WO2016138179A1 - Non-volatile organic compound pesticide formulations - Google Patents

Non-volatile organic compound pesticide formulations Download PDF

Info

Publication number
WO2016138179A1
WO2016138179A1 PCT/US2016/019420 US2016019420W WO2016138179A1 WO 2016138179 A1 WO2016138179 A1 WO 2016138179A1 US 2016019420 W US2016019420 W US 2016019420W WO 2016138179 A1 WO2016138179 A1 WO 2016138179A1
Authority
WO
WIPO (PCT)
Prior art keywords
formulation
active ingredient
formulations
voc
droplet density
Prior art date
Application number
PCT/US2016/019420
Other languages
French (fr)
Inventor
Robert B. Baker
Kurt P. VANDOCK
Gary Gore
Byron Reid
Original Assignee
Bayer Cropscience Lp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Cropscience Lp filed Critical Bayer Cropscience Lp
Priority to SG11201706845UA priority Critical patent/SG11201706845UA/en
Priority to BR112017018056-1A priority patent/BR112017018056A2/en
Priority to CR20170422A priority patent/CR20170422A/en
Priority to MX2017010830A priority patent/MX2017010830A/en
Priority to EP16756311.3A priority patent/EP3261434A4/en
Priority to AU2016222750A priority patent/AU2016222750A1/en
Priority to CUP2017000110A priority patent/CU20170110A7/en
Publication of WO2016138179A1 publication Critical patent/WO2016138179A1/en
Priority to CONC2017/0008569A priority patent/CO2017008569A2/en
Priority to PH12017501537A priority patent/PH12017501537A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • A01N25/04Dispersions, emulsions, suspoemulsions, suspension concentrates or gels
    • A01N25/06Aerosols
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N53/00Biocides, pest repellants or attractants, or plant growth regulators containing cyclopropane carboxylic acids or derivatives thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N31/00Biocides, pest repellants or attractants, or plant growth regulators containing organic oxygen or sulfur compounds
    • A01N31/04Oxygen or sulfur attached to an aliphatic side-chain of a carbocyclic ring system
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings

Definitions

  • the present disclosure relates to spray formulations, especially pesticidal formulations of the sort which may be diluted with water to form a sprayable preparation, for example, a pressure pack ("aerosol") preparation or a spray, particularly an ultra-low volume (ULV) spray for domestic, horticultural, agricultural, environmental, or industrial use.
  • a sprayable preparation for example, a pressure pack ("aerosol") preparation or a spray, particularly an ultra-low volume (ULV) spray for domestic, horticultural, agricultural, environmental, or industrial use.
  • UUV ultra-low volume
  • the present disclosure relates to pesticidal formulations devoid of Volatile Organic Compounds.
  • Water-based sprays are advantageous because they cost less than oil-based sprays and are often less toxic to mammals.
  • the water in the spray droplets evaporates and the droplets become smaller and drift more readily from the area being sprayed.
  • the size of the droplets is frequently specially chosen to suit the application, for example to maximize droplet adherence to flying insects or adherence to plant foliage, to increase bio-availability, or to control the size of the area being sprayed and the delivery rate per square meter; such care is pointless if the spray droplets change size, possibly unpredictably, following spraying.
  • V OC Volatile Organic Compound
  • Chemical pesticides are of critical importance in maintaining control of diseases spread by mosquitoes and other insects, particularly in developing countries.
  • resistance to the most commonly used chemical pesticides including pyrethroids, DDT, carbamates, and organophosphates.
  • it is critical to develop pesticidal formulations that kill more efficiently to reduce formation of resistance in these disease-carrying pests.
  • the present application relates to spray formulations, especially pesticidal formulations of the sort which may be diluted with water to form a sprayable preparation, for example, a pressure pack ("aerosol") preparation or a spray, particularly an ultra-low volume (ULV) spray for domestic, horticultural, agricultural, environmental, or industrial use.
  • a sprayable preparation for example, a pressure pack ("aerosol") preparation or a spray, particularly an ultra-low volume (ULV) spray for domestic, horticultural, agricultural, environmental, or industrial use.
  • UOV Ultra-low volume
  • the present disclosure relates to pesticidal formulations devoid of Volatile Organic Compounds (VOC).
  • the present application provides spray formulations comprising at least one active ingredient and at least one solvent.
  • the spray formulation optionally comprises a humectant, an emulsifier, an anti-foam agent and/ or a preservative, together with other ingredients such as perfumes, dyes, solids (especially to form wettable powders) and thickeners.
  • the active ingredient may be an insecticide, acaricide, herbicide, fungicide, plant growth regulator, insect behavior modifier, biological control agent (e.g. viruses, bacteria, and eggs of parasites), dye, perfume, bactericide, lubricant, medicament, paint, polish, lacquer (including hair lacquer), textile treatment (including sizes), or other compound to be sprayed in a water-based formulation.
  • Sprays in accordance with the invention are particularly suitable for spraying buildings, residential or commercial areas, and insect breeding grounds (such as swamps and other tracts of water) with insecticide and for spraying crops with herbicides, insecticides, fungicides, and plant growth regulators.
  • the sprays may be delivered by pumping through a nozzle, especially a sonic nozzle, by pumping over an ultrasonic nebulizer, or via a spinning disc.
  • the droplets may be electro-statically charged, if desired.
  • Suitable pesticides include pyrethroids (such as permethrin, deltamethrin, cypermethrin (including alphamethrin, the allethrins, fenvalerate, trans fluthrin, and cyfluthrin), organophosphates (such as ethion, chlorfenvinphos, chlorpyrifos (methyl) or coumaphos), carbamates, organochlorines (such as DDT, dieldrin, dicofol, chlorpropylate, or tetradifon), lipid amides, bicyclooctanes, dithianes, pyrethrins, pyrethrum, chloronicotinics, pyrazoles, butenolides, terpenoids, fiproles, tetramic acid derivatives (ketoenols), tetranilliproles, or biological insecticides.
  • organophosphates such as ethion, chlorfenvin
  • Suitable herbicides include glyphosate.
  • Suitable larvicides include methoprene, Bacillus thuringiensis israelensis (Bti), Ba llus sphaericus (Bs), organophosphates (such as temephos), and pyriproxyfen.
  • Suitable solvents are Volatile Organic Compounds (VOC)-exempt or contain no VOCs.
  • Suitable non-VOC solvents include, but are not limited to, acetate esters, methyl esters, acetyl-tributyl citrate, isoparaffinic fluids, paraffinic fluids, vegetable oils such as canola oil, cotton seed oil, soybean oil and the like, and mixtures thereof.
  • Suitable VOC-exempt solvents include, but are not limited to, monoethylene, diethylene, triethylene, tetraethylene glycols, and polyethylene glycols such as PEG 300 and above.
  • the solvent is acetyl-tributyl citrate.
  • spray formulation is defined as a formulation, especially pesticidal formulations, of the sort which may be diluted with water to form a sprayable preparation, for example, a pressure pack ("aerosol”) preparation or a spray, particularly an ultra-low volume (ULV) spray for domestic, horticultural, agricultural, environmental or industrial use.
  • a sprayable preparation for example, a pressure pack ("aerosol") preparation or a spray, particularly an ultra-low volume (ULV) spray for domestic, horticultural, agricultural, environmental or industrial use.
  • UUV ultra-low volume
  • VOC-exempt and “Volatile organic compound-exempt” are used
  • U.S. Environmental Protection Agency EPA
  • U.S. Environmental Protection Agency EPA
  • VOC-exempt a chemical as “VOC-exempt” if it has vapor pressure of less than 0.1 millimeters of mercury (at 20°C). If the vapor pressure is unknown, a chemical is defined as "VOC- exempt” if it a) consists of more than 12 carbon atoms; or b) has a melting point higher than 20°C and does not sublime (i.e., does not change directly from a solid into a gas without melting).
  • ULV sprays are generally used in space spray insecticides to treat or fog areas to kill adult mosquitos.
  • An insecticide is diluted and atomized by a ULV fogging machine.
  • the insecticide would then be released from the ground or from the air.
  • Air currents would carry the droplets downwind of the application equipment.
  • the droplets would collide with the insects, coating the insect with a lethal dose of the active ingredient.
  • Water dilutable insecticides include formulations such as the FFASTTM (an acronym for Film Forming Aqueous Spray Technology) insecticide formulations described in U.S. Pat. Nos. 5,466458, 5,527823, and 6,302,161 allow for the use of water as a diluent. These patents are hereby incorporated by reference.
  • FFASTTM an acronym for Film Forming Aqueous Spray Technology
  • a formulation such as the FFASTTM formulation, using long chain alcohol molecules to form a protective film around each droplet of insecticide as it leaves the nozzle of the sprayer, allows for the formation of droplets that do not evaporate too quickly and that efficiently deliver the insecticide to the target insect.
  • the incorporation of long chain alcohols into the formulation provides a means of coating the individual droplets of insecticides when mixed with water so as to control the rate of evaporation. This film retards the evaporation of the droplets and they maintain the desired optimum size.
  • the subject disclosure features, in one aspect, spray formulations comprising at least one active ingredient and at least one solvent.
  • the spray formulation optionally comprises a synergist, a humectant, an emulsifier, an anti-foam agent and/ or a preservative.
  • the spray formulations are Volatile Organic Compounds (VOC)-exempt or alternatively, contain no VOCs.
  • VOC Volatile Organic Compounds
  • EPA Environmental Protection Agency identifies a VOC as an organic compound that participates in atmospheric photochemical reactions, but makes exceptions for compounds that have negligible photochemical reactivity. VOCs are emitted as gases from certain solids or liquids.
  • Pesticides include a variety of chemicals, some of which may have short- and long-term adverse health effects.
  • Conventional emulsified pesticide formulations generally contain 50-90% by weight VOCs.
  • Current regulations from the California Department of Pesticide Regulation and from the U.S. Environmental Protection Agency (EPA) recommend that pesticides are formulated to contain 20% by weight VOC, or less.
  • VOC content may be measured by any method known in the art. Several states, including California, evaluate methods and maintain lists of approved tests available for determining VOC content. One established method of determining the VOC content is a gas chromatographic analysis in accordance with DIN EN ISO 11890-2.
  • the spray formulations are low in VOC.
  • the spray formulations contain ⁇ 16% VOC by weight.
  • the spray formulations contain ⁇ 10% VOC by weight, ⁇ 5% VOC by weight, or ⁇ 2.5% VOC by weight.
  • the spray formulations are devoid or essentially devoid of VOC by weight.
  • the spray formulations contain ⁇ 1% VOC by weight.
  • the spray formulations contain ⁇ 0.5% VOC by weight, ⁇ 0.25% VOC by weight, ⁇ 0.1% VOC by weight, or ⁇ 0.05% VOC by weight.
  • Active ingredients of the invention include pesticides.
  • the pesticide may be a pyrethroid, an organophosphate, a carbamate, an organochlorine, a lipid amide, a bicyclooctane, a dithiane, a pyrethrin, a pyrethrum, a chloronicotinic, a pyrazole, butenolide, a terpenoid, a fiprole, a tetramic acid derivative (ketoenol), a tetranilliprole, or a biological insecticide.
  • the active ingredient is one or more pyrethroid.
  • pyrethroid insecticides include those of the formula (I)
  • R 1 is halo CR3 or CHF20
  • R2 is hydrogen or halo
  • Z and Zl are each independently selected from halo, CF3 and methyl
  • X is hydrogen or halo
  • Examples of pyrethroids include, but are not limited to, 3-phenobenzyl-(lRS)-cis,trans-3- (2,2-dichlorovinyl- 2,2-di-methyl-cyclopropane-l-carboxylate (permethrin), (RS)-a-cyano-3- phenoxybenzyl-(lRS)-cis,trans-3-(2,2-dichlorovinyl)- 2,2-dimethylcyclopropane-l-carboxylate
  • organophosphate insecticides include, but are not limited to, 0,0-dimethyl-O- 3,5,6-trichloro-2-pyridylphosphorothioate (Chloropyri-fos-methyl).
  • Examples of formamidine insecticides include, but are not limited to, N-methyl bis(2,4- xylylaminomethyl) amine (Amitraz).
  • Examples of thiazole anthelmintics include, but are not limited to, 2,3,5,6-tetrahydro-6-phenylimidazo[2,l-b]thiazole (levamisole).
  • Examples of fungicides include, but are not limited to, tributyl tin oxide.
  • Examples of pyrazole insecticides include, but are not limited to, 3-bromo-l-(3-chloro-2- pyridinyl)-Ai-[4-cyano-2-methyl-6-[(methylamino)carbonyl]phenyl]-lH-pyrazole-5-carboxamide
