WO2016138653A1 - 无线通信装置、无线通信节点和控制信息的传输方法 - Google Patents

无线通信装置、无线通信节点和控制信息的传输方法 Download PDF

Info

Publication number
WO2016138653A1
WO2016138653A1 PCT/CN2015/073664 CN2015073664W WO2016138653A1 WO 2016138653 A1 WO2016138653 A1 WO 2016138653A1 CN 2015073664 W CN2015073664 W CN 2015073664W WO 2016138653 A1 WO2016138653 A1 WO 2016138653A1
Authority
WO
WIPO (PCT)
Prior art keywords
ofdm symbol
channel estimation
length
sequence
control information
Prior art date
Application number
PCT/CN2015/073664
Other languages
English (en)
French (fr)
Inventor
林梅露
卢伟山
于健
刘晟
刘乐
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/073664 priority Critical patent/WO2016138653A1/zh
Publication of WO2016138653A1 publication Critical patent/WO2016138653A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a wireless communication device, a wireless communication node, and a method for transmitting control information.
  • Orthogonal Frequency Division Multiplexing is the basic transmission method of current wireless communication, and is widely used in Long Term Evolution (LTE) and Worldwide Interoperability for Microwave Access (WiMAX). Wireless communication systems such as Wireless Fidelity (WiFi). Not only that, OFDM is further applied to fixed network transmission, such as optical fiber, copper stranded wire, cable and other transmission methods.
  • the basic principle of OFDM is to compress the subcarrier spacing to a minimum within the range allowed by the orthogonality of the subcarriers, forming a multi-channel parallel and non-interfering path, and at the same time improving the frequency utilization efficiency of the system.
  • serial-to-parallel conversion of high-speed data streams transmission is performed in several sub-channels with lower rates, so that the symbol length in each sub-channel is increased, thereby alleviating the influence of inter-symbol interference caused by multipath delay spread of the radio channel. .
  • a Cyclic Prefix is added to each OFDM symbol as protection.
  • the CP is typically the tail of the truncated OFDM symbol.
  • the CP usually repeats part of the content of the OFDM symbol data portion, thereby increasing system overhead and reducing data transmission efficiency.
  • Legacy Preamble includes: Legacy-Short Training Field (L-STF) for Automatic Gain Control (AGC); Legacy-Long Training Field (Legacy-Long Training) Field, L-LTF), used for channel estimation, and Legacy Signal Field (L-SIG).
  • L-STF Legacy-Short Training Field
  • AGC Automatic Gain Control
  • L-Long Training Field Long Training Field
  • L-LTF Legacy-Long Training Field
  • L-SIG Legacy Signal Field
  • the High Efficient Preamble is included for HE-SIG0, HE-SIG1, HE-STF, HE-LTF1...HE-LTFN, and HE-SIGB.
  • the HE-SIG1 includes indication information sent to multiple terminals, and uses Orthogonal Frequency Division Multiple Access (OFDMA) and Multi-User Multiple Input (Multi-User Multiple Input). Multiple Output (MU-MIMO) technology, one transmission can be shared by multiple terminals for transmitting data.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • Multi-User Multiple Input Multi-User Multiple Input
  • MU-MIMO Multiple Output
  • the HE-SIG1 variable-length that is, the number of OFDM symbols included in the HE-SIG1 is related to the number of scheduled terminals.
  • the number of symbols of HE-SIG1 is large.
  • a CP is added in front of each symbol, so that when the number of symbols of HE-SIG1 is large, the CPU overhead is large.
  • An embodiment of the present invention provides a method for transmitting a wireless communication device, a wireless communication node, and control information, which is used to solve the problem that when a field used for transmitting control information occupies a large number of symbols in a wireless communication system adopting an OFDM transmission mode, The CP occupies a large system overhead and the system transmission efficiency is not high.
  • an embodiment of the present invention provides a wireless communication apparatus, including a processing module and a sending module, where:
  • the processing module is configured to generate a first orthogonal frequency division multiplexing OFDM symbol for carrying control information and a second OFDM symbol for carrying a first channel estimation sequence;
  • the sending module is configured to send the first OFDM symbol and the second OFDM symbol, where the first channel estimation sequence is used for decoding by a receiving end of the control information;
  • the length of the OFDM symbol of the first OFDM symbol is a first length
  • the length of the OFDM symbol of the second OFDM symbol is a second length
  • the first length is longer than the second length
  • a channel estimation sequence for performing decoding on the receiving end of the control information is not included in the first OFDM symbol.
  • the first OFDM symbol is not included for the control information. Perform a channel estimation sequence decoded at the receiving end.
  • the second OFDM symbol includes a second channel estimation sequence
  • the second channel estimation sequence occupies a portion of the subcarriers of the first OFDM symbol, and is used together with the first channel estimation sequence for decoding by the receiving end of the control information;
  • the second channel estimation sequence is occupied by the first OFDM symbol of the first length, and the first channel estimation sequence is the second OFDM symbol from the second length
  • the subcarriers occupied in the OFDM symbols after the first length are different.
  • the second channel estimation sequence is included in the first OFDM symbol.
  • the sending module is specifically configured to: send the first OFDM symbol on an entire system bandwidth, and send the second OFDM symbol on a part of subcarriers in an entire system bandwidth;
  • the first OFDM symbol further includes: a third channel estimation sequence, where the third channel estimation sequence occupies other available subcarriers in the entire system bandwidth except the partial subcarrier, and the first channel estimation sequence Together for the decoding of the control information of the control information.
  • the third channel estimation sequence is located in one or more OFDM symbols in the first OFDM symbol.
  • the sending module is further configured to:
  • the indication information for indicating the second length and/or the indication information for indicating the first length are sent to the receiving end of the control information.
  • the control information is located in a HE-SIG1 field in WiFi 802.11ax;
  • the first channel estimation sequence is located in an L-LTF field in WiFi 802.11ax.
  • an embodiment of the present invention provides a wireless communication apparatus, including a processor and a transmitter, where:
  • the processor is configured to generate a first orthogonal frequency division multiplexing OFDM symbol for carrying control information and a second OFDM symbol for carrying a first channel estimation sequence;
  • the transmitter is configured to send the first OFDM symbol and the second OFDM symbol, where the first channel estimation sequence is used for decoding by a receiving end of the control information;
  • the length of the OFDM symbol of the first OFDM symbol is a first length
  • the length of the OFDM symbol of the second OFDM symbol is a second length
  • the first length is longer than the second length
  • a channel estimation sequence for performing decoding on the receiving end of the control information is not included in the first OFDM symbol.
  • the first OFDM symbol is not included for the control information. Perform a channel estimation sequence decoded at the receiving end.
  • the first OFDM symbol is encapsulated Including a second channel estimation sequence
  • the second channel estimation sequence occupies a portion of the subcarriers of the first OFDM symbol, and is used together with the first channel estimation sequence for decoding by the receiving end of the control information;
  • the sub-carrier occupied by the second channel estimation sequence in the first OFDM symbol of the first length, and the first channel estimation sequence mapping the second OFDM symbol from the second length to The subcarriers occupied in the OFDM symbol after the first length are different.
  • the second channel estimation sequence is included in the first OFDM symbol.
  • the transmitter is specifically configured to: send the first OFDM symbol over an entire system bandwidth, and send the second OFDM symbol on a part of subcarriers in an entire system bandwidth;
  • the first OFDM symbol further includes: a third channel estimation sequence, where the third channel estimation sequence occupies other available subcarriers in the entire system bandwidth except the partial subcarrier, and the first channel estimation sequence Together for the decoding of the control information of the control information.
  • the third channel estimation sequence is located in one or more OFDM symbols in the first OFDM symbol.
  • the transmitter is further configured to:
  • the indication information for indicating the length of the second number and/or the indication information for indicating the first length is sent to the receiving end of the control information.
  • the control information is located in a HE-SIG1 field in WiFi 802.11ax;
  • the first channel estimation sequence is located in an L-LTF field in WiFi 802.11ax.
  • an embodiment of the present invention provides a wireless communication node, including:
  • At least one antenna At least one antenna
  • the wireless communication device provided by any of the foregoing possible aspects of the second aspect or the second aspect.
  • an embodiment of the present invention provides a wireless communication apparatus, including:
  • a receiving module configured to receive a first orthogonal frequency division multiplexing OFDM symbol for carrying control information, and a second OFDM symbol for carrying a first channel estimation sequence; and acquiring the control from the first OFDM symbol Information, acquiring the first channel estimation sequence from the second OFDM symbol;
  • a processing module configured to decode the control information according to the first channel estimation sequence
  • the OFDM symbol length of the first OFDM symbol is a first length
  • the OFDM symbol length of the second OFDM symbol is a second length
  • the first length is longer than the second length
  • the processing module is specifically configured to:
  • the processing module is specifically configured to:
  • the control information is decoded using the generated second channel estimation result sequence.
  • a channel estimation sequence for decoding the control information is not included in the first OFDM symbol.
  • a channel coherent bandwidth of the wireless channel between the transmitting end and the receiving end of the control information is not less than the second OFDM
  • the channel estimation sequence for performing decoding on the receiving end of the control information is not included in the first OFDM symbol.
  • the first OFDM symbol includes a second channel estimation sequence, and the second channel estimation sequence is occupied. a partial subcarrier of the first OFDM symbol;
  • the processing module is specifically configured to:
  • the second channel estimation sequence is occupied by the first OFDM symbol of the first length, and the first channel estimation sequence is the second OFDM symbol from the second length
  • the subcarriers occupied in the OFDM symbols after the first length are different.
  • a channel coherent bandwidth of a radio channel between a transmitting end and a receiving end of the control information is smaller than the second OFDM symbol
  • the second channel estimation sequence is included in the first OFDM symbol when the subcarrier spacing is.
  • the first OFDM symbol is Sent on the system bandwidth
  • the second OFDM symbol is transmitted on a portion of subcarriers in the entire system bandwidth
  • the third OFDM symbol further includes a third channel estimation sequence, where the third channel estimation sequence occupies other available subcarriers in the entire system bandwidth except the part of the subcarriers;
  • the processing module is specifically configured to:
  • the control information is decoded according to the first channel estimation sequence and the third channel estimation sequence.
  • the third channel estimation sequence is located in one or more OFDM symbols in the first OFDM symbol.
  • the receiving module is further configured to:
  • receiving indication information for indicating the second length and/or indication information for indicating the first length Before indicating the control information, receiving indication information for indicating the second length and/or indication information for indicating the first length.
  • the control information is located in a HE-SIG1 field in WiFi 802.11ax;
  • the first channel estimation sequence is located in an L-LTF field in WiFi 802.11ax.
  • an embodiment of the present invention provides a wireless communication apparatus, including:
  • a receiver configured to receive a first orthogonal frequency division multiplexing OFDM symbol for carrying control information and a second OFDM symbol for carrying a first channel estimation sequence; and acquiring the control from the first OFDM symbol Information, acquiring the first channel estimation sequence from the second OFDM symbol;
  • a processor configured to decode the control information according to the first channel estimation sequence
  • the OFDM symbol length of the first OFDM symbol is a first length
  • the OFDM symbol length of the second OFDM symbol is a second length
  • the first length is longer than the second length
  • the processor is specifically configured to:
  • the control information is decoded using the generated second channel estimation result sequence.
  • a channel estimation sequence for decoding the control information is not included in the first OFDM symbol.
  • a channel coherent bandwidth of the wireless channel between the transmitting end and the receiving end of the control information is not less than the second OFDM
  • the channel estimation sequence for performing decoding on the receiving end of the control information is not included in the first OFDM symbol.
  • the first OFDM symbol includes a second channel estimation sequence, where the second channel estimation sequence occupies the first OFDM Part of the subcarrier of the symbol;
  • the processor is specifically configured to:
  • the second channel estimation sequence is occupied by the first OFDM symbol of the first length, and the first channel estimation sequence is the second OFDM symbol from the second length
  • the subcarriers occupied in the OFDM symbols after the first length are different.
  • a channel coherent bandwidth of a radio channel between a transmitting end and a receiving end of the control information is smaller than the second OFDM symbol
  • the second channel estimation sequence is included in the first OFDM symbol when the subcarrier spacing is.
  • the first OFDM symbol is Sent on the system bandwidth
  • the second OFDM symbol is transmitted on a portion of subcarriers in the entire system bandwidth
  • the third OFDM symbol further includes a third channel estimation sequence, where the third channel estimation sequence occupies other available subcarriers in the entire system bandwidth except the part of the subcarriers;
  • the processor is specifically configured to:
  • the control information is decoded according to the first channel estimation sequence and the third channel estimation sequence.
  • the third channel estimation sequence is located in one or more OFDM symbols in the first OFDM symbol.
  • the receiver is further configured to:
  • receiving indication information for indicating the second length and/or indication information for indicating the first length Before indicating the control information, receiving indication information for indicating the second length and/or indication information for indicating the first length.
  • the control information is located in a HE-SIG1 field in WiFi 802.11ax;
  • the first channel estimation sequence is located in an L-LTF field in WiFi 802.11ax.
  • an embodiment of the present invention provides a wireless communication node, including:
  • At least one antenna At least one antenna
  • the fifth aspect or the wireless communication device provided by any one of the possible implementation manners of the fifth aspect.
  • a seventh aspect of the present invention provides a method for sending control information, including:
  • the length of the OFDM symbol of the first OFDM symbol is a first length
  • the length of the OFDM symbol of the second OFDM symbol is a second length
  • the first length is longer than the second length
  • a channel estimation sequence for performing decoding on the receiving end of the control information is not included in the first OFDM symbol.
  • a channel coherence bandwidth of a radio channel between a transmitting end and a receiving end of the control information is not less than a subcarrier spacing of the second OFDM symbol
  • a channel estimation sequence for performing reception decoding on the control information is not included in the first OFDM symbol.
  • Included in the first OFDM symbol is a second channel estimation sequence
  • the second channel estimation sequence occupies a portion of the subcarriers of the first OFDM symbol, and is used together with the first channel estimation sequence for decoding by the receiving end of the control information;
  • the second channel estimation sequence is occupied by the first OFDM symbol of the first length, and the first channel estimation sequence is the second OFDM symbol from the second length
  • the subcarriers occupied in the OFDM symbols after the first length are different.
  • the second channel estimation sequence is included in the first OFDM symbol.
  • Transmitting the first OFDM symbol includes: transmitting the first OFDM symbol over an entire system bandwidth;
  • Transmitting the second OFDM symbol includes: transmitting the second OFDM symbol on a part of subcarriers in an entire system bandwidth;
  • the first OFDM symbol further includes: a third channel estimation sequence, where the third channel estimation sequence occupies other available subcarriers in the entire system bandwidth except the partial subcarrier, and the first channel estimation sequence Together for the decoding of the control information of the control information.
  • the third channel estimation sequence is located in one or more OFDM symbols in the first OFDM symbol.
  • the control information is located in the WiFi 802.11ax In the HE-SIG1 field;
  • the first channel estimation sequence is located in an L-LTF field in WiFi 802.11ax.
  • an embodiment of the present invention provides a method for receiving control information, including:
  • the OFDM symbol length of the first OFDM symbol is a first length
  • the OFDM symbol length of the second OFDM symbol is a second length
  • the first length is longer than the second length
  • control information is decoded according to the first channel estimation sequence, including:
  • the control information is decoded using the generated second channel estimation result sequence.
  • a channel estimation sequence for decoding the control information is not included in the first OFDM symbol.
  • a channel coherent bandwidth of the wireless channel between the transmitting end and the receiving end of the control information is not less than the second OFDM
  • the channel estimation sequence for performing decoding on the receiving end of the control information is not included in the first OFDM symbol.
  • the first OFDM symbol includes a second channel estimation sequence, where the second channel estimation sequence occupies the first OFDM Part of the subcarrier of the symbol;
  • Performing an interpolation process on the obtained first channel estimation result sequence to generate a second channel estimation result sequence having the first length including:
  • the second channel estimation sequence is in the first OFDM symbol of the first length
  • the occupied subcarriers are different from the first channel estimation sequence in the OFDM symbols occupied by mapping the second OFDM symbols from the second length to the first length.
  • a channel coherent bandwidth of the radio channel between the transmitting end and the receiving end of the control information is smaller than the second OFDM symbol
  • the second channel estimation sequence is included in the first OFDM symbol when the subcarrier spacing is.
  • the first OFDM symbol is transmitted over the entire system bandwidth
  • the second OFDM symbol is transmitted on a portion of subcarriers in the entire system bandwidth
  • the third OFDM symbol further includes a third channel estimation sequence, where the third channel estimation sequence occupies other available subcarriers in the entire system bandwidth except the part of the subcarriers;
  • Decoding the control information according to the first channel estimation sequence including:
  • the control information is decoded according to the first channel estimation sequence and the third channel estimation sequence.
  • the third channel estimation sequence is located in one or more OFDM symbols in the first OFDM symbol.
  • the method further includes:
  • Instructing information indicating the second length and/or indication information indicating the first length is received.
  • the control information is located in the WiFi 802.11ax In the HE-SIG1 field;
  • the first channel estimation sequence is located in an L-LTF field in WiFi 802.11ax.
  • an embodiment of the present invention provides a computer program product for wireless communication, including
  • the computer readable medium comprises instructions for performing the steps of the method of the seventh aspect described above, or any one of the possible implementations of the seventh aspect.
  • an embodiment of the present invention provides a computer program product for wireless communication, comprising a computer readable medium, comprising: the foregoing eighth aspect, or any one of the eighth aspects An instruction to implement the steps in the method provided by the method.
  • the transmitting end of the control information sends, to the receiving end, a first OFDM symbol for carrying control information and a second OFDM symbol for carrying the first channel estimation sequence, where the OFDM symbol length of the first OFDM symbol The length of the OFDM symbol is longer than the second OFDM symbol; the receiving end decodes the received control information according to the received first channel estimation sequence.
  • the transmitting information when transmitting, by the transmitting end, the first OFDM symbol for carrying the control information, the transmitting information is not sent according to the length of the shorter OFDM symbol of the second OFDM symbol, but the first OFDM symbol is increased.
  • OFDM symbol length since each OFDM symbol needs to have a CP in front of it, the OFDM symbol length of the first OFDM symbol is increased, which is equivalent to reducing the time ratio of the CP in the entire OFDM symbol, thereby reducing the CP in the OFDM symbol.
  • the overhead occupied by the overhead is reduced compared to the case where the OFDM symbol length of the first OFDM symbol used to carry the control information is equal to the OFDM symbol length of the second OFDM symbol used to carry the first channel estimation sequence, Improve system transmission efficiency.
  • the receiving end may perform channel estimation according to the received first channel estimation sequence, obtain a first channel estimation result sequence, and perform interpolation processing on the obtained first channel estimation result sequence to generate an OFDM having the first OFDM symbol.
  • the OFDM symbol length of the second OFDM symbol sent by the transmitting end is smaller than the OFDM symbol length of the first OFDM symbol, and the receiving end interpolates the first channel estimation result sequence to generate the OFDM symbol length of the first OFDM symbol.
  • the sequence of two channel estimation results thereby realizing the restoration of the channel characteristics, thereby realizing the decoding of the control information.
  • the transmitting end may further determine whether the first OFDM is based on a channel coherent bandwidth of the wireless channel between the transmitting end and the receiving end.
  • a channel estimation sequence for receiving channel decoding is transmitted in the symbol.
  • the receiving end After receiving the channel estimation according to the first channel estimation sequence, the receiving end obtains the sequence of the first channel estimation result, and when interpolating the sequence of the first channel estimation result, may be based on the sequence of the first channel estimation result, and more accurately The adjacent subcarriers are interpolated to obtain more accurate channel characteristic information, so the other channel estimation sequences may not be included in the control information.
  • the transmitting end may include a second channel estimation sequence in the first OFDM symbol, and assist the first channel estimation sequence for channel estimation at the receiving end.
  • the receiving end combines the received second channel estimation sequence in the first OFDM symbol with the first channel estimation sequence to restore the channel characteristics of the wireless channel between the transmitting end and the receiving end, and the channel estimation result is more accurate. Thereby, the control information can be decoded more accurately.
  • the transmitting end transmits the first OFDM symbol on the entire system frequency band and transmits the second OFDM symbol on a part of the sub-carriers in the entire system bandwidth, part of the sub-carrier occupied by the first channel estimation sequence in the entire system bandwidth There is no channel estimation sequence on other available subcarriers.
  • the transmitting end is available in the system bandwidth except for part of the subcarriers occupied by the second OFDM symbol.
  • a third estimated channel sequence is transmitted on the subcarrier, and the third channel estimation sequence is combined with the first channel estimation sequence for channel estimation of the receiving end and decoding of the control information.
  • Figure 1 is a schematic view of the position of the CP
  • FIG. 2 is a schematic structural diagram of a WiFi 802.11ax packet
  • FIG. 3 is a schematic structural diagram of a wireless communication system according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic structural diagram of a first type of wireless communication apparatus according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic structural diagram of a first type of wireless communication node according to Embodiment 3 of the present invention.
  • FIG. 6 is a schematic structural diagram of a third wireless communication apparatus according to Embodiment 6 of the present invention.
  • FIG. 7 is a schematic structural diagram of a second wireless communication node according to Embodiment 7 of the present invention.
  • Embodiment 8 is a flowchart of a method for transmitting control information according to Embodiment 10 of the present invention.
  • FIG. 9 is a flowchart of a method for receiving control information according to Embodiment 11 of the present invention.
  • Embodiment 12 is a schematic diagram of an interpolation method in Embodiment 12 of the present invention.
  • FIG. 11 is a schematic structural diagram of a packet transmitted between a transmitting end and a receiving end of control information according to Embodiment 12 of the present invention.
  • FIG. 12 is a schematic structural diagram of a packet transmitted between a transmitting end and a receiving end of control information according to Embodiment 13 of the present invention.
  • FIGS. 13A and 13B are schematic diagrams showing an interpolation method in Embodiment 13 of the present invention.
  • Embodiment 15 is a flowchart of processing of a transmitting end of control information in Embodiment 14 of the present invention.
  • FIG. 16 is a flowchart of processing of a receiving end of control information in Embodiment 14 of the present invention.
  • FIG. 17 is a schematic diagram showing a structure of a packet transmitted between a transmitting end and a receiving end of control information according to Embodiment 15 of the present invention.
  • FIG. 18A to FIG. 18C are schematic diagrams showing a mode of subcarrier allocation in a fifteenth embodiment of the present invention.
  • FIG. 19 is a schematic diagram showing a structure of a packet transmitted between a transmitting end and a receiving end of control information when a channel estimation sequence of full bandwidth is included in Embodiment 15 of the present invention.
  • Embodiment 15 of the present invention is a schematic diagram of an interpolation method in Embodiment 15 of the present invention.
  • FIG. 21 is a flowchart of processing of a transmitting end of control information according to Embodiment 15 of the present invention.
  • FIG. 22 is a flowchart of processing of a receiving end of control information according to Embodiment 15 of the present invention.
  • An embodiment of the present invention provides a method for transmitting a wireless communication device, a wireless communication node, and control information, which is used to solve the problem that when a field used for transmitting control information occupies a large number of symbols in a wireless communication system adopting an OFDM transmission mode, The CPU takes up a lot of system overhead and the system transmission efficiency is not high. problem.
  • the transmitting end of the control information sends, to the receiving end, a first OFDM symbol for carrying control information and a second OFDM symbol for carrying the first channel estimation sequence, where the OFDM symbol length of the first OFDM symbol The length of the OFDM symbol is longer than the second OFDM symbol; the receiving end decodes the received control information according to the received first channel estimation sequence.
  • the OFDM symbol length of the OFDM symbol used to carry the information part is the same as the OFDM symbol length of the OFDM symbol used to carry the channel estimation sequence, so that the receiving end can estimate the control according to the channel estimation sequence.
  • the channel characteristics of the information are the same as the OFDM symbol length of the OFDM symbol used to carry the channel estimation sequence, so that the receiving end can estimate the control according to the channel estimation sequence.
  • the first OFDM symbol when transmitting, by the transmitting end, the first OFDM symbol for carrying the control information, the first OFDM symbol is not transmitted according to the shorter OFDM symbol length of the second OFDM symbol, but the first OFDM symbol is increased.
  • the OFDM symbol length since each OFDM symbol needs to have a CP in front, thus increasing the OFDM symbol length of the first OFDM symbol, which is equivalent to reducing the time ratio of the CP in the entire OFDM symbol, thereby reducing the CP in OFDM.
  • the overhead occupied by the symbol reduces the system overhead compared to the case where the OFDM symbol length of the first OFDM symbol used to carry the control information is equal to the OFDM symbol length of the second OFDM symbol used to carry the first channel estimation sequence. , improve system transmission efficiency.
  • the receiving end may perform channel estimation according to the received first channel estimation sequence, obtain a first channel estimation result sequence, and perform interpolation processing on the obtained first channel estimation result sequence to generate an OFDM having the first OFDM symbol.
  • the OFDM symbol length of the second OFDM symbol sent by the transmitting end is smaller than the OFDM symbol length of the first OFDM symbol, and the receiving end interpolates the first channel estimation result sequence to generate the OFDM symbol length of the first OFDM symbol.
  • the sequence of two channel estimation results thereby realizing the restoration of the channel characteristics, thereby realizing the decoding of the control information.
  • the transmitting end may further determine whether to transmit the channel decoding for the receiving end in the first OFDM symbol according to the channel coherence bandwidth of the wireless channel between the transmitting end and the receiving end.
  • the channel estimation sequence may be used to determine whether to transmit the channel decoding for the receiving end in the first OFDM symbol according to the channel coherence bandwidth of the wireless channel between the transmitting end and the receiving end.
