WO2016136775A1 - レーザ計測システム、反射ターゲット体及びレーザ計測方法 - Google Patents
レーザ計測システム、反射ターゲット体及びレーザ計測方法 Download PDFInfo
- Publication number
- WO2016136775A1 WO2016136775A1 PCT/JP2016/055345 JP2016055345W WO2016136775A1 WO 2016136775 A1 WO2016136775 A1 WO 2016136775A1 JP 2016055345 W JP2016055345 W JP 2016055345W WO 2016136775 A1 WO2016136775 A1 WO 2016136775A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser
- ground
- target body
- calculated
- horizontal position
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C15/00—Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C15/00—Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
- G01C15/02—Means for marking measuring points
- G01C15/06—Surveyors' staffs; Movable markers
Definitions
- the present invention relates to a laser measurement system using a moving body such as an aircraft, a reflective target body used in the system, and a laser measurement method in the system.
- the three-dimensional position coordinates (horizontal coordinates (x, y)) of the footprint of laser light (irradiation point or reflection point of the laser light on the ground) irradiated with laser light from the aircraft toward the ground and reflected from the ground And aviation laser measurement for measuring the height direction coordinate (z)).
- the round trip time until the pulsed laser light irradiated toward the ground is reflected by the ground surface (including features existing on the ground surface) and returned is measured. Then, the distance from the three-dimensional position and attitude of the aircraft, the round trip time of the laser beam, and the mirror rotation angle (laser beam irradiation angle) to the ground surface or the feature is obtained, and the height of the ground surface or the feature is calculated.
- the laser beam in a laser measurement system using a moving body such as an aircraft is not controlled to hit a predetermined position.
- the laser light used for aerial laser measurement is generally invisible (for example, near-infrared wavelength) because the position of the laser light footprint is accompanied by randomness. Therefore, the position of the footprint cannot be directly specified, and is based on indirect information such as the three-dimensional position and attitude of the aircraft, the round trip time of the laser beam, and the mirror rotation angle (laser beam irradiation angle). The reason is that it must be estimated by postmortem analysis. However, with regard to the height direction, accuracy can be managed in a flat place whose height is known by separate surveying.
- the height value will remain the same as long as it is flat. This is because the accuracy of the height can be managed using the height value at the true position.
- Aviation laser measurement is positioned as a surveying technique that directly acquires elevation (terrain), but if the horizontal position is not managed, the result is converted to a numerical topographic map such as DM (Digital Mapping).
- DM Digital Mapping
- GIS Geographic Information System
- the positional alignment between different maps cannot be obtained, and the reliability of the information obtained by superimposing these maps fluctuates.
- the error in the horizontal position has a large effect on the results. Management must be done.
- Non-Patent Documents 1 to 4 As a method for managing the horizontal position, for example, the following methods (1) to (4) are listed (see Non-Patent Documents 1 to 4 below).
- This method is determined from a stepped diagram or contour map generated from a point cloud of laser light, paying attention to the contour of a structure such as a building or a gable roof ridge where the edge is clear.
- This is a method of adjusting the horizontal position using the edge so that the laser measurement results measured at two time points overlap. That is, the method is relative alignment.
- This method uses an edge such as an outline of a building or the like generated from a point group of laser light and compares it with an existing drawing to evaluate a horizontal position error.
- This method uses edges such as the outline of a building or the like, and a utility pole, determines the position coordinates by surveying or the like independent of the aviation laser measurement, and evaluates the error of the horizontal position. This method is adopted in the guidelines for evaluating the horizontal position error of an aviation laser in the United States (see Patent Document 5 below).
- This method expresses the terrain shape with contour lines and adjusts the horizontal position so that the laser measurement results measured at two time points overlap using characteristic points such as the bent part of the contour lines. It is a technique. That is, the method is relative alignment.
- the shape of the contour line depends on the arrangement and interval of the point group of the original data that generates the contour line.
- the arrangement and interval of the point group can be matched.
- many distinct feature points cannot be obtained from contour lines alone.
- the alignment can be performed from the shape of the contour line, it is only a relative alignment.
- the laser beam hits on the ground, that is, if the position of the laser beam footprint can be directly captured, the coordinates of the location are measured by another independent method such as GNSS (Global Navigation Satellite System).
- GNSS Global Navigation Satellite System
- the method of capturing the footprint of the laser beam is to lay the photodiode on the ground and determine the position and size of the laser beam footprint instantaneously emitted from the aircraft on the photodiode at the timing of laser beam irradiation.
- a method of knowing from the excited voltage fluctuation is conceivable.
- this is an expensive mechanism, and as a means for evaluating the accuracy of the horizontal position in actual measurement work, it is possible to arrange a plurality (for example, about 20) at a location (hereinafter, verification point) where the accuracy of the horizontal position is evaluated. Because it is necessary, it is not economically feasible.
- an infrared camera capable of sensing light in the wavelength region (generally the infrared region) used for laser measurement takes a video of the ground, monitors the footprint occurrence during the laser measurement time, and takes a footprint from the captured video.
- a method of determining a point and determining the position of the point is also conceivable.
- the infrared camera is expensive as in the case of the photodiode, and is not economically feasible as a means for evaluating the accuracy of the horizontal position in actual measurement work.
- Patent Document 1 is irradiated with a laser beam, and a laser measuring device that measures the position of a reflecting object by reflected light and the laser measuring device.
- a calibration system is described that includes a calibration device having a marker that reflects laser light, and a calculator that performs calculations for calibrating the laser measurement device.
- the calibration apparatus has at least three markers including a first marker, a second marker, and a third marker, and the at least three markers are arranged in a predetermined relative positional relationship. Yes.
- the laser measurement device measures the position of each of the markers, and the computer calculates the position from the position of the second marker measured by the laser measurement device and the position of the third marker measured by the laser measurement device.
- a reference position that is a position of the first marker is calculated, a measurement error of the laser measurement device is calculated based on a difference between the position of the first marker measured by the laser measurement device and the reference position, and A function of the distance to the reflecting object is generated from the calculated measurement error.
- Patent Document 1 requires at least three markers in order to calculate a measurement error, resulting in a large-scale facility and complicated processing.
- an object of the present invention is to provide a laser measurement system and a laser that can easily and accurately calculate a horizontal position measurement error in laser measurement without depending on the environment of the measurement position.
- the object is to provide a reflector for measurement and a laser measurement method.
- a laser measurement system includes a laser measurement device, a reflective target body, and a calculation device.
- the laser measurement device can irradiate the ground with laser light and measure the footprint of the laser light by the reflected light from the ground.
- the reflection target body is installed at a position where the laser light on the ground can be received, has a shape obtained by cutting a part of a sphere in a plane, and can reflect the laser light with a higher reflection intensity than the ground. is there.
- the calculation device calculates a horizontal position coordinate of the center of the sphere based on each three-dimensional position coordinate calculated from at least four reflected lights that are estimated to be irradiated from the laser measurement device and reflected by the reflection target body.
- the error can be calculated from the difference between the calculated horizontal position coordinates and the horizontal position coordinates measured by a separate survey for the vertex of the reflection target body.
- the bottom surface of the reflective target body (the surface installed on the ground plane) has a circular shape, the center of which is on the line connecting the center of the sphere and the vertex of the target body, and the center of the sphere or It coincides with the projected position of the vertex of the target body.
- the target body is set to be horizontal
- the horizontal position coordinates of the vertex of the target body, the horizontal position coordinates of the center of the circle, and the horizontal position coordinates of the center of the sphere all have the same value.
- the said calculation apparatus can calculate an error by calculating the horizontal position coordinate of the center of the said spherical body, and comparing it with the horizontal position coordinate separately measured about the vertex of the reflective target body.
- the laser measurement system can calculate the measurement error of the horizontal position in laser measurement easily and with high accuracy without depending on the environment of the measurement position by using the target body.
- the calculation device may calculate a horizontal position coordinate of the center of the sphere using a least square method based on each three-dimensional position coordinate calculated from the at least four reflected lights.
- the laser measurement system can calculate the horizontal position coordinates of the sphere whose radius is unknown based on the reflection positions of at least four reflected lights.
- the calculation device calculates a horizontal position coordinate of the center of the sphere and a radius of the sphere based on each of the three-dimensional position coordinates, and the calculated radius is preset for manufacturing the target body. It may be determined whether or not it matches the radius of the sphere.
- the laser measurement system can determine the probability of the error of the calculated horizontal position coordinate of the center of the sphere by determining whether or not the calculated radius matches the preset radius. .
- a plurality of the reflective target bodies may be installed in a predetermined area.
- the calculation device may calculate a plurality of the errors related to the plurality of reflection target bodies, and calculate an average error of the calculated plurality of errors.
- the laser measurement system calculates an average error using a plurality of target bodies installed in a predetermined area (for example, within a few km from a certain point), so that the laser measurement result in the predetermined area is entirely It is possible to grasp how much the value deviates from the true value.
- the calculation device may correct the measurement result by the laser measurement device based on the calculated average error.
- the laser measurement system can correct each measurement value in a predetermined area so as to approach the true value as a whole by using the average error.
- the cut plane of the target body may have a radius that is larger than the average interval of the footprints of the laser light irradiated to the ground from the laser measuring device.
- the laser measurement system can increase the probability of securing at least four laser beam footprints in the target body.
- the cut plane of the target body may have a radius larger than ⁇ 5 / 2 times the average interval of the laser light footprint.
- the reflective target body is configured to irradiate a laser beam irradiated from a laser measuring device capable of measuring the position of the footprint of the laser beam by irradiating the laser beam to the ground and reflecting the light from the ground.
- a reflecting surface capable of reflecting with higher reflection intensity than the ground, and an installation surface installed on the ground.
- the reflective target body has a shape obtained by cutting out a part of a sphere with a plane, and the cut-out plane has a radius larger than the average interval of the footprints of the laser light irradiated to the ground from the laser measuring device.
- the cut plane may have a radius greater than ⁇ 5 / 2 times the average spacing of the laser beam footprints. .
- a laser measurement method includes: Irradiating a laser from a laser measuring device capable of irradiating the ground with laser light and measuring the position of the footprint of the laser light by the reflected light from the ground, It is installed at a position where it can receive the laser beam on the ground, has a shape obtained by cutting out a part of a sphere in a plane, and the laser beam is reflected by a reflective target body that can reflect with higher reflection intensity than the ground
- Calculating three-dimensional position coordinates from at least four reflected lights estimated as follows: Calculating a horizontal position coordinate of the center of the sphere based on each calculated three-dimensional position coordinate; and Calculating an error from a difference between the calculated horizontal position coordinates and the horizontal position coordinates measured by a separate survey for the vertex of the target body.
- the horizontal position measurement error in laser surveying can be calculated easily and with high accuracy.
- this effect does not limit the present invention.
- FIG. 1 is a diagram showing an outline of a laser measurement system according to an embodiment of the present invention.
- the present system includes an aircraft 10, a reflective target body 1, and a data analysis device 100.
- the aircraft 10 flies along a previously planned flight course and collects various data.
- the aircraft 10 is equipped with related devices (not shown) such as a laser distance measuring device 11, a GNSS receiver 12, and an IMU (Inertial Measurement Unit) 13.
- related devices such as a laser distance measuring device 11, a GNSS receiver 12, and an IMU (Inertial Measurement Unit) 13.
- the laser distance measuring device 11, the GNSS receiver 12, and the IMU 13 may be collectively referred to as a laser measuring device.
- the laser distance measuring device 11 irradiates the laser beam toward the ground so as to scan in a direction transverse to the traveling direction of the aircraft 10 shown in the figure, and reflects the laser beam from the ground. Light is received and the distance to the ground is measured by the round trip time of the reflected light to the ground.
- GNSS receiver 12 measures the three-dimensional position of aircraft 10. The position of the aircraft 10 is calculated from this measurement data and data observed by a ground GNSS reference station (not shown).
- the IMU 13 measures the attitude angle ( ⁇ , ⁇ , ⁇ ) of the aircraft 10. Based on this measurement value, the direction of the laser light emitted from the laser distance measuring device 11 is corrected (calibrated), and the detailed position coordinates of the aircraft 10 are calculated.
- the data analysis device 100 is based on distance measurement data, GNSS data, and IMU data (hereinafter collectively referred to as laser measurement data) measured by the laser measurement device on the aircraft 10.
- a horizontal coordinate value (x, y) and an elevation value (z) are calculated, and point cloud data is generated.
- the data analysis apparatus 100 performs various inspection processes and noise removal processes on the point cloud data to generate three-dimensional measurement data. Furthermore, mesh data such as DSM (Digital Surface Model) or DEM (Digital Elevation Model) is generated by processing the three-dimensional measurement data such as mesh processing.
- DSM Digital Surface Model
- DEM Digital Elevation Model
- a plurality of reflection target bodies 1 are installed in a predetermined area on the ground below the flight course of the aircraft 10 in order to reflect the laser light.
- the data analysis apparatus 100 calculates an error of the horizontal position coordinate (x, y) in the laser measurement process based on the three-dimensional position coordinate data of the laser light reflected on the reflection target body 1. Details of the reflection target body 1 will be described later.
- FIG. 2 is a diagram illustrating a hardware configuration of the data analysis apparatus 100.
- the data analysis apparatus 100 may be configured as dedicated hardware for executing various arithmetic processes in the present system.
- the data analysis apparatus 100 is configured by a general-purpose computer and a program executed on the computer.
- a data analysis apparatus 100 includes a CPU (Central Processing Unit) 110, a ROM (Read Only Memory) 120, a RAM (Random Access Memory) 130, an input / output interface 150, and a bus that connects these components to each other. 140.
- CPU Central Processing Unit
- ROM Read Only Memory
- RAM Random Access Memory
- the CPU 110 appropriately accesses the RAM 13 or the like as necessary, and comprehensively controls each block of the data analysis apparatus 100 while performing various arithmetic processes.
- the ROM 120 is a non-volatile memory in which an OS to be executed by the CPU 110, firmware such as programs and various parameters are fixedly stored.
- the RAM 130 is used as a work area for the CPU 110 and temporarily holds the OS, various applications being executed, and various data being processed.
- the input / output interface 150 is connected to a display unit 160, an operation receiving unit 170, a storage unit 180, a communication unit 190, and the like.
- the display unit 160 is a display device using, for example, an LCD (Liquid Crystal Display), an OELD (Organic ElectroLuminescence Display), a CRT (Cathode Ray Tube), or the like.
- LCD Liquid Crystal Display
- OELD Organic ElectroLuminescence Display
- CRT Cathode Ray Tube
- the operation reception unit 170 is, for example, a pointing device such as a mouse, a keyboard, a touch panel, and other input devices.
- the operation reception unit 17 is a touch panel, the touch panel can be integrated with the display unit 160.
- the storage unit 180 is, for example, a non-volatile memory such as an HDD (Hard Disk Drive), a flash memory (SSD; SolID State Drive), or other solid-state memory.
- the storage unit 18 stores the OS, various applications, and various data.
- the storage unit 180 stores laser measurement data (ranging data, GNSS data, and IMU data) collected using the aircraft 10, and three-dimensional measurement data generated from the data.
- error data of the horizontal position coordinates calculated using the reflective target body 1 is also stored.
- the laser measurement data may be taken into the storage unit 180 of the data analysis device 100 from a storage device installed in the aircraft 10 via a portable storage medium, or transmitted from the aircraft 10 to the data analysis device 100. It may be received via the communication unit 190 and stored in the storage unit 180.
- the communication unit 190 is a NIC (Network Interface Card) for Ethernet (registered trademark), for example, and is responsible for communication processing with devices in the aircraft 100 and other devices.
- NIC Network Interface Card
- Ethernet registered trademark
- FIG. 3 is a diagram showing the appearance of the reflective target body 1
- FIG. 4 is a diagram for explaining the shape of the reflective target body 1.
- FIG. 5 is a diagram for explaining the radius of the installation surface of the reflective target body 1.
- the reflection target body 1 has a shape obtained by cutting out a part of a virtual sphere S (see FIG. 4) having a center point C in a plane, and the laser light emitted from the laser distance measuring device 11 And a circular installation surface 1b (cutout surface) installed on the ground.
- the average interval and footprint size of footprints in aviation laser measurement, and the aviation laser irradiation angle are taken into consideration.
- the radius r1 of the installation surface 1b of the reflection target body 1 is 800 mm
- the height h is 400 mm
- the radius of curvature of the reflection surface 1a (the radius r2 of the virtual sphere S) is 1000 mm. That is, the radius r1 of the installation surface 1b is set larger than the average interval (eg, 700 mm) of the laser footprint.
- the radius r1 is set to be larger than the average interval s of the footprints, thereby increasing the possibility of obtaining at least four footprints. Further, by setting the radius r1 to be larger than ⁇ 5 / 2 times ( ⁇ 5 / 2s) of the average interval s of the footprints, the possibility of obtaining at least four footprints can be further increased.
- the reflection surface 1a of the reflection target body 1 can reflect the laser light emitted from the laser distance measuring device 11 with a higher reflection intensity than the ground.
- the reflective target body 1 is manufactured with a polystyrene foam. Since the expanded polystyrene is white, it has a high reflection intensity.
- a material (reflector) other than styrofoam may be used for the reflective surface 1a, or a substance having a high reflection strength may be applied to a spherical surface.
- the reflection intensity of the reflecting surface 1a is preferably a value that does not affect such influence.
- the above ground includes not only the surface of the earth but also features such as the top of the building in this embodiment.
- FIG. 1 shows an example in which the reflective target body 1 is installed on the ground surface
- FIG. 3 shows an example in which the reflective target body 1 is installed on the roof of a building.
- the reflecting surface 1a of the reflecting target body 1 By forming the reflecting surface 1a of the reflecting target body 1 as a spherical surface, if there are at least four footprint measurement values on the reflecting surface 1a in the aviation laser measurement, the center coordinates of the sphere and the radius of the sphere are determined. According to the formula, the coordinates of the center C of the sphere S can be calculated using the least square method.
- the difference between the horizontal position coordinate of the center C of the sphere S calculated from the value acquired by the aviation laser measurement and the horizontal position coordinate of the actually measured value of the position where the reflective target body 1 is installed is represented by the aviation laser. It can be verified as an error of horizontal position coordinates in measurement.
- the present inventors In producing the reflective target body 1 having the above-mentioned shape, the present inventors also examined a target body having a ring (donut) -shaped reflective surface in addition to the above-described spherical cut-out shape.