  • fiprole insecticides include, but are not limited to, 5-amino-l-[2,6-dichloro-4- (lxifluoromethyl)phenyl]-4-[(lxifluoromethyl)sulfinyl]-lH-pyrazole-3-carbonitrile (fipronil) and 5-amino-l- [2,6-dichloro-4-trilluoromethyl)phenyl]-4- [(ethyl) -sulfinyl]-lH-pyrazole-3-carbonitrile (ethiprole).
  • tetramic acid derivatives include, but are not limited to, cis-3-(2,5- dimethlyphenyl)-8-methoxy-2-oxo-l-azaspiro[4.5]dec-3-en-4-yl-ethyl carbonate (suspirotetramat) and 2- oxo-3-(2,4,6-trimethylphenyl)-l-oxaspiro[4,4]non-3-en-4-yl 3,3-dimethylbutanoate (spiromesifen).
  • butenolides include, but are not limited to, 4-[[(6-chloropyridin-3- yl)methyl](2,2-difluoroethyl)amino]furan-2(5ET)-one (flupyradifurone [Sivanto®]).
  • the formulations of the invention may contain one or more synergists.
  • a synergist is defined as a chemical that does not possess inherent pesticidal activity, but instead promotes or enhances the effectiveness of pesticides when combined.
  • Examples of synergists include, but are not limited to, bucarpolate, dietholate, jiajizengxiaolin, octachlorodipropyl ether, piperonyl butoxide (PBO), piperonyl cyclonene, piprotal, propyl isome, sesame, sesamolin, sulfoxide, tribufos, and zengxiaoan.
  • the active ingredient(s) of the formulation should be soluble in the solvent.
  • the solvent is tri-butyl citrate.
  • the solvent is acetyl tributyl citrate (Citroflex A4).
  • the emulsifier may be any suitable compound or mixture of compounds. Cationic emulsifiers can be used, but they tend to irritate the users' eyes. Anionic emulsifiers such as calcium dodecyl benzene sulphate (CDBS) or sodium di-isopropyl naphthalene sulphonate (SDNS) can also be used, but these are not as effective at stabilizing the emulsion.
  • the emulsifier is a non-ionic compound, or mixture of non-ionic compounds, having an HLB (hydrophilic/lipophilic balance of 8- 18.
  • Suitable compounds include polyoxyethylene stearyl ethers (PSE), polyoxyethylene monolaurates (PEM), polyoxyethylene mono-oleates (PMO), sorbitan mono-oleate (SMO), nonylphenol ethoxylate (NPE), polyethylene glycol (PEG) and blends of oleyl ethoxylate (10 mole) and PEG20 glyceryl oleate (OE/PGO).
  • the emulsifier is polyoxyethylene (10) oleyl ether, polyoxyethylene (20) stearyl ether, ethoxylated castor oil, or polyoxyethylene (20) sorbitan monooleate.
  • the anti-foam agent may be any suitable compound or mixture of compounds.
  • exemplary compounds include Silcolapse 426R or Silcolapse 432 (i.e. polyorganosiloxane aqueous emulsion).
  • Constituents may be present in 100% oil phase.
  • the oil phase may comprise up to 45% of the formula and the water phase may comprise up to 55% of the formula wherein all other components are dissolved / dispersed in both phases.
  • the oil phase is approximately 38% of the formulation and the water phase is approximately 62% of the formulation wherein all other constituents are dissolved / dispersed in both the oil and water phase.
  • the formulations of the instant invention may be used, for example, to control or prevent pest infestation.
  • the invention comprises a method for controlling and/ or preventing pest infestation comprising administering the formulation to an area susceptible to pest infestation.
  • Examples of pests that may be controlled by the formulations of the invention include, but are not limited to, mosquitos, flies, and other public health pests, including, but not limited to cockroaches, bedbugs, sand flies, and reduviidae. Additional examples of pests that may be controlled by the formulations of the invention include, but are not limited to, stored product pests and rural hygiene pests.
  • Examples of areas that are susceptible to pest infestation which may be treated with the formulations of the invention include, but are not limited to, complex canopies.
  • a complex canopy is defined as an area that is difficult to penetrate with typical pesticide formulations.
  • Examples of complex canopies include, but are not limited to, dense vegetation and/ or complex environments.
  • the formulations of the instant invention can be used as a fumigant. Areas which may be treated according to this embodiment include areas of habitation.
  • Examples of areas of habitation include, but are not limited to, indoor livestock facilities, outdoor livestock facilities, product storage areas, housing, office spaces, retail spaces, warehouses, and shipping containers.
  • the formulations of the instant invention are preferably wide-area space sprays applied via ULV to control mosquitoes, flies, and other public health pests.
  • the formulations of the instant invention can be applied via truck, backpack blower, drone, or helicopter.
  • Formulations of the invention have been observed to provide significantly superior control of pests when compared to competitive adulticides when applied via ULV.
  • formulations of the invention provide exceptional preservation of both droplet density in the spray cloud and droplet size as measured by volume mean diameter (VmD).
  • VmD volume mean diameter
  • the improved physical properties of the instant formulations are directly related to their superior bio-efficacy, measured by both mortality and knockdown of target organisms (i.e. mosquitoes).
  • the present formulations provide superior biological control, droplet density, and droplet size when the active ingredient is applied at a concentration that is 20-80x less than competitive formulations.
  • application of the formulations of the invention via ULV provides a total average droplet density of ⁇ 0.3 drops/ mm 2 / fi oz of applied product. In a more preferred embodiment, application of the formulations of the invention via ULV provides a total average droplet density of ⁇ 0.4 drops/mm 2 /fi oz of applied product. In a more preferred embodiment, application of the formulations of the invention via ULV provides a total average droplet density of ⁇ 0.5 drops/mm 2 /fi oz of applied product. In a more preferred embodiment, application of the formulations of the invention via ULV provides a total average droplet density of ⁇ 0.7 drops/mm 2 /fi oz of applied product. In a more preferred embodiment, application of the formulations of the invention via ULV provides a total average droplet density of ⁇ 1 drop/ mm 2 / fi oz of applied product.
  • application of the formulations of the invention via ULV provides a total droplet density of ⁇ 750 drops/mm 2 /lb active ingredient/acre. In a more preferred embodiment, application of the formulations of the invention via ULV provides a total droplet density of ⁇ 1000 drops/mm 2 /lb active ingredient/acre. In a more preferred embodiment, application of the formulations of the invention via ULV provides a total droplet density of ⁇ 1500 drops/mm 2 /lb active ingredient/acre. In a more preferred embodiment, application of the formulations of the invention via ULV provides a total droplet density of ⁇ 2000 drops/mm 2 /lb active
  • application of the formulations of the invention via ULV provides a total droplet density of ⁇ 3000 drops/mm 2 /lb active ingredient/acre. In a more preferred embodiment, application of the formulations of the invention via ULV provides a total droplet density of ⁇ 5000 drops/mm 2 /lb active ingredient/ acre.
  • application of the formulations of the invention via ULV provides a variance in droplet density over a distance of 300 feet of 0.1 or less. In a more preferred embodiment, application of the formulations of the invention via ULV provides a variance in droplet density over a distance of 300 feet of 0.01 or less. In a more preferred embodiment, application of the formulations of the invention via ULV provides a variance in droplet density over a distance of 300 feet of 0.001 or less. In a more preferred embodiment, application of the formulations of the invention via ULV provides a variance in droplet density over a distance of 300 feet of 0.0005 or less.
  • a formulation suitable for spraying or for dilution with water to form a sprayable preparation comprising at least one active ingredient and at least one solvent, wherein the formulation comprises 16% VOC by weight or less, wherein the reduction in VOC concentration results in improved efficacy and/ or lower environmental impact.
  • a formulation suitable for spraying or for dilution with water to form a sprayable preparation comprising at least one active ingredient and at least one solvent, wherein the formulation is VOC-exempt, wherein the reduction in VOC concentration results in improved efficacy and/ or lower environmental impact.
  • any of claims 1-3 wherein said at least one active ingredient is one or more pyrethrum, pyrethroid, pyrethrin, chloronicotinic, carbamate, organophosphate, pyrazole, butenolide, terpenoid, fiprole, tetramic acid derivative, tetraniUiprole and/or biological insecticides.
  • any of claims 1-11 further comprising at least one synergist selected from the group consisting of: bucarpolate, dietholate, jiajizengxiaolin, octachlorodipropyl ether, piperonyl butoxide (PBO), piperonyl cyclonene, piprotal, propyl isome, sesame, sesamolin, sulfoxide, tribufos, and zengxiaoan.
  • synergist selected from the group consisting of: bucarpolate, dietholate, jiajizengxiaolin, octachlorodipropyl ether, piperonyl butoxide (PBO), piperonyl cyclonene, piprotal, propyl isome, sesame, sesamolin, sulfoxide, tribufos, and zengxiaoan.
  • a method for controlling or preventing pest infestation comprising administering the formulation of any of claims 1-13 to an area susceptible to pest infestation.
  • non-VOC insecticide formulation of the invention The efficacy of a non-VOC insecticide formulation of the invention was compared with several commercially available pyrethroid adulticides using a ground ULV sprayer against field populations of Culex tarsalis and Aedes melanimon.
  • the non-VOC insecticide formulation of the invention (Formulation 1) was applied at low and average rates (i.e., 2 fl oz/min and 4 fl oz/min) .
  • the commercially available insecticides were applied at the maximum label rates from three distances (100 ft, 200 ft, and 300 ft) .
  • Table 1 summarizes the data comparing Formulation 1 to several commercially available pyrethroid insecticides. These data demonstrate the superior efficacy of Formulation 1 at very low rates compared to other commercial insecticides.
  • formulations of the invention also demonstrate a significant advantage in total droplet density as measured by droplet density per pound of active ingredient (droplet density/lb ai/ acre) as shown in Table 3.
  • the non-VOC formulation of the invention performed better than both the water-based and oil-based pyrethroid commercial formulations in both mortality and in droplet density. This is a remarkable finding since the non-VOC formulation of the invention was applied at low or mid-range rates in comparison to the commercial formulations applied at the maximum rate. This indicates that in addition to the environmental benefit of being devoid in VOCs, the formulations of the invention are also able to provide superior control with far less pesticide (on a total volume and lb ai/ acre basis) to be released into the environment.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Plant Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Toxicology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Catching Or Destruction (AREA)