  • the receiving end After receiving the channel estimation according to the first channel estimation sequence, the receiving end obtains the sequence of the first channel estimation result, and when interpolating the sequence of the first channel estimation result, may be based on the sequence of the first channel estimation result, and more accurately The adjacent subcarriers are interpolated to obtain more accurate channel characteristic information, so the other channel estimation sequences may not be included in the control information.
  • the transmitting end may include a second channel estimation sequence in the first OFDM symbol, and assist the first channel estimation sequence for channel estimation at the receiving end.
  • the receiving end combines the received second channel estimation sequence in the first OFDM symbol with the first channel estimation sequence to restore the channel characteristics of the wireless channel between the transmitting end and the receiving end, and the channel estimation result is more accurate. Thereby, the control information can be decoded more accurately.
  • the transmitting end transmits the first OFDM symbol on the entire system frequency band and transmits the second OFDM symbol on a part of the sub-carriers in the entire system bandwidth, part of the sub-carrier occupied by the first channel estimation sequence in the entire system bandwidth There is no channel estimation sequence on other available subcarriers.
  • the transmitting end is available in the system bandwidth except for part of the subcarriers occupied by the second OFDM symbol.
  • a third estimated channel sequence is transmitted on the subcarrier, and the third channel estimation sequence is combined with the first channel estimation sequence for channel estimation of the receiving end and decoding of the control information.
  • the OFDM symbol length, T_symbol refers to the duration of each OFDM symbol from the perspective of the time domain.
  • the length of the OFDM symbol is inversely proportional to the subcarrier spacing of the OFDM symbol.
  • OFDM technology uses serial-to-parallel conversion.
  • the original high-speed serial data is converted into low-speed parallel data transmission.
  • the original P-symbol (the digitally mapped symbol, for example, each QPSK symbol contains 2 bits) is now quite equivalent. Only one symbol is transmitted (but due to parallel transmission, one for each of the P subcarriers, Equivalent to P at the same time). This time used is referred to as OFDM symbol length, or OFDM symbol period.
  • a Cyclic Prefix (CP) is also inserted between symbols, that is, the transmitted data after the IFFT is subjected to parallel and serial conversion, and is located at the end.
  • the symbol of the CP length is copied to the beginning of the OFDM symbol to eliminate intersymbol interference.
  • the actual length of each OFDM symbol becomes T_symbol+T_cp.
  • the OFDM symbol length of the transmitted information i.e., "IFFT length + CP length" is expressed in units of OFDM symbol periods.
  • the data part and the preamble part use the same Fast Fourier Trasnformation (FFT) point, that is, the 20MHz bandwidth corresponds to the 64-point FFT, in other words, the 20MHz bandwidth.
  • FFT Fast Fourier Trasnformation
  • the length of one OFDM symbol is 3.2 ⁇ s, which is called the 1 ⁇ OFDM symbol length, and the symbol length can be regarded as the symbol length of the reference.
  • the data part uses 4 times the number of points of the data part of 802.11n, for example, the 20MHz bandwidth corresponds to the 64*4 point FFT, and the subcarrier spacing is only one quarter of the data part of 802.11n, therefore,
  • the OFDM symbol has a length of 4 times the symbol length of the data portion of 802.11n, which is 12.8 ⁇ s, which is called 4x OFDM symbol length.
  • Interpolation also known as interpolation, is the process or method of finding unknown data from known discrete data. Interpolation has linear interpolation, nonlinear interpolation, and the like.
  • the transmitting end of the control information sends a first channel estimation sequence of the Mx OFDM symbol length
  • the receiving end of the control information may perform channel estimation according to the first channel estimation sequence to obtain a first channel estimation result sequence, and then obtain the obtained first channel.
  • the estimated result sequence is subjected to interpolation processing to generate a second channel estimation sequence of NxOFDM symbol length.
  • the solid line in the figure indicates channel estimation based on the first channel estimation sequence of the 1 ⁇ OFDM symbol length, and the obtained first channel of the 1 ⁇ OFDM symbol length.
  • the estimated sequence, the dashed line in the figure is obtained by interpolating according to the sequence of the first channel estimation result.
  • the solid line and the dashed line in the figure together form a second channel estimation result sequence of 4x OFDM symbol length.
  • Coherence bandwidth used to describe delay spread, is an important parameter for characterizing multipath channels.
  • the coherence bandwidth refers to a specific frequency range, and any two frequency components within the specific frequency range have a strong amplitude correlation. That is, the multipath channel has a constant gain and linear phase over the coherent bandwidth.
  • the coherence bandwidth is approximately equal to the reciprocal of the maximum multipath delay. From the frequency domain, if the coherence bandwidth is smaller than the bandwidth of the transmission channel, the channel characteristics will cause frequency selective fading of the received signal waveform, that is, the amplitude of some frequency component signals can be enhanced, while the amplitude of other frequency component signals Will be weakened.
  • the channel estimation is a step before the information receiving end decodes the information.
  • the transmitting end of the information transmits information, and a channel estimation sequence is used for decoding the information by the receiving end.
  • the channel estimation sequence is known by the receiving end, and the channel estimation sequence is transmitted through the channel between the transmitting end and the receiving end.
  • the channel estimation sequence received by the receiving end is usually different from the channel estimation sequence sent by the transmitting end, and the receiving end compares The received channel estimation sequence and the known channel estimation sequence sent by the transmitting end determine the channel estimation value according to the comparison result, that is, the channel estimation result sequence is obtained.
  • the first embodiment provides a wireless communication system.
  • the wireless communication system includes a transmitting end 301 and a receiving end 302.
  • the OFDM data transmission mode is used to transmit data and control information, wherein the control is performed.
  • the information may include control related information such as user scheduling, receiving end decoding, and the like.
  • the sending end 301 is configured to send a first OFDM symbol for carrying control information and a second OFDM symbol for carrying the first channel estimation sequence.
  • the receiving end 302 is configured to receive the first OFDM symbol and the second OFDM symbol sent by the sending end 301, obtain control information from the first OFDM symbol, obtain a first channel estimation sequence from the second OFDM symbol, and obtain the first channel estimation sequence according to the obtained a channel estimation sequence for decoding the acquired control information;
  • the OFDM symbol length of the first OFDM symbol used to carry the control information is a first length
  • the OFDM symbol length of the OFDM symbol used to carry the first channel estimation sequence is a second length
  • the first length is longer than the second length
  • the first OFDM symbol used to carry control information may include one or more first lengths
  • the OFDM symbol, the second OFDM symbol used to carry the first channel estimation sequence may include one or more second length OFDM symbols.
  • the transmitting end 301 may send a first channel estimation sequence through the L-LTF field of the conventional preamble portion in FIG.
  • the OFDM symbol length of the second OFDM symbol of the field is 1x OFDM symbol length; the control information is transmitted through the HE-SIG1 field in FIG.
  • the OFDM symbol length of the first OFDM symbol for carrying the HE-SIG1 field is 1x OFDM symbol length
  • the receiving end 302 such as a STA (STA) obtains a first channel estimation sequence according to the received second OFDM symbol having a length of 1 ⁇ OFDM symbols, performs channel estimation according to the obtained first channel estimation sequence, and obtains 1 ⁇ OFDM. a sequence of first channel estimation results of the symbol length; interpolating the obtained first channel estimation result sequence of the 1x OFDM symbol length to obtain a second channel estimation result sequence having a 4x OFDM symbol length, as shown in FIG. 10, and The control information in the first OFDM symbol of the 4x OFDM symbol length is decoded according to the obtained second channel estimation result sequence.
  • STA STA
  • the system overhead of the CP is smaller than that of the 1x OFDM symbol length, and the system transmission efficiency is improved.
  • a channel for control information transmission in a first OFDM symbol having a 4x OFDM symbol length can be estimated from a first channel estimation sequence in a second OFDM symbol having a 1x OFDM symbol length, and control information is decoded.
  • the first OFDM symbol for carrying control information may be sent first, then the second OFDM symbol for carrying the first channel estimation sequence may be sent, or the second OFDM symbol may be sent first, then the first OFDM symbol may be sent, or sent simultaneously.
  • a first OFDM symbol and a second OFDM symbol may be sent first, then the second OFDM symbol for carrying the first channel estimation sequence may be sent, or the second OFDM symbol may be sent first, then the first OFDM symbol may be sent, or sent simultaneously.
  • the transmitting end 301 sends, to the receiving end 302, indication information indicating the second length and/or indicating the first length, before receiving the first OFDM symbol, to the receiving end 302, the receiving end 302 determines an OFDM symbol length of the second OFDM symbol and an OFDM symbol length of the first OFDM symbol according to the received two indication information.
  • the OFDM symbol length of the second OFDM symbol is Mx OFDM symbol length
  • the OFDM symbol length of the first OFDM symbol is Nx OFDM symbol length
  • the transmitting end 301 can send indication information indicating N and M to the receiving end 302 in advance.
  • M and N are positive integers and M is less than N.
  • the first channel estimation sequence is sent in the L-LTF field, and the transmitting end 301 transmits the 1x OFDM symbol along the existing transmission method when transmitting the first channel estimation sequence.
  • the transmitting end 301 can be divided into multiple transmission modes.
  • the wireless communication system specified by WiFi 802.11ax is used as an example.
  • the control information is located in the HE-SIG1 field, and the transmitting end 301 can notify the receiving end 302 by implicit or explicit indication.
  • the transmitting end 301 uses the HE-SIG1 when transmitting. What kind of delivery method.
  • the transmitting end 301 can use 2 bits information in the HE-SIG0 to indicate whether the OFDM symbol length of the first OFDM symbol for carrying the HE-SIG1 is 1x, 2x or 4x; or The transmitting end 301 can also use only one bit of information in the HE-SIG0 to indicate any two of the OFDM symbol lengths of 1x, 2x, and 4x.
  • the 2 bit information received by the receiving end 302 is “00”, and it is determined that the sending end 301 sends the first OFDM symbol of the 1 ⁇ OFDM symbol length to carry the HE-SIG1; If the 2-bit information is "01”, it is determined that the transmitting end 301 transmits the first OFDM symbol of the 2x OFDM symbol length to carry the HE-SIG1; if the received 2-bit information is "10”, it is determined that the transmitting end 301 sends the The first OFDM symbol of 4x OFDM symbol length to carry HE-SIG1.
  • the transmitting end 301 transmits the first OFDM symbol of the 1x OFDM symbol length to carry the HE-SIG1. If the received 1-bit information is "1”, it is determined that the transmitting end 301 transmits the first OFDM symbol of 2x or 4x OFDM symbol length to carry the HE-SIG1.
  • the transmitting end 301 can pre-calculate how many OFDM symbols need to be transmitted if the first OFDM symbol carrying the HE-SIG1 is 1 ⁇ OFDM symbol length before transmitting the HE-SIG1.
  • the transmission mode is determined according to the determined number of OFDM symbols to be transmitted.
  • the receiving end knows in advance how many OFDM symbol lengths of the 1x OFDM symbol length to be transmitted by the transmitting end, and according to the same rule as the transmitting end 301, it can be determined whether the transmitting end 301 transmits the length of the 1x, 2x or 4x OFDM symbol.
  • the sending end 301 may determine, according to a channel coherence bandwidth of the wireless channel between the transmitting end 301 and the receiving end 302, whether the first OFDM symbol includes a receiving end for receiving control information.
  • the decoded channel estimation sequence when transmitting the first OFDM symbol, the sending end 301 may determine, according to a channel coherence bandwidth of the wireless channel between the transmitting end 301 and the receiving end 302, whether the first OFDM symbol includes a receiving end for receiving control information.
  • the channel estimation sequence used for receiving the decoding of the control information is not included in the first OFDM symbol.
  • a channel estimation sequence for performing reception end decoding on the control information is included in the first OFDM symbol.
  • the first OFDM symbol includes a second channel estimation sequence, where the second channel estimation sequence occupies a part of subcarriers in the at least one OFDM symbol starting from the first OFDM symbol in the first OFDM symbol, and the receiving end 302 is configured according to The received second channel estimation sequence, and the received first channel estimation sequence, decode the control information.
  • the receiving end 302 performs channel estimation according to the received first channel estimation sequence, generates a first channel estimation result sequence, generates a sequence of the first channel estimation result, and according to the received
  • the channel estimation result sequence obtained by channel estimation by the second channel estimation sequence is subjected to interpolation processing to generate a second channel estimation result sequence, where the second channel estimation result sequence has an OFDM symbol length of the first OFDM symbol, that is, a first length.
  • the second channel estimation sequence is occupied by the subcarrier occupied by the first OFDM symbol of the first length, and the first channel estimation sequence is occupied by the OFDM symbol after mapping the second OFDM symbol from the second length to the first length.
  • the subcarriers are different.
  • the second channel estimation sequence is located in one or more OFDM symbols in the first OFDM symbol, such as in a first OFDM symbol of the first OFDM symbol.
  • the receiving end 302 may obtain a second channel estimation sequence after receiving the first OFDM symbol of the first OFDM symbol, perform channel estimation according to the obtained second channel estimation sequence, and the first channel estimation sequence, to obtain channel characteristic information. And decoding, in the subsequent OFDM symbols in the first OFDM symbol, the control information according to the obtained channel characteristic information.
  • the second channel estimation sequence may also be located in other OFDM symbols of the first OFDM symbol, and the receiving end 302 may, after receiving all the OFDM symbols in the first OFDM symbol, according to the first OFDM symbol.
  • the obtained second channel estimation sequence and the first channel estimation sequence obtained from the second OFDM symbol are decoded for each OFDM symbol of the first OFDM symbol.
  • the transmitting end 301 when transmitting the first OFDM symbol, the transmitting end 301 carries a second channel estimation sequence in a part of one or more OFDM symbols in the first OFDM symbol to assist channel estimation.
  • the subcarriers shown by the solid lines are placed with the second channel estimation sequence carried, and the subcarriers shown by the dashed lines are placed with the control information.
  • the receiving end 302 After the transmitting end 301 adopts the transmitting mode shown in FIG. 13A, the receiving end 302 performs channel estimation according to the received first channel estimation sequence, and obtains a sequence of the first channel estimation result; and performs the received second channel estimation sequence.
  • Channel estimation combining the sequence of the first channel estimation result and the channel estimation result sequence obtained by performing channel estimation on the received second channel estimation sequence, to obtain a channel estimation result sequence as shown by the solid line in FIG. 13B.
  • the dotted arrow indicates a sequence of first channel estimation results
  • the solid arrow indicates a sequence of channel estimation results obtained by the receiving end 302 for channel estimation of the received second channel estimation sequence.
  • the transmitting end 301 can transmit the first OFDM symbol over the entire system bandwidth, transmit the second OFDM symbol on a part of the sub-carriers in the entire system bandwidth, and further, in order for the receiving end 302 to obtain channel estimation on the entire system bandwidth.
  • the transmitting end 301 also transmits a third channel estimation sequence on the available subcarriers except the above partial subcarriers in the entire system bandwidth; the receiving end 302 according to the received first channel estimation sequence and the third channel estimation sequence, The received control information is decoded, wherein the available subcarriers do not include subcarriers and DC subcarriers as guard bands over the entire system bandwidth.
  • the third channel estimation sequence is located in one or more OFDM symbols of the first OFDM symbol, such as in a first OFDM symbol of the first OFDM symbol.
  • the receiving end 302 may obtain a third channel estimation sequence after receiving the first OFDM symbol of the first OFDM symbol, perform channel estimation according to the obtained third channel estimation sequence, and the first channel estimation sequence, to obtain channel characteristic information. And decoding the subsequent OFDM symbols of the first OFDM symbol according to the obtained channel characteristic information.
  • the third channel estimation sequence may also be located in other OFDM symbols in the first OFDM symbol, and the receiving end 302 may, after receiving all the OFDM symbols of the first OFDM symbol, according to the first OFDM symbol. And obtaining a third channel estimation sequence and the received first channel estimation sequence, and decoding each OFDM symbol in the first OFDM symbol.
  • the wireless communication system provided by the embodiment of the present invention is described above by using the first embodiment.
  • Embodiment 12 to Embodiment 15 some optional implementations and technical details of the wireless communication system of Embodiment 1 are given by way of example.
  • the embodiment of the present invention further provides a wireless communication device, a wireless communication node, and a method for transmitting control information.
  • the principle of solving the problem is the same as the wireless communication system provided by the embodiment of the present invention.
  • the implementation of the wireless communication system will not be repeated here.
  • FIG. 4 is a schematic structural diagram of a first type of wireless communication apparatus according to Embodiment 2 of the present invention. As shown in FIG. 4, the wireless communication device includes:
  • the processing module 401 is configured to generate a first orthogonal frequency division multiplexing OFDM symbol for carrying control information and a second OFDM symbol for carrying the first channel estimation sequence;
  • the sending module 402 is configured to send the first OFDM symbol and the second OFDM symbol, where the first channel estimation sequence is used for decoding at the receiving end of the control information;
  • the OFDM symbol length of the first OFDM symbol is a first length
  • the length of the OFDM symbol of the second OFDM symbol is a second length
  • the first length is longer than the second length
  • a channel estimation sequence for performing reception decoding on the control information is not included in the first OFDM symbol.
  • the first OFDM symbol is not included for performing decoding on the receiving end of the control information.
  • a second channel estimation sequence is included in the first OFDM symbol
  • the second channel estimation sequence occupies a portion of the subcarriers of the first OFDM symbol, and is used together with the first channel estimation sequence to decode the receiving end of the control information;
  • the second channel estimation sequence is occupied by the subcarrier occupied by the first OFDM symbol of the first length, and the first channel estimation sequence is occupied by the OFDM symbol after mapping the second OFDM symbol from the second length to the first length.
  • the subcarriers are different.
  • the second channel estimation sequence is included in the first OFDM symbol.
  • the sending module 402 is specifically configured to: send the first OFDM symbol on the entire system bandwidth, and send the second OFDM symbol on a part of the sub-carriers in the entire system bandwidth;
  • the first OFDM symbol further includes: a third channel estimation sequence, and the third channel estimation sequence occupies The available subcarriers in the entire system bandwidth except for a portion of the subcarriers are used together with the first channel estimation sequence for decoding at the receiving end of the control information.
  • the third channel estimation sequence is located in one or more OFDM symbols in the first OFDM symbol.
  • the sending module 402 is further configured to:
  • the indication information for indicating the second length and/or the indication information for indicating the first length is sent to the receiving end of the control information.
  • control information is located in a HE-SIG1 field in WiFi 802.11ax;
  • the first channel estimation sequence is located in the L-LTF field in WiFi 802.11ax.
  • FIG. 5 is a schematic structural diagram of a first type of wireless communication node according to Embodiment 3. As shown in FIG. 5, the wireless communication node includes:
  • the processor 501 is configured to generate a first orthogonal frequency division multiplexing OFDM symbol for carrying control information and a second OFDM symbol for carrying the first channel estimation sequence.
  • a transmitter 502 configured to send a first OFDM symbol and a second OFDM symbol, where the first channel estimation sequence is used for decoding at a receiving end of the control information;
  • the OFDM symbol length of the first OFDM symbol is a first length
  • the length of the OFDM symbol of the second OFDM symbol is a second length
  • the first length is longer than the second length
  • the bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 501 and various circuits of memory represented by computer readable medium 504.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • Bus 506 provides a bus interface for devices such as processor 501, transmitter 502, etc. in FIG.
  • Transmitter 502 is configured to transmit data to other devices on a transmission medium.
  • the user interface 503 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • Transmitter 502 transmits a wireless signal through antenna 505, where antenna 505 includes one or more antennas.
  • a receiver may also be included, which may share an antenna 505 with the transmitter 502 for receiving data from other devices on the transmission medium.
  • the devices in FIG. 5 may not be connected through the bus architecture in FIG.
  • the transmitter 502, the computer readable medium 504, and the user interface 503 are all connected to the processor 501.
  • the implementation of the transmitter 502 may be referred to the sending module 402 in the first type of wireless communication device provided in the second embodiment.
  • the implementation of the processor 501 may refer to the method provided in the second embodiment.
  • a processing module 401 in a wireless communication device is not repeated here.
  • Embodiment 4 provides a second wireless communication apparatus according to an embodiment of the present invention.
  • the wireless communication device can include the processor 501 and the transmitter 502 of FIG.
  • the transmitter 502 For the implementation of the transmitter 502, reference may be made to the sending module 402 in the first type of wireless communication device provided in the second embodiment.
  • the implementation of the processor 501 may refer to the processing module 401, and details are not described herein again.
  • the processor 501 and the transmitter 502 can be integrated on one chip, and the antenna 505 is connected through the transmitter 502 to implement communication between the wireless communication node and other nodes.
  • a computer readable medium 504, a user interface 503, etc. may also be integrated on the chip.
  • Embodiment 5 provides a first computer program product for wireless communication in accordance with an embodiment of the present invention, comprising the computer readable medium 504 of FIG. 5, the computer readable medium 504 comprising instructions executable to:
  • the OFDM symbol length of the first OFDM symbol is a first length
  • the length of the OFDM symbol of the second OFDM symbol is a second length
  • the first length is longer than the second length
  • the specific instructions included in the computer readable medium 504 can implement the various processes of the sending end 301 in the first embodiment.
  • the sending end 301 in the first embodiment refer to the sending end 301 in the first embodiment, and the repeated description is omitted.
  • Embodiment 6 provides a third wireless communication device of an embodiment of the present invention.
  • the wireless communication device can include:
  • the receiving module 601 is configured to receive a first orthogonal frequency division multiplexing OFDM symbol for carrying control information and a second OFDM symbol for carrying the first channel estimation sequence; and acquiring control information from the first OFDM symbol, Obtaining a first channel estimation sequence in the second OFDM symbol;
  • the processing module 602 is configured to decode the control information according to the first channel estimation sequence
  • the OFDM symbol length of the first OFDM symbol is a first length
  • the OFDM symbol length of the second OFDM symbol is a second length
  • the first length is longer than the second length
  • processing module 602 is specifically configured to:
  • the control information is decoded using the generated second channel estimation result sequence.
  • a channel estimation sequence for decoding control information is not included in the first OFDM symbol.
  • the first OFDM symbol is not included for performing decoding on the receiving end of the control information.
  • the first OFDM symbol includes a second channel estimation sequence, and the second channel estimation sequence occupies a part of the subcarriers of the first OFDM symbol;
  • the processing module 602 is specifically configured to:
  • the second channel estimation sequence is occupied by the subcarrier occupied by the first OFDM symbol of the first length, and the first channel estimation sequence is occupied by the OFDM symbol after mapping the second OFDM symbol from the second length to the first length.
  • the subcarriers are different.
  • the second channel estimation sequence is included in the first OFDM symbol.
  • the first OFDM symbol is sent over the entire system bandwidth
  • the second OFDM symbol is transmitted on a portion of the subcarriers in the entire system bandwidth
  • the third OFDM symbol further includes a third channel estimation sequence, and the third channel estimation sequence occupies other available subcarriers in the entire system bandwidth except for a part of the subcarriers;
  • the processing module 602 is specifically configured to:
  • the control information is decoded according to the first channel estimation sequence and the third channel estimation sequence.
  • the third channel estimation sequence is located in one or more OFDM symbols in the first OFDM symbol.
  • the receiving module 601 is further configured to:
  • the indication information indicating the second length and/or the indication information for indicating the first length is received before the control information is decoded.
  • control information is located in a HE-SIG1 field in WiFi 802.11ax;
  • the first channel estimation sequence is located in the L-LTF field in WiFi 802.11ax.
  • FIG. 7 is a schematic structural diagram of a second wireless communication node according to Embodiment 7. As shown in FIG. 7, the wireless communication node includes:
  • a receiver 701 configured to receive a first orthogonal frequency division multiplexing OFDM symbol for carrying control information, and a second OFDM symbol for carrying a first channel estimation sequence; and acquiring control information from the first OFDM symbol, Obtaining a first channel estimation sequence in the second OFDM symbol;
  • the processor 702 is configured to decode the control information according to the first channel estimation sequence.
  • the OFDM symbol length of the first OFDM symbol is a first length
  • the OFDM symbol length of the second OFDM symbol is a second length
  • the first length is longer than the second length
  • the bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 702 and various circuits of memory represented by computer readable medium 704.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • Bus 706 provides a bus interface for devices such as processor 702, receiver 701, etc. in FIG.
  • the receiver 701 is configured to receive data transmitted by other devices on a transmission medium.
  • the user interface 703 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • Receiver 701 receives wireless signals through antenna 705, where antenna 705 includes one or more antennas.
  • a transmitter may also be included, and the transmitter may share an antenna 705 with the receiver 701 for transmitting data to other devices on the transmission medium.
  • the devices in FIG. 7 may not be connected through the bus architecture in FIG.
  • the receiver 701, the computer readable medium 704, and the user interface 703 are all connected to the processor 702.
  • the implementation of the receiver 701 may refer to the receiving module 601 in the third wireless communication device provided in the sixth embodiment.
  • the implementation of the processor 702 may refer to the method provided in the sixth embodiment.
  • the processing module 602 in the three types of wireless communication devices will not be described again.
  • Embodiment 8 provides a fourth wireless communication apparatus according to an embodiment of the present invention.
  • the wireless communication device can include the processor 702 and the receiver 701 of FIG.
  • the receiver 701 For the implementation of the receiver 701, reference may be made to the receiving module 601 in the third type of wireless communication device provided in the sixth embodiment.
  • the implementation of the processor 702 may refer to the processing module 602.
  • the processor 702 and the receiver 701 can be integrated on one chip, and the antenna 705 is connected through the receiver 701 to implement communication between the wireless communication node and other nodes.
  • a computer readable medium 704, a user interface 703, etc. may also be integrated on the chip.
  • wireless communication device For other optional implementation details of the wireless communication device, refer to the processing of the receiving end 302 in the first embodiment.
