WO2016136902A1 - Additive for rubber composition, and rubber composition - Google Patents

Additive for rubber composition, and rubber composition Download PDF

Info

Publication number
WO2016136902A1
WO2016136902A1 PCT/JP2016/055684 JP2016055684W WO2016136902A1 WO 2016136902 A1 WO2016136902 A1 WO 2016136902A1 JP 2016055684 W JP2016055684 W JP 2016055684W WO 2016136902 A1 WO2016136902 A1 WO 2016136902A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber composition
parts
rubber
mass
cellulose
Prior art date
Application number
PCT/JP2016/055684
Other languages
French (fr)
Japanese (ja)
Inventor
歩 田上
裕治 嶌田
Original Assignee
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015034646A external-priority patent/JP2018070661A/en
Priority claimed from JP2015034647A external-priority patent/JP2018070662A/en
Priority claimed from JP2015063528A external-priority patent/JP2018070667A/en
Application filed by 日本製紙株式会社 filed Critical 日本製紙株式会社
Publication of WO2016136902A1 publication Critical patent/WO2016136902A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/02Copolymers with acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • C09K3/1015Polysaccharides or derivatives thereof

Definitions

  • the present invention relates to an additive for a rubber composition and a rubber composition.
  • Cited Document 1 a rubber composition produced by adding carbon black to a rubber component is known.
  • Cited Document 2 a rubber composition containing hydrogenated nitrile rubber, carbon black, and / or carbon fiber, and particularly for oil sealing with sliding having a high required level of wear resistance and oil resistance. It is described that it can be used as a member.
  • Patent Document 3 a rubber composition containing hydrogenated acrylonitrile-butadiene rubber (hydrogenated NBR), carbon black, and cellulose powder in a predetermined compounding ratio can be used as an oil seal for power steering.
  • hydrogenated NBR hydrogenated acrylonitrile-butadiene rubber
  • carbon black carbon black
  • cellulose powder in a predetermined compounding ratio
  • JP 2012-97213 A Japanese Patent No. 5158717 JP 2003-336745 A
  • the addition of the filler may increase the specific gravity of the rubber composition, which may reduce the energy efficiency of a machine or the like using the rubber composition. Therefore, the present invention provides an excellent rubber composition that is superior to one or more selected from 1) moldability, 2) mechanical properties, 3) reduction of rubber wear depth in high-temperature oil (oil leakage suppression), and 4) reduction of specific gravity. It is an object to provide an additive for a rubber composition for obtaining a rubber composition or the rubber composition. Alternatively, an object of the present invention is to provide a rubber composition additive or an oil sealing rubber composition for obtaining a rubber composition for oil sealing.
  • the present invention provides the following [1] to [15].
  • An additive for a rubber composition comprising powdery cellulose having an average particle size of 15 to 70 ⁇ m.
  • Powdery cellulose has a degree of polymerization of 150 to 1200, a crystallinity of 70 to 90%, an apparent specific gravity of 0.15 to 0.6 g / mL, an angle of repose of 45 to 60 °, and a moisture content of 5% or less.
  • a rubber composition comprising a rubber component, a filler, and powdered cellulose having an average particle size of 15 to 70 ⁇ m.
  • the degree of polymerization of the powdered cellulose is 150 to 1200, the crystallinity is 70 to 90%, the apparent specific gravity is 0.15 to 0.6 g / mL, the angle of repose is 45 to 60 °, and the moisture is 5% or less.
  • the present invention also provides the following [2-1] to [2-3].
  • [2-2] The rubber composition according to [2-1], wherein the rubber component is nitrile rubber.
  • the powdery cellulose has an average particle size of 15 to 50 ⁇ m, a polymerization degree of 150 to 1200, a crystallinity of 70 to 90, an apparent specific gravity of 0.2 to 0.6 g / ml, and an angle of repose.
  • the rubber composition according to [2-1] or [2-2] which is 45 to 60 ° and has a water content of 5% or less.
  • the present invention also provides the following [3-1] to [3-2].
  • [3-1] A rubber composition for oil sealing containing a rubber component, carbon black, and powdered cellulose, wherein the compounding ratio of the rubber component, carbon black, and powdered cellulose is rubber component: carbon black: powder.
  • [3-2] The rubber composition for oil sealing according to [3-1], wherein the rubber component is nitrile rubber.
  • the present invention also provides the following [4-1] to [4-3].
  • a rubber composition for oil sealing [4-2] The rubber composition for oil sealing according to [4-1], wherein the rubber component is ethylene propylene diene rubber.
  • [4-3] The rubber composition for oil sealing according to [4-1] or [4-2], wherein the silica is silica treated with a silane coupling agent.
  • the present invention also provides the following.
  • the powdery cellulose has a polymerization degree of 150 to 1200, a crystallinity of 70 to 90%, an apparent specific gravity of 0.15 to 0.6 g / mL, an angle of repose of 45 to 60 °, and a water content of 5% or less.
  • the use as described above, wherein the powdery cellulose is a pulverized product of a cellulose raw material treated with an inorganic acid.
  • the use as described above, wherein the rubber composition comprises 100 parts by mass of a rubber component and 20 to 120 parts by mass of carbon black.
  • the use as described above, wherein the rubber composition comprises 100 parts by mass of a rubber component and 20 to 60 parts by mass of silica.
  • a rubber composition containing a filler eg, carbon black, silica
  • a filler eg, carbon black, silica
  • additive for rubber composition of the present invention comprises powdery cellulose having an average particle size of 15 to 70 ⁇ m.
  • the additive of the present invention may be a composition.
  • the powdery cellulose used in the present invention is not particularly limited as long as the average particle size is 15 to 70 ⁇ m.
  • Powdered cellulose is produced by pulverizing cellulose raw materials such as pulp hydrolyzed with mineral acids (ie, inorganic acids) such as hydrochloric acid, sulfuric acid, and nitric acid, or cellulose raw materials such as pulp not subjected to acid hydrolyzing treatment. It can be obtained by grinding.
  • the powdery cellulose used in the present invention has an average particle size of 15 ⁇ m or more, preferably 22 ⁇ m or more, more preferably 25 ⁇ m or more, and further preferably 35 ⁇ m or more.
  • An average particle diameter is 70 micrometers or less, Preferably it is 55 micrometers or less, More preferably, it is 50 micrometers or less, More preferably, it is 36 micrometers or less. Therefore, the powdery cellulose used in the present invention has an average particle size of 15 to 70 ⁇ m, preferably 15 to 50 ⁇ m, more preferably 22 to 36 ⁇ m, or preferably 25 to 70 ⁇ m. More preferably, it is 35 to 55 ⁇ m.
  • the Mooney viscosity reducing effect When the average particle size is increased, the Mooney viscosity reducing effect is small, the rubber hardness is increased, and the mechanical properties tend to be inferior. On the other hand, when the average particle size is decreased, the Mooney viscosity reducing effect is improved, but the rubber reinforcing effect tends to be decreased.
  • the average particle size of the powdery cellulose is preferably 15 to 50 ⁇ m, more preferably 22 to 36 ⁇ m.
  • the average particle size of the powdered cellulose is preferably 25 to 70 ⁇ m, more preferably 35 to 55 ⁇ m.
  • an average particle diameter means the value when accumulation distribution will be 50%, when it measures using a laser scattering method and represents a particle size distribution as accumulation distribution.
  • the degree of polymerization of the powdery cellulose used in the present invention is preferably 150 or more, more preferably 250 or more, still more preferably 400 or more, and particularly preferably 600 or more.
  • the degree of polymerization of the powdery cellulose is preferably 1400 or less, more preferably 1200 or less, and still more preferably 800 or less. Accordingly, the degree of polymerization of the powdery cellulose is preferably 150 to 1200, more preferably 400 to 800, or preferably 250 to 1400, more preferably 600 to 1200.
  • the degree of polymerization is high, the rubber hardness tends to increase.
  • the degree of polymerization is low, the rubber reinforcing effect tends to be small.
  • the degree of polymerization of the powdery cellulose is preferably 150 to 1200, more preferably 400 to 800.
  • the degree of polymerization of the powdery cellulose is preferably 250 to 1400, more preferably 600 to 1200. is there.
  • the degree of polymerization of powdery cellulose means a value obtained by a viscosity measurement method using copper ethylenediamine described in the 16th revised Japanese Pharmacopoeia Description, Crystalline Cellulose Confirmation Test (2).
  • the crystallinity of the powdery cellulose used in the present invention is preferably from 70 to 90, and more preferably from 80 to 90.
  • the degree of crystallinity is low, the time required for heat vulcanization is long and workability tends to deteriorate. If the crystallinity is 80 or more, the influence on the vulcanization rate is hardly confirmed.
  • the crystallinity of the powdery cellulose changes due to the production method in addition to the type of pulp used as a raw material, and the powdered cellulose has a high crystallinity by using an acid hydrolyzed cellulose raw material. Can be obtained.
  • the powdery cellulose manufactured only by the mechanical process, without performing an acid hydrolysis process tends to have a low crystallinity.
  • the crystallinity degree of powdery cellulose is the value calculated
  • the crystallinity is calculated by the method of Segal et al. (L. Segal, JJ Greery, et al, Text. Res. J., 29, 786, 1959) and the method of Kamide et al. (K. Kamide et al.
  • the apparent specific gravity of the powdery cellulose used in the present invention is preferably 0.15 or more, more preferably 0.18 or more, still more preferably 0.2 or more, and even more preferably 0.3 or more. It is.
  • the apparent specific gravity of the powdery cellulose is preferably 0.6 or less, more preferably 0.5 or less, still more preferably 0.45 or less, and even more preferably 0.35 or less. Therefore, the apparent specific gravity of the powdery cellulose is preferably 0.2 to 0.6, more preferably 0.3 to 0.45, or preferably 0.15 to 0.5, and more preferably Is 0.18 to 0.35.
  • the powder is bulky, and the dispersibility of the rubber composition in components (eg, rubber, carbon black, silica, etc.) tends to decrease.
  • the apparent specific gravity is large, since the powder is low in volume and compact, the dispersibility in the components of the rubber composition (eg, rubber, carbon black, silica, etc.) is good. Since the particle diameter is small, the reinforcing effect of rubber tends to be small.
  • the apparent specific gravity of the powdery cellulose is preferably 0.2 to 0.6, more preferably 0.3 to 0.45.
  • the apparent specific gravity of the powdery cellulose is preferably 0.15 to 0.5, more preferably 0.18. ⁇ 0.35.
  • the apparent specific gravity was calculated by putting 10 g of a sample into a 100 ml graduated cylinder, continuously striking the bottom of the graduated cylinder until the height of the sample did not decrease, and reading the scale on the flat surface. Value (g / mL).
  • the angle of repose of the powdered cellulose used in the present invention is preferably 45 ° or more, more preferably 48 ° or more.
  • the angle of repose of the powdery cellulose is preferably 60 ° or less, more preferably 58 ° or less, and further preferably 56 ° or less. Therefore, the angle of repose of powdered cellulose is preferably 45 to 60 °, more preferably 48 to 56 °, or preferably 48 to 58 °. If the angle of repose is large, the powder fluidity tends to be poor, which may be unfavorable for work. On the other hand, if the angle of repose is small, the powder fluidity is good and the workability is improved, but there is a tendency for powder to be produced.
  • the angle of repose of powdered cellulose is preferably 45 to 60 °, more preferably 48 to 56 °.
  • the repose angle of the powdered cellulose is preferably 45 to 60 °, more preferably 48 to 58 °.
  • the water content of the powdered cellulose used in the present invention is preferably 5% or less, more preferably 3% or less. If the moisture is high, it may cause a vulcanization delay when the rubber is heated and vulcanized. In addition, the strength (eg, mechanical properties) of the rubber after molding may be adversely affected. Therefore, the lower the moisture content of the powdery cellulose, the better.
  • the following method is mentioned as an example of the manufacturing method of a specific powdery cellulose.
  • a dispersion having a pulp concentration of 3 to 10% by weight (in terms of solid content) adjusted to an acid concentration of 0.10 to 1.2 N is subjected to an acid hydrolysis treatment under conditions of a temperature of 80 to 100 ° C. and a time of 30 minutes to 3 hours. I do.
  • the alkali agent is added to the pulp which performed the acid hydrolyzing process, and it neutralizes and wash
  • a predetermined amount is added to the reaction tank after concentration with a dehydrator (eg, screw press, belt filter) in order to increase the concentration before being introduced into the hydrolysis reaction tank. May be input.
  • a dehydrator eg, screw press, belt filter
  • cellulose raw materials for powdered cellulose include hardwood-derived pulp, softwood-derived pulp, or non-wood pulp, and pulping methods include sulfite cooking, kraft cooking, soda A quinone cooking method, an organosolv cooking method, etc. can be illustrated. Further, the form of the cellulose raw material is not particularly limited, and it can be used in a slurry form or a sheet form.
  • the acid concentration at the time of oxidative hydrolysis treatment of the cellulose raw material is not particularly limited, but is usually about 0.1 to 1.2 N. If the acid concentration in the acid hydrolysis treatment is lower than 0.1 N, the depolymerization of cellulose due to the acid can be suppressed, so the decrease in the degree of polymerization of the powdered cellulose is reduced, but it is refined due to the inherent toughness of cellulose. It can be very difficult. On the other hand, if the acid concentration is higher than 1.2N, depolymerization of cellulose proceeds and the particle size of powdered cellulose becomes easy to control, and the powder fluidity is improved, but the degree of polymerization is reduced, and There is a tendency for physical properties to decrease.
  • a cutting mill mesh mill (manufactured by Horai Co., Ltd.), Atoms (manufactured by Yamamoto Hyakuma Mfg. Co., Ltd.), knife mill (manufactured by Palman), cutter mill (manufactured by Tokyo Atomizer Manufacturing Co., Ltd.), CS cutter ( Mitsui Mining Co., Ltd.), rotary cutter mill (manufactured by Nara Machinery Co., Ltd.), pulp crusher (manufactured by Suikou Co., Ltd.), shredder (manufactured by Shinko Pantech Co., Ltd.), hammer type mill: jaw crusher (Makino Co., Ltd.) ), Hammer crusher (manufactured by Hadano Sangyo Co., Ltd.), impact mill: Pulverizer (manufactured by Hosokawa Micron Corporation), fine impact mill (manufactured by Hosokawa Micron Corporation), super micron mill (manufactured by Ho
  • a tornado mill made by Nikkiso Co., Ltd.
  • a blade mill made by Nisshin Engineering Co., Ltd.
  • a free crusher made by Nara Machinery Co., Ltd.
  • a turbo mill made by Freund Sangyo Co., Ltd.
  • the raw material of powdered cellulose and other organic and / or inorganic components may be mixed singly or in an arbitrary ratio of two or more types, and pulverized. Is possible. Moreover, it is possible to perform a chemical process in the range which does not impair the polymerization degree of the natural cellulose used for a raw material significantly.
  • the vertical roller mill is a centrifugal vertical mill that belongs to the roller mill, and the vertical roller mill is a pulp that is crushed by a disk-shaped turntable and a vertical roller. Crush.
  • the biggest feature of the vertical roller mill is that it is excellent in fine pulverization.
  • the reason is that the raw material is pulverized by the force of compressing the raw material between the roller and the table and the shearing force generated between the roller and the table.
  • Conventional grinding machines include vertical roller mills (manufactured by Shinion Co., Ltd.), vertical roller mills (manufactured by Schaeffler Japan Co., Ltd.), roller mills (manufactured by Kotobuki Giken Kogyo Co., Ltd.), and VX mills (corporation). Kurimoto Works), KVM type vertical mill (Earth Technica Co., Ltd.), IS mill (IHI Plant Engineering Co., Ltd.) and the like.
  • the additive for rubber composition of the present invention may contain an optional component in addition to the above powdery cellulose.
  • the additive for rubber composition of the present invention is added to the rubber composition to improve the moldability and mechanical properties of the rubber composition.
  • the rubber composition includes a rubber component.
  • rubber component natural rubber, synthetic rubber: isoprene rubber (IR), butadiene rubber (BR), styrene-butadiene rubber (SBR), chloroprene rubber (CR), nitrile rubber (NBR), polyisobutylene (butyl rubber) IIR), ethylene propylene rubber (EPM), ethylene propylene diene rubber (eg, ethylene propylene butadiene rubber) (EPDM), chlorosulfonated polyethylene (CSM), acrylic rubber (ACM), fluoro rubber (FKM), epichlorohydrin rubber (CO , ECO), urethane rubber (U), silicone rubber (Q), and the like.
  • nitrile rubber or ethylene propylene diene rubber (eg, ethylene propylene butadiene rubber) is used. Preferred That's right.
  • the rubber component is preferably nitrile rubber.
  • the rubber component is preferably ethylene propylene diene rubber, more preferably ethylene propylene butadiene rubber.
  • the ethylene propylene diene rubber is preferably obtained by copolymerizing a small amount of various diene components with ethylene and propylene.
  • any of medium nitrile (CN: 25 to 30%), medium to high nitrile (CN: 31 to 35%) and high nitrile (CN: 36 to 42%) can be used.
  • Preferably has a medium to high nitrile content.
  • vulcanization of these rubbers is generally performed by a vulcanization system using a combination of sulfur or a sulfur donating compound and a general-purpose vulcanization accelerator such as a sulfenamide-based compound or a thiuram-based compound.
  • Organic peroxide crosslinking is also possible. Examples of the organic peroxide include tertiary butyl peroxide, dicumyl peroxide, tertiary butyl cumyl peroxide, and 1,1-di (tertiary butyl peroxy) -3.
  • multifunctional unsaturated compounds such as triallyl isocyanurate, triallyl cyanurate, triallyl trimellitate, trimethylolpropane trimethacrylate, N, N′-m-phenylenebismaleimide Etc. are preferably used in combination.
  • the rubber composition to which the additive for rubber composition of the present invention is added preferably contains a filler (eg, carbon black, silica). Carbon black or silica is preferred as the filler.
  • a filler eg, carbon black, silica
  • carbon black or silica is preferred as the filler.
  • only one kind of these fillers may be used, or two or more kinds may be used in combination as long as the effects of the present invention are not impaired.
  • Carbon black is carbon fine particles usually having a diameter of about 3 to 500 nm, which are produced by industrial quality control. Carbon black also includes those imparted with properties that are compatible with rubber by controlling the functional groups on the particle surface.
  • silica is not particularly limited, and examples of silica include natural silica, synthetic silica (precipitated silica, dry silica, wet silica) and the like.
  • silica for example, silica used as a tire filler may be used.
  • silane coupling agent is not particularly limited.
  • the silane coupling agent is not particularly limited.
  • the filler contained in the rubber composition is preferably 20 parts by mass or more, more preferably 30 parts by mass with respect to 100 parts by mass of the rubber component. As mentioned above, More preferably, it is 50 mass parts or more, More preferably, it is 65 mass parts or more.
  • the filler contained in the rubber composition is preferably 120 parts by mass or less, more preferably 100 parts by mass or less, still more preferably 60 parts by mass or less, and even more preferably 45 parts by mass with respect to 100 parts by mass of the rubber component. It is as follows.
  • the filler contained in the rubber composition is preferably 20 to 120 parts by mass, or preferably 50 to 120 parts by mass, more preferably 100 parts by mass of the rubber component. Is 65 to 100 parts by mass, or preferably 20 to 60 parts by mass, more preferably 30 to 45 parts by mass, or preferably 20 to 60 parts by mass.
  • the carbon black contained in the rubber composition is preferably 50 to 120 parts by mass, more preferably 65 to 100 parts by mass, or preferably 100 parts by mass with respect to 100 parts by mass of the rubber component. 20 to 60 parts by mass, more preferably 30 to 45 parts by mass.
  • the carbon black contained in the rubber composition is preferably 20 to 60 parts by mass with respect to 100 parts by mass of the rubber component, More preferred is 30 to 45 parts by mass.
  • the silica contained in the rubber composition is preferably 20 to 60 parts by mass with respect to 100 parts by mass of the rubber component.
  • the present invention also provides a rubber composition having excellent moldability and mechanical properties.
  • the rubber composition of the present invention includes a rubber component, a filler (eg, carbon black, silica), and powdered cellulose having an average particle size of 15 to 70 ⁇ m.
  • Examples and preferred examples of powdered cellulose contained in the rubber composition of the present invention are the same as the examples and preferred examples already described in the section of the additive for rubber composition.
  • Examples and preferred examples of the filler contained in the rubber composition of the present invention are the same as the examples and preferred examples already described in the section of additive for rubber composition.
  • Examples and preferred examples of the rubber component contained in the rubber composition of the present invention are the same as the examples and preferred examples already described in the item of additive for rubber composition.
  • the powdery cellulose contained in the rubber composition of the present invention is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, and further preferably 20 parts by mass or more with respect to 100 parts by mass of the rubber component.
  • the powdery cellulose is preferably 50 parts by mass or less, more preferably 40 parts by mass or less, still more preferably 35 parts by mass or less, still more preferably 30 parts by mass or less, particularly preferably 100 parts by mass of the rubber component. 25 parts by mass or less.
  • the powdery cellulose contained in the rubber composition of the present invention is preferably 5 to 50 parts by mass, more preferably 10 to 30 parts by mass, or preferably 5 to 30 parts by mass with respect to 100 parts by mass of the rubber component. Part, more preferably 10 to 25 parts by weight, or preferably 10 to 40 parts by weight, more preferably 20 to 35 parts by weight.
  • the powdery cellulose contained in the rubber composition of the present invention is preferably 5 to 50 parts by mass, more preferably 10 to 10 parts by mass with respect to 100 parts by mass of the rubber component. 30 parts by mass, or preferably 5 to 30 parts by mass, more preferably 10 to 25 parts by mass, and particularly from the viewpoint of reducing the wear depth of the rubber composition, preferably 5 to 30 parts by mass, more preferably 10 to 25 parts by mass.
  • the powdery cellulose contained in the rubber composition of the present invention is preferably 10 to 40 parts by weight, more preferably 20 to 35 parts per 100 parts by weight of the rubber component. Part by mass.
  • the filler contained in the rubber composition of the present invention is preferably 20 parts by mass or more, more preferably 30 parts by mass or more, still more preferably 50 parts by mass or more, and still more preferably 65 parts by weight with respect to 100 parts by weight of the rubber component. More than part by mass.
  • the filler contained in the rubber composition is preferably 120 parts by mass or less, more preferably 100 parts by mass or less, still more preferably 60 parts by mass or less, and even more preferably 45 parts by mass with respect to 100 parts by mass of the rubber component. Or less.
  • the filler contained in the rubber composition of the present invention is preferably 50 to 120 parts by weight, more preferably 65 to 100 parts by weight, or preferably 20 to 60 parts by weight with respect to 100 parts by weight of the rubber component. More preferably, it is 30 to 45 parts by mass, or preferably 20 to 60 parts by mass.
  • the carbon black contained in the rubber composition is preferably 50 to 120 parts by mass, more preferably 65 to 100 parts by mass, or preferably 20 to 100 parts by mass of the rubber component. -60 mass parts, more preferably 30-45 mass parts.
  • the carbon black contained in the rubber composition is preferably 20 to 60 parts by mass with respect to 100 parts by mass of the rubber component. The amount is preferably 30 to 45 parts by mass.
  • the silica contained in the rubber composition is preferably 20 to 60 parts by mass with respect to 100 parts by mass of the rubber component.
  • the rubber composition of the present invention preferably contains 100 parts by mass of a rubber component, 20 to 120 parts by mass of a filler, and 5 to 50 parts by mass of powdered cellulose.
  • the moldability compression of a Mooney viscosity rise
  • mechanical characteristics especially elongation
  • vulcanization characteristics shortening of vulcanization time
  • a rubber composition containing carbon black at a high blending ratio of 50 to 120 parts by weight, preferably 65 to 100 parts by weight with respect to 100 parts by weight of the rubber component is particularly moldable for the rubber composition. Excellent mechanical and vulcanizing properties.
  • the rubber composition of the present invention contains a rubber component, carbon black, and powdered cellulose, from the viewpoint of improving oil leakage suppression by reducing the wear depth of rubber in high temperature oil.
  • the rubber composition having the above compounding ratio is particularly preferable for oil sealing.
  • cure characteristic are more excellent, and the specific gravity of a rubber composition becomes low.
  • the rubber composition having the above compounding ratio is particularly preferable for oil sealing.
  • the rubber composition of the present invention may contain an optional component in addition to the above components.
  • optional components include components that are usually blended in rubber compositions, such as vulcanization accelerators (eg, zinc oxide, stearic acid), dispersants, anti-aging agents, and crosslinking aids. It is done.
  • the sample was processed for 2 minutes under the condition of 20% output with an ultrasonic processing apparatus manufactured by Hielscher GmbH, and the processed sample was used for measurement.
  • a measurement principle a laser scattering method is used, and the particle size distribution is expressed as an accumulation distribution, and a value at which the accumulation distribution is 50% is defined as an average particle diameter.
  • ⁇ Degree of polymerization> The cellulose polymerization degree was calculated
  • ⁇ Crystallinity> The crystallinity was determined by measuring the X-ray diffraction of the sample. For the measurement of X-ray diffraction, an appropriate amount of sample was placed on a glass cell, and an X-ray diffraction measurement apparatus (RAD-2C system, manufactured by Rigaku Corporation) was used. The crystallinity is calculated by the method of Segal et al. (L. Segal, JJ Greery, et al, Text. Res. J., 29, 786, 1959) and the method of Kamide et al. (K. Kamide et al.
  • ⁇ Moisture> About 5 g of the sample was precisely weighed in a weighing bottle having a known weight, and the weighing bottle containing the sample was dried with a dryer at 100 to 105 ° C. for 2 hours. After 2 hours, the sample was transferred to a desiccator, cooled for 1 hour, weighed with an analytical balance, and calculated from the weight of the sample before and after drying.
  • ML (ML 1 + 4 )> The values measured with a Mooney viscometer using a Mooney viscometer (SMV-300, manufactured by Shimadzu Corporation) at 100 ° C. for 1 minute preheating and 4 minutes after starting rotation are shown.
  • Nitrile rubber (KUMHO PETROCHEMICAL, trade name: KNB35L, bound acrylonitrile content 34%, Mooney viscosity 41) 100 parts by weight, carbon black (Sid Richardson, trade name: N550) 75 parts by weight, powdered cellulose ( Manufactured by Nippon Paper Industries Co., Ltd., trade name: W-200Y, average particle size 31 ⁇ m, polymerization degree 600, crystallinity 84%, apparent specific gravity 0.36 g / ml, repose angle 51 °, moisture 2.5%) 10 parts by mass, 3 parts by mass of zinc oxide (manufactured by Sakai Chemical Industry Co., Ltd.), 6 parts by mass of plasticizer (manufactured by ADEKA, trade name: RS107), 2 parts by mass of anti-aging agent (manufactured by Chemutra), and crosslinking aid (Kawaguchi Chemical Industries) 4.9 parts by mass of a peroxide (manufactured by Ko
  • the kneaded product had a Mooney viscosity of 130 N ⁇ m and a vulcanization characteristic of 1.5 N ⁇ m.
  • the kneaded product was subjected to press vulcanization at 160 ° C. for 12 minutes to obtain a plate test piece having a rubber hardness of 83 Shore A.
  • Example 2 Example 1 was repeated except that the amount of plasticizer added was changed to 30 parts by mass.
  • the resulting kneaded product had a Mooney viscosity of 54 N ⁇ m and a vulcanization characteristic of 1.0 N ⁇ m. Further, the rubber hardness of the plate-like test piece was 74 Shore A.
  • Example 3 The same procedure as in Example 1 was performed except that the nitrile rubber was changed to KNB35H (manufactured by KUMHO PETROCHEMICAL, bound acrylonitrile content: 34%, Mooney viscosity: 80). The resulting kneaded product had a Mooney viscosity of 175 N ⁇ m and a vulcanization characteristic of 2.2 N ⁇ m. Further, the rubber hardness of the plate-like test piece was 87 Shore A.
  • Example 1 The same procedure as in Example 1 was carried out except that the blending amount of carbon black was 85 parts by mass and powdered cellulose was not blended. The resulting kneaded product had a Mooney viscosity of 140 N ⁇ m and a vulcanization characteristic of 1.2 N ⁇ m. Further, the rubber hardness of the plate-like test piece was 82 Shore A.
  • Comparative Example 2 The same procedure as in Comparative Example 1 was conducted except that the amount of plasticizer added was changed to 30 parts by mass.
  • the resulting kneaded product had a Mooney viscosity of 62 N ⁇ m and a vulcanization characteristic of 0.9 N ⁇ m. Further, the rubber hardness of the plate-like test piece was 73 Shore A.
  • Comparative Example 3 Comparative Example 1 was repeated except that the nitrile rubber was changed to KNB35H.
  • the resulting kneaded product had a Mooney viscosity of 200 N ⁇ m and a vulcanization characteristic of 1.9 N ⁇ m. Further, the rubber hardness of the plate-like test piece was 86 Shore A.
  • Example 4 The powdered cellulose was changed to W-400G (manufactured by Nippon Paper Industries Co., Ltd., average particle size 24 ⁇ m, polymerization degree 160, crystallinity 86%, apparent specific gravity 0.48 g / ml, repose angle 49 °, moisture 3.5%). Except for this, the procedure was the same as in Example 1. The resulting kneaded product had a Mooney viscosity of 135 N ⁇ m and a vulcanization characteristic of 1.4 N ⁇ m. Further, the rubber hardness of the plate-like test piece was 82 Shore A.
  • Example 5 The powdered cellulose was changed to W-100G (manufactured by Nippon Paper Industries Co., Ltd., average particle size 36 ⁇ m, polymerization degree 450, crystallinity 85%, apparent specific gravity 0.30 g / ml, repose angle 58 °, moisture 3.6%). Except for this, the procedure was the same as in Example 1. The resulting kneaded product had a Mooney viscosity of 133 N ⁇ m and a vulcanization characteristic of 1.4 N ⁇ m. Further, the rubber hardness of the plate-like test piece was 83 Shore A.
  • Example 6 The powdery cellulose was changed to W-50 (manufactured by Nippon Paper Industries Co., Ltd., average particle size 42 ⁇ m, polymerization degree 1050, crystallinity 83%, apparent specific gravity 0.20 g / ml, repose angle 60 °, moisture 3.1%). Except for this, the procedure was the same as in Example 1. The resulting kneaded product had a Mooney viscosity of 137 N ⁇ m and a vulcanization characteristic of 1.3 N ⁇ m. Further, the rubber hardness of the plate-like test piece was 84 Shore A.
  • Example 7 The same procedure as in Example 1 was carried out except that the amount of carbon black added was 55 parts by mass and the amount of powdered cellulose was 30 parts by mass.
  • the resulting kneaded product had a Mooney viscosity of 120 N ⁇ m and a vulcanization characteristic of 1.6 N ⁇ m. Further, the rubber hardness of the plate-like test piece was 86 Shore A.
  • Example 8 The procedure of Example 1 was repeated except that the amount of carbon black added was 100 parts by mass and the amount of powdered cellulose was 20 parts by mass.
  • the resulting kneaded product had a Mooney viscosity of 155 N ⁇ m and a vulcanization characteristic of 1.4 N ⁇ m. Further, the rubber hardness of the plate-like test piece was 91 Shore A.
  • ⁇ Comparative Example 5> Using an exposed wood pulp sheet (NDSP, manufactured by Nippon Paper Industries Co., Ltd., average polymerization degree 1600) as a raw material, it is mechanically pulverized using a tornado mill (manufactured by Nikkiso Co., Ltd.), with an average particle diameter of 72.3 ⁇ m, average A powdery cellulose having a polymerization degree of 1480 and a crystallinity of 82.3% was obtained. The same procedure as in Example 1 was conducted except that the powdery cellulose used was changed to the powder described above. The resulting kneaded product had a Mooney viscosity of 145 N ⁇ m and a vulcanization characteristic of 1.0 N ⁇ m. Further, the rubber hardness of the plate-like test piece was 87 Shore A.
  • the rubber compositions of Examples 1 to 3 containing powdered cellulose maintained the rubber hardness as compared with the rubber compositions of Comparative Examples 1 to 3 not containing powdered cellulose. However, it can be seen that the Mooney viscosity is lowered. It can also be seen that the vulcanization characteristics are improved.
  • Example 2-1> The procedure was the same as Example 1 except that the amount of carbon black was changed to 40 parts by mass.
  • the resulting kneaded product had a Mooney viscosity of 34 N ⁇ m and a vulcanization characteristic of 1.4 N ⁇ m.
  • the rubber hardness of the plate-like test piece was 72 Shore A, the 50% tensile stress was 29 kgf / cm 2 , and the wear depth was 34 ⁇ m.
  • Example 2-2> The same procedure as in Example 1 was conducted except that the amount of carbon black was changed to 30 parts by mass and the amount of powdered cellulose was changed to 20 parts by mass.
  • the resulting kneaded product had a Mooney viscosity of 31 N ⁇ m and a vulcanization characteristic of 1.5 N ⁇ m. Further, the rubber hardness of the plate-like test piece was 73 Shore A, the 50% tensile stress was 34 Kgf / cm 2 , and the wear depth was 22 ⁇ m.
  • Example 2-1> The same procedure as in Example 1 was carried out except that the blending amount of carbon black was changed to 50 parts by mass and the powdery cellulose was not blended.
  • the resulting kneaded product had a Mooney viscosity of 37 N ⁇ m and a vulcanization characteristic of 1.1 N ⁇ m.
  • the rubber hardness of the plate-like test piece was 71 Shore A, the 50% tensile stress was 22 kgf / cm 2 , and the wear depth was 84 ⁇ m.
  • Example 2-2 The same procedure as in Example 1 was carried out except that the blending amount of carbon black was changed to 80 parts by mass and the powdery cellulose was not blended.
  • the resulting kneaded product had a Mooney viscosity of 130 N ⁇ m and a vulcanization characteristic of 1.3 N ⁇ m.
  • the rubber hardness of the plate-like test piece was 82 Shore A, the 50% tensile stress was 26 Kgf / cm 2 , and the wear depth was 61 ⁇ m.
  • Example 2-3 The powdery cellulose was changed to W-400G (manufactured by Nippon Paper Industries Co., Ltd., average particle size 24 ⁇ m, polymerization degree 160, crystallinity 86%, apparent specific gravity 0.48 g / ml, repose angle 49 °, moisture 3.5%). Except for this, the procedure was the same as in Example 2-1.
  • the resulting kneaded product had a Mooney viscosity of 36 N ⁇ m and a vulcanization characteristic of 1.4 N ⁇ m.
  • the rubber hardness of the plate-like test piece was 71 Shore A, the 50% tensile stress was 25 Kgf / cm 2 , and the wear depth was 40 ⁇ m.
  • Example 2-4 The powdered cellulose was changed to W-100G (manufactured by Nippon Paper Industries Co., Ltd., average particle size 36 ⁇ m, polymerization degree 450, crystallinity 85%, apparent specific gravity 0.30 g / ml, repose angle 58 °, moisture 3.6%). Except for this, the procedure was the same as in Example 2-1.
  • the resulting kneaded product had a Mooney viscosity of 35 N ⁇ m and a vulcanization characteristic of 1.4 N ⁇ m.
  • the rubber hardness of the plate-like test piece was 72 Shore A, the 50% tensile stress was 28 kgf / cm 2 , and the wear depth was 36 ⁇ m.
  • Example 2-5 The powdery cellulose was changed to W-50 (manufactured by Nippon Paper Industries Co., Ltd., average particle size 42 ⁇ m, polymerization degree 1050, crystallinity 83%, apparent specific gravity 0.20 g / ml, repose angle 60 °, moisture 3.1%). Except for this, the procedure was the same as in Example 2-1.
  • the resulting kneaded product had a Mooney viscosity of 36 N ⁇ m and a vulcanization characteristic of 1.3 N ⁇ m.
  • the rubber hardness of the plate-like test piece was 73 Shore A, the 50% tensile stress was 23 Kgf / cm 2 , and the wear depth was 35 ⁇ m.
  • Example 2-6> The procedure was the same as Example 2-1, except that the amount of carbon black added was 20 parts by mass and the amount of powdered cellulose was 5 parts by mass.
  • the resulting kneaded product had a Mooney viscosity of 28 N ⁇ m and a vulcanization characteristic of 1.2 N ⁇ m.
  • the rubber hardness of the plate-like test piece was 61 Shore A, the 50% tensile stress was 17 kgf / cm 2 , and the wear depth was 48 ⁇ m.
  • Example 2-7 The same procedure as in Example 2-1 was performed, except that the addition amount of carbon black was 55 parts by mass, and powdered cellulose was 30 parts by mass.
  • the resulting kneaded product had a Mooney viscosity of 120 N ⁇ m and a vulcanization characteristic of 1.6 N ⁇ m.
  • the rubber hardness of the plate-like test piece was 86 Shore A, the 50% tensile stress was 40 Kgf / cm 2 , and the wear depth was 28 ⁇ m.
  • the resulting kneaded product had a Mooney viscosity of 155 N ⁇ m and a vulcanization characteristic of 1.6 N ⁇ m.
  • the rubber hardness of the plate-like test piece was 91 Shore A, the 50% tensile stress was 48 kgf / cm 2 , and the wear depth was 33 ⁇ m.
  • Example 2-4 Using an exposed wood pulp sheet (NDSP, manufactured by Nippon Paper Industries Co., Ltd., average polymerization degree 1600) as a raw material, it is mechanically pulverized using a tornado mill (manufactured by Nikkiso Co., Ltd.), with an average particle diameter of 72.3 ⁇ m, average A powdery cellulose having a polymerization degree of 1480 and a crystallinity of 82.3% was obtained.
  • Example 2-1 was carried out except that the powdery cellulose used was changed to the above powder.
  • the resulting kneaded product had a Mooney viscosity of 40 N ⁇ m and a vulcanization characteristic of 1.0 N ⁇ m.
  • the rubber hardness of the plate-like test piece was 77 Shore A, the 50% tensile stress was 19 Kgf / cm 2 , and the wear depth was 56 ⁇ m.
  • Comparative Example 2-5> The same procedure as in Comparative Example 2-2 was performed except that the addition amount of carbon black was changed to 120 parts by mass and the addition amount of the plasticizer was changed to 18 parts by mass.
  • the resulting kneaded product had a Mooney viscosity of 153 N ⁇ m and a vulcanization characteristic of 1.4 N ⁇ m.
  • the rubber hardness of the plate-like test piece was 81 Shore A, the 50% tensile stress was 39 Kgf / cm 2 , and the wear depth was 60 ⁇ m.
  • Example 2-1 and Example 2-1 were compared with the rubber compositions of Comparative Example 2-1 and Comparative Example 2-2 that did not contain powdered cellulose. It can be seen that the wear depth is significantly reduced. It can also be seen that the vulcanization characteristics are improved.
  • Example 3-1 Using ethylene propylene diene rubber (EPDM) (manufactured by KUMHO PETROCHEMICAL, product name: KEP570P (Mooney viscosity 53)), silica (manufactured by Rhodia, product name: Z-175) is added to 100 parts by weight of ethylene propylene diene rubber.
  • EPDM ethylene propylene diene rubber
  • KEP570P Mooney viscosity 53
  • silica manufactured by Rhodia, product name: Z-175
  • the kneaded product was press-vulcanized at 160 ° C. for 12 minutes to obtain a plate-shaped test piece.
  • the obtained specimen had a specific gravity of 1.08, a rubber hardness of 76 Shore A, a 400% tensile stress of 65 kgf / cm 2 , a 600% tensile stress of 150 kgf / cm 2 and a compression set of 33%.
  • Example 3-2> Using ethylene propylene diene rubber (manufactured by KUMHO PETROCHEMICAL, product name: KEP570P (Mooney viscosity 53))), 30 parts by weight of silica (manufactured by Rhodia, product name: Z-175) per 100 parts by weight of ethylene propylene diene rubber Parts, powdered cellulose (manufactured by Nippon Paper Industries Co., Ltd., product name: W-50 (average particle size 43 ⁇ m, polymerization degree 1100, crystallinity 83%, apparent specific gravity 0.20 g / ml, repose angle 58 °, moisture 2.
  • ethylene propylene diene rubber manufactured by KUMHO PETROCHEMICAL, product name: KEP570P (Mooney viscosity 53)
  • silica manufactured by Rhodia, product name: Z-175
  • powdered cellulose manufactured by Nippon Paper Industries Co., Ltd., product name: W-50 (average particle size 43 ⁇ m, poly
  • the kneaded product was press-vulcanized at 160 ° C. for 12 minutes to obtain a plate-shaped test piece.
  • the obtained specimen had a specific gravity of 1.06, a rubber hardness of 77 Shore A, a 400% tensile stress of 80 kgf / cm 2 , a 600% tensile stress of 170 kgf / cm 2 and a compression set of 31%.
  • the kneaded product was press-vulcanized at 160 ° C. for 12 minutes to obtain a plate-shaped test piece.
  • the obtained specimen had a specific gravity of 1.00, rubber hardness of 66 Shore A, 400% tensile stress of 52 Kgf / cm 2 , 600% tensile stress of 125 Kgf / cm 2 , and compression set of 35%.
  • the kneaded product was press-vulcanized at 160 ° C. for 12 minutes to obtain a plate-shaped test piece.
  • the obtained specimen had a specific gravity of 1.10, a rubber hardness of 75 Shore A, a 400% tensile stress of 62 kgf / cm 2 , a 600% tensile stress of 140 kgf / cm 2 and a compression set of 37%.
  • Example 3-3 The powdery cellulose was changed to W-400G (manufactured by Nippon Paper Industries Co., Ltd., average particle size 24 ⁇ m, polymerization degree 160, crystallinity 86%, apparent specific gravity 0.48 g / ml, repose angle 49 °, moisture 3.5%). Except for this, the procedure was the same as in Example 3-1.
  • the resulting kneaded product had a Mooney viscosity of 54 N ⁇ m and a vulcanization characteristic of 1.4 N ⁇ m.
  • the kneaded product was press-vulcanized at 160 ° C. for 12 minutes to obtain a plate-shaped test piece.
  • the obtained specimen had a specific gravity of 1.08, a rubber hardness of 75 Shore A, a 400% tensile stress of 62 kgf / cm 2 , a 600% tensile stress of 142 kgf / cm 2 and a compression set of 34%.
  • Example 3-4 The powdered cellulose was changed to W-100G (manufactured by Nippon Paper Industries Co., Ltd., average particle size 36 ⁇ m, polymerization degree 450, crystallinity 85%, apparent specific gravity 0.30 g / ml, repose angle 58 °, moisture 3.6%). Except for this, the procedure was the same as in Example 3-1.
  • the resulting kneaded product had a Mooney viscosity of 53 N ⁇ m and a vulcanization characteristic of 1.4 N ⁇ m.
  • the kneaded product was press-vulcanized at 160 ° C. for 12 minutes to obtain a plate-shaped test piece.
  • the obtained specimen had a specific gravity of 1.08, a rubber hardness of 76 Shore A, a 400% tensile stress of 63 Kgf / cm 2 , a 600% tensile stress of 145 Kgf / cm 2 and a compression set of 33%.
  • Example 3-3 Powdered cellulose was changed to W-10MG2 (manufactured by Nippon Paper Industries Co., Ltd., average particle size 10 ⁇ m, polymerization degree 140, crystallinity 78%, apparent specific gravity 0.38 g / ml, repose angle 47 °, moisture 3.5%). Except for this, the procedure was the same as in Example 3-1.
  • the resulting kneaded product had a Mooney viscosity of 55 N ⁇ m and a vulcanization characteristic of 1.1 N ⁇ m.
  • the kneaded product was press-vulcanized at 160 ° C. for 12 minutes to obtain a plate-shaped test piece.
  • the obtained specimen had a specific gravity of 1.08, a rubber hardness of 75 Shore A, a 400% tensile stress of 61 kgf / cm 2 , a 600% tensile stress of 138 kgf / cm 2 and a compression set of 36%.
  • Example 3-4 Using an exposed wood pulp sheet (NDSP, manufactured by Nippon Paper Industries Co., Ltd., average polymerization degree 1600) as a raw material, it is mechanically pulverized using a tornado mill (manufactured by Nikkiso Co., Ltd.), with an average particle diameter of 72.3 ⁇ m, average A powdery cellulose having a polymerization degree of 1480 and a crystallinity of 82.3% was obtained. The same procedure as in Example 3-1 was conducted, except that the powdery cellulose used was changed to the powder described above. The resulting kneaded product had a Mooney viscosity of 57 N ⁇ m and a vulcanization characteristic of 1.0 N ⁇ m.
  • the kneaded product was press-vulcanized at 160 ° C. for 12 minutes to obtain a plate-shaped test piece.
  • the obtained specimen had a specific gravity of 1.08, a rubber hardness of 79 Shore A, a 400% tensile stress of 59 Kgf / cm 2 , a 600% tensile stress of 132 Kgf / cm 2 , and a compression set of 37%.
  • Example 3-3 and Example 3 were compared with the rubber compositions of Comparative Example 3-3 and Comparative Example 3-4 where the average particle size of the powdered cellulose was not in the range of 15 to 70 ⁇ m. It can be seen that the rubber composition of Example 3-4 has a high 600% tensile stress and excellent mechanical properties. It can also be seen that the vulcanization characteristics are improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided are: an additive for rubber compositions which is used for obtaining rubber compositions excellent in terms of moldability, mechanical property, etc.; and a rubber composition excellent in terms of moldability, mechanical property, etc. The additive for rubber compositions comprises powdery cellulose having an average particle diameter of 15-70 µm. Preferably, the powdery cellulose has a degree of polymerization of 150-1,200, a degree of crystallinity of 70-90%, an apparent specific gravity of 0.15-0.6 g/mL, an angle of repose of 45-60º, and a water content of 5% or less. The rubber composition comprises a rubber component, a filler, and powdery cellulose having an average particle diameter of 15-70 µm.

