WO2016136887A1 - Suspension control device - Google Patents

Suspension control device Download PDF

Info

Publication number
WO2016136887A1
WO2016136887A1 PCT/JP2016/055657 JP2016055657W WO2016136887A1 WO 2016136887 A1 WO2016136887 A1 WO 2016136887A1 JP 2016055657 W JP2016055657 W JP 2016055657W WO 2016136887 A1 WO2016136887 A1 WO 2016136887A1
Authority
WO
WIPO (PCT)
Prior art keywords
acceleration
vehicle body
vehicle
lateral
centrifugal acceleration
Prior art date
Application number
PCT/JP2016/055657
Other languages
French (fr)
Japanese (ja)
Inventor
智博 木下
赤見 裕介
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2017502472A priority Critical patent/JP6355817B2/en
Publication of WO2016136887A1 publication Critical patent/WO2016136887A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/22Guiding of the vehicle underframes with respect to the bogies
    • B61F5/24Means for damping or minimising the canting, skewing, pitching, or plunging movements of the underframes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a suspension control device that is suitably used to reduce vehicle vibration and the like.
  • a configuration is known in which a plurality of damping force-adjustable dampers (dampers) are provided in order to reduce vehicle body vibration and improve the stability of a carriage (for example, Patent Document 1). reference).
  • a first carriage and a second carriage are provided apart from each other in the front-rear direction of the vehicle body, and a damping force adjustment type buffer for adjusting a damping force in the vertical direction is provided between each carriage and the vehicle body.
  • a configuration provided with a vessel is disclosed.
  • a railway vehicle receives a centrifugal force when entering a curved line (curved road) and while traveling on a curved line, and accordingly, the vehicle body of the railway vehicle also receives lateral acceleration (lateral acceleration, lateral acceleration).
  • the semi-active suspension attempts to set the lateral acceleration during curve traveling to 0 (zero) in order to suppress the vibration of the vehicle body due to the lateral acceleration. For this reason, there is a problem that the vehicle is controlled so as to go straight in spite of the curved traveling, the curved traveling of the vehicle is hindered, and the riding comfort of the vehicle is deteriorated.
  • a method of canceling excess centrifugal acceleration in the lateral acceleration by using a high-pass filter for the lateral acceleration signal during the curve running can be considered.
  • this method can cancel the excess centrifugal acceleration during running of a curve that is a steady circle, but the high-pass filter cannot cancel the excess centrifugal acceleration because the excess centrifugal acceleration rises when entering a curve that is a relaxation curve.
  • control is performed based on acceleration from which excess centrifugal acceleration is not removed, control different from vibration of the vehicle body is performed, and there is a problem that the ride comfort of the vehicle is deteriorated.
  • Patent Document 1 describes a configuration in which excessive centrifugal acceleration is obtained using trajectory information at a travel point of a vehicle to suppress vibration of the vehicle body.
  • the suspension control device described in Patent Document 1 has a problem that when traveling position information is measured in the leading vehicle, an error occurs in other vehicles, and the control accuracy decreases.
  • this method cannot be applied to a line section where travel position information cannot be obtained.
  • the excess centrifugal acceleration cannot be canceled, so that the ride comfort of the vehicle may deteriorate.
  • the present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a suspension control device capable of controlling a damper based on the lateral acceleration of a vibration component.
  • the present invention provides a suspension including a damping force adjusting shock absorber provided in a vehicle having a vehicle body and a carriage, and a controller for controlling the damping force of the damping force adjusting shock absorber.
  • a control device wherein the controller is configured to detect a lateral acceleration of the vehicle body acting in a lateral direction with respect to a traveling direction of the vehicle, and an excess centrifugal acceleration of the vehicle body based on a yaw rate of the vehicle body
  • a vibration acceleration calculation unit that subtracts a detection value of the excess centrifugal acceleration detection unit from a detection value of the left and right acceleration detection unit to obtain a lateral acceleration of a vibration component. It is characterized by that.
  • the damper can be controlled based on the lateral acceleration of the vibration component.
  • 1 is a front view showing a railway vehicle to which a suspension control device according to a first embodiment is applied. It is the top view which looked at the inside of the railway vehicle in the curve running by 1st, 3rd, 4th embodiment from the upper side. It is explanatory drawing which shows typically the left-right acceleration, excess centrifugal acceleration, and vibration acceleration of the railway vehicle in the curve running in FIG. It is a block diagram which shows the controller by 1st Embodiment. It is a flowchart which shows the suspension control process which the controller by 1st Embodiment performs. It is a front view which shows the railway vehicle to which the suspension control apparatus by 2nd Embodiment was applied.
  • FIG. It is explanatory drawing which shows typically the left-right acceleration of the railway vehicle in curve running in 2nd Embodiment, excess centrifugal acceleration, vibration acceleration, etc.
  • FIG. It is a block diagram which shows the controller by 2nd Embodiment. It is a flowchart which shows the suspension control process which the controller by 2nd Embodiment performs. It is a block diagram which shows the controller by 3rd Embodiment. It is a flowchart which shows the suspension control process which the controller by 3rd Embodiment performs. It is explanatory drawing which shows typically the left-right acceleration of the railway vehicle in the curve running in 4th Embodiment, excess centrifugal acceleration, vibration acceleration, etc.
  • FIG. It is a block diagram which shows the controller by 4th Embodiment. It is a flowchart which shows the suspension control process which the controller by 4th Embodiment performs.
  • a railway vehicle 1 (vehicle) includes, for example, a vehicle body 2 on which passengers, passengers, etc. get on, and front and rear carts 3 (first and second carts) provided below the vehicle body 2. Dolly). These trolleys 3 are spaced apart from each other on the front side and the rear side of the vehicle body 2, and each trolley 3 is provided with four wheels 4. The railway vehicle 1 travels along the rails 5 as each wheel 4 rotates on the left and right rails 5.
  • a shaft spring 6 is provided between each carriage 3 and each wheel 4 to alleviate vibrations and shocks from the wheel 4 (wheel axle).
  • a plurality of air springs 7 serving as pillow springs are provided between the vehicle body 2 and each carriage 3, and a plurality of vertical movement dampers 8 serving as damping force adjustment type shock absorbers are provided in parallel with the air springs 7. Yes.
  • the air springs 7 and the vertical motion dampers 8 are disposed on the left and right sides of each carriage 3, and two are provided on each carriage 3. For this reason, a total of four air springs 7 and vertical movement dampers 8 are provided in the railway vehicle 1 as a whole.
  • each vertical motion damper 8 is a cylinder device in which hydraulic oil capable of individually adjusting each damping force is enclosed, for example, a damping force adjusting hydraulic pressure called a semi-active damper It is configured using a shock absorber.
  • the vertical motion damper 8 generates a damping force that reduces the vibration with respect to the vertical vibration of the vehicle body 2 relative to the carriage 3. Thereby, the vertical motion damper 8 reduces the vibration of the vehicle body 2 in the vertical direction.
  • a left and right motion damper 9 as a damping force adjusting type shock absorber is provided in the left and right direction of the vehicle 1 between the vehicle body 2 and each carriage 3.
  • the left-right motion damper 9 is configured by using, for example, the above-described semi-active damper or full-active damper that operates actively, or a passive damper that operates passively.
  • the left and right dynamic damper 9 generates a damping force that reduces the vibration with respect to the left and right vibration of the vehicle body 2 with respect to the carriage 3. Thereby, the left-right motion damper 9 reduces the vibration of the vehicle body 2 in the left-right direction.
  • the controller 10 includes a lateral acceleration sensor 11, a yaw rate sensor 12, a speed sensor 13, an arithmetic device 14, and the like.
  • the controller 10 performs arithmetic processing on a control command signal (control command) to be output to an actuator (not shown) of the left and right motion damper 9 according to the damping force control processing of each wheel 4 as a target current value.
  • Control the damping force Specifically, the controller 10 controls the damping force of the left and right dynamic damper 9 based on, for example, the skyhook theory (skyhook control law) at every sampling time in order to reduce the vertical vibration of the vehicle body 2.
  • the left and right motion damper 9 is controlled so that the damping force is continuously variable between hardware and software, or variable in a plurality of stages, according to a target current value (control command signal) supplied to the actuator.
  • the left / right acceleration sensor 11 is located in the vicinity immediately above each carriage 3 and is provided, for example, on the vehicle body 2 on the upper side of the spring, and detects accelerations in the left / right direction (lateral acceleration, lateral acceleration, lateral G) of the vehicle body 2. That is, the lateral acceleration sensor 11 constitutes a lateral acceleration detector that detects lateral acceleration of the vehicle body 2 acting in the lateral direction with respect to the traveling direction of the vehicle 1. For this reason, the lateral acceleration sensor 11 detects lateral accelerations a sy1 and a sy2 acting on the vehicle body 2 in the vicinity immediately above the first and second carts 3 while the vehicle 1 is traveling.
  • the lateral acceleration sensor 11 outputs the lateral accelerations a sy1 and a sy2 that are detection signals (detection values) to the arithmetic unit 14.
  • the lateral acceleration sensor 11 outputs the lateral accelerations a sy1 and a sy2 that are detection signals (detection values) to the arithmetic unit 14.
  • the arithmetic unit 14 In this case, as shown in FIG. 3, when the vehicle 1 is inclined because of an inclined surface such as a cant, the inclined surface and the left-right direction are parallel to each other.
  • the yaw rate sensor 12 is located in the immediate vicinity of each carriage 3 and is provided on the vehicle body 2.
  • the yaw rate sensor 12 is constituted by, for example, a gyro sensor, and detects a change speed of the rotation angle in the turning direction generated around the center of gravity of the vehicle 1, that is, a yaw rate ⁇ z indicating the yawing behavior of the vehicle body 2. Then, the yaw rate sensor 12 outputs a yaw rate ⁇ z that is a detection signal to the arithmetic device 14.
  • the yaw rate sensor 12 and the lateral acceleration sensor 11 do not need to be provided separately, and for example, a composite sensor capable of measuring the lateral acceleration and the yaw rate together, such as a six-axis sensor, may be used.
  • the speed sensor 13 is provided in the vehicle body 2 as a travel speed detection unit, and detects, for example, the travel speed (vehicle speed) v of the vehicle 1. That is, the speed sensor 13 detects the vehicle speed v of the vehicle 1 while the vehicle 1 is traveling, and outputs the vehicle speed v that is a detection signal to the arithmetic device 14.
  • the speed sensor 13 may detect the vehicle speed v from, for example, the rotational speed (wheel speed) of the wheel 4, or the vehicle speed v from a monitor device or a pulse of a speed generator (none of which is shown). It is good also as a structure to detect.
  • the computing device 14 is constituted by, for example, a CPU (not shown) composed of a microcomputer or the like. As shown in FIG. 4, the excess centrifugal acceleration calculation unit 15, the left / right acceleration correction unit 16, and the control command value calculation unit 17 are included. And have.
  • the calculation device 14 calculates a damping force that should be generated by the left and right motion damper 9 in order to control the vibration of the vehicle body 2 based on the detection signals input from the sensors 11, 12, and 13. Then, the arithmetic unit 14 calculates a target current value to be supplied to the actuator of the left and right dynamic damper 9 based on the calculated damping force, and outputs the target current value to the left and right dynamic damper 9 as a control command signal.
  • the input side of the excess centrifugal acceleration calculation unit 15 is connected to the yaw rate sensor 12 and the speed sensor 13.
  • the output side of the excess centrifugal acceleration calculation unit 15 is connected to the left / right acceleration correction unit 16.
  • the excess centrifugal acceleration calculation unit 15 detects (estimates) the excess centrifugal acceleration of the vehicle body 2 based on the yaw rate ⁇ z of the vehicle body 2 input from the yaw rate sensor 12 and the vehicle speed v input from the speed sensor 13. .
  • the excess centrifugal acceleration calculation unit 15 constitutes an excess centrifugal acceleration detection unit, and calculates the centrifugal acceleration a r as the excess centrifugal acceleration based on the following equation (1).
  • the input side of the lateral acceleration correction unit 16 is connected to the lateral acceleration sensor 11 on the first and second carts and the excess centrifugal acceleration calculator 15. Further, the output side of the lateral acceleration correction unit 16 is connected to the control command value calculation unit 17.
  • the left / right acceleration correction unit 16 is based on the left / right accelerations a sy1 and a sy2 input from the respective left / right acceleration sensors 11 and the centrifugal acceleration a r input from the excess centrifugal acceleration calculation unit 15. Vibration accelerations a y1 and a y2 are obtained.
  • the left / right acceleration correction unit 16 detects the excess centrifugal acceleration calculation unit 15 from the left / right accelerations a sy1 and a sy2 which are detection values of the respective left and right acceleration sensors 11, as shown in the following equations (2) and (3).
  • the lateral acceleration a sy1 and a sy2 are corrected by subtracting the value of the centrifugal acceleration a r .
  • each lateral acceleration sensor 11 includes a lateral acceleration a that combines a centrifugal acceleration a r due to the vehicle 1 traveling in a curve and vibration accelerations a y1 and a y2 at the center position of the vehicle body 2. sy1 and asy2 are detected.
  • the lateral acceleration correction unit 16 as the vibration acceleration calculation unit can subtract the centrifugal acceleration a r from the lateral accelerations a sy1 and a sy2 to obtain the vibration accelerations a y1 and a y2 , respectively.
  • the input side of the control command value calculation unit 17 is connected to the lateral acceleration correction unit 16.
  • the output side of the control command value calculation unit 17 is connected to the left and right dynamic damper 9.
  • the control command value calculation unit 17 calculates a damping force that should be generated by the left and right dynamic damper 9 to control the vibration of the vehicle body 2 based on the vibration accelerations a y1 and a y2 input from the left and right acceleration correction unit 16. To do. Then, the control command value calculation unit 17 calculates a target current value to be supplied to the actuator of the left and right motion damper 9 based on the calculated damping force, and outputs the target current value to the left and right motion damper 9 as a control command signal. .
  • step 1 the controller 10 detects the lateral accelerations a sy1 , a sy2 , the yaw rate ⁇ z, and the vehicle speed v based on the detection signals from the sensors 11, 12, 13.
  • the controller 10 converts the detection signals of the sensors 11, 12, and 13 made of analog signals into digital signals using, for example, an AD converter (not shown).
  • step 2 the excess centrifugal acceleration calculation unit 15 of the controller 10 calculates the excess centrifugal acceleration based on the yaw rate ⁇ z and the vehicle speed v.
  • the centrifugal acceleration a r calculated based on the yaw rate ⁇ z and the vehicle speed v is estimated as the excess centrifugal acceleration.
  • step 3 the lateral acceleration correction unit 16 of the controller 10 uses the lateral accelerations a sy1 and a sy2 obtained by the lateral acceleration sensor 11 and the centrifugal acceleration a r as the excess centrifugal acceleration obtained in step 2 above to vibrate. Accelerations a y1 and a y2 are calculated. Specifically, as shown in the above formulas 2 and 3, the lateral accelerations a sy1 and a sy2 are subtracted from the centrifugal acceleration a r to obtain vibration accelerations a y1 and a y2 at the center position of the vehicle body 2. Can be requested.
  • step 4 the control command value calculation unit 17 of the controller 10 calculates a control command value for controlling the left and right motion damper 9 based on the vibration accelerations a y1 and a y2 obtained by the left and right acceleration correction unit 16.
  • the controller 10 detects the vehicle body 2 based on the lateral acceleration sensor 11 that detects the lateral accelerations a sy1 and a sy2 of the vehicle body 2, the yaw rate ⁇ z of the vehicle body 2, and the vehicle speed v.
  • An excess centrifugal acceleration calculation unit 15 that detects the centrifugal acceleration a r of the left and right, and a left and right acceleration correction unit 16 that subtracts the centrifugal acceleration a r from the left and right accelerations a sy1 and a sy2 to obtain vibration accelerations a y1 and a y2. ing.
  • vibration accelerations a y1 and a y2 that are vibration components of the vehicle body 2 can be obtained based on the yaw rate ⁇ z and the vehicle speed v.
  • the left and right motion damper 9 can be controlled based on the vibration accelerations a y1 and a y2 that cause the vehicle body 2 to vibrate.
  • the riding comfort of the vehicle 1 can be improved.
  • vibration acceleration that is a vibration component of the vehicle body 2 is based on the yaw rate ⁇ z and the vehicle speed v. a y1 and a y2 can be obtained.
  • the applicable track section can be expanded as compared with the case of controlling based on the traveling position information of the vehicle 1.
  • FIGS. 6 to 9 show a second embodiment of the present invention.
  • the feature of the second embodiment is that the controller calculates the excess centrifugal acceleration based on the lateral component of the gravitational acceleration.
  • the same components as those in the first embodiment described above are denoted by the same reference numerals, and description thereof is omitted.
  • the railcar 21 according to the second embodiment is substantially the same as the railcar 1 according to the first embodiment.
  • the vehicle body 2, the carriage 3, the wheels 4, the left and right motion damper 9, the left and right acceleration sensor 11, the yaw rate sensor 12, A speed sensor 13, a controller 22, an arithmetic device 24, and the like are provided.
  • the controller 22 is configured in substantially the same manner as the controller 10 according to the first embodiment. Specifically, as shown in FIG. 8, the controller 22 includes a lateral acceleration sensor 11, a yaw rate sensor 12, a speed sensor 13, a vertical acceleration sensor 23, an arithmetic device 24, and the like. The controller 22 performs arithmetic processing on a control command signal (control command) to be output to an actuator (not shown) of the left and right motion damper 9 according to the damping force control processing of each wheel 4 as a target current value. Control the damping force.
  • the vertical acceleration sensor 23 is located in the vicinity immediately above each carriage 3 and is provided, for example, on the vehicle body 2 on the upper side of the spring, and detects the vertical acceleration (vertical acceleration, vertical G) of the vehicle body 2. That is, the vertical acceleration sensor 23 constitutes a vertical acceleration detector, and detects the vertical acceleration a sz of the vehicle body 2 acting in the vertical direction while the vehicle 21 is traveling. The vertical acceleration sensor 23 outputs the vertical acceleration a sz that is a detection signal (detection value) to the arithmetic device 24. In this case, as shown in FIG. 7, when the vehicle 21 is tilted by an inclined surface such as a cant, the vertical direction of the vehicle body 2 detected by the vertical acceleration sensor 23 is perpendicular to the inclined surface.
  • the vertical acceleration a sz is used to calculate the horizontal component of the gravitational acceleration.
  • the vertical acceleration a sz changes and becomes a value obtained by adding a vibration component to the gravitational acceleration.
  • the vertical acceleration sensor 23 has a low-pass filter 23A in order to remove the vibration component due to the vertical vibration of the vehicle body 2 and extract the gravitational acceleration component.
  • the vertical acceleration sensor 23 does not need to be provided separately from the lateral acceleration sensor 11 and the yaw rate sensor 12.
  • a vertical sensor, a lateral acceleration, and a yaw rate can be measured together, such as a 6-axis sensor. It may be used.
  • the arithmetic unit 24 is constituted by a CPU (not shown) composed of a microcomputer or the like, for example, and as shown in FIG. 8, a centrifugal acceleration calculation unit 25, a gravity acceleration left / right component calculation unit 26, and an excess centrifugal acceleration calculation. A unit 27, a lateral acceleration correction unit 28, and a control command value calculation unit 29.
  • This computing device 24 computes the damping force that should be generated by the left-right motion damper 9 in order to control the vibration of the vehicle body 2 based on the detection signals input from the sensors 11, 12, 13, and 23.
  • the arithmetic unit 24 calculates a target current value to be supplied to the actuator of the left and right dynamic damper 9 based on the calculated damping force, and outputs the target current value to the left and right dynamic damper 9 as a control command signal.
  • the input side of the centrifugal acceleration calculation unit 25 is connected to the yaw rate sensor 12 and the speed sensor 13.
  • the output side of the centrifugal acceleration calculation unit 25 is connected to the excess centrifugal acceleration calculation unit 27.
  • the centrifugal acceleration calculation unit 25 calculates the centrifugal acceleration a r of the vehicle body 2 based on the yaw rate ⁇ z of the vehicle body 2 input from the yaw rate sensor 12 and the vehicle speed v input from the speed sensor 13. Then, the centrifugal acceleration calculation unit 25 constitutes a centrifugal acceleration detection unit, and calculates the centrifugal acceleration a r based on Formula 1 as in the first embodiment.
  • the input side of the gravitational acceleration left-right direction component calculation unit 26 is connected to the vertical acceleration sensor 23.
  • the output side of the gravity acceleration left / right component calculation unit 26 is connected to the excess centrifugal acceleration calculation unit 27.
  • the gravitational acceleration left / right component calculation unit 26 calculates the gravitational acceleration left / right component a gy based on the vertical acceleration a sz input from the vertical acceleration sensor 23. In this case, the gravitational acceleration left / right component calculation unit 26 uses the vertical acceleration a sz and the gravitational acceleration g, which are detection values of the vertical acceleration sensor 23, as shown in the following equation (4).
  • the gravitational acceleration left-right direction component a gy is calculated.
  • the gravitational acceleration left-right component agy It can be detected by using the yaw rate sensor 12, a roll rate sensor (not shown), or the like, whether the gravitational acceleration left-right component agy is directed in the left-right direction. That is, as shown in FIG. 7, when the vehicle 21 is tilted to the left in FIG. 7, the gravitational acceleration left / right component a gy is also directed to the left. In a normal curved road , the gravitational acceleration lateral component a gy acts in the opposite direction in the lateral direction with respect to the centrifugal acceleration a r .
  • the input side of the excess centrifugal acceleration calculation unit 27 is connected to the centrifugal acceleration calculation unit 25 and the gravity acceleration left-right direction component calculation unit 26.
  • the output side of the excess centrifugal acceleration calculation unit 27 is connected to the left / right acceleration correction unit 28.
  • the excess centrifugal acceleration calculating unit 27 is based on the centrifugal acceleration a r input from the centrifugal acceleration calculating unit 25 and the gravity acceleration left / right component a gy input from the gravity acceleration left / right component calculating unit 26.
  • the excess centrifugal acceleration a rg is detected (estimated).
  • the excess centrifugal acceleration calculation unit 27 constitutes an excess centrifugal acceleration detection unit, and calculates an excess centrifugal acceleration a rg based on the following equation (5).
  • the input side of the lateral acceleration correction unit 28 is connected to the lateral acceleration sensor 11 on the first and second carts and the excess centrifugal acceleration calculator 27.
  • the output side of the lateral acceleration correction unit 28 is connected to the control command value calculation unit 29.
  • the left / right acceleration correction unit 28 is based on the left / right accelerations a sy1 and a sy2 input from the respective left / right acceleration sensors 11 and the excess centrifugal acceleration a rg input from the excess centrifugal acceleration calculation unit 27. Vibration accelerations a y1 and a y2 that are accelerations are obtained.
  • the left / right acceleration correction unit 28 detects the excess centrifugal acceleration calculation unit 27 from the left / right accelerations a sy1 and a sy2 which are detection values of the respective left and right acceleration sensors 11, as shown in the following equations (6) and (7). By subtracting the value of excess centrifugal acceleration a rg , the lateral accelerations a sy1 and a sy2 are corrected.
  • each lateral acceleration sensor 11 includes a lateral acceleration obtained by combining the excess centrifugal acceleration a rg caused by the vehicle 21 traveling in a curve and the vibration accelerations a y1 and a y2 at the center position of the vehicle body 2. a sy1 and a sy2 are detected.
  • the lateral acceleration correction unit 28 as the vibration acceleration calculating unit can subtract the excess centrifugal acceleration a rg from the lateral accelerations a sy1 and a sy2 to obtain the vibration accelerations a y1 and a y2 , respectively.
  • the input side of the control command value calculation unit 29 is connected to the lateral acceleration correction unit 28.
  • the output side of the left / right acceleration correction unit 28 is connected to the left / right motion damper 9.
  • the control command value calculation unit 29 calculates a damping force that should be generated by the left and right dynamic damper 9 to control the vibration of the vehicle body 2 based on the vibration accelerations a y1 and a y2 input from the left and right acceleration correction unit 28. To do. Then, the control command value calculation unit 29 calculates a target current value to be supplied to the actuator of the left and right motion damper 9 based on the calculated damping force, and outputs the target current value to the left and right motion damper 9 as a control command signal. .
  • the controller 22 detects the left and right accelerations a sy1 and a sy2 , the yaw rate ⁇ z , the vehicle speed v, and the vertical acceleration a sz based on detection signals from the sensors 11, 12, 13, and 23 .