  • Embodiment 9 provides a second computer program product for wireless communication of an embodiment of the present invention, comprising the computer readable medium 704 of FIG. 7, the computer readable medium 704 comprising instructions for performing the following operational steps:
  • the OFDM symbol length of the first OFDM symbol is a first length
  • the OFDM symbol length of the second OFDM symbol is a second length
  • the first length is longer than the second length
  • the specific instructions included in the computer readable medium 704 can implement the various processes of the receiving end 302 in the first embodiment.
  • the receiving end 302 in the first embodiment refer to the receiving end 302 in the first embodiment, and the repeated description is omitted.
  • Embodiment 10 provides a method for transmitting control information. As shown in FIG. 8, the method includes the following steps:
  • S801 Send a first OFDM symbol for carrying control information.
  • S802 Send a second OFDM symbol for carrying a first channel estimation sequence, where the first channel estimation sequence is used for decoding at a receiving end of the control information;
  • the OFDM symbol length of the first OFDM symbol is a first length
  • the length of the OFDM symbol of the second OFDM symbol is a second length
  • the first length is longer than the second length
  • Step S801 and step S802 are performed in a sequence, and step S801 may be performed first, and then step S802 is performed, as shown in FIG. 8, or step S802 is performed first, then step S801 is performed, or steps S801 and S802 are simultaneously performed.
  • a channel estimation sequence for performing reception decoding on the control information is not included in the first OFDM symbol.
  • the first OFDM symbol is not included for performing decoding on the receiving end of the control information.
  • a second channel estimation sequence is included in the first OFDM symbol
  • the second channel estimation sequence occupies a portion of the subcarriers of the first OFDM symbol, and is used together with the first channel estimation sequence to decode the receiving end of the control information;
  • the second channel estimation sequence is occupied by the subcarrier occupied by the first OFDM symbol of the first length, and the first channel estimation sequence is occupied by the OFDM symbol after mapping the second OFDM symbol from the second length to the first length.
  • the subcarriers are different.
  • the second channel estimation sequence is included in the first OFDM symbol.
  • sending the first OFDM symbol includes: transmitting the first OFDM symbol over the entire system bandwidth;
  • Transmitting the second OFDM symbol includes: transmitting the second OFDM symbol on a part of the subcarriers in the entire system bandwidth;
  • the first OFDM symbol further includes: a third channel estimation sequence, the third channel estimation sequence occupies other available subcarriers except the partial subcarrier in the entire system bandwidth, and is used together with the first channel estimation sequence to receive the control information. decoding.
  • the third channel estimation sequence is located in one or more OFDM symbols in the first OFDM symbol.
  • the method before sending the first OFDM symbol, the method further includes:
  • the indication information indicating the second length and/or the indication information for indicating the first length is sent to the receiving end of the control information.
  • control information is located in a HE-SIG1 field in WiFi 802.11ax;
  • the first channel estimation sequence is located in the L-LTF field in WiFi 802.11ax.
  • Embodiment 11 provides a method for receiving control information. As shown in FIG. 9, the method includes the following steps:
  • S901 Receive a first orthogonal frequency division multiplexing OFDM symbol for carrying control information and a second OFDM symbol for carrying a first channel estimation sequence.
  • S902 Obtain control information from the first OFDM symbol, and obtain a first channel estimation sequence from the second OFDM symbol.
  • S903 Decode control information according to the first channel estimation sequence.
  • the OFDM symbol length of the first OFDM symbol is a first length
  • the OFDM symbol length of the second OFDM symbol is a second length
  • the first length is longer than the second length
  • decoding the control information according to the first channel estimation sequence includes:
  • the control information is decoded using the generated second channel estimation result sequence.
  • a channel estimation sequence for decoding control information is not included in the first OFDM symbol.
  • the first OFDM symbol is not included for performing decoding on the receiving end of the control information.
  • the first OFDM symbol includes a second channel estimation sequence, and the second channel estimation sequence occupies a part of the subcarriers of the first OFDM symbol;
  • Performing an interpolation process on the obtained first channel estimation result sequence to generate a second channel estimation result sequence having a first length including:
  • the second channel estimation sequence is occupied by the subcarrier occupied by the first OFDM symbol of the first length, and the first channel estimation sequence is occupied by the OFDM symbol after mapping the second OFDM symbol from the second length to the first length.
  • the subcarriers are different.
  • the second channel estimation sequence is included in the first OFDM symbol.
  • the first OFDM symbol is sent over the entire system bandwidth
  • the second OFDM symbol is transmitted on a portion of the subcarriers in the entire system bandwidth
  • the third OFDM symbol further includes a third channel estimation sequence, and the third channel estimation sequence occupies other available subcarriers in the entire system bandwidth except for a part of the subcarriers;
  • Decoding the control information according to the first channel estimation sequence including:
  • the control information is decoded according to the first channel estimation sequence and the third channel estimation sequence.
  • the third channel estimation sequence is located in one or more OFDM symbols in the first OFDM symbol.
  • the method before decoding the control information, the method further includes:
  • the indication information for indicating the second length and/or the indication information for indicating the first length are received.
  • control information is located in a HE-SIG1 field in WiFi 802.11ax;
  • the first channel estimation sequence is located in the L-LTF field in WiFi 802.11ax.
  • the WiFi 802.11ax system is taken as an example.
  • the first channel estimation sequence is in the L-LTF field, and the control information is located in the HE-SIG1 field.
  • the coherence bandwidth of the radio channel between the transmitting end 301 and the receiving end 302 is larger than the subcarrier spacing of the second OFDM symbol of the 1x OFDM symbol length, that is, the correlation between two adjacent subcarriers of the OFDM symbol.
  • the receiving end 302 can obtain the channel estimation result sequence of the wireless channel when the length of the OFDM symbol is 1 ⁇ OFDM symbol length according to the first channel estimation sequence in the L-LTF field, and obtain the length of the OFDM symbol by twice the channel interpolation.
  • the receiving end 302 may map the first channel estimation sequence having the 1x OFDM symbol length obtained from the L-LTF onto the subcarriers of the OFDM symbol having the 4x OFDM symbol length, which is indicated by a solid line in FIG.
  • the subcarriers that are not mapped are indicated by broken lines, and the channel estimation result sequence of the radio channel between the transmitting end 301 and the receiving end 302 can be obtained by interpolation by channel estimation values indicated by two adjacent solid lines.
  • the transmitting end 301 still transmits the L-LTF in an existing manner, that is, the OFDM symbol length of the second OFDM symbol for carrying the L-LTF is 1x OFDM symbol length.
  • the difference from the existing 802.11ax is that the first OFDM symbol used to carry the HE-SIG1 adopts a 4x OFDM symbol length.
  • the receiving end 302 performs channel estimation according to the first channel estimation sequence in the L-LTF in the second OFDM symbol of the 1 ⁇ OFDM symbol length, obtains a first channel estimation result sequence, and interpolates the obtained first channel estimation result sequence.
  • a second channel estimation result sequence having a 4x OFDM symbol length is obtained, and HE-SIG1 in the first OFDM symbol having a 4x OFDM symbol length is decoded according to the obtained second channel estimation result sequence.
  • the structure of the packet sent by the transmitting end 301 to the receiving end 302 is as shown in FIG. Among them, the data, HE-STF, HE-LTF, HE-SIG0 are transmitted over the entire system bandwidth, so in Figure 11, these fields occupy the entire column in the vertical direction. Taking the system bandwidth as 80 MHz as an example, as shown in FIG. 11, HE-SIG1 replicates transmission over multiple 20 MHz bandwidths, that is, HE-SIG1 transmits the same information on each 20 MHz bandwidth.
  • the sending end 301 sends a plurality of first OFDMs for carrying the HE-SIG1.
  • the symbol, each OFDM symbol in the first OFDM symbol uses a 2x OFDM symbol length or a 4x OFDM symbol length. This reduces the overhead of the CP and provides system transfer efficiency.
  • the transmitting end 301 when transmitting the L-preamble, carries the L-preamble in a second OFDM symbol having a length of 1 ⁇ OFDM symbols, and the L-preamble includes an L-LTF.
  • the receiving end 302 can pass the first channel estimation sequence in the L-LTF in the second OFDM symbol having the 1x OFDM symbol length in the indoor scene, the OFDM symbol length of 2x or 4x is obtained, and the transmitting end The channel state information of the wireless channel between the 301 and the receiving end 302, and thus the transmitting end 301 can carry the control information by using the first OFDM symbol having a 2x OFDM symbol length or a 4x OFDM symbol length to carry the HE-SIG1.
  • the coherence bandwidth of the radio channel between the transmitting end 301 and the receiving end 302 may be smaller than the subcarrier spacing of the second OFDM symbol having a 1x OFDM symbol length, ie, two of the second OFDM symbols having a 1x OFDM symbol length.
  • the correlation between adjacent subcarriers may be low. Therefore, if the channel estimation result sequence of the radio channel in the 1x OFDM symbol length channel obtained by the L-LTF is used only in the manner of Embodiment 12, the sequence is interpolated to obtain a 2x OFDM symbol length, or a 4x OFDM symbol length.
  • the channel state information underneath may result in a large performance loss due to the low accuracy of channel interpolation. Therefore, in Embodiment 13, the receiving end 302 performs channel estimation according to the first channel estimation sequence in the received L-LTF and the second channel estimation sequence in the first OFDM symbol.
  • the second channel estimation sequence is only located in the first OFDM symbol in the first OFDM symbol for carrying HE-SIG1. In this way, the overhead of the second channel estimation sequence can be saved, and the subsequent OFDM symbols in the first OFDM symbol can be decoded according to the second channel estimation sequence.
  • the structure of the packet sent by the transmitting end 301 to the receiving end 302 is as shown in FIG.
  • the OFDM symbol is transmitted, and the HE-SIG1 is carried in an OFDM symbol having a 2x or 4x OFDM symbol length, wherein the first OFDM symbol for carrying the HE-SIG1 carries the second channel estimation sequence.
  • the receiving end 302 acquires according to the first channel estimation sequence in the L-LTF field in the received L-preamble and the second channel estimation sequence in the first OFDM symbol in the first OFDM symbol for carrying the HE-SIG1. Accurate channel state information, decoding control information in HE-SIG1,
  • a second channel estimation sequence is placed on a portion of subcarriers to assist a first channel estimation sequence for decoding of HE-SIG1 by receiving end 302. .
  • the subcarriers shown by the solid lines are placed with the second channel estimation sequence carried, and the subcarriers shown by the dashed lines are placed with the control information.
  • the subcarrier occupied by the second channel estimation sequence in the first OFDM symbol should be different from the first channel estimation sequence occupied in the OFDM symbol after mapping the second OFDM symbol from the 1x OFDM symbol to the 4x OFDM symbol length.
  • the subcarrier that is, the subcarrier occupied by the first channel estimation result sequence in FIG. 10 on the OFDM symbol of 4x OFDM symbol length.
  • the subcarrier of the first OFDM symbol occupied by the second channel estimation sequence, and the subcarrier occupied by the first channel estimation sequence in the OFDM symbol after mapping the second OFDM symbol from the 1x OFDM symbol to the 4x OFDM symbol length ie In FIG.
  • the subcarriers occupied by the first channel estimation result sequence are separated by one subcarrier, so that the receiving end 302 can use the first channel estimation result sequence and the channel estimation result obtained by channel estimation according to the received second channel estimation sequence.
  • the sequences are combined to obtain a sequence of channel estimation results as shown by the solid line in Fig. 13B.
  • the dotted arrow indicates the subcarrier occupied by the first channel estimation sequence in the OFDM symbol after mapping the second OFDM symbol to the 4x OFDM symbol length, that is, the subcarrier occupied by the first channel estimation result sequence;
  • the solid arrow indicates The subcarrier occupied by the second channel estimation sequence in the first OFDM symbol, that is, the subcarrier occupied by the channel estimation result sequence obtained by the receiving end 302 performing channel estimation on the received second channel estimation sequence.
  • the receiving end 302 can obtain the sequence on the subcarrier indicated by the broken line in FIG. 13B by interpolation, and combine the two channel estimation result sequences to obtain the 4x OFDM symbol length.
  • the sequence of two channel estimation results that is, the order on each subcarrier in Figure 13B Column.
  • the receiving end 302 obtains channel state information for all available subcarriers of the first OFDM symbol having a 4x OFDM symbol length.
  • the receiving end 302 since the receiving end 302 is in an outdoor scenario, the first channel estimation result sequence of the 1x OFDM symbol length obtained by the L-LTF cannot be directly interpolated, so the transmitting end 301 is used to carry the HE-SIG1.
  • a second channel estimation sequence is placed in the first OFDM symbol of the first OFDM symbol to assist the receiving end 302 to obtain an accurate channel estimation result at 2x OFDM symbol length or 4x OFDM symbol length. Therefore, the receiving end 302 needs to perform channel estimation according to the first channel estimation sequence in the L-LTF, obtain a first channel estimation result sequence, and perform channel estimation according to the second channel estimation sequence in the first OFDM symbol.
  • the first OFDM symbol uses a 2x OFDM symbol length
  • decoding of the first OFDM symbol in the first OFDM symbol depends on the first channel estimation result sequence, and decoding of subsequent OFDM symbols in the first OFDM symbol needs to be utilized.
  • the receiving end 302 needs to perform 2 times channel interpolation after obtaining the first channel estimation result sequence and performing channel estimation according to the second channel estimation sequence, to obtain 4x OFDM.
  • the receiving end 302 may decode the first OFDM symbol in the first OFDM symbol according to the channel estimation result sequence of the 3x OFDM symbol length except the subcarrier indicated by the solid arrow in FIG. 13B; and according to FIG. 13B A sequence of second channel estimation results of 4x OFDM symbol lengths on all subcarriers, decoding subsequent OFDM symbols in the first OFDM symbol.
  • the transmitting end 301 combines a plurality of OFDM symbols having a length of 1 ⁇ OFDM symbol into an OFDM symbol having an Nx OFDM symbol length, and N is an integer greater than 1, effectively reducing the use for carrying the HE.
  • N is an integer greater than 1, effectively reducing the use for carrying the HE.
  • the embodiment 13 is taken as an example to explain how the embodiment of the present invention reduces the system overhead.
  • the channel coherence bandwidth of the wireless channel is less than the subcarrier spacing of the OFDM symbol of 1x.
  • the OFDM symbol of 2n 1 ⁇ OFDM symbol length is included in the first OFDM symbol for carrying HE-SIG1, and n is not less than 6, the 2 ⁇ OFDM symbol length is adopted, which can save system overhead;
  • OFDM symbols of (4n-1) 1x OFDM symbol length are included in the first OFDM symbol for carrying HE-SIG1, and n is not less than 2, 4 ⁇ OFDM symbol length is adopted, which can save system overhead;
  • OFDM symbols of (4n-2) 1x OFDM symbol lengths are included in the first OFDM symbol for carrying HE-SIG1, and n is not less than 3, 4 ⁇ OFDM symbol length is adopted, which can save system overhead;
  • OFDM symbols of (4n-3) 1x OFDM symbol lengths are included in the first OFDM symbol for carrying HE-SIG1, and n is not less than 4, 4 ⁇ OFDM symbol length is adopted, which can save system overhead;
  • OFDM symbols of (4n-3) 1x OFDM symbol lengths are included in the first OFDM symbol for carrying HE-SIG1, and n is not less than 3, 4 ⁇ OFDM symbol length is adopted, which can save system overhead;
  • the flow in which the transmitting end 301 transmits control information and the receiving end 302 receives the control information is described.
  • FIG. 15 is a flowchart of processing of a transmitting end of control information according to Embodiment 14 of the present invention. As shown in FIG. 15, the processing of the transmitting end 301 includes the following steps:
  • step S1501 The transmitting end 301 determines to transmit the first OFDM symbol for carrying the HE-SIG1 by using the 1x, 2x, or 4x OFDM symbol length. If 1x is used, step S1503 is performed. If 2x is used, step S1504 is performed. If 4x is used, Then executing step S1505;
  • step S1502 The sending end 301 determines whether it is in the outdoor environment; if it is in the outdoor environment, step S1506 is performed, otherwise step S1507 is performed;
  • the transmitting end 301 sends a first OFDM symbol of 1 ⁇ OFDM symbol length
  • the transmitting end 301 sends a first OFDM symbol of a 2x OFDM symbol length.
  • the transmitting end 301 sends a first OFDM symbol of 4 ⁇ OFDM symbol length
  • the transmitting end 301 sends a first channel estimation result sequence in the L-LTF, and sends a second channel estimation sequence in the first OFDM symbol.
  • the transmitting end 301 sends a first channel estimation sequence in the L-LTF, and the channel estimation sequence is not included in the first OFDM symbol.
  • step S1502 the execution between step S1502 and step S1501 does not distinguish the order.
  • FIG. 16 is a flowchart of processing of a receiving end of control information according to Embodiment 14 of the present invention. As shown in FIG. 16, the processing at the receiving end includes the following steps:
  • the receiving end 302 automatically detects the 802.11ax packet.
  • step S1602 Whether the receiving end 302 is in an outdoor environment, if yes, step S1607 is performed, otherwise, step S1603 is performed;
  • the receiving end 302 determines to use the transmitting end 301 to transmit the first OFDM symbol for carrying the HE-SIG1 by using the 1x, 2x or 4x OFDM symbol length; if 1x is used, step S1604 is performed; if 2x is used, step S1605 is performed; If 4x is used, step S1606 is performed;
  • the receiving end 302 decodes the HE-SIG1 using the first channel estimation sequence in the L-LTF;
  • the receiving end 302 uses 2 times interpolation to obtain a channel estimation result sequence in the 2x OFDM symbol length to decode the HE-SIG1;
  • the receiving end 302 uses 4 times interpolation to obtain a sequence of channel estimation results under the 4x OFDM symbol length to decode the HE-SIG1;
  • the receiving end 302 determines to transmit the HE-SIG1 by using the first OFDM symbol of the 1x, 2x or 4x OFDM symbol length by the transmitting end 301; if 1x, the step S1604 is performed; if 2x, the step S1608 is performed; if 4x is adopted; , step S1609 is performed;
  • the receiving end 302 combines the first channel estimation sequence in the L-LTF with the second channel estimation sequence in the first OFDM symbol in the first OFDM symbol to obtain a channel estimation result sequence in the 2x OFDM symbol length to decode HE-SIG1;
  • S1609 Combine the first channel estimation sequence in the L-LTF and the second channel estimation sequence in the first OFDM symbol in the first OFDM symbol to obtain a channel estimation result sequence in the 2x OFDM symbol length, and then use 2 times Insert, obtain a sequence of channel estimation results at 4x OFDM symbol length to decode HE-SIG1.
  • the transmitting end 301 transmits the HE-SIG1 in a full-bandwidth transmission mode, that is, the transmitting end 301 transmits the HE-SIG1 over the entire system bandwidth.
  • the system bandwidth can be 80 MHz, 40 MHz, and the like.
  • the structure of the packet transmitted between the transmitting end and the receiving end is as shown in FIG. 17.
  • HE-SIG1, HE-STF, HE-LTF, HE-SIGB and data parts are transmitted over the entire system bandwidth, and the traditional preamble L-preamble is repeatedly transmitted on each 20 MHz bandwidth.
  • the transmitting end 301 is selected to adopt 1x, 2x or In addition to transmitting the OFDM symbol of 4x OFDM symbol length to HE-SIG1, it is also necessary to consider how to enable the receiving end 302 to acquire channel state information between each 20 MHz, which is originally a subcarrier of the guard band.
  • each subcarrier For a bandwidth of 20 MHz, the allocation of each subcarrier is as shown in Fig. 18A. Among them, direct current (DC) represents a DC subcarrier. As can be seen from Figure 18A, the available subcarriers for the 20 MHz bandwidth are numbered from -26 to 26. The subcarriers numbered -32 to -27 and 27 to 31 on the left and right sides are used as guard bands, and no information is currently transmitted.
  • DC direct current
  • each subcarrier For a bandwidth of 40 MHz, the allocation of each subcarrier is as shown in Fig. 18B. Among them, the available subcarriers are numbered from -57 to 57.
  • the available subcarriers of two 20 MHz bandwidths are different from the available subcarriers of one 40 M bandwidth.
  • the portion of the oblique line indicates the subcarrier as the guard band.
  • the portion of the vertical line represents the DC subcarrier, and the blank portion represents the available subcarriers.
  • the receiving end 302 obtains the channel estimation result of the subcarrier obtained by the L-LTF in the L-preamble transmitted on the two 20 MHz bandwidths, and the subcarrier obtained from the L-LTF in the L-preamble transmitted on a 40 MHz bandwidth.
  • the channel estimation results are also different.
  • the receiving end 302 cannot obtain the channel estimation result of the subcarriers with subcarrier numbers 27 to 31 on the first 20 MHz bandwidth, because the transmitting end 301 does not transmit any information on these subcarriers.
  • the subcarriers numbered 27-31 correspond to the number of -5 to -1 on the 40 MHz bandwidth, and the L-LTF transmitted over the 40 MHz bandwidth, the receiving end 302 is a channel estimation that can obtain -5 to -2 subcarriers. result.
  • L-preamble and HE-SIG0 are copied and transmitted over a plurality of 20 MHz, and thus the L-LTF in the L-preamble is also copied and transmitted on each 20M.
  • the HE-SIG1 occupies the entire system bandwidth transmission.
  • the receiving end 302 cannot obtain the channel estimation result of the available subcarriers of the entire system bandwidth by the L-LTFs transmitted over multiple 20 MHz bandwidths, because the subcarriers and DC subcarriers as guard bands on the 20 MHz bandwidth, and 40 MHz The locations of the subcarriers and DC subcarriers as guard bands on the bandwidth are different.
  • the transmitting end 301 can transmit the channel estimation sequence in the L-LTF in the first OFDM symbol for transmitting the first OFDM symbol of the HE-SIG1 over the entire system bandwidth.
  • some reference signals are placed to aid channel estimation.
  • the structure of the packet transmitted between the transmitting end 301 and the receiving end 302 is as shown in FIG.
  • the length of the OFDM symbol is 1x OFDM symbol length as an example, and the 2x OFDM symbol length is the same as the 4x OFDM symbol length.
  • the entire system bandwidth is 40 MHz, and the L-preamble and HE-SIG0 are replicated and transmitted on two 20 MHz. Therefore, the receiving end 302 can obtain the channel estimation result of each available subcarrier on the 20 MHz bandwidth from the L-LTF transmitted on the two 20 MHz bandwidths, and the available subcarriers on the 20 MHz bandwidth correspond to the 40 MHz bandwidth, and the number is :[-58,...,-33,-31,...-6,6,...,31,33,...58].
  • the available subcarriers are numbered [-58, ..., -2, 2, ... 58], and the available subcarriers do not include subcarriers and DC subcarriers as guard bands.
  • the receiving end 302 cannot obtain the number [-32,-5,-4,-3,-2,2,3,4,5,32] from the L-LTF that is copied and transmitted on two 20MHz bandwidths. The channel estimation result of the subcarriers.
  • the transmitting end 301 transmits the HE-SIG1 in the manner shown in FIG. a child numbered [-32, -5, -4, -3, -2, 2, 3, 4, 5, 32] in the first OFDM symbol of the first OFDM symbol used to carry HE-SIG1
  • a reference signal is placed on the carrier to form a third channel estimation sequence. Control information is placed on other available subcarriers.
  • the receiving end 302 can perform channel estimation by combining the third channel estimation sequence and the L-LTF in the HE-SIG1 after receiving the first OFDM symbol for carrying the first OFDM symbol of HE-SIG1, and obtaining the whole.
  • the occupancy of each subcarrier in the first OFDM symbol of the first OFDM symbol is as shown in FIG. 20.
  • the solid line indicates each subcarrier occupied by the third channel estimation sequence.
  • the processing flow of the sending end 301 may include the following steps:
  • step S2101 The transmitting end 301 determines whether the HE-SIG1 is to be sent over the entire system bandwidth, and if so, step S2102 is performed;
  • the transmitting end 301 transmits a first channel estimation sequence in the L-LTF, and transmits a third channel estimation sequence in the first OFDM symbol used to carry the first OFDM symbol of the HE-SIG1.
  • the processing flow of the receiving end 302 may include the following steps:
  • step S2201 The receiving end 302 automatically detects the packet of 802.11ax, and if it is detected, step S2202 is performed;
  • S2202 Determine whether the transmitting end 301 sends the HE-SIG1 over the entire system bandwidth.
  • the receiving end 302 After receiving the first OFDM symbol of the first OFDM symbol, the receiving end 302 obtains a reference signal according to the number of the subcarriers estimated by the missing channel in the L-LTF, performs channel estimation of the subcarriers, and obtains the entire system. Channel state information on the bandwidth for decoding of HE-SIG1.
  • the decision step of S2202 is not required.
  • the transmitting end of the control information sends, to the receiving end, a first OFDM symbol for carrying control information and a second OFDM symbol for carrying the first channel estimation sequence, where the first OFDM symbol The OFDM symbol length is longer than the OFDM symbol of the second OFDM symbol
  • the receiving end decodes the received control information according to the received first channel estimation sequence.
  • the transmitting information when transmitting, by the transmitting end, the first OFDM symbol for carrying the control information, the transmitting information is not sent according to the length of the shorter OFDM symbol of the second OFDM symbol, but the first OFDM symbol is increased.
  • OFDM symbol length since each OFDM symbol needs to have a CP in front of it, the OFDM symbol length of the first OFDM symbol is increased, which is equivalent to reducing the time ratio of the CP in the entire OFDM symbol, thereby reducing the CP in the OFDM symbol.
  • the overhead occupied by the overhead is reduced compared to the case where the OFDM symbol length of the first OFDM symbol used to carry the control information is equal to the OFDM symbol length of the second OFDM symbol used to carry the first channel estimation sequence, Improve system transmission efficiency.
  • the receiving end may perform channel estimation according to the received first channel estimation sequence, obtain a first channel estimation result sequence, and perform interpolation processing on the obtained first channel estimation result sequence to generate an OFDM having the first OFDM symbol.
  • the OFDM symbol length of the second OFDM symbol sent by the transmitting end is smaller than the OFDM symbol length of the first OFDM symbol, and the receiving end interpolates the first channel estimation result sequence to generate the OFDM symbol length of the first OFDM symbol.
  • the sequence of two channel estimation results thereby realizing the restoration of the channel characteristics, thereby realizing the decoding of the control information.
  • the transmitting end may further determine whether to transmit the channel decoding for the receiving end in the first OFDM symbol according to the channel coherence bandwidth of the wireless channel between the transmitting end and the receiving end.
  • the channel estimation sequence may be used to determine whether to transmit the channel decoding for the receiving end in the first OFDM symbol according to the channel coherence bandwidth of the wireless channel between the transmitting end and the receiving end.
  • the receiving end After receiving the channel estimation according to the first channel estimation sequence, the receiving end obtains the sequence of the first channel estimation result, and when interpolating the sequence of the first channel estimation result, may be based on the sequence of the first channel estimation result, and more accurately The adjacent subcarriers are interpolated to obtain more accurate channel characteristic information, so the other channel estimation sequences may not be included in the control information.
  • the transmitting end may include a second channel estimation sequence in the first OFDM symbol, and assist the first channel estimation sequence. , used for channel estimation at the receiving end.
  • the receiving end combines the received second channel estimation sequence in the first OFDM symbol with the first channel estimation sequence to restore the channel characteristics of the wireless channel between the transmitting end and the receiving end, and the channel estimation result is more accurate. Thereby, the control information can be decoded more accurately.
  • the transmitting end transmits the first OFDM symbol on the entire system frequency band and transmits the second OFDM symbol on a part of the sub-carriers in the entire system bandwidth, part of the sub-carrier occupied by the first channel estimation sequence in the entire system bandwidth There is no channel estimation sequence on other available subcarriers.
  • the transmitting end is available in the system bandwidth except for part of the subcarriers occupied by the second OFDM symbol.
  • a third estimated channel sequence is transmitted on the subcarrier, and the third channel estimation sequence is combined with the first channel estimation sequence for channel estimation of the receiving end and decoding of the control information.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a bootable computer or other programmable data processing device.
  • a computer readable memory that operates in a particular manner, causing instructions stored in the computer readable memory to produce an article of manufacture comprising an instruction device implemented in one or more flows and/or block diagrams of the flowchart The function specified in the box or in multiple boxes.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