Description

ゴム組成物用添加剤およびゴム組成物Additive for rubber composition and rubber composition
 本発明は、ゴム組成物用添加剤およびゴム組成物に関する。 The present invention relates to an additive for a rubber composition and a rubber composition.
 一般に、ゴム成分にカーボンブラックを添加して製造されたゴム組成物が知られている。
 引用文献1には、ニトリルゴム、カーボンブラックを所定の配合比で含むゴム組成物が、耐泥水性、シール性を満足させ、自動車の転がり軸受を始め各種機械・装置のシール部材として用いられ得ることが記載されている。
 引用文献2には、水素添加ニトリルゴム、カーボンブラック、および/または炭素繊維を含有するゴム組成物が記載され、特に、耐摩耗性、耐油性の要求レベルが高い摺動を伴うオイルシーリング用の部材として利用され得ることが記載されている。
 一方、特許文献3には、水素化アクリルニトリル-ブタジエンゴム(水素化NBR)、カーボンブラック、セルロースパウダーを所定の配合比で含むゴム組成物が、パワーステアリング用のオイルシールとして利用され得ることが記載されている。
In general, a rubber composition produced by adding carbon black to a rubber component is known.
In Cited Document 1, a rubber composition containing nitrile rubber and carbon black in a predetermined compounding ratio satisfies the muddy water resistance and sealing properties, and can be used as a sealing member for various machines and devices including rolling bearings for automobiles. It is described.
Cited Document 2 describes a rubber composition containing hydrogenated nitrile rubber, carbon black, and / or carbon fiber, and particularly for oil sealing with sliding having a high required level of wear resistance and oil resistance. It is described that it can be used as a member.
On the other hand, in Patent Document 3, a rubber composition containing hydrogenated acrylonitrile-butadiene rubber (hydrogenated NBR), carbon black, and cellulose powder in a predetermined compounding ratio can be used as an oil seal for power steering. Are listed.
特開2012-97213号公報JP 2012-97213 A 特許第5158917号公報Japanese Patent No. 5158717 特開2003-336745号公報JP 2003-336745 A
 しかしながら、ゴム成分に充填材(例、カーボンブラック、シリカ)を配合すると、引張強さなどの力学的強度、反発弾性が向上するが、機械的特性の問題(特に、伸びの減少)が発生する。また、ゴムの成形性の指標となるムーニー粘度の上昇により、流動性が低下して、ゴム成形品の成形性が低下する。
 また、ゴム組成物を、耐摩耗性、耐油性の要求レベルが高い摺動を伴うオイルシーリング用の部材として使用する際に、高温の油中で摺動部のオイルシール(ゴム被覆層)が摩耗し、オイル漏れを発生させることがある。
 さらに、充填材の添加により、ゴム組成物の比重が増加し、ゴム組成物を使用した機械等のエネルギー効率が低下することがある。
 そこで、本発明は、1)成形性、2)機械的特性、3)高温の油中におけるゴム摩耗深さの低減(オイル漏れ抑制性)4)比重の低減から選ばれる1以上に優れるゴム組成物、または該ゴム組成物を得るためのゴム組成物用添加剤を提供することを目的とする。または、本発明は、オイルシーリング用ゴム組成物を得るためのゴム組成物用添加剤もしくはオイルシーリング用ゴム組成物を提供することを目的とする。
However, when a filler (eg, carbon black, silica) is added to the rubber component, mechanical strength such as tensile strength and impact resilience are improved, but mechanical property problems (particularly, reduction in elongation) occur. . Further, due to the increase in Mooney viscosity, which is an index of rubber moldability, the fluidity is lowered and the moldability of the rubber molded product is lowered.
In addition, when the rubber composition is used as a member for oil sealing with sliding, which requires a high level of wear resistance and oil resistance, the oil seal (rubber coating layer) of the sliding portion is used in high temperature oil. Wear and may cause oil leakage.
Furthermore, the addition of the filler may increase the specific gravity of the rubber composition, which may reduce the energy efficiency of a machine or the like using the rubber composition.
Therefore, the present invention provides an excellent rubber composition that is superior to one or more selected from 1) moldability, 2) mechanical properties, 3) reduction of rubber wear depth in high-temperature oil (oil leakage suppression), and 4) reduction of specific gravity. It is an object to provide an additive for a rubber composition for obtaining a rubber composition or the rubber composition. Alternatively, an object of the present invention is to provide a rubber composition additive or an oil sealing rubber composition for obtaining a rubber composition for oil sealing.
 上述した課題を解決し、目的を達成するために、本発明は、以下の[1]~[15]を提供する。
[1] 平均粒子径が15~70μmである粉末状セルロースを含む、ゴム組成物用添加剤。
[2] 粉末状セルロースの平均粒子径が25~70μmである、[1]に記載のゴム組成物用添加剤。
[3] 粉末状セルロースの、重合度が150~1200、結晶化度が70~90%、見掛け比重が0.15~0.6g/mL、安息角が45~60°、水分が5%以下である、[1]または[2]に記載のゴム組成物用添加剤。
[4] 粉末状セルロースが、無機酸で処理したセルロース原料の粉砕物である、[1]~[3]のいずれか1つに記載のゴム組成物用添加剤。
[5] ゴム組成物が、ゴム成分100質量部およびカーボンブラック20~120質量部を含む、[1]~[4]のいずれか1つに記載のゴム組成物用添加剤。
[6] ゴム組成物が、ゴム成分100質量部およびシリカ20~60質量部を含む、[1]~[5]のいずれか1つに記載のゴム組成物用添加剤。
[7] ゴム組成物がオイルシーリング用である、[1]~[6]のいずれか1つに記載のゴム組成物用添加剤。
[8] ゴム成分、充填材、および平均粒子径が15~70μmである粉末状セルロースを含む、ゴム組成物。
[9] 粉末状セルロースの、重合度が150~1200、結晶化度が70~90%、見掛け比重が0.15~0.6g/mL、安息角が45~60°、水分が5%以下である、[8]に記載のゴム組成物。
[10] ゴム成分100質量部、充填材20~120質量部、および粉末状セルロース5~50質量部を含む、[8]または[9]に記載のゴム組成物。
[11] 充填材がカーボンブラックまたはシリカである、[8]~[10]のいずれか1つに記載のゴム組成物。
[12] 充填材20~60質量部を含む、[8]~[11]のいずれか1つに記載のゴム組成物。
[13] 粉末状セルロース10~40質量部を含む、[8]~[12]のいずれか1つに記載のゴム組成物。
[14] オイルシーリング用である、[8]~[13]のいずれか1つに記載のゴム組成物。
[15] [8]~[13]のいずれか1つに記載のゴム組成物を含むオイルシール。
In order to solve the above-described problems and achieve the object, the present invention provides the following [1] to [15].
[1] An additive for a rubber composition comprising powdery cellulose having an average particle size of 15 to 70 μm.
[2] The additive for rubber composition according to [1], wherein the average particle size of the powdery cellulose is 25 to 70 μm.
[3] Powdery cellulose has a degree of polymerization of 150 to 1200, a crystallinity of 70 to 90%, an apparent specific gravity of 0.15 to 0.6 g / mL, an angle of repose of 45 to 60 °, and a moisture content of 5% or less. The additive for rubber composition according to [1] or [2].
[4] The rubber composition additive according to any one of [1] to [3], wherein the powdery cellulose is a pulverized product of a cellulose raw material treated with an inorganic acid.
[5] The additive for a rubber composition according to any one of [1] to [4], wherein the rubber composition contains 100 parts by mass of a rubber component and 20 to 120 parts by mass of carbon black.
[6] The additive for a rubber composition according to any one of [1] to [5], wherein the rubber composition contains 100 parts by mass of a rubber component and 20 to 60 parts by mass of silica.
[7] The additive for a rubber composition according to any one of [1] to [6], wherein the rubber composition is for oil sealing.
[8] A rubber composition comprising a rubber component, a filler, and powdered cellulose having an average particle size of 15 to 70 μm.
[9] The degree of polymerization of the powdered cellulose is 150 to 1200, the crystallinity is 70 to 90%, the apparent specific gravity is 0.15 to 0.6 g / mL, the angle of repose is 45 to 60 °, and the moisture is 5% or less. The rubber composition according to [8], wherein
[10] The rubber composition according to [8] or [9], comprising 100 parts by mass of a rubber component, 20 to 120 parts by mass of a filler, and 5 to 50 parts by mass of powdered cellulose.
[11] The rubber composition according to any one of [8] to [10], wherein the filler is carbon black or silica.
[12] The rubber composition according to any one of [8] to [11], comprising 20 to 60 parts by mass of a filler.
[13] The rubber composition according to any one of [8] to [12], comprising 10 to 40 parts by mass of powdered cellulose.
[14] The rubber composition according to any one of [8] to [13], which is used for oil sealing.
[15] An oil seal containing the rubber composition according to any one of [8] to [13].
 また本発明は、以下の[2-1]~[2-3]を提供する。
[2-1] ゴム成分、カーボンブラック、および粉末状セルロースを含むゴム組成物であって、該ゴム成分、カーボンブラック、および粉末状セルロースの配合比が、ゴム成分:カーボンブラック:粉末状セルロース=100:(50~120):(5~50)(重量部)である、ゴム組成物。
[2-2] 前記ゴム成分がニトリルゴムである、[2-1]に記載のゴム組成物。
[2-3] 前記粉末状セルロースの、平均粒子径が15~50μm、重合度が150~1200、結晶化度が70~90、見掛け比重が0.2~0.6g/ml、安息角が45~60°、水分が5%以下である、[2-1]または[2-2]に記載のゴム組成物。
The present invention also provides the following [2-1] to [2-3].
[2-1] A rubber composition containing a rubber component, carbon black, and powdered cellulose, wherein the compounding ratio of the rubber component, carbon black, and powdered cellulose is rubber component: carbon black: powdered cellulose = 100: (50 to 120): (5 to 50) (parts by weight) A rubber composition.
[2-2] The rubber composition according to [2-1], wherein the rubber component is nitrile rubber.
[2-3] The powdery cellulose has an average particle size of 15 to 50 μm, a polymerization degree of 150 to 1200, a crystallinity of 70 to 90, an apparent specific gravity of 0.2 to 0.6 g / ml, and an angle of repose. The rubber composition according to [2-1] or [2-2], which is 45 to 60 ° and has a water content of 5% or less.
 また本発明は、以下の[3-1]~[3-2]を提供する。
[3-1] ゴム成分、カーボンブラック、および粉末状セルロースを含むオイルシーリング用ゴム組成物であって、該ゴム成分、カーボンブラック、および粉末状セルロースの配合比が、ゴム成分:カーボンブラック:粉末状セルロース=100:(20~60):(5~30)(重量部)である、オイルシーリング用ゴム組成物。
[3-2] 前記ゴム成分がニトリルゴムである、[3-1]に記載のオイルシーリング用ゴム組成物。
The present invention also provides the following [3-1] to [3-2].
[3-1] A rubber composition for oil sealing containing a rubber component, carbon black, and powdered cellulose, wherein the compounding ratio of the rubber component, carbon black, and powdered cellulose is rubber component: carbon black: powder. A rubber composition for oil sealing, in the form of cellulose: 100: (20-60): (5-30) (parts by weight).
[3-2] The rubber composition for oil sealing according to [3-1], wherein the rubber component is nitrile rubber.
 また本発明は、以下の[4-1]~[4-3]を提供する。
[4-1] ゴム成分、シリカ、および粉末状セルロースを含むゴム組成物であって、該ゴム成分、シリカ、および粉末状セルロースの配合比が、ゴム成分:シリカ:粉末状セルロース=100:(20~60):(10~40)(質量部)である、オイルシーリング用ゴム組成物。
[4-2] 前記ゴム成分が、エチレンプロピレンジエンゴムである、[4-1]に記載のオイルシーリング用ゴム組成物。
[4-3] 前記シリカが、シランカップリング剤で処理されたシリカである、[4-1]または[4-2]に記載のオイルシーリング用ゴム組成物。
The present invention also provides the following [4-1] to [4-3].
[4-1] A rubber composition containing a rubber component, silica, and powdered cellulose, wherein the compounding ratio of the rubber component, silica, and powdered cellulose is rubber component: silica: powdered cellulose = 100 :( 20 to 60): (10 to 40) (parts by mass) A rubber composition for oil sealing.
[4-2] The rubber composition for oil sealing according to [4-1], wherein the rubber component is ethylene propylene diene rubber.
[4-3] The rubber composition for oil sealing according to [4-1] or [4-2], wherein the silica is silica treated with a silane coupling agent.
 また本発明は、以下を提供する。
 ゴム組成物の添加剤としての、平均粒子径が15~70μmである粉末状セルロースの使用。
 粉末状セルロースの、重合度が150~1200、結晶化度が70~90%、見掛け比重が0.15~0.6g/mL、安息角が45~60°、水分が5%以下である、上記使用。
 粉末状セルロースが、無機酸で処理したセルロース原料の粉砕物である、上記使用。
 ゴム組成物が、ゴム成分100質量部およびカーボンブラック20~120質量部を含む、上記使用。
 ゴム組成物が、ゴム成分100質量部およびシリカ20~60質量部を含む、上記使用。
The present invention also provides the following.
Use of powdered cellulose having an average particle size of 15 to 70 μm as an additive of a rubber composition.
The powdery cellulose has a polymerization degree of 150 to 1200, a crystallinity of 70 to 90%, an apparent specific gravity of 0.15 to 0.6 g / mL, an angle of repose of 45 to 60 °, and a water content of 5% or less. Use above.
The use as described above, wherein the powdery cellulose is a pulverized product of a cellulose raw material treated with an inorganic acid.
The use as described above, wherein the rubber composition comprises 100 parts by mass of a rubber component and 20 to 120 parts by mass of carbon black.
The use as described above, wherein the rubber composition comprises 100 parts by mass of a rubber component and 20 to 60 parts by mass of silica.
 本発明によれば、充填材(例、カーボンブラック、シリカ)が配合されたゴム組成物に、優れた成形性および機械的特性を付与し得る。および/または、本発明によれば、高温の油中におけるゴム摩耗深さの低減(オイル漏れ抑制性)および/またはゴム比重に優れるオイルシールとして用い得るゴム組成物を提供することができる。 According to the present invention, excellent moldability and mechanical properties can be imparted to a rubber composition containing a filler (eg, carbon black, silica). In addition, according to the present invention, it is possible to provide a rubber composition that can be used as an oil seal that has a reduced rubber wear depth (oil leakage suppression property) and / or an excellent rubber specific gravity in high-temperature oil.
1.ゴム組成物用添加剤
 本発明のゴム組成物用添加剤は、平均粒子径が15~70μmである粉末状セルロースを含む。なお、本発明の添加剤は、組成物であってよい。
1. Additive for rubber composition The additive for rubber composition of the present invention comprises powdery cellulose having an average particle size of 15 to 70 μm. The additive of the present invention may be a composition.
(粉末状セルロース)
 本発明に用いられる粉末状セルロースは、平均粒子径が15~70μmであれば特に限定はない。粉末状セルロースは、塩酸、硫酸、硝酸などの鉱酸(すなわち、無機酸)で酸加水分解処理したパルプなどのセルロース原料を粉砕処理、あるいは酸加水分解処理を施さないパルプなどのセルロース原料を機械粉砕して得ることができる。なお、本発明のゴム組成物用添加剤に用いられる粉末状セルロースとしては、酸加水分解処理したパルプなどのセルロース原料を粉砕処理した不純物の少ない粉末状セルロースを用いることが好ましい。
(Powdered cellulose)
The powdery cellulose used in the present invention is not particularly limited as long as the average particle size is 15 to 70 μm. Powdered cellulose is produced by pulverizing cellulose raw materials such as pulp hydrolyzed with mineral acids (ie, inorganic acids) such as hydrochloric acid, sulfuric acid, and nitric acid, or cellulose raw materials such as pulp not subjected to acid hydrolyzing treatment. It can be obtained by grinding. In addition, it is preferable to use the powdery cellulose with few impurities which grind | pulverized the cellulose raw materials, such as pulp which carried out the acid hydrolysis process, as a powdery cellulose used for the additive for rubber compositions of this invention.
 本発明に用いられる粉末状セルロースは、平均粒子径が、15μm以上であり、好ましくは22μm以上であり、より好ましくは25μm以上であり、さらに好ましくは35μm以上である。平均粒子径は、70μm以下であり、好ましくは55μm以下であり、より好ましくは50μm以下であり、さらに好ましくは36μm以下である。したがって、本発明に用いられる粉末状セルロースは、平均粒子径が15~70μmであり、好ましくは、15~50μmであり、より好ましくは22~36μmであり、または好ましくは、25~70μmであり、より好ましくは35~55μmである。
 平均粒子径が大きくなると、ムーニー粘度の低減効果が少なく、またゴム硬度が高くなり、機械物性が劣る傾向がある。一方、平均粒子径が小さくなると、ムーニー粘度の低減効果は向上するが、ゴムの補強効果が小さくなる傾向がある。
The powdery cellulose used in the present invention has an average particle size of 15 μm or more, preferably 22 μm or more, more preferably 25 μm or more, and further preferably 35 μm or more. An average particle diameter is 70 micrometers or less, Preferably it is 55 micrometers or less, More preferably, it is 50 micrometers or less, More preferably, it is 36 micrometers or less. Therefore, the powdery cellulose used in the present invention has an average particle size of 15 to 70 μm, preferably 15 to 50 μm, more preferably 22 to 36 μm, or preferably 25 to 70 μm. More preferably, it is 35 to 55 μm.
When the average particle size is increased, the Mooney viscosity reducing effect is small, the rubber hardness is increased, and the mechanical properties tend to be inferior. On the other hand, when the average particle size is decreased, the Mooney viscosity reducing effect is improved, but the rubber reinforcing effect tends to be decreased.
 本発明のゴム組成物用添加剤を、カーボンブラックを含むゴム組成物に配合する場合、粉末状セルロースの平均粒子径は、好ましくは、15~50μmであり、より好ましくは22~36μmである。本発明のゴム組成物用添加剤を、シリカを含むゴム組成物に配合する場合、粉末状セルロースの平均粒子径は、好ましくは25~70μmであり、より好ましくは35~55μmである。 In the case where the rubber composition additive of the present invention is blended with a rubber composition containing carbon black, the average particle size of the powdery cellulose is preferably 15 to 50 μm, more preferably 22 to 36 μm. When the additive for a rubber composition of the present invention is blended with a rubber composition containing silica, the average particle size of the powdered cellulose is preferably 25 to 70 μm, more preferably 35 to 55 μm.
 なお、本明細書において、平均粒子径は、レーザー散乱法を用いて測定され、粒度分布を蓄積分布として表した場合に、蓄積分布が50%となるときの値を意味する。 In addition, in this specification, an average particle diameter means the value when accumulation distribution will be 50%, when it measures using a laser scattering method and represents a particle size distribution as accumulation distribution.
 本発明で用いられる粉末状セルロースの重合度は、好ましくは150以上であり、より好ましくは250以上であり、さらに好ましくは400以上であり、特に好ましくは600以上である。粉末状セルロースの重合度は、好ましくは1400以下であり、より好ましくは1200以下であり、さらに好ましくは800以下である。したがって、粉末状セルロースの重合度は、好ましくは150~1200であり、より好ましくは400~800であり、または好ましくは250~1400であり、より好ましくは600~1200である。重合度が高いと、ゴム硬度が高くなる傾向がある。一方で、重合度が低いと、ゴムの補強効果が少ない傾向がある。 The degree of polymerization of the powdery cellulose used in the present invention is preferably 150 or more, more preferably 250 or more, still more preferably 400 or more, and particularly preferably 600 or more. The degree of polymerization of the powdery cellulose is preferably 1400 or less, more preferably 1200 or less, and still more preferably 800 or less. Accordingly, the degree of polymerization of the powdery cellulose is preferably 150 to 1200, more preferably 400 to 800, or preferably 250 to 1400, more preferably 600 to 1200. When the degree of polymerization is high, the rubber hardness tends to increase. On the other hand, when the degree of polymerization is low, the rubber reinforcing effect tends to be small.
 本発明のゴム組成物用添加剤を、カーボンブラックを含むゴム組成物に配合する場合、粉末状セルロースの重合度は、好ましくは150~1200であり、より好ましくは400~800である。 When the rubber composition additive of the present invention is blended with a rubber composition containing carbon black, the degree of polymerization of the powdery cellulose is preferably 150 to 1200, more preferably 400 to 800.
 また、本発明のゴム組成物用添加剤を、充填材としてシリカを含むゴム組成物に配合する場合、粉末状セルロースの重合度は、好ましくは250~1400であり、より好ましくは600~1200である。 In addition, when the additive for a rubber composition of the present invention is blended with a rubber composition containing silica as a filler, the degree of polymerization of the powdery cellulose is preferably 250 to 1400, more preferably 600 to 1200. is there.
 なお、本明細書において、粉末状セルロースの重合度は、第16改正日本薬局方解説書、結晶セルロース確認試験(2)記載の銅エチレンジアミンを用いた粘度測定法により得られた値を意味する。 In the present specification, the degree of polymerization of powdery cellulose means a value obtained by a viscosity measurement method using copper ethylenediamine described in the 16th revised Japanese Pharmacopoeia Description, Crystalline Cellulose Confirmation Test (2).
 本発明に用いられる粉末状セルロースの結晶化度は、70~90が好ましく、80~90であることがより好ましい。結晶化度が低いと、加熱加硫の際に必要な時間が長く、作業性が悪化する傾向にある。結晶化度が80以上であれば、加硫速度への影響はほとんど確認されていない。なお、粉末状セルロースの結晶化度は、原料とするパルプの種類以外に製造方法が影響して変化し、酸加水分解処理されたセルロース原料を使用することで高い結晶化度を有する粉末状セルロースを得ることができる。なお、酸加水分解処理を行わずに、機械的な処理のみで製造された粉末状セルロースは、結晶化度が低い傾向がある。
 なお、本明細書において、粉末状セルロースの結晶化度は、試料のX線回折を測定することで求めた値である。結晶化度の算出は、Segalらの手法(L.Segal,J.J.Greely,etal,Text.Res.J.,29,786,1959)、および、Kamideらの手法(K.Kamide et al,Polymer J.,17,909,1985)を用いて行い、X線回折測定から得られた回折図の2θ=4°~32°の回折強度をベースラインとして、002面の回折強度と、2θ=18.5°のアモルファス部分の回折強度から、次式により算出される。
Xc=(I002C-Ia)/I002C×100
Xc:セルロースの結晶化度(%)
002C:2θ=22.6°、002面の回折強度
Ia:2θ=18.5°、アモルファス部分の回折強度
The crystallinity of the powdery cellulose used in the present invention is preferably from 70 to 90, and more preferably from 80 to 90. When the degree of crystallinity is low, the time required for heat vulcanization is long and workability tends to deteriorate. If the crystallinity is 80 or more, the influence on the vulcanization rate is hardly confirmed. In addition, the crystallinity of the powdery cellulose changes due to the production method in addition to the type of pulp used as a raw material, and the powdered cellulose has a high crystallinity by using an acid hydrolyzed cellulose raw material. Can be obtained. In addition, the powdery cellulose manufactured only by the mechanical process, without performing an acid hydrolysis process tends to have a low crystallinity.
In addition, in this specification, the crystallinity degree of powdery cellulose is the value calculated | required by measuring the X-ray diffraction of a sample. The crystallinity is calculated by the method of Segal et al. (L. Segal, JJ Greery, et al, Text. Res. J., 29, 786, 1959) and the method of Kamide et al. (K. Kamide et al. , Polymer J., 17, 909, 1985), and using the diffraction intensity of 2θ = 4 ° to 32 ° of the diffraction diagram obtained from the X-ray diffraction measurement as a baseline, the diffraction intensity of the 002 plane and 2θ = 1 From the diffraction intensity of the amorphous portion at 18.5 °, the following formula is used.
Xc = (I 002C -Ia) / I 002C × 100
Xc: degree of crystallinity of cellulose (%)
I 002C : 2θ = 22.6 °, 002 plane diffraction intensity Ia: 2θ = 18.5 °, diffraction intensity of amorphous part