Abstract

Water-based formulations (EW) are provided containing no VOC's or alternatively are low in VOC's for wide area space spray to control mosquitoes, flies, and other public health pests. Application via ULV, these formulations have been observed to provide significantly superior control of pests when compared to competitive adulticides. The present formulations provide exceptional preservation of both droplet density in the spray cloud and droplet size as measured by volume mean diameter (VmD). The present formulations provide superior bio-efficacy as measured by both mortality and knockdown of target organisms. The present formulations provide superior biological control, droplet density, and droplet size when applied at concentrations 20-80x less than competitive formulations.

Description

NON-VOLATILE ORGANIC COMPOUND PESTICIDE FORMULATIONS BACKGROUND [0001] 1. Field
[0002] The present disclosure relates to spray formulations, especially pesticidal formulations of the sort which may be diluted with water to form a sprayable preparation, for example, a pressure pack ("aerosol") preparation or a spray, particularly an ultra-low volume (ULV) spray for domestic, horticultural, agricultural, environmental, or industrial use. In particular, the present disclosure relates to pesticidal formulations devoid of Volatile Organic Compounds.
[0003] 2. Description of Related Art
[0004] Water-based sprays are advantageous because they cost less than oil-based sprays and are often less toxic to mammals. However, particularly when the ambient temperature is high, the water in the spray droplets evaporates and the droplets become smaller and drift more readily from the area being sprayed. The size of the droplets is frequently specially chosen to suit the application, for example to maximize droplet adherence to flying insects or adherence to plant foliage, to increase bio-availability, or to control the size of the area being sprayed and the delivery rate per square meter; such care is pointless if the spray droplets change size, possibly unpredictably, following spraying.
[0005] Water-in-oil emulsions are typically used in water-based sprays due to the low solubility of most pesticides in water. Volatile Organic Compound (V OC) regulations, however, have limited the compounds that are available to formulate water-in-oil emulsions suitable for pesticide applications. Thus, there is a significant need to develop further pesticidal formulations with low VOC content.
[0006] Chemical pesticides are of critical importance in maintaining control of diseases spread by mosquitoes and other insects, particularly in developing countries. However, there is growing resistance to the most commonly used chemical pesticides, including pyrethroids, DDT, carbamates, and organophosphates. Thus, it is critical to develop pesticidal formulations that kill more efficiently to reduce formation of resistance in these disease-carrying pests.
[0007] The solution to this technical problem is provided by the embodiments characterized in the claims. BRIEF SUMMARY OF THE INVENTION
[0008] The present application relates to spray formulations, especially pesticidal formulations of the sort which may be diluted with water to form a sprayable preparation, for example, a pressure pack ("aerosol") preparation or a spray, particularly an ultra-low volume (ULV) spray for domestic, horticultural, agricultural, environmental, or industrial use. In particular, the present disclosure relates to pesticidal formulations devoid of Volatile Organic Compounds (VOC).
[0009] In particular, the present application provides spray formulations comprising at least one active ingredient and at least one solvent. In addition, the spray formulation optionally comprises a humectant, an emulsifier, an anti-foam agent and/ or a preservative, together with other ingredients such as perfumes, dyes, solids (especially to form wettable powders) and thickeners.
[0010] The active ingredient may be an insecticide, acaricide, herbicide, fungicide, plant growth regulator, insect behavior modifier, biological control agent (e.g. viruses, bacteria, and eggs of parasites), dye, perfume, bactericide, lubricant, medicament, paint, polish, lacquer (including hair lacquer), textile treatment (including sizes), or other compound to be sprayed in a water-based formulation. Sprays in accordance with the invention are particularly suitable for spraying buildings, residential or commercial areas, and insect breeding grounds (such as swamps and other tracts of water) with insecticide and for spraying crops with herbicides, insecticides, fungicides, and plant growth regulators.
[0011] The sprays may be delivered by pumping through a nozzle, especially a sonic nozzle, by pumping over an ultrasonic nebulizer, or via a spinning disc. The droplets may be electro-statically charged, if desired.
[0012] Suitable pesticides include pyrethroids (such as permethrin, deltamethrin, cypermethrin (including alphamethrin, the allethrins, fenvalerate, trans fluthrin, and cyfluthrin), organophosphates (such as ethion, chlorfenvinphos, chlorpyrifos (methyl) or coumaphos), carbamates, organochlorines (such as DDT, dieldrin, dicofol, chlorpropylate, or tetradifon), lipid amides, bicyclooctanes, dithianes, pyrethrins, pyrethrum, chloronicotinics, pyrazoles, butenolides, terpenoids, fiproles, tetramic acid derivatives (ketoenols), tetranilliproles, or biological insecticides. Suitable herbicides include glyphosate. Suitable larvicides (IGRs, biologies) include methoprene, Bacillus thuringiensis israelensis (Bti), Ba llus sphaericus (Bs), organophosphates (such as temephos), and pyriproxyfen. Suitable solvents are Volatile Organic Compounds (VOC)-exempt or contain no VOCs. Suitable non-VOC solvents include, but are not limited to, acetate esters, methyl esters, acetyl-tributyl citrate, isoparaffinic fluids, paraffinic fluids, vegetable oils such as canola oil, cotton seed oil, soybean oil and the like, and mixtures thereof. Suitable VOC-exempt solvents include, but are not limited to, monoethylene, diethylene, triethylene, tetraethylene glycols, and polyethylene glycols such as PEG 300 and above. Preferably, the solvent is acetyl-tributyl citrate.
DETAILED DESCRIPTION
[0013] Before the subject disclosure is further described, it is to be understood that the disclosure is not limited to the particular embodiments of the disclosure described below, as variations of the particular embodiments may be made and still fall within the scope of the appended claims. It is also to be understood that the terminology employed is for the purpose of describing particular embodiments, and is not intended to be limiting. Instead, the scope of the present disclosure will be established by the appended claims.
[0014] In this specification and the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this disclosure belongs.
[0015] The term "spray formulation" is defined as a formulation, especially pesticidal formulations, of the sort which may be diluted with water to form a sprayable preparation, for example, a pressure pack ("aerosol") preparation or a spray, particularly an ultra-low volume (ULV) spray for domestic, horticultural, agricultural, environmental or industrial use.
[0016] The terms "VOC-exempt" and "Volatile organic compound-exempt" are used
interchangeably throughout this specification and the appended claims and are defined according to the definition under U.S. Environmental Protection Agency (EPA) regulations under 40 C.F.R. § 59.203(f). These EPA regulations define a chemical as "VOC-exempt" if it has vapor pressure of less than 0.1 millimeters of mercury (at 20°C). If the vapor pressure is unknown, a chemical is defined as "VOC- exempt" if it a) consists of more than 12 carbon atoms; or b) has a melting point higher than 20°C and does not sublime (i.e., does not change directly from a solid into a gas without melting). [0017] ULV sprays are generally used in space spray insecticides to treat or fog areas to kill adult mosquitos. An insecticide is diluted and atomized by a ULV fogging machine. The insecticide would then be released from the ground or from the air. Air currents would carry the droplets downwind of the application equipment. The droplets would collide with the insects, coating the insect with a lethal dose of the active ingredient.
[0018] Water dilutable insecticides include formulations such as the FFAST™ (an acronym for Film Forming Aqueous Spray Technology) insecticide formulations described in U.S. Pat. Nos. 5,466458, 5,527823, and 6,302,161 allow for the use of water as a diluent. These patents are hereby incorporated by reference.
[0019] It is generally less expensive and more desirable to have the option of using a water-based product. However, at ambient temperatures, conventional water-based sprays tend to evaporate quickly and fail to deliver the insecticide to the target insects or pests efficiently. To overcome this problem in the past, dispersing insecticides in water required the creation of large droplets. However, these large droplets did not drift efficiently and did not reach the target at all.
[0020] A formulation, such as the FFAST™ formulation, using long chain alcohol molecules to form a protective film around each droplet of insecticide as it leaves the nozzle of the sprayer, allows for the formation of droplets that do not evaporate too quickly and that efficiently deliver the insecticide to the target insect. The incorporation of long chain alcohols into the formulation provides a means of coating the individual droplets of insecticides when mixed with water so as to control the rate of evaporation. This film retards the evaporation of the droplets and they maintain the desired optimum size.
[0021] The subject disclosure features, in one aspect, spray formulations comprising at least one active ingredient and at least one solvent. In addition, the spray formulation optionally comprises a synergist, a humectant, an emulsifier, an anti-foam agent and/ or a preservative. In a preferred embodiment, the spray formulations are Volatile Organic Compounds (VOC)-exempt or alternatively, contain no VOCs. The U.S. Environmental Protection Agency (EPA) identifies a VOC as an organic compound that participates in atmospheric photochemical reactions, but makes exceptions for compounds that have negligible photochemical reactivity. VOCs are emitted as gases from certain solids or liquids. They include a variety of chemicals, some of which may have short- and long-term adverse health effects. Conventional emulsified pesticide formulations generally contain 50-90% by weight VOCs. Current regulations from the California Department of Pesticide Regulation and from the U.S. Environmental Protection Agency (EPA) recommend that pesticides are formulated to contain 20% by weight VOC, or less.