  • the controller 22 uses, for example, an AD converter (not shown) to convert the detection signals of the sensors 11, 12, 13, and 23, which are analog signals, into digital signals. Convert.
  • step 12 the centrifugal acceleration calculation unit 25 of the controller 22 calculates the centrifugal acceleration a r based on the yaw rate ⁇ z and the vehicle speed v as shown in the above equation (1).
  • the gravitational acceleration left / right component calculation unit 26 of the controller 22 calculates the gravitational acceleration left / right component a gy based on the vertical acceleration a sz obtained by the vertical acceleration sensor 23. Specifically, as shown in Equation 4, the gravity acceleration left-right direction component a gy can be calculated by the three-square theorem using the vertical acceleration a sz and the gravitational acceleration g.
  • the excess centrifugal acceleration calculation unit 27 of the controller 22 calculates the centrifugal acceleration a r calculated by the centrifugal acceleration calculation unit 25 and the gravity acceleration left / right component a gy calculated by the gravity acceleration left / right component calculation unit 26. Is used to calculate the excess centrifugal acceleration a rg . Specifically, as shown in the above equation 5, the excess centrifugal acceleration a rg that actually acts on the vehicle body 2 can be calculated by removing the gravity acceleration lateral component a gy from the centrifugal acceleration a r. .
  • the left and right acceleration correction unit 28 of the controller 22 uses the left and right accelerations a sy1 and a sy2 obtained by the left and right acceleration sensor 11 and the excess centrifugal acceleration a rg obtained in the above step 14 and vibration accelerations a y1 and a Calculate y2 .
  • the left and right accelerations a sy1 and a sy2 are subtracted from the excess centrifugal acceleration a rg to obtain vibration accelerations a y1 and a a at the center position of the vehicle body 2.
  • y2 can be obtained respectively.
  • step 16 the control command value calculation unit 29 of the controller 22 calculates a control command value for controlling the left and right dynamic damper 9 based on the vibration accelerations a y1 and a y2 obtained by the left and right acceleration correction unit 28.
  • the controller 22 of the second embodiment calculates the excess centrifugal acceleration a rg based on the gravity acceleration left-right direction component a gy .
  • the excess centrifugal acceleration a rg can be calculated in consideration of the gravity acceleration lateral component a gy due to such tilt. Therefore, vibration accelerations a y1 and a y2 that are vibration components of the vehicle body 2 can be obtained using the excess centrifugal acceleration a rg that actually acts on the vehicle body 2.
  • the left and right motion damper 9 can be controlled based on the vibration accelerations a y1 and a y2 that cause the vehicle body 2 to vibrate.
  • the riding comfort of the vehicle 21 can be improved.
  • FIGS. 2, 10 and 11 show a third embodiment of the present invention.
  • the feature of the third embodiment is that the controller calculates the excess centrifugal acceleration based on the curve radius information at the traveling position of the vehicle. Note that in the third embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals, and description thereof is omitted.
  • the controller 31 according to the third embodiment is configured in substantially the same manner as the controller 10 according to the first embodiment. Specifically, as shown in FIG. 10, the controller 31 includes a lateral acceleration sensor 11, a yaw rate sensor 12, a position information acquisition unit 32, a calculation device 33, and the like. The controller 31 calculates a control command signal to be output to an actuator (not shown) of the left and right motion damper 9 according to the damping force control processing of each wheel 4 as a target current value, and controls the damping force of the left and right motion damper 9. To do.
  • the position information acquisition unit 32 is provided in the vehicle 1 and obtains information on the current traveling position of the vehicle 1.
  • the position information acquisition unit 32 may obtain the information of the current traveling position of the vehicle 1 by applying the vehicle speed v detected from the speed sensor 13 to the traveling map of the vehicle 1 created in advance.
  • a ground element may be arranged on the track on which the vehicle 1 travels, and information on the current traveling position of the vehicle 1 may be obtained from the ground element. Information may be obtained.
  • the computing device 33 is constituted by a CPU (not shown) composed of a microcomputer or the like, for example, and as shown in FIG. 10, a travel position curve radius calculation unit 34, an excess centrifugal acceleration calculation unit 35, and a lateral acceleration correction unit. 36 and a control command value calculation unit 37.
  • the arithmetic device 33 is a left-right damper for controlling vibration of the vehicle body 2 based on the detection signals input from the sensors 11 and 12 and the position information of the vehicle 1 input from the position information acquisition unit 32. 9 calculates the damping force to be generated.
  • the arithmetic unit 33 calculates a target current value to be supplied to the actuator of the left and right dynamic damper 9 based on the calculated damping force, and outputs the target current value to the left and right dynamic damper 9 as a control command signal.
  • the input side of the travel position curve radius calculation unit 34 is connected to the position information acquisition unit 32.
  • the output side of the travel position curve radius calculation unit 34 is connected to the excess centrifugal acceleration calculation unit 35.
  • the travel position curve radius calculation unit 34 calculates a curve radius r (curvature radius of curvature) based on the position information of the vehicle 1 input from the position information acquisition unit 32. In this case, for example, the travel position curve radius calculation unit 34 can calculate the curve radius r from the track information by comparing the position information of the vehicle 1 with the travel map of the vehicle 1.
  • the input side of the excess centrifugal acceleration calculator 35 is connected to the yaw rate sensor 12 and the travel position curve radius calculator 34.
  • the output side of the excess centrifugal acceleration calculation unit 35 is connected to the left / right acceleration correction unit 36.
  • the excess centrifugal acceleration calculation unit 35 calculates the excess centrifugal acceleration of the vehicle body 2 based on the yaw rate ⁇ z of the vehicle body 2 input from the yaw rate sensor 12 and the curve radius r input from the travel position curve radius calculation unit 34. Detect (estimate).
  • the excess centrifugal acceleration calculation unit 35 constitutes an excess centrifugal acceleration detection unit, and calculates the centrifugal acceleration a r as the excess centrifugal acceleration based on the following equation (8).
  • the input side of the lateral acceleration correction unit 36 is connected to the lateral acceleration sensor 11 on the first and second carts and the excess centrifugal acceleration calculator 35. Further, the output side of the lateral acceleration correction unit 36 is connected to a control command value calculation unit 37.
  • the left / right acceleration correction unit 36 constitutes a vibration acceleration calculation unit, and includes the left / right accelerations a sy1 and a sy2 input from the left / right acceleration sensors 11 and the centrifugal acceleration a r input from the excess centrifugal acceleration calculation unit 35. Based on this, vibration accelerations a y1 and a y2 which are left and right accelerations of the vibration component are obtained.
  • the left / right acceleration correction unit 36 detects the detected value of the excess centrifugal acceleration calculating unit 35 from the left / right accelerations a sy1 and a sy2 which are the detected values of the left / right acceleration sensor 11, as shown in the equations (2) and (3).
  • the vibration accelerations a y1 and a y2 can be obtained by subtracting the centrifugal acceleration a r .
  • the input side of the control command value calculation unit 37 is connected to the lateral acceleration correction unit 36.
  • the output side of the control command value calculation unit 37 is connected to the left and right dynamic damper 9.
  • the control command value calculation unit 37 calculates the damping force that should be generated by the left and right dynamic damper 9 to control the vibration of the vehicle body 2 based on the vibration accelerations a y1 and a y2 input from the left and right acceleration correction unit 36. To do. Then, the control command value calculation unit 37 calculates a target current value to be supplied to the actuator of the left and right motion damper 9 based on the calculated damping force, and outputs the target current value to the left and right motion damper 9 as a control command signal. .
  • the controller 31 detects the left and right accelerations a sy1 and a sy2 and the yaw rate ⁇ z based on the detection signals from the sensors 11 and 12, and the current position of the vehicle 1 from the position information acquisition unit 32. Get information.
  • the controller 31 converts the detection signals of the sensors 11 and 12 made of analog signals into digital signals using, for example, an AD converter (not shown), as in the first embodiment.
  • step 22 the travel position curve radius calculation unit 34 of the controller 31 is based on the current position information of the vehicle 1 acquired by the position information acquisition unit 32 and the curve radius of the curved road on which the vehicle 1 is traveling. r is calculated.
  • step 23 the excess centrifugal acceleration calculation unit 35 of the controller 31 calculates an excess centrifugal acceleration by the yaw rate omega z and curve radius r.
  • the centrifugal acceleration a r calculated based on the yaw rate ⁇ z and the curve radius r is estimated as the excess centrifugal acceleration.
  • the lateral acceleration correction unit 36 of the controller 31 uses the lateral accelerations a sy1 and a sy2 obtained by the lateral acceleration sensor 11 and the excess centrifugal acceleration obtained in step 23 to calculate the vibration accelerations a y1 and a y2 . calculate. Specifically, as shown in the above formulas 2 and 3, the excess centrifugal acceleration is subtracted from the lateral accelerations a sy1 and a sy2 to obtain the vibration accelerations a y1 and a y2 at the center position of the vehicle body 2. Each can be requested.
  • step 25 the control command value calculation unit 37 of the controller 31 calculates a control command value for controlling the left and right dynamic damper 9 based on the vibration accelerations a y1 and a y2 obtained by the left and right acceleration correction unit 36.
  • the controller 31 calculates excess centrifugal acceleration based on the curve radius r at the travel position of the vehicle 1. Thereby, the excess centrifugal acceleration can be calculated without using the vehicle speed v, and the vibration accelerations a y1 and a y2 that are the vibration components of the vehicle body 2 can be obtained using the excess centrifugal acceleration.
  • FIG. 2, FIG. 12 to FIG. 14 show a fourth embodiment of the present invention.
  • the feature of the fourth embodiment is that the controller calculates the inclination of the vehicle body and obtains the vibration acceleration based on the inclination of the vehicle body.
  • the same components as those in the first embodiment described above are denoted by the same reference numerals, and description thereof is omitted.
  • the controller 41 according to the fourth embodiment is configured in substantially the same manner as the controller 10 according to the first embodiment. Specifically, as shown in FIG. 13, the controller 41 includes a lateral acceleration sensor 11, a yaw rate sensor 12, a speed sensor 13, an arithmetic device 42, and the like. The controller 41 calculates a control command signal to be output to an actuator (not shown) of the left and right motion damper 9 according to the damping force control processing of each wheel 4 as a target current value, and controls the damping force of the left and right motion damper 9. To do.
  • the computing device 42 is constituted by a CPU (not shown) composed of, for example, a microcomputer or the like, and as shown in FIG. 13, an excess centrifugal acceleration calculation unit 43, a lateral acceleration correction unit 44, and a control command value calculation unit 45. And have.
  • This computing device 42 computes the damping force that should be generated by the left and right motion damper 9 in order to control the vibration of the vehicle body 2 based on the detection signals input from the sensors 11, 12, and 13. Then, the calculation device 42 calculates a target current value to be supplied to the actuator of the left and right motion damper 9 based on the calculated damping force, and outputs the target current value to the left and right motion damper 9 as a control command signal.
  • the input side of the excess centrifugal acceleration calculation unit 43 is connected to the yaw rate sensor 12 and the speed sensor 13.
  • the output side of the excess centrifugal acceleration calculation unit 43 is connected to the left / right acceleration correction unit 44.
  • the excess centrifugal acceleration calculation unit 43 detects (estimates) the excess centrifugal acceleration of the vehicle body 2 based on the yaw rate ⁇ z of the vehicle body 2 input from the yaw rate sensor 12 and the vehicle speed v input from the speed sensor 13. .
  • the excess centrifugal acceleration calculation unit 43 constitutes an excess centrifugal acceleration detection unit in the same manner as the excess centrifugal acceleration calculation unit 15 of the first embodiment, and the centrifugal acceleration a r is determined based on the above formula 1 as the excess centrifugal acceleration.
  • the input side of the left / right acceleration correction unit 44 is connected to the left / right acceleration sensor 11 on the first and second carts and the excess centrifugal acceleration calculation unit 43. Further, the output side of the lateral acceleration correction unit 44 is connected to the control command value calculation unit 45.
  • the lateral acceleration correction unit 44 includes low-pass filters 44A and 44B that respectively remove vibration accelerations a y1 and a y2 that are lateral accelerations of vibration components from the lateral accelerations a sy1 and a sy2 , and an inclination for calculating the inclination ⁇ of the vehicle 1. And a calculation unit 44C.
  • the left / right acceleration correction unit 44 determines the left and right vibration components based on the left and right accelerations a sy1 and a sy2 input from the left and right acceleration sensors 11 and the centrifugal acceleration a r input from the excess centrifugal acceleration calculation unit 43. Vibration accelerations a y1 and a y2 that are accelerations are obtained.
  • the low-pass filters 44A and 44B are provided as calculation units that respectively remove the vibration accelerations a y1 and a y2 that are the left and right accelerations of the vibration component from the left and right accelerations a sy1 and a sy2 detected by the respective left and right acceleration sensors 11.
  • the cutoff frequencies of the low-pass filters 44A and 44B are set to predetermined values that remove the vibration accelerations a y1 and a y2 but do not remove the roll vibration component of the vehicle body 2. This is because if the roll vibration component of the vehicle body 2 is removed by the low-pass filters 44A and 44B, the inclination of the vehicle body 2 due to the roll vibration cannot be considered.
  • the low-pass filters 44A and 44B remove the vibration accelerations a y1 and a y2 from the lateral accelerations a sy1 and a sy2 , respectively, as shown in the following equations (9) and (10).
  • the inclination calculation unit 44C calculates the inclination ⁇ of the vehicle 1 from the lateral accelerations a sy1 and a sy2 , the centrifugal acceleration a r, and the gravitational acceleration g.
  • the lateral accelerations a sy1 and a sy2 detected by the respective lateral acceleration sensors 11 are detected. Is parallel to the inclined surface.
  • the left and right accelerations a syf1 and a syf2 obtained by applying the low-pass filters 44A and 44B to the left and right accelerations a sy1 and a sy2 are considered to be substantially equal to the centrifugal acceleration (excess centrifugal acceleration) a r because the vibration component is removed. It is done.
  • Equations (11) and (12) are established.
  • the inclination calculating unit 44C can calculate the inclination ⁇ (the inclination ⁇ 1 on the first carriage side and the inclination ⁇ 2 on the second carriage side) of the vehicle 1 by the following equations (13) and (14).
  • the left / right acceleration correction unit 44 as the vibration acceleration calculating unit calculates the centrifugal acceleration a r from the left / right accelerations a sy1 and a sy2 using the inclinations ⁇ 1 and ⁇ 2 as shown in the following equations (15) and (16).
  • the input side of the control command value calculation unit 45 is connected to the left / right acceleration correction unit 44.
  • the output side of the control command value calculation unit 45 is connected to the left and right dynamic damper 9.
  • the control command value calculation unit 45 calculates a damping force that should be generated by the left and right dynamic damper 9 to control the vibration of the vehicle body 2 based on the vibration accelerations a y1 and a y2 input from the left and right acceleration correction unit 44. To do. Then, the control command value calculation unit 45 calculates a target current value to be supplied to the actuator of the left and right motion damper 9 based on the calculated damping force, and outputs the target current value to the left and right motion damper 9 as a control command signal. .
  • the controller 41 detects the lateral accelerations a sy1 , a sy2 , the yaw rate ⁇ z, and the vehicle speed v based on the detection signals from the sensors 11, 12, 13.
  • the controller 41 converts the detection signals of the sensors 11, 12, and 13 made of analog signals into digital signals using, for example, an AD converter (not shown). .
  • step 32 the excess centrifugal acceleration calculation unit 43 of the controller 41 calculates an excess centrifugal acceleration by the yaw rate omega z and the vehicle speed v.
  • the centrifugal acceleration a r calculated based on the yaw rate ⁇ z and the vehicle speed v is estimated as the excess centrifugal acceleration.
  • the lateral acceleration correction unit 44 of the controller 41 calculates the inclination ⁇ of the vehicle body 2 using the lateral accelerations a sy1 and a sy2 , the centrifugal acceleration a r and the gravitational acceleration g.
  • the low-pass filters 44A and 44B of the left and right acceleration correction unit 44 respectively obtain vibration accelerations a y1 and a y2 that are left and right accelerations of vibration components from the left and right accelerations a sy1 and a sy2 detected by the respective left and right acceleration sensors 11.
  • the left and right accelerations a syf1 and a syf2 are calculated by removing them (see Equations 9 and 10).
  • the inclination calculation unit 44C of the left / right acceleration correction unit 44 calculates the inclination ⁇ of the vehicle body 2 using the left / right accelerations a syf1 , a syf2 , the centrifugal acceleration a r and the gravitational acceleration g (Equation 13 and Equation 14). See formula).
  • step 34 the lateral acceleration correction unit 44 of the controller 41 uses the lateral accelerations a sy1 and a sy2 obtained by the lateral acceleration sensor 11 and the inclination ⁇ of the vehicle body 2 obtained in step 33 above, at the center position of the vehicle body 2. Vibration accelerations a y1 and a y2 are calculated (see Equations 15 and 16).
  • step 35 the control command value calculation unit 45 of the controller 41 calculates a control command value for controlling the left and right motion damper 9 based on the vibration accelerations a y1 and a y2 obtained by the left and right acceleration correction unit 44.
  • the controller 41 calculates vibration accelerations a y1 and a y2 that are vibration components of the vehicle body 2 based on the inclination ⁇ of the vehicle body 2 of the vehicle 1. As a result, even if there is no information on the inclined surface of the cant or the vehicle body tilting device, the inclination ⁇ of the vehicle body 2 is estimated, and the vibration accelerations a y1 and a y2 that cause the vehicle body 2 to vibrate based on the inclination ⁇ of the vehicle body 2 are estimated. Can be calculated.
  • the left / right acceleration sensor 11 and the yaw rate sensor 12 are provided in the vehicle body 2 at two positions located immediately above each carriage 3.
  • the present invention is not limited to this, and the lateral acceleration and yaw rate at a required location may be obtained by calculation using a detection signal from a sensor provided at an arbitrary position of the vehicle body. Therefore, the lateral acceleration sensor and the yaw rate sensor may be provided on the vehicle body one by one. This configuration can be similarly applied to the second, third, and fourth embodiments.
  • the controller 31 calculates excess centrifugal acceleration based on the curve radius r at the travel position of the vehicle 1 and uses the excess centrifugal acceleration to vibrate which is a vibration component of the vehicle body 2.
  • the acceleration a y1 and a y2 are obtained.
  • the vibration acceleration may be calculated by removing the lateral component due to the gravitational acceleration from the excess centrifugal acceleration calculated based on the curve radius.
  • the lateral acceleration correction unit 44 is the lateral acceleration of the vibration component from the lateral accelerations a sy1 and a sy2 detected by the lateral acceleration sensors 11 using the low-pass filters 44A and 44B.
  • the vibration accelerations a y1 and a y2 are each removed.
  • the present invention is not limited to this, and the left / right acceleration correction unit may be configured to obtain the average value at predetermined time intervals from the acceleration detected by the left / right acceleration sensor and remove the vibration acceleration. Specifically, for example, when the period of vibration acceleration is about 0.5 seconds and the vibration period of the roll component of the vehicle body is about 1.5 seconds, every second from the acceleration detected by the left-right acceleration sensor. It is good also as a structure which calculates
  • the excess centrifugal acceleration calculation unit 43 detects the excess centrifugal acceleration of the vehicle body 2 based on the yaw rate ⁇ z of the vehicle body 2 and the vehicle speed v.
  • the present invention is not limited to this, and similarly to the third embodiment, the excess centrifugal acceleration calculation unit calculates the vehicle body based on the yaw rate ⁇ z of the vehicle body and the curve radius r calculated from the vehicle position information. It is good also as a structure which detects the excess centrifugal acceleration of.
  • the controller 10 was set as the structure which calculates the damping force command value of the right-and-left damper 9 by a skyhook control law, this invention is not limited to this, For example, a LQG control law, The damping force command value may be calculated based on another control law such as an H ⁇ control law. This configuration can also be applied to the second, third, and fourth embodiments.
  • dampers 8 and 9 are semi-active dampers.
  • an active damper may be used.
  • the present invention is applied to the dampers 8 and 9 including the damping force adjusting hydraulic shock absorber in which the hydraulic oil is enclosed has been described as an example.
  • the present invention is not limited to this.
  • the present invention may be applied to a damping force adjustment type pneumatic shock absorber in which air is sealed as a working fluid.
  • the controller detects a lateral acceleration detection unit that detects a lateral acceleration of the vehicle body acting in a lateral direction with respect to a traveling direction of the vehicle, and detects an excess centrifugal acceleration of the vehicle body based on the yaw rate of the vehicle body, Alternatively, an excess centrifugal acceleration detection unit to be estimated and a vibration acceleration calculation unit that subtracts the detection value of the excess centrifugal acceleration detection unit from the detection value of the left and right acceleration detection unit to obtain the lateral acceleration of the vibration component. . For this reason, the lateral acceleration of the vibration component can be obtained based on the yaw rate of the vehicle body.
  • the damping force of the damping force adjusting type shock absorber can be controlled based on the lateral acceleration of the vibration component that causes the vehicle body to vibrate even when the vehicle is subjected to a lateral acceleration associated with a curved run. Riding comfort can be improved.
  • the excessive centrifugal acceleration detector is configured to calculate the excessive centrifugal acceleration based on the traveling speed of the vehicle.
  • the excess centrifugal acceleration can be calculated from the traveling speed of the vehicle and the yaw rate, and the lateral acceleration of the vibration component of the vehicle body can be detected based on the excess centrifugal acceleration.
  • the applicable track section can be expanded compared to the case where control is performed based on the traveling position information of the vehicle.
  • the excessive centrifugal acceleration detection unit is configured to calculate the excessive centrifugal acceleration based on the lateral component of the gravitational acceleration.
  • the excess centrifugal acceleration can be calculated by removing the lateral component of the gravitational acceleration due to such inclination.
  • the excessive centrifugal acceleration actually acting on the vehicle body can be calculated in consideration of the influence of cant and the like.
  • the excessive centrifugal acceleration detector is configured to calculate the excessive centrifugal acceleration based on the vehicle position information. Therefore, the excess centrifugal acceleration can be calculated without using the traveling speed of the vehicle, and the lateral acceleration of the vibration component of the vehicle body can be obtained using the excess centrifugal acceleration.
  • the vibration acceleration calculating unit calculates the inclination of the vehicle body based on the lateral acceleration, excess centrifugal acceleration, and gravitational acceleration, and obtains the lateral acceleration of the vibration component based on the inclination of the vehicle body. .
  • the vibration acceleration calculating unit calculates the inclination of the vehicle body based on the lateral acceleration, excess centrifugal acceleration, and gravitational acceleration, and obtains the lateral acceleration of the vibration component based on the inclination of the vehicle body.
  • a suspension control including a damping force adjustment type shock absorber provided in a vehicle having a vehicle body and a carriage, and a controller for controlling the damping force of the damping force adjustment type shock absorber.
  • a controller for detecting a lateral acceleration of the vehicle body acting in a lateral direction with respect to a traveling direction of the vehicle; and an excess centrifugal acceleration of the vehicle body based on a yaw rate of the vehicle body.
  • An excess centrifugal acceleration detector that detects or estimates; and a vibration acceleration calculator that subtracts the detected value of the excess centrifugal acceleration detector from the detected value of the left and right acceleration detector to obtain the lateral acceleration of the vibration component.
  • the excess centrifugal acceleration detection unit calculates the excess centrifugal acceleration based on the traveling speed of the vehicle.
  • the excess centrifugal acceleration detection unit calculates the excess centrifugal acceleration based on a lateral component of gravity acceleration.
  • the excess centrifugal acceleration detection unit calculates the excess centrifugal acceleration based on position information of the vehicle.
  • the vibration acceleration calculation unit calculates the inclination of the vehicle body based on lateral acceleration, excess centrifugal acceleration, and gravitational acceleration, and The lateral acceleration of the vibration component is obtained based on the inclination of the vehicle body.