 本発明に用いられる粉末状セルロースの見掛け比重は、好ましくは0.15以上であり、より好ましくは0.18以上であり、さらに好ましくは0.2以上であり、さらにより好ましくは0.3以上である。粉末状セルロースの見掛け比重は、好ましくは0.6以下であり、より好ましくは0.5以下であり、さらに好ましくは0.45以下であり、さらにより好ましくは0.35以下である。したがって、粉末状セルロースの見掛け比重は、好ましくは0.2~0.6であり、より好ましくは0.3~0.45であり、または好ましくは0.15~0.5であり、より好ましくは0.18~0.35である。見掛け比重が小さいと、粉体が嵩高く、ゴム組成物の成分(例、ゴム、カーボンブラック、シリカ等)への分散性が低下する傾向がある。一方、見掛け比重が大きいと、粉体は嵩が低く、コンパクトであるため、ゴム組成物の成分(例、ゴム、カーボンブラック、シリカ等)への分散性は良好であるが、粉体の平均粒子径が小さくなるため、ゴムの補強効果が小さくなる傾向がある。 The apparent specific gravity of the powdery cellulose used in the present invention is preferably 0.15 or more, more preferably 0.18 or more, still more preferably 0.2 or more, and even more preferably 0.3 or more. It is. The apparent specific gravity of the powdery cellulose is preferably 0.6 or less, more preferably 0.5 or less, still more preferably 0.45 or less, and even more preferably 0.35 or less. Therefore, the apparent specific gravity of the powdery cellulose is preferably 0.2 to 0.6, more preferably 0.3 to 0.45, or preferably 0.15 to 0.5, and more preferably Is 0.18 to 0.35. If the apparent specific gravity is small, the powder is bulky, and the dispersibility of the rubber composition in components (eg, rubber, carbon black, silica, etc.) tends to decrease. On the other hand, when the apparent specific gravity is large, since the powder is low in volume and compact, the dispersibility in the components of the rubber composition (eg, rubber, carbon black, silica, etc.) is good. Since the particle diameter is small, the reinforcing effect of rubber tends to be small.
 本発明のゴム組成物用添加剤を、カーボンブラックを含むゴム組成物に添加する場合、粉末状セルロースの見掛け比重は、好ましくは0.2~0.6であり、より好ましくは0.3~0.45である。 When the rubber composition additive of the present invention is added to a rubber composition containing carbon black, the apparent specific gravity of the powdery cellulose is preferably 0.2 to 0.6, more preferably 0.3 to 0.45.
 また、本発明のゴム組成物用添加剤を、シリカを含むゴム組成物に添加する場合、粉末状セルロースの見掛け比重は、好ましくは0.15~0.5であり、より好ましくは0.18~0.35である。 In addition, when the additive for rubber composition of the present invention is added to a rubber composition containing silica, the apparent specific gravity of the powdery cellulose is preferably 0.15 to 0.5, more preferably 0.18. ~ 0.35.
 なお、本明細書において、見掛け比重は、100mlメスシリンダーに試料を10g投入し、メスシリンダーの底を試料の高さが低下しなくなるまでたたき続け、平らになった表面の目盛を読み、算出した値(g/mL)である。 In this specification, the apparent specific gravity was calculated by putting 10 g of a sample into a 100 ml graduated cylinder, continuously striking the bottom of the graduated cylinder until the height of the sample did not decrease, and reading the scale on the flat surface. Value (g / mL).
 本発明に用いられる粉末状セルロースの安息角は、好ましくは45°以上であり、より好ましくは48°以上である。粉末状セルロースの安息角は、好ましくは60°以下であり、より好ましくは58°以下であり、さらに好ましくは56°以下である。したがって、粉末状セルロースの安息角は、好ましくは45~60°であり、より好ましくは48~56°であり、または好ましくは48~58°である。安息角が大きいと、粉体流動性が悪い傾向があり、作業上好ましくない場合がある。一方、安息角が小さいと、粉体流動性が良好となり作業性が向上するものの、粉舞いなどが生じる傾向がある。 The angle of repose of the powdered cellulose used in the present invention is preferably 45 ° or more, more preferably 48 ° or more. The angle of repose of the powdery cellulose is preferably 60 ° or less, more preferably 58 ° or less, and further preferably 56 ° or less. Therefore, the angle of repose of powdered cellulose is preferably 45 to 60 °, more preferably 48 to 56 °, or preferably 48 to 58 °. If the angle of repose is large, the powder fluidity tends to be poor, which may be unfavorable for work. On the other hand, if the angle of repose is small, the powder fluidity is good and the workability is improved, but there is a tendency for powder to be produced.
 本発明のゴム組成物用添加剤を、カーボンブラックを含むゴム組成物に添加する場合、粉末状セルロースの安息角は、好ましくは45~60°であり、より好ましくは48~56°である。 When the rubber composition additive of the present invention is added to a rubber composition containing carbon black, the angle of repose of powdered cellulose is preferably 45 to 60 °, more preferably 48 to 56 °.
 本発明のゴム組成物用添加剤を、シリカを含むゴム組成物に添加する場合、粉末状セルロースの安息角は、好ましくは45~60°であり、より好ましくは48~58°である。 When the additive for rubber composition of the present invention is added to a rubber composition containing silica, the repose angle of the powdered cellulose is preferably 45 to 60 °, more preferably 48 to 58 °.
 本発明に用いられる粉末状セルロースの水分は、5%以下が好ましく、3%以下がより好ましい。水分が高いと、ゴムを加熱加硫する際に、加硫遅延の原因となる場合がある。また、成形後のゴムの強度(例、機械物性について)にも悪影響を及ぼす場合がある。したがって、粉末状セルロースの水分は低いほど好ましい。 The water content of the powdered cellulose used in the present invention is preferably 5% or less, more preferably 3% or less. If the moisture is high, it may cause a vulcanization delay when the rubber is heated and vulcanized. In addition, the strength (eg, mechanical properties) of the rubber after molding may be adversely affected. Therefore, the lower the moisture content of the powdery cellulose, the better.
(粉末状セルロースの製造:酸加水分解処理/粉砕処理)
 本発明の粉末状セルロースの製造方法として、セルロース原料の調製工程、酸加水分解反応工程、中和・洗浄・脱液工程、乾燥工程、粉砕工程、分級工程からなる製造方法、セルロース原料に対して酸加水分解処理を行わずに機械粉砕を行う方法を例示することができる。
(Production of powdered cellulose: acid hydrolysis / grinding)
As a method for producing powdery cellulose of the present invention, a cellulose raw material preparation step, an acid hydrolysis reaction step, a neutralization / washing / liquid removal step, a drying step, a pulverization step, a classification step, a cellulose raw material A method of performing mechanical pulverization without performing acid hydrolysis treatment can be exemplified.
 具体的な粉末状セルロースの製造方法の例としては、以下の方法が挙げられる。まず、酸濃度0.10~1.2Nに調整したパルプ濃度3~10重量%(固形分換算)の分散液を、温度80~100℃、時間30分間~3時間の条件で酸加水分解処理を行う。次に、脱水工程で酸加水分解処理されたパルプと廃酸とに固液分離し、酸加水分解処理を施したパルプにアルカリ剤を添加して中和し、洗浄する。その後、乾燥機で乾燥し、粉砕機で規定の大きさに機械的に粉砕・分級し、製造される。
 なお、パルプ漂白工程からの流動パルプを原料とする場合、加水分解反応槽へ投入する前に濃度を高めるために、脱水機(例、スクリュープレス、ベルトフィルター)で濃縮した後反応槽へ所定量を投入してもよい。また、パルプのドライシートを原料とする場合、解砕機(例、ロールクラッシャー)などでパルプをほぐした後、反応槽へ投入してもよい。
The following method is mentioned as an example of the manufacturing method of a specific powdery cellulose. First, a dispersion having a pulp concentration of 3 to 10% by weight (in terms of solid content) adjusted to an acid concentration of 0.10 to 1.2 N is subjected to an acid hydrolysis treatment under conditions of a temperature of 80 to 100 ° C. and a time of 30 minutes to 3 hours. I do. Next, it solid-liquid-separates into the pulp and waste acid which were acid-hydrolyzed at the spin-drying | dehydration process, the alkali agent is added to the pulp which performed the acid hydrolyzing process, and it neutralizes and wash | cleans. Thereafter, it is dried with a dryer, and mechanically pulverized and classified to a specified size with a pulverizer to be manufactured.
In addition, when using fluidized pulp from the pulp bleaching process as a raw material, a predetermined amount is added to the reaction tank after concentration with a dehydrator (eg, screw press, belt filter) in order to increase the concentration before being introduced into the hydrolysis reaction tank. May be input. Moreover, when using the dry sheet | seat of a pulp as a raw material, you may throw into a reaction tank, after loosening a pulp with a crusher (for example, roll crusher) etc.
 粉末状セルロースのセルロース原料としては、広葉樹由来のパルプ、針葉樹由来のパルプ、あるいは非木材パルプのパルプを例示することができ、パルプ化の方法としては、サルファイト蒸解法、クラフト蒸解法、ソーダ・キノン蒸解法、オルガノソルブ蒸解法などを例示することができる。また、セルロース原料の形態は特に限定されず、スラリー状でもシート状でも使用することができる。 Examples of cellulose raw materials for powdered cellulose include hardwood-derived pulp, softwood-derived pulp, or non-wood pulp, and pulping methods include sulfite cooking, kraft cooking, soda A quinone cooking method, an organosolv cooking method, etc. can be illustrated. Further, the form of the cellulose raw material is not particularly limited, and it can be used in a slurry form or a sheet form.
 セルロース原料を酸化加水分解処理する際の酸濃度は、特に限定されるものではないが、通常0.1~1.2N程度である。酸加水分解処理の酸濃度が0.1Nより低いと、酸によるセルロースの解重合を抑制出来るため、粉末状セルロースの重合度の低下は軽減されるが、セルロース本来の靱性のため、微細化するのが非常に困難である場合がある。一方、酸濃度が1.2Nより高いと、セルロースの解重合が進み、粉末状セルロースの粒子径のコントロールは容易になり、粉体流動性は向上するが、重合度の低下が引き起こされ、機械物性が低下する傾向がある。 The acid concentration at the time of oxidative hydrolysis treatment of the cellulose raw material is not particularly limited, but is usually about 0.1 to 1.2 N. If the acid concentration in the acid hydrolysis treatment is lower than 0.1 N, the depolymerization of cellulose due to the acid can be suppressed, so the decrease in the degree of polymerization of the powdered cellulose is reduced, but it is refined due to the inherent toughness of cellulose. It can be very difficult. On the other hand, if the acid concentration is higher than 1.2N, depolymerization of cellulose proceeds and the particle size of powdered cellulose becomes easy to control, and the powder fluidity is improved, but the degree of polymerization is reduced, and There is a tendency for physical properties to decrease.
 粉砕機としては、カッティング式ミル:メッシュミル(株式会社ホーライ製)、アトムズ(株式会社山本百馬製作所製)、ナイフミル(パルマン社製)、カッターミル(東京アトマイザー製造株式会社製)、CSカッタ(三井鉱山株式会社製)、ロータリーカッターミル(株式会社奈良機械製作所製)、パルプ粗砕機(株式会社瑞光製)、シュレッダー(神鋼パンテック株式会社製)等、ハンマー式ミル:ジョークラッシャー(株式会社マキノ製)、ハンマークラッシャー(槇野産業株式会社製)、衝撃式ミル:パルベライザ(ホソカワミクロン株式会社製)、ファインインパクトミル(ホソカワミクロン株式会社製)、スーパーミクロンミル(ホソカワミクロン株式会社製)、イノマイザ(ホソカワミクロン株式会社製)、ファインミル(日本ニューマチック工業株式会社製)、CUM型遠心ミル(三井鉱山株式会社製)、イクシードミル(槇野産業株式会社製)、ウルトラプレックス(槇野産業株式会社製)、コントラプレックス(槇野産業株式会社製)、コロプレックス(槇野産業株式会社製)、サンプルミル(株式会社セイシン製)、バンタムミル(株式会社セイシン製)、アトマイザー(株式会社セイシン製)、トルネードミル(日機装株式会社製)、ネアミル(株式会社ダルトン製)、HT形微粉砕機(株式会社ホーライ製)、自由粉砕機(株式会社奈良機械製作所製)、ニューコスモマイザー(株式会社奈良機械製作所製)、ギャザーミル(株式会社西村機械製作所製)、スパーパウダーミル(株式会社西村機械製作所製)、ブレードミル(日清エンジニアリング株式会社製)、スーパーローター(日清エンジニアリング株式会社製)、Npaクラッシャー(三庄インダストリー株式会社製)、ウイレー粉砕機(株式会社三喜製作所製)、パルプ粉砕機(株式会社瑞光製)、ヤコブソン微粉砕機(神鋼パンテック株式会社製)、ユニバーサルミル(株式会社徳寿工作所製)、気流式ミル:CGS型ジェットミル(三井鉱山株式会社製)、ミクロンジェット(ホソカワミクロン株式会社製)、カウンタジェットミル(ホソカワミクロン株式会社製)、クロスジェットミル(株式会社栗本鐵工所製)、超音速ジェットミル(日本ニューマチック工業株式会社製)、カレントジェット(日清エンジニアリング株式会社製)、ジェットミル(三庄インダストリー株式会社製)、エバラジェットマイクロナイザ(株式会社荏原製作所製)、エバラトリアードジェット(株式会社荏原製作所製)、セレンミラー(増幸産業株式会社製)、ニューミクロシクトマット(株式会社増野製作所製)、クリプトロン(川崎重工業株式会社製)、竪型ローラーミル:竪型ローラーミル(シニオン株式会社製)、縦型ローラーミル(シェフラージャパン株式会社製)、ローラーミル(コトブキ技研工業株式会社製)、VXミル(株式会社栗本鐵工所)、KVM型竪形ミル(株式会社アーステクニカ)、ISミル(株式会社IHIプラントエンジニアリング)、ターボミル(フロイント産業株式会社製)等が例示される。これらの中では、微粉砕性に優れる、トルネードミル(日機装株式会社製)、ブレードミル(日清エンジニアリング株式会社製)、自由粉砕機(株式会社奈良機械製作所製)、ターボミル(フロイント産業株式会社製)を用いることが好ましい。 As a pulverizer, a cutting mill: mesh mill (manufactured by Horai Co., Ltd.), Atoms (manufactured by Yamamoto Hyakuma Mfg. Co., Ltd.), knife mill (manufactured by Palman), cutter mill (manufactured by Tokyo Atomizer Manufacturing Co., Ltd.), CS cutter ( Mitsui Mining Co., Ltd.), rotary cutter mill (manufactured by Nara Machinery Co., Ltd.), pulp crusher (manufactured by Suikou Co., Ltd.), shredder (manufactured by Shinko Pantech Co., Ltd.), hammer type mill: jaw crusher (Makino Co., Ltd.) ), Hammer crusher (manufactured by Hadano Sangyo Co., Ltd.), impact mill: Pulverizer (manufactured by Hosokawa Micron Corporation), fine impact mill (manufactured by Hosokawa Micron Corporation), super micron mill (manufactured by Hosokawa Micron Corporation), Inomizer (Hosokawa Micron Corporation) Made), fine mill Nippon Pneumatic Kogyo Co., Ltd.), CUM type centrifugal mill (Mitsui Mining Co., Ltd.), Ixed Mill (Ogino Sangyo Co., Ltd.), Ultraplex (Ogino Sangyo Co., Ltd.), Contraplex (Ogino Sangyo Co., Ltd.) , Coroplex (manufactured by Hadano Sangyo Co., Ltd.), sample mill (manufactured by Seisin Co., Ltd.), bantam mill (manufactured by Seisin Co., Ltd.), atomizer (manufactured by Seisin Co., Ltd.), tornado mill (manufactured by Nikkiso Co., Ltd.), Neamill (Dalton Co., Ltd.) ), HT type pulverizer (manufactured by Horai Co., Ltd.), free crusher (manufactured by Nara Machinery Co., Ltd.), New Cosmizer (manufactured by Nara Machinery Co., Ltd.), gather mill (manufactured by Nishimura Machinery Co., Ltd.), Spar powder mill (manufactured by Nishimura Machinery Co., Ltd.), blade mill (Nisshin Engineering) Super rotor (Nisshin Engineering Co., Ltd.), Npa crusher (Misho Industry Co., Ltd.), Willet crusher (Miki Seisakusho Co., Ltd.), pulp crusher (Zuiko Co., Ltd.), Jacobson Fine Crusher (manufactured by Shinko Pantech Co., Ltd.), universal mill (manufactured by Tokusu Kosakusho Co., Ltd.), airflow mill: CGS type jet mill (manufactured by Mitsui Mining Co., Ltd.), micron jet (manufactured by Hosokawa Micron Co., Ltd.), counter jet mill (Manufactured by Hosokawa Micron Corporation), cross jet mill (manufactured by Kurimoto Steel Corporation), supersonic jet mill (manufactured by Nippon Pneumatic Industry Co., Ltd.), current jet (manufactured by Nissin Engineering Co., Ltd.), jet mill (Misho) Industry Co., Ltd.), Ebarajet Micronizer (stock) Company Ebara Seisakusho), Ebara Triad Jet (Ebara Seisakusho Co., Ltd.), Selenium Mirror (Masuyuki Sangyo Co., Ltd.), New Micro Cyc Mat (Masuno Seisakusho Co., Ltd.), Kryptron (Kawasaki Heavy Industries Co., Ltd.) , Vertical roller mill: vertical roller mill (manufactured by Shinion Co., Ltd.), vertical roller mill (manufactured by Schaeffler Japan Co., Ltd.), roller mill (manufactured by Kotobuki Giken Kogyo Co., Ltd.), VX mill (Kurimoto Steel Corporation) KVM type vertical mill (Earth Technica Co., Ltd.), IS mill (IHI Plant Engineering Co., Ltd.), turbo mill (Freund Sangyo Co., Ltd.) and the like are exemplified. Among these, a tornado mill (made by Nikkiso Co., Ltd.), a blade mill (made by Nisshin Engineering Co., Ltd.), a free crusher (made by Nara Machinery Co., Ltd.), a turbo mill (made by Freund Sangyo Co., Ltd.), which has excellent pulverization properties. ) Is preferably used.
 本発明における粉末状セルロースに、機能性付与、もしくは機能性向上を目的に、粉末状セルロースの原料とその他有機および/または無機成分を単独もしくは2種類以上任意の割合で混合し、粉砕することも可能である。また、原料に使用する天然セルロースの重合度を大幅に損なわない範囲で、化学的処理を施すことが可能である。 For the purpose of imparting functionality or improving functionality to the powdered cellulose in the present invention, the raw material of powdered cellulose and other organic and / or inorganic components may be mixed singly or in an arbitrary ratio of two or more types, and pulverized. Is possible. Moreover, it is possible to perform a chemical process in the range which does not impair the polymerization degree of the natural cellulose used for a raw material significantly.
(粉末状セルロースの製造:粉砕処理のみ)
 酸加水分解処理を施していない前記パルプを原料にして、機械粉砕のみで粉体を製造する場合、粉砕機は、微粉砕性の高い、竪型ローラーミルを用いることが好ましい。本発明において、竪型ローラーミルとは、ローラーミルに属する遠心式の竪型粉砕機のことであり、竪型ローラーミルは、円盤状のターンテーブルと、竪型ローラーで磨り潰すようにしてパルプを粉砕する。竪型ローラーミルの最大の特徴は、微粉砕性に優れることであり、その理由として、ローラーとテーブル間で原料を圧縮する力と、ローラーとテーブル間で発生する剪断力とで、原料を粉砕することが挙げられる。従来から使用されている粉砕機としては、竪型ローラーミル(シニオン株式会社製)、縦型ローラーミル(シェフラージャパン株式会社製)、ローラーミル(コトブキ技研工業株式会社製)、VXミル(株式会社栗本鐵工所)、KVM型竪形ミル(株式会社アーステクニカ)、ISミル(株式会社IHIプラントエンジニアリング)等が例示される。
(Manufacture of powdered cellulose: pulverization only)
In the case where powder is produced only by mechanical pulverization using the pulp that has not been subjected to acid hydrolysis as a raw material, it is preferable to use a vertical roller mill having a high pulverization property as the pulverizer. In the present invention, the vertical roller mill is a centrifugal vertical mill that belongs to the roller mill, and the vertical roller mill is a pulp that is crushed by a disk-shaped turntable and a vertical roller. Crush. The biggest feature of the vertical roller mill is that it is excellent in fine pulverization. The reason is that the raw material is pulverized by the force of compressing the raw material between the roller and the table and the shearing force generated between the roller and the table. To do. Conventional grinding machines include vertical roller mills (manufactured by Shinion Co., Ltd.), vertical roller mills (manufactured by Schaeffler Japan Co., Ltd.), roller mills (manufactured by Kotobuki Giken Kogyo Co., Ltd.), and VX mills (corporation). Kurimoto Works), KVM type vertical mill (Earth Technica Co., Ltd.), IS mill (IHI Plant Engineering Co., Ltd.) and the like.
 本発明のゴム組成物用添加剤は、上記粉末状セルロースの他に、任意の成分を含んでいてもよい。 The additive for rubber composition of the present invention may contain an optional component in addition to the above powdery cellulose.
 本発明のゴム組成物用添加剤は、ゴム組成物に添加されて、ゴム組成物の成形性および機械的特性を優れたものとする。
(ゴム組成物)
 ゴム組成物は、ゴム成分を含む。
The additive for rubber composition of the present invention is added to the rubber composition to improve the moldability and mechanical properties of the rubber composition.
(Rubber composition)
The rubber composition includes a rubber component.
(ゴム成分)
 本発明において、ゴム成分として、天然ゴム、合成ゴム:イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレン・ブタジエンゴム(SBR)、クロロプレンゴム(CR)、ニトリルゴム(NBR)、ポリイソブチレン(ブチルゴム IIR)、エチレンプロピレンゴム(EPM)、エチレンプロピレンジエンゴム(例、エチレンプロピレンブタジエンゴム)(EPDM)、クロロスルホン化ポリエチレン(CSM)、アクリルゴム(ACM)、フッ素ゴム(FKM)、エピクロルヒドリンゴム(CO,ECO)、ウレタンゴム(U)、シリコーンゴム(Q)などを例示することができ、特に限定されるものではないが、ニトリルゴムまたはエチレンプロピレンジエンゴム(例、エチレンプロピレンブタジエンゴム)を用いることが好ましい。ゴム組成物が、カーボンブラックをさらに含む場合は、ゴム成分は、好ましくはニトリルゴムである。ゴム組成物がシリカをさらに含む場合は、ゴム成分は、好ましくはエチレンプロピレンジエンゴムであり、より好ましくはエチレンプロピレンブタジエンゴムである。エチレンプロピレンジエンゴムは、好ましくはエチレンおよびプロピレンに、各種ジエン成分を少量共重合させたものである。
(Rubber component)
In the present invention, natural rubber, synthetic rubber: isoprene rubber (IR), butadiene rubber (BR), styrene-butadiene rubber (SBR), chloroprene rubber (CR), nitrile rubber (NBR), polyisobutylene (butyl rubber) IIR), ethylene propylene rubber (EPM), ethylene propylene diene rubber (eg, ethylene propylene butadiene rubber) (EPDM), chlorosulfonated polyethylene (CSM), acrylic rubber (ACM), fluoro rubber (FKM), epichlorohydrin rubber (CO , ECO), urethane rubber (U), silicone rubber (Q), and the like. Although not particularly limited, nitrile rubber or ethylene propylene diene rubber (eg, ethylene propylene butadiene rubber) is used. Preferred That's right. When the rubber composition further contains carbon black, the rubber component is preferably nitrile rubber. When the rubber composition further contains silica, the rubber component is preferably ethylene propylene diene rubber, more preferably ethylene propylene butadiene rubber. The ethylene propylene diene rubber is preferably obtained by copolymerizing a small amount of various diene components with ethylene and propylene.
 ニトリルゴムとしては、中ニトリル含有(CN:25~30%)、中高ニトリル含有(CN:31~35%)および高ニトリル含有(CN:36~42%)のいずれをも用いることができ、好ましくは中高ニトリル含量のものが好ましい。 As the nitrile rubber, any of medium nitrile (CN: 25 to 30%), medium to high nitrile (CN: 31 to 35%) and high nitrile (CN: 36 to 42%) can be used. Preferably has a medium to high nitrile content.
 また、これらのゴムの加硫は、一般にイオウまたはイオウ供与性化合物およびスルフェンアミド系、チウラム系化合物等の汎用の加硫促進剤を組合せて用いた加硫系によって行われる。有機過酸化物架橋も可能であり、有機過酸化物としては、例えば第3ブチルパーオキサイド、ジクミルパーオキサイド、第3ブチルクミルパーオキサイド、1,1-ジ(第3ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、2,5-ジメチル-2,5-ジ(第3ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(第3ブチルパーオキシ)ヘキシン-3、1,3-ジ(第3ブチルパーオキシイソプロピル)ベンゼン、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、第3ブチルパーオキシベンゾエート、第3ブチルパーオキシイソプロピルカーボネート、n-ブチル-4,4-ジ(第3ブチルパーオキシ)バレレート等の一般的に用いられているものが用いられる。有機過酸化物架橋の際には、多官能性不飽和化合物、例えばトリアリルイソシアヌレート、トリアリルシアヌレート、トリアリルトリメリテート、トリメチロールプロパントリメタクリレート、N,N’-m-フェニレンビスマレイミド等を併用することが好ましい。 Further, vulcanization of these rubbers is generally performed by a vulcanization system using a combination of sulfur or a sulfur donating compound and a general-purpose vulcanization accelerator such as a sulfenamide-based compound or a thiuram-based compound. Organic peroxide crosslinking is also possible. Examples of the organic peroxide include tertiary butyl peroxide, dicumyl peroxide, tertiary butyl cumyl peroxide, and 1,1-di (tertiary butyl peroxy) -3. , 3,5-trimethylcyclohexane, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexyne-3, 1,3-di (tert-butylperoxyisopropyl) benzene, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, tert-butylperoxybenzoate, tert-butylperoxyisopropyl carbonate, n- Commonly used ones such as butyl-4,4-di (tert-butylperoxy) valerate are used. When crosslinking organic peroxides, multifunctional unsaturated compounds such as triallyl isocyanurate, triallyl cyanurate, triallyl trimellitate, trimethylolpropane trimethacrylate, N, N′-m-phenylenebismaleimide Etc. are preferably used in combination.