本发明涉及无线通信技术领域,尤其涉及一种无线通信装置、无线通信节点和控制信息的传输方法,用以解决在采用正交频分复用OFDM传输方式的无线通信系统中,用于传输控制信息的字段占用符号数较多导致的CP占用系统开销大的问题。在一种无线通信装置中,处理模块生成承载控制信息的第一FDM符号和承载第一信道估计序列的第二OFDM符号,第一信道估计序列用于控制信息的接收端解码;发送模块发送第一OFDM符号和第二OFDM符号。其中第一OFDM符号比第二OFDM符号的OFDM符号长度长,因此降低了CP在整个OFDM符号中的时间比例,从而降低了CP在控制信息的OFDM符号中占用的开销,减小了系统开销。

Description

无线通信装置、无线通信节点和控制信息的传输方法 技术领域
本发明涉及无线通信技术领域,尤其涉及一种无线通信装置、无线通信节点和控制信息的传输方法。
背景技术
正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)是当前无线通信的基本传输方式,广泛应用于长期演进(Long Term Evolution,LTE)、全球微波互联接入(Worldwide Interoperability for Microwave Access,WiMAX)、无线保真(Wireless Fidelity,WiFi)等无线通信系统。不仅如此,OFDM也进一步应用到固网传输,比如光纤、铜绞线、电缆等传输方式。
OFDM的基本原理是在子载波的正交性容许的范围内,将子载波间隔压缩到最小,形成了多路并行且互不干扰的通路,同时又能提升系统的频率利用效率。通过将高速的数据流进行串并转换,分配到速率较低的若干个子信道中传输,使得每个子信道中的符号长度增长,从而减轻由无线信道多径时延扩展产生的符号间干扰的影响。
为了减轻符号间干扰和载波间干扰,每个OFDM符号前面都会加上循环前缀(Cyclic Prefix,CP)作为保护。如图1所示,CP一般是截取的OFDM符号的尾部。
由图1中可以看出,通常CP是重复了OFDM符号数据部分的一部分内容,因此,会增加系统开销,降低数据传输效率。
以WiFi系统为例,802.11ax的包结构如图2所示。其中,传统前导(Legacy Preamble)包括:传统-短训练字段(Legacy-Short Training Field,L-STF),用于自动增益补偿(Automatic Gain Control,AGC);传统-长训练字段(Legacy-Long Training Field,L-LTF),用作信道估计,以及传统-信令字段(Legacy Signal Field,L-SIG)。传统前导以广播形式发送。
高效率前导(High Efficient Preamble,HE Preamble)中包括用于HE-SIG0、HE-SIG1、HE-STF、HE-LTF1……HE-LTFN,以及HE-SIGB。其中,HE-SIG1中包含发给多个终端的指示信息,由于采用了正交频分多址接入(Orthogonal Frequency Division Multiple Access,OFDMA)和多用户-多入多出(Multi-User Multiple Input Multiple Output,MU-MIMO)技术,一次传输可以被多个终端共享用来传输数据。因而HE-SIG1中需要包含多个终端的调度信息,这使得HE-SIG1是可变长度的,即HE-SIG1包含的OFDM符号个数与调度的终端数量相关。
在调度的终端数量较多时,调度信息会很多,因此,HE-SIG1的符号数量较大。如前所述,为了减轻符号间干扰和载波间干扰,每个符号前面都会加上CP,这样,在HE-SIG1的符号数较多时,CP占用的系统开销较大。
从上述WiFi 802.11ax系统可见,在采用OFDM传输方式的无线通信系统中,当用于传输控制信息的字段占用的符号数较多时,存在CP占用系统开销大,系统传输效率不高的问题。
发明内容
本发明实施例提供一种无线通信装置、无线通信节点和控制信息的传输方法,用以解决在采用OFDM传输方式的无线通信系统中,当用于传输控制信息的字段占用的符号数较多时,CP占用系统开销大,系统传输效率不高的问题。
第一方面,本发明实施例提供一种无线通信装置,包括处理模块和发送模块,其中:
所述处理模块,用于生成用于承载控制信息的第一正交频分复用OFDM符号和用于承载第一信道估计序列的第二OFDM符号;
所述发送模块,用于发送所述第一OFDM符号和所述第二OFDM符号,其中,所述第一信道估计序列用于所述控制信息的接收端解码;
其中,所述第一OFDM符号的OFDM符号长度为第一长度,所述第二OFDM符号的OFDM符号的长度为第二长度,所述第一长度比所述第二长度长。
结合第一方面,在第一种可能的实现方式中,所述第一OFDM符号中不包括用于对所述控制信息进行接收端解码的信道估计序列。
结合第一方面的第一种可能的实现方式,在第二种可能的实现方式中,
在所述控制信息的发送端与接收端之间的无线信道的信道相干带宽不小于所述第二OFDM符号的子载波间距时,所述第一OFDM符号中不包括用于对所述控制信息进行接收端解码的信道估计序列。
结合第一方面,在第三种可能的实现方式中,所述第一OFDM符号中包括第二信道估计序列;
所述第二信道估计序列占用所述第一OFDM符号的部分子载波,与所述第一信道估计序列一起用于所述控制信息的接收端解码;
其中,所述第二信道估计序列在所述第一长度的所述第一OFDM符号中占用的子载波,与所述第一信道估计序列在将所述第二OFDM符号从所述第二长度映射为所述第一长度后的OFDM符号中所占用的子载波不同。
结合第一方面的第三种可能的实现方式,在第四种可能的实现方式中,
在所述控制信息的发送端与接收端之间的无线信道的信道相干带宽小于所述第二OFDM符号的子载波间距时,所述第一OFDM符号中包括所述第二信道估计序列。
结合第一方面,或第一方面的第一种可能的实现方式至第四种可能的实现方式中的任一种,在第五种可能的实现方式中,
所述发送模块具体用于:在整个系统带宽上发送所述第一OFDM符号,以及在整个系统带宽中的部分子载波上发送所述第二OFDM符号;
所述第一OFDM符号中还包括:第三信道估计序列,所述第三信道估计序列占用整个系统带宽中除了所述部分子载波之外的其他可用子载波,与所述第一信道估计序列一起用于所述控制信息的接收端解码。
结合第一方面的第五种可能的实现方式,在第六种可能的实现方式中,所述第三信道估计序列位于所述第一OFDM符号中的一个或多个OFDM符号中。
结合第一方面,或第一方面的第一种可能的实现方式至第六种可能的实现方式中的任一种,在第七种可能的实现方式中,所述发送模块还用于:
在发送所述第一OFDM符号之前,向所述控制信息的接收端发送用于指示所述第二长度的指示信息和/或用于指示所述第一长度的指示信息。
结合第一方面,或第一方面的第一种可能的实现方式至第七种可能的实现方式中的任一种,在第八种可能的实现方式中,
所述控制信息位于WiFi 802.11ax中的HE-SIG1字段中;
所述第一信道估计序列位于WiFi 802.11ax中的L-LTF字段中。
第二方面,本发明实施例提供一种无线通信装置,包括处理器和发射器,其中:
所述处理器,用于生成用于承载控制信息的第一正交频分复用OFDM符号和用于承载第一信道估计序列的第二OFDM符号;
所述发射器,用于发送所述第一OFDM符号和所述第二OFDM符号,其中,所述第一信道估计序列用于所述控制信息的接收端解码;
其中,所述第一OFDM符号的OFDM符号长度为第一长度,所述第二OFDM符号的OFDM符号的长度为第二长度,所述第一长度比所述第二长度长。
结合第二方面,在第一种可能的实现方式中,所述第一OFDM符号中不包括用于对所述控制信息进行接收端解码的信道估计序列。
结合第二方面的第一种可能的实现方式,在第二种可能的实现方式中,
在所述控制信息的发送端与接收端之间的无线信道的信道相干带宽不小于所述第二OFDM符号的子载波间距时,所述第一OFDM符号中不包括用于对所述控制信息进行接收端解码的信道估计序列。
结合第二方面,在第三种可能的实现方式中,所述第一OFDM符号中包 括第二信道估计序列;
所述第二信道估计序列占用所述第一OFDM符号的部分子载波,与所述第一信道估计序列一起用于所述控制信息的接收端解码;
其中,所述第二信道估计序列在所述第一长度的第一OFDM符号中占用的子载波,与所述第一信道估计序列在将所述第二OFDM符号从所述第二长度映射为所述第一长度后的OFDM符号中所占用的子载波不同。
结合第二方面的第三种可能的实现方式,在第四种可能的实现方式中,
在所述控制信息的发送端与接收端之间的无线信道的信道相干带宽小于所述第二OFDM符号的子载波间距时,所述第一OFDM符号中包括所述第二信道估计序列。
结合第二方面,或第二方面的第一种可能的实现方式至第四种可能的实现方式中的任一种,在第五种可能的实现方式中,
所述发射器具体用于:在整个系统带宽上发送所述第一OFDM符号,以及在整个系统带宽中的部分子载波上发送所述第二OFDM符号;
所述第一OFDM符号中还包括:第三信道估计序列,所述第三信道估计序列占用整个系统带宽中除了所述部分子载波之外的其他可用子载波,与所述第一信道估计序列一起用于所述控制信息的接收端解码。
结合第二方面的第五种可能的实现方式,在第六种可能的实现方式中,所述第三信道估计序列位于所述第一OFDM符号中的一个或多个OFDM符号中。
结合第二方面,或第二方面的第一种可能的实现方式至第六种可能的实现方式中的任一种,在第七种可能的实现方式中,所述发射器还用于:
在发送所述第一OFDM符号之前,向所述控制信息的接收端发送用于指示所述第二号长度的指示信息和/或用于指示所述第一长度的指示信息。
结合第二方面,或第二方面的第一种可能的实现方式至第七种可能的实现方式中的任一种,在第八种可能的实现方式中,
所述控制信息位于WiFi 802.11ax中的HE-SIG1字段中;
所述第一信道估计序列位于WiFi 802.11ax中的L-LTF字段中。
第三方面,本发明实施例提供一种无线通信节点,包括:
至少一副天线;以及
上述第二方面或第二方面的任一种可能的实现方式提供的无线通信装置。
第四方面,本发明实施例提供一种无线通信装置,包括:
接收模块,用于接收用于承载控制信息的第一正交频分复用OFDM符号和用于承载第一信道估计序列的第二OFDM符号;并从所述第一OFDM符号中获取所述控制信息,从所述第二OFDM符号中获取所述第一信道估计序列;
处理模块,用于根据所述第一信道估计序列,对所述控制信息解码;
其中,所述第一OFDM符号的OFDM符号长度为第一长度,所述第二OFDM符号的OFDM符号长度为第二长度,所述第一长度比所述第二长度长。
结合第四方面,在第一种可能的实现方式中,所述处理模块具体用于:
所述处理模块具体用于:
根据所述第一信道估计序列进行信道估计,得到第一信道估计结果序列;
将得到的所述第一信道估计结果序列进行内插处理,生成具有所述第一长度的第二信道估计结果序列;
利用生成的所述第二信道估计结果序列,对所述控制信息解码。
结合第四方面的第一种可能的实现方式,在第二种可能的实现方式中,所述第一OFDM符号中不包括用于对所述控制信息进行解码的信道估计序列。
结合第四方面的第二种可能的实现方式,在第三种可能的实现方式中,在所述控制信息的发送端与接收端之间的无线信道的信道相干带宽不小于所述第二OFDM符号的子载波间距时,所述第一OFDM符号中不包括用于对所述控制信息进行接收端解码的信道估计序列。
结合第四方面的第一种可能的实现方式,在第四种可能的实现方式中,所述第一OFDM符号中包括第二信道估计序列,所述第二信道估计序列占用 所述第一OFDM符号的部分子载波;
所述处理模块具体用于:
将所述第一信道估计结果序列,以及根据收到的所述第二信道估计序列进行信道估计得到的信道估计结果序列进行内插处理,生成具有所述第一长度的所述第二信道估计结果序列;
其中,所述第二信道估计序列在所述第一长度的所述第一OFDM符号中占用的子载波,与所述第一信道估计序列在将所述第二OFDM符号从所述第二长度映射为所述第一长度后的OFDM符号中所占用的子载波不同。
结合第四方面的第四种可能的实现方式,在第五种可能的实现方式中,在所述控制信息的发送端与接收端之间的无线信道的信道相干带宽小于所述第二OFDM符号的子载波间距时,所述第一OFDM符号中包括所述第二信道估计序列。
结合第四方面,或第四方面的第一种可能的实现方式至第五种可能的实现方式中的任一种,在第六种可能的实现方式中,所述第一OFDM符号是在整个系统带宽上发送的;
所述第二OFDM符号是在整个系统带宽中的部分子载波上发送的;
所述第一OFDM符号中还包括第三信道估计序列,所述第三信道估计序列占用整个系统带宽中除了所述部分子载波之外的其他可用子载波;
所述处理模块具体用于:
根据所述第一信道估计序列和第三信道估计序列,对所述控制信息解码。
结合第四方面的第五种可能的实现方式,在第六种可能的实现方式中,所述第三信道估计序列位于所述第一OFDM符号中的一个或多个OFDM符号中。
结合第四方面,或第四方面的第一种可能的实现方式至第七种可能的实现方式中的任一种,在第八种可能的实现方式中,所述接收模块还用于:
在对所述控制信息解码之前,接收用于指示所述第二长度的指示信息和/或用于指示所述第一长度的指示信息。
结合第四方面,或第四方面的第一种可能的实现方式至第八种可能的实现方式中的任一种,在第九种可能的实现方式中,
所述控制信息位于WiFi 802.11ax中的HE-SIG1字段中;
所述第一信道估计序列位于WiFi 802.11ax中的L-LTF字段中。
第五方面,本发明实施例提供一种无线通信装置,包括:
接收器,用于接收用于承载控制信息的第一正交频分复用OFDM符号和用于承载第一信道估计序列的第二OFDM符号;并从所述第一OFDM符号中获取所述控制信息,从所述第二OFDM符号中获取所述第一信道估计序列;
处理器,用于根据所述第一信道估计序列,对所述控制信息解码;
其中,所述第一OFDM符号的OFDM符号长度为第一长度,所述第二OFDM符号的OFDM符号长度为第二长度,所述第一长度比所述第二长度长。
结合第五方面,在第一种可能的实现方式中,所述处理器具体用于:
根据所述第一信道估计序列进行信道估计,得到第一信道估计结果序列;
将得到的所述第一信道估计结果序列进行内插处理,生成具有所述第一长度的第二信道估计结果序列;
利用生成的所述第二信道估计结果序列,对所述控制信息解码。
结合第五方面的第一种可能的实现方式,在第二种可能的实现方式中,所述第一OFDM符号中不包括用于对所述控制信息进行解码的信道估计序列。
结合第五方面的第二种可能的实现方式,在第三种可能的实现方式中,在所述控制信息的发送端与接收端之间的无线信道的信道相干带宽不小于所述第二OFDM符号的子载波间距时,所述第一OFDM符号中不包括用于对所述控制信息进行接收端解码的信道估计序列。
结合第五方面的第一种可能的实现方式,在第四种可能的实现方式中,所述第一OFDM符号中包括第二信道估计序列,所述第二信道估计序列占用所述第一OFDM符号的部分子载波;
所述处理器具体用于:
将所述第一信道估计结果序列,以及根据收到的所述第二信道估计序列进行信道估计得到的信道估计结果序列进行内插处理,生成具有所述第一长度的所述第二信道估计结果序列;
其中,所述第二信道估计序列在所述第一长度的所述第一OFDM符号中占用的子载波,与所述第一信道估计序列在将所述第二OFDM符号从所述第二长度映射为所述第一长度后的OFDM符号中所占用的子载波不同。
结合第五方面的第四种可能的实现方式,在第五种可能的实现方式中,在所述控制信息的发送端与接收端之间的无线信道的信道相干带宽小于所述第二OFDM符号的子载波间距时,所述第一OFDM符号中包括所述第二信道估计序列。
结合第五方面,或第五方面的第一种可能的实现方式至第五种可能的实现方式中的任一种,在第六种可能的实现方式中,所述第一OFDM符号是在整个系统带宽上发送的;
所述第二OFDM符号是在整个系统带宽中的部分子载波上发送的;
所述第一OFDM符号中还包括第三信道估计序列,所述第三信道估计序列占用整个系统带宽中除了所述部分子载波之外的其他可用子载波;
所述处理器具体用于:
根据所述第一信道估计序列和第三信道估计序列,对所述控制信息解码。
结合第五方面的第六种可能的实现方式,在第七种可能的实现方式中,所述第三信道估计序列位于所述第一OFDM符号中的一个或多个OFDM符号中。
结合第五方面,或第五方面的第一种可能的实现方式至第七种可能的实现方式中的任一种,在第八种可能的实现方式中,所述接收器还用于:
在对所述控制信息解码之前,接收用于指示所述第二长度的指示信息和/或用于指示所述第一长度的指示信息。
结合第五方面,或第五方面的第一种可能的实现方式至第八种可能的实现方式中的任一种,在第九种可能的实现方式中,
所述控制信息位于WiFi 802.11ax中的HE-SIG1字段中;
所述第一信道估计序列位于WiFi 802.11ax中的L-LTF字段中。
第六方面,本发明实施例提供一种无线通信节点,包括:
至少一副天线;以及
上述第五方面,或第五方面的任一种可能的实现方式提供的无线通信装置。
第七方面,本发明实施例提供一种控制信息的发送方法,包括:
发送用于承载控制信息的第一正交频分复用OFDM符号;
发送用于承载第一信道估计序列的第二OFDM符号,所述第一信道估计序列用于所述控制信息的接收端解码;
其中,所述第一OFDM符号的OFDM符号长度为第一长度,所述第二OFDM符号的OFDM符号的长度为第二长度,所述第一长度比所述第二长度长。
结合第七方面,在第一种可能的实现方式中,所述第一OFDM符号中不包括用于对所述控制信息进行接收端解码的信道估计序列。
结合第七方面,在第三种可能的实现方式中,所述控制信息的发送端与接收端之间的无线信道的信道相干带宽不小于所述第二OFDM符号的子载波间距时,所述第一OFDM符号中不包括用于对所述控制信息进行接收端解码的信道估计序列。
结合第七方面的第三种可能的实现方式,在第四种可能的实现方式中,
所述第一OFDM符号中包括第二信道估计序列;
所述第二信道估计序列占用所述第一OFDM符号的部分子载波,与所述第一信道估计序列一起用于所述控制信息的接收端解码;
其中,所述第二信道估计序列在所述第一长度的所述第一OFDM符号中占用的子载波,与所述第一信道估计序列在将所述第二OFDM符号从所述第二长度映射为所述第一长度后的OFDM符号中所占用的子载波不同。
结合第七方面的第三种可能的实现方式,在第四种可能的实现方式中,
在所述控制信息的发送端与接收端之间的无线信道的信道相干带宽小于所述第二OFDM符号的子载波间距时,所述第一OFDM符号中包括所述第二信道估计序列。
结合第七方面,或第七方面的第一种可能的实现方式至第四种可能的实现方式中的任一种,在第五种可能的实现方式中,
发送所述第一OFDM符号,包括:在整个系统带宽上发送所述第一OFDM符号;
发送所述第二OFDM符号,包括:在整个系统带宽中的部分子载波上发送所述第二OFDM符号;
所述第一OFDM符号中还包括:第三信道估计序列,所述第三信道估计序列占用整个系统带宽中除了所述部分子载波之外的其他可用子载波,与所述第一信道估计序列一起用于所述控制信息的接收端解码。
结合第七方面的第五种可能的实现方式,在第六种可能的实现方式中,所述第三信道估计序列位于所述第一OFDM符号中的一个或多个OFDM符号中。
结合第七方面,或第七方面的第一种可能的实现方式至第六种可能的实现方式中的任一种,在第七种可能的实现方式中,在发送所述第一OFDM符号之前,还包括:
向所述控制信息的接收端发送用于指示所述第二长度的指示信息和/或用于指示所述第一长度的指示信息。
结合第七方面,或第七方面的第一种可能的实现方式至第七种可能的实现方式中的任一种,在第八种可能的实现方式中,所述控制信息位于WiFi802.11ax中的HE-SIG1字段中;
所述第一信道估计序列位于WiFi 802.11ax中的L-LTF字段中。
第八方面,本发明实施例提供一种控制信息的接收方法,包括:
接收用于承载控制信息的第一正交频分复用OFDM符号和用于承载第一信道估计序列的第二OFDM符号;
从所述第一OFDM符号中获取所述控制信息,从所述第二OFDM符号中获取所述第一信道估计序列;
根据所述第一信道估计序列,对所述控制信息解码;
其中,所述第一OFDM符号的OFDM符号长度为第一长度,所述第二OFDM符号的OFDM符号长度为第二长度,所述第一长度比所述第二长度长。
结合第八方面,在第一种可能的实现方式中,根据所述第一信道估计序列,对所述控制信息解码,包括:
根据所述第一信道估计序列进行信道估计,得到第一信道估计结果序列;
将得到的所述第一信道估计结果序列进行内插处理,生成具有所述第一长度的第二信道估计结果序列;
利用生成的所述第二信道估计结果序列,对所述控制信息解码。
结合第八方面的第一种可能的实现方式,在第二种可能的实现方式中,所述第一OFDM符号中不包括用于对所述控制信息进行解码的信道估计序列。
结合第八方面的第二种可能的实现方式,在第三种可能的实现方式中,在所述控制信息的发送端与接收端之间的无线信道的信道相干带宽不小于所述第二OFDM符号的子载波间距时,所述第一OFDM符号中不包括用于对所述控制信息进行接收端解码的信道估计序列。
结合第八方面的第一种可能的实现方式,在第四种可能的实现方式中,所述第一OFDM符号中包括第二信道估计序列,所述第二信道估计序列占用所述第一OFDM符号的部分子载波;
将得到的所述第一信道估计结果序列进行内插处理,生成具有所述第一长度的第二信道估计结果序列,包括:
将所述第一信道估计结果序列,以及根据收到的所述第二信道估计序列进行信道估计得到的信道估计结果序列进行内插处理,生成具有所述第一长度的所述第二信道估计结果序列;
其中,所述第二信道估计序列在所述第一长度的所述第一OFDM符号中 占用的子载波,与所述第一信道估计序列在将所述第二OFDM符号从所述第二长度映射为所述第一长度后的OFDM符号中所占用的子载波不同。
结合第八方面的第四种可能的实现方式,在第五种可能的实现方式中,在所述控制信息的发送端与接收端之间的无线信道的信道相干带宽小于所述第二OFDM符号的子载波间距时,所述第一OFDM符号中包括所述第二信道估计序列。
结合第八方面,或第八方面的第一种可能的实现方式至第五种可能的实现方式中的任一种,在第六种可能的实现方式中,
所述第一OFDM符号是在整个系统带宽上发送的;
所述第二OFDM符号是在整个系统带宽中的部分子载波上发送的;
所述第一OFDM符号中还包括第三信道估计序列,所述第三信道估计序列占用整个系统带宽中除了所述部分子载波之外的其他可用子载波;
根据所述第一信道估计序列,对所述控制信息解码,包括:
根据所述第一信道估计序列和第三信道估计序列,对所述控制信息解码。
结合第八方面的第六种可能的实现方式,在第七种可能的实现方式中,所述第三信道估计序列位于所述第一OFDM符号中的一个或多个OFDM符号中。
结合第八方面,或第八方面的第一种可能的实现方式至第七种可能的实现方式中的任一种,在第八种可能的实现方式中,
在对所述控制信息解码之前,还包括:
接收用于指示所述第二长度的指示信息和/或用于指示所述第一长度的指示信息。
结合第八方面,或第八方面的第一种可能的实现方式至第八种可能的实现方式中的任一种,在第九种可能的实现方式中,所述控制信息位于WiFi 802.11ax中的HE-SIG1字段中;
所述第一信道估计序列位于WiFi 802.11ax中的L-LTF字段中。
第九方面,本发明实施例提供一种用于无线通信的计算机程序制品,包 括计算机可读介质,所述计算机可读介质包括可执行上述第七方面,或第七方面的任一种可能的实现方式提供的方法中的操作步骤的指令。
第十方面,本发明实施例提供一种用于无线通信的计算机程序制品,包括计算机可读介质,所述计算机可读介质包括可执行上述第八方面,或第八方面的任一种可能的实现方式提供的方法中的操作步骤的指令。
本发明实施例中,控制信息的发送端向接收端发送用于承载控制信息的第一OFDM符号和用于承载第一信道估计序列的第二OFDM符号,其中,第一OFDM符号的OFDM符号长度比第二OFDM符号的OFDM符号长度长;接收端根据收到的第一信道估计序列,对收到的控制信息解码。
本发明实施例中,发送端在发送用于承载控制信息的第一OFDM符号时,并没有按照第二OFDM符号的较短的OFDM符号的长度发送控制信息,而是增长了第一OFDM符号的OFDM符号长度,由于每个OFDM符号前面都需要有一个CP,因此增长了第一OFDM符号的OFDM符号长度,相当于降低了CP在整个OFDM符号中的时间比例,因而,降低了CP在OFDM符号中占用的开销,与用于承载控制信息的第一OFDM符号的OFDM符号长度与用于承载第一信道估计序列的第二OFDM符号的OFDM符号长度相等的情形相比,减小了系统开销,提高了系统传输效率。
进一步地,接收端可根据收到的第一信道估计序列进行信道估计,得到第一信道估计结果序列,将得到的第一信道估计结果序列进行内插处理,生成具有上述第一OFDM符号的OFDM符号长度的第二信道估计结果序列,利用生成的第二信道估计结果序列,对收到的上述控制信息解码。
其中,发送端发送的第二OFDM符号的OFDM符号长度小于第一OFDM符号的OFDM符号长度,而接收端将第一信道估计结果序列进行内插,生成具有第一OFDM符号的OFDM符号长度的第二信道估计结果序列,从而实现了对信道特性的还原,进而实现了对控制信息的解码。
进一步地,发送端在发送第一OFDM符号和第二OFDM符号之前,还可根据发送端与接收端之间的无线信道的信道相干带宽确定是否在第一OFDM 符号中发送用于接收端信道解码的信道估计序列。
一方面,若发送端与接收端之间的无线信道的信道相干带宽不小于第二OFDM符号的子载波间距,则第二OFDM符号的两个相邻子载波之间的相关性较强,因此,接收端在根据第一信道估计序列进行信道估计,得到第一信道估计结果序列之后,在对第一信道估计结果序列进行内插时,可根据第一信道估计结果序列,较准确地在两个相邻子载波之间插值,进而获得较准确的信道特性信息,因此控制信息中可不包括其它的信道估计序列。
另一方面,若发送端与接收端之间的无线信道的信道相干带宽小于第二OFDM符号的子载波间距,即第二OFDM符号的两个相邻子载波之间的相关性不强,则发送端在第一OFDM符号中可包括第二信道估计序列,辅助第一信道估计序列,用于接收端的信道估计。接收端将收到的第一OFDM符号中的第二信道估计序列,与第一信道估计序列结合起来,还原发送端与接收端之间的无线信道的信道特性,则信道估计的结果更准确,从而能够更准确地解码控制信息。
进一步地,若发送端在整个系统频带上发送第一OFDM符号,在整个系统带宽中的部分子载波上发送第二OFDM符号,则整个系统带宽中除了第一信道估计序列所占用的部分子载波之外的其他可用子载波上没有信道估计序列了,为了接收端能获得整个系统带宽上的信道特性,发送端在个系统带宽中除了第二OFDM符号所占用的部分子载波之外的其他可用子载波上发送第三估计信道序列,该第三信道估计序列与第一信道估计序列结合在一起,用于接收端的信道估计和控制信息的解码。
附图说明
图1为CP位置示意图;
图2为WiFi 802.11ax包结构示意图;
图3为本发明实施例一提供的无线通信系统的结构示意图;
图4为本发明实施例二提供的第一种无线通信装置的结构示意图;
图5为本发明实施例三提供的第一种无线通信节点的结构示意图;
图6为本发明实施例六提供的第三种无线通信装置的结构示意图;
图7为本发明实施例七提供的第二种无线通信节点的结构示意图;
图8为本发明实施例十提供的控制信息的发送方法的流程图;
图9为本发明实施例十一提供的控制信息的接收方法的流程图;
图10为本发明实施例十二中的内插方法的示意图;
图11为本发明实施例十二中控制信息的发送端与接收端之间传输的包的结构示意图;
图12为本发明实施例十三中控制信息的发送端与接收端之间传输的包的结构示意图;
图13A和图13B为本发明实施例十三中的内插方法的示意图;
图14为本发明实施例十三中系统开销的示意图;
图15为本发明实施例十四中控制信息的发送端的处理流程图;
图16为本发明实施例十四中控制信息的接收端的处理流程图;
图17为本发明实施例十五中控制信息的发送端与接收端之间传输的包的结构的示意图;
图18A~图18C为本发明实施例十五中子载波分配方式的示意图;
图19为本发明实施例十五中包含了全带宽的信道估计序列时,控制信息的发送端与接收端之间传输的包的结构的示意图;
图20为本发明实施例十五中的内插方法的示意图;
图21为本发明实施例十五中控制信息的发送端的处理流程图;
图22为本发明实施例十五中控制信息的接收端的处理流程图。
具体实施方式
本发明实施例提供一种无线通信装置、无线通信节点和控制信息的传输方法,用以解决在采用OFDM传输方式的无线通信系统中,当用于传输控制信息的字段占用的符号数较多时,CP占用系统开销大,系统传输效率不高的 问题。