Abstract

This suspension control device is provided with a lateral damper (9) provided in a vehicle (1) having a vehicle body (2) and a wheeled platform (3), and is also provided with a controller (10) that controls the damping force of the lateral damper (9). The controller (10) has a lateral acceleration sensor (11) that detects lateral acceleration (asy) of the vehicle body (2) acting in the lateral direction relative to the traveling direction of the vehicle (1), an excessive-centrifugal-acceleration calculator (15) that detects or estimates excessive-centrifugal-acceleration (arg) (centrifugal acceleration (ar)) of the vehicle body (2) on the basis of the yaw rate (ωz) of the vehicle body (2), and a lateral acceleration corrector (16) that determines vibration acceleration (ay) by subtracting the detected value from the excessive-centrifugal-acceleration calculator (15) from the detected value from the lateral acceleration sensor (11).

Description

サスペンション制御装置Suspension control device
 本発明は、車両の振動等を低減するのに好適に用いられるサスペンション制御装置に関する。 The present invention relates to a suspension control device that is suitably used to reduce vehicle vibration and the like.
 例えば従来の鉄道用セミアクティブサスペンションとして、車体の振動低減や台車の安定性向上を図るために、複数の減衰力調整式緩衝器(ダンパ)を設ける構成が知られている(例えば、特許文献1参照)。特許文献1には、車体の前後方向に離間して第1台車と第2台車とが設けられると共に、各台車と車体との間には、上下方向の減衰力を調整する減衰力調整式緩衝器を設けた構成が開示されている。 For example, as a conventional semi-active suspension for railways, a configuration is known in which a plurality of damping force-adjustable dampers (dampers) are provided in order to reduce vehicle body vibration and improve the stability of a carriage (for example, Patent Document 1). reference). In Patent Document 1, a first carriage and a second carriage are provided apart from each other in the front-rear direction of the vehicle body, and a damping force adjustment type buffer for adjusting a damping force in the vertical direction is provided between each carriage and the vehicle body. A configuration provided with a vessel is disclosed.
特開2009-40081号公報JP 2009-40081
 ところで、鉄道車両は曲線(曲線路)進入時と曲線走行中とに遠心力を受け、それに伴い、鉄道車両の車体も左右方向の加速度(左右加速度、横加速度)を受ける。この場合、セミアクティブサスペンションは、左右加速度による車体の振動を抑制するために曲線走行中の左右加速度を0(零)にしようとする。このため、曲線走行中にも拘わらず車両が直進するように制御を行ってしまい、車両の曲線走行を妨げ、車両の乗り心地が悪化するという問題がある。 By the way, a railway vehicle receives a centrifugal force when entering a curved line (curved road) and while traveling on a curved line, and accordingly, the vehicle body of the railway vehicle also receives lateral acceleration (lateral acceleration, lateral acceleration). In this case, the semi-active suspension attempts to set the lateral acceleration during curve traveling to 0 (zero) in order to suppress the vibration of the vehicle body due to the lateral acceleration. For this reason, there is a problem that the vehicle is controlled so as to go straight in spite of the curved traveling, the curved traveling of the vehicle is hindered, and the riding comfort of the vehicle is deteriorated.
 このような問題に対する一般的な手法として、曲線走行中の左右加速度の信号にハイパスフィルタを用いて、左右加速度における超過遠心加速度をキャンセルする方法が考えられる。しかしながら、この方法では、定常円である曲線走行中の超過遠心加速度はキャンセルできるが、緩和曲線である曲線進入時は、超過遠心加速度が立ち上がるポイントのため、ハイパスフィルタでは超過遠心加速度をキャンセルできない。この場合、超過遠心加速度が除去されていない加速度に基づいて制御を行うため、車体の振動とは異なる制御を行うことになり、車両の乗り心地が悪化するという問題がある。 As a general method for solving such a problem, a method of canceling excess centrifugal acceleration in the lateral acceleration by using a high-pass filter for the lateral acceleration signal during the curve running can be considered. However, this method can cancel the excess centrifugal acceleration during running of a curve that is a steady circle, but the high-pass filter cannot cancel the excess centrifugal acceleration because the excess centrifugal acceleration rises when entering a curve that is a relaxation curve. In this case, since control is performed based on acceleration from which excess centrifugal acceleration is not removed, control different from vibration of the vehicle body is performed, and there is a problem that the ride comfort of the vehicle is deteriorated.
 これに対して、特許文献1には、車両の走行地点における軌道情報を用いて超過遠心加速度を求め、車体の振動を抑制する構成が記載されている。しかしながら、特許文献1に記載されたサスペンション制御装置では、先頭車両で走行位置情報を計測する場合に、それ以外の車両では誤差が生じてしまい、制御精度が低下するという問題がある。また、走行位置情報を取得できない線区では、この方法を適用することができない。さらに、走行位置情報に誤りがあった場合は、超過遠心加速度をキャンセルできないため、車両の乗り心地が悪化する可能性がある。 On the other hand, Patent Document 1 describes a configuration in which excessive centrifugal acceleration is obtained using trajectory information at a travel point of a vehicle to suppress vibration of the vehicle body. However, the suspension control device described in Patent Document 1 has a problem that when traveling position information is measured in the leading vehicle, an error occurs in other vehicles, and the control accuracy decreases. In addition, this method cannot be applied to a line section where travel position information cannot be obtained. Furthermore, if there is an error in the travel position information, the excess centrifugal acceleration cannot be canceled, so that the ride comfort of the vehicle may deteriorate.
 本発明は、上述した従来技術の問題に鑑みなされたもので、本発明の目的は、振動成分の左右加速度に基づいてダンパを制御することができるサスペンション制御装置を提供することにある。 The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a suspension control device capable of controlling a damper based on the lateral acceleration of a vibration component.
 上述した課題を解決するため、本発明は、車体と台車とを有する車両に設けられる減衰力調整式緩衝器と、該減衰力調整式緩衝器の減衰力を制御するコントローラと、を備えたサスペンション制御装置であって、前記コントローラは、前記車両の進行方向に対して左右方向に作用する前記車体の左右加速度を検出する左右加速度検出部と、前記車体のヨーレイトに基づいて前記車体の超過遠心加速度を検出、または推定する超過遠心加速度検出部と、前記左右加速度検出部の検出値から前記超過遠心加速度検出部の検出値を減算して振動成分の左右加速度を求める振動加速度算出部と、を有することを特徴としている。 In order to solve the above-described problems, the present invention provides a suspension including a damping force adjusting shock absorber provided in a vehicle having a vehicle body and a carriage, and a controller for controlling the damping force of the damping force adjusting shock absorber. A control device, wherein the controller is configured to detect a lateral acceleration of the vehicle body acting in a lateral direction with respect to a traveling direction of the vehicle, and an excess centrifugal acceleration of the vehicle body based on a yaw rate of the vehicle body And a vibration acceleration calculation unit that subtracts a detection value of the excess centrifugal acceleration detection unit from a detection value of the left and right acceleration detection unit to obtain a lateral acceleration of a vibration component. It is characterized by that.
 この構成によれば、振動成分の左右加速度に基づいてダンパを制御することができる。 According to this configuration, the damper can be controlled based on the lateral acceleration of the vibration component.
第1の実施の形態によるサスペンション制御装置が適用された鉄道車両を示す正面図である。1 is a front view showing a railway vehicle to which a suspension control device according to a first embodiment is applied. 第1、第3、第4の実施の形態による曲線走行中の鉄道車両の内部を上側からみた平面図である。It is the top view which looked at the inside of the railway vehicle in the curve running by 1st, 3rd, 4th embodiment from the upper side. 図2中の曲線走行中の鉄道車両の左右加速度、超過遠心加速度、振動加速度を模式的に示す説明図である。It is explanatory drawing which shows typically the left-right acceleration, excess centrifugal acceleration, and vibration acceleration of the railway vehicle in the curve running in FIG. 第1の実施の形態によるコントローラを示すブロック図である。It is a block diagram which shows the controller by 1st Embodiment. 第1の実施の形態によるコントローラが実行するサスペンション制御処理を示す流れ図である。It is a flowchart which shows the suspension control process which the controller by 1st Embodiment performs. 第2の実施の形態によるサスペンション制御装置が適用された鉄道車両を示す正面図である。It is a front view which shows the railway vehicle to which the suspension control apparatus by 2nd Embodiment was applied. 第2の実施の形態における曲線走行中の鉄道車両の左右加速度、超過遠心加速度、振動加速度等を模式的に示す説明図である。It is explanatory drawing which shows typically the left-right acceleration of the railway vehicle in curve running in 2nd Embodiment, excess centrifugal acceleration, vibration acceleration, etc. FIG. 第2の実施の形態によるコントローラを示すブロック図である。It is a block diagram which shows the controller by 2nd Embodiment. 第2の実施の形態によるコントローラが実行するサスペンション制御処理を示す流れ図である。It is a flowchart which shows the suspension control process which the controller by 2nd Embodiment performs. 第3の実施の形態によるコントローラを示すブロック図である。It is a block diagram which shows the controller by 3rd Embodiment. 第3の実施の形態によるコントローラが実行するサスペンション制御処理を示す流れ図である。It is a flowchart which shows the suspension control process which the controller by 3rd Embodiment performs. 第4の実施の形態における曲線走行中の鉄道車両の左右加速度、超過遠心加速度、振動加速度等を模式的に示す説明図である。It is explanatory drawing which shows typically the left-right acceleration of the railway vehicle in the curve running in 4th Embodiment, excess centrifugal acceleration, vibration acceleration, etc. FIG. 第4の実施の形態によるコントローラを示すブロック図である。It is a block diagram which shows the controller by 4th Embodiment. 第4の実施の形態によるコントローラが実行するサスペンション制御処理を示す流れ図である。It is a flowchart which shows the suspension control process which the controller by 4th Embodiment performs.
 以下、本発明の実施の形態によるサスペンション制御装置を、添付図面に従って詳細に説明する。 Hereinafter, a suspension control apparatus according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
 図1ないし図5は本発明の第1の実施の形態を示している。図1ないし図3において、鉄道車両1(車両)は、例えば乗客、乗員等が乗車する車体2と、車体2の下側に設けられた前側及び後側の台車3(1位台車及び2位台車)とを有している。これらの台車3は、車体2の前部側と後部側とに離間して配置され、各台車3にはそれぞれ4個の車輪4が設けられている。鉄道車両1は、各車輪4が左右のレール5上を回転することにより、レール5に沿って走行駆動する。 1 to 5 show a first embodiment of the present invention. 1 to 3, a railway vehicle 1 (vehicle) includes, for example, a vehicle body 2 on which passengers, passengers, etc. get on, and front and rear carts 3 (first and second carts) provided below the vehicle body 2. Dolly). These trolleys 3 are spaced apart from each other on the front side and the rear side of the vehicle body 2, and each trolley 3 is provided with four wheels 4. The railway vehicle 1 travels along the rails 5 as each wheel 4 rotates on the left and right rails 5.
 各台車3と各車輪4との間には、車輪4(輪軸)からの振動や衝撃を緩和する軸ばね6が設けられている。また、車体2と各台車3との間には、枕ばねとしての空気ばね7が複数設けられると共に、空気ばね7と並列に減衰力調整式緩衝器としての上下動ダンパ8が複数設けられている。空気ばね7及び上下動ダンパ8は、各台車3の左右両側に配置され、各台車3にそれぞれ2個ずつ設けられている。このため、空気ばね7及び上下動ダンパ8は、鉄道車両1全体で合計4個設けられている。 A shaft spring 6 is provided between each carriage 3 and each wheel 4 to alleviate vibrations and shocks from the wheel 4 (wheel axle). A plurality of air springs 7 serving as pillow springs are provided between the vehicle body 2 and each carriage 3, and a plurality of vertical movement dampers 8 serving as damping force adjustment type shock absorbers are provided in parallel with the air springs 7. Yes. The air springs 7 and the vertical motion dampers 8 are disposed on the left and right sides of each carriage 3, and two are provided on each carriage 3. For this reason, a total of four air springs 7 and vertical movement dampers 8 are provided in the railway vehicle 1 as a whole.
 各上下動ダンパ8は、図1ないし図3に示すように、それぞれの減衰力を個別に調整可能な作動油が封入されたシリンダ装置として、例えば、セミアクティブダンパと呼ばれる減衰力調整式の油圧緩衝器を用いて構成されている。この上下動ダンパ8は、台車3に対する車体2の上下方向の振動に対して、振動を低減させるような減衰力を発生する。これにより、上下動ダンパ8は、車体2の上下方向の振動を低減する。 As shown in FIGS. 1 to 3, each vertical motion damper 8 is a cylinder device in which hydraulic oil capable of individually adjusting each damping force is enclosed, for example, a damping force adjusting hydraulic pressure called a semi-active damper It is configured using a shock absorber. The vertical motion damper 8 generates a damping force that reduces the vibration with respect to the vertical vibration of the vehicle body 2 relative to the carriage 3. Thereby, the vertical motion damper 8 reduces the vibration of the vehicle body 2 in the vertical direction.
 また、図3に示すように、車体2と各台車3との間に位置し、車両1の左右方向には、減衰力調整式緩衝器としての左右動ダンパ9が設けられている。左右動ダンパ9は、例えば、能動動作する上述のセミアクティブダンパやフルアクティブダンパ、または受動動作するパッシブダンパを用いて構成されている。この左右動ダンパ9は、台車3に対する車体2の左右方向の振動に対して、振動を低減させるような減衰力を発生する。これにより、左右動ダンパ9は、車体2の左右方向の振動を低減する。 Further, as shown in FIG. 3, a left and right motion damper 9 as a damping force adjusting type shock absorber is provided in the left and right direction of the vehicle 1 between the vehicle body 2 and each carriage 3. The left-right motion damper 9 is configured by using, for example, the above-described semi-active damper or full-active damper that operates actively, or a passive damper that operates passively. The left and right dynamic damper 9 generates a damping force that reduces the vibration with respect to the left and right vibration of the vehicle body 2 with respect to the carriage 3. Thereby, the left-right motion damper 9 reduces the vibration of the vehicle body 2 in the left-right direction.
 コントローラ10は、図4に示すように、左右加速度センサ11、ヨーレイトセンサ12、速度センサ13、演算装置14等を含んで構成されている。このコントローラ10は、各車輪4の減衰力制御処理に従って左右動ダンパ9のアクチュエータ(図示せず)に出力すべき制御指令信号(制御指令)を目標電流値として演算処理し、左右動ダンパ9の減衰力を制御する。具体的には、コントローラ10は、車体2の上下方向の振動を低減すべく、サンプリング時間毎に例えばスカイフック理論(スカイフック制御則)に基づいて左右動ダンパ9の減衰力を制御する。そして、左右動ダンパ9は、アクチュエータに供給された目標電流値(制御指令信号)に従って減衰力がハードとソフトの間で連続的に、または複数段で可変に制御される。 As shown in FIG. 4, the controller 10 includes a lateral acceleration sensor 11, a yaw rate sensor 12, a speed sensor 13, an arithmetic device 14, and the like. The controller 10 performs arithmetic processing on a control command signal (control command) to be output to an actuator (not shown) of the left and right motion damper 9 according to the damping force control processing of each wheel 4 as a target current value. Control the damping force. Specifically, the controller 10 controls the damping force of the left and right dynamic damper 9 based on, for example, the skyhook theory (skyhook control law) at every sampling time in order to reduce the vertical vibration of the vehicle body 2. The left and right motion damper 9 is controlled so that the damping force is continuously variable between hardware and software, or variable in a plurality of stages, according to a target current value (control command signal) supplied to the actuator.
 左右加速度センサ11は、各台車3の直上近傍に位置し、例えばばね上側となる車体2に設けられ、車体2の左右方向の加速度(左右加速度、横加速度、横G)を検出する。即ち、左右加速度センサ11は、車両1の進行方向に対して左右方向に作用する車体2の左右加速度を検出する左右加速度検出部を構成している。このため、左右加速度センサ11は、車両1の走行中に、1位側および2位側の台車3の直上近傍で、車体2に作用する左右加速度asy1,asy2を検出する。そして、左右加速度センサ11は、検出信号(検出値)である左右加速度asy1,asy2を演算装置14に出力する。この場合、図3に示すように、車両1がカント等による傾斜面のため傾いているときは、該傾斜面と左右方向とは平行となる。 The left / right acceleration sensor 11 is located in the vicinity immediately above each carriage 3 and is provided, for example, on the vehicle body 2 on the upper side of the spring, and detects accelerations in the left / right direction (lateral acceleration, lateral acceleration, lateral G) of the vehicle body 2. That is, the lateral acceleration sensor 11 constitutes a lateral acceleration detector that detects lateral acceleration of the vehicle body 2 acting in the lateral direction with respect to the traveling direction of the vehicle 1. For this reason, the lateral acceleration sensor 11 detects lateral accelerations a sy1 and a sy2 acting on the vehicle body 2 in the vicinity immediately above the first and second carts 3 while the vehicle 1 is traveling. Then, the lateral acceleration sensor 11 outputs the lateral accelerations a sy1 and a sy2 that are detection signals (detection values) to the arithmetic unit 14. In this case, as shown in FIG. 3, when the vehicle 1 is inclined because of an inclined surface such as a cant, the inclined surface and the left-right direction are parallel to each other.
 ヨーレイトセンサ12は、各台車3の直上近傍に位置し、車体2に設けられている。このヨーレイトセンサ12は、例えばジャイロセンサによって構成され、車両1の重心回りに発生する旋回方向の回転角の変化速度、即ち車体2のヨーイング挙動を示すヨーレイトωzを検出する。そして、ヨーレイトセンサ12は、検出信号であるヨーレイトωzを演算装置14に出力する。なお、ヨーレイトセンサ12と左右加速度センサ11は、別個に設ける必要はなく、例えば6軸センサ等のように、左右加速度とヨーレイトを一緒に計測可能な複合センサを用いてもよい。 The yaw rate sensor 12 is located in the immediate vicinity of each carriage 3 and is provided on the vehicle body 2. The yaw rate sensor 12 is constituted by, for example, a gyro sensor, and detects a change speed of the rotation angle in the turning direction generated around the center of gravity of the vehicle 1, that is, a yaw rate ω z indicating the yawing behavior of the vehicle body 2. Then, the yaw rate sensor 12 outputs a yaw rate ω z that is a detection signal to the arithmetic device 14. Note that the yaw rate sensor 12 and the lateral acceleration sensor 11 do not need to be provided separately, and for example, a composite sensor capable of measuring the lateral acceleration and the yaw rate together, such as a six-axis sensor, may be used.
 速度センサ13は、走行速度検出部として車体2に設けられ、例えば車両1の走行速度(車速)vを検出する。即ち、速度センサ13は、車両1の走行中に、車両1の車速vを検出し、その検出信号である車速vを演算装置14に出力する。ここで、速度センサ13は、例えば、車輪4の回転速度(車輪速)から車速vを検出してもよいし、モニタ装置や速度発電機のパルス等(いずれも図示せず)から車速vを検出する構成としてもよい。 The speed sensor 13 is provided in the vehicle body 2 as a travel speed detection unit, and detects, for example, the travel speed (vehicle speed) v of the vehicle 1. That is, the speed sensor 13 detects the vehicle speed v of the vehicle 1 while the vehicle 1 is traveling, and outputs the vehicle speed v that is a detection signal to the arithmetic device 14. Here, the speed sensor 13 may detect the vehicle speed v from, for example, the rotational speed (wheel speed) of the wheel 4, or the vehicle speed v from a monitor device or a pulse of a speed generator (none of which is shown). It is good also as a structure to detect.