 本発明のゴム組成物用添加剤を添加するゴム組成物は、好ましくは、充填材(例、カーボンブラック、シリカ)を含む。充填材として、カーボンブラックまたはシリカが好ましい。ゴム組成物には、これら充填材を1種類のみ使用してもよく、本発明の効果を阻害しない範囲で2種類以上を組み合わせて使用してもよい。 The rubber composition to which the additive for rubber composition of the present invention is added preferably contains a filler (eg, carbon black, silica). Carbon black or silica is preferred as the filler. In the rubber composition, only one kind of these fillers may be used, or two or more kinds may be used in combination as long as the effects of the present invention are not impaired.
(カーボンブラック)
 本発明において、カーボンブラックとは、工業的に品質制御して製造される通常直径3~500nm程度の炭素の微粒子である。また、カーボンブラックには、その粒子表面の官能基を制御することにより、ゴムとなじみがよい性質を付与したものも含まれる。
(Carbon black)
In the present invention, carbon black is carbon fine particles usually having a diameter of about 3 to 500 nm, which are produced by industrial quality control. Carbon black also includes those imparted with properties that are compatible with rubber by controlling the functional groups on the particle surface.
(シリカ)
 シリカは、特に限定されず、シリカの例として、天然シリカ、合成シリカ(沈降シリカ、乾式シリカ、湿式シリカ)などが挙げられる。シリカとして、例えば、タイヤの充填材として使用されるシリカを使用してよい。
(silica)
The silica is not particularly limited, and examples of silica include natural silica, synthetic silica (precipitated silica, dry silica, wet silica) and the like. As silica, for example, silica used as a tire filler may be used.
 シリカの表面をシランカップリング剤で処理することで、各種ゴムに対する親和性が向上する。従って、本発明において、シリカをシランカップリング剤で処理することが好ましい。なお、シランカップリング剤としては、特に制限はなく、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(4-トリエトキシシリルブチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、ビス(4-トリメトキシシリルブチル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(2-トリエトキシシリルエチル)トリスルフィド、ビス(4-トリエトキシシリルブチル)トリスルフィド、ビス(3-トリメトキシシリルプロピル)トリスルフィド、ビス(2-トリメトキシシリルエチル)トリスルフィド、ビス(4-トリメトキシシリルブチル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)ジスルフィド、ビス(4-トリエトキシシリルブチル)ジスルフィド、ビス(3-トリメトキシシリルプロピル)ジスルフィド、ビス(2-トリメトキシシリルエチル)ジスルフィド、ビス(4-トリメトキシシリルブチル)ジスルフィド、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリメトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3-トリエトキシシリルプロピルベンゾチアゾールテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィドなどのスルフィド基を有するシランカップリング剤;3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシランなどのメルカプト基を有するシランカップリング剤;ビニルトリエトキシシラン、ビニルトリメトキシシランなどのビニル基を有するシランカップリング剤;3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルトリエトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシランなどのアミノ基を有するシランカップリング剤;γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシランなどのグリシドキシ基を有するシランカップリング剤;3-ニトロプロピルトリメトキシシラン、3-ニトロプロピルトリエトキシシランなどのニトロ基を有するシランカップリング剤;3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン、2-クロロエチルトリメトキシシラン、2-クロロエチルトリエトキシシランなどのクロロ基を有するシランカップリング剤;等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。 By treating the surface of silica with a silane coupling agent, the affinity for various rubbers is improved. Therefore, in the present invention, it is preferable to treat silica with a silane coupling agent. The silane coupling agent is not particularly limited. For example, bis (3-triethoxysilylpropyl) tetrasulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (4-triethoxysilylbutyl) tetra Sulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, bis (4-trimethoxysilylbutyl) tetrasulfide, bis (3-triethoxysilylpropyl) trisulfide, Bis (2-triethoxysilylethyl) trisulfide, bis (4-triethoxysilylbutyl) trisulfide, bis (3-trimethoxysilylpropyl) trisulfide, bis (2-trimethoxysilylethyl) trisulfide, bis ( 4-tri Toxisilylbutyl) trisulfide, bis (3-triethoxysilylpropyl) disulfide, bis (2-triethoxysilylethyl) disulfide, bis (4-triethoxysilylbutyl) disulfide, bis (3-trimethoxysilylpropyl) disulfide Bis (2-trimethoxysilylethyl) disulfide, bis (4-trimethoxysilylbutyl) disulfide, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-triethoxysilylpropyl-N, N -Dimethylthiocarbamoyl tetrasulfide, 2-triethoxysilylethyl-N, N-dimethylthiocarbamoyl tetrasulfide, 2-trimethoxysilylethyl-N, N-dimethylthiocarbamoyl tetrasulfide, Silane cups having sulfide groups such as trimethoxysilylpropylbenzothiazolyl tetrasulfide, 3-triethoxysilylpropylbenzothiazole tetrasulfide, 3-triethoxysilylpropyl methacrylate monosulfide, 3-trimethoxysilylpropyl methacrylate monosulfide Ring agent; silane coupling agent having a mercapto group such as 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercaptoethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane; vinyltriethoxysilane, Silane coupling agents having a vinyl group such as vinyltrimethoxysilane; 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane Silane, a silane coupling agent having an amino group such as 3- (2-aminoethyl) aminopropyltriethoxysilane, 3- (2-aminoethyl) aminopropyltrimethoxysilane; γ-glycidoxypropyltriethoxysilane, Silane coupling agents having a glycidoxy group such as γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropylmethyldimethoxysilane; 3-nitropropyltrimethoxysilane, 3 Silane coupling agents having a nitro group such as nitropropyltriethoxysilane; 3-chloropropyltrimethoxysilane, 3-chloropropyltriethoxysilane, 2-chloroethyltrimethoxysilane, 2-chloroethyltriethoxysilane, etc. The Silane coupling agents having a B group; and the like. These may be used alone or in combination of two or more.
 ゴム組成物が充填材(例、カーボンブラック、シリカ)を含む場合、ゴム組成物に含まれる充填材は、ゴム成分100質量部に対して、好ましくは20質量部以上、より好ましくは30質量部以上、さらに好ましくは50質量部以上、さらにより好ましくは65質量部以上である。
 またゴム組成物に含まれる充填材は、ゴム成分100質量部に対して、好ましくは120質量部以下、より好ましくは100質量部以下、さらに好ましくは60質量部以下、さらにより好ましくは45質量部以下である。
When the rubber composition contains a filler (eg, carbon black, silica), the filler contained in the rubber composition is preferably 20 parts by mass or more, more preferably 30 parts by mass with respect to 100 parts by mass of the rubber component. As mentioned above, More preferably, it is 50 mass parts or more, More preferably, it is 65 mass parts or more.
The filler contained in the rubber composition is preferably 120 parts by mass or less, more preferably 100 parts by mass or less, still more preferably 60 parts by mass or less, and even more preferably 45 parts by mass with respect to 100 parts by mass of the rubber component. It is as follows.
 したがって、ゴム組成物が充填材を含む場合、ゴム組成物に含まれる充填材は、ゴム成分100質量部に対して、好ましくは20~120質量部、または好ましくは50~120質量部、より好ましくは65~100質量部、または、好ましくは20~60質量部、より好ましくは、30~45質量部、または、好ましくは20~60質量部である。 Therefore, when the rubber composition contains a filler, the filler contained in the rubber composition is preferably 20 to 120 parts by mass, or preferably 50 to 120 parts by mass, more preferably 100 parts by mass of the rubber component. Is 65 to 100 parts by mass, or preferably 20 to 60 parts by mass, more preferably 30 to 45 parts by mass, or preferably 20 to 60 parts by mass.
 ゴム組成物がカーボンブラックを含む場合、ゴム組成物に含まれるカーボンブラックは、ゴム成分100質量部に対して、好ましくは50~120質量部、より好ましくは65~100質量部、または、好ましくは20~60質量部、より好ましくは30~45質量部である。 When the rubber composition contains carbon black, the carbon black contained in the rubber composition is preferably 50 to 120 parts by mass, more preferably 65 to 100 parts by mass, or preferably 100 parts by mass with respect to 100 parts by mass of the rubber component. 20 to 60 parts by mass, more preferably 30 to 45 parts by mass.
 ゴム組成物がカーボンブラックを含む場合、ゴム組成物の摩耗深さを低減する観点から、ゴム組成物に含まれるカーボンブラックは、ゴム成分100質量部に対して、好ましくは20~60質量部、より好ましくは30~45質量部である。 When the rubber composition contains carbon black, from the viewpoint of reducing the wear depth of the rubber composition, the carbon black contained in the rubber composition is preferably 20 to 60 parts by mass with respect to 100 parts by mass of the rubber component, More preferred is 30 to 45 parts by mass.
 ゴム組成物がシリカを含む場合、ゴム組成物に含まれるシリカは、ゴム成分100質量部に対して、好ましくは20~60質量部である。 When the rubber composition contains silica, the silica contained in the rubber composition is preferably 20 to 60 parts by mass with respect to 100 parts by mass of the rubber component.
2.ゴム組成物
 本発明はまた、成形性および機械的特性に優れたゴム組成物を提供する。本発明のゴム組成物は、ゴム成分、充填材(例、カーボンブラック、シリカ)、および平均粒子径が15~70μmである粉末状セルロースを含む。
2. Rubber composition The present invention also provides a rubber composition having excellent moldability and mechanical properties. The rubber composition of the present invention includes a rubber component, a filler (eg, carbon black, silica), and powdered cellulose having an average particle size of 15 to 70 μm.
 本発明のゴム組成物に含まれる粉末状セルロースの例および好ましい例については、ゴム組成物用添加剤の項目において既に説明した例および好ましい例と同様である。
 本発明のゴム組成物に含まれる充填材の例および好ましい例については、ゴム組成物用添加剤の項目において既に説明した例および好ましい例と同様である。
 本発明のゴム組成物に含まれるゴム成分の例および好ましい例については、ゴム組成物用添加剤の項目において既に説明した例および好ましい例と同様である。
Examples and preferred examples of powdered cellulose contained in the rubber composition of the present invention are the same as the examples and preferred examples already described in the section of the additive for rubber composition.
Examples and preferred examples of the filler contained in the rubber composition of the present invention are the same as the examples and preferred examples already described in the section of additive for rubber composition.
Examples and preferred examples of the rubber component contained in the rubber composition of the present invention are the same as the examples and preferred examples already described in the item of additive for rubber composition.
(粉末状セルロースの配合量)
 本発明のゴム組成物に含まれる粉末状セルロースは、ゴム成分100質量部に対して、好ましくは5質量部以上、より好ましくは10質量部以上、さらに好ましくは20質量部以上である。また粉末状セルロースは、ゴム成分100質量部に対して、好ましくは50質量部以下、より好ましくは40質量部以下、さらに好ましくは35質量部以下、さらにより好ましくは30質量部以下、特に好ましくは25質量部以下である。
(Blend cellulose content)
The powdery cellulose contained in the rubber composition of the present invention is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, and further preferably 20 parts by mass or more with respect to 100 parts by mass of the rubber component. The powdery cellulose is preferably 50 parts by mass or less, more preferably 40 parts by mass or less, still more preferably 35 parts by mass or less, still more preferably 30 parts by mass or less, particularly preferably 100 parts by mass of the rubber component. 25 parts by mass or less.
 したがって、本発明のゴム組成物に含まれる粉末状セルロースは、ゴム成分100質量部に対して、好ましくは5~50質量部、より好ましくは10~30質量部、または、好ましくは5~30質量部、より好ましくは10~25質量部、または、好ましくは10~40質量部、より好ましくは20~35質量部である。 Therefore, the powdery cellulose contained in the rubber composition of the present invention is preferably 5 to 50 parts by mass, more preferably 10 to 30 parts by mass, or preferably 5 to 30 parts by mass with respect to 100 parts by mass of the rubber component. Part, more preferably 10 to 25 parts by weight, or preferably 10 to 40 parts by weight, more preferably 20 to 35 parts by weight.
 本発明のゴム組成物が、カーボンブラックを含む場合、本発明のゴム組成物に含まれる粉末状セルロースは、ゴム成分100質量部に対して、好ましくは5~50質量部、より好ましくは10~30質量部、または好ましくは5~30質量部、より好ましくは10~25質量部であり、特に、ゴム組成物の摩耗深さを低減する観点から、好ましくは5~30質量部、より好ましくは10~25質量部である。 When the rubber composition of the present invention contains carbon black, the powdery cellulose contained in the rubber composition of the present invention is preferably 5 to 50 parts by mass, more preferably 10 to 10 parts by mass with respect to 100 parts by mass of the rubber component. 30 parts by mass, or preferably 5 to 30 parts by mass, more preferably 10 to 25 parts by mass, and particularly from the viewpoint of reducing the wear depth of the rubber composition, preferably 5 to 30 parts by mass, more preferably 10 to 25 parts by mass.
 本発明のゴム組成物が、シリカを含む場合、本発明のゴム組成物に含まれる粉末状セルロースは、ゴム成分100重量部に対して、好ましくは10~40質量部、より好ましくは20~35質量部である。 When the rubber composition of the present invention contains silica, the powdery cellulose contained in the rubber composition of the present invention is preferably 10 to 40 parts by weight, more preferably 20 to 35 parts per 100 parts by weight of the rubber component. Part by mass.
(充填材(例、カーボンブラック、シリカ)の配合量)
 本発明のゴム組成物に含まれる充填材は、ゴム成分100重量部に対して、好ましくは20質量部以上、より好ましくは30質量部以上、さらに好ましくは50質量部以上、さらにより好ましくは65質量部以上である。また、ゴム組成物に含まれる充填材は、ゴム成分100重量部に対して、好ましくは120質量部以下、より好ましくは100質量部以下、さらに好ましくは60質量部以下、さらにより好ましくは45質量部以下である。
(Amount of filler (eg, carbon black, silica))
The filler contained in the rubber composition of the present invention is preferably 20 parts by mass or more, more preferably 30 parts by mass or more, still more preferably 50 parts by mass or more, and still more preferably 65 parts by weight with respect to 100 parts by weight of the rubber component. More than part by mass. The filler contained in the rubber composition is preferably 120 parts by mass or less, more preferably 100 parts by mass or less, still more preferably 60 parts by mass or less, and even more preferably 45 parts by mass with respect to 100 parts by mass of the rubber component. Or less.
 したがって、本発明のゴム組成物に含まれる充填材は、ゴム成分100質量部に対して、好ましくは50~120質量部、より好ましくは65~100質量部、または、好ましくは20~60質量部、より好ましくは、30~45質量部、または、好ましくは20~60質量部である。 Therefore, the filler contained in the rubber composition of the present invention is preferably 50 to 120 parts by weight, more preferably 65 to 100 parts by weight, or preferably 20 to 60 parts by weight with respect to 100 parts by weight of the rubber component. More preferably, it is 30 to 45 parts by mass, or preferably 20 to 60 parts by mass.
 充填材がカーボンブラックである場合、ゴム組成物に含まれるカーボンブラックは、ゴム成分100質量部に対して、好ましくは50~120質量部、より好ましくは65~100質量部、または、好ましくは20~60質量部、より好ましくは30~45質量部である。
 充填材がカーボンブラックである場合、ゴム組成物の摩耗深さを低減する観点から、ゴム組成物に含まれるカーボンブラックは、ゴム成分100質量部に対して、好ましくは20~60質量部、より好ましくは30~45質量部である。
When the filler is carbon black, the carbon black contained in the rubber composition is preferably 50 to 120 parts by mass, more preferably 65 to 100 parts by mass, or preferably 20 to 100 parts by mass of the rubber component. -60 mass parts, more preferably 30-45 mass parts.
When the filler is carbon black, from the viewpoint of reducing the wear depth of the rubber composition, the carbon black contained in the rubber composition is preferably 20 to 60 parts by mass with respect to 100 parts by mass of the rubber component. The amount is preferably 30 to 45 parts by mass.
 充填材がシリカである場合、ゴム組成物に含まれるシリカは、ゴム成分100質量部に対して、好ましくは20~60質量部である。 When the filler is silica, the silica contained in the rubber composition is preferably 20 to 60 parts by mass with respect to 100 parts by mass of the rubber component.
 本発明のゴム組成物は、好ましくは、ゴム成分100質量部、充填材20~120質量部、および粉末状セルロース5~50質量部を含む。 The rubber composition of the present invention preferably contains 100 parts by mass of a rubber component, 20 to 120 parts by mass of a filler, and 5 to 50 parts by mass of powdered cellulose.
 また、本発明のゴム組成物が、ゴム成分、カーボンブラック、および粉末状セルロースを含む場合、ゴム成分、カーボンブラック、および粉末状セルロースの配合比は、好ましくはゴム成分:カーボンブラック:粉末状セルロース=100:(20~120):(5~50)(質量部)である。上記配合比とすることで、ゴム組成物の成形性(ムーニー粘度の上昇抑制)、機械的特性(特に、伸び)、加硫特性(加硫時間の短縮)がより優れる。特に、ゴム成分100質量部に対してカーボンブラックの配合比が50~120質量部、好ましくは65~100質量部である、カーボンブラックを高配合したゴム組成物は、特にゴム組成物の成形性、機械的特性、加硫特性に優れる。 When the rubber composition of the present invention contains a rubber component, carbon black, and powdered cellulose, the compounding ratio of the rubber component, carbon black, and powdered cellulose is preferably rubber component: carbon black: powdered cellulose. = 100: (20 to 120): (5 to 50) (parts by mass). By setting it as the said compounding ratio, the moldability (suppression of a Mooney viscosity rise) of a rubber composition, mechanical characteristics (especially elongation), and vulcanization characteristics (shortening of vulcanization time) are more excellent. In particular, a rubber composition containing carbon black at a high blending ratio of 50 to 120 parts by weight, preferably 65 to 100 parts by weight with respect to 100 parts by weight of the rubber component is particularly moldable for the rubber composition. Excellent mechanical and vulcanizing properties.
 なお、本発明のゴム組成物が、ゴム成分、カーボンブラック、および粉末状セルロースを含む場合、高温度の油中でのゴムの摩耗深さを低減して、オイル漏れ抑制性を向上させる観点から、ゴム成分、カーボンブラック、および粉末状セルロースの配合比は、好ましくはゴム成分:カーボンブラック:粉末状セルロース=100:(20~60):(5~30)(質量部)、より好ましくはゴム成分:カーボンブラック:粉末状セルロース=100:(30~45):(5~30)(質量部)、さらに好ましくはゴム成分:カーボンブラック:粉末状セルロース=100:(30~45):(10~20)(質量部)である。上記配合比であるゴム組成物は、特にオイルシーリング用として好ましい。 In the case where the rubber composition of the present invention contains a rubber component, carbon black, and powdered cellulose, from the viewpoint of improving oil leakage suppression by reducing the wear depth of rubber in high temperature oil. The mixing ratio of rubber component, carbon black, and powdered cellulose is preferably rubber component: carbon black: powdered cellulose = 100: (20-60) :( 5-30) (parts by mass), more preferably rubber Component: Carbon black: Powdered cellulose = 100: (30 to 45): (5 to 30) (parts by mass), more preferably rubber component: Carbon black: Powdered cellulose = 100: (30 to 45): (10 To 20) (parts by mass). The rubber composition having the above compounding ratio is particularly preferable for oil sealing.
 本発明のゴム組成物が、ゴム成分、シリカ、および粉末状セルロースを含むゴム組成物である場合、ゴム成分、シリカ、および粉末状セルロースの配合比は、好ましくはゴム成分:シリカ:粉末状セルロース=100:(20~60):(10~40)(質量部)である。上記配合比とすることで、ゴム組成物の成形性、機械的特性、加硫特性がより優れ、また、ゴム組成物の比重が低くなる。上記配合比であるゴム組成物は、特にオイルシーリング用として好ましい。 When the rubber composition of the present invention is a rubber composition containing a rubber component, silica, and powdered cellulose, the compounding ratio of the rubber component, silica, and powdered cellulose is preferably rubber component: silica: powdered cellulose. = 100: (20 to 60): (10 to 40) (parts by mass). By setting it as the said compounding ratio, the moldability of a rubber composition, mechanical characteristics, and a vulcanization | cure characteristic are more excellent, and the specific gravity of a rubber composition becomes low. The rubber composition having the above compounding ratio is particularly preferable for oil sealing.
 本発明のゴム組成物は、上記の成分の他に、任意の成分を含んでいてもよい。
 任意の成分としては、例えば、通常ゴム組成物に配合される成分が挙げられ、例えば、加硫促進剤(例、酸化亜鉛、ステアリン酸)、分散剤、老化防止剤、および架橋助剤が挙げられる。
The rubber composition of the present invention may contain an optional component in addition to the above components.
Examples of optional components include components that are usually blended in rubber compositions, such as vulcanization accelerators (eg, zinc oxide, stearic acid), dispersants, anti-aging agents, and crosslinking aids. It is done.
 以下に実施例を挙げて本発明を具体的に示すが、本願は勿論、かかる実施例に限定されるものではない。本願の実施例における試験方法を、次に示す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present application is not limited to the examples. The test method in the Example of this application is shown next.
<平均粒子径測定>
 マイクロトラック粒度分析計(スペクトリス株式会社(マルバーン事業本部)製)を用いて測定した。測定原理としてはレーザー散乱法を用いており、粒度分布を蓄積分布として表し、蓄積分布が50%となる値を平均粒子径とした。
 具体的には、レーザー回析式粒度分布測定装置(マスターサイザー2000、スペクトリス株式会社(マルバーン事業本部)製)を使用した。測定に用いる試料を0.5g、100mlビーカーに採取し、0.5%ヘキサメタリン酸溶液60mlを加え、Dr.Hielscher Gmbh社の超音波処理装置で、出力20%の条件で2分間処理し、処理した試料を測定に用いた。測定原理としてはレーザー散乱法を用いており、粒度分布を蓄積分布として表し、蓄積分布が50%となる値を平均粒子径とした。
<Average particle size measurement>
Measurement was performed using a Microtrac particle size analyzer (Spectris Co., Ltd. (Malvern Division). As a measurement principle, a laser scattering method is used, and the particle size distribution is expressed as an accumulation distribution, and a value at which the accumulation distribution is 50% is defined as an average particle diameter.
Specifically, a laser diffraction particle size distribution analyzer (Mastersizer 2000, manufactured by Spectris Co., Ltd. (Malvern Business Division)) was used. A sample used for measurement was collected in a 0.5 g, 100 ml beaker, 60 ml of 0.5% hexametaphosphoric acid solution was added, and Dr. The sample was processed for 2 minutes under the condition of 20% output with an ultrasonic processing apparatus manufactured by Hielscher GmbH, and the processed sample was used for measurement. As a measurement principle, a laser scattering method is used, and the particle size distribution is expressed as an accumulation distribution, and a value at which the accumulation distribution is 50% is defined as an average particle diameter.