[0022] VOC content may be measured by any method known in the art. Several states, including California, evaluate methods and maintain lists of approved tests available for determining VOC content. One established method of determining the VOC content is a gas chromatographic analysis in accordance with DIN EN ISO 11890-2.
[0023] Thus, in a preferred embodiment, the spray formulations are low in VOC. In particular, the spray formulations contain≤ 16% VOC by weight. In a more preferred embodiment, the spray formulations contain < 10% VOC by weight, < 5% VOC by weight, or < 2.5% VOC by weight.
[0024] In a more preferred embodiment, the spray formulations are devoid or essentially devoid of VOC by weight. In particular, the spray formulations contain≤ 1% VOC by weight. Optionally, the spray formulations contain < 0.5% VOC by weight, < 0.25% VOC by weight, < 0.1% VOC by weight, or < 0.05% VOC by weight.
[0025] Active ingredients of the invention include pesticides. In particular, the pesticide may be a pyrethroid, an organophosphate, a carbamate, an organochlorine, a lipid amide, a bicyclooctane, a dithiane, a pyrethrin, a pyrethrum, a chloronicotinic, a pyrazole, butenolide, a terpenoid, a fiprole, a tetramic acid derivative (ketoenol), a tetranilliprole, or a biological insecticide.
[0026] In a preferred embodiment of the invention, the active ingredient is one or more pyrethroid. Examples of pyrethroid insecticides include those of the formula (I)
X O (I)
Figure imgf000006_0001
where R is
Figure imgf000007_0001
and n is 0 or 1,
R 1 is halo CR3 or CHF20, R2 is hydrogen or halo, and Z and Zl are each independently selected from halo, CF3 and methyl, X is hydrogen or halo, and X is H, CN or C=CH
Figure imgf000007_0002
[0027] Examples of pyrethroids include, but are not limited to, 3-phenobenzyl-(lRS)-cis,trans-3- (2,2-dichlorovinyl- 2,2-di-methyl-cyclopropane-l-carboxylate (permethrin), (RS)-a-cyano-3- phenoxybenzyl-(lRS)-cis,trans-3-(2,2-dichlorovinyl)- 2,2-dimethylcyclopropane-l-carboxylate
(cypermethrin) and its individual isomers such as the (IRS) cis isomer (alphamethrin), (S)-a-cyano-3- phenoxybenzyl-(IR)-cis-3-(2,2-dibromovinyl)-2,2-dimethyl cyclopropane-l-carboxylate (deltamethrin), or a reaction mixture comprising two enantiomeric pairs in approximately ratio 2:3 (S)-a-cyano-3- phenoxybenzyl-(IR)-cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate and (R)-a-cyano-3- phenoxybenzyl-(IS)-cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate with (S)-a=cyano-3- phenoxybenzyl-(IR)-trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate and (R)-a-cyano-3- phenoxybenzyl-(IS)-trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate (beta- cypermethrin), (RS)-a-cyano-3-phenoxybenzyl-(Z)-(lRS)-cis-3-(2-chloro- 3,3,3-trifiuoro propenyl)-2,2- dimethylcyclopropanecarboxylate (cyhalothrin) and a mixture of its (S) (Z)-(IR)-cis and (R) (Z)-(IS)-cis isomers; (RS)-a-cyano-3-phenoxybenzyl (RS)-2-(4-chlorophenyl)-3-methylbutyrate (fenvalerate) and the single (S), (S) isomer (esfenvalerate) (RS)-a-cyano-3-phenoxybenzyl (S)-2-(4-difluoromethoxyphenyl)-3- methyl butyrate (flucythinate), (RS)-a-cyano-3-phenoxybenzyl N(2-chloro-a, a,a-trifluoro-p-tolyl)-D- valinate (fiuvalinate), (RS)-a-cyano-4-fluoro-3-phenoxybenzyl(IRS)-cis-trans-3-(2,2-dichlorovinyl)-2,2- dimethylcyclopropanecarboxylate (cyfluthrin), (RS)-a-cyano-4-fluoro-3-phenoxybenzyl (IRS)-cis-trans-3- (2-chloro-2(4-chlorophenyl)vinyl)-2,2-dimethylcyclopropanecarboxylate (flumethrin), 2-methylbiphenyl- 3-yl-methyl(Z)-(IRS,3RS)-3-(2-chloro-3,3,3-trifluoroprop-l-enyl)2,2-dimethylcyclopropanecarboxylate (Bifenthrin); the allethrins, for example (lRS)-3-allyl-2-methyl-4-oxocylopent-2- enyl)cyclopropanecarboxylate (bioallethrin), (lS)-allyl-2-methyl-4-oxocyclopent-2-enyl (lR,3R)-2,2- dimethyl-3-(2-methylprop-l-enyl)cyclopropanecarboxylate (S-bioallethrin), and mixtures of allethrin isomers (esbiothrin); the resmethrins, for example 5-benzyl-3-furylmethyl(IRS-3RS; IRS, 3SR)-2,2- dimethyl-3-(2-methyl-prop-l-enyl)cyclopropanecarboxylate (resmethrin), 5-benzyl-3-furylmethyl (lR,3R)-2,2-dimethyl-3-(2-methyl-prop-l-enyl)cyclopropanecarboxylate (bioresmethrin), and 2,3,5,6- tetrafluorobenzyl (lR,3S)-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate (trans flu thrin), 2,3,5,6-tetrafluoro-4-(methoxymethyl)benzyl (EZ)-(lRS,3RS;lRS,3SR)-2,2-dimethyl-3-prop-l- enylcyclopropanecarboxylate (metofluthrin), and pyrethroids with a polyfluorobenzyl group.
[0028] Examples of organophosphate insecticides include, but are not limited to, 0,0-dimethyl-O- 3,5,6-trichloro-2-pyridylphosphorothioate (Chloropyri-fos-methyl).
[0029] Examples of formamidine insecticides include, but are not limited to, N-methyl bis(2,4- xylylaminomethyl) amine (Amitraz). Examples of thiazole anthelmintics include, but are not limited to, 2,3,5,6-tetrahydro-6-phenylimidazo[2,l-b]thiazole (levamisole).
[0030] Examples of fungicides include, but are not limited to, tributyl tin oxide. [0031] Examples of pyrazole insecticides include, but are not limited to, 3-bromo-l-(3-chloro-2- pyridinyl)-Ai-[4-cyano-2-methyl-6-[(methylamino)carbonyl]phenyl]-lH-pyrazole-5-carboxamide
(cyantraniliprole) .
[0032] Examples of fiprole insecticides include, but are not limited to, 5-amino-l-[2,6-dichloro-4- (lxifluoromethyl)phenyl]-4-[(lxifluoromethyl)sulfinyl]-lH-pyrazole-3-carbonitrile (fipronil) and 5-amino-l- [2,6-dichloro-4-trilluoromethyl)phenyl]-4- [(ethyl) -sulfinyl]-lH-pyrazole-3-carbonitrile (ethiprole).
[0033] Examples of tetramic acid derivatives include, but are not limited to, cis-3-(2,5- dimethlyphenyl)-8-methoxy-2-oxo-l-azaspiro[4.5]dec-3-en-4-yl-ethyl carbonate (suspirotetramat) and 2- oxo-3-(2,4,6-trimethylphenyl)-l-oxaspiro[4,4]non-3-en-4-yl 3,3-dimethylbutanoate (spiromesifen).
[0034] Examples of butenolides include, but are not limited to, 4-[[(6-chloropyridin-3- yl)methyl](2,2-difluoroethyl)amino]furan-2(5ET)-one (flupyradifurone [Sivanto®]).
[0035] The formulations of the invention may contain one or more synergists. A synergist is defined as a chemical that does not possess inherent pesticidal activity, but instead promotes or enhances the effectiveness of pesticides when combined. Examples of synergists include, but are not limited to, bucarpolate, dietholate, jiajizengxiaolin, octachlorodipropyl ether, piperonyl butoxide (PBO), piperonyl cyclonene, piprotal, propyl isome, sesame, sesamolin, sulfoxide, tribufos, and zengxiaoan.
[0036] The active ingredient(s) of the formulation should be soluble in the solvent. In one embodiment, the solvent is tri-butyl citrate. In a more preferred embodiment, the solvent is acetyl tributyl citrate (Citroflex A4).
[0037] The emulsifier may be any suitable compound or mixture of compounds. Cationic emulsifiers can be used, but they tend to irritate the users' eyes. Anionic emulsifiers such as calcium dodecyl benzene sulphate (CDBS) or sodium di-isopropyl naphthalene sulphonate (SDNS) can also be used, but these are not as effective at stabilizing the emulsion. Preferably, the emulsifier is a non-ionic compound, or mixture of non-ionic compounds, having an HLB (hydrophilic/lipophilic balance of 8- 18. Suitable compounds include polyoxyethylene stearyl ethers (PSE), polyoxyethylene monolaurates (PEM), polyoxyethylene mono-oleates (PMO), sorbitan mono-oleate (SMO), nonylphenol ethoxylate (NPE), polyethylene glycol (PEG) and blends of oleyl ethoxylate (10 mole) and PEG20 glyceryl oleate (OE/PGO). [0038] In a preferred embodiment, the emulsifier is polyoxyethylene (10) oleyl ether, polyoxyethylene (20) stearyl ether, ethoxylated castor oil, or polyoxyethylene (20) sorbitan monooleate.
[0039] The anti-foam agent may be any suitable compound or mixture of compounds. Exemplary compounds include Silcolapse 426R or Silcolapse 432 (i.e. polyorganosiloxane aqueous emulsion).
[0040] Constituents may be present in 100% oil phase. Alternatively, the oil phase may comprise up to 45% of the formula and the water phase may comprise up to 55% of the formula wherein all other components are dissolved / dispersed in both phases. In a preferred embodiment, the oil phase is approximately 38% of the formulation and the water phase is approximately 62% of the formulation wherein all other constituents are dissolved / dispersed in both the oil and water phase.
[0041] The formulations of the instant invention may be used, for example, to control or prevent pest infestation. Thus, the invention comprises a method for controlling and/ or preventing pest infestation comprising administering the formulation to an area susceptible to pest infestation.
[0042] Examples of pests that may be controlled by the formulations of the invention include, but are not limited to, mosquitos, flies, and other public health pests, including, but not limited to cockroaches, bedbugs, sand flies, and reduviidae. Additional examples of pests that may be controlled by the formulations of the invention include, but are not limited to, stored product pests and rural hygiene pests.
[0043] Examples of areas that are susceptible to pest infestation which may be treated with the formulations of the invention include, but are not limited to, complex canopies. A complex canopy is defined as an area that is difficult to penetrate with typical pesticide formulations. Examples of complex canopies include, but are not limited to, dense vegetation and/ or complex environments.
[0044] In an additional embodiment, the formulations of the instant invention can be used as a fumigant. Areas which may be treated according to this embodiment include areas of habitation.
Examples of areas of habitation include, but are not limited to, indoor livestock facilities, outdoor livestock facilities, product storage areas, housing, office spaces, retail spaces, warehouses, and shipping containers.
[0045] The formulations of the instant invention are preferably wide-area space sprays applied via ULV to control mosquitoes, flies, and other public health pests. Preferably, the formulations of the instant invention can be applied via truck, backpack blower, drone, or helicopter. [0046] Formulations of the invention have been observed to provide significantly superior control of pests when compared to competitive adulticides when applied via ULV. Specifically, it was discovered that formulations of the invention provide exceptional preservation of both droplet density in the spray cloud and droplet size as measured by volume mean diameter (VmD). The improved physical properties of the instant formulations are directly related to their superior bio-efficacy, measured by both mortality and knockdown of target organisms (i.e. mosquitoes). The present formulations provide superior biological control, droplet density, and droplet size when the active ingredient is applied at a concentration that is 20-80x less than competitive formulations.