 演算装置14は、例えば、マイクロコンピュータ等からなるCPU(図示せず)により構成され、図4に示すように、超過遠心加速度算出部15と、左右加速度補正部16と、制御指令値算出部17とを有している。この演算装置14は、各センサ11,12,13から入力された検出信号に基づいて、車体2の振動を制御するために、左右動ダンパ9が発生すべき減衰力を演算する。そして、演算装置14は、算出した減衰力に基づいて左右動ダンパ9のアクチュエータに供給すべき目標電流値を演算し、該目標電流値を制御指令信号として左右動ダンパ9に出力する。 The computing device 14 is constituted by, for example, a CPU (not shown) composed of a microcomputer or the like. As shown in FIG. 4, the excess centrifugal acceleration calculation unit 15, the left / right acceleration correction unit 16, and the control command value calculation unit 17 are included. And have. The calculation device 14 calculates a damping force that should be generated by the left and right motion damper 9 in order to control the vibration of the vehicle body 2 based on the detection signals input from the sensors 11, 12, and 13. Then, the arithmetic unit 14 calculates a target current value to be supplied to the actuator of the left and right dynamic damper 9 based on the calculated damping force, and outputs the target current value to the left and right dynamic damper 9 as a control command signal.
 超過遠心加速度算出部15の入力側は、ヨーレイトセンサ12と速度センサ13とに接続されている。また、超過遠心加速度算出部15の出力側は、左右加速度補正部16に接続されている。この超過遠心加速度算出部15は、ヨーレイトセンサ12から入力された車体2のヨーレイトωzと、速度センサ13から入力された車速vとに基づいて、車体2の超過遠心加速度を検出(推定)する。超過遠心加速度算出部15は、超過遠心加速度検出部を構成し、以下の数1式に基づいて遠心加速度arを超過遠心加速度として算出する。 The input side of the excess centrifugal acceleration calculation unit 15 is connected to the yaw rate sensor 12 and the speed sensor 13. The output side of the excess centrifugal acceleration calculation unit 15 is connected to the left / right acceleration correction unit 16. The excess centrifugal acceleration calculation unit 15 detects (estimates) the excess centrifugal acceleration of the vehicle body 2 based on the yaw rate ω z of the vehicle body 2 input from the yaw rate sensor 12 and the vehicle speed v input from the speed sensor 13. . The excess centrifugal acceleration calculation unit 15 constitutes an excess centrifugal acceleration detection unit, and calculates the centrifugal acceleration a r as the excess centrifugal acceleration based on the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 左右加速度補正部16の入力側は、1位台車側および2位台車側の左右加速度センサ11と、超過遠心加速度算出部15とに接続されている。また、左右加速度補正部16の出力側は、制御指令値算出部17に接続されている。この左右加速度補正部16は、各左右加速度センサ11から入力された左右加速度asy1,asy2と、超過遠心加速度算出部15から入力された遠心加速度arとに基づいて、振動成分の左右加速度である振動加速度ay1,ay2を求める。この場合、左右加速度補正部16は、以下の数2式、数3式に示すように、各左右加速度センサ11の検出値である左右加速度asy1,asy2から超過遠心加速度算出部15の検出値である遠心加速度arを減算して、左右加速度asy1,asy2を補正する。 The input side of the lateral acceleration correction unit 16 is connected to the lateral acceleration sensor 11 on the first and second carts and the excess centrifugal acceleration calculator 15. Further, the output side of the lateral acceleration correction unit 16 is connected to the control command value calculation unit 17. The left / right acceleration correction unit 16 is based on the left / right accelerations a sy1 and a sy2 input from the respective left / right acceleration sensors 11 and the centrifugal acceleration a r input from the excess centrifugal acceleration calculation unit 15. Vibration accelerations a y1 and a y2 are obtained. In this case, the left / right acceleration correction unit 16 detects the excess centrifugal acceleration calculation unit 15 from the left / right accelerations a sy1 and a sy2 which are detection values of the respective left and right acceleration sensors 11, as shown in the following equations (2) and (3). The lateral acceleration a sy1 and a sy2 are corrected by subtracting the value of the centrifugal acceleration a r .
 即ち、図3に示すように、各左右加速度センサ11は、車両1が曲線走行することによる遠心加速度arと車体2の中心位置での振動加速度ay1,ay2とを合わせた左右加速度asy1,asy2をそれぞれ検出する。このとき、振動加速度算出部としての左右加速度補正部16は、左右加速度asy1,asy2から遠心加速度arを減算して、振動加速度ay1,ay2をそれぞれ求めることができる。 That is, as shown in FIG. 3, each lateral acceleration sensor 11 includes a lateral acceleration a that combines a centrifugal acceleration a r due to the vehicle 1 traveling in a curve and vibration accelerations a y1 and a y2 at the center position of the vehicle body 2. sy1 and asy2 are detected. At this time, the lateral acceleration correction unit 16 as the vibration acceleration calculation unit can subtract the centrifugal acceleration a r from the lateral accelerations a sy1 and a sy2 to obtain the vibration accelerations a y1 and a y2 , respectively.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 制御指令値算出部17の入力側は、左右加速度補正部16に接続されている。また、制御指令値算出部17の出力側は、左右動ダンパ9に接続されている。この制御指令値算出部17は、左右加速度補正部16から入力された振動加速度ay1,ay2に基づいて、車体2の振動を制御するために左右動ダンパ9が発生すべき減衰力を算出する。そして、制御指令値算出部17は、算出した減衰力に基づいて左右動ダンパ9のアクチュエータに供給すべき目標電流値を演算し、該目標電流値を制御指令信号として左右動ダンパ9に出力する。 The input side of the control command value calculation unit 17 is connected to the lateral acceleration correction unit 16. The output side of the control command value calculation unit 17 is connected to the left and right dynamic damper 9. The control command value calculation unit 17 calculates a damping force that should be generated by the left and right dynamic damper 9 to control the vibration of the vehicle body 2 based on the vibration accelerations a y1 and a y2 input from the left and right acceleration correction unit 16. To do. Then, the control command value calculation unit 17 calculates a target current value to be supplied to the actuator of the left and right motion damper 9 based on the calculated damping force, and outputs the target current value to the left and right motion damper 9 as a control command signal. .
 次に、コントローラ10が制御周期毎に実行する左右動ダンパ9の制御用のプログラムについて図5を用いて説明する。 Next, a control program for the left and right motion damper 9 executed by the controller 10 at each control cycle will be described with reference to FIG.
 まず、ステップ1では、コントローラ10は、各センサ11,12,13からの検出信号に基づいて、左右加速度asy1,asy2とヨーレイトωzと車速vとを検出する。この場合、コントローラ10は、例えばAD変換器(図示せず)を用いて、アナログ信号からなる各センサ11,12,13の検出信号をデジタル信号に変換する。 First, in step 1, the controller 10 detects the lateral accelerations a sy1 , a sy2 , the yaw rate ω z, and the vehicle speed v based on the detection signals from the sensors 11, 12, 13. In this case, the controller 10 converts the detection signals of the sensors 11, 12, and 13 made of analog signals into digital signals using, for example, an AD converter (not shown).
 次に、ステップ2では、コントローラ10の超過遠心加速度算出部15は、ヨーレイトωzと車速vとにより超過遠心加速度を算出する。この場合、上記数1式で示したように、ヨーレイトωzと車速vとに基づいて算出した遠心加速度arを超過遠心加速度と推定する。 Next, in step 2, the excess centrifugal acceleration calculation unit 15 of the controller 10 calculates the excess centrifugal acceleration based on the yaw rate ω z and the vehicle speed v. In this case, as shown in the above equation 1, the centrifugal acceleration a r calculated based on the yaw rate ω z and the vehicle speed v is estimated as the excess centrifugal acceleration.
 ステップ3では、コントローラ10の左右加速度補正部16は、左右加速度センサ11で求めた左右加速度asy1,asy2と上記ステップ2で求めた超過遠心加速度としての遠心加速度arとを用いて、振動加速度ay1,ay2を算出する。具体的には、上記数2式、数3式に示したように、左右加速度asy1,asy2から遠心加速度arを減算して、車体2の中心位置での振動加速度ay1,ay2を求めることができる。 In step 3, the lateral acceleration correction unit 16 of the controller 10 uses the lateral accelerations a sy1 and a sy2 obtained by the lateral acceleration sensor 11 and the centrifugal acceleration a r as the excess centrifugal acceleration obtained in step 2 above to vibrate. Accelerations a y1 and a y2 are calculated. Specifically, as shown in the above formulas 2 and 3, the lateral accelerations a sy1 and a sy2 are subtracted from the centrifugal acceleration a r to obtain vibration accelerations a y1 and a y2 at the center position of the vehicle body 2. Can be requested.
 そして、ステップ4では、コントローラ10の制御指令値算出部17は、左右加速度補正部16で求めた振動加速度ay1,ay2に基づいて、左右動ダンパ9を制御する制御指令値を算出する。 In step 4, the control command value calculation unit 17 of the controller 10 calculates a control command value for controlling the left and right motion damper 9 based on the vibration accelerations a y1 and a y2 obtained by the left and right acceleration correction unit 16.
 かくして、第1の実施の形態によれば、コントローラ10は、車体2の左右加速度asy1,asy2を検出する左右加速度センサ11と、車体2のヨーレイトωzと車速vとに基づいて車体2の遠心加速度arを検出する超過遠心加速度算出部15と、左右加速度asy1,asy2から遠心加速度arを減算して振動加速度ay1,ay2を求める左右加速度補正部16とを有している。これにより、ヨーレイトωzと車速vとに基づいて、車体2の振動成分である振動加速度ay1,ay2を求めることができる。この結果、車両1に曲線走行に伴う左右加速度asy1,asy2が作用する場合でも、車体2に振動を引き起こす振動加速度ay1,ay2に基づいて左右動ダンパ9を制御することができるので、車両1の乗り心地を向上することができる。 Thus, according to the first embodiment, the controller 10 detects the vehicle body 2 based on the lateral acceleration sensor 11 that detects the lateral accelerations a sy1 and a sy2 of the vehicle body 2, the yaw rate ω z of the vehicle body 2, and the vehicle speed v. An excess centrifugal acceleration calculation unit 15 that detects the centrifugal acceleration a r of the left and right, and a left and right acceleration correction unit 16 that subtracts the centrifugal acceleration a r from the left and right accelerations a sy1 and a sy2 to obtain vibration accelerations a y1 and a y2. ing. Thus, vibration accelerations a y1 and a y2 that are vibration components of the vehicle body 2 can be obtained based on the yaw rate ω z and the vehicle speed v. As a result, even when the left and right accelerations a sy1 and a sy2 associated with the curve travel are applied to the vehicle 1, the left and right motion damper 9 can be controlled based on the vibration accelerations a y1 and a y2 that cause the vehicle body 2 to vibrate. The riding comfort of the vehicle 1 can be improved.
 また、車両1が、定常円である曲線走行中においても、緩和曲線である曲線進入時や曲線退出時においても、ヨーレイトωzと車速vとに基づいて、車体2の振動成分である振動加速度ay1,ay2を求めることができる。これにより、車両1の走行位置を取得する必要がないから、車両1の走行位置情報に基づいて制御する場合に比べて、適用可能な線路区間を広げることができる。 In addition, even when the vehicle 1 is traveling on a curve that is a steady circle, or when the vehicle is entering or leaving a curve that is a relaxation curve, vibration acceleration that is a vibration component of the vehicle body 2 is based on the yaw rate ω z and the vehicle speed v. a y1 and a y2 can be obtained. Thereby, since it is not necessary to acquire the traveling position of the vehicle 1, the applicable track section can be expanded as compared with the case of controlling based on the traveling position information of the vehicle 1.
 次に、図6ないし図9は本発明の第2の実施の形態を示している。第2の実施の形態の特徴は、コントローラは、重力加速度の左右方向成分に基づいて超過遠心加速度を算出することにある。なお、第2の実施の形態では、前述した第1の実施の形態と同一の構成要素に同一符号を付し、その説明を省略するものとする。 Next, FIGS. 6 to 9 show a second embodiment of the present invention. The feature of the second embodiment is that the controller calculates the excess centrifugal acceleration based on the lateral component of the gravitational acceleration. In the second embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals, and description thereof is omitted.
 第2の実施の形態による鉄道車両21は、第1の実施の形態による鉄道車両1とほぼ同様に、車体2、台車3、車輪4、左右動ダンパ9、左右加速度センサ11、ヨーレイトセンサ12、速度センサ13、コントローラ22、演算装置24等を備える。 The railcar 21 according to the second embodiment is substantially the same as the railcar 1 according to the first embodiment. The vehicle body 2, the carriage 3, the wheels 4, the left and right motion damper 9, the left and right acceleration sensor 11, the yaw rate sensor 12, A speed sensor 13, a controller 22, an arithmetic device 24, and the like are provided.
 コントローラ22は、第1の実施の形態によるコントローラ10とほぼ同様に構成されている。具体的には、コントローラ22は、図8に示すように、左右加速度センサ11、ヨーレイトセンサ12、速度センサ13、上下加速度センサ23、演算装置24等を含んで構成されている。このコントローラ22は、各車輪4の減衰力制御処理に従って左右動ダンパ9のアクチュエータ(図示せず)に出力すべき制御指令信号(制御指令)を目標電流値として演算処理し、左右動ダンパ9の減衰力を制御する。 The controller 22 is configured in substantially the same manner as the controller 10 according to the first embodiment. Specifically, as shown in FIG. 8, the controller 22 includes a lateral acceleration sensor 11, a yaw rate sensor 12, a speed sensor 13, a vertical acceleration sensor 23, an arithmetic device 24, and the like. The controller 22 performs arithmetic processing on a control command signal (control command) to be output to an actuator (not shown) of the left and right motion damper 9 according to the damping force control processing of each wheel 4 as a target current value. Control the damping force.
 上下加速度センサ23は、各台車3の直上近傍に位置し、例えばばね上側となる車体2に設けられ、車体2の上下方向の加速度(上下加速度、上下G)を検出する。即ち、上下加速度センサ23は、上下加速度検出部を構成し、車両21の走行中に、上下方向に作用する車体2の上下加速度aszを検出する。そして、上下加速度センサ23は、検出信号(検出値)である上下加速度aszを演算装置24に出力する。この場合、図7に示すように、車両21がカント等による傾斜面によって傾いているときは、上下加速度センサ23が検出する車体2の上下方向と該傾斜面とは垂直となる。 The vertical acceleration sensor 23 is located in the vicinity immediately above each carriage 3 and is provided, for example, on the vehicle body 2 on the upper side of the spring, and detects the vertical acceleration (vertical acceleration, vertical G) of the vehicle body 2. That is, the vertical acceleration sensor 23 constitutes a vertical acceleration detector, and detects the vertical acceleration a sz of the vehicle body 2 acting in the vertical direction while the vehicle 21 is traveling. The vertical acceleration sensor 23 outputs the vertical acceleration a sz that is a detection signal (detection value) to the arithmetic device 24. In this case, as shown in FIG. 7, when the vehicle 21 is tilted by an inclined surface such as a cant, the vertical direction of the vehicle body 2 detected by the vertical acceleration sensor 23 is perpendicular to the inclined surface.
 上下加速度aszは、重力加速度の左右方向成分を算出するために用いられる。一方、車体2に上下振動が生じる場合は、上下加速度aszは、変化し、重力加速度に振動成分が加わったものになる。このため、上下加速度センサ23は、車体2の上下振動による振動成分を除去して重力加速度成分を抽出するために、ローパスフィルタ23Aを有している。なお、上下加速度センサ23は、左右加速度センサ11、ヨーレイトセンサ12と別個に設ける必要はなく、例えば6軸センサ等のように、上下加速度センサ、左右加速度、ヨーレイトを一緒に計測可能な複合センサを用いてもよい。 The vertical acceleration a sz is used to calculate the horizontal component of the gravitational acceleration. On the other hand, when vertical vibration occurs in the vehicle body 2, the vertical acceleration a sz changes and becomes a value obtained by adding a vibration component to the gravitational acceleration. For this reason, the vertical acceleration sensor 23 has a low-pass filter 23A in order to remove the vibration component due to the vertical vibration of the vehicle body 2 and extract the gravitational acceleration component. Note that the vertical acceleration sensor 23 does not need to be provided separately from the lateral acceleration sensor 11 and the yaw rate sensor 12. For example, a vertical sensor, a lateral acceleration, and a yaw rate can be measured together, such as a 6-axis sensor. It may be used.
 演算装置24は、例えば、マイクロコンピュータ等からなるCPU(図示せず)により構成され、図8に示すように、遠心加速度算出部25と、重力加速度左右方向成分算出部26と、超過遠心加速度算出部27と、左右加速度補正部28と、制御指令値算出部29とを有している。この演算装置24は、各センサ11,12,13,23から入力された検出信号に基づいて、車体2の振動を制御するために、左右動ダンパ9が発生すべき減衰力を演算する。そして、演算装置24は、算出した減衰力に基づいて左右動ダンパ9のアクチュエータに供給すべき目標電流値を演算し、該目標電流値を制御指令信号として左右動ダンパ9に出力する。 The arithmetic unit 24 is constituted by a CPU (not shown) composed of a microcomputer or the like, for example, and as shown in FIG. 8, a centrifugal acceleration calculation unit 25, a gravity acceleration left / right component calculation unit 26, and an excess centrifugal acceleration calculation. A unit 27, a lateral acceleration correction unit 28, and a control command value calculation unit 29. This computing device 24 computes the damping force that should be generated by the left-right motion damper 9 in order to control the vibration of the vehicle body 2 based on the detection signals input from the sensors 11, 12, 13, and 23. Then, the arithmetic unit 24 calculates a target current value to be supplied to the actuator of the left and right dynamic damper 9 based on the calculated damping force, and outputs the target current value to the left and right dynamic damper 9 as a control command signal.
 遠心加速度算出部25の入力側は、ヨーレイトセンサ12と速度センサ13とに接続されている。また、遠心加速度算出部25の出力側は、超過遠心加速度算出部27に接続されている。この遠心加速度算出部25は、ヨーレイトセンサ12から入力された車体2のヨーレイトωzと、速度センサ13から入力された車速vとに基づいて、車体2の遠心加速度arを算出する。そして遠心加速度算出部25は、遠心加速度検出部を構成し、第1の実施の形態と同様に、数1式に基づいて遠心加速度arを算出する。 The input side of the centrifugal acceleration calculation unit 25 is connected to the yaw rate sensor 12 and the speed sensor 13. The output side of the centrifugal acceleration calculation unit 25 is connected to the excess centrifugal acceleration calculation unit 27. The centrifugal acceleration calculation unit 25 calculates the centrifugal acceleration a r of the vehicle body 2 based on the yaw rate ω z of the vehicle body 2 input from the yaw rate sensor 12 and the vehicle speed v input from the speed sensor 13. Then, the centrifugal acceleration calculation unit 25 constitutes a centrifugal acceleration detection unit, and calculates the centrifugal acceleration a r based on Formula 1 as in the first embodiment.
 重力加速度左右方向成分算出部26の入力側は、上下加速度センサ23に接続されている。また、重力加速度左右方向成分算出部26の出力側は、超過遠心加速度算出部27に接続されている。この重力加速度左右方向成分算出部26は、上下加速度センサ23から入力された上下加速度aszに基づいて、重力加速度左右方向成分agyを算出する。この場合、重力加速度左右方向成分算出部26は、以下の数4式に示すように、上下加速度センサ23の検出値である上下加速度aszと重力加速度gとを用いて、三平方の定理により重力加速度左右方向成分agyを算出する。なお、重力加速度左右方向成分agyが左右方向のいずれを向いているかは、ヨーレイトセンサ12やロールレイトセンサ(図示せず)等を用いて検出することができる。即ち、図7に示すように、車両21が図7上における左側に傾斜している場合は、重力加速度左右方向成分agyも左向きとなる。通常の曲線路では、重力加速度左右方向成分agyは、遠心加速度arに対して左右方向で逆向きに作用する。 The input side of the gravitational acceleration left-right direction component calculation unit 26 is connected to the vertical acceleration sensor 23. The output side of the gravity acceleration left / right component calculation unit 26 is connected to the excess centrifugal acceleration calculation unit 27. The gravitational acceleration left / right component calculation unit 26 calculates the gravitational acceleration left / right component a gy based on the vertical acceleration a sz input from the vertical acceleration sensor 23. In this case, the gravitational acceleration left / right component calculation unit 26 uses the vertical acceleration a sz and the gravitational acceleration g, which are detection values of the vertical acceleration sensor 23, as shown in the following equation (4). The gravitational acceleration left-right direction component a gy is calculated. It can be detected by using the yaw rate sensor 12, a roll rate sensor (not shown), or the like, whether the gravitational acceleration left-right component agy is directed in the left-right direction. That is, as shown in FIG. 7, when the vehicle 21 is tilted to the left in FIG. 7, the gravitational acceleration left / right component a gy is also directed to the left. In a normal curved road , the gravitational acceleration lateral component a gy acts in the opposite direction in the lateral direction with respect to the centrifugal acceleration a r .
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 超過遠心加速度算出部27の入力側は、遠心加速度算出部25と重力加速度左右方向成分算出部26とに接続されている。また、超過遠心加速度算出部27の出力側は、左右加速度補正部28に接続されている。この超過遠心加速度算出部27は、遠心加速度算出部25から入力された遠心加速度arと、重力加速度左右方向成分算出部26から入力された重力加速度左右方向成分agyとに基づいて、車体2の超過遠心加速度argを検出(推定)する。この超過遠心加速度算出部27は、超過遠心加速度検出部を構成し、以下の数5式に基づいて超過遠心加速度argを算出する。 The input side of the excess centrifugal acceleration calculation unit 27 is connected to the centrifugal acceleration calculation unit 25 and the gravity acceleration left-right direction component calculation unit 26. The output side of the excess centrifugal acceleration calculation unit 27 is connected to the left / right acceleration correction unit 28. The excess centrifugal acceleration calculating unit 27 is based on the centrifugal acceleration a r input from the centrifugal acceleration calculating unit 25 and the gravity acceleration left / right component a gy input from the gravity acceleration left / right component calculating unit 26. The excess centrifugal acceleration a rg is detected (estimated). The excess centrifugal acceleration calculation unit 27 constitutes an excess centrifugal acceleration detection unit, and calculates an excess centrifugal acceleration a rg based on the following equation (5).
 即ち、図7に示すように、遠心加速度算出部25で算出した遠心加速度arから重力加速度左右方向成分算出部26で算出した重力加速度左右方向成分agyを除くことにより、実際に車体2に作用する超過遠心加速度argを算出することができる。 That is, as shown in FIG. 7, by removing the gravity acceleration left / right component a gy calculated by the gravity acceleration left / right component calculation unit 26 from the centrifugal acceleration a r calculated by the centrifugal acceleration calculation unit 25, The acting excess centrifugal acceleration a rg can be calculated.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 左右加速度補正部28の入力側は、1位台車側および2位台車側の左右加速度センサ11と、超過遠心加速度算出部27とに接続されている。また、左右加速度補正部28の出力側は、制御指令値算出部29に接続されている。この左右加速度補正部28は、各左右加速度センサ11から入力された左右加速度asy1,asy2と、超過遠心加速度算出部27から入力された超過遠心加速度argとに基づいて、振動成分の左右加速度である振動加速度ay1,ay2を求める。この場合、左右加速度補正部28は、以下の数6式、数7式に示すように、各左右加速度センサ11の検出値である左右加速度asy1,asy2から超過遠心加速度算出部27の検出値である超過遠心加速度argを減算して、左右加速度asy1,asy2を補正する。 The input side of the lateral acceleration correction unit 28 is connected to the lateral acceleration sensor 11 on the first and second carts and the excess centrifugal acceleration calculator 27. The output side of the lateral acceleration correction unit 28 is connected to the control command value calculation unit 29. The left / right acceleration correction unit 28 is based on the left / right accelerations a sy1 and a sy2 input from the respective left / right acceleration sensors 11 and the excess centrifugal acceleration a rg input from the excess centrifugal acceleration calculation unit 27. Vibration accelerations a y1 and a y2 that are accelerations are obtained. In this case, the left / right acceleration correction unit 28 detects the excess centrifugal acceleration calculation unit 27 from the left / right accelerations a sy1 and a sy2 which are detection values of the respective left and right acceleration sensors 11, as shown in the following equations (6) and (7). By subtracting the value of excess centrifugal acceleration a rg , the lateral accelerations a sy1 and a sy2 are corrected.
 即ち、図7に示すように、各左右加速度センサ11は、車両21が曲線走行することによる超過遠心加速度argと車体2の中心位置での振動加速度ay1,ay2とを合わせた左右加速度asy1,asy2をそれぞれ検出する。このとき、振動加速度算出部としての左右加速度補正部28は、左右加速度asy1,asy2から超過遠心加速度argを減算して、振動加速度ay1,ay2をそれぞれ求めることができる。 That is, as shown in FIG. 7, each lateral acceleration sensor 11 includes a lateral acceleration obtained by combining the excess centrifugal acceleration a rg caused by the vehicle 21 traveling in a curve and the vibration accelerations a y1 and a y2 at the center position of the vehicle body 2. a sy1 and a sy2 are detected. At this time, the lateral acceleration correction unit 28 as the vibration acceleration calculating unit can subtract the excess centrifugal acceleration a rg from the lateral accelerations a sy1 and a sy2 to obtain the vibration accelerations a y1 and a y2 , respectively.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 制御指令値算出部29の入力側は、左右加速度補正部28に接続されている。また、左右加速度補正部28の出力側は、左右動ダンパ9に接続されている。この制御指令値算出部29は、左右加速度補正部28から入力された振動加速度ay1,ay2に基づいて、車体2の振動を制御するために左右動ダンパ9が発生すべき減衰力を算出する。そして、制御指令値算出部29は、算出した減衰力に基づいて左右動ダンパ9のアクチュエータに供給すべき目標電流値を演算し、該目標電流値を制御指令信号として左右動ダンパ9に出力する。 The input side of the control command value calculation unit 29 is connected to the lateral acceleration correction unit 28. The output side of the left / right acceleration correction unit 28 is connected to the left / right motion damper 9. The control command value calculation unit 29 calculates a damping force that should be generated by the left and right dynamic damper 9 to control the vibration of the vehicle body 2 based on the vibration accelerations a y1 and a y2 input from the left and right acceleration correction unit 28. To do. Then, the control command value calculation unit 29 calculates a target current value to be supplied to the actuator of the left and right motion damper 9 based on the calculated damping force, and outputs the target current value to the left and right motion damper 9 as a control command signal. .
 次に、コントローラ22が制御周期毎に実行する左右動ダンパ9の制御用のプログラムについて図9を用いて説明する。 Next, a control program for the left and right motion damper 9 executed by the controller 22 for each control cycle will be described with reference to FIG.
 まず、ステップ11では、コントローラ22は、各センサ11,12,13,23からの検出信号に基づいて、左右加速度asy1,asy2とヨーレイトωzと車速vと上下加速度aszとを検出する。この場合、コントローラ22は、第1の実施の形態と同様に、例えばAD変換器(図示せず)を用いて、アナログ信号からなる各センサ11,12,13,23の検出信号をデジタル信号に変換する。 First, in step 11, the controller 22 detects the left and right accelerations a sy1 and a sy2 , the yaw rate ω z , the vehicle speed v, and the vertical acceleration a sz based on detection signals from the sensors 11, 12, 13, and 23 . . In this case, similarly to the first embodiment, the controller 22 uses, for example, an AD converter (not shown) to convert the detection signals of the sensors 11, 12, 13, and 23, which are analog signals, into digital signals. Convert.
 次に、ステップ12では、コントローラ22の遠心加速度算出部25は、上記数1式で示したように、ヨーレイトωzと車速vとにより遠心加速度arを算出する。 Next, in step 12, the centrifugal acceleration calculation unit 25 of the controller 22 calculates the centrifugal acceleration a r based on the yaw rate ω z and the vehicle speed v as shown in the above equation (1).
 ステップ13では、コントローラ22の重力加速度左右方向成分算出部26は、上下加速度センサ23で求めた上下加速度aszに基づいて、重力加速度左右方向成分agyを算出する。具体的には、上記数4式に示したように、上下加速度aszと重力加速度gとを用いて、三平方の定理により重力加速度左右方向成分agyを算出することができる。 In step 13, the gravitational acceleration left / right component calculation unit 26 of the controller 22 calculates the gravitational acceleration left / right component a gy based on the vertical acceleration a sz obtained by the vertical acceleration sensor 23. Specifically, as shown in Equation 4, the gravity acceleration left-right direction component a gy can be calculated by the three-square theorem using the vertical acceleration a sz and the gravitational acceleration g.
 次に、ステップ14では、コントローラ22の超過遠心加速度算出部27は、遠心加速度算出部25で算出した遠心加速度arと重力加速度左右方向成分算出部26で算出した重力加速度左右方向成分agyとを用いて、超過遠心加速度argを算出する。具体的には、上記数5式で示したように、遠心加速度arから重力加速度左右方向成分agyを除くことにより、実際に車体2に作用する超過遠心加速度argを算出することができる。 Next, in step 14, the excess centrifugal acceleration calculation unit 27 of the controller 22 calculates the centrifugal acceleration a r calculated by the centrifugal acceleration calculation unit 25 and the gravity acceleration left / right component a gy calculated by the gravity acceleration left / right component calculation unit 26. Is used to calculate the excess centrifugal acceleration a rg . Specifically, as shown in the above equation 5, the excess centrifugal acceleration a rg that actually acts on the vehicle body 2 can be calculated by removing the gravity acceleration lateral component a gy from the centrifugal acceleration a r. .
 ステップ15では、コントローラ22の左右加速度補正部28は、左右加速度センサ11で求めた左右加速度asy1,asy2と上記ステップ14で求めた超過遠心加速度argを用いて、振動加速度ay1,ay2を算出する。具体的には、上記数6式、数7式に示したように、左右加速度asy1,asy2から超過遠心加速度argを減算して、車体2の中心位置での振動加速度ay1,ay2をそれぞれ求めることができる。 In step 15, the left and right acceleration correction unit 28 of the controller 22 uses the left and right accelerations a sy1 and a sy2 obtained by the left and right acceleration sensor 11 and the excess centrifugal acceleration a rg obtained in the above step 14 and vibration accelerations a y1 and a Calculate y2 . Specifically, as shown in Equations 6 and 7, the left and right accelerations a sy1 and a sy2 are subtracted from the excess centrifugal acceleration a rg to obtain vibration accelerations a y1 and a a at the center position of the vehicle body 2. y2 can be obtained respectively.
 そして、ステップ16では、コントローラ22の制御指令値算出部29は、左右加速度補正部28で求めた振動加速度ay1,ay2に基づいて、左右動ダンパ9を制御する制御指令値を算出する。 In step 16, the control command value calculation unit 29 of the controller 22 calculates a control command value for controlling the left and right dynamic damper 9 based on the vibration accelerations a y1 and a y2 obtained by the left and right acceleration correction unit 28.
 かくして、第2の実施の形態でも、第1の実施の形態とほぼ同様の作用効果を得ることができる。第2の実施の形態のコントローラ22は、重力加速度左右方向成分agyに基づいて超過遠心加速度argを算出する。これにより、カント等によって曲線走行時に車両21が傾斜するときでも、このような傾斜による重力加速度左右方向成分agyを考慮して超過遠心加速度argを算出することができる。従って、実際に車体2に作用する超過遠心加速度argを用いて、車体2の振動成分である振動加速度ay1,ay2を求めることができる。この結果、車両21に曲線走行に伴う左右加速度asy1,asy2が作用する場合でも、車体2に振動を引き起こす振動加速度ay1,ay2に基づいて左右動ダンパ9を制御することができるので、車両21の乗り心地を向上することができる。 Thus, in the second embodiment, it is possible to obtain substantially the same operational effects as those in the first embodiment. The controller 22 of the second embodiment calculates the excess centrifugal acceleration a rg based on the gravity acceleration left-right direction component a gy . As a result, even when the vehicle 21 tilts during curve travel due to canting or the like , the excess centrifugal acceleration a rg can be calculated in consideration of the gravity acceleration lateral component a gy due to such tilt. Therefore, vibration accelerations a y1 and a y2 that are vibration components of the vehicle body 2 can be obtained using the excess centrifugal acceleration a rg that actually acts on the vehicle body 2. As a result, even when the left and right accelerations a sy1 and a sy2 due to the curve travel are applied to the vehicle 21, the left and right motion damper 9 can be controlled based on the vibration accelerations a y1 and a y2 that cause the vehicle body 2 to vibrate. The riding comfort of the vehicle 21 can be improved.
 次に、図2、図10及び図11は本発明の第3の実施の形態を示している。第3の実施の形態の特徴は、コントローラは、車両の走行位置での曲線半径情報に基づいて超過遠心加速度を算出することにある。なお、第3の実施の形態では、前述した第1の実施の形態と同一の構成要素に同一符号を付し、その説明を省略するものとする。 Next, FIGS. 2, 10 and 11 show a third embodiment of the present invention. The feature of the third embodiment is that the controller calculates the excess centrifugal acceleration based on the curve radius information at the traveling position of the vehicle. Note that in the third embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals, and description thereof is omitted.
 第3の実施の形態によるコントローラ31は、第1の実施の形態によるコントローラ10とほぼ同様に構成されている。具体的には、コントローラ31は、図10に示すように、左右加速度センサ11、ヨーレイトセンサ12、位置情報取得部32、演算装置33等を含んで構成されている。このコントローラ31は、各車輪4の減衰力制御処理に従って左右動ダンパ9のアクチュエータ(図示せず)に出力すべき制御指令信号を目標電流値として演算処理し、左右動ダンパ9の減衰力を制御する。 The controller 31 according to the third embodiment is configured in substantially the same manner as the controller 10 according to the first embodiment. Specifically, as shown in FIG. 10, the controller 31 includes a lateral acceleration sensor 11, a yaw rate sensor 12, a position information acquisition unit 32, a calculation device 33, and the like. The controller 31 calculates a control command signal to be output to an actuator (not shown) of the left and right motion damper 9 according to the damping force control processing of each wheel 4 as a target current value, and controls the damping force of the left and right motion damper 9. To do.
 位置情報取得部32は、車両1に設けられ、現在の車両1の走行位置の情報を得るものである。この位置情報取得部32は、例えば、速度センサ13から検出した車速vを予め作成した車両1の走行マップにあてはめて、現在の車両1の走行位置の情報を得てもよい。また、車両1が走行する軌道に地上子を配置しておき、該地上子から現在の車両1の走行位置の情報を得てもよいし、GPSや車両1の運行管理センサ等から走行位置の情報を得てもよい。 The position information acquisition unit 32 is provided in the vehicle 1 and obtains information on the current traveling position of the vehicle 1. For example, the position information acquisition unit 32 may obtain the information of the current traveling position of the vehicle 1 by applying the vehicle speed v detected from the speed sensor 13 to the traveling map of the vehicle 1 created in advance. Further, a ground element may be arranged on the track on which the vehicle 1 travels, and information on the current traveling position of the vehicle 1 may be obtained from the ground element. Information may be obtained.
 演算装置33は、例えば、マイクロコンピュータ等からなるCPU(図示せず)により構成され、図10に示すように、走行位置曲線半径算出部34と、超過遠心加速度算出部35と、左右加速度補正部36と、制御指令値算出部37とを有している。この演算装置33は、各センサ11,12から入力された検出信号と、位置情報取得部32から入力された車両1の位置情報とに基づいて、車体2の振動を制御するために左右動ダンパ9が発生すべき減衰力を演算する。そして、演算装置33は、算出した減衰力に基づいて左右動ダンパ9のアクチュエータに供給すべき目標電流値を演算し、該目標電流値を制御指令信号として左右動ダンパ9に出力する。 The computing device 33 is constituted by a CPU (not shown) composed of a microcomputer or the like, for example, and as shown in FIG. 10, a travel position curve radius calculation unit 34, an excess centrifugal acceleration calculation unit 35, and a lateral acceleration correction unit. 36 and a control command value calculation unit 37. The arithmetic device 33 is a left-right damper for controlling vibration of the vehicle body 2 based on the detection signals input from the sensors 11 and 12 and the position information of the vehicle 1 input from the position information acquisition unit 32. 9 calculates the damping force to be generated. Then, the arithmetic unit 33 calculates a target current value to be supplied to the actuator of the left and right dynamic damper 9 based on the calculated damping force, and outputs the target current value to the left and right dynamic damper 9 as a control command signal.
 走行位置曲線半径算出部34の入力側は、位置情報取得部32に接続されている。また、走行位置曲線半径算出部34の出力側は、超過遠心加速度算出部35に接続されている。この走行位置曲線半径算出部34は、位置情報取得部32から入力した車両1の位置情報に基づいて、曲線半径r(曲線路の曲率半径)を算出する。この場合、走行位置曲線半径算出部34は、例えば、車両1の位置情報を車両1の走行マップに照らし合わせて、軌道情報から曲線半径rを算出することができる。 The input side of the travel position curve radius calculation unit 34 is connected to the position information acquisition unit 32. The output side of the travel position curve radius calculation unit 34 is connected to the excess centrifugal acceleration calculation unit 35. The travel position curve radius calculation unit 34 calculates a curve radius r (curvature radius of curvature) based on the position information of the vehicle 1 input from the position information acquisition unit 32. In this case, for example, the travel position curve radius calculation unit 34 can calculate the curve radius r from the track information by comparing the position information of the vehicle 1 with the travel map of the vehicle 1.
 超過遠心加速度算出部35の入力側は、ヨーレイトセンサ12と走行位置曲線半径算出部34とに接続されている。また、超過遠心加速度算出部35の出力側は、左右加速度補正部36に接続されている。この超過遠心加速度算出部35は、ヨーレイトセンサ12から入力された車体2のヨーレイトωzと、走行位置曲線半径算出部34から入力された曲線半径rとに基づいて、車体2の超過遠心加速度を検出(推定)する。超過遠心加速度算出部35は、超過遠心加速度検出部を構成し、以下の数8式に基づいて遠心加速度arを超過遠心加速度として算出する。 The input side of the excess centrifugal acceleration calculator 35 is connected to the yaw rate sensor 12 and the travel position curve radius calculator 34. The output side of the excess centrifugal acceleration calculation unit 35 is connected to the left / right acceleration correction unit 36. The excess centrifugal acceleration calculation unit 35 calculates the excess centrifugal acceleration of the vehicle body 2 based on the yaw rate ω z of the vehicle body 2 input from the yaw rate sensor 12 and the curve radius r input from the travel position curve radius calculation unit 34. Detect (estimate). The excess centrifugal acceleration calculation unit 35 constitutes an excess centrifugal acceleration detection unit, and calculates the centrifugal acceleration a r as the excess centrifugal acceleration based on the following equation (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 左右加速度補正部36の入力側は、1位台車側および2位台車側の左右加速度センサ11と、超過遠心加速度算出部35とに接続されている。また、左右加速度補正部36の出力側は、制御指令値算出部37に接続されている。この左右加速度補正部36は、振動加速度算出部を構成し、各左右加速度センサ11から入力された左右加速度asy1,asy2と、超過遠心加速度算出部35から入力された遠心加速度arとに基づいて、振動成分の左右加速度である振動加速度ay1,ay2を求める。この場合、左右加速度補正部36は、上記数2式、数3式に示したように、左右加速度センサ11の検出値である左右加速度asy1,asy2から超過遠心加速度算出部35の検出値である遠心加速度arを減算して、振動加速度ay1,ay2をそれぞれ求めることができる。 The input side of the lateral acceleration correction unit 36 is connected to the lateral acceleration sensor 11 on the first and second carts and the excess centrifugal acceleration calculator 35. Further, the output side of the lateral acceleration correction unit 36 is connected to a control command value calculation unit 37. The left / right acceleration correction unit 36 constitutes a vibration acceleration calculation unit, and includes the left / right accelerations a sy1 and a sy2 input from the left / right acceleration sensors 11 and the centrifugal acceleration a r input from the excess centrifugal acceleration calculation unit 35. Based on this, vibration accelerations a y1 and a y2 which are left and right accelerations of the vibration component are obtained. In this case, the left / right acceleration correction unit 36 detects the detected value of the excess centrifugal acceleration calculating unit 35 from the left / right accelerations a sy1 and a sy2 which are the detected values of the left / right acceleration sensor 11, as shown in the equations (2) and (3). The vibration accelerations a y1 and a y2 can be obtained by subtracting the centrifugal acceleration a r .
 制御指令値算出部37の入力側は、左右加速度補正部36に接続されている。また、制御指令値算出部37の出力側は、左右動ダンパ9に接続されている。この制御指令値算出部37は、左右加速度補正部36から入力された振動加速度ay1,ay2に基づいて、車体2の振動を制御するために左右動ダンパ9が発生すべき減衰力を算出する。そして、制御指令値算出部37は、算出した減衰力に基づいて左右動ダンパ9のアクチュエータに供給すべき目標電流値を演算し、該目標電流値を制御指令信号として左右動ダンパ9に出力する。 The input side of the control command value calculation unit 37 is connected to the lateral acceleration correction unit 36. The output side of the control command value calculation unit 37 is connected to the left and right dynamic damper 9. The control command value calculation unit 37 calculates the damping force that should be generated by the left and right dynamic damper 9 to control the vibration of the vehicle body 2 based on the vibration accelerations a y1 and a y2 input from the left and right acceleration correction unit 36. To do. Then, the control command value calculation unit 37 calculates a target current value to be supplied to the actuator of the left and right motion damper 9 based on the calculated damping force, and outputs the target current value to the left and right motion damper 9 as a control command signal. .
 次に、コントローラ31が制御周期毎に実行する左右動ダンパ9の制御用のプログラムについて図11を用いて説明する。 Next, a control program for the left and right motion damper 9 executed by the controller 31 for each control cycle will be described with reference to FIG.
 まず、ステップ21では、コントローラ31は、各センサ11,12からの検出信号に基づいて左右加速度asy1,asy2とヨーレイトωzとを検出し、位置情報取得部32から現在の車両1の位置情報を取得する。この場合、コントローラ31は、第1の実施の形態と同様に、例えばAD変換器(図示せず)を用いて、アナログ信号からなる各センサ11,12の検出信号をデジタル信号に変換する。 First, in step 21, the controller 31 detects the left and right accelerations a sy1 and a sy2 and the yaw rate ω z based on the detection signals from the sensors 11 and 12, and the current position of the vehicle 1 from the position information acquisition unit 32. Get information. In this case, the controller 31 converts the detection signals of the sensors 11 and 12 made of analog signals into digital signals using, for example, an AD converter (not shown), as in the first embodiment.
 次に、ステップ22では、コントローラ31の走行位置曲線半径算出部34は、位置情報取得部32で取得した現在の車両1の位置情報に基づいて、車両1が走行している曲線路の曲線半径rを算出する。 Next, in step 22, the travel position curve radius calculation unit 34 of the controller 31 is based on the current position information of the vehicle 1 acquired by the position information acquisition unit 32 and the curve radius of the curved road on which the vehicle 1 is traveling. r is calculated.
 そして、ステップ23では、コントローラ31の超過遠心加速度算出部35は、ヨーレイトωzと曲線半径rとにより超過遠心加速度を算出する。この場合、上記数8式で示したように、ヨーレイトωzと曲線半径rとに基づいて算出した遠心加速度arを超過遠心加速度と推定する。 In step 23, the excess centrifugal acceleration calculation unit 35 of the controller 31 calculates an excess centrifugal acceleration by the yaw rate omega z and curve radius r. In this case, as shown in the above equation 8, the centrifugal acceleration a r calculated based on the yaw rate ω z and the curve radius r is estimated as the excess centrifugal acceleration.
 ステップ24では、コントローラ31の左右加速度補正部36は、左右加速度センサ11で求めた左右加速度asy1,asy2と上記ステップ23で求めた超過遠心加速度を用いて、振動加速度ay1,ay2を算出する。具体的には、上記数2式、数3式に示したように、左右加速度asy1,asy2から超過遠心加速度を減算して、車体2の中心位置での振動加速度ay1,ay2をそれぞれ求めることができる。 In step 24, the lateral acceleration correction unit 36 of the controller 31 uses the lateral accelerations a sy1 and a sy2 obtained by the lateral acceleration sensor 11 and the excess centrifugal acceleration obtained in step 23 to calculate the vibration accelerations a y1 and a y2 . calculate. Specifically, as shown in the above formulas 2 and 3, the excess centrifugal acceleration is subtracted from the lateral accelerations a sy1 and a sy2 to obtain the vibration accelerations a y1 and a y2 at the center position of the vehicle body 2. Each can be requested.
 そして、ステップ25では、コントローラ31の制御指令値算出部37は、左右加速度補正部36で求めた振動加速度ay1,ay2に基づいて、左右動ダンパ9を制御する制御指令値を算出する。 In step 25, the control command value calculation unit 37 of the controller 31 calculates a control command value for controlling the left and right dynamic damper 9 based on the vibration accelerations a y1 and a y2 obtained by the left and right acceleration correction unit 36.
 かくして、第3の実施の形態でも、第1の実施の形態とほぼ同様の作用効果を得ることができる。第3の実施の形態では、コントローラ31は、車両1の走行位置での曲線半径rに基づいて超過遠心加速度を算出する。これにより、車速vを用いずに超過遠心加速度を算出することができ、該超過遠心加速度を用いて、車体2の振動成分である振動加速度ay1,ay2を求めることができる。 Thus, in the third embodiment, substantially the same operational effects as in the first embodiment can be obtained. In the third embodiment, the controller 31 calculates excess centrifugal acceleration based on the curve radius r at the travel position of the vehicle 1. Thereby, the excess centrifugal acceleration can be calculated without using the vehicle speed v, and the vibration accelerations a y1 and a y2 that are the vibration components of the vehicle body 2 can be obtained using the excess centrifugal acceleration.
 次に、図2、図12ないし図14は本発明の第4の実施の形態を示している。第4の実施の形態の特徴は、コントローラは、車体の傾きを算出して、該車体の傾きに基づいて振動加速度を求めることにある。なお、第4の実施の形態では、前述した第1の実施の形態と同一の構成要素に同一符号を付し、その説明を省略するものとする。 Next, FIG. 2, FIG. 12 to FIG. 14 show a fourth embodiment of the present invention. The feature of the fourth embodiment is that the controller calculates the inclination of the vehicle body and obtains the vibration acceleration based on the inclination of the vehicle body. Note that in the fourth embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals, and description thereof is omitted.
 第4の実施の形態によるコントローラ41は、第1の実施の形態によるコントローラ10とほぼ同様に構成されている。具体的には、コントローラ41は、図13に示すように、左右加速度センサ11、ヨーレイトセンサ12、速度センサ13、演算装置42等を含んで構成されている。このコントローラ41は、各車輪4の減衰力制御処理に従って左右動ダンパ9のアクチュエータ(図示せず)に出力すべき制御指令信号を目標電流値として演算処理し、左右動ダンパ9の減衰力を制御する。 The controller 41 according to the fourth embodiment is configured in substantially the same manner as the controller 10 according to the first embodiment. Specifically, as shown in FIG. 13, the controller 41 includes a lateral acceleration sensor 11, a yaw rate sensor 12, a speed sensor 13, an arithmetic device 42, and the like. The controller 41 calculates a control command signal to be output to an actuator (not shown) of the left and right motion damper 9 according to the damping force control processing of each wheel 4 as a target current value, and controls the damping force of the left and right motion damper 9. To do.
 演算装置42は、例えば、マイクロコンピュータ等からなるCPU(図示せず)により構成され、図13に示すように、超過遠心加速度算出部43と、左右加速度補正部44と、制御指令値算出部45とを有している。この演算装置42は、各センサ11,12,13から入力された検出信号に基づいて、車体2の振動を制御するために左右動ダンパ9が発生すべき減衰力を演算する。そして、演算装置42は、算出した減衰力に基づいて左右動ダンパ9のアクチュエータに供給すべき目標電流値を演算し、該目標電流値を制御指令信号として左右動ダンパ9に出力する。 The computing device 42 is constituted by a CPU (not shown) composed of, for example, a microcomputer or the like, and as shown in FIG. 13, an excess centrifugal acceleration calculation unit 43, a lateral acceleration correction unit 44, and a control command value calculation unit 45. And have. This computing device 42 computes the damping force that should be generated by the left and right motion damper 9 in order to control the vibration of the vehicle body 2 based on the detection signals input from the sensors 11, 12, and 13. Then, the calculation device 42 calculates a target current value to be supplied to the actuator of the left and right motion damper 9 based on the calculated damping force, and outputs the target current value to the left and right motion damper 9 as a control command signal.
 超過遠心加速度算出部43の入力側は、ヨーレイトセンサ12と速度センサ13とに接続されている。また、超過遠心加速度算出部43の出力側は、左右加速度補正部44に接続されている。この超過遠心加速度算出部43は、ヨーレイトセンサ12から入力された車体2のヨーレイトωzと、速度センサ13から入力された車速vとに基づいて、車体2の超過遠心加速度を検出(推定)する。即ち、超過遠心加速度算出部43は、第1の実施の形態の超過遠心加速度算出部15と同様に超過遠心加速度検出部を構成し、上記数1式に基づいて遠心加速度arを超過遠心加速度として算出する。 The input side of the excess centrifugal acceleration calculation unit 43 is connected to the yaw rate sensor 12 and the speed sensor 13. The output side of the excess centrifugal acceleration calculation unit 43 is connected to the left / right acceleration correction unit 44. The excess centrifugal acceleration calculation unit 43 detects (estimates) the excess centrifugal acceleration of the vehicle body 2 based on the yaw rate ω z of the vehicle body 2 input from the yaw rate sensor 12 and the vehicle speed v input from the speed sensor 13. . That is, the excess centrifugal acceleration calculation unit 43 constitutes an excess centrifugal acceleration detection unit in the same manner as the excess centrifugal acceleration calculation unit 15 of the first embodiment, and the centrifugal acceleration a r is determined based on the above formula 1 as the excess centrifugal acceleration. Calculate as
 この場合、図12に示すように、遠心加速度arは地面(地平面)に対して水平方向となる。即ち、車両1の車体2がカント等による傾斜面によって傾きθだけ傾いている場合は、遠心加速度arのベクトルの向きは、車両1の左右方向とは傾きθだけ異なっている。また、車両1が傾きθだけ傾いているので、遠心加速度arの上下方向成分arzは該傾斜面とは垂直(arz=arsinθ)となる。一方、遠心加速度arの左右方向成分aryは該傾斜面とは平行(ary=arcosθ)となる。 In this case, as shown in FIG. 12, the centrifugal acceleration a r is in the horizontal direction with respect to the ground (the ground plane). That is, when the vehicle body 2 of the vehicle 1 is inclined by the inclination θ due to an inclined surface such as a cant, the direction of the vector of the centrifugal acceleration a r is different from the horizontal direction of the vehicle 1 by the inclination θ. Further, since the vehicle 1 is tilted by the tilt theta, vertical component a rz of the centrifugal acceleration a r is perpendicular (a rz = a r sinθ) from the inclined surface. On the other hand, the left-right direction component a ry of the centrifugal acceleration a r are parallel (a ry = a r cosθ) and the inclined surface.
 左右加速度補正部44の入力側は、1位台車側および2位台車側の左右加速度センサ11と、超過遠心加速度算出部43とに接続されている。また、左右加速度補正部44の出力側は、制御指令値算出部45に接続されている。この左右加速度補正部44は、左右加速度asy1,asy2から振動成分の左右加速度である振動加速度ay1,ay2をそれぞれ除去するローパスフィルタ44A,44Bと、車両1の傾きθを算出する傾き算出部44Cとを含んで構成されている。そして、左右加速度補正部44は、各左右加速度センサ11から入力された左右加速度asy1,asy2と、超過遠心加速度算出部43から入力された遠心加速度arとに基づいて、振動成分の左右加速度である振動加速度ay1,ay2を求める。 The input side of the left / right acceleration correction unit 44 is connected to the left / right acceleration sensor 11 on the first and second carts and the excess centrifugal acceleration calculation unit 43. Further, the output side of the lateral acceleration correction unit 44 is connected to the control command value calculation unit 45. The lateral acceleration correction unit 44 includes low- pass filters 44A and 44B that respectively remove vibration accelerations a y1 and a y2 that are lateral accelerations of vibration components from the lateral accelerations a sy1 and a sy2 , and an inclination for calculating the inclination θ of the vehicle 1. And a calculation unit 44C. Then, the left / right acceleration correction unit 44 determines the left and right vibration components based on the left and right accelerations a sy1 and a sy2 input from the left and right acceleration sensors 11 and the centrifugal acceleration a r input from the excess centrifugal acceleration calculation unit 43. Vibration accelerations a y1 and a y2 that are accelerations are obtained.
 ローパスフィルタ44A,44Bは、各左右加速度センサ11で検出した左右加速度asy1,asy2から振動成分の左右加速度である振動加速度ay1,ay2をそれぞれ除去する算出部として設けられている。ローパスフィルタ44A,44Bのカットオフ周波数は、振動加速度ay1,ay2を除去するが、車体2のロール振動成分は除去しない所定の値に設定されている。これは、ローパスフィルタ44A,44Bにより車体2のロール振動成分を除去してしまうと、ロール振動による車体2の傾きを考慮することができなくなってしまうからである。このローパスフィルタ44A,44Bは、以下の数9式および数10式で示すように、左右加速度asy1,asy2から振動加速度ay1,ay2をそれぞれ除去するものである。 The low- pass filters 44A and 44B are provided as calculation units that respectively remove the vibration accelerations a y1 and a y2 that are the left and right accelerations of the vibration component from the left and right accelerations a sy1 and a sy2 detected by the respective left and right acceleration sensors 11. The cutoff frequencies of the low- pass filters 44A and 44B are set to predetermined values that remove the vibration accelerations a y1 and a y2 but do not remove the roll vibration component of the vehicle body 2. This is because if the roll vibration component of the vehicle body 2 is removed by the low- pass filters 44A and 44B, the inclination of the vehicle body 2 due to the roll vibration cannot be considered. The low- pass filters 44A and 44B remove the vibration accelerations a y1 and a y2 from the lateral accelerations a sy1 and a sy2 , respectively, as shown in the following equations (9) and (10).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 傾き算出部44Cは、左右加速度asy1,asy2と遠心加速度arと重力加速度gとから車両1の傾きθを算出するものである。ここで、図12に示すように、車両1がカント等による傾斜面や車両傾斜装置等のため傾きθだけ傾いているときは、各左右加速度センサ11で検出される左右加速度asy1,asy2は、該傾斜面とは平行となる。また、左右加速度asy1,asy2にローパスフィルタ44A,44Bを適用した左右加速度asyf1,asyf2は、振動成分が除去されているため、遠心加速度(超過遠心加速度)arと概ね等しいと考えられる。このため、左右加速度asyf1,asyf2のベクトル(方向)は、遠心加速度arの左右方向成分aryと重力加速度gの左右方向成分agy(=gsinθ)と向きが等しいと仮定すると、以下の数11式および数12式が成立する。 The inclination calculation unit 44C calculates the inclination θ of the vehicle 1 from the lateral accelerations a sy1 and a sy2 , the centrifugal acceleration a r, and the gravitational acceleration g. Here, as shown in FIG. 12, when the vehicle 1 is inclined by an inclination θ due to an inclined surface such as a cant or a vehicle inclination device, the lateral accelerations a sy1 and a sy2 detected by the respective lateral acceleration sensors 11 are detected. Is parallel to the inclined surface. Further, the left and right accelerations a syf1 and a syf2 obtained by applying the low- pass filters 44A and 44B to the left and right accelerations a sy1 and a sy2 are considered to be substantially equal to the centrifugal acceleration (excess centrifugal acceleration) a r because the vibration component is removed. It is done. For this reason, assuming that the direction of the vector (direction) of the lateral accelerations a syf1 and a syf2 is equal to the direction of the lateral component a ry of the centrifugal acceleration a r and the lateral component a gy (= g sin θ) of the gravitational acceleration g, Equations (11) and (12) are established.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 この場合、車両1の傾きθが15°未満(θ<15°)である場合は、sinθ≒θ、cosθ≒1が成立する。従って、傾き算出部44Cは、以下の数13式および数14式により車両1の傾きθ(1位台車側の傾きθ1及び2位台車側の傾きθ2)を算出することができる。 In this case, when the inclination θ of the vehicle 1 is less than 15 ° (θ <15 °), sin θ≈θ and cos θ≈1 are established. Therefore, the inclination calculating unit 44C can calculate the inclination θ (the inclination θ1 on the first carriage side and the inclination θ2 on the second carriage side) of the vehicle 1 by the following equations (13) and (14).
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 そして、振動加速度算出部としての左右加速度補正部44は、以下の数15式および数16式に示すように、傾きθ1,θ2を用いて、左右加速度asy1,asy2から遠心加速度arの左右方向成分ary(=arcosθ)を減算して、振動加速度ay1,ay2をそれぞれ求めることができる。 Then, the left / right acceleration correction unit 44 as the vibration acceleration calculating unit calculates the centrifugal acceleration a r from the left / right accelerations a sy1 and a sy2 using the inclinations θ 1 and θ 2 as shown in the following equations (15) and (16). lateral direction component a ry (= a r cosθ) is subtracted, the vibration acceleration a y1, a y2 can be calculated, respectively.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 制御指令値算出部45の入力側は、左右加速度補正部44に接続されている。また、制御指令値算出部45の出力側は、左右動ダンパ9に接続されている。この制御指令値算出部45は、左右加速度補正部44から入力された振動加速度ay1,ay2に基づいて、車体2の振動を制御するために左右動ダンパ9が発生すべき減衰力を算出する。そして、制御指令値算出部45は、算出した減衰力に基づいて左右動ダンパ9のアクチュエータに供給すべき目標電流値を演算し、該目標電流値を制御指令信号として左右動ダンパ9に出力する。 The input side of the control command value calculation unit 45 is connected to the left / right acceleration correction unit 44. The output side of the control command value calculation unit 45 is connected to the left and right dynamic damper 9. The control command value calculation unit 45 calculates a damping force that should be generated by the left and right dynamic damper 9 to control the vibration of the vehicle body 2 based on the vibration accelerations a y1 and a y2 input from the left and right acceleration correction unit 44. To do. Then, the control command value calculation unit 45 calculates a target current value to be supplied to the actuator of the left and right motion damper 9 based on the calculated damping force, and outputs the target current value to the left and right motion damper 9 as a control command signal. .
 次に、コントローラ41が制御周期毎に実行する左右動ダンパ9の制御用のプログラムについて図14を用いて説明する。 Next, a control program for the left and right motion damper 9 executed by the controller 41 for each control cycle will be described with reference to FIG.
 まず、ステップ31では、コントローラ41は、各センサ11,12,13からの検出信号に基づいて左右加速度asy1,asy2とヨーレイトωzと車速vとを検出する。この場合、コントローラ41は、第1の実施の形態と同様に、例えばAD変換器(図示せず)を用いて、アナログ信号からなる各センサ11,12,13の検出信号をデジタル信号に変換する。 First, in step 31, the controller 41 detects the lateral accelerations a sy1 , a sy2 , the yaw rate ω z, and the vehicle speed v based on the detection signals from the sensors 11, 12, 13. In this case, as in the first embodiment, the controller 41 converts the detection signals of the sensors 11, 12, and 13 made of analog signals into digital signals using, for example, an AD converter (not shown). .
 次に、ステップ32では、コントローラ41の超過遠心加速度算出部43は、ヨーレイトωzと車速vとにより超過遠心加速度を算出する。この場合、上記数1式で示したように、ヨーレイトωzと車速vとに基づいて算出した遠心加速度arを超過遠心加速度と推定する。 Next, in step 32, the excess centrifugal acceleration calculation unit 43 of the controller 41 calculates an excess centrifugal acceleration by the yaw rate omega z and the vehicle speed v. In this case, as shown in the above equation 1, the centrifugal acceleration a r calculated based on the yaw rate ω z and the vehicle speed v is estimated as the excess centrifugal acceleration.
 そして、ステップ33では、コントローラ41の左右加速度補正部44は、左右加速度asy1,asy2と遠心加速度arと重力加速度gとを用いて、車体2の傾きθを算出する。具体的には、左右加速度補正部44のローパスフィルタ44A,44Bは、各左右加速度センサ11で検出した左右加速度asy1,asy2から振動成分の左右加速度である振動加速度ay1,ay2をそれぞれ除去して、左右加速度asyf1,asyf2を算出する(数9式および数10式参照)。そして、左右加速度補正部44の傾き算出部44Cは、左右加速度asyf1,asyf2と遠心加速度arと重力加速度gとを用いて、車体2の傾きθを算出する(数13式および数14式参照)。 In step 33, the lateral acceleration correction unit 44 of the controller 41 calculates the inclination θ of the vehicle body 2 using the lateral accelerations a sy1 and a sy2 , the centrifugal acceleration a r and the gravitational acceleration g. Specifically, the low- pass filters 44A and 44B of the left and right acceleration correction unit 44 respectively obtain vibration accelerations a y1 and a y2 that are left and right accelerations of vibration components from the left and right accelerations a sy1 and a sy2 detected by the respective left and right acceleration sensors 11. The left and right accelerations a syf1 and a syf2 are calculated by removing them (see Equations 9 and 10). Then, the inclination calculation unit 44C of the left / right acceleration correction unit 44 calculates the inclination θ of the vehicle body 2 using the left / right accelerations a syf1 , a syf2 , the centrifugal acceleration a r and the gravitational acceleration g (Equation 13 and Equation 14). See formula).
 ステップ34では、コントローラ41の左右加速度補正部44は、左右加速度センサ11で求めた左右加速度asy1,asy2と上記ステップ33で求めた車体2の傾きθを用いて、車体2の中心位置での振動加速度ay1,ay2を算出する(数15式および数16式参照)。 In step 34, the lateral acceleration correction unit 44 of the controller 41 uses the lateral accelerations a sy1 and a sy2 obtained by the lateral acceleration sensor 11 and the inclination θ of the vehicle body 2 obtained in step 33 above, at the center position of the vehicle body 2. Vibration accelerations a y1 and a y2 are calculated (see Equations 15 and 16).
 そして、ステップ35では、コントローラ41の制御指令値算出部45は、左右加速度補正部44で求めた振動加速度ay1,ay2に基づいて、左右動ダンパ9を制御する制御指令値を算出する。 In step 35, the control command value calculation unit 45 of the controller 41 calculates a control command value for controlling the left and right motion damper 9 based on the vibration accelerations a y1 and a y2 obtained by the left and right acceleration correction unit 44.
 かくして、第4の実施の形態でも、第1の実施の形態とほぼ同様の作用効果を得ることができる。第4の実施の形態では、コントローラ41は、車両1の車体2の傾きθに基づいて、車体2の振動成分である振動加速度ay1,ay2を算出する。これにより、カントの傾斜面や車体傾斜装置の情報がなくても、車体2の傾きθを推定して、該車体2の傾きθに基づいて車体2に振動を引き起こす振動加速度ay1,ay2を算出することができる。 Thus, in the fourth embodiment, it is possible to obtain substantially the same function and effect as in the first embodiment. In the fourth embodiment, the controller 41 calculates vibration accelerations a y1 and a y2 that are vibration components of the vehicle body 2 based on the inclination θ of the vehicle body 2 of the vehicle 1. As a result, even if there is no information on the inclined surface of the cant or the vehicle body tilting device, the inclination θ of the vehicle body 2 is estimated, and the vibration accelerations a y1 and a y2 that cause the vehicle body 2 to vibrate based on the inclination θ of the vehicle body 2 are estimated. Can be calculated.
 なお、前記第1の実施の形態では、左右加速度センサ11とヨーレイトセンサ12とを、各台車3の直上近傍に位置して車体2に2個ずつ設ける構成とした。しかし、本発明はこれに限らず、車体の任意の位置に設けられたセンサからの検出信号を用いて、必要箇所の左右加速度やヨーレイトを演算によって求めてもよい。従って、左右加速度センサとヨーレイトセンサは、車体に1個ずつ設ける構成としてもよい。この構成は、第2、第3、第4の実施の形態にも同様に適用することができる。 In the first embodiment, the left / right acceleration sensor 11 and the yaw rate sensor 12 are provided in the vehicle body 2 at two positions located immediately above each carriage 3. However, the present invention is not limited to this, and the lateral acceleration and yaw rate at a required location may be obtained by calculation using a detection signal from a sensor provided at an arbitrary position of the vehicle body. Therefore, the lateral acceleration sensor and the yaw rate sensor may be provided on the vehicle body one by one. This configuration can be similarly applied to the second, third, and fourth embodiments.
 また、前記第3の実施の形態では、コントローラ31は、車両1の走行位置での曲線半径rに基づいて超過遠心加速度を算出し、該超過遠心加速度を用いて車体2の振動成分である振動加速度ay1,ay2を求める構成とした。しかし、本発明はこれに限らず、第2の実施の形態と同様に、曲線半径に基づいて算出した超過遠心加速度から重力加速度による左右方向成分を除いて振動加速度を算出する構成としてもよい。 In the third embodiment, the controller 31 calculates excess centrifugal acceleration based on the curve radius r at the travel position of the vehicle 1 and uses the excess centrifugal acceleration to vibrate which is a vibration component of the vehicle body 2. The acceleration a y1 and a y2 are obtained. However, the present invention is not limited to this, and as in the second embodiment, the vibration acceleration may be calculated by removing the lateral component due to the gravitational acceleration from the excess centrifugal acceleration calculated based on the curve radius.
 また、前記第4の実施の形態では、左右加速度補正部44は、ローパスフィルタ44A,44Bを用いて、各左右加速度センサ11で検出した左右加速度asy1,asy2から振動成分の左右加速度である振動加速度ay1,ay2をそれぞれ除去する構成とした。しかし、本発明はこれに限らず、左右加速度補正部は、左右加速度センサで検出した加速度から所定の時間毎における平均値を求めて、振動加速度を除去する構成としてもよい。具体的には、例えば、振動加速度の周期が0.5秒程度であり、車体のロール成分の振動周期が1.5秒程度である場合には、左右加速度センサで検出した加速度から1秒間毎における平均値を求めて、振動加速度を除去する構成としてもよい。 In the fourth embodiment, the lateral acceleration correction unit 44 is the lateral acceleration of the vibration component from the lateral accelerations a sy1 and a sy2 detected by the lateral acceleration sensors 11 using the low- pass filters 44A and 44B. The vibration accelerations a y1 and a y2 are each removed. However, the present invention is not limited to this, and the left / right acceleration correction unit may be configured to obtain the average value at predetermined time intervals from the acceleration detected by the left / right acceleration sensor and remove the vibration acceleration. Specifically, for example, when the period of vibration acceleration is about 0.5 seconds and the vibration period of the roll component of the vehicle body is about 1.5 seconds, every second from the acceleration detected by the left-right acceleration sensor. It is good also as a structure which calculates | requires the average value in and removes vibration acceleration.
 また、前記第4の実施の形態では、超過遠心加速度算出部43は、車体2のヨーレイトωzと、車速vとに基づいて、車体2の超過遠心加速度を検出する構成とした。しかし、本発明はこれに限らず、第3の実施の形態と同様に、超過遠心加速度算出部は、車体のヨーレイトωzと、車両の位置情報から算出した曲線半径rとに基づいて、車体の超過遠心加速度を検出する構成としてもよい。 In the fourth embodiment, the excess centrifugal acceleration calculation unit 43 detects the excess centrifugal acceleration of the vehicle body 2 based on the yaw rate ω z of the vehicle body 2 and the vehicle speed v. However, the present invention is not limited to this, and similarly to the third embodiment, the excess centrifugal acceleration calculation unit calculates the vehicle body based on the yaw rate ω z of the vehicle body and the curve radius r calculated from the vehicle position information. It is good also as a structure which detects the excess centrifugal acceleration of.
 また、前記第1の実施の形態では、コントローラ10は、スカイフック制御則によって左右動ダンパ9の減衰力指令値を演算する構成としたが、本発明はこれに限らず、例えばLQG制御則、H∞制御則等のような他の制御則に基づいて減衰力指令値を演算してもよい。この構成は、第2、第3、第4の実施の形態にも適用することができる。 Moreover, in the said 1st Embodiment, although the controller 10 was set as the structure which calculates the damping force command value of the right-and-left damper 9 by a skyhook control law, this invention is not limited to this, For example, a LQG control law, The damping force command value may be calculated based on another control law such as an H∞ control law. This configuration can also be applied to the second, third, and fourth embodiments.
 また、前記各実施の形態では、ダンパ8,9がセミアクティブダンパである場合を例に挙げて説明したが、これに代えて、アクティブダンパを用いるようにしてもよい。 In each of the above-described embodiments, the case where the dampers 8 and 9 are semi-active dampers has been described as an example. However, instead of this, an active damper may be used.
 また、前記各実施の形態では、作動油が封入された減衰力調整式油圧緩衝器からなるダンパ8,9に適用した場合を例に挙げて説明した。しかし、本発明はこれに限らず、例えば作動流体として空気が封入された減衰力調整式空圧緩衝器に適用してもよい。 Further, in each of the above-described embodiments, the case where the present invention is applied to the dampers 8 and 9 including the damping force adjusting hydraulic shock absorber in which the hydraulic oil is enclosed has been described as an example. However, the present invention is not limited to this. For example, the present invention may be applied to a damping force adjustment type pneumatic shock absorber in which air is sealed as a working fluid.
 さらに、前記各実施の形態では、本発明のサスペンション制御装置を鉄道車両1,21に適用した場合を例に挙げて説明したが、自動車等の他の車両に適用してもよい。 Furthermore, in each of the above-described embodiments, the case where the suspension control device of the present invention is applied to the railway vehicles 1 and 21 has been described as an example, but it may be applied to other vehicles such as automobiles.
 次に、前記各実施の形態に含まれる発明について記載する。本発明によれば、コントローラは、車両の進行方向に対して左右方向に作用する車体の左右加速度を検出する左右加速度検出部と、前記車体のヨーレイトに基づいて前記車体の超過遠心加速度を検出、または推定する超過遠心加速度検出部と、前記左右加速度検出部の検出値から前記超過遠心加速度検出部の検出値を減算して振動成分の左右加速度を求める振動加速度算出部と、を有する構成とした。このため、車体のヨーレイトに基づいて、振動成分の左右加速度を求めることができる。この結果、車両に曲線走行に伴う左右加速度が作用する場合でも、車体に振動を引き起こす振動成分の左右加速度に基づいて、減衰力調整式緩衝器の減衰力を制御することができるので、車両の乗り心地を向上することができる。 Next, the invention included in each of the embodiments will be described. According to the present invention, the controller detects a lateral acceleration detection unit that detects a lateral acceleration of the vehicle body acting in a lateral direction with respect to a traveling direction of the vehicle, and detects an excess centrifugal acceleration of the vehicle body based on the yaw rate of the vehicle body, Alternatively, an excess centrifugal acceleration detection unit to be estimated and a vibration acceleration calculation unit that subtracts the detection value of the excess centrifugal acceleration detection unit from the detection value of the left and right acceleration detection unit to obtain the lateral acceleration of the vibration component. . For this reason, the lateral acceleration of the vibration component can be obtained based on the yaw rate of the vehicle body. As a result, the damping force of the damping force adjusting type shock absorber can be controlled based on the lateral acceleration of the vibration component that causes the vehicle body to vibrate even when the vehicle is subjected to a lateral acceleration associated with a curved run. Riding comfort can be improved.
 本発明によれば、超過遠心加速度検出部は、車両の走行速度に基づいて超過遠心加速度を算出する構成とした。これにより、車両の走行速度とヨーレイトから超過遠心加速度を算出することができ、該超過遠心加速度に基づいて車体の振動成分の左右加速度を検出することができる。この結果、車両の走行位置を取得する必要がないから、車両の走行位置情報に基づいて制御する場合に比べて、適用可能な線路区間を広げることができる。 According to the present invention, the excessive centrifugal acceleration detector is configured to calculate the excessive centrifugal acceleration based on the traveling speed of the vehicle. Thereby, the excess centrifugal acceleration can be calculated from the traveling speed of the vehicle and the yaw rate, and the lateral acceleration of the vibration component of the vehicle body can be detected based on the excess centrifugal acceleration. As a result, since it is not necessary to acquire the traveling position of the vehicle, the applicable track section can be expanded compared to the case where control is performed based on the traveling position information of the vehicle.
 本発明によれば、超過遠心加速度検出部は、重力加速度の左右方向成分に基づいて超過遠心加速度を算出する構成とした。これにより、カント等によって曲線走行時に車両が傾斜するときでも、このような傾斜による重力加速度の左右方向成分を除去して超過遠心加速度を算出することができる。この結果、カント等の影響を考慮して、実際に車体に作用する超過遠心加速度を算出することができる。 According to the present invention, the excessive centrifugal acceleration detection unit is configured to calculate the excessive centrifugal acceleration based on the lateral component of the gravitational acceleration. As a result, even when the vehicle inclines during running on a curve due to canting or the like, the excess centrifugal acceleration can be calculated by removing the lateral component of the gravitational acceleration due to such inclination. As a result, the excessive centrifugal acceleration actually acting on the vehicle body can be calculated in consideration of the influence of cant and the like.
 本発明によれば、超過遠心加速度検出部は、車両の位置情報に基づいて超過遠心加速度を算出する構成とした。これにより、車両の走行速度を用いずに超過遠心加速度を算出することができ、該超過遠心加速度を用いて、車体の振動成分の左右加速度を求めることができる。 According to the present invention, the excessive centrifugal acceleration detector is configured to calculate the excessive centrifugal acceleration based on the vehicle position information. Thereby, the excess centrifugal acceleration can be calculated without using the traveling speed of the vehicle, and the lateral acceleration of the vibration component of the vehicle body can be obtained using the excess centrifugal acceleration.
 本発明によれば、振動加速度算出部は、左右加速度、超過遠心加速度、重力加速度に基づいて前記車体の傾きを算出して、該車体の傾きに基づいて振動成分の左右加速度を求める構成とした。これにより、カントの傾斜面や車体傾斜装置の情報がなくても、車体の傾きを推定して、該車体の傾きに基づいて車体に振動を引き起こす振動加速度を算出することができる。 According to the present invention, the vibration acceleration calculating unit calculates the inclination of the vehicle body based on the lateral acceleration, excess centrifugal acceleration, and gravitational acceleration, and obtains the lateral acceleration of the vibration component based on the inclination of the vehicle body. . As a result, even if there is no information on the cant tilt surface and the vehicle body tilting device, the vehicle body tilt can be estimated, and the vibration acceleration that causes vibration in the vehicle body can be calculated based on the vehicle body tilt.
 以上説明した実施形態に基づくサスペンション制御装置として、例えば、以下に述べる態様のものが考えられる。 As a suspension control device based on the embodiment described above, for example, the following modes can be considered.
 サスペンション制御装置の第1の態様としては、車体と台車とを有する車両に設けられる減衰力調整式緩衝器と、該減衰力調整式緩衝器の減衰力を制御するコントローラと、を備えたサスペンション制御装置であって、前記コントローラは、前記車両の進行方向に対して左右方向に作用する前記車体の左右加速度を検出する左右加速度検出部と、前記車体のヨーレイトに基づいて前記車体の超過遠心加速度を検出、または推定する超過遠心加速度検出部と、前記左右加速度検出部の検出値から前記超過遠心加速度検出部の検出値を減算して振動成分の左右加速度を求める振動加速度算出部と、を有する。 As a first aspect of the suspension control apparatus, a suspension control including a damping force adjustment type shock absorber provided in a vehicle having a vehicle body and a carriage, and a controller for controlling the damping force of the damping force adjustment type shock absorber. A controller for detecting a lateral acceleration of the vehicle body acting in a lateral direction with respect to a traveling direction of the vehicle; and an excess centrifugal acceleration of the vehicle body based on a yaw rate of the vehicle body. An excess centrifugal acceleration detector that detects or estimates; and a vibration acceleration calculator that subtracts the detected value of the excess centrifugal acceleration detector from the detected value of the left and right acceleration detector to obtain the lateral acceleration of the vibration component.
 第2の態様としては、第1の態様において、前記超過遠心加速度検出部は、前記車両の走行速度に基づいて前記超過遠心加速度を算出する。 As a second aspect, in the first aspect, the excess centrifugal acceleration detection unit calculates the excess centrifugal acceleration based on the traveling speed of the vehicle.
 第3の態様としては、第1の態様または第2の態様において、前記超過遠心加速度検出部は、重力加速度の左右方向成分に基づいて前記超過遠心加速度を算出する。 As a third aspect, in the first aspect or the second aspect, the excess centrifugal acceleration detection unit calculates the excess centrifugal acceleration based on a lateral component of gravity acceleration.
 第4の態様としては、第1の態様において、前記超過遠心加速度検出部は、前記車両の位置情報に基づいて前記超過遠心加速度を算出する。 As a fourth aspect, in the first aspect, the excess centrifugal acceleration detection unit calculates the excess centrifugal acceleration based on position information of the vehicle.
 第5の態様としては、第1の態様乃至第4の態様のいずれかにおいて、前記振動加速度算出部は、左右加速度、超過遠心加速度、重力加速度に基づいて前記車体の傾きを算出して、該車体の傾きに基づいて前記振動成分の左右加速度を求める。 As a fifth aspect, in any one of the first to fourth aspects, the vibration acceleration calculation unit calculates the inclination of the vehicle body based on lateral acceleration, excess centrifugal acceleration, and gravitational acceleration, and The lateral acceleration of the vibration component is obtained based on the inclination of the vehicle body.
 1,21 鉄道車両(車両)
 2 車体
 3 台車
 8 上下動ダンパ(減衰力調整式緩衝器)
 9 左右動ダンパ(減衰力調整式緩衝器)
 10,22,31,41 コントローラ
 11 左右加速度センサ(左右加速度検出部)
 15,27,35,43 超過遠心加速度算出部(超過遠心加速度検出部)
 16,28,36,44 左右加速度補正部(振動加速度算出部)
 23 上下加速度センサ
1,21 Railway vehicles (vehicles)
2 Body 3 Bogie 8 Vertical motion damper (damping force adjustable shock absorber)
9 Left and right dynamic damper (damping force adjustable shock absorber)
10, 22, 31, 41 Controller 11 Left / right acceleration sensor (left / right acceleration detection unit)
15, 27, 35, 43 Excess centrifugal acceleration calculation unit (excess centrifugal acceleration detection unit)
16, 28, 36, 44 Lateral acceleration correction unit (vibration acceleration calculation unit)
23 Vertical acceleration sensor

Claims (5)

  1.  車体と台車とを有する車両に設けられる減衰力調整式緩衝器と、
     該減衰力調整式緩衝器の減衰力を制御するコントローラと、を備えたサスペンション制御装置であって、
     前記コントローラは、
     前記車両の進行方向に対して左右方向に作用する前記車体の左右加速度を検出する左右加速度検出部と、
     前記車体のヨーレイトに基づいて前記車体の超過遠心加速度を検出、または推定する超過遠心加速度検出部と、
     前記左右加速度検出部の検出値から前記超過遠心加速度検出部の検出値を減算して振動成分の左右加速度を求める振動加速度算出部と、
     を有することを特徴とするサスペンション制御装置。
    A damping force adjusting shock absorber provided in a vehicle having a vehicle body and a carriage;
    A suspension control device comprising a controller for controlling the damping force of the damping force adjusting shock absorber,
    The controller is
    A lateral acceleration detector for detecting lateral acceleration of the vehicle body acting in the lateral direction with respect to the traveling direction of the vehicle;
    An excess centrifugal acceleration detector for detecting or estimating excess centrifugal acceleration of the vehicle body based on the yaw rate of the vehicle body;
    A vibration acceleration calculation unit for subtracting a detection value of the excess centrifugal acceleration detection unit from a detection value of the left / right acceleration detection unit to obtain a lateral acceleration of a vibration component;
    A suspension control apparatus comprising:
  2.  前記超過遠心加速度検出部は、前記車両の走行速度に基づいて前記超過遠心加速度を算出する請求項1に記載のサスペンション制御装置。 The suspension control device according to claim 1, wherein the excess centrifugal acceleration detection unit calculates the excess centrifugal acceleration based on a traveling speed of the vehicle.
  3.  前記超過遠心加速度検出部は、重力加速度の左右方向成分に基づいて前記超過遠心加速度を算出する請求項1または2に記載のサスペンション制御装置。 The suspension control device according to claim 1 or 2, wherein the excess centrifugal acceleration detection unit calculates the excess centrifugal acceleration based on a lateral component of gravity acceleration.
  4.  前記超過遠心加速度検出部は、前記車両の位置情報に基づいて前記超過遠心加速度を算出する請求項1に記載のサスペンション制御装置。 The suspension control device according to claim 1, wherein the excess centrifugal acceleration detection unit calculates the excess centrifugal acceleration based on position information of the vehicle.
  5.  前記振動加速度算出部は、左右加速度、超過遠心加速度、重力加速度に基づいて前記車体の傾きを算出して、
     該車体の傾きに基づいて前記振動成分の左右加速度を求める請求項1ないし4のいずれかに記載のサスペンション制御装置。
    The vibration acceleration calculation unit calculates the inclination of the vehicle body based on lateral acceleration, excess centrifugal acceleration, and gravitational acceleration,
    The suspension control device according to any one of claims 1 to 4, wherein a lateral acceleration of the vibration component is obtained based on an inclination of the vehicle body.
PCT/JP2016/055657 2015-02-27 2016-02-25 Suspension control device WO2016136887A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017502472A JP6355817B2 (en) 2015-02-27 2016-02-25 Suspension control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-039129 2015-02-27
JP2015039129 2015-02-27

Publications (1)

Publication Number Publication Date
WO2016136887A1 true WO2016136887A1 (en) 2016-09-01

Family

ID=56789555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055657 WO2016136887A1 (en) 2015-02-27 2016-02-25 Suspension control device

Country Status (2)

Country Link
JP (1) JP6355817B2 (en)
WO (1) WO2016136887A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139227A1 (en) * 2017-01-30 2018-08-02 Kyb株式会社 Steady acceleration detection device and vibration control device for railroad vehicle
CN113752770A (en) * 2020-06-03 2021-12-07 观致汽车有限公司 Semi-active suspension control system and method, computer storage medium, and electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009040081A (en) * 2007-08-06 2009-02-26 Kayaba Ind Co Ltd Vibration component acceleration estimation device and vibration component acceleration estimation method
JP2009241722A (en) * 2008-03-31 2009-10-22 Railway Technical Res Inst Method for controlling vehicle body tilt angle of pendulum vehicle and system for controlling vehicle body tilt angle of pendulum vehicle
JP2012171430A (en) * 2011-02-18 2012-09-10 Advics Co Ltd One-sided load determination apparatus
JP2014162420A (en) * 2013-02-27 2014-09-08 Jtekt Corp Electric power steering device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009040081A (en) * 2007-08-06 2009-02-26 Kayaba Ind Co Ltd Vibration component acceleration estimation device and vibration component acceleration estimation method
JP2009241722A (en) * 2008-03-31 2009-10-22 Railway Technical Res Inst Method for controlling vehicle body tilt angle of pendulum vehicle and system for controlling vehicle body tilt angle of pendulum vehicle
JP2012171430A (en) * 2011-02-18 2012-09-10 Advics Co Ltd One-sided load determination apparatus
JP2014162420A (en) * 2013-02-27 2014-09-08 Jtekt Corp Electric power steering device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139227A1 (en) * 2017-01-30 2018-08-02 Kyb株式会社 Steady acceleration detection device and vibration control device for railroad vehicle
JP2018122626A (en) * 2017-01-30 2018-08-09 Kyb株式会社 Stationary acceleration speed detection device and vibration damping device for railway vehicle
CN110214277A (en) * 2017-01-30 2019-09-06 Kyb株式会社 Constant acceleration detection device and shock absorber device for railway vehicle
CN110214277B (en) * 2017-01-30 2021-06-22 Kyb株式会社 Constant acceleration detection device and damping device for railway vehicle
CN113752770A (en) * 2020-06-03 2021-12-07 观致汽车有限公司 Semi-active suspension control system and method, computer storage medium, and electronic device
CN113752770B (en) * 2020-06-03 2023-09-15 观致汽车有限公司 Semi-active suspension control system and method, computer storage medium, and vehicle

Also Published As

Publication number Publication date
JP6355817B2 (en) 2018-07-11
JPWO2016136887A1 (en) 2017-10-26

Similar Documents

Publication Publication Date Title
US10471795B2 (en) Method for compensating for vertical movements
JP5224048B2 (en) Suspension control device
CN111615480B (en) Vehicle, vehicle motion state estimation device, and vehicle motion state estimation method
JP4872939B2 (en) Vehicle damping force control device
JP6454021B2 (en) Attitude estimation device and transportation equipment
TWI449643B (en) Braking component acceleration estimator of railway vehicle and method for estimating acceleration of vibration component
KR20200103787A (en) Suspension control unit
JP6245217B2 (en) Vehicle state quantity estimation device
JP5370494B2 (en) Vehicle control device
JP6355817B2 (en) Suspension control device
WO2017175840A1 (en) Orientation estimation device and transport equipment
JP6474112B2 (en) Vehicle vibration control device
JP5067620B2 (en) Suspension control device
JP2020117196A (en) Vehicle motion state estimation device
KR102533560B1 (en) Vehicle motion state estimation device, vehicle motion state estimation method, and vehicle
JP5643124B2 (en) Inter-vehicle damper device
JP6243217B2 (en) Suspension control device
WO2020195295A1 (en) Suspension control device
JP2014141257A (en) Inter-vehicle damper device
JP2020029155A (en) Travel section discrimination method and railway vehicle travel control method
JP7121690B2 (en) Vehicle motion state estimation device and vehicle motion state estimation method
JP2022125573A (en) Suspension control device
WO2022201376A1 (en) Vehicle attitude angle estimation device and optical axis control device for vehicle lamp
JP2023079384A (en) Vibration information estimation device and suspension device
JP2021054163A (en) Railroad vehicle yaw damper device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755631

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017502472

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16755631

Country of ref document: EP

Kind code of ref document: A1