<重合度>
 第16改正日本薬局方解説書、結晶セルロース確認試験(2)記載の銅エチレンジアミンを用いた粘度測定法により、セルロース重合度を求めた。
<Degree of polymerization>
The cellulose polymerization degree was calculated | required by the viscosity measuring method using the copper ethylenediamine of the 16th revision Japanese Pharmacopoeia commentary and the crystalline cellulose confirmation test (2) description.
<結晶化度>
 結晶化度は、試料のX線回折を測定することで求めた。X線回折の測定は、適当量の試料をガラスセルに乗せ、X線回折測定装置(RAD-2Cシステム、理学電気社製)を用いた。結晶化度の算出は、Segalらの手法(L.Segal,J.J.Greely,etal,Text.Res.J.,29,786,1959)、および、Kamideらの手法(K.Kamide et al,Polymer J.,17,909,1985)を用いて行い、X線回折測定から得られた回折図の2θ=4°~32°の回折強度をベースラインとして、002面の回折強度と、2θ=18.5°のアモルファス部分の回折強度から、次式により算出した。
Xc=(I002C-Ia)/I002C×100
Xc:セルロースの結晶化度(%)
002C:2θ=22.6°、002面の回折強度
Ia:2θ=18.5°、アモルファス部分の回折強度
<Crystallinity>
The crystallinity was determined by measuring the X-ray diffraction of the sample. For the measurement of X-ray diffraction, an appropriate amount of sample was placed on a glass cell, and an X-ray diffraction measurement apparatus (RAD-2C system, manufactured by Rigaku Corporation) was used. The crystallinity is calculated by the method of Segal et al. (L. Segal, JJ Greery, et al, Text. Res. J., 29, 786, 1959) and the method of Kamide et al. (K. Kamide et al. , Polymer J., 17, 909, 1985), and using the diffraction intensity of 2θ = 4 ° to 32 ° of the diffraction diagram obtained from the X-ray diffraction measurement as a baseline, the diffraction intensity of the 002 plane and 2θ = 1 From the diffraction intensity of the amorphous portion at 18.5 °, the following formula was used.
Xc = (I 002C -Ia) / I 002C × 100
Xc: degree of crystallinity of cellulose (%)
I 002C : 2θ = 22.6 °, 002 plane diffraction intensity Ia: 2θ = 18.5 °, diffraction intensity of amorphous part
<見掛け比重測定>
 常法に従い、100mlメスシリンダーに試料を10g投入し、メスシリンダーの底をたたき、試料の高さが低下しなくなるまで続け、平らになった表面の目盛を読み、測定した。この値が高いほど、粉体はコンパクトになることを意味する。
<Apparent specific gravity measurement>
According to a conventional method, 10 g of a sample was put into a 100 ml graduated cylinder, the bottom of the graduated cylinder was struck, and continued until the height of the sample was not lowered, and the scale on the flat surface was read and measured. Higher values mean that the powder is more compact.
<安息角>
 パウダーテスター(PT-N型、ホソカワミクロン株式会社製)を用いて測定し、Angle Reposeの値を安息角とし、粉体流動性の指標とした。すなわち、この値が小さくなるほど、粉体流動性に優れることを意味する。
<Repose angle>
Measurement was performed using a powder tester (PT-N type, manufactured by Hosokawa Micron Corporation), and the angle of repose was taken as the angle of repose as an index of powder flowability. That is, the smaller this value, the better the powder flowability.
<水分>
 重量既知の秤量ビンに、試料を約5g精秤し、試料を入れた秤量ビンを100~105℃の乾燥機で2時間乾燥させた。2時間後、デシケーターに移し、1時間冷却させた後、化学天秤で秤量し、乾燥前後の試料の重さから計算した。
<Moisture>
About 5 g of the sample was precisely weighed in a weighing bottle having a known weight, and the weighing bottle containing the sample was dried with a dryer at 100 to 105 ° C. for 2 hours. After 2 hours, the sample was transferred to a desiccator, cooled for 1 hour, weighed with an analytical balance, and calculated from the weight of the sample before and after drying.
<ムーニー粘度(ML(ML1+4)>
 ムーニービスコメーター(SMV-300、島津製作所社製)を用いて、試料を100℃で予熱1分、回転開始後4分経過後に、ムーニー粘度計で測定した値を示す。
<Mooney viscosity (ML (ML 1 + 4 )>
The values measured with a Mooney viscometer using a Mooney viscometer (SMV-300, manufactured by Shimadzu Corporation) at 100 ° C. for 1 minute preheating and 4 minutes after starting rotation are shown.
<加硫特性>
 未加硫のゴムシートを試料として作製し、キュラストメーター(JSR株式会社製)を用いて測定した。測定温度160℃で10分間の加硫曲線を測定し、縦軸にトルク、横軸を時間としたグラフとし、10分経過後のトルク(N・m)を求めた。
<Vulcanization characteristics>
An unvulcanized rubber sheet was prepared as a sample and measured using a curast meter (manufactured by JSR Corporation). A vulcanization curve for 10 minutes was measured at a measurement temperature of 160 ° C., and the torque (N · m) after the lapse of 10 minutes was determined with a graph in which the vertical axis represents torque and the horizontal axis represents time.
<ゴム硬度>
 ISO M 6518に準拠し、ゴム硬度(Shore A)を測定した。
<Rubber hardness>
The rubber hardness (Shore A) was measured according to ISO M6518.
<50%引張応力、400%引張応力、600%引張応力>
 ISO M 6518に準拠し、測定した。
<50% tensile stress, 400% tensile stress, 600% tensile stress>
Measured according to ISO M6518.
<摩耗深さ>
 リングオンディスク摩擦摩耗試験機(神戸造機社製)を用いて、試験片を100℃に熱した指定潤滑油(IRM-903、JIS油中摩耗試験の指定)に72時間浸漬した後、リングの回転数が250rpmで、回転開始から1分間に10kgfの負荷をかけ、40kgfまで負荷を上げ、120分間経過後の試験片の摩耗深さを、3点平均で測定した。摩耗深さが小さいほど、繰返し摺動に対する耐性が高く、オイル漏れが少ない傾向となる。
<Wear depth>
Using a ring-on-disk friction and wear tester (manufactured by Kobe Machinery Co., Ltd.), the test piece was immersed in a designated lubricating oil heated to 100 ° C. (IRM-903, designated in the JIS oil wear test) for 72 hours. At a rotational speed of 250 rpm, a load of 10 kgf was applied per minute from the start of rotation, the load was increased to 40 kgf, and the wear depth of the test piece after 120 minutes was measured by an average of three points. The smaller the wear depth, the higher the resistance to repeated sliding and the less oil leakage.
<圧縮永久歪>
 JIS K6262に準拠し、測定条件は70℃、24時間として測定した。
<Compression set>
In accordance with JIS K6262, the measurement conditions were 70 ° C. and 24 hours.
<実施例1>
 ニトリルゴム(KUMHO PETROCHEMICAL社製、商品名:KNB35L、結合アクリロニトリル含量34%、ムーニー粘度41)100質量部に対し、カーボンブラック(Sid Richardson社製、商品名:N550)75質量部、粉末状セルロース(日本製紙社製、商品名:W-200Y、平均粒子径31μm、重合度600、結晶化度84%、見掛け比重0.36g/ml、安息角51°、水分2.5%)10質量部、酸化亜鉛(堺化学工業社製)を3質量部、可塑剤(ADEKA社製、商品名:RS107)を6質量部、老化防止剤(Chemutra社製)2質量部、架橋助剤(川口化学工業社製、過酸化物)4.9質量部を、ニーダーおよびオープンロールで混練した。混練物のムーニー粘度は130N・m、加硫特性は1.5N・mであった。混練物を160℃で12分間のプレス加硫を行い、ゴム硬度は、83Shore Aの板状試験片を得た。
<Example 1>
Nitrile rubber (KUMHO PETROCHEMICAL, trade name: KNB35L, bound acrylonitrile content 34%, Mooney viscosity 41) 100 parts by weight, carbon black (Sid Richardson, trade name: N550) 75 parts by weight, powdered cellulose ( Manufactured by Nippon Paper Industries Co., Ltd., trade name: W-200Y, average particle size 31 μm, polymerization degree 600, crystallinity 84%, apparent specific gravity 0.36 g / ml, repose angle 51 °, moisture 2.5%) 10 parts by mass, 3 parts by mass of zinc oxide (manufactured by Sakai Chemical Industry Co., Ltd.), 6 parts by mass of plasticizer (manufactured by ADEKA, trade name: RS107), 2 parts by mass of anti-aging agent (manufactured by Chemutra), and crosslinking aid (Kawaguchi Chemical Industries) 4.9 parts by mass of a peroxide (manufactured by Kogyo Co., Ltd.) was kneaded with a kneader and an open roll. The kneaded product had a Mooney viscosity of 130 N · m and a vulcanization characteristic of 1.5 N · m. The kneaded product was subjected to press vulcanization at 160 ° C. for 12 minutes to obtain a plate test piece having a rubber hardness of 83 Shore A.
<実施例2>
 可塑剤の添加量を30質量部に変更した以外は実施例1と同様にした。得られた混練物のムーニー粘度は54N・m、加硫特性は1.0N・mであった。また、板状試験片のゴム硬度は、74Shore Aであった。
<Example 2>
Example 1 was repeated except that the amount of plasticizer added was changed to 30 parts by mass. The resulting kneaded product had a Mooney viscosity of 54 N · m and a vulcanization characteristic of 1.0 N · m. Further, the rubber hardness of the plate-like test piece was 74 Shore A.
<実施例3>
 ニトリルゴムをKNB35H(KUMHO PETROCHEMICAL社製、結合アクリロニトリル含量34%、ムーニー粘度80)に変更した以外は実施例1と同様にした。得られた混練物のムーニー粘度は175N・m、加硫特性は2.2N・mであった。また、板状試験片のゴム硬度は、87Shore Aであった。
<Example 3>
The same procedure as in Example 1 was performed except that the nitrile rubber was changed to KNB35H (manufactured by KUMHO PETROCHEMICAL, bound acrylonitrile content: 34%, Mooney viscosity: 80). The resulting kneaded product had a Mooney viscosity of 175 N · m and a vulcanization characteristic of 2.2 N · m. Further, the rubber hardness of the plate-like test piece was 87 Shore A.
<比較例1>
 カーボンブラックの配合量を85質量部、粉末状セルロースを無配合とした以外は実施例1と同様にした。得られた混練物のムーニー粘度は140N・m、加硫特性は1.2N・mであった。また、板状試験片のゴム硬度は、82Shore Aであった。
<Comparative Example 1>
The same procedure as in Example 1 was carried out except that the blending amount of carbon black was 85 parts by mass and powdered cellulose was not blended. The resulting kneaded product had a Mooney viscosity of 140 N · m and a vulcanization characteristic of 1.2 N · m. Further, the rubber hardness of the plate-like test piece was 82 Shore A.
<比較例2>
 可塑剤の添加量を30質量部に変更した以外は比較例1と同様にした。得られた混練物のムーニー粘度は62N・m、加硫特性は0.9N・mであった。また、板状試験片のゴム硬度は、73Shore Aであった。
<Comparative Example 2>
The same procedure as in Comparative Example 1 was conducted except that the amount of plasticizer added was changed to 30 parts by mass. The resulting kneaded product had a Mooney viscosity of 62 N · m and a vulcanization characteristic of 0.9 N · m. Further, the rubber hardness of the plate-like test piece was 73 Shore A.
<比較例3>
 ニトリルゴムをKNB35Hに変更した以外は比較例1と同様にした。得られた混練物のムーニー粘度は200N・m、加硫特性は1.9N・mであった。また、板状試験片のゴム硬度は、86Shore Aであった。
<Comparative Example 3>
Comparative Example 1 was repeated except that the nitrile rubber was changed to KNB35H. The resulting kneaded product had a Mooney viscosity of 200 N · m and a vulcanization characteristic of 1.9 N · m. Further, the rubber hardness of the plate-like test piece was 86 Shore A.
<実施例4>
 粉末状セルロースをW-400G(日本製紙社製、平均粒子径24μm、重合度160、結晶化度86%、見掛け比重0.48g/ml、安息角49°、水分3.5%)に変更した以外は実施例1と同様にした。得られた混練物のムーニー粘度は135N・m、加硫特性は1.4N・mであった。また、板状試験片のゴム硬度は、82Shore Aであった。
<Example 4>
The powdered cellulose was changed to W-400G (manufactured by Nippon Paper Industries Co., Ltd., average particle size 24 μm, polymerization degree 160, crystallinity 86%, apparent specific gravity 0.48 g / ml, repose angle 49 °, moisture 3.5%). Except for this, the procedure was the same as in Example 1. The resulting kneaded product had a Mooney viscosity of 135 N · m and a vulcanization characteristic of 1.4 N · m. Further, the rubber hardness of the plate-like test piece was 82 Shore A.
<実施例5>
 粉末状セルロースをW-100G(日本製紙社製、平均粒子径36μm、重合度450、結晶化度85%、見掛け比重0.30g/ml、安息角58°、水分3.6%)に変更した以外は実施例1と同様にした。得られた混練物のムーニー粘度は133N・m、加硫特性は1.4N・mであった。また、板状試験片のゴム硬度は、83Shore Aであった。
<Example 5>
The powdered cellulose was changed to W-100G (manufactured by Nippon Paper Industries Co., Ltd., average particle size 36 μm, polymerization degree 450, crystallinity 85%, apparent specific gravity 0.30 g / ml, repose angle 58 °, moisture 3.6%). Except for this, the procedure was the same as in Example 1. The resulting kneaded product had a Mooney viscosity of 133 N · m and a vulcanization characteristic of 1.4 N · m. Further, the rubber hardness of the plate-like test piece was 83 Shore A.
<実施例6>
 粉末状セルロースをW-50(日本製紙社製、平均粒子径42μm、重合度1050、結晶化度83%、見掛け比重0.20g/ml、安息角60°、水分3.1%)に変更した以外は実施例1と同様にした。得られた混練物のムーニー粘度は137N・m、加硫特性は1.3N・mであった。また、板状試験片のゴム硬度は、84Shore Aであった。
<Example 6>
The powdery cellulose was changed to W-50 (manufactured by Nippon Paper Industries Co., Ltd., average particle size 42 μm, polymerization degree 1050, crystallinity 83%, apparent specific gravity 0.20 g / ml, repose angle 60 °, moisture 3.1%). Except for this, the procedure was the same as in Example 1. The resulting kneaded product had a Mooney viscosity of 137 N · m and a vulcanization characteristic of 1.3 N · m. Further, the rubber hardness of the plate-like test piece was 84 Shore A.
<実施例7>
 カーボンブラックの添加量を55質量部、粉末状セルロースを30質量部とした以外は、実施例1と同様にした。得られた混練物のムーニー粘度は120N・m、加硫特性は1.6N・mであった。また、板状試験片のゴム硬度は、86Shore Aであった。
<Example 7>
The same procedure as in Example 1 was carried out except that the amount of carbon black added was 55 parts by mass and the amount of powdered cellulose was 30 parts by mass. The resulting kneaded product had a Mooney viscosity of 120 N · m and a vulcanization characteristic of 1.6 N · m. Further, the rubber hardness of the plate-like test piece was 86 Shore A.
<実施例8>
 カーボンブラックの添加量を100質量部、粉末状セルロースを20質量部とした以外は、実施例1と同様にした。得られた混練物のムーニー粘度は155N・m、加硫特性は1.4N・mであった。また、板状試験片のゴム硬度は、91Shore Aであった。
<Example 8>
The procedure of Example 1 was repeated except that the amount of carbon black added was 100 parts by mass and the amount of powdered cellulose was 20 parts by mass. The resulting kneaded product had a Mooney viscosity of 155 N · m and a vulcanization characteristic of 1.4 N · m. Further, the rubber hardness of the plate-like test piece was 91 Shore A.
<比較例4>
 粉末状セルロースをW-10MG2(日本製紙社製、平均粒子径10μm、重合度140、結晶化度78%、見掛け比重0.38g/ml、安息角47°、水分3.5%)に変更した以外は実施例1と同様にした。得られた混練物のムーニー粘度は140N・m、加硫特性は1.1N・mであった。また、板状試験片のゴム硬度は、81Shore Aであった。
<Comparative Example 4>
Powdered cellulose was changed to W-10MG2 (manufactured by Nippon Paper Industries Co., Ltd., average particle size 10 μm, polymerization degree 140, crystallinity 78%, apparent specific gravity 0.38 g / ml, repose angle 47 °, moisture 3.5%). Except for this, the procedure was the same as in Example 1. The resulting kneaded product had a Mooney viscosity of 140 N · m and a vulcanization characteristic of 1.1 N · m. Further, the rubber hardness of the plate-like test piece was 81 Shore A.
<比較例5>
 晒し木材パルプシート(NDSP、日本製紙(株)製、平均重合度1600)を原料として、トルネードミル(日機装株式会社製)を用いて機械的に粉砕を行い、平均粒子径が72.3μm、平均重合度が1480、結晶化度が82.3%の粉末状セルロースを得た。
 用いた粉末状セルロースを上述の粉末に変更した以外は実施例1と同様にした。得られた混練物のムーニー粘度は145N・m、加硫特性は1.0N・mであった。また、板状試験片のゴム硬度は、87Shore Aであった。
<Comparative Example 5>
Using an exposed wood pulp sheet (NDSP, manufactured by Nippon Paper Industries Co., Ltd., average polymerization degree 1600) as a raw material, it is mechanically pulverized using a tornado mill (manufactured by Nikkiso Co., Ltd.), with an average particle diameter of 72.3 μm, average A powdery cellulose having a polymerization degree of 1480 and a crystallinity of 82.3% was obtained.
The same procedure as in Example 1 was conducted except that the powdery cellulose used was changed to the powder described above. The resulting kneaded product had a Mooney viscosity of 145 N · m and a vulcanization characteristic of 1.0 N · m. Further, the rubber hardness of the plate-like test piece was 87 Shore A.
<比較例6>
 カーボンブラックの添加量を120質量部、可塑剤の添加量を18質量部に変更した以外は、比較例3と同様にした。得られた混練物のムーニー粘度は153N・m、加硫特性は1.4N・mであった。また、板状試験片のゴム硬度は、81Shore Aであった。
<Comparative Example 6>
The same procedure as in Comparative Example 3 was performed except that the addition amount of carbon black was changed to 120 parts by mass and the addition amount of the plasticizer was changed to 18 parts by mass. The resulting kneaded product had a Mooney viscosity of 153 N · m and a vulcanization characteristic of 1.4 N · m. Further, the rubber hardness of the plate-like test piece was 81 Shore A.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1-1の結果から、粉末状セルロースを含む実施例1~3のゴム組成物は、粉末状セルロースを含まない比較例1~3のゴム組成物とそれぞれ比較して、ゴム硬度が維持されていながら、ムーニー粘度が低下していることが分かる。また、加硫特性が向上していることが分かる。 From the results shown in Table 1-1, the rubber compositions of Examples 1 to 3 containing powdered cellulose maintained the rubber hardness as compared with the rubber compositions of Comparative Examples 1 to 3 not containing powdered cellulose. However, it can be seen that the Mooney viscosity is lowered. It can also be seen that the vulcanization characteristics are improved.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1-2および表1-3の結果から、粉末状セルロースの平均粒子径が15~70μmの範囲にない比較例4および5のゴム組成物と比較して、実施例4~6のゴム組成物は、ゴム硬度が維持されていながらムーニー粘度が低下していることが分かる。また、加硫特性が向上していることが分かる。 From the results of Table 1-2 and Table 1-3, the rubber compositions of Examples 4 to 6 were compared with the rubber compositions of Comparative Examples 4 and 5 where the average particle size of the powdered cellulose was not in the range of 15 to 70 μm. It can be seen that the Mooney viscosity is lowered while the rubber hardness is maintained. It can also be seen that the vulcanization characteristics are improved.
<実施例2-1>
 カーボンブラックの配合量を40質量部に変更した以外は実施例1と同様にした。得られた混練物のムーニー粘度は34N・m、加硫特性は1.4N・mであった。また、板状試験片のゴム硬度は72Shore A、50%引張応力は29Kgf/cm、摩耗深さは34μmであった。
<Example 2-1>
The procedure was the same as Example 1 except that the amount of carbon black was changed to 40 parts by mass. The resulting kneaded product had a Mooney viscosity of 34 N · m and a vulcanization characteristic of 1.4 N · m. The rubber hardness of the plate-like test piece was 72 Shore A, the 50% tensile stress was 29 kgf / cm 2 , and the wear depth was 34 μm.
<実施例2-2>
 カーボンブラックの配合量を30質量部、粉末状セルロースの配合量を20質量部に変更した以外は実施例1と同様にした。得られた混練物のムーニー粘度は31N・m、加硫特性は1.5N・mであった。また、板状試験片のゴム硬度は73Shore A、50%引張応力は34Kgf/cm、摩耗深さは22μmであった。
<Example 2-2>
The same procedure as in Example 1 was conducted except that the amount of carbon black was changed to 30 parts by mass and the amount of powdered cellulose was changed to 20 parts by mass. The resulting kneaded product had a Mooney viscosity of 31 N · m and a vulcanization characteristic of 1.5 N · m. Further, the rubber hardness of the plate-like test piece was 73 Shore A, the 50% tensile stress was 34 Kgf / cm 2 , and the wear depth was 22 μm.
<比較例2-1>
 カーボンブラックの配合量を50質量部、粉末状セルロースを無配合に変更した以外は実施例1と同様にした。得られた混練物のムーニー粘度は37N・m、加硫特性は1.1N・mであった。また、板状試験片のゴム硬度は71Shore A、50%引張応力は22Kgf/cm、摩耗深さは84μmであった。
<Comparative Example 2-1>
The same procedure as in Example 1 was carried out except that the blending amount of carbon black was changed to 50 parts by mass and the powdery cellulose was not blended. The resulting kneaded product had a Mooney viscosity of 37 N · m and a vulcanization characteristic of 1.1 N · m. The rubber hardness of the plate-like test piece was 71 Shore A, the 50% tensile stress was 22 kgf / cm 2 , and the wear depth was 84 μm.
<比較例2-2>
 カーボンブラックの配合量を80質量部、粉末状セルロースを無配合に変更した以外は実施例1と同様にした。得られた混練物のムーニー粘度は130N・m、加硫特性は1.3N・mであった。また、板状試験片のゴム硬度は82Shore A、50%引張応力は26Kgf/cm、摩耗深さは61μmであった。
<Comparative Example 2-2>
The same procedure as in Example 1 was carried out except that the blending amount of carbon black was changed to 80 parts by mass and the powdery cellulose was not blended. The resulting kneaded product had a Mooney viscosity of 130 N · m and a vulcanization characteristic of 1.3 N · m. The rubber hardness of the plate-like test piece was 82 Shore A, the 50% tensile stress was 26 Kgf / cm 2 , and the wear depth was 61 μm.
<実施例2-3>
 粉末状セルロースをW-400G(日本製紙社製、平均粒子径24μm、重合度160、結晶化度86%、見掛け比重0.48g/ml、安息角49°、水分3.5%)に変更した以外は実施例2-1と同様にした。得られた混練物のムーニー粘度は36N・m、加硫特性は1.4N・mであった。また、板状試験片のゴム硬度は、71Shore A、50%引張応力は25Kgf/cm、摩耗深さは40μmであった。
<Example 2-3>
The powdery cellulose was changed to W-400G (manufactured by Nippon Paper Industries Co., Ltd., average particle size 24 μm, polymerization degree 160, crystallinity 86%, apparent specific gravity 0.48 g / ml, repose angle 49 °, moisture 3.5%). Except for this, the procedure was the same as in Example 2-1. The resulting kneaded product had a Mooney viscosity of 36 N · m and a vulcanization characteristic of 1.4 N · m. The rubber hardness of the plate-like test piece was 71 Shore A, the 50% tensile stress was 25 Kgf / cm 2 , and the wear depth was 40 μm.
<実施例2-4>
 粉末状セルロースをW-100G(日本製紙社製、平均粒子径36μm、重合度450、結晶化度85%、見掛け比重0.30g/ml、安息角58°、水分3.6%)に変更した以外は実施例2-1と同様にした。得られた混練物のムーニー粘度は35N・m、加硫特性は1.4N・mであった。また、板状試験片のゴム硬度は、72Shore A、50%引張応力は28Kgf/cm、摩耗深さは36μmであった。
<Example 2-4>
The powdered cellulose was changed to W-100G (manufactured by Nippon Paper Industries Co., Ltd., average particle size 36 μm, polymerization degree 450, crystallinity 85%, apparent specific gravity 0.30 g / ml, repose angle 58 °, moisture 3.6%). Except for this, the procedure was the same as in Example 2-1. The resulting kneaded product had a Mooney viscosity of 35 N · m and a vulcanization characteristic of 1.4 N · m. The rubber hardness of the plate-like test piece was 72 Shore A, the 50% tensile stress was 28 kgf / cm 2 , and the wear depth was 36 μm.
<実施例2-5>
 粉末状セルロースをW-50(日本製紙社製、平均粒子径42μm、重合度1050、結晶化度83%、見掛け比重0.20g/ml、安息角60°、水分3.1%)に変更した以外は実施例2-1と同様にした。得られた混練物のムーニー粘度は36N・m、加硫特性は1.3N・mであった。また、板状試験片のゴム硬度は、73Shore A、50%引張応力は23Kgf/cm、摩耗深さは35μmであった。
<Example 2-5>