本发明实施例中,控制信息的发送端向接收端发送用于承载控制信息的第一OFDM符号和用于承载第一信道估计序列的第二OFDM符号,其中,第一OFDM符号的OFDM符号长度比第二OFDM符号的OFDM符号长度长;接收端根据收到的第一信道估计序列,对收到的控制信息解码。
通常,为了使信息的接收端对信息解码,用于承载信息部分的OFDM符号的OFDM符号长度与用于承载信道估计序列的OFDM符号的OFDM符号长度相同,这样接收端才能根据信道估计序列估计控制信息的信道特性。
本发明实施例中,发送端在发送用于承载控制信息的第一OFDM符号时,并没有按照第二OFDM符号的较短的OFDM符号长度发送第一OFDM符号,而是增长了第一OFDM符号的OFDM符号长度,由于每个OFDM符号前面都需要有一个CP,因此增长了第一OFDM符号的OFDM符号长度,相当于降低了CP在整个OFDM符号中的时间比例,因而,降低了CP在OFDM符号中占用的开销,与用于承载控制信息的第一OFDM符号的OFDM符号长度与用于承载第一信道估计序列的第二OFDM符号的OFDM符号长度相等的情形相比,减小了系统开销,提高了系统传输效率。
进一步地,接收端可根据收到的第一信道估计序列进行信道估计,得到第一信道估计结果序列,将得到的第一信道估计结果序列进行内插处理,生成具有上述第一OFDM符号的OFDM符号长度的第二信道估计结果序列,利用生成的第二信道估计结果序列,对收到的上述控制信息解码。
其中,发送端发送的第二OFDM符号的OFDM符号长度小于第一OFDM符号的OFDM符号长度,而接收端将第一信道估计结果序列进行内插,生成具有第一OFDM符号的OFDM符号长度的第二信道估计结果序列,从而实现了对信道特性的还原,进而实现了对控制信息的解码。
进一步地,发送端在发送第一OFDM符号和第二OFDM符号之前,还可根据发送端与接收端之间的无线信道的信道相干带宽确定是否在第一OFDM符号中发送用于接收端信道解码的信道估计序列。
一方面,若发送端与接收端之间的无线信道的信道相干带宽不小于第二OFDM符号的子载波间距,则第二OFDM符号的两个相邻子载波之间的相关性较强,因此,接收端在根据第一信道估计序列进行信道估计,得到第一信道估计结果序列之后,在对第一信道估计结果序列进行内插时,可根据第一信道估计结果序列,较准确地在两个相邻子载波之间插值,进而获得较准确的信道特性信息,因此控制信息中可不包括其它的信道估计序列。
另一方面,若发送端与接收端之间的无线信道的信道相干带宽小于第二OFDM符号的子载波间距,即第二OFDM符号的两个相邻子载波之间的相关性不强,则发送端在第一OFDM符号中可包括第二信道估计序列,辅助第一信道估计序列,用于接收端的信道估计。接收端将收到的第一OFDM符号中的第二信道估计序列,与第一信道估计序列结合起来,还原发送端与接收端之间的无线信道的信道特性,则信道估计的结果更准确,从而能够更准确地解码控制信息。
进一步地,若发送端在整个系统频带上发送第一OFDM符号,在整个系统带宽中的部分子载波上发送第二OFDM符号,则整个系统带宽中除了第一信道估计序列所占用的部分子载波之外的其他可用子载波上没有信道估计序列了,为了接收端能获得整个系统带宽上的信道特性,发送端在个系统带宽中除了第二OFDM符号所占用的部分子载波之外的其他可用子载波上发送第三估计信道序列,该第三信道估计序列与第一信道估计序列结合在一起,用于接收端的信道估计和控制信息的解码。
下面,对本发明实施例涉及的基本概念进行说明。
首先,介绍OFDM符号长度的概念。
OFDM符号长度,即T_symbol,指从时域的角度来看每个OFDM符号所持续的时间。OFDM符号的长度与OFDM符号的子载波间隔成反比。OFDM技术采用了串并变换,原本高速的串行数据被转换成低速的并行数据发送,原来传P个符号(数字映射后的符号,譬如每个QPSK符号包含2个比特)的时间,现在相当于只传一个符号(但由于并行传输,P个子载波上各传一个, 相当于同时传P个)。所用的这个时间称为OFDM符号长度,或OFDM符号周期。在实际中,如背景技术中提及的,为了消除符号间的干扰,还要在符号间插入循环前缀(Cyclic Prefix,CP),即经过IFFT之后的发送数据经过并串变换,把位于最末的CP长度的符号拷贝到OFDM符号的起始端,用于消除符号间干扰。这时,实际的每个OFDM符号的长度变为T_symbol+T_cp。一般的,发送的信息的OFDM符号长度(即“IFFT长度+CP长度”)是以OFDM符号周期为单位表示的。
比如:对于802.11n和802.11a规定的WiFi系统,数据部分和前导部分采用的是相同的快速傅里叶变换(Fast Fourier Trasnformation,FFT)点数,即20MHz带宽对应64点的FFT,换言之,20MHz带宽内有64个子载波;40M带宽对应128点FFT,80M带宽对应256点FFT。此时,一个OFDM符号的长度为3.2μs,称为1x OFDM符号长度,该符号长度可视为基准的符号长度。
对于802.11ax规定的WiFi系统,数据部分采用4倍于802.11n的数据部分的点数,比如20MHz带宽对应64*4点的FFT,子载波间隔只有802.11n的数据部分的四分之一,因此,一个OFDM符号长度为802.11n的数据部分的符号长度的4倍,为12.8μs,称之为4x OFDM符号长度。
下面,介绍一下内插的原理。
内插,又称插值法,是通过已知的离散数据求未知数据的过程或方法。内插有线性内插、非线性内插等。
比如:控制信息的发送端发送Mx OFDM符号长度的第一信道估计序列,控制信息的接收端可根据第一信道估计序列进行信道估计,得到第一信道估计结果序列,再将得到的第一信道估计结果序列进行内插处理,生成NxOFDM符号长度的第二信道估计序列。
以M=1,N=4为例,如图8所示,图中的实线表示的是根据1x OFDM符号长度的第一信道估计序列进行信道估计,得到的1x OFDM符号长度的第一信道估计序列,图中的虚线是根据第一信道估计结果序列进行内插得到的。图中的实线和虚线一同形成了4x OFDM符号长的第二信道估计结果序列。
接下来,介绍相干带宽的概念。
相干带宽,用于描述时延扩展,是表征多径信道特性的重要参数。相干带宽是指某一特定的频率范围,在该特定的频率范围内的任意两个频率分量都具有很强的幅度相关性。即:在相干带宽范围内,多径信道具有恒定的增益和线性相位。通常,相干带宽近似等于最大多径时延的倒数。从频域看,如果相干带宽小于发送信道的带宽,则该信道特性会导致接收信号波形产生频率选择性衰落,即某些频率成分信号的幅值可以增强,而另外一些频率成分信号的幅值会被削弱。
最后,介绍信道估计的概念。
信道估计是信息的接收端对信息解码之前的步骤。信息的发送端发送信息,以及信道估计序列,用于接收端对信息的解码。该信道估计序列是接收端已知的,信道估计序列经过发送端和接收端之间的信道传输,接收端收到的信道估计序列通常不同于发送端发送的该信道估计序列,接收端通过对比收到的信道估计序列和已知的发送端发送的信道估计序列,根据比较结果,确定信道估计值,即得到了信道估计结果序列。
以上,介绍了本发明实施例涉及的几个基本概念,下面,结合附图对本发明实施例进行详细说明。为了清晰描述起见,下面的表1列出了本发明各实施例和对应的附图。
表1
Figure PCTCN2015073664-appb-000001
Figure PCTCN2015073664-appb-000002
下面,逐一介绍各实施例。
【实施例一】
实施例一提供了一种无线通信系统,如图3所示,该无线通信系统包括发送端301和接收端302,两者之间采用OFDM数据传输方式进行数据和控制信息的传输,其中,控制信息可包括用于用户调度、接收端解码等与控制相关的信息。
其中,发送端301,用于发送用于承载控制信息的第一OFDM符号和用于承载第一信道估计序列的第二OFDM符号;
接收端302,用于接收发送端301发送的第一OFDM符号和第二OFDM符号,从第一OFDM符号中获取控制信息,从第二OFDM符号中获取第一信道估计序列,并根据获取的第一信道估计序列,对获取的控制信息解码;
其中,用于承载控制信息的第一OFDM符号的OFDM符号长度为第一长度,用于承载第一信道估计序列的OFDM符号的OFDM符号长度为第二长度,第一长度比第二长度长。
其中,用于承载控制信息的第一OFDM符号可包括一个或多个第一长度 的OFDM符号,用于承载第一信道估计序列的第二OFDM符号可包括一个或多个第二长度的OFDM符号。
以WiFi 802.11ax规定的无线通信系统为例,发送端301,比如:接入点(Access Point,AP)可通过图2中的传统前导部分的L-LTF字段发送第一信道估计序列,承载该字段的第二OFDM符号的OFDM符号长度为1x OFDM符号长度;通过图2中的HE-SIG1字段发送控制信息。这里,与现有的WiFi 802.11ax规定的无线通信系统不同,现有的系统中,用于承载HE-SIG1字段的第一OFDM符号的OFDM符号长度为1x OFDM符号长度,本发明实施例中,用于承载该字段的第一OFDM符号的OFDM符号长度为Nx OFDM符号长度,N为大于1的整数,比如N=2、4,……,这里以4为例。
接收端302,比如站点(STAtion,STA)根据从收到的具有1x OFDM符号长度的第二OFDM符号中获取第一信道估计序列,根据获取的第一信道估计序列进行信道估计,得到具有1x OFDM符号长度的第一信道估计结果序列;将得到的1x OFDM符号长度的第一信道估计结果序列进行内插处理,得到具有4x OFDM符号长度的第二信道估计结果序列,如图10所示,并根据得到的第二信道估计结果序列,对4x OFDM符号长度的第一OFDM符号中的控制信息进行解码。
由于用于承载控制信息的第一OFDM符号采用了4x OFDM符号长度,与1x OFDM符号长度相比,CP占用的系统开销变小了,提高了系统传输效率。在信道估计时,能够根据具有1x OFDM符号长度的第二OFDM符号中的第一信道估计序列,估计具有4x OFDM符号长度的第一OFDM符号中的控制信息传输的信道,对控制信息解码。
其中,可先发送用于承载控制信息的第一OFDM符号,再发送用于承载第一信道估计序列的第二OFDM符号,或先发送第二OFDM符号,再发送第一OFDM符号,或同时发送第一OFDM符号和第二OFDM符号。
可选地,发送端301在向接收端302在发送第一OFDM符号之前,向接收端302发送用于指示第二长度和/或用于指示第一长度的指示信息,接收端 302根据收到的两个指示信息分别确定第二OFDM符号的OFDM符号长度和第一OFDM符号的OFDM符号长度。
比如:第二OFDM符号的OFDM符号长度为Mx OFDM符号长度,第一OFDM符号的OFDM符号长度为Nx OFDM符号长度,则发送端301可预先向接收端302发送用于指示N和M的指示信息。其中M、N为正整数,M小于N。
可选地,发送端301和接收端302可预先约定M=1。以WiFi802.11ax规定的无线通信系统为例,第一信道估计序列在L-LTF字段中发送,则发送端301在发送第一信道估计序列时,沿用现有的发送方法,发送具有1x OFDM符号长度的第二OFDM符号,以承载第一信道估计序列。
那么,根据发送端301用于承载控制信息的第一OFDM符号的OFDM符号长度的不同,可分为多种发送方式。
仍以WiFi 802.11ax规定的无线通信系统为例,控制信息位于HE-SIG1字段中,发送端301可通过隐式或显式的指示方式通知接收端302,发送端301在发送HE-SIG1时采用何种发送方式。
若采用显式的指示方式,则发送端301可在HE-SIG0中用2bit信息来表示用于承载HE-SIG1的第一OFDM符号的OFDM符号长度是1x、2x还是4x的OFDM符号长度;或者发送端301也可在HE-SIG0中仅使用1bit信息来表示采用了1x、2x和4x的OFDM符号长度中的任意两种方式。
比如:若用2bit信息指示,则接收端302收到的该2bit信息为“00”,则确定发送端301发送了1x OFDM符号长度的第一OFDM符号,以承载HE-SIG1;若收到的该2bit信息为“01”,则确定发送端301发送了2x OFDM符号长度的第一OFDM符号,以承载HE-SIG1;若收到的该2bit信息为“10”,则确定发送端301发送了4x OFDM符号长度的第一OFDM符号,以承载HE-SIG1。
若用1bit信息的指示,则接收端302收到的该1bit的信息“0”,则确定发送端301发送了1x OFDM符号长度的第一OFDM符号,以承载HE-SIG1, 若收到的该1bit信息为“1”,则确定发送端301发送了2x或4x OFDM符号长度的第一OFDM符号,以承载HE-SIG1。
若采用隐式的指示方式,则发送端301可在发送HE-SIG1之前,预先计算若采用1x OFDM符号长度的第一OFDM符号承载HE-SIG1,需要发送多少个OFDM符号。根据确定的需要发送的OFDM符号的个数,确定采用何种发送方式。
比如:若计算出需要发送5个1x OFDM符号长度的OFDM符号,则确定向接收端302发送2x OFDM符号长度的第一OFDM符号,以承载HE-SIG1;
若计算出需要发送10个1x OFDM符号长度的OFDM符号,则确定向接收端302发送4x OFDM符号长度的第一OFDM符号,以承载HE-SIG1。
相应地,接收端预先知道发送端要发送多少个1x OFDM符号长度的OFDM符号长度,则根据与发送端301相同的规则,即可确定发送端301发送的是1x、2x还是4x OFDM符号长度的第一OFDM符号,以承载HE-SIG1。
可选地,发送端301在发送第一OFDM符号时,可根据发送端301与接收端302之间的无线信道的信道相干带宽,确定第一OFDM符号中是否包括用于对控制信息进行接收端解码的信道估计序列。
可选地,若信道相干带宽不小于用于承载第一信道估计序列的第二OFDM符号的子载波间距,则在第一OFDM符号中不包括用于对控制信息进行接收端解码的信道估计序列。
可选地,若信道相干带宽小于第二OFDM符号的子载波间距,则在第一OFDM符号中包括用于对控制信息进行接收端解码的信道估计序列。
可选地,第一OFDM符号中包括第二信道估计序列,该第二信道估计序列占用第一OFDM符号中从第一个OFDM符号开始的至少一个OFDM符号中的部分子载波,接收端302根据收到的第二信道估计序列,和收到的第一信道估计序列,对控制信息进行解码。
具体地,接收端302根据收到的第一信道估计序列进行信道估计,生成第一信道估计结果序列,将生成的第一信道估计结果序列,以及根据收到的 第二信道估计序列进行信道估计得到的信道估计结果序列进行内插处理,生成第二信道估计结果序列,该第二信道估计结果序列具有第一OFDM符号的OFDM符号长度,即第一长度。
其中,第二信道估计序列在第一长度的第一OFDM符号中占用的子载波,与第一信道估计序列在将第二OFDM符号从第二长度映射为第一长度后的OFDM符号中所占用的子载波不同。
可选地,该第二信道估计序列位于第一OFDM符号中的一个或多个OFDM符号中,比如:位于第一OFDM符号的第一个OFDM符号中。则接收端302可在收到第一OFDM符号的第一个OFDM符号后,得到第二信道估计序列,根据得到的第二信道估计序列,以及第一信道估计序列进行信道估计,得到信道特性信息,根据得到的信道特性信息对第一OFDM符号中的后续OFDM符号中的控制信息进行解码。
可选地,该第二信道估计序列也可位于第一OFDM符号的其他OFDM符号中,则接收端302可在将第一OFDM符号中的所有OFDM符号接收完毕后,再根据从第一OFDM符号中得到的第二信道估计序列和从第二OFDM符号中得到的第一信道估计序列,对第一OFDM符号的各OFDM符号解码。
如图13A所示,发送端301在发送第一OFDM符号时,在第一OFDM符号中的一个或多个OFDM符号中的一部分子载波携带了第二信道估计序列,来辅助信道估计。其中,实线所示的子载波放置的是携带的第二信道估计序列,虚线所示的子载波放置的是控制信息。
发送端301采用了图13A所示的发送方式后,接收端302根据收到的第一信道估计序列进行信道估计,得到了第一信道估计结果序列;并对收到的第二信道估计序列进行信道估计;将第一信道估计结果序列和对收到的第二信道估计序列进行信道估计得到的信道估计结果序列结合,即可得到如图13B中实线所示的信道估计结果序列。其中,虚线箭头指示的是第一信道估计结果序列,实线箭头指示的是接收端302对收到的第二信道估计序列进行信道估计得到的信道估计结果序列。有了上述两个信道估计结果序列,接收端302 就可以通过内插得到图13B中虚线所指示的子载波上的序列,再结合上述两个信道估计结果序列,得到的具有4x OFDM符号长度的第二信道估计结果序列,即图13B中各子载波上的序列。可选地,发送端301可在整个系统带宽上发送第一OFDM符号,在整个系统带宽中的部分子载波上发送第二OFDM符号,此外,为了使接收端302得到整个系统带宽上的信道估计信息,发送端301还在整个系统带宽中除了上述部分子载波之外的其他可用子载波上发送第三信道估计序列;接收端302根据收到的第一信道估计序列和第三信道估计序列,对收到的控制信息解码,其中,这些可用子载波中不包括在整个系统带宽上作为保护带的子载波和直流子载波。
可选地,该第三信道估计序列位于第一OFDM符号的一个或多个OFDM符号中,比如:位于第一OFDM符号的第一个OFDM符号中。则接收端302可在收到第一OFDM符号的第一个OFDM符号后,得到第三信道估计序列,根据得到的第三信道估计序列,以及第一信道估计序列进行信道估计,得到信道特性信息,根据得到的信道特性信息对第一OFDM符号的后续OFDM符号进行解码。
可选地,该第三信道估计序列也可位于第一OFDM符号中的其他OFDM符号中,则接收端302可在将第一OFDM符号的所有OFDM符号接收完毕后,再根据从第一OFDM符号中得到的第三信道估计序列和收到的第一信道估计序列,对第一OFDM符号中的各OFDM符号解码。
以上,通过实施例一介绍了本发明实施例提供的无线通信系统。后面的实施例十二~实施例十五中,以举例的方式给出了实施例一的无线通信系统的一些可选的实现方式和技术细节。
基于相同的发明构思,本发明实施例还提供了无线通信装置、无线通信节点和控制信息的传输方法,由于其解决问题的原理与本发明实施例提供的无线通信系统相同,其实施可参照该无线通信系统的实施,重复之处不再赘述。
【实施例二】
图4为本发明实施例二提供的第一种无线通信装置的结构示意图。如图4所示,该无线通信装置包括:
处理模块401,用于生成用于承载控制信息的第一正交频分复用OFDM符号和用于承载第一信道估计序列的第二OFDM符号;
发送模块402,用于发送第一OFDM符号和第二OFDM符号,其中,第一信道估计序列用于控制信息的接收端解码;
其中,第一OFDM符号的OFDM符号长度为第一长度,第二OFDM符号的OFDM符号的长度为第二长度,第一长度比第二长度长。
可选地,第一OFDM符号中不包括用于对控制信息进行接收端解码的信道估计序列。
可选地,在控制信息的发送端与接收端之间的无线信道的信道相干带宽不小于第二OFDM符号的子载波间距时,第一OFDM符号中不包括用于对控制信息进行接收端解码的信道估计序列。
可选地,第一OFDM符号中包括第二信道估计序列;
第二信道估计序列占用第一OFDM符号的部分子载波,与第一信道估计序列一起用于控制信息的接收端解码;
其中,第二信道估计序列在第一长度的第一OFDM符号中占用的子载波,与第一信道估计序列在将第二OFDM符号从第二长度映射为第一长度后的OFDM符号中所占用的子载波不同。
可选地,在控制信息的发送端与接收端之间的无线信道的信道相干带宽小于第二OFDM符号的子载波间距时,第一OFDM符号中包括第二信道估计序列。
可选地,发送模块402具体用于:在整个系统带宽上发送第一OFDM符号,以及在整个系统带宽中的部分子载波上发送第二OFDM符号;
第一OFDM符号中还包括:第三信道估计序列,第三信道估计序列占用 整个系统带宽中除了部分子载波之外的其他可用子载波,与第一信道估计序列一起用于控制信息的接收端解码。
可选地,第三信道估计序列位于第一OFDM符号中的一个或多个OFDM符号中。
可选地,发送模块402还用于:
在发送控制信息之前,向控制信息的接收端发送用于指示第二长度的指示信息和/或用于指示第一长度的指示信息。
可选地,控制信息位于WiFi 802.11ax中的HE-SIG1字段中;
第一信道估计序列位于WiFi 802.11ax中的L-LTF字段中。
实施例二提供的第一种无线通信装置的其他可选实现细节可参考实施例一中的发送端301,重复之处不再赘述。
【实施例三】
图5为实施例三提供的第一种无线通信节点的结构示意图。如图5所示,该无线通信节点包括:
处理器501,用于生成用于承载控制信息的第一正交频分复用OFDM符号和用于承载第一信道估计序列的第二OFDM符号;
发射器502,用于发送第一OFDM符号和第二OFDM符号,其中,第一信道估计序列用于控制信息的接收端解码;
其中,第一OFDM符号的OFDM符号长度为第一长度,第二OFDM符号的OFDM符号的长度为第二长度,第一长度比第二长度长。
其中,在图5中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器501代表的一个或多个处理器和计算机可读介质504代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。
总线506为图5中诸如处理器501、发射器502等器件提供总线接口。发射器502用于在传输介质上向其他装置发送数据。针对不同的用户设备,用户接口503还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。发射器502通过天线505发射无线信号,其中天线505包括一副或多副天线。
图5中,还可包括接收器,接收器可与发射器502共用天线505,用于在传输介质上从其他装置处接收数据。
或者,图5中的各器件也可不通过图5中的总线架构连接。比如:发射器502、计算机可读介质504、用户接口503均与处理器501连接。
实施例三提供的第一种无线通信节点中,发射器502的实施可参考实施例二提供的第一种无线通信装置中的发送模块402,处理器501的实施可参考实施例二提供的第一种无线通信装置中的处理模块401,重复之处不再赘述。其他可选的实现细节可参考前述的实施例二和实施例一中的发送端301,这里也不再赘述。
【实施例四】
实施例四提供本发明实施例的第二种无线通信装置。该无线通信装置可包括图5中的处理器501和发射器502。
其中,发射器502的实施可参考实施例二提供的第一种无线通信装置中的发送模块402,处理器501的实施可参考处理模块401,重复之处不再赘述。
其中,处理器501和发射器502可集成在一个芯片上实现,通过发射器502连接天线505实现该无线通信节点与其他节点之间的通信。
可选地,该芯片上还可集成计算机可读介质504、用户接口503等。
该无线通信装置的其他可选实现细节,可参考实施例一中的发送端301的处理。
【实施例五】
实施例五提供本发明实施例的第一种用于无线通信的计算机程序制品,包括图5中的计算机可读介质504,计算机可读介质504包括可执行以下操作步骤的指令:
发送用于承载控制信息的第一OFDM符号;
发送用于承载第一信道估计序列的第二OFDM符号,第一信道估计序列用于控制信息的接收端解码;
其中,第一OFDM符号的OFDM符号长度为第一长度,第二OFDM符号的OFDM符号的长度为第二长度,第一长度比第二长度长。
其中,计算机可读介质504中包括的具体指令可实现实施例一中发送端301的各种处理,其实施可参考实施例一中的发送端301,重复之处不再赘述。
【实施例六】
实施例六提供本发明实施例的第三种无线通信装置。该无线通信装置可包括:
接收模块601,用于接收用于承载控制信息的第一正交频分复用OFDM符号和用于承载第一信道估计序列的第二OFDM符号;并从第一OFDM符号中获取控制信息,从第二OFDM符号中获取第一信道估计序列;
处理模块602,用于根据第一信道估计序列,对控制信息解码;
其中,第一OFDM符号的OFDM符号长度为第一长度,第二OFDM符号的OFDM符号长度为第二长度,第一长度比第二长度长。
可选地,处理模块602具体用于:
根据第一信道估计序列进行信道估计,得到第一信道估计结果序列;
将得到的第一信道估计结果序列进行内插处理,生成具有第一长度的第二信道估计结果序列;
利用生成的第二信道估计结果序列,对控制信息解码。
可选地,第一OFDM符号中不包括用于对控制信息进行解码的信道估计序列。
可选地,在控制信息的发送端与接收端之间的无线信道的信道相干带宽不小于第二OFDM符号的子载波间距时,第一OFDM符号中不包括用于对控制信息进行接收端解码的信道估计序列。
可选地,第一OFDM符号中包括第二信道估计序列,第二信道估计序列占用第一OFDM符号的部分子载波;
处理模块602具体用于:
将第一信道估计结果序列,以及根据收到的第二信道估计序列进行信道估计得到的信道估计结果序列进行内插处理,生成具有第一长度的第二信道估计结果序列;
其中,第二信道估计序列在第一长度的第一OFDM符号中占用的子载波,与第一信道估计序列在将第二OFDM符号从第二长度映射为第一长度后的OFDM符号中所占用的子载波不同。
可选地,在控制信息的发送端与接收端之间的无线信道的信道相干带宽小于第二OFDM符号的子载波间距时,第一OFDM符号中包括第二信道估计序列。
可选地,第一OFDM符号是在整个系统带宽上发送的;
第二OFDM符号是在整个系统带宽中的部分子载波上发送的;
第一OFDM符号中还包括第三信道估计序列,第三信道估计序列占用整个系统带宽中除了部分子载波之外的其他可用子载波;
处理模块602具体用于:
根据第一信道估计序列和第三信道估计序列,对控制信息解码。
可选地,第三信道估计序列位于第一OFDM符号中的一个或多个OFDM符号中。
可选地,接收模块601还用于:
在对控制信息解码之前,接收用于指示第二长度的指示信息和/或用于指示第一长度的指示信息。
可选地,控制信息位于WiFi 802.11ax中的HE-SIG1字段中;
第一信道估计序列位于WiFi 802.11ax中的L-LTF字段中。
实施例六的其他可选实现细节,可参考实施例一中的接收端302,重复之处不再赘述。
【实施例七】
图7为实施例七提供的第二种无线通信节点的结构示意图。如图7所示,该无线通信节点包括:
接收器701,用于接收用于承载控制信息的第一正交频分复用OFDM符号和用于承载第一信道估计序列的第二OFDM符号;并从第一OFDM符号中获取控制信息,从第二OFDM符号中获取第一信道估计序列;
处理器702,用于根据第一信道估计序列,对控制信息解码;
其中,第一OFDM符号的OFDM符号长度为第一长度,第二OFDM符号的OFDM符号长度为第二长度,第一长度比第二长度长。
其中,在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器702代表的一个或多个处理器和计算机可读介质704代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。
总线706为图7中诸如处理器702、接收器701等器件提供总线接口。接收器701用于在传输介质上接收其他装置发送的数据。针对不同的用户设备,用户接口703还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。接收器701通过天线705接收无线信号,其中天线705包括一副或多副天线。
图7中,还可包括发射器,发射器可与接收器701共用天线705,用于在传输介质上向其他装置发送数据。
或者,图7中的各器件也可不通过图7中的总线架构连接。比如:接收器701、计算机可读介质704、用户接口703均与处理器702连接。
实施例七提供的第二种无线通信节点中,接收器701的实施可参考实施例六提供的第三种无线通信装置中的接收模块601,处理器702的实施可参考实施例六提供的第三种无线通信装置中的处理模块602,重复之处不再赘述。其他可选的实现细节可参考前述的实施例六和实施例一中的接收端302,这里也不再赘述。
【实施例八】
实施例八提供本发明实施例的第四种无线通信装置。该无线通信装置可包括图7中的处理器702和接收器701。
其中,接收器701的实施可参考实施例六提供的第三种无线通信装置中的接收模块601,处理器702的实施可参考处理模块602,重复之处不再赘述。
其中,处理器702和接收器701可集成在一个芯片上实现,通过接收器701连接天线705实现该无线通信节点与其他节点之间的通信。
可选地,该芯片上还可集成计算机可读介质704、用户接口703等。
该无线通信装置的其他可选实现细节,可参考实施例一中的接收端302的处理。