- a target body having a ring (donut) -shaped reflective surface in addition to the above-described spherical cut-out shape.
- the success rate for satisfying such a condition is lowered, and a large-sized ring is required to increase the area of the reflecting surface.
- the shape as in the above-described embodiment has been adopted.
- FIG. 6 is a flowchart showing the operation flow of the laser measurement system.
- an operator installs a plurality of reflecting target bodies 1 horizontally on the ground in a predetermined area under the flight route of the aircraft 10 (step 51).
- the true horizontal position coordinates (Xt, Yt) (the coordinates of the vertex of the target body 1) where the respective reflective target bodies 1 are installed are determined by surveying at the site (step 52).
- laser measurement is performed on the flight route by the aircraft 10 (step 53).
- laser measurement data such as laser beam round-trip time data, GNSS data, and IMU data is acquired.
- the CPU 110 of the data analysis apparatus 100 extracts a candidate whose reflection intensity is a predetermined threshold value or more from among the footprint candidates (reflection candidate points) detected in the vicinity of the reflection target body 1 (step 54).
- FIG. 7 is a diagram showing a detection result of the footprint candidate. The figure is based on a photograph taken from the aircraft 10 in the vicinity of the reflective target body 1.
- a region surrounded by a solid line indicates the reflective target body 1
- a region surrounded by a broken line indicates an extraction range of an aerial laser footprint
- a black dot indicates an aerial laser footprint.
- the footprint extraction range is a range of a circle having a radius obtained by adding a peripheral margin to the radius of the target body 1. For example, if the ground altitude of the aircraft 10 is 1000 m, the range is a radius of 91 cm. If the altitude is 2000m, the radius is 102cm.
- a plurality of aviation laser footprints exist on the surface of the reflective target body 1.
- FIG. 8 shows the extraction results of the above-mentioned footprint candidates together with the reflection intensity for each of the plurality of reflection target bodies 1.
- the reflection intensity is expressed as, for example, luminance data of 256 gradations.
- footprint candidates whose reflection intensity is a predetermined threshold value (for example, 100) or more. Extracted. For any reflection target body 1, at least four footprint candidates necessary for calculating the center coordinates of the sphere could be extracted.
- the CPU 110 then obtains the center coordinates (X, Y, Z) of the approximate sphere based on the extracted three-dimensional coordinates (X, Y, Z) of the footprint, and the reflection target body 1 from the coordinates.
- the horizontal position coordinate (Xm, Ym) of the center of is calculated (step 55).
- FIG. 9 is a diagram for explaining the calculation processing of the XY coordinates of the center of the reflection target body 1 and the calculation processing of the error between the coordinates and the true position coordinates of the reflection target body 1.
- the spherical surface surrounded by the diagonal line in the upper right direction indicates the reflective target body 1.
- the white point has shown the footprint candidate estimated that it reflected on the said reflective target body 1.
- the CPU 110 fits the three-dimensional coordinates (X, Y, Z) of the four footprint candidates to the spherical surface by the least square method, thereby obtaining the coordinates of the center of the sphere from which the reflection target body 1 is cut out and Calculate the radius of the sphere.
- the calculation method will be described below.
- the coordinate measurement value on the spherical surface is (Xi, Yi, Zi).
- Vi ⁇ (Xi-a) 2 + (Yi-b) 2 + (Zi-c) 2 ⁇ -r 2
- the center coordinates (a, b, c) and radius r of the sphere cannot be obtained by the calculation formulas shown in [0087], [0088] and FIG. . Therefore, when a footprint of 3 points is obtained, the footprint of 3 points is obtained by setting r in the equation shown in [0084] as a radius value of a sphere set in advance for manufacturing the target body 1.
- the three-dimensional coordinates of each print are substituted into X, Y, and Z in the above equation [0084] to solve the ternary quadratic simultaneous equations to obtain the center coordinates (a, b, c) of the sphere. Since this is a quadratic equation, the solution is not uniquely determined, but the center coordinates of the sphere obtained as the height lower than the ground surface can be selected as the center coordinates of the sphere corresponding to the target body 1.
- the CPU 110 obtains the XY coordinates (Xm, Ym) of the center of the reflection target body 1 on the aviation laser measurement from the center coordinates of the sphere thus obtained.
- the central coordinates are represented by hatched points in FIG. 9, and the sphere is represented as a spherical surface surrounded by diagonal lines in the upper left direction. As shown in the figure, it can be seen that the true position of the reflective target body 1 is shifted from the position of the sphere calculated from the laser measurement data.
- the CPU 110 determines the horizontal position of the center of the reflection target body 1 calculated from the true horizontal position coordinates (Xt, Yt) of the center of the reflection target body 1 determined in the above step 52 and the aviation laser measurement value.
- An error from the coordinates (Xm, Ym) is calculated (step 56).
- the true horizontal position coordinate (Xt, Yt) is represented by a black point, and the difference from the hatched point is represented as an error e.
- the CPU 110 executes this error calculation process for each of the plurality of reflection target bodies 1, and calculates an average error from these errors (step 57).
- FIG. 11 is a diagram showing an evaluation result of an error between the true position of the center of the reflective target body 1 and the position on the aviation laser measurement.
- the standard deviation of ⁇ XY was 73mm.
- the standard accuracy of the public surveying work rules established by the Geospatial Information Authority of Japan is the standard deviation of the horizontal position within 700 mm for the map information level 1000. It can be said that this evaluated result sufficiently satisfies the required accuracy.
- the data analysis apparatus 100 may correct the XY coordinates in the aviation laser measurement data using this average error. Thereby, each measurement value in the measurement area can be brought close to a true value as a whole.
- the average value may be recalculated excluding that value, if necessary.
- the laser measurement system uses the reflection target body 1 so that the measurement error of the horizontal position in laser measurement does not depend on the environment of the measurement position (for example, construction). Even in places where there are almost no objects), the calculation can be performed easily and with high accuracy.
- the present embodiment is characterized in that the reflection target body 1 has a shape obtained by cutting a part of a sphere with a plane as shown in FIG.
- the size of the target body becomes large both in the height direction and in the horizontal direction.
- the reliability of the evaluation regarding the height is evaluated for the position evaluation method using the target body 1 in the present embodiment.
- the shape of the target body 1 is not a hemisphere, and a part of the sphere is cut out by a plane, so that the height difference is small but the range is sufficient at the base (the radius r1 of the installation surface 1b is a footprint).
- the shape of the reflective target body 1 may be devised so that it can be easily carried and installed on the site.
- the reflective target body 1 may be manufactured in a bellows shape and can be folded from the unfolded state in FIG. 12 (A) to the state in FIG. 12 (B).
- the data analysis apparatus 100 calculates the center coordinates and radius of the virtual sphere S based on the measured values of the footprints of the four lasers.
- the data analysis apparatus 100 matches how much the calculated radius matches the set value. The degree of coincidence may be determined. Thereby, the data analysis apparatus 100 can determine the accuracy of the error of the calculated horizontal position coordinate.
- the present invention may be applied to a laser measurement system using an artificial satellite.
- the reflective target body 1 of the present invention can also be applied to an MMS (Mobile Mapping System) using a vehicle (such as an automobile) traveling on the ground.
- the reflective target body 1 may be installed on the river bed.
- the same reflective target body may be used in both the aviation laser measurement system and the MMS. That is, in the predetermined area where the reflective target body 1 is installed, the laser measurement process by the aircraft is executed, and at the same time, the laser measurement process by the vehicle is executed on the ground. In each process, the error in the horizontal position coordinates is the same. It may be calculated using the reflective target body 1.
- the reflective target body 1 is installed horizontally has been described as an example, but it may be installed obliquely. Since the horizontal position coordinate of the vertex of the reflection target body 1 and the horizontal position coordinate of the center of the sphere constituting the reflection target body 1 always coincide with each other, the horizontal position coordinate of the center of the sphere is calculated and is used as the vertex of the reflection target body 1. By comparing with the separately measured horizontal position coordinates, the horizontal position measurement error in laser measurement can be calculated even when the target body 1 is installed obliquely.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
本レーザ計測システムは、レーザ計測装置と、反射ターゲット体と、算出装置とを有する。上記レーザ計測装置は、地上にレーザ光を照射し、上記地上からの反射光によって上記レーザ光のフットプリントの位置を計測可能である。上記反射ターゲット体は、上記地上の上記レーザ光を受光可能な位置に設置され、球体の一部を平面で切り出した形状を有し、上記レーザ光を上記地上よりも高い反射率で反射可能である。上記算出装置は、上記レーザ計測装置から照射され上記反射ターゲット体に反射したと推定される少なくとも4つの反射光から算出される各三次元位置座標を基に、上記球体の中心の水平位置座標を算出し、当該算出された水平位置座標と上記反射ターゲット体の頂点について別途の測量で計測した水平位置座標との差から誤差を算出可能である。
Description
本発明は、例えば航空機等の移動体を用いたレーザ計測システム、当該システムに用いられる反射ターゲット体及び当該システムにおけるレーザ計測方法に関する。
従来、航空機から地上に向けレーザ光を照射し、地上から反射してきたレーザ光のフットプリント(レーザ光の地上における照射点あるいは反射点)の三次元位置座標(水平方向の座標(x,y)及び高さ方向の座標(z))を計測する航空レーザ計測が行われている。航空レーザ計測では、地上に向けて照射されたパルス状のレーザ光が地表面(地表に存在する地物を含む)で反射して戻ってくるまでの往復時間を計測する。そして、航空機の3次元の位置と姿勢、レーザ光の往復時間、ミラーの回転角(レーザ光の照射角度)から地表又は地物までの距離を求め、地表又は地物の高さを計算する。
この航空レーザ計測においては、高さ方向の座標の精度については厳格な管理がなされているが、水平方向の座標の精度については高さ方向と同様の管理がなされていないのが実情である。
これは、航空機等の移動体を用いたレーザ計測システムにおけるレーザ光は、予め決まった位置に命中するように制御されるものではなく、航空機等が移動中に動揺を受ける中で、地上に機械的かつ断続的に照射されるものであるため、レーザ光のフットプリントの位置には偶然性が伴うこと、また航空レーザ計測に用いられるレーザ光は一般に非可視(例えば、近赤外波長)であるため、フットプリントの位置を直接特定することはできず、航空機の3次元の位置と姿勢、レーザ光の往復時間、ミラーの回転角(レーザ光の照射角度)といった間接的な情報を基にした事後解析によって推定せざるを得ないといった理由等による。ただし、高さ方向については、別途の測量によって高さが分かっている平坦な場所において精度の管理ができる。なぜならば、推定されたフットプリントの水平位置が真の位置(実際にレーザ光が照射された位置)から外れていたとしても、平坦な場所であれば高さの値は変わらず同じとみなすことができるため、その真の位置における高さの値を使って高さに関する精度の管理ができるからである。
その結果、日本国の国土地理院が定めた公共測量作業規程準則(平成20年3月31日全部改正、平成25年3月29日一部改正)では、標高についての規程があるだけで、水平位置についての規程は定められていない。
航空レーザ計測は、直接的に標高(地形)を取得する測量技術と位置づけられているが、水平位置についての管理がなされていないと、その結果を、DM(Digital Mapping)などの数値地形図と重ねてGIS(Geographic Information System)上の電子地図として利用する上で、異なる地図間での位置的な整合がとれないため、それらの地図を重ね合わせて得られる情報の信頼性が揺らいでしまう。また、急な斜面などでの地形変動を異なる時点(例えば土砂崩れ発生の前後時点)の計測結果の差分から求めるには、水平位置の誤差は結果に大きな影響を与えるため、水平位置についても適切な管理がなされなければならない。
上記水平位置を管理する手法としては、例えば以下の(1)~(4)に示すような手法が挙げられる(下記非特許文献1~4参照)。
(1)この手法は、建物などの構造物における輪郭や切妻屋根の棟などでエッジがはっきりしている場所に注目し、あるいはレーザ光の点群から発生させた段彩図や等高線図から決定されるエッジを用いて、二時点に計測したレーザ計測結果が重なるよう水平位置を調整する手法である。すなわち、当該手法は相対的な位置合わせである。
(2)この手法は、レーザ光の点群から発生させた建物などの輪郭等のエッジを使い、既存図面と比較し、水平位置の誤差を評価する手法である。
(3)この手法は、建物などの輪郭等のエッジや電柱を用い、その位置座標を航空レーザ計測とは別の独立した測量等で決定し、水平位置の誤差を評価する手法である。この手法は、米国における航空レーザの水平位置の誤差評価のガイドライン(下記特許文献5参照)に採用されている。
(4)この手法は、等高線などで地形形状を表現し、等高線の屈曲している箇所などの特徴的な箇所を用いて、二時点に計測したレーザ計測結果が重なるように水平位置を調整する手法である。すなわち、当該手法は相対的な位置合わせである。
しかしながら、建物の無い、自然地形のみの場所において、エッジのはっきりした地物が存在しない場合には、上記(1)~(3)の手法は適用外となる。
また、(4)に関しては、等高線の形状は、等高線を発生させる元データの点群の配置、間隔に依存する一方、二時点のレーザ計測において、点群の配置、間隔を一致させることはできず、等高線だけから明瞭な特徴点がどこでも多く得られるわけでもない。また、等高線の形状から位置合わせができたとしても相対的な位置合わせに過ぎない。
ところで、地上のどこにレーザ光が当たっているのか、つまり、レーザ光のフットプリントの位置を直接捉えることができれば、その場所の座標をGNSS(Global Navigation Satellite System)等の別の独立した手法で計測し、検証点とすることで、レーザ計測の水平位置精度を検証することができる。
レーザ光のフットプリントを捉える方法としては、フォトダイオードを地面に敷き詰めて、航空機から瞬間的に照射されたレーザ光のフットプリントの位置と大きさを、レーザ光の照射のタイミングにおいてフォトダイオード上で励起される電圧変動から知る方法が考えられる。しかしこれは、高価な仕組みとなり、実際の計測作業における水平位置の精度を評価する手段としては、水平位置の精度を評価する箇所(以下、検証点)に複数(例えば20程度)配置することが必要であるため、経済的に実現性に乏しい。
また、レーザ計測に用いる波長領域(一般に赤外線領域)の光を感知できる赤外線カメラで、地上を動画撮影し、レーザ計測の時間帯においてフットプリントの発生状況をモニター撮影し、撮影した動画からフットプリント地点を判定し、その地点の位置を決定する方法も考えられる。しかし、赤外線カメラは、フォトダイオードの場合と同様に高価であり、実際の計測作業における水平位置の精度を評価する手段としては経済的に実現性に乏しい。
さらに、フォトダイオードや赤外線カメラではなく、エッジや輪郭の抽出が可能な人工物を地表に置き、その人工物に当ったレーザ光のフットプリントを判別し、そのXYZ計測値から従前の方法と同様にして水平位置を評価する方法があり得る。しかし、これには、レーザ光のフットプリントの間隔によっては相当な大きさのピラミッド状の人工物を用意することが必要であり(例えばフットプリント間隔が50cm程度の場合に、一つの面を特定するには最低3点のフットプリントを得ることが必要となる。ピラミッド形状の人工物はそのような面を3~4つで構成する必要があり、空間的を占める面積・高さとも大きくなる。)、検証点となる箇所に複数配置することを前提とすると実現性に乏しい。
このような既存技術の問題点に関連して、下記特許文献1には、レーザ光を照射し、反射光によって、反射物体の位置を計測するレーザ計測装置と、上記レーザ計測装置から照射されたレーザ光を反射するマーカを有する校正装置と、上記レーザ計測装置を校正するための計算をする計算機と、を備える校正システムが記載されている。上記校正装置は、第1のマーカ、第2のマーカ及び第3のマーカを含む、少なくとも三つの上記マーカを有し、上記少なくとも三つのマーカは予め定められた相対的な位置関係で配置されている。上記レーザ計測装置は、各上記マーカの位置を計測し、上記計算機は、上記レーザ計測装置によって計測された第2のマーカの位置及び上記レーザ計測装置によって計測された第3のマーカの位置から上記第1のマーカの位置である参照位置を計算し、上記レーザ計測装置によって計測された第1のマーカの位置と、上記参照位置との差によって、上記レーザ計測装置の計測誤差を計算し、上記計算された計測誤差から、上記反射物体までの距離の関数を生成する。
財団法人日本測量調査技術協会、「図解レーザ計測」、第5章:データ解析処理、<URL:http://www.sokugikyo.or.jp/publication/book/11.html>
国土地理院、「GIS次世代情報基盤の構築方法及び活用に関する調査研究」、<URL: http://www.gsi.go.jp/GIS/what-gis_gisedai6.html#5>
国土地理院、「航空レーザ測量の利用技術に関する研究」、<URL:http://www.gsi.go.jp/common/000022304.pdf>
朝日航洋、「航空レーザ測量の品質評価」、写真測量とリモートセンシング Vol.41, No.1, 2002、<URL:https://www.jstage.jst.go.jp/article/jsprs1975/41/1/41_1_21/_pdf>
ASPRS LIDAR GUIDELINES: Horizontal Accuracy Reporting, <URL:http://www.asprs.org/a/society/committees/standards/Horizontal_Accuracy_Reporting_for_Lidar_Data.pdf>
しかしながら、上記特許文献1に記載の技術では、計測誤差を算出するために少なくとも3つのマーカが必要であり、設備が大規模化し処理も煩雑になる。
以上のような事情に鑑み、本発明の目的は、レーザ計測における水平位置の計測誤差を、計測位置の環境に依存することなく、簡便かつ高精度に算出することが可能なレーザ計測システム、レーザ計測用反射体及びレーザ計測方法を提供することにある。
上記目的を達成するため、本発明の一形態に係るレーザ計測システムは、レーザ計測装置と、反射ターゲット体と、算出装置とを有する。上記レーザ計測装置は、地上にレーザ光を照射し、上記地上からの反射光によって上記レーザ光のフットプリントの位置を計測可能である。上記反射ターゲット体は、上記地上の上記レーザ光を受光可能な位置に設置され、球体の一部を平面で切り出した形状を有し、上記レーザ光を上記地上よりも高い反射強度で反射可能である。上記算出装置は、上記レーザ計測装置から照射され上記反射ターゲット体に反射したと推定される少なくとも4つの反射光から算出される各三次元位置座標を基に、上記球体の中心の水平位置座標を算出し、当該算出された水平位置座標と上記反射ターゲット体の頂点について別途の測量で計測した水平位置座標との差から誤差を算出可能である。
上記反射ターゲット体の底面(地上の平面に設置する面)は円の形状となり、その中心は、上記球体の中心と上記ターゲット体の頂点とを結ぶ線上において、上記底面に、上記球体の中心または上記ターゲット体の頂点を投影した位置と一致する。上記ターゲット体を水平に設定した場合、上記ターゲット体の頂点の水平位置座標と、上記円の中心の水平位置座標と、上記球体の中心の水平位置座標とは、いずれも同じ値となる。このことから、上記算出装置は、上記球体の中心の水平位置座標を算出し、それを反射ターゲット体の頂点について別途計測した水平位置座標と比較することで誤差を算出できる。この構成により、上記レーザ計測システムは、上記ターゲット体を用いることで、レーザ計測における水平位置の計測誤差を、計測位置の環境に依存することなく、簡便かつ高精度に算出することができる。
上記算出装置は、上記少なくとも4つの反射光から算出される各三次元位置座標を基に、最小二乗法を用いて上記球体の中心の水平位置座標を算出してもよい。
これによりレーザ計測システムは、少なくとも4つの反射光の各反射位置を基に、ターゲット体の元になった、半径が未知の球体の水平位置座標を算出することができる。
上記算出装置は、上記各三次元位置座標を基に、上記球体の中心の水平位置座標と上記球体の半径とを算出し、上記算出された半径が、上記ターゲット体の製造用に予め設定された球体の半径と一致するか否かを判断してもよい。
これによりレーザ計測システムは、算出した球体の中心の水平位置座標の誤差の確からしさを、上記算出された半径が予め設定された半径と一致するか否かを判断することで判断することができる。
上記反射ターゲット体は、所定のエリアに複数設置されてもよい。この場合上記算出装置は、上記複数の反射ターゲット体に関する複数の上記誤差をそれぞれ算出し、当該算出された複数の誤差の平均誤差を算出してもよい。
これによりレーザ計測システムは、所定のエリア(例えばある地点から数km圏内)に設置された複数のターゲット体を用いて平均誤差を算出することで、当該所定のエリアにおけるレーザ計測結果が全体的にどの程度真の値からずれていたかを把握することができる。
上記算出装置は、上記算出された平均誤差によって上記レーザ計測装置による計測結果を補正してもよい。
これによりレーザ計測システムは、平均誤差を用いることで、所定のエリアにおける各計測値を全体的に真の値に近づくように補正することができる。
上記ターゲット体の上記切り出された平面は、上記レーザ計測装置から地上に照射されるレーザ光のフットプリントの平均間隔よりも大きい半径を有してもよい。
これによりレーザ計測システムは、ターゲット体におけるレーザ光のフットプリントを少なくとも4つ確保する確率を高めることができる。さらにその確率を高めるために、上記ターゲット体の上記切り出された平面は、レーザ光のフットプリントの平均間隔の√5/2倍よりも大きい半径を有してもよい。
本発明の他の形態に係る反射ターゲット体は、地上にレーザ光を照射し上記地上からの反射光によって上記レーザ光のフットプリントの位置を計測可能なレーザ計測装置から照射されたレーザ光を、上記地上よりも高い反射強度で反射可能な反射面と、上記地上に設置される設置面とを有する。当該反射ターゲット体は、球体の一部を平面で切り出した形状を有し、上記切り出された平面は、上記レーザ計測装置から地上に照射されるレーザ光のフットプリントの平均間隔よりも大きい半径を有する。4つ以上のレーザ光のフットプリントをより高い確率で確保するため、上記切り出された平面は、上記レーザ光のフットプリントの平均間隔の√5/2倍よりも大きい半径を有してもよい。
本発明のまた別の形態に係るレーザ計測方法は、
地上にレーザ光を照射し上記地上からの反射光によってレーザ光のフットプリントの位置を計測可能なレーザ計測装置からレーザを照射すること、
上記地上の上記レーザ光を受光可能な位置に設置され、球体の一部を平面で切り出した形状を有し、上記レーザ光を上記地上よりも高い反射強度で反射可能な反射ターゲット体に反射したと推定される少なくとも4つの反射光からそれぞれ三次元位置座標を算出すること、
上記算出された各三次元位置座標を基に上記球体の中心の水平位置座標を算出すること、及び、
上記算出された水平位置座標と上記ターゲット体の頂点について別途の測量で計測した水平位置座標との差から誤差を算出することを含む。
地上にレーザ光を照射し上記地上からの反射光によってレーザ光のフットプリントの位置を計測可能なレーザ計測装置からレーザを照射すること、
上記地上の上記レーザ光を受光可能な位置に設置され、球体の一部を平面で切り出した形状を有し、上記レーザ光を上記地上よりも高い反射強度で反射可能な反射ターゲット体に反射したと推定される少なくとも4つの反射光からそれぞれ三次元位置座標を算出すること、
上記算出された各三次元位置座標を基に上記球体の中心の水平位置座標を算出すること、及び、
上記算出された水平位置座標と上記ターゲット体の頂点について別途の測量で計測した水平位置座標との差から誤差を算出することを含む。
以上説明したように、本発明によれば、レーザ測量における水平位置の計測誤差を簡便かつ高精度に算出することができる。しかし、この効果は本発明を限定するものではない。
以下、図面を参照しながら、本発明の実施形態を説明する。
[レーザ計測システムの構成]
図1は、本発明の一実施形態に係るレーザ計測システムの概要を示した図である。
図1は、本発明の一実施形態に係るレーザ計測システムの概要を示した図である。
同図に示すように、本システムは、航空機10と、反射ターゲット体1と、データ解析装置100とを有する。
航空機10は、予め計画された飛行コースに沿って飛行し、各種データを収集する。航空機10には、レーザ測距装置11、GNSS受信機12及びIMU(慣性計測装置:Inertial Measurement Unit)13等の関連機器(図示せず)が搭載される。本実施形態では、これらレーザ測距装置11、GNSS受信機12及びIMU13をまとめてレーザ計測装置と称する場合もある。
レーザ測距装置11は、航空機10の飛行中、同図に示す航空機10の進行方向に対して横方向にスキャンするように地上に向けてレーザ光を照射し、そのレーザ光の地上からの反射光を受光し、反射光の地上までの往復時間により地上までの距離を計測する。
GNSS受信機12は、航空機10の三次元位置を計測する。この計測データと、地上のGNSS基準局(図示せず)で観測されたデータとにより航空機10の位置が算出される。
IMU13は、航空機10の姿勢角(ω、φ、κ)を計測する。この計測値により、レーザ測距装置11から照射されたレーザ光の方向が補正(キャリブレーション)され、上記航空機10の詳細な位置座標が算出される。
データ解析装置100は、航空機10上のレーザ計測装置によって計測された測距データ、GNSSデータ、及びIMUデータ(以下、これらをまとめてレーザ計測データとも言う)を基に、レーザ光1点ごとの水平座標値(x,y)及び標高値(z)を算出し、点群データを生成する。
さらにデータ解析装置100は、上記点群データに対して各種点検処理やノイズ除去処理等を施し、三次元計測データを生成する。さらに当該三次元計測データがメッシュ処理等の加工を施されることで、DSM(Digital Surface Model:数値表層モデル)やDEM(Digital Elevation Model:数値標高モデル)といったメッシュデータが生成される。
反射ターゲット体1は、上記レーザ光を反射するために、上記航空機10の飛行コース下の地上の所定エリアに複数設置される。上記データ解析装置100は、反射ターゲット体1に反射したレーザ光の三次元位置座標データを基に、上記レーザ計測処理における水平位置座標(x,y)の誤差を算出する。反射ターゲット体1の詳細については後述する。
[データ解析装置の構成]
図2は、上記データ解析装置100のハードウェア構成を示した図である。データ解析装置100は、本システムにおける各種演算処理を実行する専用のハードウェアとして構成されてもよいが、本実施形態では、汎用のコンピュータ及び当該コンピュータ上で実行されるプログラムによって構成されている。
図2は、上記データ解析装置100のハードウェア構成を示した図である。データ解析装置100は、本システムにおける各種演算処理を実行する専用のハードウェアとして構成されてもよいが、本実施形態では、汎用のコンピュータ及び当該コンピュータ上で実行されるプログラムによって構成されている。
同図に示すように、データ解析装置100は、CPU(Central Processing Unit)110、ROM(Read Only Memory)120、RAM(Random Access Memory)130、入出力インタフェース150、及び、これらを互いに接続するバス140を備える。
CPU110は、必要に応じてRAM13等に適宜アクセスし、各種演算処理を行いながらデータ解析装置100の各ブロック全体を統括的に制御する。ROM120は、CPU110に実行させるOS、プログラムや各種パラメータなどのファームウェアが固定的に記憶されている不揮発性のメモリである。RAM130は、CPU110の作業用領域等として用いられ、OS、実行中の各種アプリケーション、処理中の各種データを一時的に保持する。
入出力インタフェース150には、表示部160、操作受付部170、記憶部180、通信部190等が接続される。
表示部160は、例えばLCD(Liquid Crystal Display)、OELD(Organic ElectroLuminescence Display)、CRT(Cathode Ray Tube)等を用いた表示デバイスである。
操作受付部170は、例えばマウス等のポインティングデバイス、キーボード、タッチパネル、その他の入力装置である。操作受付部17がタッチパネルである場合、そのタッチパネルは表示部160と一体となり得る。
記憶部180は、例えばHDD(Hard Disk Drive)や、フラッシュメモリ(SSD;SolID State Drive)、その他の固体メモリ等の不揮発性メモリである。当該記憶部18には、上記OSや各種アプリケーション、各種データが記憶される。
特に本実施形態において、記憶部180には、上記航空機10を用いて収集されたレーザ計測データ(測距データ、GNSSデータ及びIMUデータ)が記憶され、それらのデータから生成された三次元計測データや、上記反射ターゲット体1を用いて算出された水平位置座標の誤差データ等も記憶される。上記レーザ計測データは、航空機10に設置された記憶装置から可搬性の記憶媒体を介してデータ解析装置100の記憶部180に取り込まれてもよいし、航空機10からデータ解析装置100へ送信され、通信部190を介して受信されて記憶部180に記憶されても構わない。
通信部190は、例えばEthernet(登録商標)用のNIC(Network Interface Card)であり、航空機100内の装置やその他の装置との通信処理を担う。
[反射ターゲット体の構成]
次に、上記反射ターゲット体1について説明する。図3は当該反射ターゲット体1の外観を示した図であり、図4は当該反射ターゲット体1の形状を説明するための図である。また図5は、当該反射ターゲット体1の設置面の半径について説明するための図である。
次に、上記反射ターゲット体1について説明する。図3は当該反射ターゲット体1の外観を示した図であり、図4は当該反射ターゲット体1の形状を説明するための図である。また図5は、当該反射ターゲット体1の設置面の半径について説明するための図である。
各図に示すように、反射ターゲット体1は、中心点Cを有する仮想球体S(図4参照)の一部を平面で切り出した形状を有し、レーザ測距装置11から照射されたレーザ光を反射可能な反射面1aと、地上に設置される円形の設置面1b(切り出し面)とを有する。
反射ターゲット体1のサイズについては、航空レーザ計測におけるフットプリントの平均間隔及びフットプリントサイズ、さらに航空レーザの照射角度が勘案される。例えば、反射ターゲット体1の設置面1bの半径r1は800mm、高さhは400mm、反射面1aの曲率半径(仮想球体Sの半径r2)は1000mmとされる。すなわち、上記設置面1bの半径r1は、レーザのフットプリントの平均間隔(例えば700mm)よりも大きく設定される。
より詳細には、図5に示すように、半径r1は、フットプリントの平均間隔sよりも大きく設定されることで、少なくとも4つのフットプリントを得られる可能性が高くなる。さらに、当該半径r1を、フットプリントの平均間隔sの√5/2倍(√5/2s)よりも大きく設定することで、少なくとも4つのフットプリントを得られる可能性をより高めることができる。
反射ターゲット体1の反射面1aは、レーザ測距装置11から照射されたレーザ光を、地上よりも高い反射強度で反射可能である。本実施形態では、反射ターゲット体1は発泡スチロールにより製造される。発泡スチロールは白色であるため、高い反射強度を有する。もちろん、反射面1aに発泡スチロール以外の材料(反射体)が用いられても構わないし、反射強度の高い物質が球面に貼付・塗布されても構わない。
ただし、反射面1aの反射強度が高すぎると、上記レーザ測距装置11の計測結果に影響を与える可能性があるため、反射強度はそのような影響を与えない程度の値であることが好ましい。
ここで地上とは、本実施形態では、地表のみならず例えば建物の上等の地物も含む。図1では反射ターゲット体1が地表に設置された例が示されており、図3では反射ターゲット体1がビルの屋上に設置された例が示されている。
反射ターゲット体1の反射面1aが球面で形成されることで、航空レーザ計測において当該反射面1a上に少なくとも4点のフットプリントの計測値が存在すれば、球体の中心座標と球体の半径の公式により、最小二乗法を用いて球体Sの中心Cの座標が算出できる。
本実施形態では、航空レーザ計測によって取得した値から算出された球体Sの中心Cの水平位置座標と、反射ターゲット体1が設置された位置の実測値の水平位置座標との差分を、航空レーザ計測における水平位置座標の誤差として検証することが可能である。
本発明者等は、上記形状の反射ターゲット体1を制作するにあたり、上記の球体切り出し形状以外に、リング(ドーナツ)形状の反射面を有するターゲット体も検討した。リング形状の場合、リングの中心座標を算出するためには、航空レーザ計測において最低3点のフットプリントが計測される必要がある。しかし本発明者等の検証により、そのような条件を満たすための成功率が低くなり、また反射面の面積を増加させるためには大きなサイズのリングが必要になる。そこで、反射面の面積増加と反射ターゲット体としての取り扱いの容易性(コンパクト性)を検討した結果、上述した本実施形態のような形状が採用されるに至った。
[レーザ計測システムの動作]
次に、以上のように構成されたレーザ計測システムの動作について説明する。航空機10によるレーザ計測データ取得後の動作は、データ解析装置100のCPU110等のハードウェアと、記憶部18に記憶されたソフトウェアとの協働により実行される。
次に、以上のように構成されたレーザ計測システムの動作について説明する。航空機10によるレーザ計測データ取得後の動作は、データ解析装置100のCPU110等のハードウェアと、記憶部18に記憶されたソフトウェアとの協働により実行される。
図6は、上記レーザ計測システムの動作の流れを示したフローチャートである。
同図に示すように、まず、作業者が、航空機10の飛行ルート下の所定エリアにおいて、複数の反射ターゲット体1を地上に水平に設置する(ステップ51)。
続いて、上記各反射ターゲット体1が設置された真の水平位置座標(Xt, Yt)(ターゲット体1の頂点の座標)が現地における測量により決定される(ステップ52)。
続いて航空機10により上記飛行ルート上でレーザ計測が実施される(ステップ53)。これによりレーザ光の往復時間のデータ、GNSSデータ、IMUデータといったレーザ計測データが取得される。
続いてデータ解析装置100によるデータ解析処理が実行される。
まずデータ解析装置100のCPU110は、反射ターゲット体1の近傍で検出されたフットプリント候補(反射候補点)のうち、反射強度が所定の閾値以上のものを抽出する(ステップ54)。
図7は、当該フットプリント候補の検出結果を示した図である。同図は、反射ターゲット体1の近傍を航空機10から撮影した写真がベースとなっている。
同図において、実線で囲まれた領域が反射ターゲット体1を示し、破線で囲まれた領域が航空レーザのフットプリントの抽出範囲を示し、黒点が航空レーザのフットプリントを示している。このフットプリントの抽出範囲は、ターゲット体1の半径に外周マージンを加えた値を半径とした円の範囲であり、例えば、航空機10の対地高度が1000mであれば半径91cmの範囲であり、対地高度が2000mであれば半径102cmの範囲とされる。
同図に示すように、航空レーザのフットプリントが反射ターゲット体1の表面に複数存在している。
図8は、上記フットプリント候補の抽出結果を複数の反射ターゲット体1毎に反射強度と共に示したものである。反射強度は例えば256階調の輝度データとして表現されている。
同図に示すように、4つの反射ターゲット体1(ターゲットID:1~4)について、それぞれ、検出されたフットプリント候補のうち、反射強度が所定の閾値(例えば100)以上であるフットプリント候補を抽出した。いずれの反射ターゲット体1についても、球体の中心座標の算出に必要な最低4つのフットプリント候補が抽出できた。
図6に戻り、続いてCPU110は、抽出したフットプリントの三次元座標(X, Y, Z)を基に近似球体の中心座標(X, Y, Z)を求め、当該座標から反射ターゲット体1の中心の水平位置座標(Xm, Ym)を算出する(ステップ55)。
図9は、当該反射ターゲット体1の中心のXY座標の算出処理及び当該座標と反射ターゲット体1の真位置の座標との誤差の算出処理を説明するための図である。
同図において、右斜め上方向の斜線で囲まれた球面は反射ターゲット体1を示す。また白の点は、当該反射ターゲット体1に反射したと推定されるフットプリント候補を示している。
まずCPU110は、4つのフットプリント候補の三次元座標(X, Y, Z)を、最小二乗法により球面にフィッティングさせることで、当該反射ターゲット体1の切り出し元となった球体の中心の座標及び球体の半径を算出する。以下、その計算手法を説明する。
まず、球体の中心座標と球体の半径の公式は、以下の通りである。
( X - a )2 + ( Y - b )2 + ( Z - c )2 = r2
ここで、球体の中心座標:(a, b, c)
球体の半径:r
( X - a )2 + ( Y - b )2 + ( Z - c )2 = r2
ここで、球体の中心座標:(a, b, c)
球体の半径:r
また、球面上の座標計測値を(Xi, Yi, Zi)とする。iは点番号である(i = 1, 2, ..., n)。
ここで、残差Viを次のように定義する。
Vi = {( Xi - a )2 + ( Yi - b )2 + ( Zi - c )2 }‐r2
Vi = {( Xi - a )2 + ( Yi - b )2 + ( Zi - c )2 }‐r2
続いて、最小二乗法を用いて上記残差Viの二乗和(下記のS)が最小となる条件を求めることとする。
S = ΣVi2
= Σ{Xi2 + Yi2 + Zi2 + AXi + BYi + CYi +D}2
ここで、A = -2a・・・・・・・・・・・式(1)
B = -2b・・・・・・・・・・・式(2)
C = -2c・・・・・・・・・・・式(3)
D = a2 + b2 + c2 - r2・・・・・式(4)
S = ΣVi2
= Σ{Xi2 + Yi2 + Zi2 + AXi + BYi + CYi +D}2
ここで、A = -2a・・・・・・・・・・・式(1)
B = -2b・・・・・・・・・・・式(2)
C = -2c・・・・・・・・・・・式(3)
D = a2 + b2 + c2 - r2・・・・・式(4)
Sが最小となる条件は、以下のように表わせる。
∂S/∂A = AΣXi2 + BΣXiYi + CΣXiZi + DΣXi + ΣXi3 + ΣXiYi2 + ΣXiZi2 = 0
∂S/∂B = AΣXiYi + BΣYi2 + CΣYiZi + DΣYi + ΣXi2Yi + ΣYi3 + ΣYiZi2 = 0
∂S/∂C = AΣXiZi + BΣYiZi + CΣZi2 + DΣZi + ΣXi2Zi + ΣYi2Zi + ΣZi3 = 0
∂S/∂D = AΣXi + BΣYi + CΣZi + DΣ1 + ΣXi2 + ΣYi2 + ΣZi2 = 0
∂S/∂A = AΣXi2 + BΣXiYi + CΣXiZi + DΣXi + ΣXi3 + ΣXiYi2 + ΣXiZi2 = 0
∂S/∂B = AΣXiYi + BΣYi2 + CΣYiZi + DΣYi + ΣXi2Yi + ΣYi3 + ΣYiZi2 = 0
∂S/∂C = AΣXiZi + BΣYiZi + CΣZi2 + DΣZi + ΣXi2Zi + ΣYi2Zi + ΣZi3 = 0
∂S/∂D = AΣXi + BΣYi + CΣZi + DΣ1 + ΣXi2 + ΣYi2 + ΣZi2 = 0
これを行列表現にすると、図10に示したものになる。この行列の式を解いてA,B,C,Dを求め、上記式(1)~式(4)より、球体の中心座標(a、b、c)と半径rを求める。
ここで、フットプリントを4点以上得られず、3点しか得られなかった場合の救済策について説明する。
フットプリントを4点以上得られない場合には、上記[0087]、[0088]及び図10に示した計算式では、球体の中心座標(a、b、c)と半径rを求めることができない。そこで、3点のフットプリントが得られた場合には、上記[0084]に示した式においてrを、上記ターゲット体1の製造用に予め設定された球体の半径の値として、3点のフットプリントそれぞれの三次元座標を、上記[0084]の式のX,Y,Zに代入し、3元2次連立方程式を解き、球体の中心座標(a、b、c)を求める。これは2次方程式のため解は一意には定まらないが、地表面より低い高さとして求まる球体の中心座標を、ターゲット体1に対応した球体の中心座標として選択することができる。
CPU110は、このように求められた球体の中心座標から、航空レーザ計測上の反射ターゲット体1の中心のXY座標(Xm, Ym)を求める。この中心座標が図9において斜線を付された点で表されており、球体は左斜め上方向の斜線で囲まれた球面として表されている。同図に示すように、反射ターゲット体1の真の位置と、レーザ計測データから算出した球体の位置とがずれていることが分かる。
図6に戻り、CPU110は、上記ステップ52において決定した反射ターゲット体1の中心の真の水平位置座標(Xt, Yt)と、上記航空レーザ計測値から算出した反射ターゲット体1の中心の水平位置座標(Xm, Ym)との誤差を算出する(ステップ56)。図9において、真の水平位置座標(Xt, Yt)は黒色の点で表されており、上記斜線を付された点との差分が誤差eとして表されている。
そしてCPU110は、この誤差算出処理を複数の反射ターゲット体1毎に実行し、それらの誤差から平均誤差を算出する(ステップ57)。
図11は、上記反射ターゲット体1の中心の真位置と航空レーザ計測上の位置との誤差の評価結果を示した図である。
同図に示すように、反射ターゲット体1の中心の真位置と航空レーザ計測上の位置との間には、X座標においては平均して+17mm、Y座標においては平均して-79mm、ベクトル(ΔXY)においては平均して125mmの誤差があることが分かった。
またΔXYの標準偏差は73mmであった。国土地理院が定める公共測量作業規程の準則(数値地形図データの精度)の許容精度は、地図情報レベル1000の場合、水平位置の標準偏差が700mm以内であることから、本実施形態における手法で評価した本評価結果は、要求精度を十分に満たしているといえる。
データ解析装置100は、この平均誤差を用いて、航空レーザ計測データにおけるXY座標を補正してもよい。これにより計測エリアにおける各計測値を、全体的に真の値に近づけることができる。
もちろん、必要に応じて、他の値に比べて突出している値(最大値、最小値)が存在する場合には、その値を除いて平均値が再算出されても構わない。
以上説明したように、本実施形態によれば、レーザ計測システムは、上記反射ターゲット体1を用いることで、レーザ計測における水平位置の計測誤差を、計測位置の環境に依存することなく(例えば建造物がほとんど存在しないような場所でも)、簡便かつ高精度に算出することができる。
また本実施形態では、上記反射ターゲット体1が、図4で示したように球体の一部を平面で切り取った形状とされる点に特徴を有する。
ここで、当該形状に代えて、半球形状を用いた場合、高さ(Z)の値については、幅のある計測値を得ることができる。しかし、この場合、ターゲット体のサイズは高さ方向及び水平方向の双方で大きくなってしまう。
また、航空レーザ計測においては、上述のように高さについての評価手法は確立しているため、本実施形態におけるターゲット体1を用いた位置の評価手法については、高さに関する評価について信頼度を求めず、水平位置座標の評価だけを追求することとしている。すなわち、ターゲット体1の形状を半球とせず、球体の一部を平面で切り出した形状とすることで、高低差は小さいが裾野においては範囲が十分な形状(設置面1bの半径r1がフットプリントの平均間隔(好ましくは平均間隔の√5/2倍)よりも大きいドーム状の形状)を実現している。これにより、ターゲット体1のサイズを小さくでき、取り扱いも容易となる。
[変形例]
本発明は上述の実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更され得る。
本発明は上述の実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更され得る。
上記反射ターゲット体1は、現場への持ち運び及び設置が容易になるように形状が工夫されてもよい。例えば図12に示すように、反射ターゲット体1は、蛇腹状に製造され、同図(A)の展開状態から同図(B)の状態へ折り畳み可能とされてもよい。
上述の実施形態では、データ解析装置100は、4つのレーザのフットプリントの計測値を基に、仮想球体Sの中心座標と半径を算出した。ここで、データ解析装置100は、予め反射ターゲット体1の曲率半径(切り出し元の球体の半径)の設定値が分かっている場合には、上記算出した半径が上記設定値とどの程度一致しているかという一致度を判断しても構わない。これによりデータ解析装置100は、算出した水平位置座標の誤差の精度を判断することができる。
上述の実施形態においては、本発明が航空レーザ計測システムに適用された例が示されたが、本発明は人工衛星を用いたレーザ計測システムに適用されてもよい。また、地上を走行する車両(自動車等)を用いたMMS(Mobile Mapping System)においても本発明の上記反射ターゲット体1が適用され得る。あるいは、河川の河床に反射ターゲット体1が設置されてもよい。
また、航空レーザ計測システムとMMSの双方において同一の反射ターゲット体が用いられてもよい。すなわち、反射ターゲット体1が設置された所定エリアにおいて、航空機によるレーザ計測処理が実行されると同時に、地上では車両によるレーザ計測処理が実行され、それぞれの処理において、水平位置座標の誤差が、同じ反射ターゲット体1を用いて算出されてもよい。
上述の実施形態では、反射ターゲット体1を水平に設置した場合を例に説明したが、斜めに設置しても構わない。反射ターゲット体1の頂点の水平位置座標と反射ターゲット体1を構成する球体の中心の水平位置座標は常に一致するため、球体の中心の水平位置座標を算出し、それを反射ターゲット体1の頂点について別途計測した水平位置座標と比較することにより、ターゲット体1を斜めに設置した場合であってもレーザ計測における水平位置の計測誤差を算出することができる。
1…反射ターゲット体
10…航空機
11…レーザ測距装置
12…GNSS受信機
13…IMU
100…データ分析装置
110…CPU
180…記憶部
S…仮想球体
C…仮想球体の中心
10…航空機
11…レーザ測距装置
12…GNSS受信機
13…IMU
100…データ分析装置
110…CPU
180…記憶部
S…仮想球体
C…仮想球体の中心
Claims (8)
- 地上にレーザ光を照射し、前記地上からの反射光によって前記レーザ光のフットプリントの位置を計測可能なレーザ計測装置と、
前記地上の前記レーザ光を受光可能な位置に設置され、球体の一部を平面で切り出した形状を有し、前記レーザ光を前記地上よりも高い反射強度で反射可能な反射ターゲット体と、
前記レーザ計測装置から照射され前記反射ターゲット体に反射したと推定される少なくとも4つの反射光から算出される各三次元位置座標を基に、前記球体の中心の水平位置座標を算出し、当該算出された水平位置座標と前記反射ターゲット体の頂点について別途の測量で計測した水平位置座標との差から誤差を算出可能な算出装置と
を具備するレーザ計測システム。 - 請求項1に記載のレーザ計測システムであって、
前記算出装置は、前記少なくとも4つの反射光から算出される各三次元位置座標を基に、最小二乗法を用いて前記球体の中心の水平位置座標を算出する
レーザ計測システム。 - 請求項2に記載のレーザ計測システムであって、
前記算出装置は、
前記各三次元位置座標を基に、前記球体の中心の水平位置座標と前記球体の半径とを算出し、前記算出された半径が、前記ターゲット体の製造用に予め設定された球体の半径と一致するか否かを判断する
レーザ計測システム。 - 請求項1に記載のレーザ計測システムであって、
前記反射ターゲット体は、所定のエリアに複数設置され、
前記算出装置は、前記複数の反射ターゲット体に関する複数の前記誤差をそれぞれ算出し、当該算出された複数の誤差の平均誤差を算出する
レーザ計測システム。 - 請求項4に記載のレーザ計測システムであって、
前記算出装置は、前記算出された平均誤差によって前記レーザ計測装置による計測結果を補正する
レーザ計測システム。 - 請求項1に記載のレーザ計測システムであって、
上記ターゲット体の前記切り出された平面は、前記レーザ計測装置から地上に照射されるレーザ光のフットプリントの平均間隔よりも大きい半径を有する
レーザ計測システム。 - 地上にレーザ光を照射し前記地上からの反射光によって前記レーザ光のフットプリントの位置を計測可能なレーザ計測装置から照射されたレーザ光を、前記地上よりも高い反射強度で反射可能な反射面と、
前記地上に設置される設置面と
を具備し、
球体の一部を平面で切り出した形状を有し、
前記切り出された平面は、前記レーザ計測装置から地上に照射されるレーザ光のフットプリントの平均間隔よりも大きい半径を有する
反射ターゲット体。 - 地上にレーザ光を照射し前記地上からの反射光によって前記レーザ光のフットプリントの位置を計測可能なレーザ計測装置からレーザを照射し、
前記地上の前記レーザ光を受光可能な位置に設置され、球体の一部を平面で切り出した形状を有し、前記レーザ光を前記地上よりも高い反射強度で反射可能な反射ターゲット体に反射したと推定される少なくとも4つの反射光からそれぞれ三次元位置座標を算出し、
前記算出された各三次元位置座標を基に前記球体の中心の水平位置座標を算出し、
前記算出された水平位置座標と前記ターゲット体の頂点について別途の測量で計測した水平位置座標との差から誤差を算出する
レーザ計測方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015033859A JP6073944B2 (ja) | 2015-02-24 | 2015-02-24 | レーザ計測システム、反射ターゲット体及びレーザ計測方法 |
JP2015-033859 | 2015-02-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016136775A1 true WO2016136775A1 (ja) | 2016-09-01 |
Family
ID=56788698
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/055345 WO2016136775A1 (ja) | 2015-02-24 | 2016-02-24 | レーザ計測システム、反射ターゲット体及びレーザ計測方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6073944B2 (ja) |
WO (1) | WO2016136775A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6099728B1 (ja) * | 2015-12-07 | 2017-03-22 | 株式会社パスコ | レーザ計測システム及びレーザ計測方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6773573B2 (ja) * | 2017-01-25 | 2020-10-21 | 株式会社トプコン | 位置特定装置、位置特定方法、位置特定システム、位置特定用プログラム、無人航空機および無人航空機識別用ターゲット |
JP6707098B2 (ja) * | 2018-01-31 | 2020-06-10 | 田中 成典 | 三次元モデル生成システム |
JP6823690B2 (ja) * | 2019-06-18 | 2021-02-03 | 朝日航洋株式会社 | 位置調整方法、位置調整装置、及び、位置調整プログラム |
CN110940966B (zh) * | 2019-11-25 | 2021-09-03 | 同济大学 | 一种基于激光测高卫星足印影像的激光足印平面定位方法 |
CN112857252B (zh) * | 2021-01-12 | 2023-04-07 | 深圳市地铁集团有限公司 | 一种基于反射率强度的隧道影像边界线检测方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007506109A (ja) * | 2003-09-22 | 2007-03-15 | ライカ ジオシステムズ アクチェンゲゼルシャフト | 携帯型測定装置の空間位置の決定方法とシステム |
JP2010151682A (ja) * | 2008-12-25 | 2010-07-08 | Topcon Corp | レーザスキャナ及びレーザスキャナ測定システム及びレーザスキャナ測定システムの較正方法及び較正用ターゲット |
JP2012098247A (ja) * | 2010-11-05 | 2012-05-24 | Pasuko:Kk | 樹木位置検出装置、樹木位置検出方法、及びプログラム |
JP2013250110A (ja) * | 2012-05-31 | 2013-12-12 | Hitachi Information & Control Solutions Ltd | レーザ計測装置の校正システム、レーザ計測装置の校正方法、及び、レーザ計測装置の校正装置 |
JP2015019311A (ja) * | 2013-07-12 | 2015-01-29 | 日本放送協会 | キャリブレーション装置およびキャリブレーションプログラム |
-
2015
- 2015-02-24 JP JP2015033859A patent/JP6073944B2/ja not_active Expired - Fee Related
-
2016
- 2016-02-24 WO PCT/JP2016/055345 patent/WO2016136775A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007506109A (ja) * | 2003-09-22 | 2007-03-15 | ライカ ジオシステムズ アクチェンゲゼルシャフト | 携帯型測定装置の空間位置の決定方法とシステム |
JP2010151682A (ja) * | 2008-12-25 | 2010-07-08 | Topcon Corp | レーザスキャナ及びレーザスキャナ測定システム及びレーザスキャナ測定システムの較正方法及び較正用ターゲット |
JP2012098247A (ja) * | 2010-11-05 | 2012-05-24 | Pasuko:Kk | 樹木位置検出装置、樹木位置検出方法、及びプログラム |
JP2013250110A (ja) * | 2012-05-31 | 2013-12-12 | Hitachi Information & Control Solutions Ltd | レーザ計測装置の校正システム、レーザ計測装置の校正方法、及び、レーザ計測装置の校正装置 |
JP2015019311A (ja) * | 2013-07-12 | 2015-01-29 | 日本放送協会 | キャリブレーション装置およびキャリブレーションプログラム |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6099728B1 (ja) * | 2015-12-07 | 2017-03-22 | 株式会社パスコ | レーザ計測システム及びレーザ計測方法 |
WO2017098934A1 (ja) * | 2015-12-07 | 2017-06-15 | 株式会社パスコ | レーザ計測システム及びレーザ計測方法 |
JP2017106755A (ja) * | 2015-12-07 | 2017-06-15 | 株式会社パスコ | レーザ計測システム及びレーザ計測方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6073944B2 (ja) | 2017-02-01 |
JP2016156676A (ja) | 2016-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016136775A1 (ja) | レーザ計測システム、反射ターゲット体及びレーザ計測方法 | |
JP6745169B2 (ja) | レーザ計測システム及びレーザ計測方法 | |
Stöcker et al. | Quality assessment of combined IMU/GNSS data for direct georeferencing in the context of UAV-based mapping | |
CN108253969B (zh) | 一种无人机飞行视距链路覆盖范围的计算方法 | |
US20160004795A1 (en) | Device, method, apparatus, and computer-readable medium for solar site assessment | |
CN108414998B (zh) | 一种卫星激光测高仪回波波形模拟仿真方法及设备 | |
US20150042645A1 (en) | Processing apparatus for three-dimensional data, processing method therefor, and processing program therefor | |
AU2016396487B2 (en) | Map creation system and map creation method | |
JP6099728B1 (ja) | レーザ計測システム及びレーザ計測方法 | |
RU2591875C1 (ru) | Способ построения карты экзогенных геологических процессов местности вдоль трассы магистрального нефтепровода | |
JP2020173273A (ja) | レーザ計測方法、レーザ計測用標識、及び座標算出プログラム | |
CN110940966B (zh) | 一种基于激光测高卫星足印影像的激光足印平面定位方法 | |
EP3667368B1 (en) | Sensor control device | |
CN114102577B (zh) | 一种机器人及应用于机器人的定位方法 | |
Iordan et al. | The accuracy of LiDAR measurements for the different land cover categories | |
JP2019148436A (ja) | 森林地域での立木の評価方法、及びこの評価方法における評価対象エリアの特定に適した境界線測量方法 | |
JP2021032656A (ja) | 森林地域での立木の評価方法、及びこの評価方法における評価対象エリアの特定に適した境界線測量方法 | |
Kosmatin Fras et al. | Assessment of the quality of digital terrain model produced from unmanned aerial system imagery | |
KR101181742B1 (ko) | 토지 이용 현황도 갱신 장치 및 방법 | |
Miri et al. | Evaluating parameters affecting the georeferencing accuracy of terrestrial laser scanners | |
EP3667232A1 (en) | Land feature data structure | |
CN118519132B (zh) | 一种基于角反射器的星载单光子激光高精度检校方法 | |
JP6823690B2 (ja) | 位置調整方法、位置調整装置、及び、位置調整プログラム | |
US20230296378A1 (en) | Surveying device, surveying method, and surveying program | |
Nakano | Circular Target Observation of Point Cloud Using Laser Reflection Intensity by AN Unmanned Aerial Vehicle Equipped with a Laser Scanner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16755519 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16755519 Country of ref document: EP Kind code of ref document: A1 |