[0047] In a preferred embodiment, application of the formulations of the invention via ULV provides a total average droplet density of≥ 0.3 drops/ mm2/ fi oz of applied product. In a more preferred embodiment, application of the formulations of the invention via ULV provides a total average droplet density of≥ 0.4 drops/mm2/fi oz of applied product. In a more preferred embodiment, application of the formulations of the invention via ULV provides a total average droplet density of≥ 0.5 drops/mm2/fi oz of applied product. In a more preferred embodiment, application of the formulations of the invention via ULV provides a total average droplet density of≥ 0.7 drops/mm2/fi oz of applied product. In a more preferred embodiment, application of the formulations of the invention via ULV provides a total average droplet density of≥ 1 drop/ mm2/ fi oz of applied product.
[0048] In an additional preferred embodiment, application of the formulations of the invention via ULV provides a total droplet density of≥ 750 drops/mm2/lb active ingredient/acre. In a more preferred embodiment, application of the formulations of the invention via ULV provides a total droplet density of≥ 1000 drops/mm2/lb active ingredient/acre. In a more preferred embodiment, application of the formulations of the invention via ULV provides a total droplet density of≥ 1500 drops/mm2/lb active ingredient/acre. In a more preferred embodiment, application of the formulations of the invention via ULV provides a total droplet density of≥ 2000 drops/mm2/lb active
ingredient/ acre. In a more preferred embodiment, application of the formulations of the invention via ULV provides a total droplet density of≥ 3000 drops/mm2/lb active ingredient/acre. In a more preferred embodiment, application of the formulations of the invention via ULV provides a total droplet density of≥ 5000 drops/mm2/lb active ingredient/ acre.
[0049] In an additional preferred embodiment, application of the formulations of the invention via ULV provides a variance in droplet density over a distance of 300 feet of 0.1 or less. In a more preferred embodiment, application of the formulations of the invention via ULV provides a variance in droplet density over a distance of 300 feet of 0.01 or less. In a more preferred embodiment, application of the formulations of the invention via ULV provides a variance in droplet density over a distance of 300 feet of 0.001 or less. In a more preferred embodiment, application of the formulations of the invention via ULV provides a variance in droplet density over a distance of 300 feet of 0.0005 or less.
[0050] What is claimed is:
[0051] 1. A formulation suitable for spraying or for dilution with water to form a sprayable preparation, the formulation comprising at least one active ingredient and at least one solvent, wherein the formulation comprises 16% VOC by weight or less, wherein the reduction in VOC concentration results in improved efficacy and/ or lower environmental impact.
[0052] 2. A formulation suitable for spraying or for dilution with water to form a sprayable preparation, the formulation comprising at least one active ingredient and at least one solvent, wherein the formulation is VOC-exempt, wherein the reduction in VOC concentration results in improved efficacy and/ or lower environmental impact.
[0053] 3. The formulation of claims 1 or 2, wherein said formulation contains no VOC.
[0054] 4. The formulation of any of claims 1-3, wherein said at least one active ingredient is one or more pyrethrum, pyrethroid, pyrethrin, chloronicotinic, carbamate, organophosphate, pyrazole, butenolide, terpenoid, fiprole, tetramic acid derivative, tetraniUiprole and/or biological insecticides.
[0055] 5. The formulation of any of claims 1-4, wherein said at least one active ingredient is in either an aqueous phase, solubilized phase, or oil dispersion.
[0056] 6. The formulation of any of claims 1-5, wherein said at least one active ingredient is a pyrethroid.
[0057] 7. The formulation of any of claims 1-6, wherein said at least one active ingredient is deltamethrin.
[0058] 8. The formulation of any of claims 1-7, wherein said solvent is acetyl tributyl citrate. [0059] 9. The formulation of any of claims 1-8, further comprising one or more emulsifier, anti- foam agent, and/ or preservative.
[0060] 10. The formulation of any of claims 1-9, wherein the formulation is an ultra-low volume concentrate.
[0061] 11. The formulation of any of claims 1-10, wherein the formulation is a wettable powder.
[0062] 12. The formulation of any of claims 1-11, further comprising at least one synergist selected from the group consisting of: bucarpolate, dietholate, jiajizengxiaolin, octachlorodipropyl ether, piperonyl butoxide (PBO), piperonyl cyclonene, piprotal, propyl isome, sesame, sesamolin, sulfoxide, tribufos, and zengxiaoan.
[0063] 13. The formulation of any of claims 1-12, wherein the formulation provides at least one of the following: exceptional preservation of droplet density in the spray cloud, and/ or droplet size as measured by volume mean diameter (V mD) .
[0064] 14. A method for controlling or preventing pest infestation, the method comprising administering the formulation of any of claims 1-13 to an area susceptible to pest infestation.
[0065] 15. The method of claim 14, wherein the formulation is an ultra-low volume concentrate.
[0066] 16. The method of claims 14 or 15, wherein the pest is a mosquito.
[0067] 17. The method of any of claims 14-16, wherein the area susceptible to pest infestation is a complex canopy.
[0068] 18. The method of claim 17, wherein said complex canopy is selected from the group consisting of: dense vegetation, and complex environment.
[0069] 19. The method of any of claims 14-18, wherein administration of the formulation of any of claims 1-13 provides a total average droplet density of≥ 0.3 drops/mm2/fi oz of applied product.
[0070] 20. The method of any of claims 14-19, wherein administration of the formulation of any of claims 1-13 provides a total droplet density of≥ 750 drops/mm2/lb active ingredient/acre. [0071] 21. The method of any of claims 14-20, wherein administration of the formulation of claim 1-13 provides a variance in droplet density over a distance of 300 feet of 0.1 or less.
[0072] 22. Use of the formulation of any of claims 1-13 to control or prevent pest infestation.
[0073] 23. The use according to claim 22, wherein the formulation is applied to an area susceptible to pest infestation.
[0074] 24. The use according to claims 22 or 23, wherein the formulation is an ultra-low volume concentrate.
[0075] 25. The use according to any of claims 22-24, wherein the pest is a mosquito.
[0076] 26. The use according to any of claims 23-25, wherein the area susceptible to pest infestation is a complex canopy.
[0077] 27. The use according to claim 26, wherein said complex canopy is selected from the group consisting of: dense vegetation, and complex environment.
[0078] 28. The use according to any of claims 22-27, wherein administration of the formulation of any of claims 1-13 provides a total average droplet density of≥ 0.3 drops/mm2/fi oz of applied product.
[0079] 29. The use according to any of claims 22-28, wherein administration of the formulation of any of claims 1-13 provides a total droplet density of≥ 750 drops/mm2/lb active ingredient/acre.
[0080] 30. The use according to any of claims 22-29, wherein administration of the formulation of claim 1-13 provides a variance in droplet density over a distance of 300 feet of 0.1 or less.
[0081] The following Examples describe exemplary embodiments of the invention. These Examples should not be interpreted to encompass the entire breadth of the invention. [0082 ] EXAMPLES
[0083] The efficacy of a non-VOC insecticide formulation of the invention was compared with several commercially available pyrethroid adulticides using a ground ULV sprayer against field populations of Culex tarsalis and Aedes melanimon. The non-VOC insecticide formulation of the invention (Formulation 1) was applied at low and average rates (i.e., 2 fl oz/min and 4 fl oz/min) . In contrast, the commercially available insecticides were applied at the maximum label rates from three distances (100 ft, 200 ft, and 300 ft) .
[0084] Droplet density was assessed during application. At 24 hours following treatment, mortality was assessed. The findings are presented below.
[0085] Table 1 summarizes the data comparing Formulation 1 to several commercially available pyrethroid insecticides. These data demonstrate the superior efficacy of Formulation 1 at very low rates compared to other commercial insecticides.
TABLE 1
Figure imgf000016_0001
[0086] This increase in efficacy is further demonstrated by comparison of average droplet density of the applied insecticide per fluid ounce of applied insecticide as shown in Table 2.
TABLE 2
Figure imgf000016_0002
Anvil Sumithrin Oil-based 19.70 2.66 0.14
Zenivex Etofenprox Oil-based 18.00 3.03 0.17
Scourge Resmethrin Oil-based 18.00 5.06 0.28
[0087] Illustrated another way, formulations of the invention also demonstrate a significant advantage in total droplet density as measured by droplet density per pound of active ingredient (droplet density/lb ai/ acre) as shown in Table 3.
TABLE 3
Figure imgf000017_0001
[0088] Additionally, there is superior lack in variability in droplet density over distance during application of Formulation 1 compared to other commercially available pyrethroid insecticides as in Table 4.
TABLE 4
Figure imgf000018_0001
[0089] As illustrated in the above tables, the non-VOC formulation of the invention performed better than both the water-based and oil-based pyrethroid commercial formulations in both mortality and in droplet density. This is a remarkable finding since the non-VOC formulation of the invention was applied at low or mid-range rates in comparison to the commercial formulations applied at the maximum rate. This indicates that in addition to the environmental benefit of being devoid in VOCs, the formulations of the invention are also able to provide superior control with far less pesticide (on a total volume and lb ai/ acre basis) to be released into the environment.
[0090] All references cited in this specification are herein incorporated by reference as though each reference was specifically and individually indicated to be incorporated by reference. The citation of any reference is for its disclosure prior to the filing date and should not be construed as an admission that the present disclosure is not entitled to antedate such reference by virtue of prior invention.
[0091] It will be understood that each of the elements described above, or two or more together may also find a useful application in other types of methods differing from the type described above. Without further analysis, the foregoing will so fully reveal the gist of the present disclosure that others can, by applying current knowledge, readily adapt it for various applications without omitting features that, from the standpoint of prior art, fairly constitute essential characteristics of the generic or specific aspects of this disclosure set forth in the appended claims. The foregoing embodiments are presented by way of example only; the scope of the present disclosure is to be limited only by the following claims.