【实施例九】
实施例九提供本发明实施例的第二种用于无线通信的计算机程序制品,包括图7中的计算机可读介质704,计算机可读介质704包括可执行以下操作步骤的指令:
接收用于承载控制信息的第一正交频分复用OFDM符号和用于承载第一信道估计序列的第二OFDM符号;
从第一OFDM符号中获取控制信息,从第二OFDM符号中获取第一信道估计序列;
根据第一信道估计序列,对控制信息解码;
其中,第一OFDM符号的OFDM符号长度为第一长度,第二OFDM符号的OFDM符号长度为第二长度,第一长度比第二长度长。
其中,计算机可读介质704中包括的具体指令可实现实施例一中接收端302的各种处理,其实施可参考实施例一中的接收端302,重复之处不再赘述。
【实施例十】
实施例十提供了一种控制信息的发送方法,如图8所示,该方法包括如下步骤:
S801:发送用于承载控制信息的第一OFDM符号;
S802:发送用于承载第一信道估计序列的第二OFDM符号,第一信道估计序列用于控制信息的接收端解码;
其中,第一OFDM符号的OFDM符号长度为第一长度,第二OFDM符号的OFDM符号的长度为第二长度,第一长度比第二长度长。
其中,步骤S801和步骤S802的执行不分先后顺序,可以先执行步骤S801,后执行步骤S802,如图8所示,或先执行步骤S802,后执行步骤S801,或同时执行步骤S801和S802。
可选地,第一OFDM符号中不包括用于对控制信息进行接收端解码的信道估计序列。
可选地,在控制信息的发送端与接收端之间的无线信道的信道相干带宽不小于第二OFDM符号的子载波间距时,第一OFDM符号中不包括用于对控制信息进行接收端解码的信道估计序列。
可选地,第一OFDM符号中包括第二信道估计序列;
第二信道估计序列占用第一OFDM符号的部分子载波,与第一信道估计序列一起用于控制信息的接收端解码;
其中,第二信道估计序列在第一长度的第一OFDM符号中占用的子载波,与第一信道估计序列在将第二OFDM符号从第二长度映射为第一长度后的OFDM符号中所占用的子载波不同。
可选地,在控制信息的发送端与接收端之间的无线信道的信道相干带宽小于第二OFDM符号的子载波间距时,第一OFDM符号中包括第二信道估计序列。
可选地,发送第一OFDM符号,包括:在整个系统带宽上发送第一OFDM符号;
发送第二OFDM符号,包括:在整个系统带宽中的部分子载波上发送第二OFDM符号;
第一OFDM符号中还包括:第三信道估计序列,第三信道估计序列占用整个系统带宽中除了部分子载波之外的其他可用子载波,与第一信道估计序列一起用于控制信息的接收端解码。
可选地,第三信道估计序列位于第一OFDM符号中的一个或多个OFDM符号中。
可选地,在发送第一OFDM符号之前,还包括:
向控制信息的接收端发送用于指示第二长度的指示信息和/或用于指示第一长度的指示信息。
可选地,控制信息位于WiFi 802.11ax中的HE-SIG1字段中;
第一信道估计序列位于WiFi 802.11ax中的L-LTF字段中。
实施例十的其他可选实现细节可参考实施例一中的发送端301,重复之处不再赘述。
【实施例十一】
实施例十一提供了一种控制信息的接收方法,如图9所示,该方法包括如下步骤:
S901:接收用于承载控制信息的第一正交频分复用OFDM符号和用于承载第一信道估计序列的第二OFDM符号;
S902:从第一OFDM符号中获取控制信息,从第二OFDM符号中获取第一信道估计序列;
S903:根据第一信道估计序列,对控制信息解码;
其中,第一OFDM符号的OFDM符号长度为第一长度,第二OFDM符号的OFDM符号长度为第二长度,第一长度比第二长度长。
可选地,根据第一信道估计序列,对控制信息解码,包括:
根据第一信道估计序列进行信道估计,得到第一信道估计结果序列;
将得到的第一信道估计结果序列进行内插处理,生成具有第一长度的第二信道估计结果序列;
利用生成的第二信道估计结果序列,对控制信息解码。
可选地,第一OFDM符号中不包括用于对控制信息进行解码的信道估计序列。
可选地,在控制信息的发送端与接收端之间的无线信道的信道相干带宽不小于第二OFDM符号的子载波间距时,第一OFDM符号中不包括用于对控制信息进行接收端解码的信道估计序列。
可选地,第一OFDM符号中包括第二信道估计序列,第二信道估计序列占用第一OFDM符号的部分子载波;
将得到的第一信道估计结果序列进行内插处理,生成具有第一长度的第二信道估计结果序列,包括:
将第一信道估计结果序列,以及根据收到的第二信道估计序列进行信道估计得到的信道估计结果序列进行内插处理,生成具有第一长度的第二信道估计结果序列;
其中,第二信道估计序列在第一长度的第一OFDM符号中占用的子载波,与第一信道估计序列在将第二OFDM符号从第二长度映射为第一长度后的OFDM符号中所占用的子载波不同。
可选地,在控制信息的发送端与接收端之间的无线信道的信道相干带宽小于第二OFDM符号的子载波间距时,第一OFDM符号中包括第二信道估计序列。
可选地,第一OFDM符号是在整个系统带宽上发送的;
第二OFDM符号是在整个系统带宽中的部分子载波上发送的;
第一OFDM符号中还包括第三信道估计序列,第三信道估计序列占用整个系统带宽中除了部分子载波之外的其他可用子载波;
根据第一信道估计序列,对控制信息解码,包括:
根据第一信道估计序列和第三信道估计序列,对控制信息解码。
可选地,第三信道估计序列位于第一OFDM符号中的一个或多个OFDM符号中。
可选地,在对控制信息解码之前,还包括:
接收用于指示第二长度的指示信息和/或用于指示第一长度的指示信息。
可选地,控制信息位于WiFi 802.11ax中的HE-SIG1字段中;
第一信道估计序列位于WiFi 802.11ax中的L-LTF字段中。
实施例十一的其他可选实现细节可参考实施例一的接收端302,重复之处不再赘述。
以上,介绍了本发明实施例提供的无线通信系统、无线通信装置和无线通信节点,以及控制信息的传输方法,下面,通过实施例十二~实施例十五说明对于不同的应用场景,本发明实施例的几种可选的实现方式。实施例十二~实施例十五中,以WiFi 802.11ax系统为例,第一信道估计序列在L-LTF字段中,控制信息位于HE-SIG1字段中。
【实施例十二】
在室内场景下,发送端301和接收端302之间的无线信道的相干带宽比1x OFDM符号长度的第二OFDM符号的子载波间距大,即OFDM符号的两个相邻子载波之间的相关性很强。因此,接收端302可根据L-LTF字段中的第一信道估计序列得到OFDM符号的长度为1x OFDM符号长度时,无线信道的信道估计结果序列,通过2倍的信道插值得到OFDM符号的长度为2xOFDM符号长度时,无线信道的信道估计结果序列;或者通过4倍的信道插值得到OFDM符号的长度为4x OFDM符号长度时,无线信道的信道估计结果序列。
如图10所示,接收端302可将从L-LTF得到的具有1x OFDM符号长度的第一信道估计序列映射到具有4x OFDM符号长度的OFDM符号的子载波上,图10中用实线表示;没有映射到的子载波用虚线表示,则发送端301和接收端302之间的无线信道的信道估计结果序列,可由相邻两根实线表示的信道估计值进行插值获得。
发送端301仍以现有的方式发送L-LTF,即用于承载L-LTF的第二OFDM符号的OFDM符号长度为1x OFDM符号长度。与现有802.11ax中不同的是:用于承载HE-SIG1的第一OFDM符号采用4x OFDM符号长度。
接收端302根据1x OFDM符号长度的第二OFDM符号中的L-LTF中的第一信道估计序列,进行信道估计,得到第一信道估计结果序列,将得到的第一信道估计结果序列进行插值,得到具有4x OFDM符号长度的的第二信道估计结果序列,根据得到的第二信道估计结果序列,对具有4x OFDM符号长度中的第一OFDM符号中的HE-SIG1解码。
发送端301发给接收端302的包的结构如图11所示。其中,数据、HE-STF、HE-LTF、HE-SIG0是在整个系统带宽上发送的,因此图11中,这些字段均在纵向上占整个一列。以系统带宽为80MHz为例,则如图11所示,HE-SIG1在多个20MHz的带宽上复制传输,即HE-SIG1在各20MHz的带宽上传输相同的信息。其中,发送端301发送包括多个用于承载HE-SIG1的第一OFDM 符号,第一OFDM符号中的每一个OFDM符号采用2x OFDM符号长度或4xOFDM符号长度。这样减少了CP的开销,提供了系统传输效率。
发送端301在发送L-preamble时,将L-preamble承载于具有1x OFDM符号长度的第二OFDM符号中,L-preamble中包括L-LTF。
实施例十二中,由于接收端302在室内场景可以通过具有1x OFDM符号长度的第二OFDM符号中的L-LTF中的第一信道估计序列,得到2x或4x的OFDM符号长度下,发送端301和接收端302之间的无线信道的信道状态信息,因此发送端301可使用具有2x OFDM符号长度或4x OFDM符号长度的第一OFDM符号来承载HE-SIG1,进行控制信息的发送。
【实施例十三】
在室外场景下,发送端301和接收端302之间的无线信道的相干带宽可能比具有1x OFDM符号长度的第二OFDM符号的子载波间距小,即具有1xOFDM符号长度的第二OFDM符号的两个相邻子载波之间的相关性可能很低。因此,若按照实施例十二的方式,仅使用L-LTF得到的1x OFDM符号长度信道下的无线信道的信道估计结果序列,对该序列进行插值以获得2xOFDM符号长度下,或4x OFDM符号长度下的信道状态信息,则由于信道插值的准确度较低,可能会造成较大的性能损失。因此,实施例十三中,接收端302根据收到的L-LTF中的第一信道估计序列和第一OFDM符号中的第二信道估计序列进行信道估计。
实施例十三中,第二信道估计序列仅位于用于承载HE-SIG1的第一OFDM符号中的第一个OFDM符号中。这样既能节省第二信道估计序列的开销,又能根据该第二信道估计序列,对第一OFDM符号中的后续OFDM符号进行解码。
实施例十三中,发送端301发送给接收端302的包的结构如图12所示。
其中,L-preamble和HE-SIG0部分仍承载于具有1x OFDM符号长度的 OFDM符号中进行传输,HE-SIG1承载于具有2x或4x OFDM符号长度的OFDM符号中进行传输,其中,用于承载HE-SIG1的第一OFDM符号中携带第二信道估计序列。接收端302根据收到的L-preamble中L-LTF字段中的第一信道估计序列和用于承载HE-SIG1的第一OFDM符号中的第一个OFDM符号中的第二信道估计序列获取较准确的信道状态信息,对HE-SIG1中的控制信息进行解码,
如图13A所示,在具有4x OFDM符号长度的第一OFDM符号中,一部分子载波上放置了第二信道估计序列,以辅助第一信道估计序列,用于接收端302对HE-SIG1的解码。其中,实线所示的子载波放置的是携带的第二信道估计序列,虚线所示的子载波放置的是控制信息。
图13A中,第二信道估计序列在第一OFDM符号中占用的子载波应不同于第一信道估计序列在将第二OFDM符号从1x OFDM符号映射为4x OFDM符号长度后的OFDM符号中占用的子载波,即图10中第一信道估计结果序列在4x OFDM符号长度的OFDM符号上占用的子载波。比如:第二信道估计序列占用的第一OFDM符号的子载波,与第一信道估计序列在将第二OFDM符号从1x OFDM符号映射为4x OFDM符号长度后的OFDM符号中占用的子载波,即图10中第一信道估计结果序列占用的子载波间隔一个子载波,这样,接收端302可将第一信道估计结果序列,以及根据收到的第二信道估计序列进行信道估计得到的信道估计结果序列结合起来,得到如图13B中实线所示的信道估计结果序列。其中,虚线箭头指示的是第一信道估计序列在将第二OFDM符号映射为4x OFDM符号长度后的OFDM符号中占用的子载波,即第一信道估计结果序列占用的子载波;实线箭头指示的是第二信道估计序列在第一OFDM符号中占用的子载波,即接收端302对收到的第二信道估计序列进行信道估计得到的信道估计结果序列占用的子载波。
有了上述两个信道估计结果序列,接收端302就可以通过内插得到图13B中虚线所指示的子载波上的序列,再结合上述两个信道估计结果序列,得到的4x OFDM符号长度的第二信道估计结果序列,即图13B中各子载波上的序 列。这样,接收端302就获得了具有4x OFDM符号长度的第一OFDM符号的所有可用子载波的信道状态信息。
在实施例十三中,由于接收端302在室外场景下,不能直接对由L-LTF得到的1x OFDM符号长度的第一信道估计结果序列进行插值,因此发送端301在用于承载HE-SIG1的第一OFDM符号中的第一个OFDM符号中放置了第二信道估计序列,来辅助接收端302得到2x OFDM符号长度下或4x OFDM符号长度下的精确的信道估计结果。因此,接收端302需要根据L-LTF中的第一信道估计序列进行信道估计,得到第一信道估计结果序列,并根据第一OFDM符号中的第二信道估计序列进行信道估计。
若第一OFDM符号采用的是2x OFDM符号长度,则第一OFDM符号中的第一个OFDM符号的解码依赖于第一信道估计结果序列,而第一OFDM符号中的后续OFDM符号的解码需要利用第一信道估计结果序列,以及接收端302根据第二信道估计序列得到的2x OFDM符号长度的信道估计结果序列。
若第一OFDM符号采用的是4x OFDM符号长度,则接收端302在得到第一信道估计结果序列,以及根据第二信道估计序列进行信道估计后,需要先进行2倍的信道插值,得到4x OFDM符号长度下的无线信道的信道状态信息。接收端302可根据图13B中除了实线箭头指示的子载波之外的3x OFDM符号长度的信道估计结果序列,对第一OFDM符号中的第一个OFDM符号进行解码;并可根据图13B中所有子载波上的4x OFDM符号长度的第二信道估计结果序列,对第一OFDM符号中的后续OFDM符号进行解码。
实施例十二和实施例十三中,发送端301将多个具有1x OFDM符号长度的OFDM符号结合成具有Nx OFDM符号长度的OFDM符号,N为大于1的整数,有效减少了用于承载HE-SIG1的第一OFDM符号中包含的OFDM符号的个数,进而减少了CP的开销。
这里,以实施例十三为例,说明本发明实施例是如何减小系统开销的。
如图14所示,对于常规CP,在室外场景下,无线信道的信道相干带宽小于1x的OFDM符号的子载波间距。
当用于承载HE-SIG1的第一OFDM符号中包括(2n-1)个1x OFDM符号长度的OFDM符号,且n不小于4时,采用2x OFDM符号长度,可节省系统开销,n为正整数;
当用于承载HE-SIG1的第一OFDM符号中包括2n个1x OFDM符号长度的OFDM符号,且n不小于6时,采用2x OFDM符号长度,可节省系统开销;
当用于承载HE-SIG1的第一OFDM符号中包括(4n-1)个1x OFDM符号长度的OFDM符号,且n不小于2时,采用4x OFDM符号长度,可节省系统开销;
当用于承载HE-SIG1的第一OFDM符号中包括(4n-2)个1x OFDM符号长度的OFDM符号,且n不小于3时,采用4x OFDM符号长度,可节省系统开销;
当用于承载HE-SIG1的第一OFDM符号中包括(4n-3)个1x OFDM符号长度的OFDM符号,且n不小于4时,采用4x OFDM符号长度,可节省系统开销;
当用于承载HE-SIG1的第一OFDM符号中包括4n个1x OFDM符号长度的OFDM符号,且n不小于4时,采用4x OFDM符号长度,可节省系统开销。
如图14所示,对于扩展CP,
当用于承载HE-SIG1的第一OFDM符号中包括(2n-1)个1x OFDM符号长度的OFDM符号,且n不小于3时,采用2x OFDM符号长度,可节省系统开销,n为正整数;
当用于承载HE-SIG1的第一OFDM符号中包括2n个1x OFDM符号长度的OFDM符号,且n不小于4时,采用2x OFDM符号长度,可节省系统开销;
当用于承载HE-SIG1的第一OFDM符号中包括(4n-1)个1x OFDM符号长度的OFDM符号,且n不小于2时,采用4x OFDM符号长度,可节省系统 开销;
当用于承载HE-SIG1的第一OFDM符号中包括(4n-2)个1x OFDM符号长度的OFDM符号,且n不小于2时,采用4x OFDM符号长度,可节省系统开销;
当用于承载HE-SIG1的第一OFDM符号中包括(4n-3)个1x OFDM符号长度的OFDM符号,且n不小于3时,采用4x OFDM符号长度,可节省系统开销;
当用于承载HE-SIG1的第一OFDM符号中包括4n个1x OFDM符号长度的OFDM符号,且n不小于3时,采用4x OFDM符号长度,可节省系统开销。
【实施例十四】
实施例十四中,介绍了发送端301发送控制信息,以及接收端302接收控制信息的流程。
图15为本发明实施例十四中控制信息的发送端的处理流程图。如图15所示,发送端301的处理包括如下步骤:
S1501:发送端301判断采用1x、2x或4x OFDM符号长度发送用于承载HE-SIG1的第一OFDM符号;若采用1x,则执行步骤S1503,若采用2x,则执行步骤S1504,若采用4x,则执行步骤S1505;
S1502:发送端301判断是否处于室外环境;若处于室外环境,则执行步骤S1506,否则执行步骤S1507;
S1503:发送端301发送1x OFDM符号长度的第一OFDM符号;
S1504:发送端301发送2x OFDM符号长度的第一OFDM符号;
S1505:发送端301发送4x OFDM符号长度的第一OFDM符号;
S1506:发送端301在L-LTF中发送第一信道估计结果序列,在第一OFDM符号中发送第二信道估计序列;
S1507:发送端301在L-LTF中发送第一信道估计序列,第一OFDM符号中不包括信道估计序列。
上述步骤中,步骤S1502与步骤S1501之间的执行不区分先后顺序。
图16为本发明实施例十四中控制信息的接收端的处理流程图。如图16所示,接收端的处理包括如下步骤:
S1601:接收端302自动检测802.11ax包;
S1602:接收端302是否处于室外环境,若是,执行步骤S1607,否则,执行步骤S1603;
S1603:接收端302判断采用发送端301采用1x、2x或4x OFDM符号长度发送用于承载HE-SIG1的第一OFDM符号;若采用1x,则执行步骤S1604;若采用2x,则执行步骤S1605;若采用4x,则执行步骤S1606;
S1604:接收端302使用L-LTF中的第一信道估计序列解码HE-SIG1;
S1605:接收端302采用2倍内插,获得2x OFDM符号长度下的信道估计结果序列,以解码HE-SIG1;
S1606:接收端302采用4倍内插,获得4x OFDM符号长度下的信道估计结果序列,以解码HE-SIG1;
S1607:接收端302判断采用发送端301采用1x、2x或4x OFDM符号长度的第一OFDM符号发送HE-SIG1;若采用1x,则执行步骤S1604;若采用2x,则执行步骤S1608;若采用4x,则执行步骤S1609;
S1608:接收端302结合L-LTF中的第一信道估计序列和第一OFDM符号中的第一个OFDM符号中的第二信道估计序列,获得2x OFDM符号长度下的信道估计结果序列,以解码HE-SIG1;
S1609:结合L-LTF中的第一信道估计序列和第一OFDM符号中的第一个OFDM符号中的第二信道估计序列,获得2x OFDM符号长度下的信道估计结果序列,然后采用2倍内插,获得4x OFDM符号长度下的信道估计结果序列,以解码HE-SIG1。
【实施例十五】
与实施例十三和实施例十四的包的结构不同,在实施例十五中,发送端301采用全带宽传输的模式发送HE-SIG1,即发送端301在整个系统带宽上发送HE-SIG1。
以WiFi 802.11ax规定的无线通信系统为例,系统带宽可为80MHz、40MHz等。这里,以40MHz为例,实施例十五中,发送端与接收端之间传输的包的结构如图17所示。其中,HE-SIG1、HE-STF、HE-LTF、HE-SIGB和数据部分在整个系统带宽上发送,传统前导L-preamble在各个20MHz的带宽上重复发送。
实施例十五中,由于在整个系统带宽上发送HE-SIG1,而包含了第一信道估计序列的L-preamble在各个20MHz的带宽上发送,因此,发送端301除了要选择采用1x、2x还是4xOFDM符号长度的OFDM符号发送HE-SIG1外,还需要考虑如何使接收端302获取每个20MHz之间,那些原本作为保护带的子载波的信道状态信息。
对于20MHz的带宽,各子载波的分配如18A所示。其中,直流(Direct Current,DC)表示直流子载波。从图18A中可以看到,20MHz带宽的可用子载波的编号是从-26到26。左右两边编号为-32~-27和27~31的子载波作为保护带,目前不传任何信息的。
对于40MHz的带宽,各子载波的分配如图18B所示。其中,可用子载波的编号为从-57到57。
由图18A和18B可见,2个20MHz带宽的可用子载波与一个40M带宽的可用子载波是不一样的,参见图18C,图18C中,标斜线的部分表示作为保护带的子载波,标竖线的部分表示直流子载波,空白部分表示可用子载波。
因此,接收端302根据2个20MHz带宽上传输的L-preamble中的L-LTF得到的子载波的信道估计结果,与根据一个40MHz带宽上传输的L-preamble中的L-LTF得到的子载波的信道估计结果也是不同的。
比如:接收端302在第一个20MHz的带宽上,无法得到子载波编号为27~31的子载波的信道估计结果,因为在这些子载波上发送端301没有传输任何信息。而这些编号为27~31的子载波对应到40MHz带宽上编号变为-5~-1,通过40MHz带宽上传输的L-LTF,接收端302是可以得到-5~-2子载波的信道估计结果的。
再参考图17所示的包的结构,L-preamble和HE-SIG0是在多个20MHz上复制传输的,因此L-preamble中的L-LTF也是在每个20M上复制传输的。而HE-SIG1占用整个系统带宽传输。参照图18B,接收端302无法由多个20MHz带宽上传输的L-LTF得到整个系统带宽的可用子载波的信道估计结果,因为20MHz带宽上的作为保护带的子载波和直流子载波,与40MHz带宽上的作为保护带的子载波和直流子载波的位置是不同的。
因此,在实施例十五中,发送端301可在整个系统带宽上传输的用于承载HE-SIG1的第一OFDM符号的第一个OFDM符号中,在L-LTF无法传输信道估计序列的子载波上,放置一些参考信号,以辅助信道估计。实施例十五中,发送端301与接收端302之间传输的包的结构如图19所示。
这里,为了简单示意,以OFDM符号的长度为1xOFDM符号长度为例进行说明,2x OFDM符号长度和4x OFDM符号长度的情况同理。
这里,整个系统带宽为40MHz,L-preamble和HE-SIG0在2个20MHz上复制传输。因此,接收端302可从两个20MHz带宽上传输的L-LTF中,得到20MHz带宽上的各可用子载波的信道估计的结果,这些20MHz带宽上的可用子载波对应到40MHz带宽上,编号为:[-58,…,-33,-31,…-6,6,…,31,33,…58]。
在40MHz的整个系统带宽上传输的OFDM符号,可用子载波的编号为[-58,…,-2,2,…58],可用子载波不包括作为保护带的子载波和直流子载波。通过对比可见,接收端302无法从两个20MHz带宽上复制传输的L-LTF中获得编号为[-32,-5,-4,-3,-2,2,3,4,5,32]的子载波的信道估计结果。
因此,实施例十五中,发送端301采用图19所示的方式发送HE-SIG1, 在用于承载HE-SIG1的第一OFDM符号的第一个OFDM符号中的编号为[-32,-5,-4,-3,-2,2,3,4,5,32]的子载波上放置参考信号,形成第三信道估计序列。其他可用子载波上放置控制信息。
这样,接收端302就可以在接收到用于承载HE-SIG1的第一OFDM符号的第一个OFDM符号后,结合HE-SIG1中的第三信道估计序列和L-LTF进行信道估计,得到整个系统带宽上的可用子载波的信道状态信息。
图19中,第一OFDM符号的第一个OFDM符号中各子载波的占用情况如图20所示。其中,实线指示第三信道估计序列占用的各子载波。
下面,参考图21和图22分别介绍发送端301和接收端302的处理流程。
参见图21,在整个系统带宽上发送HE-SIG1时,发送端301的处理流程可包括如下步骤:
S2101:发送端301判断是否要在整个系统带宽上发送HE-SIG1,若是,则执行步骤S2102;
S2102:发送端301在L-LTF中发送第一信道估计序列,在用于承载HE-SIG1的第一OFDM符号的第一个OFDM符号中,发送第三信道估计序列。
参见图22,接收端302的处理流程可包括如下步骤:
S2201:接收端302自动检测802.11ax的包,若检测到,则执行步骤S2202;
S2202:判断发送端301是否在整个系统带宽上发送HE-SIG1;
S2203:接收端302在收到第一OFDM符号的第一个OFDM符号后,根据L-LTF中缺失信道估计的子载波的编号,取得参考信号,进行这些子载波的信道估计,进而得到整个系统带宽上的信道状态信息,用于HE-SIG1的解码。
若发送端301与接收端302预先约定,或者标准定义在整个系统带宽上发送HE-SIG1,则不需要S2202的判断步骤。
综上,本发明实施例中,控制信息的发送端向接收端发送用于承载控制信息的第一OFDM符号和用于承载第一信道估计序列的第二OFDM符号,其中,第一OFDM符号的OFDM符号长度比第二OFDM符号的OFDM符号长 度长;接收端根据收到的第一信道估计序列,对收到的控制信息解码。
本发明实施例中,发送端在发送用于承载控制信息的第一OFDM符号时,并没有按照第二OFDM符号的较短的OFDM符号的长度发送控制信息,而是增长了第一OFDM符号的OFDM符号长度,由于每个OFDM符号前面都需要有一个CP,因此增长了第一OFDM符号的OFDM符号长度,相当于降低了CP在整个OFDM符号中的时间比例,因而,降低了CP在OFDM符号中占用的开销,与用于承载控制信息的第一OFDM符号的OFDM符号长度与用于承载第一信道估计序列的第二OFDM符号的OFDM符号长度相等的情形相比,减小了系统开销,提高了系统传输效率。
进一步地,接收端可根据收到的第一信道估计序列进行信道估计,得到第一信道估计结果序列,将得到的第一信道估计结果序列进行内插处理,生成具有上述第一OFDM符号的OFDM符号长度的第二信道估计结果序列,利用生成的第二信道估计结果序列,对收到的上述控制信息解码。
其中,发送端发送的第二OFDM符号的OFDM符号长度小于第一OFDM符号的OFDM符号长度,而接收端将第一信道估计结果序列进行内插,生成具有第一OFDM符号的OFDM符号长度的第二信道估计结果序列,从而实现了对信道特性的还原,进而实现了对控制信息的解码。
进一步地,发送端在发送第一OFDM符号和第二OFDM符号之前,还可根据发送端与接收端之间的无线信道的信道相干带宽确定是否在第一OFDM符号中发送用于接收端信道解码的信道估计序列。
一方面,若发送端与接收端之间的无线信道的信道相干带宽不小于第二OFDM符号的子载波间距,则第二OFDM符号的两个相邻子载波之间的相关性较强,因此,接收端在根据第一信道估计序列进行信道估计,得到第一信道估计结果序列之后,在对第一信道估计结果序列进行内插时,可根据第一信道估计结果序列,较准确地在两个相邻子载波之间插值,进而获得较准确的信道特性信息,因此控制信息中可不包括其它的信道估计序列。
另一方面,若发送端与接收端之间的无线信道的信道相干带宽小于第二 OFDM符号的子载波间距,即第二OFDM符号的两个相邻子载波之间的相关性不强,则发送端在第一OFDM符号中可包括第二信道估计序列,辅助第一信道估计序列,用于接收端的信道估计。接收端将收到的第一OFDM符号中的第二信道估计序列,与第一信道估计序列结合起来,还原发送端与接收端之间的无线信道的信道特性,则信道估计的结果更准确,从而能够更准确地解码控制信息。
进一步地,若发送端在整个系统频带上发送第一OFDM符号,在整个系统带宽中的部分子载波上发送第二OFDM符号,则整个系统带宽中除了第一信道估计序列所占用的部分子载波之外的其他可用子载波上没有信道估计序列了,为了接收端能获得整个系统带宽上的信道特性,发送端在个系统带宽中除了第二OFDM符号所占用的部分子载波之外的其他可用子载波上发送第三估计信道序列,该第三信道估计序列与第一信道估计序列结合在一起,用于接收端的信道估计和控制信息的解码。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设 备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (61)

