocalorique d'une des pompes à chaleur utilisant l'effet magnétocalorique à travers un circuit caloporteur intermédiaire ; the heat exchanges are at least partly carried out between at least one fluid, possibly derived from the gas to be compressed, and a heat transfer fluid that has been in contact with a magnetocaloric material of one of the heat pumps using the magnetocaloric effect through an intermediate heat transfer circuit;
- les première et deuxième et éventuellement troisième parties condensées sont mélangées pour former le liquide à comprimer.  the first and second and possibly third condensed portions are mixed to form the liquid to be compressed.
-le gaz est refroidi dans un échangeur de chaleur et le liquide est réchauffé dans l'échangeur de chaleur, the gas is cooled in a heat exchanger and the liquid is heated in the heat exchanger,
- le liquide est vaporisé à une température intermédiaire de l'échangeur de chaleur et ensuite réchauffé dans l'échangeur de chaleur par échange de chaleur avec le gaz qui se refroidit. the liquid is vaporized at an intermediate temperature of the heat exchanger and then reheated in the heat exchanger by heat exchange with the cooling gas.
-on soutire le liquide à vaporiser à une température intermédiaire de l'échangeur de chaleur et on le renvoie à l'échangeur de chaleur à une température intermédiaire plus élevée de celui-ci. the liquid to be vaporised is withdrawn at an intermediate temperature of the heat exchanger and returned to the heat exchanger at a higher intermediate temperature thereof.
Selon un autre objet de l'invention, il est prévu un appareil de compression d'un gaz comprenant un échangeur de chaleur, des moyens pour envoyer le gaz dans l'échangeur où il se refroidit, des moyens pour condenser le gaz pour former un liquide, des moyens pour comprimer le liquide, des moyens pour envoyer le liquide comprimé dans l'échangeur de chaleur où il se réchauffe, une première pompe à chaleur utilisant l'effet magnétocalorique échangeant de la chaleur directement ou indirectement entre une première partie du gaz refroidi qui se condense directement ou indirectement à sa source froide et un fluide de refroidissement externe au procédé qui se réchauffe directement ou indirectement à sa source chaude, au moins une deuxième pompe à chaleur utilisant l'effet magnétocalorique échangeant de la chaleur directement ou indirectement entre au moins une deuxième partie du gaz refroidi qui se condense directement ou indirectement à sa source froide et le liquide comprimé qui se vaporise directement ou indirectement à sa source chaude.  According to another object of the invention, there is provided an apparatus for compressing a gas comprising a heat exchanger, means for sending the gas into the exchanger where it cools, means for condensing the gas to form a gas. liquid, means for compressing the liquid, means for sending the compressed liquid into the heat exchanger where it heats up, a first heat pump using the magnetocaloric effect exchanging heat directly or indirectly between a first part of the gas cooled which condenses directly or indirectly to its cold source and a cooling fluid external to the process that heats directly or indirectly to its hot source, at least a second heat pump using the magnetocaloric effect exchanging heat directly or indirectly between at least a second portion of the cooled gas that condenses directly or indirectly to its cold source and the liquid co mime that vaporizes directly or indirectly at its hot source.
La récupération de la chaleur de vaporisation du liquide pour en faire la source chaude de la deuxième pompe à chaleur permet de réduire les irréversibilités de l'échange thermique.  The recovery of the heat of vaporization of the liquid to make it the hot source of the second heat pump makes it possible to reduce the irreversibilities of the heat exchange.