Claims

CLAIMS What is claimed is:
1. A formulation suitable for spraying or for dilution with water to form a sprayable preparation, the formulation comprising at least one active ingredient and at least one solvent, wherein the formulation comprises 16% VOC by weight or less, wherein the reduction in VOC concentration results in improved efficacy and/ or lower environmental impact.
2. A formulation suitable for spraying or for dilution with water to form a sprayable preparation, the formulation comprising at least one active ingredient and at least one solvent, wherein the formulation is VOC-exempt, wherein the reduction in VOC concentration results in improved efficacy and/ or lower environmental impact.
3. The formulation of claims 1 or 2, wherein said formulation contains no VOC.
4. The formulation of any of claims 1-3, wherein said at least one active ingredient is one or more pyrethrum, pyrethroid, pyrethrin, chloronicotinic, carbamate, organophosphate, pyrazole, butenolide, terpenoid, fiprole, tetramic acid derivative, tetraniUiprole and/or biological insecticides.
5. The formulation of any of claims 1-4, wherein said at least one active ingredient is in either an aqueous phase, solubilized phase, or oil dispersion.
6. The formulation of any of claims 1-5, wherein said at least one active ingredient is a pyrethroid.
7. The formulation of any of claims 1-6, wherein said at least one active ingredient is deltamethrin.
8. The formulation of any of claims 1-7, wherein said solvent is acetyl tributyl citrate.
9. The formulation of any of claims 1-8, further comprising one or more emulsifier, anti-foam agent, and/ or preservative.
10. The formulation of any of claims 1-9, wherein the formulation is an ultra-low volume concentrate.
11. The formulation of any of claims 1-10, wherein the formulation is a wettable powder.
12. The formulation of any of claims 1-11, further comprising at least one synergist selected from the group consisting of: bucarpolate, dietholate, jiajizengxiaolin, octachlorodipropyl ether, piperonyl butoxide (PBO), piperonyl cyclonene, piprotal, propyl isome, sesame, sesamolin, sulfoxide, tribufos, and zengxiaoan.
13. The formulation of any of claims 1-12, wherein the formulation provides at least one of the following: exceptional preservation of droplet density in the spray cloud, and/or droplet size as measured by volume mean diameter (V mD) .
14. A method for controlling or preventing pest infestation, the method comprising
administering the formulation of any of claims 1-13 to an area susceptible to pest infestation.
15. The method of claim 14, wherein the formulation is an ultra-low volume concentrate.
16. The method of claims 14 or 15, wherein the pest is a mosquito.
17. The method of any of claims 14-16, wherein the area susceptible to pest infestation is a complex canopy.
18. The method of claim 17, wherein said complex canopy is selected from the group consisting of: dense vegetation, and complex environment.
19. The method of any of claims 14-18, wherein administration of the formulation of any of claims 1-13 provides a total average droplet density of≥ 0.3 drops/mm2/fi oz of applied product.
20. The method of any of claims 14-19, wherein administration of the formulation of any of claims 1-13 provides a total droplet density of≥ 750 drops/mm2/lb active ingredient/acre.
21. The method of any of claims 14-20, wherein administration of the formulation of claim 1-13 provides a variance in droplet density over a distance of 300 feet of 0.1 or less.
22. Use of the formulation of any of claims 1-13 to control or prevent pest infestation.
23. The use according to claim 22, wherein the formulation is applied to an area susceptible to pest infestation.
24. The use according to claims 22 or 23, wherein the formulation is an ultra-low volume concentrate.
25. The use according to any of claims 22-24, wherein the pest is a mosquito.
26. The use according to any of claims 23-25, wherein the area susceptible to pest infestation is a complex canopy.
27. The use according to claim 26, wherein said complex canopy is selected from the group consisting of: dense vegetation, and complex environment.
28. The use according to any of claims 22-27, wherein administration of the formulation of any of claims 1-13 provides a total average droplet density of≥ 0.3 drops/mm2/fi oz of applied product.
29. The use according to any of claims 22-28, wherein administration of the formulation of any of claims 1-13 provides a total droplet density of≥ 750 drops/mm2/lb active ingredient/acre.
30. The use according to any of claims 22-29, wherein administration of the formulation of claim 1-13 provides a variance in droplet density over a distance of 300 feet of 0.1 or less.
PCT/US2016/019420 2015-02-24 2016-02-24 Non-volatile organic compound pesticide formulations WO2016138179A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
SG11201706845UA SG11201706845UA (en) 2015-02-24 2016-02-24 Non-volatile organic compound pesticide formulations
BR112017018056-1A BR112017018056A2 (en) 2015-02-24 2016-02-24 pesticide formulations of non-volatile organic compounds
CR20170422A CR20170422A (en) 2015-02-24 2016-02-24 PESTICID FORMULATIONS OF NON-VOLATILE ORGANIC COMPOUNDS
MX2017010830A MX2017010830A (en) 2015-02-24 2016-02-24 Non-volatile organic compound pesticide formulations.
EP16756311.3A EP3261434A4 (en) 2015-02-24 2016-02-24 Non-volatile organic compound pesticide formulations
AU2016222750A AU2016222750A1 (en) 2015-02-24 2016-02-24 Non-volatile organic compound pesticide formulations
CUP2017000110A CU20170110A7 (en) 2015-02-24 2016-02-24 PESTICID FORMULATIONS OF NON-VOLATILE ORGANIC COMPOUNDS
CONC2017/0008569A CO2017008569A2 (en) 2015-02-24 2017-08-24 Pesticidal formulations of non-volatile organic compounds
PH12017501537A PH12017501537A1 (en) 2015-02-24 2017-08-24 Non-volatile organic compound pesticide formulations

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/629,824 US9497971B2 (en) 2015-02-24 2015-02-24 Non-volatile organic compound pesticide formulations
US14/629,824 2015-02-24

Publications (1)

Publication Number Publication Date
WO2016138179A1 true WO2016138179A1 (en) 2016-09-01

Family

ID=56692918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2016/019420 WO2016138179A1 (en) 2015-02-24 2016-02-24 Non-volatile organic compound pesticide formulations

Country Status (15)

Country Link
US (4) US9497971B2 (en)
EP (1) EP3261434A4 (en)
AU (1) AU2016222750A1 (en)
BR (1) BR112017018056A2 (en)
CL (2) CL2017002142A1 (en)
CO (1) CO2017008569A2 (en)
CR (1) CR20170422A (en)
CU (1) CU20170110A7 (en)
DO (1) DOP2017000198A (en)
GT (1) GT201700187A (en)
MX (1) MX2017010830A (en)
PE (1) PE20180029A1 (en)
PH (1) PH12017501537A1 (en)
SG (1) SG11201706845UA (en)
WO (1) WO2016138179A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9497971B2 (en) * 2015-02-24 2016-11-22 Bayer Cropscience Lp Non-volatile organic compound pesticide formulations
US10785976B2 (en) 2016-09-15 2020-09-29 Bayer Cropscience Lp Methods and compositions for environmentally friendly pest control
BR112022014737A2 (en) * 2020-01-27 2022-12-20 Valent Usa Llc AQUEOUS COMPOSITION AND METHOD FOR CONTROLLING A PEST
US20210321601A1 (en) * 2020-04-21 2021-10-21 Application Insight, Llc Dual fluid nozzle based liquid spray system for unmanned aerial systems

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6200961B1 (en) * 1998-12-16 2001-03-13 Aquatrols Corporation Of America, Inc. Concentrates of organophosphorous insecticides
US20080254988A1 (en) * 2007-01-31 2008-10-16 Yueh Wang Stable S-(+)-abscisic acid liquid and soluble granule formulations
US20090163582A1 (en) * 2005-04-04 2009-06-25 Yueh Wang Stable Pesticide Concentrates and End-Use Emulsions
US20090275601A1 (en) * 2008-04-30 2009-11-05 Evelyn Jean Taylor Novel Pyriproxyfen Compositions
US20100216641A1 (en) * 2009-02-26 2010-08-26 Yueh Wang Low VOC and Stable Plant Growth Regulator Liquid and Granule Compositions
US20120053151A1 (en) * 2009-04-30 2012-03-01 Cheminova A/S Dimethoate low voc formulations
US20130183261A1 (en) * 2010-08-06 2013-07-18 Sumitomo Chemical Company, Limited Method and composition for delivering active ingredient into air, and use thereof
US20130217579A1 (en) * 2010-09-16 2013-08-22 Clariant Finance (Bvi) Limited Pesticide Preparations Containing N-Substituted 2-Pyrrolidone-4-Carboxylic Acid Esters
US20130345110A1 (en) * 2012-06-22 2013-12-26 The Procter & Gamble Company Low voc hard surface cleaning composition

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5527823A (en) 1988-03-02 1996-06-18 Roussel Uclaf Pesticidal formulations
US5466458A (en) 1992-03-09 1995-11-14 Roussel Uclaf Emulsified spray formulations
US6582714B1 (en) * 1995-04-10 2003-06-24 S. C. Johnson & Son, Inc. Article for insert control by passive evaporation of an active ingredient
US5827522A (en) 1996-10-30 1998-10-27 Troy Corporation Microemulsion and method
US5968990A (en) 1997-10-14 1999-10-19 Isp Investments Inc. Water-dilutable, microemulsion concentrate and pour-on formulations thereof
GB9823010D0 (en) 1998-10-22 1998-12-16 Agrevo Uk Ltd Critic acid derivates
DE10048006A1 (en) 2000-09-26 2002-04-18 Aventis Cropscience Gmbh Water-dispersible granules containing deltamethrin
EP1210877A1 (en) * 2000-12-01 2002-06-05 Aventis CropScience GmbH Oil-in-water emulsion formulation of insecticides
US8119150B2 (en) 2002-10-25 2012-02-21 Foamix Ltd. Non-flammable insecticide composition and uses thereof
AU2005291009B2 (en) 2004-10-09 2010-10-28 Enviroquest Research Limited Non-ionic surfactant aggregates
AU2006302741A1 (en) 2005-10-19 2007-04-26 Osmose New Zealand Wood impregnation
DE102006015467A1 (en) * 2006-03-31 2007-10-04 Bayer Cropscience Ag New cyclic enamine ketone derivatives useful for controlling pests, especially insects
WO2008129060A2 (en) 2007-04-23 2008-10-30 Basf Se Plant produtivity enhancement by combining chemical agents with transgenic modifications
US8178078B2 (en) * 2008-06-13 2012-05-15 S.C. Johnson & Son, Inc. Compositions containing a solvated active agent suitable for dispensing as a compressed gas aerosol
US8354042B2 (en) * 2009-01-29 2013-01-15 Greensolve Llc Method of raising the flash points and improving the freeze resistance of volatile green solvents
CN102458126B (en) 2009-04-28 2014-07-02 巴斯夫公司 Foamable pesticide compositions
US9045681B2 (en) 2010-01-18 2015-06-02 Arch Wood Protection Pty Ltd Reduced drying carrier formulation
AU2011378019B2 (en) 2011-09-27 2016-04-28 Cognis Ip Management Gmbh Solid agricultural compositions
GB2506426B (en) 2012-09-28 2016-03-23 Agform Ltd Composition
US9497971B2 (en) * 2015-02-24 2016-11-22 Bayer Cropscience Lp Non-volatile organic compound pesticide formulations
US10785976B2 (en) * 2016-09-15 2020-09-29 Bayer Cropscience Lp Methods and compositions for environmentally friendly pest control

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6200961B1 (en) * 1998-12-16 2001-03-13 Aquatrols Corporation Of America, Inc. Concentrates of organophosphorous insecticides
US20090163582A1 (en) * 2005-04-04 2009-06-25 Yueh Wang Stable Pesticide Concentrates and End-Use Emulsions
US20080254988A1 (en) * 2007-01-31 2008-10-16 Yueh Wang Stable S-(+)-abscisic acid liquid and soluble granule formulations
US20090275601A1 (en) * 2008-04-30 2009-11-05 Evelyn Jean Taylor Novel Pyriproxyfen Compositions
US20100216641A1 (en) * 2009-02-26 2010-08-26 Yueh Wang Low VOC and Stable Plant Growth Regulator Liquid and Granule Compositions
US20120053151A1 (en) * 2009-04-30 2012-03-01 Cheminova A/S Dimethoate low voc formulations
US20130183261A1 (en) * 2010-08-06 2013-07-18 Sumitomo Chemical Company, Limited Method and composition for delivering active ingredient into air, and use thereof
US20130217579A1 (en) * 2010-09-16 2013-08-22 Clariant Finance (Bvi) Limited Pesticide Preparations Containing N-Substituted 2-Pyrrolidone-4-Carboxylic Acid Esters
US20130345110A1 (en) * 2012-06-22 2013-12-26 The Procter & Gamble Company Low voc hard surface cleaning composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3261434A4 *

Also Published As

Publication number Publication date
CL2018002802A1 (en) 2019-01-25
CO2017008569A2 (en) 2017-11-10
US20160353740A1 (en) 2016-12-08
SG11201706845UA (en) 2017-09-28
US11490624B2 (en) 2022-11-08
US20160242418A1 (en) 2016-08-25
GT201700187A (en) 2018-12-19
AU2016222750A1 (en) 2017-09-07
CR20170422A (en) 2017-12-14
US9497971B2 (en) 2016-11-22
US10588319B2 (en) 2020-03-17
US20200178533A1 (en) 2020-06-11
PH12017501537A1 (en) 2018-02-05
US20180368413A1 (en) 2018-12-27
MX2017010830A (en) 2017-12-07
EP3261434A4 (en) 2018-07-11
CL2017002142A1 (en) 2018-05-11
DOP2017000198A (en) 2017-09-15
EP3261434A1 (en) 2018-01-03
PE20180029A1 (en) 2018-01-09
CU20170110A7 (en) 2017-10-05
BR112017018056A2 (en) 2018-07-24

Similar Documents

Publication Publication Date Title
US11490624B2 (en) Non-volatile organic compound pesticide formulations
AU2006231454B2 (en) Stable pesticide concentrates and end-use emulsions
JP7415296B2 (en) Isopod insect control agent
Hazra et al. Role of pesticide formulations for sustainable crop protection and environment management: A review
JP5517122B2 (en) How to control pests and ticks
US5466458A (en) Emulsified spray formulations
EP0331474B1 (en) Spray formulations
JP6490847B2 (en) Pest control aerosol and pest control method using the same
JP2018076382A (en) Aerosol for pest controlling mosquitoes and pest control method of mosquitoes using the same
JPH069320A (en) New composition containing pyrethrinoid for extermination for noxious living organism
Perrin Improving insecticides through encapsulation
GB2095109A (en) Insecticidal compositions
JP4703172B2 (en) One-component outdoor aerosol for outdoor use
JP7425277B2 (en) Selective plant growth regulator
CN112056322A (en) Sanitary insecticidal composition containing chlorenthrin and application thereof
EP0650325A1 (en) Pesticidal compositions.
WO2023115034A1 (en) Ready-to-use barrier and knockdown pesticides
JPS632909A (en) Mite controlling agent for indoor use
Oh Development of Environmentally Sound Herbicides and Their Formulations
MX2010013435A (en) Larvicide and insecticide emulsifiable concentrate for spatial application, process for the preparation thereof, insecticide composition, use and control method.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16756311

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11201706845U

Country of ref document: SG

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/010830

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: NC2017/0008569

Country of ref document: CO

Ref document number: 001460-2017

Country of ref document: PE

Ref document number: 12017501537

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016756311

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016222750

Country of ref document: AU

Date of ref document: 20160224

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: CR2017-000422

Country of ref document: CR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017018056

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017018056

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170823