  1. 一种无线通信装置,其特征在于,包括处理模块和发送模块,其中:
    所述处理模块,用于生成用于承载控制信息的第一正交频分复用OFDM符号和用于承载第一信道估计序列的第二OFDM符号;
    所述发送模块,用于发送所述第一OFDM符号和所述第二OFDM符号,其中,所述第一信道估计序列用于所述控制信息的接收端解码;
    其中,所述第一OFDM符号的OFDM符号长度为第一长度,所述第二OFDM符号的OFDM符号的长度为第二长度,所述第一长度比所述第二长度长。
  2. 如权利要求1所述的无线通信装置,其特征在于,所述第一OFDM符号中不包括用于对所述控制信息进行接收端解码的信道估计序列。
  3. 如权利要求2所述的无线通信装置,其特征在于,
    在所述控制信息的发送端与接收端之间的无线信道的信道相干带宽不小于所述第二OFDM符号的子载波间距时,所述第一OFDM符号中不包括用于对所述控制信息进行接收端解码的信道估计序列。
  4. 如权利要求1所述的无线通信装置,其特征在于,
    所述第一OFDM符号中包括第二信道估计序列;
    所述第二信道估计序列占用所述第一OFDM符号的部分子载波,与所述第一信道估计序列一起用于所述控制信息的接收端解码;
    其中,所述第二信道估计序列在所述第一长度的所述第一OFDM符号中占用的子载波,与所述第一信道估计序列在将所述第二OFDM符号从所述第二长度映射为所述第一长度后的OFDM符号中所占用的子载波不同。
  5. 如权利要求4所述的无线通信装置,其特征在于,
    在所述控制信息的发送端与接收端之间的无线信道的信道相干带宽小于所述第二OFDM符号的子载波间距时,所述第一OFDM符号中包括所述第二信道估计序列。
  6. 如权利要求1~5任一项所述的无线通信装置,其特征在于,
    所述发送模块具体用于:在整个系统带宽上发送所述第一OFDM符号,以及在整个系统带宽中的部分子载波上发送所述第二OFDM符号;
    所述第一OFDM符号中还包括:第三信道估计序列,所述第三信道估计序列占用整个系统带宽中除了所述部分子载波之外的其他可用子载波,与所述第一信道估计序列一起用于所述控制信息的接收端解码。
  7. 如权利要求6所述的无线通信装置,其特征在于,所述第三信道估计序列位于所述第一OFDM符号中的一个或多个OFDM符号中。
  8. 如权利要求1~7任一项所述的无线通信装置,其特征在于,所述发送模块还用于:
    在发送所述第一OFDM符号之前,向所述控制信息的接收端发送用于指示所述第二长度的指示信息和/或用于指示所述第一长度的指示信息。
  9. 如权利要求1~8任一项所述的无线通信装置,其特征在于,
    所述控制信息位于WiFi 802.11ax中的HE-SIG1字段中;
    所述第一信道估计序列位于WiFi 802.11ax中的L-LTF字段中。
  10. 一种无线通信装置,其特征在于,包括处理器和发射器,其中:
    所述处理器,用于生成用于承载控制信息的第一正交频分复用OFDM符号和用于承载第一信道估计序列的第二OFDM符号;
    所述发射器,用于发送所述第一OFDM符号和所述第二OFDM符号,其中,所述第一信道估计序列用于所述控制信息的接收端解码;
    其中,所述第一OFDM符号的OFDM符号长度为第一长度,所述第二OFDM符号的OFDM符号的长度为第二长度,所述第一长度比所述第二长度长。
  11. 如权利要求10所述的无线通信装置,其特征在于,所述第一OFDM符号中不包括用于对所述控制信息进行接收端解码的信道估计序列。
  12. 如权利要求11所述的无线通信装置,其特征在于,
    在所述控制信息的发送端与接收端之间的无线信道的信道相干带宽不小于所述第二OFDM符号的子载波间距时,所述第一OFDM符号中不包括用于对所述控制信息进行接收端解码的信道估计序列。
  13. 如权利要求10所述的无线通信装置,其特征在于,
    所述第一OFDM符号中包括第二信道估计序列;
    所述第二信道估计序列占用所述第一OFDM符号的部分子载波,与所述第一信道估计序列一起用于所述控制信息的接收端解码;
    其中,所述第二信道估计序列在所述第一长度的第一OFDM符号中占用的子载波,与所述第一信道估计序列在将所述第二OFDM符号从所述第二长度映射为所述第一长度后的OFDM符号中所占用的子载波不同。
  14. 如权利要求13所述的无线通信装置,其特征在于,
    在所述控制信息的发送端与接收端之间的无线信道的信道相干带宽小于所述第二OFDM符号的子载波间距时,所述第一OFDM符号中包括所述第二信道估计序列。
  15. 如权利要求10~14任一项所述的无线通信装置,其特征在于,
    所述发射器具体用于:在整个系统带宽上发送所述第一OFDM符号,以及在整个系统带宽中的部分子载波上发送所述第二OFDM符号;
    所述第一OFDM符号中还包括:第三信道估计序列,所述第三信道估计序列占用整个系统带宽中除了所述部分子载波之外的其他可用子载波,与所述第一信道估计序列一起用于所述控制信息的接收端解码。
  16. 如权利要求15所述的无线通信装置,其特征在于,所述第三信道估计序列位于所述第一OFDM符号中的一个或多个OFDM符号中。
  17. 如权利要求10~16任一项所述的无线通信装置,其特征在于,所述发射器还用于:
    在发送所述第一OFDM符号之前,向所述控制信息的接收端发送用于指示所述第二号长度的指示信息和/或用于指示所述第一长度的指示信息。
  18. 如权利要求10~17任一项所述的无线通信装置,其特征在于,
    所述控制信息位于WiFi 802.11ax中的HE-SIG1字段中;
    所述第一信道估计序列位于WiFi 802.11ax中的L-LTF字段中。
  19. 一种无线通信节点,其特征在于,包括:
    至少一副天线;以及
    如权利要求10~18任一项所述的无线通信装置。
  20. 一种无线通信装置,其特征在于,包括:
    接收模块,用于接收用于承载控制信息的第一正交频分复用OFDM符号和用于承载第一信道估计序列的第二OFDM符号;并从所述第一OFDM符号中获取所述控制信息,从所述第二OFDM符号中获取所述第一信道估计序列;
    处理模块,用于根据所述第一信道估计序列,对所述控制信息解码;
    其中,所述第一OFDM符号的OFDM符号长度为第一长度,所述第二OFDM符号的OFDM符号长度为第二长度,所述第一长度比所述第二长度长。
  21. 如权利要求20所述的无线通信装置,其特征在于,所述处理模块具体用于:
    根据所述第一信道估计序列进行信道估计,得到第一信道估计结果序列;
    将得到的所述第一信道估计结果序列进行内插处理,生成具有所述第一长度的第二信道估计结果序列;
    利用生成的所述第二信道估计结果序列,对所述控制信息解码。
  22. 如权利要求21所述的无线通信装置,其特征在于,所述第一OFDM符号中不包括用于对所述控制信息进行解码的信道估计序列。
  23. 如权利要求22所述的无线通信装置,其特征在于,在所述控制信息的发送端与接收端之间的无线信道的信道相干带宽不小于所述第二OFDM符号的子载波间距时,所述第一OFDM符号中不包括用于对所述控制信息进行接收端解码的信道估计序列。
  24. 如权利要求21所述的无线通信装置,其特征在于,所述第一OFDM 符号中包括第二信道估计序列,所述第二信道估计序列占用所述第一OFDM符号的部分子载波;
    所述处理模块具体用于:
    将所述第一信道估计结果序列,以及根据收到的所述第二信道估计序列进行信道估计得到的信道估计结果序列进行内插处理,生成具有所述第一长度的所述第二信道估计结果序列;
    其中,所述第二信道估计序列在所述第一长度的所述第一OFDM符号中占用的子载波,与所述第一信道估计序列在将所述第二OFDM符号从所述第二长度映射为所述第一长度后的OFDM符号中所占用的子载波不同。
  25. 如权利要求24所述的无线通信装置,其特征在于,在所述控制信息的发送端与接收端之间的无线信道的信道相干带宽小于所述第二OFDM符号的子载波间距时,所述第一OFDM符号中包括所述第二信道估计序列。
  26. 如权利要求20~25任一项所述的无线通信装置,其特征在于,所述第一OFDM符号是在整个系统带宽上发送的;
    所述第二OFDM符号是在整个系统带宽中的部分子载波上发送的;
    所述第一OFDM符号中还包括第三信道估计序列,所述第三信道估计序列占用整个系统带宽中除了所述部分子载波之外的其他可用子载波;
    所述处理模块具体用于:
    根据所述第一信道估计序列和第三信道估计序列,对所述控制信息解码。
  27. 如权利要求26所述的无线通信装置,其特征在于,所述第三信道估计序列位于所述第一OFDM符号中的一个或多个OFDM符号中。
  28. 如权利要求20~27任一项所述的无线通信装置,其特征在于,所述接收模块还用于:
    在对所述控制信息解码之前,接收用于指示所述第二长度的指示信息和/或用于指示所述第一长度的指示信息。
  29. 如权利要求20~28任一项所述的无线通信装置,其特征在于,
    所述控制信息位于WiFi 802.11ax中的HE-SIG1字段中;
    所述第一信道估计序列位于WiFi 802.11ax中的L-LTF字段中。
  30. 一种无线通信装置,其特征在于,包括:
    接收器,用于接收用于承载控制信息的第一正交频分复用OFDM符号和用于承载第一信道估计序列的第二OFDM符号;并从所述第一OFDM符号中获取所述控制信息,从所述第二OFDM符号中获取所述第一信道估计序列;
    处理器,用于根据所述第一信道估计序列,对所述控制信息解码;
    其中,所述第一OFDM符号的OFDM符号长度为第一长度,所述第二OFDM符号的OFDM符号长度为第二长度,所述第一长度比所述第二长度长。
  31. 如权利要求30所述的无线通信装置,其特征在于,所述处理器具体用于:
    根据所述第一信道估计序列进行信道估计,得到第一信道估计结果序列;
    将得到的所述第一信道估计结果序列进行内插处理,生成具有所述第一长度的第二信道估计结果序列;
    利用生成的所述第二信道估计结果序列,对所述控制信息解码。
  32. 如权利要求31所述的无线通信装置,其特征在于,所述第一OFDM符号中不包括用于对所述控制信息进行解码的信道估计序列。
  33. 如权利要求32所述的无线通信装置,其特征在于,在所述控制信息的发送端与接收端之间的无线信道的信道相干带宽不小于所述第二OFDM符号的子载波间距时,所述第一OFDM符号中不包括用于对所述控制信息进行接收端解码的信道估计序列。
  34. 如权利要求31所述的无线通信装置,其特征在于,所述第一OFDM符号中包括第二信道估计序列,所述第二信道估计序列占用所述第一OFDM符号的部分子载波;
    所述处理器具体用于:
    将所述第一信道估计结果序列,以及根据收到的所述第二信道估计序列进 行信道估计得到的信道估计结果序列进行内插处理,生成具有所述第一长度的所述第二信道估计结果序列;
    其中,所述第二信道估计序列在所述第一长度的所述第一OFDM符号中占用的子载波,与所述第一信道估计序列在将所述第二OFDM符号从所述第二长度映射为所述第一长度后的OFDM符号中所占用的子载波不同。
  35. 如权利要求34所述的无线通信装置,其特征在于,在所述控制信息的发送端与接收端之间的无线信道的信道相干带宽小于所述第二OFDM符号的子载波间距时,所述第一OFDM符号中包括所述第二信道估计序列。
  36. 如权利要求30~35任一项所述的无线通信装置,其特征在于,所述第一OFDM符号是在整个系统带宽上发送的;
    所述第二OFDM符号是在整个系统带宽中的部分子载波上发送的;
    所述第一OFDM符号中还包括第三信道估计序列,所述第三信道估计序列占用整个系统带宽中除了所述部分子载波之外的其他可用子载波;
    所述处理器具体用于:
    根据所述第一信道估计序列和第三信道估计序列,对所述控制信息解码。
  37. 如权利要求36所述的无线通信装置,其特征在于,所述第三信道估计序列位于所述第一OFDM符号中的一个或多个OFDM符号中。
  38. 如权利要求30~37任一项所述的无线通信装置,其特征在于,所述接收器还用于:
    在对所述控制信息解码之前,接收用于指示所述第二长度的指示信息和/或用于指示所述第一长度的指示信息。
  39. 如权利要求30~38任一项所述的无线通信装置,其特征在于,
    所述控制信息位于WiFi 802.11ax中的HE-SIG1字段中;
    所述第一信道估计序列位于WiFi 802.11ax中的L-LTF字段中。
  40. 一种无线通信节点,其特征在于,包括:
    至少一副天线;以及
    如权利要求30~39任一项所述的无线通信装置。
  41. 一种控制信息的发送方法,其特征在于,包括:
    发送用于承载控制信息的第一正交频分复用OFDM符号;
    发送用于承载第一信道估计序列的第二OFDM符号,所述第一信道估计序列用于所述控制信息的接收端解码;
    其中,所述第一OFDM符号的OFDM符号长度为第一长度,所述第二OFDM符号的OFDM符号的长度为第二长度,所述第一长度比所述第二长度长。
  42. 如权利要求41所述的方法,其特征在于,所述第一OFDM符号中不包括用于对所述控制信息进行接收端解码的信道估计序列。
  43. 如权利要求42所述的方法,其特征在于,在所述控制信息的发送端与接收端之间的无线信道的信道相干带宽不小于所述第二OFDM符号的子载波间距时,所述第一OFDM符号中不包括用于对所述控制信息进行接收端解码的信道估计序列。
  44. 如权利要求41所述的方法,其特征在于,所述第一OFDM符号中包括第二信道估计序列;
    所述第二信道估计序列占用所述第一OFDM符号的部分子载波,与所述第一信道估计序列一起用于所述控制信息的接收端解码;
    其中,所述第二信道估计序列在所述第一长度的所述第一OFDM符号中占用的子载波,与所述第一信道估计序列在将所述第二OFDM符号从所述第二长度映射为所述第一长度后的OFDM符号中所占用的子载波不同。
  45. 如权利要求44所述的方法,其特征在于,
    在所述控制信息的发送端与接收端之间的无线信道的信道相干带宽小于所述第二OFDM符号的子载波间距时,所述第一OFDM符号中包括所述第二信道估计序列。
  46. 如权利要求41~45任一项所述的方法,其特征在于,
    发送所述第一OFDM符号,包括:在整个系统带宽上发送所述第一OFDM符号;
    发送所述第二OFDM符号,包括:在整个系统带宽中的部分子载波上发送所述第二OFDM符号;
    所述第一OFDM符号中还包括:第三信道估计序列,所述第三信道估计序列占用整个系统带宽中除了所述部分子载波之外的其他可用子载波,与所述第一信道估计序列一起用于所述控制信息的接收端解码。
  47. 如权利要求46所述的方法,其特征在于,所述第三信道估计序列位于所述第一OFDM符号中的一个或多个OFDM符号中。
  48. 如权利要求41~47任一项所述的方法,其特征在于,在发送所述第一OFDM符号之前,还包括:
    向所述控制信息的接收端发送用于指示所述第二长度的指示信息和/或用于指示所述第一长度的指示信息。
  49. 如权利要求41~48任一项所述的方法,其特征在于,
    所述控制信息位于WiFi 802.11ax中的HE-SIG1字段中;
    所述第一信道估计序列位于WiFi 802.11ax中的L-LTF字段中。
  50. 一种控制信息的接收方法,其特征在于,包括:
    接收用于承载控制信息的第一正交频分复用OFDM符号和用于承载第一信道估计序列的第二OFDM符号;
    从所述第一OFDM符号中获取所述控制信息,从所述第二OFDM符号中获取所述第一信道估计序列;
    根据所述第一信道估计序列,对所述控制信息解码;
    其中,所述第一OFDM符号的OFDM符号长度为第一长度,所述第二OFDM符号的OFDM符号长度为第二长度,所述第一长度比所述第二长度长。
  51. 如权利要求50所述的方法,其特征在于,根据所述第一信道估计序列,对所述控制信息解码,包括:
    根据所述第一信道估计序列进行信道估计,得到第一信道估计结果序列;
    将得到的所述第一信道估计结果序列进行内插处理,生成具有所述第一长度的第二信道估计结果序列;
    利用生成的所述第二信道估计结果序列,对所述控制信息解码。
  52. 如权利要求51所述的方法,其特征在于,所述第一OFDM符号中不包括用于对所述控制信息进行解码的信道估计序列。
  53. 如权利要求52所述的方法,其特征在于,在所述控制信息的发送端与接收端之间的无线信道的信道相干带宽不小于所述第二OFDM符号的子载波间距时,所述第一OFDM符号中不包括用于对所述控制信息进行接收端解码的信道估计序列。
  54. 如权利要求51所述的方法,其特征在于,所述第一OFDM符号中包括第二信道估计序列,所述第二信道估计序列占用所述第一OFDM符号的部分子载波;
    将得到的所述第一信道估计结果序列进行内插处理,生成具有所述第一长度的第二信道估计结果序列,包括:
    将所述第一信道估计结果序列,以及根据收到的所述第二信道估计序列进行信道估计得到的信道估计结果序列进行内插处理,生成具有所述第一长度的所述第二信道估计结果序列;
    其中,所述第二信道估计序列在所述第一长度的所述第一OFDM符号中占用的子载波,与所述第一信道估计序列在将所述第二OFDM符号从所述第二长度映射为所述第一长度后的OFDM符号中所占用的子载波不同。
  55. 如权利要求54所述的方法,其特征在于,在所述控制信息的发送端与接收端之间的无线信道的信道相干带宽小于所述第二OFDM符号的子载波间距时,所述第一OFDM符号中包括所述第二信道估计序列。
  56. 如权利要求50~55任一项所述的方法,其特征在于,所述第一OFDM符号是在整个系统带宽上发送的;
    所述第二OFDM符号是在整个系统带宽中的部分子载波上发送的;
    所述第一OFDM符号中还包括第三信道估计序列,所述第三信道估计序列占用整个系统带宽中除了所述部分子载波之外的其他可用子载波;
    根据所述第一信道估计序列,对所述控制信息解码,包括:
    根据所述第一信道估计序列和第三信道估计序列,对所述控制信息解码。
  57. 如权利要求56所述的方法,其特征在于,所述第三信道估计序列位于所述第一OFDM符号中的一个或多个OFDM符号中。
  58. 如权利要求50~57任一项所述的方法,其特征在于,在对所述控制信息解码之前,还包括:
    接收用于指示所述第二长度的指示信息和/或用于指示所述第一长度的指示信息。
  59. 如权利要求50~58任一项所述的方法,其特征在于,
    所述控制信息位于WiFi 802.11ax中的HE-SIG1字段中;
    所述第一信道估计序列位于WiFi 802.11ax中的L-LTF字段中。
  60. 一种用于无线通信的计算机程序制品,包括计算机可读介质,其特征在于,所述计算机可读介质包括可执行如权利要求41~49任一项方法中的操作步骤的指令。
  61. 一种用于无线通信的计算机程序制品,包括计算机可读介质,其特征在于,所述计算机可读介质包括可执行如权利要求50~59任一项方法中的操作步骤的指令。
PCT/CN2015/073664 2015-03-04 2015-03-04 无线通信装置、无线通信节点和控制信息的传输方法 WO2016138653A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/073664 WO2016138653A1 (zh) 2015-03-04 2015-03-04 无线通信装置、无线通信节点和控制信息的传输方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/073664 WO2016138653A1 (zh) 2015-03-04 2015-03-04 无线通信装置、无线通信节点和控制信息的传输方法

Publications (1)

Publication Number Publication Date
WO2016138653A1 true WO2016138653A1 (zh) 2016-09-09

Family

ID=56848244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/073664 WO2016138653A1 (zh) 2015-03-04 2015-03-04 无线通信装置、无线通信节点和控制信息的传输方法

Country Status (1)

Country Link
WO (1) WO2016138653A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101043255A (zh) * 2006-03-21 2007-09-26 中兴通讯股份有限公司 正交频分复用系统控制信息的传输方法
US20100009649A1 (en) * 2008-07-09 2010-01-14 Infineon Technologies Ag Channel estimator
CN102035782A (zh) * 2009-09-30 2011-04-27 中兴通讯股份有限公司 扩展循环前缀中解调参考符号的映射方法及装置
CN102365833A (zh) * 2009-04-01 2012-02-29 日本电气株式会社 Ofdm系统中针对控制信道的信道估计

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101043255A (zh) * 2006-03-21 2007-09-26 中兴通讯股份有限公司 正交频分复用系统控制信息的传输方法
US20100009649A1 (en) * 2008-07-09 2010-01-14 Infineon Technologies Ag Channel estimator
CN102365833A (zh) * 2009-04-01 2012-02-29 日本电气株式会社 Ofdm系统中针对控制信道的信道估计
CN102035782A (zh) * 2009-09-30 2011-04-27 中兴通讯股份有限公司 扩展循环前缀中解调参考符号的映射方法及装置

Similar Documents

Publication Publication Date Title
US10243763B2 (en) Apparatus and method for transmitting data with conditional zero padding
RU2760382C1 (ru) Способ и устройство конфигурации ресурсов прямого межабонентского соединения, способ и устройство связи с использованием прямого межабонентского соединения, а также базовая станция, терминал и носитель данных
KR101511981B1 (ko) 모두 1인 r 매트릭스를 회피함으로써 ieee 802.11ac에서 파일럿 톤들 상에서의 스펙트럼 라인들의 회피
US8891662B2 (en) Reference symbol structure for DFT spread OFDM system
JP6462952B2 (ja) 信号送信又は受信方法及び装置
EP3433989B1 (en) System and method for a wireless network having multiple station classes
CN106717089B (zh) 一种参考信号的传输设备、方法及系统
WO2006029313A1 (en) Method and apparatus for improved efficiency in an extended multiple antenna communication system
WO2016197349A1 (zh) 物理层协议数据单元的传输方法和装置
CN110771105B (zh) 适配于不同子载波间隔配置的频域发射器和接收器
US10177941B2 (en) Method and apparatus for estimating and correcting phase error in wireless communication system
CN108632189B (zh) 上行数据的发送方法、装置及用户设备
US8953533B2 (en) Wireless communication system, base station, server, wireless communication method, and program
JP2022046623A (ja) 位相追跡挿入のための参照信号
CN111565458B (zh) 一种下行传输方法及其装置
JP5486734B2 (ja) シングルキャリア通信システムにおける送信信号生成装置および方法
CN107819716B (zh) 一种基于频域的频偏补偿方法及设备
US10523486B2 (en) Data modulation and demodulation method and data transmission method and node for multi-carrier system
WO2017121412A1 (zh) 多载波系统的数据调制、解调方法、帧生成方法及节点
WO2018014815A1 (zh) 多载波系统及多载波系统的数据调制、解调方法及装置
WO2012024913A1 (zh) 数据发送、接收及传输方法、装置和系统
CN107615847A (zh) 一种传输信息的方法、装置和系统
CN111262805B (zh) 数据传输方法、装置及系统
WO2018126968A1 (zh) 一种信号发送、接收方法及装置
WO2012109928A1 (zh) 信号处理方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15883710

Country of ref document: EP

Kind code of ref document: A1