The powdery cellulose was changed to W-50 (manufactured by Nippon Paper Industries Co., Ltd., average particle size 42 μm, polymerization degree 1050, crystallinity 83%, apparent specific gravity 0.20 g / ml, repose angle 60 °, moisture 3.1%). Except for this, the procedure was the same as in Example 2-1. The resulting kneaded product had a Mooney viscosity of 36 N · m and a vulcanization characteristic of 1.3 N · m. The rubber hardness of the plate-like test piece was 73 Shore A, the 50% tensile stress was 23 Kgf / cm 2 , and the wear depth was 35 μm.
<実施例2-6>
 カーボンブラックの添加量を20質量部、粉末状セルロースを5質量部とした以外は、実施例2-1と同様にした。得られた混練物のムーニー粘度は28N・m、加硫特性は1.2N・mであった。また、板状試験片のゴム硬度は、61Shore A、50%引張応力は17Kgf/cm、摩耗深さは48μmであった。
<Example 2-6>
The procedure was the same as Example 2-1, except that the amount of carbon black added was 20 parts by mass and the amount of powdered cellulose was 5 parts by mass. The resulting kneaded product had a Mooney viscosity of 28 N · m and a vulcanization characteristic of 1.2 N · m. The rubber hardness of the plate-like test piece was 61 Shore A, the 50% tensile stress was 17 kgf / cm 2 , and the wear depth was 48 μm.
<実施例2-7>
 カーボンブラックの添加量を55質量部、粉末状セルロースを30質量部とした以外は、実施例2-1と同様にした。得られた混練物のムーニー粘度は120N・m、加硫特性は1.6N・mであった。また、板状試験片のゴム硬度は、86Shore A、50%引張応力は40Kgf/cm、摩耗深さは28μmであった。
<Example 2-7>
The same procedure as in Example 2-1 was performed, except that the addition amount of carbon black was 55 parts by mass, and powdered cellulose was 30 parts by mass. The resulting kneaded product had a Mooney viscosity of 120 N · m and a vulcanization characteristic of 1.6 N · m. The rubber hardness of the plate-like test piece was 86 Shore A, the 50% tensile stress was 40 Kgf / cm 2 , and the wear depth was 28 μm.
<実施例2-8>
 カーボンブラックの添加量を100質量部、粉末状セルロースを20質量部とした以外は、実施例2-1と同様にした。得られた混練物のムーニー粘度は155N・m、加硫特性は1.6N・mであった。また、板状試験片のゴム硬度は、91Shore A、50%引張応力は48Kgf/cm、摩耗深さは33μmであった。
<Example 2-8>
Example 2-1 was performed except that the amount of carbon black added was 100 parts by mass and the amount of powdered cellulose was 20 parts by mass. The resulting kneaded product had a Mooney viscosity of 155 N · m and a vulcanization characteristic of 1.6 N · m. The rubber hardness of the plate-like test piece was 91 Shore A, the 50% tensile stress was 48 kgf / cm 2 , and the wear depth was 33 μm.
<比較例2-3>
 粉末状セルロースをW-10MG2(日本製紙社製、平均粒子径10μm、重合度140、結晶化度78%、見掛け比重0.38g/ml、安息角47°、水分3.5%)に変更した以外は実施例2-1と同様にした。得られた混練物のムーニー粘度は37N・m、加硫特性は1.1N・mであった。また、板状試験片のゴム硬度は、71Shore A、50%引張応力は22Kgf/cm、摩耗深さは62μmであった。
<Comparative Example 2-3>
Powdered cellulose was changed to W-10MG2 (manufactured by Nippon Paper Industries Co., Ltd., average particle size 10 μm, polymerization degree 140, crystallinity 78%, apparent specific gravity 0.38 g / ml, repose angle 47 °, moisture 3.5%). Except for this, the procedure was the same as in Example 2-1. The resulting kneaded product had a Mooney viscosity of 37 N · m and a vulcanization characteristic of 1.1 N · m. The rubber hardness of the plate-like test piece was 71 Shore A, the 50% tensile stress was 22 kgf / cm 2 , and the wear depth was 62 μm.
<比較例2-4>
 晒し木材パルプシート(NDSP、日本製紙(株)製、平均重合度1600)を原料として、トルネードミル(日機装株式会社製)を用いて機械的に粉砕を行い、平均粒子径が72.3μm、平均重合度が1480、結晶化度が82.3%の粉末状セルロースを得た。
 用いた粉末状セルロースを上述の粉末に変更した以外は実施例2-1と同様にした。得られた混練物のムーニー粘度は40N・m、加硫特性は1.0N・mであった。また、板状試験片のゴム硬度は、77Shore A、50%引張応力は19Kgf/cm、摩耗深さは56μmであった。
<Comparative Example 2-4>
Using an exposed wood pulp sheet (NDSP, manufactured by Nippon Paper Industries Co., Ltd., average polymerization degree 1600) as a raw material, it is mechanically pulverized using a tornado mill (manufactured by Nikkiso Co., Ltd.), with an average particle diameter of 72.3 μm, average A powdery cellulose having a polymerization degree of 1480 and a crystallinity of 82.3% was obtained.
Example 2-1 was carried out except that the powdery cellulose used was changed to the above powder. The resulting kneaded product had a Mooney viscosity of 40 N · m and a vulcanization characteristic of 1.0 N · m. The rubber hardness of the plate-like test piece was 77 Shore A, the 50% tensile stress was 19 Kgf / cm 2 , and the wear depth was 56 μm.
<比較例2-5>
 カーボンブラックの添加量を120質量部、可塑剤の添加量を18質量部に変更した以外は、比較例2-2と同様にした。得られた混練物のムーニー粘度は153N・m、加硫特性は1.4N・mであった。また、板状試験片のゴム硬度は、81Shore A、50%引張応力は39Kgf/cm、摩耗深さは60μmであった。
<Comparative Example 2-5>
The same procedure as in Comparative Example 2-2 was performed except that the addition amount of carbon black was changed to 120 parts by mass and the addition amount of the plasticizer was changed to 18 parts by mass. The resulting kneaded product had a Mooney viscosity of 153 N · m and a vulcanization characteristic of 1.4 N · m. The rubber hardness of the plate-like test piece was 81 Shore A, the 50% tensile stress was 39 Kgf / cm 2 , and the wear depth was 60 μm.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2-1の結果から、粉末状セルロースを含まない比較例2-1および比較例2-2のゴム組成物と比較して、実施例2-1および実施例2-1のゴム組成物は、摩耗深さが顕著に低減されていることが分かる。また、加硫特性が向上していることが分かる。 From the results of Table 2-1, the rubber compositions of Example 2-1 and Example 2-1 were compared with the rubber compositions of Comparative Example 2-1 and Comparative Example 2-2 that did not contain powdered cellulose. It can be seen that the wear depth is significantly reduced. It can also be seen that the vulcanization characteristics are improved.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表2-2および表2-4の結果から、粉末状セルロースの平均粒子径が15~70μmの範囲にない比較例2-3および比較例2-4のゴム組成物と比較して、実施例2-3~実施例2-5のゴム組成物は、摩耗深さが顕著に低減されていることが分かる。また、加硫特性が向上していることが分かる。
 また、実施例2-6~実施例2-8の結果から、カーボンブラックと粉末状セルロースとの配合比を変化させても、摩耗深さが低減されることが分かる。
From the results shown in Table 2-2 and Table 2-4, it was found that Examples were compared with the rubber compositions of Comparative Example 2-3 and Comparative Example 2-4 where the average particle size of the powdered cellulose was not in the range of 15 to 70 μm. It can be seen that the rubber compositions of 2-3 to Example 2-5 have a significantly reduced wear depth. It can also be seen that the vulcanization characteristics are improved.
Further, the results of Examples 2-6 to 2-8 show that the wear depth is reduced even when the blending ratio of carbon black and powdered cellulose is changed.
<実施例3-1>
 エチレンプロピレンジエンゴム(EPDM)(KUMHO PETROCHEMICAL社製、製品名:KEP570P(ムーニー粘度53))を用い、エチレンプロピレンジエンゴム100重量部に対し、シリカ(Rhodia社製、製品名:Z-175)を40重量部、粉末状セルロース(日本製紙株式会社製、製品名:W-50(平均粒子径43μm、重合度1100、結晶化度83%、見掛け比重0.20g/ml、安息角58°、水分2.5%))を10重量部、酸化亜鉛(堺化学工業社製、ゴム用酸化亜鉛)を5重量部、シランカップリング剤(エボニックデグサ社製、製品名:Dynasylan Si-69)を4重量部、ポリエチレングリコール(東邦化学工業株式会社製、製品名:PEG 4000)を4重量部、ステアリン酸(CMB社製)を1重量部、老化防止剤(Chemutra社製、製品名:Naugard 445)を2重量部、架橋助剤(川口化学工業社製、製品名:トリアリック)を3.6重量部を、ニーダーおよび、オープンロールで混練した混練物のムーニー粘度は52N・m、加硫特性は1.6N・mであった。混練物を160℃で12分間のプレス加硫を行い、板状試験片を得た。得られた試験片の比重は1.08、ゴム硬度は76Shore A、400%引張応力は65Kgf/cm、600%引張応力は150Kgf/cm、圧縮永久歪は33%であった。
<Example 3-1>
Using ethylene propylene diene rubber (EPDM) (manufactured by KUMHO PETROCHEMICAL, product name: KEP570P (Mooney viscosity 53)), silica (manufactured by Rhodia, product name: Z-175) is added to 100 parts by weight of ethylene propylene diene rubber. 40 parts by weight, powdered cellulose (manufactured by Nippon Paper Industries Co., Ltd., product name: W-50 (average particle size 43 μm, polymerization degree 1100, crystallinity 83%, apparent specific gravity 0.20 g / ml, repose angle 58 °, moisture) 2.5%)) 10 parts by weight, zinc oxide (manufactured by Sakai Chemical Industry Co., Ltd., zinc oxide for rubber) 5 parts by weight, silane coupling agent (Evonik Degussa, product name: Dynasylan Si-69) 4 Parts by weight, 4 parts by weight of polyethylene glycol (Toho Chemical Industries, product name: PEG 4000), stearin 1 part by weight of acid (manufactured by CMB), 2 parts by weight of anti-aging agent (manufactured by Chemutra, product name: Naugard 445), 3.6 parts by weight of crosslinking aid (manufactured by Kawaguchi Chemical Industry, product name: trialic) The Mooney viscosity of the kneaded product kneaded with a kneader and an open roll was 52 N · m, and the vulcanization characteristic was 1.6 N · m. The kneaded product was press-vulcanized at 160 ° C. for 12 minutes to obtain a plate-shaped test piece. The obtained specimen had a specific gravity of 1.08, a rubber hardness of 76 Shore A, a 400% tensile stress of 65 kgf / cm 2 , a 600% tensile stress of 150 kgf / cm 2 and a compression set of 33%.
<実施例3-2>
 エチレンプロピレンジエンゴム(KUMHO PETROCHEMICAL社製、製品名:KEP570P(ムーニー粘度53)))を用い、エチレンプロピレンジエンゴム100重量部に対し、シリカ(Rhodia社製、製品名:Z-175)を30重量部、粉末状セルロース(日本製紙株式会社製、製品名:W-50(平均粒子径43μm、重合度1100、結晶化度83%、見掛け比重0.20g/ml、安息角58°、水分2.5%))を20重量部、酸化亜鉛(堺化学工業社製、ゴム用酸化亜鉛)を5重量部、シランカップリング剤(エボニックデグサ社製、製品名:Dynasylan Si-69)を3.2重量部、ポリエチレングリコール(東邦化学工業株式会社製、製品名:PEG 4000)を3.2重量部、ステアリン酸(CMB社製)を1重量部、老化防止剤(Chemutra社製、製品名:Naugard 445)を2重量部、架橋助剤(川口化学工業社製、製品名:トリアリック)を3.6重量部を、ニーダーおよび、オープンロールで混練した混練物のムーニー粘度は46N・m、加硫特性は1.9N・mであった。混練物を160℃で12分間のプレス加硫を行い、板状試験片を得た。得られた試験片の比重は1.06、ゴム硬度は77Shore A、400%引張応力は80Kgf/cm、600%引張応力は170Kgf/cm、圧縮永久歪は31%であった。
<Example 3-2>
Using ethylene propylene diene rubber (manufactured by KUMHO PETROCHEMICAL, product name: KEP570P (Mooney viscosity 53))), 30 parts by weight of silica (manufactured by Rhodia, product name: Z-175) per 100 parts by weight of ethylene propylene diene rubber Parts, powdered cellulose (manufactured by Nippon Paper Industries Co., Ltd., product name: W-50 (average particle size 43 μm, polymerization degree 1100, crystallinity 83%, apparent specific gravity 0.20 g / ml, repose angle 58 °, moisture 2. 5%)) 20 parts by weight, zinc oxide (manufactured by Sakai Chemical Industry Co., Ltd., zinc oxide for rubber) 5 parts by weight, silane coupling agent (Evonik Degussa, product name: Dynasylan Si-69) 3.2 Parts by weight, 3.2 parts by weight of polyethylene glycol (manufactured by Toho Chemical Co., Ltd., product name: PEG 4000), stearic acid 1 part by weight (manufactured by CMB), 2 parts by weight of anti-aging agent (manufactured by Chemutra, product name: Naugard 445), and 3.6 parts by weight of crosslinking aid (manufactured by Kawaguchi Chemical Industry Co., Ltd., product name: trialic) The kneaded product kneaded with a kneader and an open roll had a Mooney viscosity of 46 N · m and a vulcanization characteristic of 1.9 N · m. The kneaded product was press-vulcanized at 160 ° C. for 12 minutes to obtain a plate-shaped test piece. The obtained specimen had a specific gravity of 1.06, a rubber hardness of 77 Shore A, a 400% tensile stress of 80 kgf / cm 2 , a 600% tensile stress of 170 kgf / cm 2 and a compression set of 31%.
<比較例3-1>
 エチレンプロピレンジエンゴム(KUMHO PETROCHEMICAL社製、製品名:KEP570P(ムーニー粘度53))を用い、エチレンプロピレンジエンゴム100重量部に対し、シリカ(Rhodia社製、製品名:Z-175)を30重量部、酸化亜鉛(堺化学工業社製、ゴム用酸化亜鉛)を5重量部、シランカップリング剤(エボニックデグサ社製、製品名:Dynasylan Si-69)を2.4重量部、ポリエチレングリコール(東邦化学工業株式会社製、製品名:PEG 4000)を2.4重量部、ステアリン酸(CMB社製)を1重量部、老化防止剤(Chemutra社製、製品名:Naugard 445)を2重量部、架橋助剤(川口化学工業社製、製品名:トリアリック)を3.6重量部を、ニーダーおよび、オープンロールで混練した混練物のムーニー粘度は43N・m、加硫特性は1.1N・mであった。混練物を160℃で12分間のプレス加硫を行い、板状試験片を得た。得られた試験片の比重は1.00、ゴム硬度は66Shore A、400%引張応力は52Kgf/cm、600%引張応力は125Kgf/cm、圧縮永久歪は35%であった。
<Comparative Example 3-1>
Using ethylene propylene diene rubber (manufactured by KUMHO PETROCHEMICAL, product name: KEP570P (Mooney viscosity 53)), 30 parts by weight of silica (manufactured by Rhodia, product name: Z-175) with respect to 100 parts by weight of ethylene propylene diene rubber , 5 parts by weight of zinc oxide (manufactured by Sakai Chemical Industry Co., Ltd., zinc oxide for rubber), 2.4 parts by weight of silane coupling agent (manufactured by Evonik Degussa, product name: Dynasylan Si-69), polyethylene glycol (Toho Chemical) Kogyo Co., Ltd., product name: PEG 4000) 2.4 parts by weight, stearic acid (CMB) 1 part by weight, anti-aging agent (Chemutra, product name: Naugard 445) 2 parts by weight, cross-linked 3.6 parts by weight of auxiliary agent (product name: Trialic, manufactured by Kawaguchi Chemical Industry Co., Ltd.) The kneaded product kneaded with an open roll had a Mooney viscosity of 43 N · m and a vulcanization characteristic of 1.1 N · m. The kneaded product was press-vulcanized at 160 ° C. for 12 minutes to obtain a plate-shaped test piece. The obtained specimen had a specific gravity of 1.00, rubber hardness of 66 Shore A, 400% tensile stress of 52 Kgf / cm 2 , 600% tensile stress of 125 Kgf / cm 2 , and compression set of 35%.
<比較例3-2>
 エチレンプロピレンジエンゴム(KUMHO PETROCHEMICAL社製、製品名:KEP570P(ムーニー粘度53))を用い、エチレンプロピレンジエンゴム100重量部に対し、シリカ(Rhodia社製、製品名:Z-175)を50重量部、酸化亜鉛(堺化学工業社製、ゴム用酸化亜鉛)を5重量部、シランカップリング剤(エボニックデグサ社製、製品名:Dynasylan Si-69)を4重量部、ポリエチレングリコール(東邦化学工業株式会社製、製品名:PEG 4000)を4重量部、ステアリン酸(CMB社製)を1重量部、老化防止剤(Chemutra社製、製品名:Naugard 445)を2重量部、架橋助剤(川口化学工業社製、製品名:トリアリック)を3.6重量部を、ニーダーおよび、オープンロールで混練した混練物のムーニー粘度は55N・m、加硫特性は1.3N・mであった。混練物を160℃で12分間のプレス加硫を行い、板状試験片を得た。得られた試験片の比重は1.10、ゴム硬度は75Shore A、400%引張応力は62Kgf/cm、600%引張応力は140Kgf/cm、圧縮永久歪は37%であった。
<Comparative Example 3-2>
Using ethylene propylene diene rubber (manufactured by KUMHO PETROCHEMICAL, product name: KEP570P (Mooney viscosity 53)), 50 parts by weight of silica (manufactured by Rhodia, product name: Z-175) with respect to 100 parts by weight of ethylene propylene diene rubber , 5 parts by weight of zinc oxide (manufactured by Sakai Chemical Industry Co., Ltd., zinc oxide for rubber), 4 parts by weight of silane coupling agent (manufactured by Evonik Degussa, product name: Dynasylan Si-69), polyethylene glycol (Toho Chemical Co., Ltd.) 4 parts by weight of product manufactured by company, product name: PEG 4000), 1 part by weight of stearic acid (manufactured by CMB), 2 parts by weight of anti-aging agent (manufactured by Chemutra, product name: Naugard 445), crosslinking aid (Kawaguchi) 3.6 parts by weight of chemical industry, product name: Trialic), kneader and orange The Mooney viscosity of the kneaded material kneaded with the open roll was 55 N · m, and the vulcanization characteristic was 1.3 N · m. The kneaded product was press-vulcanized at 160 ° C. for 12 minutes to obtain a plate-shaped test piece. The obtained specimen had a specific gravity of 1.10, a rubber hardness of 75 Shore A, a 400% tensile stress of 62 kgf / cm 2 , a 600% tensile stress of 140 kgf / cm 2 and a compression set of 37%.
 <実施例3-3>
 粉末状セルロースをW-400G(日本製紙社製、平均粒子径24μm、重合度160、結晶化度86%、見掛け比重0.48g/ml、安息角49°、水分3.5%)に変更した以外は実施例3-1と同様にした。得られた混練物のムーニー粘度は54N・m、加硫特性は1.4N・mであった。混練物を160℃で12分間のプレス加硫を行い、板状試験片を得た。得られた試験片の比重は1.08、ゴム硬度は75Shore A、400%引張応力は62Kgf/cm、600%引張応力は142Kgf/cm、圧縮永久歪は34%であった。
<Example 3-3>
The powdery cellulose was changed to W-400G (manufactured by Nippon Paper Industries Co., Ltd., average particle size 24 μm, polymerization degree 160, crystallinity 86%, apparent specific gravity 0.48 g / ml, repose angle 49 °, moisture 3.5%). Except for this, the procedure was the same as in Example 3-1. The resulting kneaded product had a Mooney viscosity of 54 N · m and a vulcanization characteristic of 1.4 N · m. The kneaded product was press-vulcanized at 160 ° C. for 12 minutes to obtain a plate-shaped test piece. The obtained specimen had a specific gravity of 1.08, a rubber hardness of 75 Shore A, a 400% tensile stress of 62 kgf / cm 2 , a 600% tensile stress of 142 kgf / cm 2 and a compression set of 34%.
<実施例3-4>
 粉末状セルロースをW-100G(日本製紙社製、平均粒子径36μm、重合度450、結晶化度85%、見掛け比重0.30g/ml、安息角58°、水分3.6%)に変更した以外は実施例3-1と同様にした。得られた混練物のムーニー粘度は53N・m、加硫特性は1.4N・mであった。混練物を160℃で12分間のプレス加硫を行い、板状試験片を得た。得られた試験片の比重は1.08、ゴム硬度は76Shore A、400%引張応力は63Kgf/cm、600%引張応力は145Kgf/cm、圧縮永久歪は33%であった。
<Example 3-4>
The powdered cellulose was changed to W-100G (manufactured by Nippon Paper Industries Co., Ltd., average particle size 36 μm, polymerization degree 450, crystallinity 85%, apparent specific gravity 0.30 g / ml, repose angle 58 °, moisture 3.6%). Except for this, the procedure was the same as in Example 3-1. The resulting kneaded product had a Mooney viscosity of 53 N · m and a vulcanization characteristic of 1.4 N · m. The kneaded product was press-vulcanized at 160 ° C. for 12 minutes to obtain a plate-shaped test piece. The obtained specimen had a specific gravity of 1.08, a rubber hardness of 76 Shore A, a 400% tensile stress of 63 Kgf / cm 2 , a 600% tensile stress of 145 Kgf / cm 2 and a compression set of 33%.
<比較例3-3>
 粉末状セルロースをW-10MG2(日本製紙社製、平均粒子径10μm、重合度140、結晶化度78%、見掛け比重0.38g/ml、安息角47°、水分3.5%)に変更した以外は実施例3-1と同様にした。得られた混練物のムーニー粘度は55N・m、加硫特性は1.1N・mであった。混練物を160℃で12分間のプレス加硫を行い、板状試験片を得た。得られた試験片の比重は1.08、ゴム硬度は75Shore A、400%引張応力は61Kgf/cm、600%引張応力は138Kgf/cm、圧縮永久歪は36%であった。
<Comparative Example 3-3>
Powdered cellulose was changed to W-10MG2 (manufactured by Nippon Paper Industries Co., Ltd., average particle size 10 μm, polymerization degree 140, crystallinity 78%, apparent specific gravity 0.38 g / ml, repose angle 47 °, moisture 3.5%). Except for this, the procedure was the same as in Example 3-1. The resulting kneaded product had a Mooney viscosity of 55 N · m and a vulcanization characteristic of 1.1 N · m. The kneaded product was press-vulcanized at 160 ° C. for 12 minutes to obtain a plate-shaped test piece. The obtained specimen had a specific gravity of 1.08, a rubber hardness of 75 Shore A, a 400% tensile stress of 61 kgf / cm 2 , a 600% tensile stress of 138 kgf / cm 2 and a compression set of 36%.
<比較例3-4>
 晒し木材パルプシート(NDSP、日本製紙(株)製、平均重合度1600)を原料として、トルネードミル(日機装株式会社製)を用いて機械的に粉砕を行い、平均粒子径が72.3μm、平均重合度が1480、結晶化度が82.3%の粉末状セルロースを得た。
 用いた粉末状セルロースを上述の粉末に変更した以外は実施例3-1と同様にした。得られた混練物のムーニー粘度は57N・m、加硫特性は1.0N・mであった。混練物を160℃で12分間のプレス加硫を行い、板状試験片を得た。得られた試験片の比重は1.08、ゴム硬度は79Shore A、400%引張応力は59Kgf/cm、600%引張応力は132Kgf/cm、圧縮永久歪は37%であった。
<Comparative Example 3-4>
Using an exposed wood pulp sheet (NDSP, manufactured by Nippon Paper Industries Co., Ltd., average polymerization degree 1600) as a raw material, it is mechanically pulverized using a tornado mill (manufactured by Nikkiso Co., Ltd.), with an average particle diameter of 72.3 μm, average A powdery cellulose having a polymerization degree of 1480 and a crystallinity of 82.3% was obtained.
The same procedure as in Example 3-1 was conducted, except that the powdery cellulose used was changed to the powder described above. The resulting kneaded product had a Mooney viscosity of 57 N · m and a vulcanization characteristic of 1.0 N · m. The kneaded product was press-vulcanized at 160 ° C. for 12 minutes to obtain a plate-shaped test piece. The obtained specimen had a specific gravity of 1.08, a rubber hardness of 79 Shore A, a 400% tensile stress of 59 Kgf / cm 2 , a 600% tensile stress of 132 Kgf / cm 2 , and a compression set of 37%.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表3-1の結果から、粉末状セルロースを含まない比較例3-2のゴム組成物と比較して、実施例3-1のゴム組成物は、比重が減少し、ゴム硬度は低下せず、ムーニー粘度は減少していることがわかる。また、加硫特性も向上していることが分かる。 From the results shown in Table 3-1, the specific gravity of the rubber composition of Example 3-1 was reduced and the rubber hardness was not reduced as compared with the rubber composition of Comparative Example 3-2 not containing powdered cellulose. It can be seen that the Mooney viscosity decreases. It can also be seen that the vulcanization characteristics are also improved.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表3-2の結果から、粉末状セルロースの平均粒子径が15~70μmの範囲にない比較例3-3および比較例3-4のゴム組成物と比較して、実施例3-3および実施例3-4のゴム組成物は、600%引張応力が大きく、機械的特性に優れていることが分かる。また、加硫特性が向上していることが分かる。 From the results shown in Table 3-2, Example 3-3 and Example 3 were compared with the rubber compositions of Comparative Example 3-3 and Comparative Example 3-4 where the average particle size of the powdered cellulose was not in the range of 15 to 70 μm. It can be seen that the rubber composition of Example 3-4 has a high 600% tensile stress and excellent mechanical properties. It can also be seen that the vulcanization characteristics are improved.