L'appareil peut comprendre :  The apparatus may include:
- une pompe de liquide pour comprimer le liquide - des moyens pour soutirer le liquide comprimé partiellement réchauffé à un niveau intermédiaire de l'échangeur de chaleur ; a liquid pump for compressing the liquid means for withdrawing the partially heated compressed liquid at an intermediate level of the heat exchanger;
- des moyens pour renvoyer le fluide comprimé à un niveau intermédiaire de l'échangeur de chaleur pour finir son réchauffement ;  means for returning the compressed fluid to an intermediate level of the heat exchanger to finish its heating;
- des moyens pour combiner au moins deux pompes à chaleur utilisant l'effet magnétocalorique en une seule machine ;  means for combining at least two heat pumps using the magnetocaloric effect in a single machine;
- au moins une troisième pompe à chaleur utilisant l'effet magnétocalorique échangeant de la chaleur directement ou indirectement entre au moins une troisième partie du gaz refroidi qui se condense directement ou indirectement à sa source froide et le liquide comprimé qui se de-sous-refroidit ou le gaz qui se sur-réchauffe directement ou indirectement à sa source chaude ;  at least one third heat pump using the magnetocaloric effect exchanging heat directly or indirectly between at least a third part of the cooled gas which condenses directly or indirectly at its cold source and the compressed liquid which de-subcooled or the gas that overheats itself directly or indirectly at its hot source;
- des moyens pour soutirer un liquide vers un stockage ;  means for withdrawing a liquid towards a storage;
- des moyens pour mettre en contact direct un fluide, éventuellement issu du gaz à comprimer, et un matériau magnétocalorique d'une des pompes à chaleur utilisant l'effet magnétocalorique;  means for putting in direct contact a fluid, possibly from the gas to be compressed, and a magnetocaloric material of one of the heat pumps using the magnetocaloric effect;
- les échanges thermiques sont au moins en partie réalisés entre au moins un fluide, éventuellement issu du gaz à comprimer, et un fluide caloporteur en contact avec un matériau magnétocalorique d'une des pompes à chaleur utilisant l'effet magnétocalorique à travers un échangeur ;  - The heat exchange is at least partly carried out between at least one fluid, possibly from the gas to be compressed, and a heat transfer fluid in contact with a magnetocaloric material of a heat pump using the magnetocaloric effect through an exchanger;
- les échanges thermiques sont au moins en partie réalisés entre au moins un fluide, éventuellement issu du gaz à comprimer, et le fluide caloporteur ayant été en contact avec un matériau magnétocalorique d'une des pompes à chaleur utilisant l'effet magnétocalorique à travers un circuit caloporteur intermédiaire ;  the heat exchanges are at least partly carried out between at least one fluid, possibly derived from the gas to be compressed, and the coolant having been in contact with a magnetocaloric material of one of the heat pumps using the magnetocaloric effect through a intermediate heat transport circuit;
L'invention sera décrite de manière plus détaillée en se référant aux figures 1 à 4.  The invention will be described in more detail with reference to FIGS. 1 to 4.
Dans la Figure 1 , un gaz à comprimer 1 se refroidit dans un échangeur de chaleur 20. Il est ensuite divisé en deux. Une partie 2 sert de source froide pour une première pompe à chaleur utilisant l'effet magnétocalorique 41 et une autre partie 3 sert de source froide pour une deuxième pompe à chaleur utilisant l'effet magnétocalorique 31. La partie 2 se refroidit et se liquéfie par échange de chaleur dans la première pompe à chaleur utilisant l'effet magnétocalorique 41 pour former le liquide 12, un fluide de refroidissement externe au procédé, par exemple l'ambiante, lui servant de source chaude. De même, l'autre partie 3 se refroidit et se liquéfie par échange de chaleur dans la deuxième pompe à chaleur utilisant l'effet magnétocalorique 31 pour former le liquide 13. In Figure 1, a gas to be compressed 1 cools in a heat exchanger 20. It is then divided into two. One part 2 serves as a cold source for a first heat pump using the magnetocaloric effect 41 and another part 3 serves as a cold source for a second heat pump using the magnetocaloric effect 31. Part 2 cools and liquefies by heat exchange in the first heat pump using the magnetocaloric effect 41 to form the liquid 12, a cooling fluid external to the process, for example the ambient, serving as a hot source. Similarly, the other part 3 cools and liquefies by heat exchange in the second heat pump using the magnetocaloric effect 31 to form the liquid 13.
Les liquides 12 et 13 sont réunis pour former le liquide 60, qui est pressurisé par une pompe 25 et réchauffé partiellement dans l'échangeur de chaleur 20. Ensuite le liquide 60 réchauffé est sorti de l'échangeur de chaleur 20, vaporisé au moins partiellement dans la deuxième pompe à chaleur utilisant l'effet magnétocalorique 31 où il sert de source chaude et renvoyé à l'échangeur de chaleur 20, soit pour terminer la vaporisation et se réchauffer soit uniquement pour se réchauffer. Le gaz 61 ainsi obtenu est le gaz comprimé souhaité. Eventuellement (non représenté sur la Figure 1 ), une partie du liquide 60 peut être, avant ou après compression dans la pompe 25, extraite sous forme liquide comme produit, et être envoyée par exemple vers un stockage.  The liquids 12 and 13 are joined to form the liquid 60, which is pressurized by a pump 25 and partially reheated in the heat exchanger 20. Then the heated liquid 60 is removed from the heat exchanger 20, vaporized at least partially in the second heat pump using the magnetocaloric effect 31 where it serves as a hot source and returned to the heat exchanger 20, either to complete the vaporization and to heat up or only to heat up. The gas 61 thus obtained is the desired compressed gas. Optionally (not shown in Figure 1), a portion of the liquid 60 may be, before or after compression in the pump 25, extracted in liquid form as a product, and be sent for example to a storage.
Dans la Figure 2, à la différence de la Figure 1 , le liquide 60 comprimé est d'abord soutiré de l'échangeur de chaleur 20 encore sous-refroidi, puis envoyé dans une deuxième pompe à chaleur utilisant l'effet magnétocalorique 31 où il finit de se dé-sous-refroidir, puis est vaporisé. Le liquide 60 comprimé ainsi vaporisé est ensuite envoyé dans une troisième pompe à chaleur utilisant l'effet magnétocalorique 32 où il est surchauffé, puis retourne ensuite dans l'échangeur de chaleur 20 où il continue à se réchauffer contre le gaz à comprimer 1. Le gaz 61 ainsi obtenu est le gaz comprimé souhaité.  In FIG. 2, unlike FIG. 1, the compressed liquid 60 is first withdrawn from the still sub-cooled heat exchanger and then sent to a second heat pump using the magnetocaloric effect 31 where it finishes de-subcooling, then is vaporized. The compressed liquid 60 thus vaporized is then sent to a third heat pump using the magnetocaloric effect 32 where it is superheated, then returns to the heat exchanger 20 where it continues to heat up against the gas to be compressed. gas 61 thus obtained is the desired compressed gas.
Le gaz à comprimer 1 refroidi dans un échangeur de chaleur 20 est divisé en trois. Une partie 2 sert de source froide pour une première pompe à chaleur utilisant l'effet magnétocalorique 41 , une autre partie 3 sert de source froide pour la deuxième pompe à chaleur utilisant l'effet magnétocalorique 31 , et une dernière partie 4 sert de source froide pour la troisième pompe à chaleur utilisant l'effet magnétocalorique 32.  The gas to be compressed 1 cooled in a heat exchanger 20 is divided into three. Part 2 serves as a cold source for a first heat pump using the magnetocaloric effect 41, another part 3 serves as a cold source for the second heat pump using the magnetocaloric effect 31, and a last part 4 serves as a cold source for the third heat pump using the magnetocaloric effect 32.
La partie 2 se refroidit et se liquéfie par échange de chaleur dans la première pompe à chaleur utilisant l'effet magnétocalorique 41 pour former le liquide 12, un fluide de refroidissement externe au procédé, par exemple l'ambiante, lui servant de source chaude. De même, les autres parties 3 et 4 se refroidissent et se liquéfient par échange de chaleur dans les deuxième et troisième pompes à chaleur utilisant l'effet magnétocalorique 31 et 32 pour former les liquides 13 et 14. Les liquides 12, 13 et 14 sont réunis pour former le liquide 60, qui est pressurisé par une pompe 25 et vaporisé par les deuxième et troisième pompes à chaleur et réchauffé partiellement dans l'échangeur de chaleur 20. Part 2 cools and liquefies by heat exchange in the first heat pump using the magnetocaloric effect 41 to form the liquid 12, a cooling fluid external to the process, for example ambient, serving as a hot source. Similarly, the other parts 3 and 4 cool and liquefy by heat exchange in the second and third heat pumps using the magnetocaloric effect 31 and 32 to form the liquids 13 and 14. The liquids 12, 13 and 14 are combined to form the liquid 60, which is pressurized by a pump 25 and vaporized by the second and third heat pumps and partially reheated in the heat exchanger 20.
Les pompes à chaleur utilisant l'effet magnétocalorique 31 et 32, voire 41 peuvent être combinées en une seule machine.  Heat pumps using the magnetocaloric effect 31 and 32 or 41 can be combined into a single machine.
Dans la Figure 3, contrairement à la Figure 2, le liquide 60 comprimé est soutiré de l'échangeur de chaleur 20 juste pour sa vaporisation dans une deuxième pompe à chaleur utilisant l'effet magnétocalorique 31 , liquéfiant une partie 13 du gaz à comprimer 1 refroidi l'échangeur de chaleur 20. Une partie du gaz à comprimer 1 en cours de refroidissement dans l'échangeur de chaleur 20 est soutirée à un niveau de température proche de celui du palier de vaporisation du liquide 60 comprimé, passe à travers une troisième pompe à chaleur utilisant l'effet magnétocalorique 33 où cette partie se réchauffe, la troisième pompe à chaleur utilisant l'effet magnétocalorique 33 liquéfiant une partie 15 du gaz à comprimer 1 refroidi l'échangeur de chaleur 20, puis cette partie retourne de nouveau se refroidir dans l'échangeur de chaleur 20. Une autre partie du gaz à comprimer 1 refroidi l'échangeur de chaleur 20 est soutiréeau bout froid de l'échangeur de chaleur 20, et passe à travers une quatrième pompe à chaleur utilisant l'effet magnétocalorique 32 où cette autre partie se réchauffe, la quatrième pompe à chaleur utilisant l'effet magnétocalorique 32 liquéfiant une partie 14 du gaz à comprimer 1 refroidi l'échangeur de chaleur 20, puis cette autre partie retourne de nouveau se refroidir dans l'échangeur de chaleur 20. Le reste du gaz à comprimer 1 refroidi l'échangeur de chaleur 20 est condensé pour former le liquide 12 dans une première pompe à chaleur utilisant l'effet magnétocalorique 41 , un fluide de refroidissement externe au procédé, par exemple l'ambiante, lui servant de source chaude. Les liquides 12, 13, 14 et 15 sont réunis pour former le liquide 60, qui est pressurisé par la pompe 25. Dans la Figure 4, le liquide 60 comprimé dans une pompe 25 est envoyé dans l'échangeur de chaleur 20 où il se dé-sous-refroidit, se vaporise, puis se surchauffe. Le gaz 61 ainsi obtenu est le gaz comprimé souhaité. Le gaz à comprimer 1 se refroidit dans l'échangeur de chaleur 20. Une première partie du gaz à comprimer 1 refroidi en sortie de l'échangeur de chaleur 20, encore essentiellement gazeux, est liquéfiée dans un ensemble de pompes à chaleur utilisant l'effet magnétocalorique A, B, C, D, E, F et G, chaque fluide caloporteur des pompes à chaleur A, B, C, D, E, F et G étant refroidi, du côté de leur source chaude, à un niveau différent de température dans l'échangeur de chaleur 20, par échange de chaleur avec le liquide 60 comprimé. Une deuxième partie du gaz à comprimer 1 refroidi en sortie de l'échangeur de chaleur 20, encore essentiellement gazeux, est liquéfiée dans une pompe à chaleur utilisant l'effet magnétocalorique H, un fluide de refroidissement externe au procédé, par exemple l'ambiante, lui servant de source chaude. L'ensemble des parties liquéfiées du gaz à comprimer 1 refroidi forme le liquide 60. In FIG. 3, contrary to FIG. 2, the compressed liquid 60 is withdrawn from the heat exchanger 20 just for its vaporization in a second heat pump using the magnetocaloric effect 31, liquefying a portion 13 of the gas to be compressed 1 the heat exchanger 20 is cooled. Part of the gas to be compressed 1 during cooling in the heat exchanger 20 is withdrawn at a temperature level close to that of the vaporization stage of the compressed liquid 60, passes through a third heat pump using the magnetocaloric effect 33 where this part heats up, the third heat pump using the magnetocaloric effect 33 liquefying a portion 15 of the gas to be compressed 1 cooled the heat exchanger 20, then this part returns again to in the heat exchanger 20. Another part of the gas to be compressed 1 cooled the heat exchanger 20 is withdrawneau bout cold end of the heat exchanger 20, e t passes through a fourth heat pump using the magnetocaloric effect 32 where this other part heats up, the fourth heat pump using the magnetocaloric effect 32 liquefying a portion 14 of the gas to be compressed 1 cooled the heat exchanger 20, then this other part returns to cool again in the heat exchanger 20. The rest of the gas to be compressed 1 cooled the heat exchanger 20 is condensed to form the liquid 12 in a first heat pump using the magnetocaloric effect 41 , a cooling fluid external to the process, for example ambient, serving as a hot source. The liquids 12, 13, 14 and 15 are combined to form the liquid 60, which is pressurized by the pump 25. In Figure 4, the liquid 60 compressed in a pump 25 is sent into the heat exchanger 20 where it de-subcooled, vaporized, and overheated. The gas 61 thus obtained is the desired compressed gas. The gas to be compressed 1 cools in the heat exchanger 20. A first portion of the gas to be compressed 1 cooled at the outlet of the heat exchanger 20, still essentially gaseous, is liquefied in a heat pump assembly using the magnetocaloric effect A, B, C, D, E, F and G, each heat transfer fluid of the heat pumps A, B, C, D, E, F and G being cooled, on the side of their hot source, to a different level temperature in the heat exchanger 20, by heat exchange with the compressed liquid 60. A second part of the gas to be compressed 1 cooled at the outlet of the heat exchanger 20, still essentially gaseous, is liquefied in a heat pump using the magnetocaloric effect H, a cooling fluid external to the process, for example the ambient , serving as a hot spring. All the liquefied parts of the gas to be compressed 1 cooled form the liquid 60.

Claims

Revendications claims
1 . Procédé de compression d'un gaz dans lequel un gaz (1 ) est refroidi, puis condensé pour former un liquide (12,13,60), le liquide est ensuite comprimé, puis réchauffé, réchauffement au cours duquel il est vaporisé, pour former un gaz comprimé (61 ), caractérisé en ce qu'une première pompe à chaleur (41 , H) utilisant l'effet magnétocalorique échange de la chaleur directement ou indirectement entre une première partie (2) du gaz refroidi qui se condense directement ou indirectement à sa source froide et un fluide de refroidissement externe au procédé qui se réchauffe directement ou indirectement à sa source chaude, et en ce qu'au moins une deuxième pompe à chaleur (31 ,A,B,C,D,E,F) utilisant l'effet magnétocalorique échange de la chaleur directement ou indirectement entre au moins une deuxième partie (3) du gaz refroidi qui se condense directement ou indirectement à sa source froide et le liquide comprimé qui se vaporise directement ou indirectement à sa source chaude. 1. A method of compressing a gas in which a gas (1) is cooled, then condensed to form a liquid (12,13,60), the liquid is then compressed, then reheated, heated during which it is vaporized, to form a compressed gas (61), characterized in that a first heat pump (41, H) using the magnetocaloric effect exchanges heat directly or indirectly between a first portion (2) of the cooled gas which condenses directly or indirectly at its cold source and a cooling fluid external to the process that heats directly or indirectly to its hot source, and in that at least a second heat pump (31, A, B, C, D, E, F) using the magnetocaloric effect heat exchange directly or indirectly between at least a second portion (3) of the cooled gas that condenses directly or indirectly to its cold source and the compressed liquid that vaporizes directly or indirectly to its penny hot.
2. Procédé selon la revendication 1 dans lequel la condensation du gaz (1 ) pour former un liquide s'effectue à une température subambiante, voire cryogénique. 2. The method of claim 1 wherein the condensation of the gas (1) to form a liquid is carried out at a subambient temperature or cryogenic.
3. Procédé selon la revendication 1 ou 2 dans lequel le fluide de refroidissement externe au procédé est à une température ambiante. 3. The method of claim 1 or 2 wherein the cooling fluid external to the process is at a room temperature.
4. Procédé selon la revendication 1 ou 2 dans lequel le fluide de refroidissement externe au procédé est à une température subambiante, voire cryogénique. 4. The method of claim 1 or 2 wherein the cooling fluid external to the process is at a subambient temperature or cryogenic.
5. Procédé selon l'une des revendications précédentes dans lequel au moins une troisième pompe à chaleur (32) utilisant l'effet magnétocalorique échange de la chaleur directement ou indirectement entre au moins une troisième partie (4) du gaz refroidi qui se condense directement ou indirectement à sa source froide et le liquide comprimé qui se de-sous-refroidit ou le gaz qui se sur-réchauffe directement ou indirectement à sa source chaude. 5. Method according to one of the preceding claims wherein at least a third heat pump (32) using the magnetocaloric effect heat exchange directly or indirectly between at least a third portion (4) of the gas cooled that condenses directly or indirectly to its cold source and the compressed liquid that de-subcooled or the gas that overheats directly or indirectly to its hot source.
6. Procédé selon l'une des revendications précédentes dans lequel le gaz (1 ) est refroidi dans un échangeur de chaleur (20) et le liquide comprimé est au moins partiellement, voire totalement réchauffé dans le même échangeur. 6. Method according to one of the preceding claims wherein the gas (1) is cooled in a heat exchanger (20) and the compressed liquid is at least partially or fully heated in the same exchanger.
7. Procédé selon l'une des revendications précédentes dans lequel au moins deux pompes à chaleur (31 , 32, 41 ) utilisant l'effet magnétocalorique sont combinées en une seule machine. 7. Method according to one of the preceding claims wherein at least two heat pumps (31, 32, 41) using the magnetocaloric effect are combined in a single machine.
8. Procédé selon l'une des revendications précédentes dans lequel le gaz (1 ) comprimé est de l'air, ou de l'azote, ou de l'oxygène, ou de l'argon, ou du dioxyde de carbone, ou du méthane, ou monoxyde de carbone, ou de l'hydrogène, ou de l'hélium, ou un mélange d'au moins deux de ces composés 8. Method according to one of the preceding claims wherein the gas (1) compressed is air, or nitrogen, or oxygen, or argon, or carbon dioxide, or methane, or carbon monoxide, or hydrogen, or helium, or a mixture of at least two of these compounds
9. Procédé selon l'une des revendications précédentes dans lequel une partie du liquide peut être soutirée, avant ou après compression, comme produit liquide, et éventuellement être envoyée vers un stockage. 9. Method according to one of the preceding claims wherein a portion of the liquid can be withdrawn, before or after compression, as a liquid product, and optionally be sent to a storage.
10. Procédé selon l'une des revendications précédentes dans lequel les première et deuxième et éventuellement troisième parties condensées sont mélangées pour former le liquide à comprimer. 10. Method according to one of the preceding claims wherein the first and second and optionally third condensed portions are mixed to form the liquid to be compressed.
1 1. Procédé selon l'une des revendications précédentes dans lequel le gaz (1 ) est refroidi dans un échangeur de chaleur et le liquide (12, 13, 60) est réchauffé dans l'échangeur de chaleur, Method according to one of the preceding claims wherein the gas (1) is cooled in a heat exchanger and the liquid (12, 13, 60) is reheated in the heat exchanger,
12. Procédé selon la revendication 1 1 dans lequel le liquide est vaporisé à une température intermédiaire de l'échangeur de chaleur et ensuite réchauffé dans l'échangeur de chaleur par échange de chaleur avec le gaz qui se refroidit. 12. The method of claim 11 wherein the liquid is vaporized at an intermediate temperature of the heat exchanger and then reheated in the heat exchanger by heat exchange with the cooling gas.
13. Procédé selon la revendication 12 dans lequel on soutire le liquide à vaporiser à une température intermédiaire de l'échangeur de chaleur et on le renvoie à l'échangeur de chaleur à une température intermédiaire plus élevée de celui-ci. 13. The method of claim 12 wherein the liquid to be vaporized is withdrawn at an intermediate temperature of the heat exchanger and returned to the heat exchanger at a higher intermediate temperature thereof.
14. Appareil de compression d'un gaz (1 ) comprenant un échangeur de chaleur14. Apparatus for compressing a gas (1) comprising a heat exchanger
(20), des moyens pour envoyer le gaz dans l'échangeur de chaleur où il se refroidit, des moyens pour condenser le gaz pour former un liquide, des moyens (25) pour comprimer le liquide, des moyens pour envoyer le liquide comprimé dans l'échangeur de chaleur où il se réchauffe, une première pompe à chaleur (41 ,1-1) utilisant l'effet magnétocalorique échangeant de la chaleur directement ou indirectement entre une première partie (2) du gaz refroidi qui se condense directement ou indirectement à sa source froide et un fluide de refroidissement externe au procédé qui se réchauffe directement ou indirectement à sa source chaude, au moins une deuxième pompe à chaleur (31 ) utilisant l'effet magnétocalorique échangeant de la chaleur directement ou indirectement entre au moins une deuxième partie (3) du gaz refroidi qui se condense directement ou indirectement à sa source froide et le liquide comprimé qui se vaporise directement ou indirectement à sa source chaude. (20), means for feeding the gas into the heat exchanger where it cools, means for condensing the gas to form a liquid, means (25) for compressing the liquid, means for sending the compressed liquid into the heat exchanger where it heats up, a first heat pump (41, 1-1) using the magnetocaloric effect exchanging heat directly or indirectly between a first portion (2) of the cooled gas that condenses directly or indirectly at its cold source and a cooling fluid external to the process that is heated directly or indirectly to its hot source, at least one second heat pump (31) using the magnetocaloric effect exchanging heat directly or indirectly between at least a second part (3) of the cooled gas which condenses directly or indirectly to its cold source and the compressed liquid which vaporizes directly or indirectly to its hot source.
15. Appareil selon la revendication 14 comprenant des moyens pour sortir le liquide à vaporiser à une température intermédiaire de l'échangeur et pour l'envoyer vers au moins la deuxième pompe à chaleur. 15. Apparatus according to claim 14 comprising means for discharging the liquid to be vaporized at an intermediate temperature of the exchanger and for sending it to at least the second heat pump.
PCT/FR2016/050500 2015-03-05 2016-03-04 Method and device for compressing a gas WO2016139433A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1551868 2015-03-05
FR1551868A FR3033395A1 (en) 2015-03-05 2015-03-05 METHOD AND APPARATUS FOR COMPRESSING GAS

Publications (1)

Publication Number Publication Date
WO2016139433A1 true WO2016139433A1 (en) 2016-09-09

Family

ID=53008746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/050500 WO2016139433A1 (en) 2015-03-05 2016-03-04 Method and device for compressing a gas

Country Status (2)

Country Link
FR (1) FR3033395A1 (en)
WO (1) WO2016139433A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021110168A1 (en) 2021-04-21 2022-10-27 Hochschule für Technik und Wirtschaft Dresden (FH) Process for storing and using liquid hydrogen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001086218A2 (en) * 2000-05-05 2001-11-15 University Of Victoria Innovation And Development Corporation Apparatus and methods for cooling and liquefying a fluid using magnetic refrigeration
FR2874423A1 (en) * 2004-08-17 2006-02-24 Linde Ag METHOD AND DEVICE FOR OBTAINING A GAS PRODUCT UNDER PRESSURE BY LOW TEMPERATURE AIR FRACTIONATION
US20130305744A1 (en) 2012-05-21 2013-11-21 General Electric Company Cng delivery system with cryocooler and method of supplying purified cng
FR3010511A1 (en) 2013-09-10 2015-03-13 Air Liquide METHOD AND APPARATUS FOR SEPARATING A GAS MIXTURE WITH SUBAMBIAN TEMPERATURE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001086218A2 (en) * 2000-05-05 2001-11-15 University Of Victoria Innovation And Development Corporation Apparatus and methods for cooling and liquefying a fluid using magnetic refrigeration
FR2874423A1 (en) * 2004-08-17 2006-02-24 Linde Ag METHOD AND DEVICE FOR OBTAINING A GAS PRODUCT UNDER PRESSURE BY LOW TEMPERATURE AIR FRACTIONATION
US20130305744A1 (en) 2012-05-21 2013-11-21 General Electric Company Cng delivery system with cryocooler and method of supplying purified cng
FR3010511A1 (en) 2013-09-10 2015-03-13 Air Liquide METHOD AND APPARATUS FOR SEPARATING A GAS MIXTURE WITH SUBAMBIAN TEMPERATURE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AFEF LEBOUC ET AL: "Refrigeration magnetique", TECHNIQUES DE L'INGENIEUR,, 10 January 2005 (2005-01-10), pages RE28 - 1, XP009178331 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021110168A1 (en) 2021-04-21 2022-10-27 Hochschule für Technik und Wirtschaft Dresden (FH) Process for storing and using liquid hydrogen

Also Published As

Publication number Publication date
FR3033395A1 (en) 2016-09-09

Similar Documents

Publication Publication Date Title
US10914516B2 (en) System for treating a gas deriving from the evaporation of a cryogenic liquid and supplying pressurized gas to a gas engine
FR2675888A1 (en) PROCESS FOR THE USE OF LIQUEFIED NATURAL GAS (LNG) ASSOCIATED WITH A COLD EXPANDER TO PRODUCE LIQUID NITROGEN
EP0117793B1 (en) Fluid cooling process and plant, in particular for liquefying natural gas
WO2015036697A2 (en) Method and device for separation at sub-ambient temperature
EP3044529A2 (en) Method and apparatus for separation of a gaseous mixture at sub-ambient temperature
WO2016139433A1 (en) Method and device for compressing a gas
CH693187A5 (en) Process and refrigeration production facility from a thermal cycle of a low boiling point fluid.
CA2758095C (en) Refrigeration process and system for recovering cold from methane refrigerants
WO2015036700A2 (en) Method and device for separation at cryogenic temperature
EP2938414B1 (en) Method and apparatus for separating a carbon dioxide-rich gas
WO2016139432A2 (en) Process and apparatus for separating a gaseous mixture at sub-ambient temperature
EP3084328A2 (en) Method and apparatus for separation at subambient temperature
WO2016142606A1 (en) Method for separating a gas mixture at sub-ambient temperature
WO2016132082A1 (en) Method and apparatus for separation at sub-ambient temperature
WO2016132087A2 (en) Method and apparatus for separation at sub-ambient temperature
WO2016139425A1 (en) Method and device for separation at sub-ambient temperature
WO2023148045A1 (en) Method and apparatus for cooling carbon dioxide and hydrogen
FR3033397A1 (en) PROCESS FOR COMPRESSING AND COOLING A GASEOUS MIXTURE
WO2016132083A1 (en) Method and apparatus for separation at sub-ambient temperature
EP4325150A1 (en) Method and apparatus for cooling hydrogen
EP3044522A2 (en) Method and device for separation at sub-ambient temperature
FR3128011A1 (en) Method and apparatus for cooling a CO2-rich flow
FR3033260A1 (en) METHOD AND APPARATUS FOR SUBAMBIAN TEMPERATURE SEPARATION
FR2714720A1 (en) Natural gas liquefaction process
WO2015075398A2 (en) Apparatus for separating a gaseous mixture at sub-ambient temperature and method for keeping such an apparatus cold

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16715001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16715001

Country of ref document: EP

Kind code of ref document: A1