Claims (15)

  1.  平均粒子径が15~70μmである粉末状セルロースを含む、ゴム組成物用添加剤。 An additive for rubber composition containing powdered cellulose having an average particle size of 15 to 70 μm.
  2.  粉末状セルロースの平均粒子径が25~70μmである、請求項1に記載のゴム組成物用添加剤。 The additive for rubber composition according to claim 1, wherein the average particle size of the powdery cellulose is 25 to 70 µm.
  3.  粉末状セルロースの、重合度が150~1200、結晶化度が70~90%、見掛け比重が0.15~0.6g/mL、安息角が45~60°、水分が5%以下である、請求項1または2に記載のゴム組成物用添加剤。 The powdery cellulose has a polymerization degree of 150 to 1200, a crystallinity of 70 to 90%, an apparent specific gravity of 0.15 to 0.6 g / mL, an angle of repose of 45 to 60 °, and a water content of 5% or less. The additive for rubber compositions according to claim 1 or 2.
  4.  粉末状セルロースが、無機酸で処理したセルロース原料の粉砕物である、請求項1~3のいずれか1項に記載のゴム組成物用添加剤。 The additive for a rubber composition according to any one of claims 1 to 3, wherein the powdery cellulose is a pulverized product of a cellulose raw material treated with an inorganic acid.
  5.  ゴム組成物が、ゴム成分100質量部およびカーボンブラック20~120質量部を含む、請求項1~4のいずれか1項に記載のゴム組成物用添加剤。 The additive for a rubber composition according to any one of claims 1 to 4, wherein the rubber composition comprises 100 parts by mass of a rubber component and 20 to 120 parts by mass of carbon black.
  6.  ゴム組成物が、ゴム成分100質量部およびシリカ20~60質量部を含む、請求項1~5のいずれか1項に記載のゴム組成物用添加剤。 The rubber composition additive according to any one of claims 1 to 5, wherein the rubber composition comprises 100 parts by mass of a rubber component and 20 to 60 parts by mass of silica.
  7.  ゴム組成物がオイルシーリング用である、請求項1~6のいずれか1項に記載のゴム組成物用添加剤。 The rubber composition additive according to any one of claims 1 to 6, wherein the rubber composition is used for oil sealing.
  8.  ゴム成分、充填材、および平均粒子径が15~70μmである粉末状セルロースを含む、ゴム組成物。 Rubber composition comprising a rubber component, a filler, and powdered cellulose having an average particle size of 15 to 70 μm.
  9.  粉末状セルロースの、重合度が150~1200、結晶化度が70~90%、見掛け比重が0.15~0.6g/mL、安息角が45~60°、水分が5%以下である、請求項8に記載のゴム組成物。 The powdery cellulose has a polymerization degree of 150 to 1200, a crystallinity of 70 to 90%, an apparent specific gravity of 0.15 to 0.6 g / mL, an angle of repose of 45 to 60 °, and a water content of 5% or less. The rubber composition according to claim 8.
  10.  ゴム成分100質量部、充填材20~120質量部、および粉末状セルロース5~50質量部を含む、請求項8または9に記載のゴム組成物。 The rubber composition according to claim 8 or 9, comprising 100 parts by mass of a rubber component, 20 to 120 parts by mass of a filler, and 5 to 50 parts by mass of powdered cellulose.
  11.  充填材がカーボンブラックまたはシリカである、請求項8~10のいずれか1項に記載のゴム組成物。 The rubber composition according to any one of claims 8 to 10, wherein the filler is carbon black or silica.
  12.  充填材20~60質量部を含む、請求項8~11のいずれか1項に記載のゴム組成物。 The rubber composition according to any one of claims 8 to 11, comprising 20 to 60 parts by mass of a filler.
  13.  粉末状セルロース10~40質量部を含む、請求項8~12のいずれか1項に記載のゴム組成物。 The rubber composition according to any one of claims 8 to 12, comprising 10 to 40 parts by mass of powdered cellulose.
  14.  オイルシーリング用である、請求項8~13のいずれか1項に記載のゴム組成物。 The rubber composition according to any one of claims 8 to 13, which is used for oil sealing.
  15.  請求項8~13のいずれか1項に記載のゴム組成物を含むオイルシール。 An oil seal comprising the rubber composition according to any one of claims 8 to 13.
PCT/JP2016/055684 2015-02-25 2016-02-25 Additive for rubber composition, and rubber composition WO2016136902A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015-034646 2015-02-25
JP2015034646A JP2018070661A (en) 2015-02-25 2015-02-25 Rubber composition for oil sealing
JP2015-034647 2015-02-25
JP2015034647A JP2018070662A (en) 2015-02-25 2015-02-25 Rubber composition
JP2015063528A JP2018070667A (en) 2015-03-26 2015-03-26 Rubber composition for oil sealing
JP2015-063528 2015-03-26

Publications (1)

Publication Number Publication Date
WO2016136902A1 true WO2016136902A1 (en) 2016-09-01

Family

ID=56789007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055684 WO2016136902A1 (en) 2015-02-25 2016-02-25 Additive for rubber composition, and rubber composition

Country Status (1)

Country Link
WO (1) WO2016136902A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018030931A (en) * 2016-08-23 2018-03-01 日本製紙株式会社 Rubber composition
JP2020007548A (en) * 2018-07-02 2020-01-16 日本製紙株式会社 Rubber composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004115637A (en) * 2002-09-26 2004-04-15 Arai Pump Mfg Co Ltd Rubber composition
JP2005075856A (en) * 2003-08-28 2005-03-24 Sumitomo Rubber Ind Ltd Rubber composition for tire
JP2006292083A (en) * 2005-04-12 2006-10-26 Nok Corp Grease seal
JP2012076595A (en) * 2010-10-01 2012-04-19 Nakashima Rubber Industry Co Ltd Wiper blade rubber
JP2013035903A (en) * 2011-08-04 2013-02-21 Toyo Tire & Rubber Co Ltd Methods for producing reinforcing filler and rubber composition
WO2014098168A1 (en) * 2012-12-21 2014-06-26 日本ゼオン株式会社 Nitrile copolymer rubber composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004115637A (en) * 2002-09-26 2004-04-15 Arai Pump Mfg Co Ltd Rubber composition
JP2005075856A (en) * 2003-08-28 2005-03-24 Sumitomo Rubber Ind Ltd Rubber composition for tire
JP2006292083A (en) * 2005-04-12 2006-10-26 Nok Corp Grease seal
JP2012076595A (en) * 2010-10-01 2012-04-19 Nakashima Rubber Industry Co Ltd Wiper blade rubber
JP2013035903A (en) * 2011-08-04 2013-02-21 Toyo Tire & Rubber Co Ltd Methods for producing reinforcing filler and rubber composition
WO2014098168A1 (en) * 2012-12-21 2014-06-26 日本ゼオン株式会社 Nitrile copolymer rubber composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018030931A (en) * 2016-08-23 2018-03-01 日本製紙株式会社 Rubber composition
JP2020007548A (en) * 2018-07-02 2020-01-16 日本製紙株式会社 Rubber composition
JP7329989B2 (en) 2018-07-02 2023-08-21 日本製紙株式会社 rubber composition

Similar Documents

Publication Publication Date Title
JP6000598B2 (en) Rubber / cellulose masterbatch and rubber composition
WO2010071106A1 (en) Natural rubber and manufacturing method thereof, rubber composition and pneumatic tire utilizing the same, modified natural rubber and manufacturing method thereof, and rubber composite for covering threads or carcass cords and pneumatic tire utilizing the same
KR101140248B1 (en) Tread rubber composition and tire manufactured by using the same
JP6357189B2 (en) Additive for resin
JP6234352B2 (en) Rubber composition for tire and tire manufactured using the same
JP2013035903A (en) Methods for producing reinforcing filler and rubber composition
JP5640269B2 (en) Rubber composition for tire and pneumatic tire using the same
EP3301130A1 (en) Rubber composition for base tread
JP6348369B2 (en) Rubber composition and pneumatic tire
WO2016136902A1 (en) Additive for rubber composition, and rubber composition
JP4800188B2 (en) Rubber composition for bead apex and tire having bead apex using the same
EP3112412A1 (en) Rubber composition for studless winter tires, and studless winter tire
JP5234877B2 (en) Rubber composition and tire having tread using the same
JP2020041076A (en) Tire rubber composition and tire
JP7329989B2 (en) rubber composition
JP6878787B2 (en) Rubber composition
JP2018070667A (en) Rubber composition for oil sealing
JP2018070661A (en) Rubber composition for oil sealing
KR101905118B1 (en) Rubber composition for tire tread with improved abrasion resistance
EP3431308B1 (en) Method for producing rubber composition for a heavy-duty tire tread
EP3308975B1 (en) Rubber composition for studless winter tires, and studless winter tire
JP7492657B1 (en) Rubber composition
JP2018070662A (en) Rubber composition
KR101142552B1 (en) Rubber composition for tire and tire manufactured by using the same
WO2024101450A1 (en) Rubber composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16755646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP