WO2016136601A1 - Cylindrical product made of fiber-reinforced resin material, injection molding die therefor, and injection molding method - Google Patents

Cylindrical product made of fiber-reinforced resin material, injection molding die therefor, and injection molding method Download PDF

Info

Publication number
WO2016136601A1
WO2016136601A1 PCT/JP2016/054797 JP2016054797W WO2016136601A1 WO 2016136601 A1 WO2016136601 A1 WO 2016136601A1 JP 2016054797 W JP2016054797 W JP 2016054797W WO 2016136601 A1 WO2016136601 A1 WO 2016136601A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
center
center pin
outer piece
reinforcing fibers
Prior art date
Application number
PCT/JP2016/054797
Other languages
French (fr)
Japanese (ja)
Inventor
健二朗 瀧
Original Assignee
株式会社エンプラス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エンプラス filed Critical 株式会社エンプラス
Priority to US15/552,728 priority Critical patent/US10300641B2/en
Priority to CN201680011641.4A priority patent/CN107249848B/en
Publication of WO2016136601A1 publication Critical patent/WO2016136601A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0046Details relating to the filling pattern or flow paths or flow characteristics of moulding material in the mould cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0005Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fibre reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0025Preventing defects on the moulded article, e.g. weld lines, shrinkage marks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/261Moulds having tubular mould cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/2701Details not specific to hot or cold runner channels
    • B29C45/2708Gates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0025Preventing defects on the moulded article, e.g. weld lines, shrinkage marks
    • B29C2045/0027Gate or gate mark locations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0025Preventing defects on the moulded article, e.g. weld lines, shrinkage marks
    • B29C2045/0031Movable mould wall parts in contact with weld lines, e.g. rotating pins for stirring the weld line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/33Moulds having transversely, e.g. radially, movable mould parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2309/00Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
    • B29K2309/08Glass

Definitions

  • the present invention relates to a fiber reinforced resin material cylindrical product that improves the strength of a portion where a weld line generated by injection molding is formed, an injection mold thereof, and an injection molding method.
  • a molten resin is injected into a cavity 1002 of a mold 1001 from a pinpoint gate 1000 to produce a cylindrical product 1003 (see FIG. 14) in which the shape of the cavity 1002 is transferred.
  • a molding method is known (see Patent Document 1).
  • the cylindrical product 1003 injection-molded using a fiber reinforced resin material has the reinforcing fibers 1005 of the weld line 1004 aligned in one direction (the direction in which the molten resin flows) (see FIG. 15), so When press-fitted, there is a problem that cracks are likely to occur in the portion where the weld line 1004 is formed.
  • an object of the present invention is to provide a cylindrical product made of a fiber reinforced resin material in which the strength of a portion where a weld line is formed, an injection mold thereof, and an injection molding method.
  • molten resin containing reinforcing fibers is injected into the cavities 7 and 105 from the gates 13 and 111, so that the molten resin containing reinforcing fibers merges in the cavities 7 and 105 to form the weld line 34.
  • the present invention relates to an injection mold 2 for a tubular product 1 to be manufactured.
  • the cavities 7 and 105 are provided between a center pin 4 and 150 forming the inner peripheral surface side of the tubular product 1 and an outer piece 3 and 151 forming the outer peripheral surface side of the tubular product 1. Is formed.
  • the outer piece 3, 151 is moved with respect to the center pin 4, 150, thereby changing the distance from the center pin 4, 150 and containing the reinforcing fibers in the cavities 7, 105.
  • the molten resin is forced to flow, and the direction of the reinforcing fibers in the weld line 34 is disturbed.
  • the molten resin containing the reinforcing fibers is injected into the cavities 7 and 105 from the gates 13 and 111 into the cavities 7 and 105, so that the molten resin containing the reinforcing fibers merges in the cavities 7 and 105.
  • the present invention relates to a method for injection molding of a cylindrical product 1 in which is formed.
  • the cavities 7 and 105 are provided between a center pin 4 and 150 forming the inner peripheral surface side of the tubular product 1 and an outer piece 3 and 151 forming the outer peripheral surface side of the tubular product 1. Is formed.
  • molten resin containing reinforcing fibers is injected into the cavities 7 and 105 from the gates 13 and 111, and the molten resin containing reinforcing fibers merges in the cavities 7 and 105 to form a weld line 34.
  • This relates to a tubular product 1 made of fiber-reinforced resin material.
  • the cavities 7 and 105 form the center pins 4 and 150 that form the inner peripheral surface side of the tubular product 1 and the outer peripheral surface side of the tubular product 1.
  • the space between the outer pins 3 and 151 is changed, and the outer pins 3 and 151 are moved with respect to the center pins 4 and 150, whereby the distance from the center pins 4 and 150 is changed. 7 and 105, the molten resin containing the reinforcing fibers is forced to flow, and the direction of the reinforcing fibers in the weld line 34 is disturbed.
  • the direction of the weld line in the injection-molded cylindrical product and the reinforcing fiber in the vicinity of the weld line is disturbed, and the weld line in the cylindrical product and the reinforcing fiber in the vicinity of the weld line are intertwined.
  • the weld line becomes inconspicuous and the strength of the portion of the tubular product where the weld line is formed is improved.
  • FIG. 4 (a) is a front view of the tubular product
  • FIG. 4 (b) is a side view of the tubular product
  • FIG. 4 (c) is cut along line A5-A5 in FIG. 4 (a).
  • FIG. 3 is a view showing the structure of an injection mold 2. It is a figure which shows the cylindrical goods injection-molded with the injection mold which concerns on 3rd Embodiment of this invention.
  • 9A is a front view of the cylindrical product, FIG.
  • FIG. 9B is a side view of the cylindrical product, and FIG. 9C is cut along line A14-A14 in FIG. 9A. It is sectional drawing of the cylindrical goods shown.
  • FIG. 1 and 2 are views showing an injection mold 2 for a cylindrical product 1 according to the first embodiment of the present invention.
  • FIG. 1 is a figure which shows the structure of the injection mold 2 in an injection standby state.
  • FIG. 2 is a view showing the structure of the injection mold 2 when the outer piece 3 in the injection standby state is eccentrically rotated by a predetermined angle ( ⁇ ) in the clockwise direction with respect to the center pin 4.
  • FIG. 1 (a) is a plan view of a second mold shown by cutting the injection mold shown in FIG. 1 (b) along the line A1-A1.
  • FIG. 1B is a cross-sectional view of the injection mold shown cut along the line A2-A2 in FIG.
  • FIG. 2A is a plan view of a second mold shown by cutting the injection mold shown in FIG. 2B along the line A3-A3.
  • FIG. 2B is a cross-sectional view of the injection mold shown cut along the line A4-A4 in FIG.
  • the injection mold 2 has a cavity 7 formed on the side of the butted surfaces 5a and 6a of the first mold 5 and the second mold 6.
  • the cavity 7 has a shape that forms a tubular product 1 made of a fiber reinforced resin material (hereinafter abbreviated as a tubular product 1) shown in FIG. 4, and is filled with a molten resin containing reinforcing fibers. Yes.
  • the tubular product 1 includes a cylindrical portion 8 and a hollow disc portion 10 integrally formed on one end side of the cylindrical portion 8.
  • the cavity 7 that forms the cylindrical product 1 includes a first cavity portion 11 that forms the cylindrical portion 8, and a second cavity portion 12 that is positioned on one end side of the first cavity portion 11 and forms the hollow disc portion 10.
  • molten resin containing reinforcing fibers are PA66-GF30 (nylon 66 containing 30% glass fiber), PA6-GF (nylon 6 containing 20% glass fiber), PPS-GF40 (polyphenylene sulfide containing 40% glass fiber), POM. -GF25 (polyacetal containing 25% glass fiber) or the like is used.
  • the first mold 5 is formed with a gate 13 (pinpoint gate) that opens to the second cavity 12 formed in the second mold 6.
  • the second mold 6 includes a substantially round bar-shaped center pin 4 positioned on the inner peripheral surface side of the first cavity portion 11 and an outer piece 3 positioned on the outer peripheral surface side of the first cavity portion 11. Yes.
  • the outer peripheral surface 14a of the large-diameter portion 14 of the center pin 4 forms the inner peripheral surface side of the first cavity portion 11, and the inner peripheral surface 3a of the outer piece 3 (the inner peripheral surface of the cavity forming hole 18) is the first cavity.
  • the outer peripheral surface side of the part 11 is formed.
  • a round bar-shaped small-diameter portion 15 that is abutted against the abutting surface 5a of the first mold 5 is formed on the tip side of the center pin 4.
  • the small diameter portion 15 is integrally formed at the center of the front end side of the center pin 4 so as to form the central hole 16 of the hollow disc portion 10.
  • the second cavity portion 12 is formed by the distal end surface 17 of the large diameter portion 14 of the center pin 4, the outer peripheral surface 15 a of the small diameter portion 15, and the butting surface 5 a of the first mold 5.
  • the outer piece 3 is a cylindrical body formed so as to surround the center pin 4, and the cavity forming hole 18 that forms the outer peripheral surface side of the first cavity portion 11 is in the direction along the central axis P 0 (FIG. 1B). And in the direction along the Z-axis in FIG.
  • the outer piece 3 has an end face 3b at one end abutted against the abutting face 5a of the first mold 5 at the time of mold clamping, and the other end is rotatably supported by the outer piece support 20.
  • a flange-like flange portion 21 is formed, and an annular recess 22 having a diameter larger than that of the cavity forming hole 18 is formed.
  • the outer piece 3 is engaged so that the annular recess 22 on the other end side can be rotated relative to the eccentric rotation support portion 23 of the outer piece support 20, and the end surface 21 a of the flange portion 21 is the outer piece support 20.
  • the outer piece support surface 20a is supported so as to be relatively rotatable, and can be rotated around the central axis P1 of the eccentric rotation support portion 23.
  • the outer piece 3 has a center axis P0 coaxially positioned with the center axis P1 of the eccentric rotation support portion 23, whereas the center 18a of the cavity forming hole 18 has a predetermined dimension ( ⁇ ) with respect to the center axis P0. ) Is eccentric (see FIG. 3).
  • the flange portion 21 of the outer piece 3 is formed with a notch groove 26 that engages with the driving protrusion 25 of the rotation driving means 24.
  • Such an outer piece 3 is rotated around the central axis P1 of the eccentric rotation support part 23 by a predetermined angle ( ⁇ ) by the rotation driving means 24 (see FIGS. 1A and 2A). .
  • the outer piece 3 is rotated in an eccentric state with respect to the central axis P ⁇ b> 2 of the center pin 4.
  • the outer piece 3 is housed in an outer piece housing hole 27 whose outer peripheral surface 3 c is formed in the second die 6, and the flange portion 21 is inside the flange portion containing recess 28 formed in the second die 6. Is housed in.
  • the outer piece accommodation hole 27 and the flange portion accommodation recess 28 of the second mold 6 are formed around the central axis P2 of the center pin 4, and the outer periphery of the outer piece 3 rotated by the rotation driving means 24. It is formed so as not to contact the surface 3 c and the outer peripheral surface 21 b of the flange portion 21 of the outer piece 3.
  • the outer piece support body 20 has an outer piece support surface 20a formed on the tip side (the end side near the outer piece 3), and an annular eccentric rotation support portion 23 extending from the outer piece support surface 20a along the Z-axis direction. It is formed to protrude.
  • the outer piece support surface 20a positions the outer piece 3 in the Z-axis direction.
  • the eccentric rotation support portion 23 is fitted to the inner peripheral surface of the annular recess 22 of the outer piece 3 via a slight gap, and positions the outer piece 3 in the XY plane.
  • the center axis P 1 of the eccentric rotation support portion 23 is eccentric with respect to the center axis P 2 of the center pin 4 by a predetermined dimension ( ⁇ ).
  • the central axis P1 of the eccentric rotation support portion 23 is formed so as to be coaxial with the central axis P0 of the outer piece 3. Further, the outer piece support 20 accommodates a cylindrical eject sleeve 30 that slides along the center pin 4. The eject sleeve 30 is formed after the molten resin containing the reinforcing fibers in the cavity 7 is cooled and solidified to form the tubular product 1, and the first mold 5 and the second mold 6 are separated from each other. 1 is pushed out of the cavity 7.
  • FIG. 3 is a diagram schematically showing the relationship between the center pin 4 and the outer piece 3.
  • the cavity 7 has a uniform cavity width (W) along the circumferential direction of the center pin 4 when the center axis P2 of the center pin 4 and the center 18a of the cavity forming hole 18 of the outer piece 3 are concentric. It corresponds to the cavity 7 shown in FIG. In this case, the cavity forming hole 18 is indicated by a solid line in FIG.
  • the center axis P1 of the eccentric rotation support portion 23 is disposed on a center line (reference center line) 31 that intersects the center axis P2 of the center pin 4 and extends in parallel with the Y axis.
  • the central axis P1 of the eccentric rotation support portion 23 is located away from the central axis P2 of the center pin 4 along the reference center line 31 (eccentric).
  • predetermined angle
  • the center 18a of the cavity forming hole 18 becomes the center pin 4. 1 is shifted from the center (center axis P2) and placed at a position in an injection standby state (placed as shown in FIG. 1A).
  • the cavity forming hole 18 at this time is indicated by a two-dot chain line in FIG. 3, and the center 18 a of the cavity forming hole 18 is at the position that is most greatly displaced from the center axis P ⁇ b> 2 of the center pin 4.
  • the distance (abbreviated as cavity width (W)) between the outer peripheral surface of the center pin 4 and the inner peripheral surface of the cavity forming hole 18 along the radial direction of the center pin 4 is along the circumferential direction of the center pin 4.
  • the center line 32 passing through the center of the center pin 4 (crossing the center axis P2) and parallel to the X axis is rotated counterclockwise ( ⁇ / 2) around the center axis P2.
  • the injection mold 2 is arranged such that the gate 13 is disposed on the side on the center line 33 and on the side where the cavity width (W) becomes the minimum value (Wmin). 7 so that the weld line 34 is formed at a position on the center line 33 (position where the cavity width (W) becomes the maximum value (Wmax)) where the molten resin injected into the fiber 7 is rotated 180 ° from the gate 13. Configured.
  • the injection mold 2 according to this embodiment rotates the injection mold 2 shown in FIG.
  • optimum values for the predetermined dimension ( ⁇ ) and the predetermined angle ( ⁇ ) are determined according to the size of the cavity 7 and the type of the resin material containing the reinforcing fiber. .
  • the rotation driving means 24 for rotating the outer piece 3 by a predetermined angle ( ⁇ ) is reciprocated between the slider 36 housed so as to be slidable in the slider guide hole 35 formed in the second mold 6 and the slider 36. And an actuator 37 (hydraulic cylinder, pneumatic cylinder, etc.) to be moved.
  • the slider 36 has a drive protrusion 25 that engages with the notch groove 26 of the flange portion 21 of the outer piece 3, and the drive protrusion 25 is hooked on the groove wall of the notch groove 26 of the outer piece 3 to slide the slider guide.
  • the outer piece 3 is rotated around the central axis P1 of the eccentric rotation support portion 23 by a predetermined angle ( ⁇ ) by sliding in the hole 35.
  • the slider guide hole 35 is communicated with the flange housing recess 28 by a window 38 that allows the drive protrusion 25 to move.
  • the slider 36 is fixed to a rod 40 extending from the actuator 37 and moves together with the rod 40. Further, the slider 36 and the slider guide hole 35 have a quadrangular cross-sectional shape cut along a virtual plane parallel to the YZ coordinate plane, so that the force acting on the slider 36 can be received by the surface. ing.
  • the injection mold 2 as described above is configured such that the center 18 a of the cavity forming hole 18 of the outer piece 3 is displaced with respect to the center axis P ⁇ b> 2 of the center pin 4 and the cavity width (
  • the first mold 5 is in an injection standby state in which the positions of the maximum value (Wmax) and the minimum value (Wmin) of W) are on a straight line (center line 33) connecting the center of the center pin 4 and the center of the gate 13.
  • molten resin containing reinforcing fibers is injected from the gate 13 into the cavity 7.
  • the molten resin containing reinforcing fibers injected into the cavity 7 has a minimum value (Wmin) of the cavity width (W) (a part of the cavity 7) to a maximum value (Wmax) of the cavity width (W).
  • the inside of the cavity 7 flows evenly toward the part, joins at the part of the maximum value (Wmax) of the cavity width (W), and a weld line 34 is formed at the joining part (see FIG. 4).
  • the injection mold 2 is filled with a molten resin containing reinforcing fibers throughout the cavity 7, and the rotation driving means 24 is operated before the molten resin containing reinforcing fibers cools and loses fluidity.
  • the outer piece 3 is rotated around the central axis P1 of the eccentric rotation support portion 23 by a predetermined angle ( ⁇ ) in the clockwise direction by the rotation driving means 24 (see FIG. 2).
  • the angle in the clockwise direction by the rotation driving means 24
  • the center axis P 2 of the center pin 4 and the center 18 a of the cavity forming hole 18 of the outer piece 3 coincide with each other, and the cavity width (W) of the cavity 7 is in the circumferential direction of the center pin 4. It becomes constant along.
  • the injection mold 2 is formed such that the cavity width (W) of the portion of the cavity 7 where the weld line 34 is formed has a maximum value (Wmax). Since the cavity width (W) on the side where the gate 13 is opened becomes the minimum value (Wmin), when the state shown in FIG. 1 is changed to the state shown in FIG.
  • the molten resin containing reinforcing fibers on the side where the weld line 34 in the cavity 7 is formed and on the side where the gate 13 opens is more than the other part in the cavity 7. It can flow much and can effectively disturb the orientation of the weld line 34 and the reinforcing fibers in the vicinity thereof.
  • the injection mold 2 is separated from the first mold 5 and the second mold 6 (the mold is opened). ), The eject sleeve 30 pushes the cylindrical product 1 in the cavity 7 out of the cavity 7. As a result, the injection-molded tubular product 1 is taken out from the cavity 7 of the injection mold 2.
  • the rotation driving means 24 is operated, and the outer piece 3 is rotationally driven from the position shown in FIG. 2 to the injection standby position in FIG. 1. It is rotated back by the means 24 to prepare for the next injection molding.
  • the direction of the weld line 34 and the reinforcing fibers near the weld line 34 in the injection-molded tubular product 1 is disturbed, and the weld of the tubular product 1 is disturbed. Since the reinforcing fibers in the vicinity of the line 34 and the weld line 34 are entangled with each other, the weld line 34 of the tubular product 1 is less noticeable and the strength of the portion of the tubular product 1 where the weld line 34 is formed is improved.
  • the injection molding method of the tubular product 1 according to the present embodiment includes first to fourth steps that will be described in detail below.
  • the center 18a of the cavity forming hole 18 of the outer piece 3 is shifted with respect to the center axis P2 of the center pin 4, and the cavity width (W ) Are on the straight line (center line 33) connecting the center axis P2 of the center pin 4 and the center of the gate 13, and the first mold 5 and the second value (Wmax).
  • molten resin containing reinforcing fibers is injected from the gate 13 into the cavity 7.
  • the molten resin containing reinforcing fibers injected into the cavity 7 from the gate 13 where the cavity width (W) is at the minimum value (Wmin) is rotated 180 ° from the gate 13 in the circumferential direction (cavity width).
  • (W) is merged at the maximum value (Wmax)), and a weld line 34 is formed at the portion where the molten resin containing the reinforcing fibers merges (see FIG. 4).
  • the molten resin containing the reinforcing fiber is filled in the entire area of the cavity 7, and before the molten resin containing the reinforcing fiber filled in the cavity 7 is cooled and loses fluidity,
  • the outer piece 3 is rotated about the central axis P1 of the eccentric rotation support portion 23 by a predetermined angle ( ⁇ ) clockwise by the rotation driving means 24, and the central axis P2 of the center pin 4 and the cavity of the outer piece 3 are rotated.
  • the center 18a of the formation hole 18 is made to coincide, and the cavity width (W) of the cavity 7 is made constant along the circumferential direction of the center pin 4 (see FIG. 2).
  • the distance between the inner peripheral surface 3a of the outer piece 3 and the outer surface 14a of the large diameter portion 14 of the center pin 4 changes, and the cavity width (W) of the cavity 7 changes.
  • the molten resin containing reinforcing fibers in the cavity 7 is forced to flow in the cavity 7.
  • the orientation of the reinforcing fibers is disturbed, and the weld line 34 and surrounding reinforcing fibers are intertwined (see FIG. 4).
  • the first mold 5 and the second mold 6 are separated, thereby the second mold.
  • the cylindrical product (injection molded product) 1 in the cavity 7 on the 6 side is separated from the gate 13 on the first mold 5 side, and the separation trace 41 of the gate 13 is outside the hollow disc portion 10 of the cylindrical product 1. It is designed to be formed on the surface.
  • the cylindrical product 1 in the cavity 7 is pushed out of the cavity 7 by the eject sleeve 30, whereby the injection-molded cylindrical product 1 is taken out from the cavity 7.
  • the direction of the weld line 34 and the reinforcing fibers in the vicinity of the weld line 34 in the injection-molded tubular product 1 is disturbed, and the weld line 34 of the tubular product 1 is disturbed.
  • the reinforcing fibers in the vicinity of the weld line 34 are entangled, the weld line 34 of the tubular product 1 is less noticeable and the strength of the portion of the tubular product 1 where the weld line 34 is formed is improved.
  • a cylindrical product 1 according to this embodiment shown in FIG. 4 is formed by the above-described injection molding method using the above-described injection mold 2.
  • the cylindrical product 1 has a cylindrical portion 8 and a hollow disc portion 10 formed integrally with one end side of the cylindrical portion 8. Further, a separation mark 41 of the gate 13 is formed in the hollow disc portion 10 on one end side of the cylindrical product 1.
  • the tubular product 1 is intricately intertwined with the weld line 34 and the reinforcing fibers 25 in the vicinity of the weld line 34.
  • the weld line 34 and the direction of the reinforcing fiber in the vicinity of the weld line 34 are disturbed, and the weld line 34 and the reinforcing fiber in the vicinity of the weld line 34 are intertwined. It becomes inconspicuous and the strength of the portion where the weld line 34 is formed is improved.
  • FIG. 5 to 6 are views showing an injection mold 2 according to the second embodiment of the present invention, and showing a modification of the rotation driving means 24 of the injection mold 2 according to the first embodiment. is there.
  • FIG. 5 is a diagram showing the structure of the injection mold 2 in the injection standby state.
  • FIG. 6 is a view showing the structure of the injection mold 2 when the outer piece 3 in the injection standby state is eccentrically rotated by a predetermined angle ( ⁇ ) in the clockwise direction with respect to the center pin 4.
  • FIG. 5 (a) is a plan view of a second mold shown by cutting the injection mold shown in FIG. 5 (b) along the line A6-A6.
  • FIG. 5 (a) is a plan view of a second mold shown by cutting the injection mold shown in FIG. 5 (b) along the line A6-A6.
  • FIG. 5B is a cross-sectional view of the injection mold shown cut along line A7-A7 in FIG.
  • FIG. 6A is a plan view of the second mold shown by cutting the injection mold shown in FIG. 6B along the line A8-A8.
  • FIG. 6B is a cross-sectional view of the injection mold shown cut along the line A9-A9 in FIG.
  • the injection mold 2 according to this embodiment shown in FIGS. 5 to 6 has the same configuration as the injection mold 2 according to the first embodiment except for the rotational drive means 42, and therefore the first embodiment.
  • the description which overlaps with the description of the injection mold 2 according to the above will be omitted, and the components (rotation drive means) different from the injection mold 2 according to the first embodiment will be described in detail.
  • the rotation driving means 42 of the injection mold 2 includes a slider 44 accommodated in a slider guide hole 43 formed in the second mold 6 so as to be slidable, and the slider 44 in one direction.
  • a spring 45 compression coil spring
  • an operation pin 46 that slides the slider 44 biased by the spring 45
  • a drive mechanism that slides the operation pin 46 along the operation pin guide hole 47 Part 48.
  • the slider 44 has a rod part 50 having a quadrangular cross-section cut by a virtual plane parallel to the YZ coordinate plane, and a head part 51 integrally formed at the tip of the rod part 50.
  • the rod portion 50 has a drive protrusion 25 that engages with the notch groove 26 of the flange portion 21 of the outer piece 3, and the drive protrusion 25 is hooked on the groove wall of the notch groove 26 of the outer piece 3 to slide the slider 50.
  • the outer piece 3 is rotated around the central axis P1 of the eccentric rotation support portion 23 by a predetermined angle ( ⁇ ).
  • the drive protrusion 25 can move in a window 38 that communicates between the slider guide hole 43 and the flange housing recess 28.
  • the head portion 51 is formed so as to protrude from the rod portion 50 by the same dimension along the + Y axis direction and the ⁇ Y axis direction, and is formed so as to protrude from the rod portion 50 along the + Z axis direction.
  • the cross-sectional shape cut along a virtual plane parallel to the YZ coordinate plane is a quadrangle.
  • the head portion 51 is formed with an inclined surface 52 that is inclined from the tip (tip along the + X axis direction) obliquely downward to the left. By being pushed by 46, a slope component force that resists the biasing force of the spring 45 is generated.
  • the operation pin 46 is a rod-like body having a quadrangular cross section cut along a virtual plane parallel to the XY coordinate plane, and is connected to a drive mechanism unit 48 driven by a drive device (not shown) of the eject sleeve 30.
  • the operation pin 46 can be slid by the drive mechanism 48 in an operation pin guide hole 47 extending along the Z-axis direction.
  • the operation pin 46 is formed with an inclined surface 53 that is inclined obliquely downward from the tip (upper end) to the left and this inclined surface 53 is an inclined surface of the slider 44. The slider 44 is brought into sliding contact with the surface 52.
  • the operation pin 46 is formed to have the same width dimension ( ⁇ ) as the width dimension ( ⁇ ) of the head portion 51 of the slider 44 (see FIG. 5A).
  • the operation pin 46 is slid by the drive mechanism 48 separately from the eject sleeve 30.
  • the slider guide hole 43 is formed along the X-axis direction, and a rod portion guide hole 54 that guides the sliding movement of the rod portion 50 of the slider 44 and a head portion that guides the sliding movement of the head portion 51 of the slider 44. And a guide hole 55.
  • the head portion guide hole 55 opens into the operation pin guide hole 47.
  • the rod guide hole 54 of the slider guide hole 43 has a square shape that is the same as the cross-sectional shape of the rod portion 50 of the slider 44 in a cross-section taken along a virtual plane parallel to the YZ coordinate plane.
  • the slider 44 is slid along the X-axis direction without making surface contact with the portion 50 and changing the posture of the slider 44.
  • the head portion guide hole 55 of the slider guide hole 43 has a quadrangular shape similar to the cross sectional shape of the head portion 51 of the slider 44 in a sectional shape cut along a virtual plane parallel to the YZ coordinate plane.
  • the slider 44 is slid along the X-axis direction without changing the posture of the slider 44 in surface contact with the head portion 51.
  • the slider guide hole 43 accurately engages the drive protrusion 25 of the slider 44 with the notch groove 26 of the flange portion 21 of the outer piece 3, and the inclined surface 52 at the tip of the slider 44 is inclined to the operation pin 46.
  • the outer piece 3 can be accurately rotated by a predetermined angle ( ⁇ ) while being brought into surface contact with the surface 53 accurately.
  • the operation pin guide hole 47 is formed along the Z-axis direction and intersects the slider guide hole 43 at a right angle.
  • the operation pin guide hole 47 has a quadrangular shape similar to that of the operation pin 46 in a cross-sectional shape cut along a virtual plane parallel to the XY coordinate plane, so that the head portion 51 of the slider 44 can enter. (See FIG. 5).
  • the wall surface 56 of the operation pin guide hole 47 facing the slider guide hole 43 is abutted against the front end surface 57 of the head portion 51 of the slider 44 biased by the spring 45, and in the injection standby state. It functions as a positioning surface for the slider 44 (see FIG. 5).
  • the operation pin guide hole 47 can accommodate the operation pin 46 at a position where it does not contact the slider 44 in the injection standby state.
  • Such an operation pin guide hole 47 is in surface contact with the operation pin 46 and slides the operation pin 46 along the Z-axis direction without changing the posture of the operation pin 46.
  • the operation pin guide hole 47 accurately brings the inclined surface 53 of the operation pin 46 into surface contact with the inclined surface 52 of the head portion 51 of the slider 44, and accurately rotates the outer piece 3 by a predetermined angle ( ⁇ ). be able to.
  • the operation pin 46 At the position facing the operation pin guide hole 47 of the mold matching surface 5 a of the first mold 5, a bottomed shape that enables the tip side of the operation pin 46 to protrude from the mold matching surface 6 a of the second mold 6.
  • the operation pin relief hole 58 is formed.
  • the operation pin 46 that slides in the operation pin guide hole 47 causes the tip to enter the operation pin relief hole 58 in a state where the first mold 5 and the second mold 6 are clamped, and the slider 44 can be pushed into the slider guide hole 43 against the biasing force of the spring 45, and the tip of the head portion 51 of the slider 44 can be positioned by the side surface 60 facing the slider 44.
  • the operation pin 46 can position the slider 44 at a position where the outer piece 3 is rotated clockwise from the position in the injection standby state by a predetermined angle ( ⁇ ), and the slider 44 biased by the spring 45. Can be stopped.
  • the outer piece 3 is rotated by the rotation driving means 42 in the same manner as the injection mold 2 according to the first embodiment. That is, in the injection mold 2 according to the present embodiment, as shown in FIGS. 3 and 5, the center 18a of the cavity forming hole 18 of the outer piece 3 is shifted with respect to the center axis P2 of the center pin 4, In the injection standby state where the position of the maximum value (Wmax) and the minimum value (Wmin) of the cavity width (W) is on a straight line (center line 33) connecting the center axis P2 of the center pin 4 and the center of the gate 13, and In a state where the first mold 5 and the second mold 6 are abutted and clamped, molten resin containing reinforcing fibers is injected into the cavity 7 from the gate 13.
  • the molten resin containing reinforcing fibers injected into the cavity 7 is evenly distributed from the minimum value (Wmin) portion of the cavity width (W) toward the maximum value (Wmax) of the cavity width (W). It flows and merges at the maximum value (Wmax) of the cavity width (W), and a weld line 34 is formed at the merged portion (see FIG. 4).
  • the injection mold 2 is filled with a molten resin containing reinforcing fibers throughout the cavity 7, and the rotation driving means 42 is operated before the molten resin containing reinforcing fibers cools and loses its fluidity.
  • the outer piece 3 is rotated around the central axis P1 of the eccentric rotation support portion 23 by a predetermined angle ( ⁇ ) in the clockwise direction by the rotation driving means 42 (see FIG. 6).
  • the angle in the clockwise direction by the rotation driving means 42
  • the center axis P 2 of the center pin 4 and the center 18 a of the cavity forming hole 18 of the outer piece 3 coincide with each other, and the cavity width (W) of the cavity 7 is in the circumferential direction of the center pin 4. It becomes constant along.
  • the injection mold 2 changes from the state shown in FIG. 5 to the state shown in FIG. 6, the inner peripheral surface 3 a of the outer piece 3 and the outer surface 14 a of the large-diameter portion 14 of the center pin 4 change.
  • the cavity width (W) of the cavity 7 changes, and the molten resin containing reinforcing fibers in the cavity 7 is forced to flow in the cavity 7.
  • the orientation of the reinforcing fibers is disturbed, and the weld line 34 and surrounding reinforcing fibers are intertwined (see FIG. 4).
  • the injection mold 2 according to the present embodiment operates in the same manner as the injection mold 2 according to the first embodiment, and has the same effect as the injection mold 2 according to the first embodiment. Obtainable.
  • the injection molding method using the injection mold 2 according to this embodiment includes the same first to fourth steps as the injection molding method according to the first embodiment. The same effects as those of the injection molding method can be obtained.
  • cylindrical product 1 injection-molded using the injection mold 2 according to the present embodiment is the same as the cylindrical product 1 injection-molded using the injection mold 2 according to the first embodiment.
  • the direction of the reinforcing fiber in the vicinity of the weld line 34 and the weld line 34 is disturbed, and the reinforcing fiber in the vicinity of the weld line 34 and the weld line 34 is entangled, so that the weld line 34 becomes difficult to stand out and the weld line 34 is formed.
  • the strength of the part is improved.
  • FIG. 7 to 8 are views showing an injection mold 2 of the tubular product 1 according to the third embodiment of the present invention.
  • FIG. 7 is a figure which shows the modification of the injection mold 2 which concerns on 1st Embodiment, and is a figure which shows the structure of the injection mold 2 in an injection standby state.
  • FIG. 8 is a view showing the structure of the injection mold 2 when the outer piece 3 in the injection standby state is eccentrically rotated by a predetermined angle ( ⁇ ) in the clockwise direction with respect to the center pin 4.
  • FIG. 7A is a plan view of the second mold shown by cutting the injection mold shown in FIG. 7B along the line A10-A10.
  • FIG. 7B is a cross-sectional view of the injection mold shown cut along the line A11-A11 in FIG.
  • FIG. 8A is a plan view of the second mold shown by cutting the injection mold shown in FIG. 8B along the line A12-A12.
  • FIG. 8B is a cross-sectional view of the injection mold shown cut along the line A13-A13 in FIG.
  • the injection mold 2 according to this embodiment is different from the injection mold 2 according to the first embodiment in the shape of the cavity 7 and the position of the gate 13, but the other basic configuration is related to the first embodiment. Since it is the same as the injection mold 2, the same reference numerals as those of the injection mold 2 according to the first embodiment are attached to the components corresponding to the injection mold 2 according to the first embodiment, and the first embodiment. The description overlapping with the description of is omitted.
  • the cylindrical product 1 to be injection-molded has a cylindrical shape, and the cylindrical product 1 does not include the hollow disc portion 10 (FIGS. 4 and 4). 9), the second cavity portion 12 of the injection mold 2 according to the first embodiment is not provided, and the cavity 7 corresponds to the first cavity portion 11 of the injection mold 2 according to the first embodiment. It consists only of parts to do. Further, the center pin 4 is formed with the same outer diameter dimension (formed only by the large diameter portion 14), and the front end surface 17 is abutted against the abutting surface 5a of the first mold 5, and is formed in a round bar shape. This is different from the center pin 4 of the injection mold 2 according to the first embodiment in that the small diameter portion 15 is omitted.
  • the gate 13 is formed in the first mold 5 so as to open to one end side of the cavity 7.
  • the injection mold 2 according to the present embodiment like the injection mold 2 according to the first embodiment, in the injection standby state, the gate 13 is positioned at the minimum value (Wmin) of the cavity width (W).
  • the molten resin containing reinforcing fibers injected into the cavity 7 from the gate 13 is configured to merge at a position where the cavity width (W) of the cavity 7 is the maximum value (Wmax) (FIG. 3). reference).
  • the center 18a of the cavity forming hole 18 of the outer piece 3 is shifted with respect to the center axis P2 of the center pin 4 in the same manner as the injection mold 2 according to the first embodiment.
  • the first mold 5 and the second mold 6 are brought into contact with each other and clamped (see FIG. 7 (b)), and a molten resin containing reinforcing fibers.
  • a weld line 34 is formed at the joining portion of the molten resin containing reinforcing fibers in the cavity 7.
  • the injection mold 2 is filled with a molten resin containing reinforcing fibers throughout the cavity 7, and the rotation driving means 24 is operated before the molten resin containing reinforcing fibers cools and loses fluidity.
  • the outer piece 3 is rotated about the central axis P1 of the eccentric rotation support portion 23 by a predetermined angle ( ⁇ ) in the clockwise direction by the rotation driving means 24, and the center 18a of the cavity forming hole 18 of the outer piece 3 is rotated. Is aligned with the central axis P2 of the center pin 4 (see FIG. 8).
  • the direction of the weld line 34 and the reinforcing fibers near the weld line 34 in the injection-molded tubular product 1 is disturbed, and the weld of the tubular product 1 is disturbed. Since the reinforcing fibers in the vicinity of the line 34 and the weld line 34 are entangled with each other, the weld line 34 of the tubular product 1 is less noticeable and the strength of the portion of the tubular product 1 where the weld line 34 is formed is improved.
  • the injection molding method according to this embodiment is the same as the injection molding method according to the first embodiment, although the injection mold 2 to be used is slightly different from the injection molding die 2 according to the first embodiment. is there. Therefore, according to the injection molding method according to the present embodiment, the same effects as those of the injection molding method according to the first embodiment can be obtained.
  • FIG. 9 is a view showing a cylindrical product 1 injection-molded by the injection mold 2 according to this embodiment.
  • 9 (a) is a front view of the tubular product 1
  • FIG. 9 (b) is a side view of the tubular product 1
  • FIG. 9 (c) is a line A14-A14 in FIG. 9 (a). It is sectional drawing of the cylindrical article 1 cut
  • a separation mark 41 of the gate 13 is formed on the end surface 61 on the one end side of the tubular product 1.
  • the cylindrical product 1 is intricately intertwined with the weld line 34 and the reinforcing fibers in the vicinity of the weld line 34.
  • the cylindrical product 1 according to the present embodiment is disturbed in the direction of the weld line 34 and the reinforcing fibers in the vicinity of the weld line 34, so that the weld line 34 and the weld line 34 are welded. Since the reinforcing fibers in the vicinity of the line 34 are intertwined, the weld line 34 becomes difficult to stand out, and the strength of the portion where the weld line 34 is formed is improved.
  • FIGS. 10 to 11 are views showing an injection mold 2 according to the fourth embodiment of the present invention, and showing a modification of the rotation driving means 24 of the injection mold 2 according to the third embodiment. is there.
  • FIG. 10 is a diagram showing the structure of the injection mold 2 in the injection standby state.
  • FIG. 11 is a view showing the structure of the injection mold 2 when the outer piece 3 in the injection standby state is eccentrically rotated by a predetermined angle ( ⁇ ) in the clockwise direction with respect to the center pin 4.
  • FIG. 10A is a plan view of a second mold shown by cutting the injection mold shown in FIG. 10B along the line A15-A15.
  • FIG. 10B is a cross-sectional view of the injection mold shown cut along the line A16-A16 in FIG.
  • FIG. 11 (a) is a plan view of a second mold shown by cutting the injection mold shown in FIG. 11 (b) along the line A17-A17.
  • FIG. 11B is a cross-sectional view of the injection mold shown cut along line A18-A18 in FIG.
  • the injection mold 2 according to the present embodiment is obtained by replacing the rotation drive means 24 of the injection mold 2 according to the third embodiment with the rotation drive means 42 according to the second embodiment. It is used for injection molding the same cylindrical product 1 (cylindrical product 1 shown in FIG. 9) as the injection mold 2 according to the above.
  • the cylindrical product 1 injection-molded using the injection mold 2 according to the present embodiment is the cylindrical product 1 injection-molded using the injection mold 2 according to the third embodiment.
  • the orientation of the weld line 34 and the reinforcement fiber in the vicinity of the weld line 34 is disturbed and the reinforcement fiber in the vicinity of the weld line 34 and the weld line 34 is entangled, so that the weld line 34 becomes difficult to stand out and the weld line 34 is formed.
  • the strength of the applied portion is improved.
  • FIG. 12 is a view showing an injection mold 2 of the tubular product 1 according to the fifth embodiment of the present invention.
  • the injection mold 2 according to the present embodiment shown in FIG. 12 is used for injection molding the tubular product 1 shown in FIG. 4, and the injection mold according to the first or second embodiment is used. Same as type 2.
  • FIG. 12A is a plan view (plan view of the second mold 104) in which the first mold 103 of the injection mold 2 shown in FIG.
  • FIG. 6 is a view showing a state (injection standby state) in which the center 162a of the slider 162 is shifted from the center 150a of the center pin 150 by a predetermined dimension ( ⁇ ).
  • FIG. 12B is a plan view of the second mold 104, and shows a state in which the center 162a of the slider 162 of the outer piece 151 and the center 150a of the center pin 150 are made to coincide.
  • FIG. 12C is a cross-sectional view of the injection mold 2 cut along the line A19-A19 in FIG.
  • a cavity 105 is formed on the side of the butted surfaces 103 a and 104 a of the first mold 103 and the second mold 104.
  • the cavity 105 has a shape that forms the cylindrical product 1 shown in FIG. 4 and is filled with molten resin containing reinforcing fibers.
  • the tubular product 1 includes a cylindrical portion 8 and a hollow disc portion 10 that is integrally formed on one end side of the cylindrical portion 8.
  • the cavity 105 that forms the cylindrical product 1 includes a first cavity part 108 that forms the cylindrical part 8, and a second cavity part 110 that is located on one end side of the first cavity part 108 and forms the hollow disk part 10. ,have.
  • the cavity 105 is formed in the second mold 104 so that the opening end is closed by the first mold 103.
  • the first mold 103 is formed with a gate 111 (pinpoint gate) that opens to the second cavity portion 110 formed in the second mold 104.
  • the gate 111 is formed in the first mold 103 so as to be located on a center line 174 that passes through the center 150a of the center pin 150 and extends in the X-axis direction.
  • the second mold 104 includes a center pin 150 positioned on the inner peripheral surface side of the first cavity portion 108 and an outer piece 151 positioned on the outer peripheral surface side of the first cavity portion 108.
  • the outer peripheral surface of the center pin 150 forms the inner peripheral surface side of the first cavity portion 108, and the inner peripheral surface of the cavity forming hole 168 of the outer piece 151 forms the outer peripheral surface side of the first cavity portion 108.
  • the second mold 104 includes a second mold main body 152, an outer piece support mold portion 153 arranged to overlap the second mold main body portion 152, and the outer piece support mold portion 153. And an outer piece presser mold part 154 arranged in an overlapping manner.
  • the center pin 150 is a cylindrical portion formed integrally with the tip of the shaft portion 156 of the inner mold 155, and constitutes the inner mold 155 together with the shaft portion 156.
  • a round bar-like protrusion 158 that is abutted against the abutting surface 103a of the first mold 103 is formed.
  • This protrusion 158 is integrally formed at the center of the front end surface 157 of the center pin 150, and forms the central hole 16 of the hollow disk portion 10 of the tubular product 1 (see FIG. 4).
  • An eject sleeve 160 is fitted on the outer periphery of the shaft portion 156 of the inner mold 155 so as to be slidable.
  • the outer piece 151 is accommodated in the second mold 104 so as to be slidable, and slides along a plane perpendicular to the central axis 161 of the center pin 150 (the surface 152a of the second mold main body 152).
  • the outer piece 151 includes a cylindrical slider 162, an operation rod 165 that is integrally formed on the outer peripheral side of the slider 162 and slidingly contacts the outer peripheral surface (cam surface) 164 of the cam 163, and the outer peripheral side of the slider 162.
  • a spring receiving rod 167 that presses the operating rod 165 against the outer peripheral surface 164 of the cam 163 by the elastic force of the spring 166.
  • the slider 162 is formed with a round hole-shaped cavity forming hole 168 in the central portion, and the shape in plan view is a two-sided width shape as if both sides of the cylindrical body are cut off, passing through the center 162a and on the Y axis. It is formed in a line-symmetric shape with respect to the center line 170 extending along the line (see FIG. 12A).
  • slide surfaces 171 On both sides of the slider 162 in the width direction (the direction along the X axis), slide surfaces 171 extending along the Y axis direction are formed.
  • the slider 162 is accommodated in an outer piece guide hole 172 formed in the outer piece support die portion 153 and the outer piece holding die portion 154, and the slide surface 171 is a slide guide surface 173 of the outer piece guide hole 172. Can be slid along.
  • the outer piece guide hole 172 of the outer piece supporting mold part 153 and the outer piece guide hole 172 of the outer piece holding mold part 154 have the same shape, and the shape in plan view is a rectangular shape.
  • the outer piece guide hole 172 is formed in a line-symmetric shape with respect to a center line 174 that passes through the center 150a of the center pin 150 and extends along the X-axis direction, and passes through the center 150a of the center pin 150.
  • the outer piece guide hole 172 contacts the slider 162 when the center 162a of the slider 162 (center of the cavity forming hole 168) slides by a predetermined dimension ( ⁇ ) from the position where it matches the center 150a of the center pin 150. It is formed with dimensions that do not touch.
  • the lift amount ( ⁇ ) of the cam 163 and the movement amount ( ⁇ ) of the slider 162 are optimum values according to the thickness of the cylindrical portion 8 of the tubular product 1 and the difference in the material of the molten resin containing reinforcing fibers. Is determined.
  • the operation rod 165 is formed on one end side of the slider 162 along the Y-axis direction, and a cam contact surface 165b is formed by rounding the tip of a round rod-shaped rod body 165a extending along the Y-axis direction into a spherical shape. ing.
  • the operation rod 165 is fitted so as to be slidable into a first rod hole 175 formed on the overlapping surface side of the outer piece supporting die portion 153 and the outer piece holding die portion 154, and the distal end side is the outer piece. It protrudes into a cam accommodation hole 176 formed in the support mold part 153 and the outer piece presser mold part 154, and the cam contact surface 165 b comes into contact with the outer peripheral surface (cam surface) 164 of the cam 163.
  • the spring receiving rod 167 is formed on the other end side along the Y-axis direction of the slider 162, and extends in a direction opposite to the direction in which the operation rod 165 extends.
  • the spring receiving rod 167 has a round bar-like small-diameter spring support rod portion 167a inserted into a space on the inner diameter side of a spring (compression coil spring) 166 and a round bar-like large diameter (spring support) with which one end side of the spring 166 abuts.
  • a spring seat portion 167b having a larger diameter than the rod portion 167a.
  • the spring seat 167b of the spring receiving rod 167 is fitted so as to be slidable into the second rod hole 177 formed on the overlapping surface side of the outer piece supporting die portion 153 and the outer piece holding die portion 154.
  • the spring support rod portion 167a is fitted so that the tip side can slide and move into a third rod hole 178 formed on the overlapping surface side of the outer piece support die portion 153 and the outer piece holding die portion 154.
  • the spring 166 is accommodated in a spring accommodating chamber 180 formed on the overlapping surface side of the outer piece supporting die portion 153 and the outer piece holding die portion 154.
  • the spring accommodating chamber 180 is a round hole-shaped space having an inner diameter larger than the outer diameter of the spring seat portion 167b and the outer diameter of the spring 166, and is accommodated in a state where the spring 166 is compressed. .
  • the spring 166 has one end in the height direction in contact with the spring seat 167b and the other end in the height direction contacts the end surface 180a on the other end side (the third rod hole 178 side) of the spring accommodating chamber 180.
  • the operating rod 165 is always pressed against the outer peripheral surface (cam surface) 164 of the cam 163.
  • the cam 163 is accommodated in a cam accommodating chamber 176 formed in the outer piece support die portion 153 and the outer piece presser die portion 154 so that the cam shaft 181 rotates around the second die body portion 152. It is supported movably.
  • the cam 163 is configured such that the cam shaft 181 is rotated by a rotation driving means 135 (for example, a rotation driving means including a stepping motor and a plurality of gears), whereby the outer piece 151 is moved by a lift amount ( ⁇ ). It can be slid along the direction.
  • a rotation driving means 135 for example, a rotation driving means including a stepping motor and a plurality of gears
  • the outer piece 151 has a position where the center 162a of the slider 162 (center of the cavity forming hole 168) is shifted from the center 150a of the center pin 150 by a predetermined dimension ( ⁇ ) (position shown in FIG. 12A).
  • the slider 162 slides between a position (a position shown in FIG. 12B) where the center 162a of the slider 162 (the center of the cavity forming hole 168) coincides with the center 150a of the center pin 150.
  • molten resin containing reinforcing fibers is injected from the gate 111 into the cavity 105 in a state where the first mold 103 and the second mold 104 are abutted and clamped. .
  • the outer piece 151 is held at a position shifted from the center pin 150 by a predetermined dimension ( ⁇ ), as shown in FIG.
  • a weld line 34 is formed in the joining portion of the molten resin containing reinforcing fibers in the cavity 105 (see FIG. 4).
  • the joining portion of the molten resin containing reinforcing fibers in the cavity 105 is located on the center line 174 rotated 180 ° around the center 150 a of the center pin 150 from the opening position of the gate 111. Then, the entire area in the cavity 105 is filled with molten resin containing reinforcing fibers, and before the molten resin containing reinforcing fibers cools and loses its fluidity, the rotation driving means 135 is operated to drive the cam 163 to rotate.
  • the outer piece 151 is moved to the spring 166 until the center 162a (center of the cavity forming hole 168) of the slider 162 of the outer piece 151 and the center 150a of the center pin 150 coincide. And slide to move (see FIG. 12B).
  • the distance between the outer peripheral surface of the center pin 150 and the inner peripheral surface of the cavity forming hole 18 is changed, the cavity width (W) is changed, and the molten fiber containing reinforcing fibers in the cavity 105 is melted.
  • the resin is forced to flow in the cavity 105.
  • the injection mold 2 is separated from the first mold 103 and the second mold 104 (the mold is opened). ), The eject sleeve 160 pushes the cylindrical product 1 in the cavity 105 out of the cavity 105. As a result, the injection-molded tubular product 1 is taken out from the cavity 105 of the injection mold 2.
  • the rotation driving means 135 is operated, and when the cam 163 is rotated by the rotation driving means 135, the spring 166 moves the cam 163.
  • the pressed outer piece 151 is returned from the position shown in FIG. 12B to the initial position shown in FIG. 12A (the position in the injection standby state) to prepare for the next injection molding.
  • the direction of the weld line 34 and the reinforcing fibers near the weld line 34 in the injection-molded tubular product 1 is disturbed, and the weld of the tubular product 1 is disturbed. Since the reinforcing fibers in the vicinity of the line 34 and the weld line 34 are entangled with each other, the weld line 34 of the tubular product 1 is less noticeable and the strength of the portion of the tubular product 1 where the weld line 34 is formed is improved.
  • the injection mold 2 has the outer pin 151 of the second mold 104 (the center 162a of the slider 162 and the center of the cavity forming hole 168) as a center pin.
  • 150 center 150a of the center pin 150
  • injection standby state
  • molten resin containing reinforcing fibers is injected from the gate 111 into the cavity 105 (first step of injection molding).
  • the molten resin injected into the cavity 105 from the gate 111 merges at a position rotated 180 ° in the circumferential direction from the gate 111, and a weld line 34 is formed at a portion where the molten resin containing reinforcing fibers merges. (See FIG. 4).
  • the cam 163 is rotationally driven before the molten resin containing reinforcing fibers is filled in the entire area of the cavity 105 and the fluidity of the molten resin containing reinforcing fibers filled in the cavity 105 is impaired.
  • the outer piece 151 is rotated by a predetermined angle ( ⁇ ) by means 135, and the outer piece 151 is slid from the position shown in FIG. 12A to the position shown in FIG. 12B, and the center 162 a (cavity) of the slider 162 of the outer piece 151.
  • the center of the formation hole 168 and the center 150a of the center pin 150 coincide (second step of injection molding).
  • the molten resin containing reinforcing fibers in the cavity 105 is forced to flow in the circumferential direction of the cavity 105 in accordance with a change in the gap formed between the outer piece 151 and the center pin 150.
  • the molten resin containing the reinforcing fibers in the cavity 105 is disturbed in the fiber orientation of the weld line 34 and its surroundings, and the weld line 34 and its surrounding reinforcing fibers are entangled so that the weld line 34 is hardly noticeable.
  • the first mold 103 and the second mold 104 are separated (the mold is opened). At this time, the cylindrical product (injection molded product) 1 in the cavity 105 on the second mold 104 side and the gate 111 on the first mold 103 side are separated, and a separation mark 41 of the gate 111 is formed on the cylindrical product 1. It is formed on the outer surface of the hollow disc portion 10 (third step of injection molding).
  • the cylindrical product 1 in the cavity 105 is pushed out of the cavity 105 by the eject sleeve 160. Thereby, the injection-molded cylindrical product 1 is taken out from the cavity 105 (fourth step of injection molding).
  • the direction of the weld line 34 and the reinforcing fibers in the vicinity of the weld line 34 in the injection-molded tubular product 1 is disturbed, and the weld line 34 of the tubular product 1 is disturbed.
  • the reinforcing fibers in the vicinity of the weld line 34 are entangled, the weld line 34 of the tubular product 1 is less noticeable and the strength of the portion of the tubular product 1 where the weld line 34 is formed is improved (see FIG. 4).
  • the shape of the cavity 105 is changed in accordance with the shape of the cylindrical product 1 shown in FIG.
  • the cylindrical product 1 shown in FIG. 9 can be injection molded.
  • the gates 13 and 111 of the injection mold 2 according to each of the above embodiments can disturb the direction of the weld line 34 and the reinforcing fiber in the vicinity of the weld line 34, and the strength of the weld line 34 of the tubular product 1 can be increased. As long as it can be improved, the opening position to the cavities 7 and 105 may be shifted.
  • the aspect in which the thickness of the cylindrical portion 8 of the cylindrical product 1 and the thickness of the hollow disc portion 10 are made uniform is illustrated.
  • the thickness of the portion 8 and the thickness of the hollow disc portion 10 may be changed.
  • the aspect which made the thickness of the cylindrical goods 1 uniform was illustrated, you may change the thickness of the cylindrical goods 1.

Abstract

[Problem] To improve the strength of the portion of a cylindrical product, which is made of a fiber-reinforced resin material, in which a weld line is formed. [Solution] An injection molding die 2 is configured so that by injecting reinforcing fiber-containing molten resin from a gate 13 into a cavity 7 formed between an outer piece 3 and a center pin 4, the reinforcing fiber-containing molten resin merges inside the cavity 7 to form a weld line in the reinforcing fiber-containing molten resin inside the cavity 7. By moving the outer piece 3 with respect to the center pin 4 in said injection molding die 2, the distance to the center pin 4 is changed and the reinforcing fiber-containing molten resin inside the cavity 7 is forced to flow, disrupting the orientation of the reinforcing fibers in the weld line. As a result, the reinforcing fibers in the weld line and near the weld line in the cylindrical product 1 are intertwined, improving the strength of the portion of the cylindrical product 1 in which the weld line is formed.

Description

繊維強化樹脂材料製筒状品、その射出成形金型、及び射出成形方法Cylindrical product made of fiber reinforced resin material, injection molding die thereof, and injection molding method
 この発明は、射出成形によって生じるウェルドラインが形成された部分の強度を向上させる繊維強化樹脂材料製筒状品、その射出成形金型、及び射出成形方法に関するものである。 The present invention relates to a fiber reinforced resin material cylindrical product that improves the strength of a portion where a weld line generated by injection molding is formed, an injection mold thereof, and an injection molding method.
 従来から、図13に示すように、ピンポイントゲート1000から金型1001のキャビティ1002内に溶融樹脂を射出し、キャビティ1002の形状が転写された筒状品1003(図14参照)を製造する射出成形方法が知られている(特許文献1参照)。 Conventionally, as shown in FIG. 13, a molten resin is injected into a cavity 1002 of a mold 1001 from a pinpoint gate 1000 to produce a cylindrical product 1003 (see FIG. 14) in which the shape of the cavity 1002 is transferred. A molding method is known (see Patent Document 1).
特許第3383971号公報Japanese Patent No. 3383971
 しかしながら、図13及び図14に示すように、従来の射出成形方法は、溶融樹脂がピンポイントゲート1000から金型1001のキャビティ1002内に射出されると、キャビティ1002内で溶融樹脂が合流した部分にウェルドライン1004ができ、このウェルドライン1004が筒状品1003の強度を低下させるという問題が指摘されている。とりわけ、繊維強化樹脂材料を使用して射出成形された筒状品1003は、ウェルドライン1004の強化繊維1005が一方向(溶融樹脂の流れる方向)に揃ってしまうため(図15参照)、軸に圧入するとウェルドライン1004が形成された部分において割れを生じやすいという問題を有していた。 However, as shown in FIGS. 13 and 14, in the conventional injection molding method, when the molten resin is injected from the pinpoint gate 1000 into the cavity 1002 of the mold 1001, the portion where the molten resin merges in the cavity 1002. It has been pointed out that a weld line 1004 is formed, and that the weld line 1004 reduces the strength of the tubular product 1003. In particular, the cylindrical product 1003 injection-molded using a fiber reinforced resin material has the reinforcing fibers 1005 of the weld line 1004 aligned in one direction (the direction in which the molten resin flows) (see FIG. 15), so When press-fitted, there is a problem that cracks are likely to occur in the portion where the weld line 1004 is formed.
 そこで、本発明は、ウェルドラインが形成された部分の強度を向上させた繊維強化樹脂材料製筒状品、その射出成形金型、及び射出成形方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a cylindrical product made of a fiber reinforced resin material in which the strength of a portion where a weld line is formed, an injection mold thereof, and an injection molding method.
 本発明は、強化繊維入りの溶融樹脂をゲート13,111からキャビティ7,105内に射出することにより、前記キャビティ7,105内で前記強化繊維入りの溶融樹脂が合流してウェルドライン34が形成される筒状品1の射出成形金型2に関するものである。この発明において、前記キャビティ7,105は、前記筒状品1の内周面側を形作るセンターピン4,150と、前記筒状品1の外周面側を形作る外駒3,151との間に形成されている。また、前記外駒3,151は、前記センターピン4,150に対して移動させられることにより、前記センターピン4,150との間隔を変えて、前記キャビティ7,105内の前記強化繊維入りの溶融樹脂を強制的に流動させ、前記ウェルドライン34の前記強化繊維の向きを乱すようになっている。 In the present invention, molten resin containing reinforcing fibers is injected into the cavities 7 and 105 from the gates 13 and 111, so that the molten resin containing reinforcing fibers merges in the cavities 7 and 105 to form the weld line 34. The present invention relates to an injection mold 2 for a tubular product 1 to be manufactured. In the present invention, the cavities 7 and 105 are provided between a center pin 4 and 150 forming the inner peripheral surface side of the tubular product 1 and an outer piece 3 and 151 forming the outer peripheral surface side of the tubular product 1. Is formed. Further, the outer piece 3, 151 is moved with respect to the center pin 4, 150, thereby changing the distance from the center pin 4, 150 and containing the reinforcing fibers in the cavities 7, 105. The molten resin is forced to flow, and the direction of the reinforcing fibers in the weld line 34 is disturbed.
 また、本発明は、強化繊維入りの溶融樹脂をゲート13,111からキャビティ7,105内に射出することにより、前記キャビティ7,105内で前記強化繊維入りの溶融樹脂が合流してウェルドライン34が形成される筒状品1の射出成形方法に関するものである。この発明において、前記キャビティ7,105は、前記筒状品1の内周面側を形作るセンターピン4,150と、前記筒状品1の外周面側を形作る外駒3,151との間に形成されている。そして、前記外駒3,151を前記センターピン4,150に対して移動させることにより、前記センターピン4,150との間隔を変えて、前記キャビティ7,105内の前記強化繊維入りの溶融樹脂を強制的に流動させ、前記ウェルドライン34の前記強化繊維の向きを乱すようになっている。 Further, according to the present invention, the molten resin containing the reinforcing fibers is injected into the cavities 7 and 105 from the gates 13 and 111 into the cavities 7 and 105, so that the molten resin containing the reinforcing fibers merges in the cavities 7 and 105. The present invention relates to a method for injection molding of a cylindrical product 1 in which is formed. In the present invention, the cavities 7 and 105 are provided between a center pin 4 and 150 forming the inner peripheral surface side of the tubular product 1 and an outer piece 3 and 151 forming the outer peripheral surface side of the tubular product 1. Is formed. Then, by moving the outer piece 3, 151 with respect to the center pin 4, 150, the distance from the center pin 4, 150 is changed, and the molten resin containing the reinforcing fibers in the cavities 7, 105 is obtained. Is forced to flow, and the direction of the reinforcing fibers in the weld line 34 is disturbed.
 また、本発明は、強化繊維入りの溶融樹脂がゲート13,111からキャビティ7,105内に射出され、前記キャビティ7,105内で前記強化繊維入りの溶融樹脂が合流してウェルドライン34が形成される繊維強化樹脂材料製筒状品1に関するものである。この発明に係る繊維強化樹脂材料製筒状品1は、前記キャビティ7,105が前記筒状品1の内周面側を形作るセンターピン4,150と前記筒状品1の外周面側を形作る外駒3,151との間に形成され、前記外駒3,151が前記センターピン4,150に対して移動させられることにより、前記センターピン4,150との間隔が変化させられ、前記キャビティ7,105内の前記強化繊維入りの溶融樹脂が強制的に流動させられ、前記ウェルドライン34の前記強化繊維の向きが乱された、ことを特徴としている。 Further, according to the present invention, molten resin containing reinforcing fibers is injected into the cavities 7 and 105 from the gates 13 and 111, and the molten resin containing reinforcing fibers merges in the cavities 7 and 105 to form a weld line 34. This relates to a tubular product 1 made of fiber-reinforced resin material. In the tubular product 1 made of fiber reinforced resin material according to the present invention, the cavities 7 and 105 form the center pins 4 and 150 that form the inner peripheral surface side of the tubular product 1 and the outer peripheral surface side of the tubular product 1. The space between the outer pins 3 and 151 is changed, and the outer pins 3 and 151 are moved with respect to the center pins 4 and 150, whereby the distance from the center pins 4 and 150 is changed. 7 and 105, the molten resin containing the reinforcing fibers is forced to flow, and the direction of the reinforcing fibers in the weld line 34 is disturbed.
 本発明によれば、射出成形された筒状品におけるウェルドライン及びウェルドライン近傍の強化繊維の向きが乱され、筒状品のウェルドライン及びウェルドライン近傍の強化繊維が絡み合うため、筒状品のウェルドラインが目立ち難くなると共に、筒状品のウェルドラインが形成された部分の強度が向上する。 According to the present invention, the direction of the weld line in the injection-molded cylindrical product and the reinforcing fiber in the vicinity of the weld line is disturbed, and the weld line in the cylindrical product and the reinforcing fiber in the vicinity of the weld line are intertwined. The weld line becomes inconspicuous and the strength of the portion of the tubular product where the weld line is formed is improved.
本発明の第1実施形態に係る射出成形金型の構造を示す図であり、射出待機状態における射出成形金型の構造を示す図である。It is a figure which shows the structure of the injection mold which concerns on 1st Embodiment of this invention, and is a figure which shows the structure of the injection mold in an injection standby state. 本発明の第1実施形態に係る射出成形金型の構造を示す図であり、射出待機状態における外駒をセンターピンに対して時計回り方向に所定角度(θ)だけ偏心回動させた場合の射出成形金型の構造を示す図である。It is a figure which shows the structure of the injection mold which concerns on 1st Embodiment of this invention, and is the case where the outer piece in an injection waiting state is eccentrically rotated only a predetermined angle ((theta)) clockwise with respect to the center pin. It is a figure which shows the structure of an injection mold. センターピンと外駒との関係を模式的に示す図である。It is a figure which shows typically the relationship between a center pin and an outer piece. 本発明の第1実施形態に係る射出成形金型で射出成形された筒状品を示す図である。図4(a)が筒状品の正面図であり、図4(b)が筒状品の側面図であり、図4(c)が図4(a)のA5-A5線に沿って切断して示す筒状品の断面図である。It is a figure which shows the cylindrical goods injection-molded with the injection mold which concerns on 1st Embodiment of this invention. 4 (a) is a front view of the tubular product, FIG. 4 (b) is a side view of the tubular product, and FIG. 4 (c) is cut along line A5-A5 in FIG. 4 (a). It is sectional drawing of the cylindrical goods shown. 本発明の第2実施形態に係る射出成形金型の構造を示す図であり、図1に示した射出成形金型の回転駆動手段の変形例を示す図である。It is a figure which shows the structure of the injection mold which concerns on 2nd Embodiment of this invention, and is a figure which shows the modification of the rotation drive means of the injection mold shown in FIG. 本発明の第2実施形態に係る射出成形金型の構造を示す図であり、図5の射出待機状態における外駒をセンターピンに対して時計回り方向に所定角度だけ偏心回動させた場合の射出成形金型の構造を示す図である。It is a figure which shows the structure of the injection mold which concerns on 2nd Embodiment of this invention, and is a case where the outer piece in the injection standby state of FIG. 5 is eccentrically rotated by a predetermined angle clockwise with respect to the center pin. It is a figure which shows the structure of an injection mold. 本発明の第3実施形態に係る射出成形金型の構造を示す図であり、図1に示した射出成形金型の変形例を示す図である。It is a figure which shows the structure of the injection mold which concerns on 3rd Embodiment of this invention, and is a figure which shows the modification of the injection mold shown in FIG. 本発明の第3実施形態に係る射出成形金型の構造を示す図であり、図7の射出待機状態における外駒をセンターピンに対して時計回り方向に所定角度だけ偏心回動させた場合の射出成形金型2の構造を示す図である。It is a figure which shows the structure of the injection-molding die concerning 3rd Embodiment of this invention, and is the case where the outer piece in the injection standby state of FIG. 7 is eccentrically rotated by a predetermined angle clockwise with respect to the center pin. FIG. 3 is a view showing the structure of an injection mold 2. 本発明の第3実施形態に係る射出成形金型で射出成形された筒状品を示す図である。図9(a)が筒状品の正面図であり、図9(b)が筒状品の側面図であり、図9(c)が図9(a)のA14-A14線に沿って切断して示す筒状品の断面図である。It is a figure which shows the cylindrical goods injection-molded with the injection mold which concerns on 3rd Embodiment of this invention. 9A is a front view of the cylindrical product, FIG. 9B is a side view of the cylindrical product, and FIG. 9C is cut along line A14-A14 in FIG. 9A. It is sectional drawing of the cylindrical goods shown. 本発明の第4実施形態に係る射出成形金型の構造を示す図であり、図7に示した射出成形金型の回転駆動手段の変形例を示す図である。It is a figure which shows the structure of the injection mold which concerns on 4th Embodiment of this invention, and is a figure which shows the modification of the rotation drive means of the injection mold shown in FIG. 本発明の第4実施形態に係る射出成形金型の構造を示す図であり、図10の射出待機状態における外駒をセンターピンに対して時計回り方向に所定角度だけ偏心回動させた場合の射出成形金型の構造を示す図である。It is a figure which shows the structure of the injection mold which concerns on 4th Embodiment of this invention, and is the case where the outer piece in the injection standby state of FIG. 10 is eccentrically rotated only a predetermined angle clockwise with respect to the center pin. It is a figure which shows the structure of an injection mold. 本発明の第5実施形態に係る射出成形金型を示す図である。It is a figure which shows the injection mold which concerns on 5th Embodiment of this invention. 従来例に係る筒状品の射出成形金型の構造を示す図である。It is a figure which shows the structure of the injection molding metal mold | die of the cylindrical goods which concerns on a prior art example. 従来例に係る筒状品の外観斜視図である。It is an external appearance perspective view of the cylindrical goods which concern on a prior art example. 従来例に係る筒状品のウェルドライン及びその近傍における強化繊維の配向を示す図である。It is a figure which shows the orientation of the reinforcement fiber in the weld line of the cylindrical goods which concern on a prior art example, and its vicinity.
 以下、本発明の実施形態を図面に基づき詳述する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 [第1実施形態]
  (筒状品の射出成形金型)
 図1乃至図2は、本発明の第1実施形態に係る筒状品1の射出成形金型2を示す図である。このうち、図1は、射出待機状態における射出成形金型2の構造を示す図である。また、図2は、射出待機状態における外駒3をセンターピン4に対して時計回り方向に所定角度(θ)だけ偏心回動させた場合の射出成形金型2の構造を示す図である。なお、図1(a)は、図1(b)に示す射出成形金型をA1-A1線に沿って切断して示す第2金型の平面図である。また、図1(b)は、図1(a)のA2-A2線に沿って切断して示す射出成形金型の断面図である。また、図2(a)は、図2(b)に示す射出成形金型をA3-A3線に沿って切断して示す第2金型の平面図である。また、図2(b)は、図2(a)のA4-A4線に沿って切断して示す射出成形金型の断面図である。
[First Embodiment]
(Cylindrical injection mold)
1 and 2 are views showing an injection mold 2 for a cylindrical product 1 according to the first embodiment of the present invention. Among these, FIG. 1 is a figure which shows the structure of the injection mold 2 in an injection standby state. FIG. 2 is a view showing the structure of the injection mold 2 when the outer piece 3 in the injection standby state is eccentrically rotated by a predetermined angle (θ) in the clockwise direction with respect to the center pin 4. FIG. 1 (a) is a plan view of a second mold shown by cutting the injection mold shown in FIG. 1 (b) along the line A1-A1. FIG. 1B is a cross-sectional view of the injection mold shown cut along the line A2-A2 in FIG. FIG. 2A is a plan view of a second mold shown by cutting the injection mold shown in FIG. 2B along the line A3-A3. FIG. 2B is a cross-sectional view of the injection mold shown cut along the line A4-A4 in FIG.
 図1及び図2に示すように、射出成形金型2は、第1金型5と第2金型6の突き合わせ面5a,6a側にキャビティ7が形成されている。キャビティ7は、図4に示す繊維強化樹脂材料製筒状品1(以下、筒状品1と略称する)を形作る形状になっており、強化繊維入りの溶融樹脂が充填されるようになっている。筒状品1は、図4に示すように、円筒部8と、この円筒部8の一端側に一体に形成された中空円板部10と、を有している。そして、この筒状品1を形作るキャビティ7は、円筒部8を形作る第1キャビティ部11と、第1キャビティ部11の一端側に位置して中空円板部10を形作る第2キャビティ部12と、を有している。このキャビティ7は、第2金型6に形成されており、開口端が第1金型5によって塞がれるようになっている。なお、強化繊維入りの溶融樹脂は、PA66-GF30(30%ガラスファイバー入りナイロン66)、PA6-GF(20%ガラスファイバー入りナイロン6)、PPS-GF40(40%ガラスファイバー入りポリフェニレンサルファイド)、POM-GF25(25%ガラスファイバー入りポリアセタール)等が使用される。 As shown in FIGS. 1 and 2, the injection mold 2 has a cavity 7 formed on the side of the butted surfaces 5a and 6a of the first mold 5 and the second mold 6. The cavity 7 has a shape that forms a tubular product 1 made of a fiber reinforced resin material (hereinafter abbreviated as a tubular product 1) shown in FIG. 4, and is filled with a molten resin containing reinforcing fibers. Yes. As shown in FIG. 4, the tubular product 1 includes a cylindrical portion 8 and a hollow disc portion 10 integrally formed on one end side of the cylindrical portion 8. The cavity 7 that forms the cylindrical product 1 includes a first cavity portion 11 that forms the cylindrical portion 8, and a second cavity portion 12 that is positioned on one end side of the first cavity portion 11 and forms the hollow disc portion 10. ,have. The cavity 7 is formed in the second mold 6 so that the opening end is closed by the first mold 5. Note that molten resin containing reinforcing fibers are PA66-GF30 (nylon 66 containing 30% glass fiber), PA6-GF (nylon 6 containing 20% glass fiber), PPS-GF40 (polyphenylene sulfide containing 40% glass fiber), POM. -GF25 (polyacetal containing 25% glass fiber) or the like is used.
 第1金型5は、第2金型6に形成された第2キャビティ部12に開口するゲート13(ピンポイントゲート)が形成されている。第2金型6は、第1キャビティ部11の内周面側に位置する略丸棒状のセンターピン4と、第1キャビティ部11の外周面側に位置する外駒3と、を有している。そして、センターピン4の大径部14の外周面14aが第1キャビティ部11の内周面側を形作り、外駒3の内周面3a(キャビティ形成穴18の内周面)が第1キャビティ部11の外周面側を形作るようになっている。 The first mold 5 is formed with a gate 13 (pinpoint gate) that opens to the second cavity 12 formed in the second mold 6. The second mold 6 includes a substantially round bar-shaped center pin 4 positioned on the inner peripheral surface side of the first cavity portion 11 and an outer piece 3 positioned on the outer peripheral surface side of the first cavity portion 11. Yes. The outer peripheral surface 14a of the large-diameter portion 14 of the center pin 4 forms the inner peripheral surface side of the first cavity portion 11, and the inner peripheral surface 3a of the outer piece 3 (the inner peripheral surface of the cavity forming hole 18) is the first cavity. The outer peripheral surface side of the part 11 is formed.
 センターピン4の先端側には、第1金型5の突き合わせ面5aに突き当てられる丸棒状の小径部15が形成されている。この小径部15は、センターピン4の先端側の中央に一体に形成されており、中空円板部10の中央穴16を形作るようになっている。そして、第2キャビティ部12は、センターピン4の大径部14の先端面17と小径部15の外周面15a、及び第1金型5の突き合わせ面5aによって形作られている。 A round bar-shaped small-diameter portion 15 that is abutted against the abutting surface 5a of the first mold 5 is formed on the tip side of the center pin 4. The small diameter portion 15 is integrally formed at the center of the front end side of the center pin 4 so as to form the central hole 16 of the hollow disc portion 10. The second cavity portion 12 is formed by the distal end surface 17 of the large diameter portion 14 of the center pin 4, the outer peripheral surface 15 a of the small diameter portion 15, and the butting surface 5 a of the first mold 5.
 外駒3は、センターピン4を取り囲むように形作られた筒状体であり、第1キャビティ部11の外周面側を形作るキャビティ形成穴18が中心軸P0に沿った方向(図1(b)及び図2(b)のZ軸に沿った方向)に貫通している。この外駒3は、一端側の端面3bが型締め時に第1金型5の突き合わせ面5aに突き当てられ、他端側が外駒支持体20によって回動可能に支持される。外駒3の他端側には、鍔状のフランジ部21が形成されると共に、キャビティ形成穴18よりも大径の環状凹部22が形成されている。また、外駒3は、他端側の環状凹部22が外駒支持体20の偏心回動支持部23に相対回動できるように係合され、フランジ部21の端面21aが外駒支持体20の外駒支持面20aに相対回動できるように支持されて、偏心回動支持部23の中心軸P1の周りを回動できるようになっている。そして、この外駒3は、中心軸P0が偏心回動支持部23の中心軸P1と同軸上に位置するのに対し、キャビティ形成穴18の中心18aが中心軸P0に対して所定寸法(ε)だけ偏心している(図3参照)。また、外駒3のフランジ部21には、回転駆動手段24の駆動突起25と係合する切り欠き溝26が形成されている。このような外駒3は、偏心回動支持部23の中心軸P1の周りを回転駆動手段24によって所定角度(θ)だけ回動させられる(図1(a)及び図2(a)参照)。これにより、外駒3は、センターピン4の中心軸P2に対して偏心した状態で回動させられることになる。また、外駒3は、その外周面3cが第2金型6に形成された外駒収容穴27内に収容され、フランジ部21が第2金型6に形成されたフランジ部収容凹部28内に収容されている。なお、第2金型6の外駒収容穴27とフランジ部収容凹部28は、センターピン4の中心軸P2を中心として形成されており、回転駆動手段24によって回動させられる外駒3の外周面3cと外駒3のフランジ部21の外周面21bに接触しないように形成されている。 The outer piece 3 is a cylindrical body formed so as to surround the center pin 4, and the cavity forming hole 18 that forms the outer peripheral surface side of the first cavity portion 11 is in the direction along the central axis P 0 (FIG. 1B). And in the direction along the Z-axis in FIG. The outer piece 3 has an end face 3b at one end abutted against the abutting face 5a of the first mold 5 at the time of mold clamping, and the other end is rotatably supported by the outer piece support 20. On the other end side of the outer piece 3, a flange-like flange portion 21 is formed, and an annular recess 22 having a diameter larger than that of the cavity forming hole 18 is formed. Further, the outer piece 3 is engaged so that the annular recess 22 on the other end side can be rotated relative to the eccentric rotation support portion 23 of the outer piece support 20, and the end surface 21 a of the flange portion 21 is the outer piece support 20. The outer piece support surface 20a is supported so as to be relatively rotatable, and can be rotated around the central axis P1 of the eccentric rotation support portion 23. The outer piece 3 has a center axis P0 coaxially positioned with the center axis P1 of the eccentric rotation support portion 23, whereas the center 18a of the cavity forming hole 18 has a predetermined dimension (ε) with respect to the center axis P0. ) Is eccentric (see FIG. 3). Further, the flange portion 21 of the outer piece 3 is formed with a notch groove 26 that engages with the driving protrusion 25 of the rotation driving means 24. Such an outer piece 3 is rotated around the central axis P1 of the eccentric rotation support part 23 by a predetermined angle (θ) by the rotation driving means 24 (see FIGS. 1A and 2A). . Thereby, the outer piece 3 is rotated in an eccentric state with respect to the central axis P <b> 2 of the center pin 4. Further, the outer piece 3 is housed in an outer piece housing hole 27 whose outer peripheral surface 3 c is formed in the second die 6, and the flange portion 21 is inside the flange portion containing recess 28 formed in the second die 6. Is housed in. The outer piece accommodation hole 27 and the flange portion accommodation recess 28 of the second mold 6 are formed around the central axis P2 of the center pin 4, and the outer periphery of the outer piece 3 rotated by the rotation driving means 24. It is formed so as not to contact the surface 3 c and the outer peripheral surface 21 b of the flange portion 21 of the outer piece 3.
 外駒支持体20は、外駒支持面20aが先端側(外駒3寄りの端部側)に形成され、円環状の偏心回動支持部23が外駒支持面20aからZ軸方向に沿って突出するように形成されている。外駒支持面20aは、外駒3をZ軸方向に位置決めする。偏心回動支持部23は、外駒3の環状凹部22の内周面に僅かな隙間を介して嵌合され、外駒3をX-Y平面において位置決めする。そして、外駒支持体20は、偏心回動支持部23の中心軸P1がセンターピン4の中心軸P2に対して所定寸法(ε)だけ偏心している。また、この偏心回動支持部23の中心軸P1は、外駒3の中心軸P0と同軸上に位置するように形成されている。また、外駒支持体20には、センターピン4に沿ってスライド移動する円筒状のエジェクトスリーブ30が収容されている。このエジェクトスリーブ30は、キャビティ7内の強化繊維入り溶融樹脂が冷えて固まって筒状品1が形作られ、第1金型5と第2金型6とが離型された後、筒状品1をキャビティ7内から押し出すようになっている。 The outer piece support body 20 has an outer piece support surface 20a formed on the tip side (the end side near the outer piece 3), and an annular eccentric rotation support portion 23 extending from the outer piece support surface 20a along the Z-axis direction. It is formed to protrude. The outer piece support surface 20a positions the outer piece 3 in the Z-axis direction. The eccentric rotation support portion 23 is fitted to the inner peripheral surface of the annular recess 22 of the outer piece 3 via a slight gap, and positions the outer piece 3 in the XY plane. In the outer piece support 20, the center axis P 1 of the eccentric rotation support portion 23 is eccentric with respect to the center axis P 2 of the center pin 4 by a predetermined dimension (ε). The central axis P1 of the eccentric rotation support portion 23 is formed so as to be coaxial with the central axis P0 of the outer piece 3. Further, the outer piece support 20 accommodates a cylindrical eject sleeve 30 that slides along the center pin 4. The eject sleeve 30 is formed after the molten resin containing the reinforcing fibers in the cavity 7 is cooled and solidified to form the tubular product 1, and the first mold 5 and the second mold 6 are separated from each other. 1 is pushed out of the cavity 7.
 図3は、センターピン4と外駒3の関係を模式的に示す図である。この図3において、キャビティ7は、センターピン4の中心軸P2と外駒3のキャビティ形成穴18の中心18aとが同心の場合、キャビティ幅(W)がセンターピン4の周方向に沿って均一寸法になっており、図2(a)に示すキャビティ7に対応する。なお、この場合のキャビティ形成穴18は、図3において実線で示してある。 FIG. 3 is a diagram schematically showing the relationship between the center pin 4 and the outer piece 3. 3, the cavity 7 has a uniform cavity width (W) along the circumferential direction of the center pin 4 when the center axis P2 of the center pin 4 and the center 18a of the cavity forming hole 18 of the outer piece 3 are concentric. It corresponds to the cavity 7 shown in FIG. In this case, the cavity forming hole 18 is indicated by a solid line in FIG.
 センターピン4の中心軸P2と交差してY軸と平行に延びる中心線(基準中心線)31上には、偏心回動支持部23の中心軸P1が配置される。この偏心回動支持部23の中心軸P1は、センターピン4の中心軸P2から基準中心線31に沿って所定寸法(ε)だけ離れて(偏心して)位置する。そして、外駒3は、偏心回動支持部23の中心軸P1を中心とし、反時計回り方向へ所定角度(θ)分だけ回動させられると、キャビティ形成穴18の中心18aがセンターピン4の中心(中心軸P2)からずれ、射出待機状態の位置に配置される(図1(a)に示すように配置される)。この際のキャビティ形成穴18は、図3において二点鎖線で示してあり、キャビティ形成穴18の中心18aがセンターピン4の中心軸P2から最も大きくずれた位置にある。その結果、センターピン4の径方向に沿ったセンターピン4の外周面とキャビティ形成穴18の内周面との間隔(キャビティ幅(W)と略称する)は、センターピン4の周方向に沿って不均一になり、センターピン4の中心を通り(中心軸P2と交差し)且つX軸と平行な中心線32を中心軸P2の周りに反時計回り方向へ(θ/2)だけ回転させた中心線33上において最大値(Wmax)及び最小値(Wmin)となる。しかも、キャビティ7は、中心線33を対称軸とした線対称の形状になる。そこで、本実施形態に係る射出成形金型2は、中心線33上の位置で且つキャビティ幅(W)が最小値(Wmin)となる側にゲート13を配置することにより、このゲート13からキャビティ7内に射出された繊維強化入りの溶融樹脂がゲート13から180°回転した中心線33上の位置(キャビティ幅(W)が最大値(Wmax)となる位置)にウェルドライン34を形作るように構成された。そして、本実施形態に係る射出成形金型2は、図3に示す射出成形金型2をセンターピン4の中心軸P2の周りに(90°+(θ/2))だけ時計回り方向に回動させ、図1(a)の配置にした。なお、本実施形態に係る射出成形金型2において、所定寸法(ε)及び所定角度(θ)は、キャビティ7の大きさや強化繊維入り樹脂材料の種類等に応じて最適の数値が決定される。 The center axis P1 of the eccentric rotation support portion 23 is disposed on a center line (reference center line) 31 that intersects the center axis P2 of the center pin 4 and extends in parallel with the Y axis. The central axis P1 of the eccentric rotation support portion 23 is located away from the central axis P2 of the center pin 4 along the reference center line 31 (eccentric). When the outer piece 3 is rotated by a predetermined angle (θ) in the counterclockwise direction around the central axis P1 of the eccentric rotation support portion 23, the center 18a of the cavity forming hole 18 becomes the center pin 4. 1 is shifted from the center (center axis P2) and placed at a position in an injection standby state (placed as shown in FIG. 1A). The cavity forming hole 18 at this time is indicated by a two-dot chain line in FIG. 3, and the center 18 a of the cavity forming hole 18 is at the position that is most greatly displaced from the center axis P <b> 2 of the center pin 4. As a result, the distance (abbreviated as cavity width (W)) between the outer peripheral surface of the center pin 4 and the inner peripheral surface of the cavity forming hole 18 along the radial direction of the center pin 4 is along the circumferential direction of the center pin 4. The center line 32 passing through the center of the center pin 4 (crossing the center axis P2) and parallel to the X axis is rotated counterclockwise (θ / 2) around the center axis P2. On the center line 33, the maximum value (Wmax) and the minimum value (Wmin) are obtained. Moreover, the cavity 7 has a line-symmetric shape with the center line 33 as the axis of symmetry. Therefore, the injection mold 2 according to the present embodiment is arranged such that the gate 13 is disposed on the side on the center line 33 and on the side where the cavity width (W) becomes the minimum value (Wmin). 7 so that the weld line 34 is formed at a position on the center line 33 (position where the cavity width (W) becomes the maximum value (Wmax)) where the molten resin injected into the fiber 7 is rotated 180 ° from the gate 13. Configured. The injection mold 2 according to this embodiment rotates the injection mold 2 shown in FIG. 3 clockwise around the central axis P2 of the center pin 4 by (90 ° + (θ / 2)). The arrangement shown in FIG. In the injection mold 2 according to the present embodiment, optimum values for the predetermined dimension (ε) and the predetermined angle (θ) are determined according to the size of the cavity 7 and the type of the resin material containing the reinforcing fiber. .
 外駒3を所定角度(θ)だけ回動させる回転駆動手段24は、第2金型6に形成されたスライダガイド穴35にスライド移動できるように収容されたスライダ36と、このスライダ36を往復動させるアクチュエータ37(油圧シリンダ、空圧シリンダ等)と、を有している。スライダ36は、外駒3のフランジ部21の切り欠き溝26と係合する駆動突起25を有しており、駆動突起25を外駒3の切り欠き溝26の溝壁に引っ掛けて、スライダガイド穴35内をスライド移動することにより、外駒3を偏心回動支持部23の中心軸P1の周りに所定角度(θ)だけ回動させる。そして、スライダガイド穴35は、駆動突起25の移動を可能にする窓38によってフランジ部収容凹部28内に連通されている。なお、スライダ36は、アクチュエータ37から延びるロッド40に固定され、ロッド40と一体となって移動する。また、スライダ36及びスライダガイド穴35は、Y-Z座標面と平行の仮想平面で切断した断面形状が四角形状になっており、スライダ36に作用する力を面で受けることができるようになっている。 The rotation driving means 24 for rotating the outer piece 3 by a predetermined angle (θ) is reciprocated between the slider 36 housed so as to be slidable in the slider guide hole 35 formed in the second mold 6 and the slider 36. And an actuator 37 (hydraulic cylinder, pneumatic cylinder, etc.) to be moved. The slider 36 has a drive protrusion 25 that engages with the notch groove 26 of the flange portion 21 of the outer piece 3, and the drive protrusion 25 is hooked on the groove wall of the notch groove 26 of the outer piece 3 to slide the slider guide. The outer piece 3 is rotated around the central axis P1 of the eccentric rotation support portion 23 by a predetermined angle (θ) by sliding in the hole 35. The slider guide hole 35 is communicated with the flange housing recess 28 by a window 38 that allows the drive protrusion 25 to move. The slider 36 is fixed to a rod 40 extending from the actuator 37 and moves together with the rod 40. Further, the slider 36 and the slider guide hole 35 have a quadrangular cross-sectional shape cut along a virtual plane parallel to the YZ coordinate plane, so that the force acting on the slider 36 can be received by the surface. ing.
 以上のような射出成形金型2は、図1及び図3に示すように、外駒3のキャビティ形成穴18の中心18aがセンターピン4の中心軸P2に対してずらされて、キャビティ幅(W)の最大値(Wmax)及び最小値(Wmin)の位置がセンターピン4の中心とゲート13の中心を結ぶ直線(中心線33)上にある射出待機状態で、且つ、第1金型5と第2金型6が突き合わされて型締めされた状態において、強化繊維入りの溶融樹脂がゲート13からキャビティ7内に射出される。この際、キャビティ7内に射出された強化繊維入りの溶融樹脂は、キャビティ幅(W)の最小値(Wmin)の部分(キャビティ7の一部分)からキャビティ幅(W)の最大値(Wmax)の部分に向けてキャビティ7内を均等に流動し、キャビティ幅(W)の最大値(Wmax)の部分で合流し、その合流部にウェルドライン34を形成する(図4参照)。そして、射出成形金型2は、キャビティ7内の全域に強化繊維入りの溶融樹脂が充填され、その強化繊維入りの溶融樹脂が冷えて流動性を失う前に、回転駆動手段24が作動させられて、外駒3が偏心回動支持部23の中心軸P1の周りを回転駆動手段24によって時計回り方向へ所定角度(θ)だけ回動させられる(図2参照)。これにより、射出成形金型2は、センターピン4の中心軸P2と外駒3のキャビティ形成穴18の中心18aとが一致し、キャビティ7のキャビティ幅(W)がセンターピン4の周方向に沿って一定になる。このように、射出成形金型2は、図1に示す状態から図2に示す状態に変化すると、外駒3の内周面3aとセンターピン4の大径部14の外周面14aとの間隔が変化し、キャビティ7のキャビティ幅(W)が変動し、キャビティ7内の強化繊維入り溶融樹脂がキャビティ7内を強制的に流動させられる。そして、キャビティ7内における強化繊維入りの溶融樹脂は、強化繊維の配向が乱され、ウェルドライン34及びその周辺の強化繊維が絡み合う(図4参照)。特に、本実施形態に係る射出成形金型2は、キャビティ7のうちのウェルドライン34が形成される部分のキャビティ幅(W)が最大値(Wmax)となるように形成され、キャビティ7のうちのゲート13が開口する部分側のキャビティ幅(W)が最小値(Wmin)となるように形成されているため、図1に示す状態から図2に示す状態に変化すると、キャビティ7のうちのウェルドライン34が形成される部分及びゲート13が開口する部分側のキャビティ幅(W)の変化(ΔW)が最も大きくなる(ΔW=(Wmax+Wmin)/2-Wmax、又は、ΔW=(Wmax+Wmin)/2-Wmin)。その結果、本実施形態に係る射出成形金型2は、キャビティ7内のウェルドライン34が形成される部分及びゲート13が開口する部分側の強化繊維入り溶融樹脂がキャビティ7内の他部分よりも多く流動し、ウェルドライン34及びその近傍の強化繊維の配向を効果的に乱すことができる。 As shown in FIGS. 1 and 3, the injection mold 2 as described above is configured such that the center 18 a of the cavity forming hole 18 of the outer piece 3 is displaced with respect to the center axis P <b> 2 of the center pin 4 and the cavity width ( The first mold 5 is in an injection standby state in which the positions of the maximum value (Wmax) and the minimum value (Wmin) of W) are on a straight line (center line 33) connecting the center of the center pin 4 and the center of the gate 13. In a state where the second mold 6 is abutted against and the mold is clamped, molten resin containing reinforcing fibers is injected from the gate 13 into the cavity 7. At this time, the molten resin containing reinforcing fibers injected into the cavity 7 has a minimum value (Wmin) of the cavity width (W) (a part of the cavity 7) to a maximum value (Wmax) of the cavity width (W). The inside of the cavity 7 flows evenly toward the part, joins at the part of the maximum value (Wmax) of the cavity width (W), and a weld line 34 is formed at the joining part (see FIG. 4). The injection mold 2 is filled with a molten resin containing reinforcing fibers throughout the cavity 7, and the rotation driving means 24 is operated before the molten resin containing reinforcing fibers cools and loses fluidity. Thus, the outer piece 3 is rotated around the central axis P1 of the eccentric rotation support portion 23 by a predetermined angle (θ) in the clockwise direction by the rotation driving means 24 (see FIG. 2). Thereby, in the injection mold 2, the center axis P 2 of the center pin 4 and the center 18 a of the cavity forming hole 18 of the outer piece 3 coincide with each other, and the cavity width (W) of the cavity 7 is in the circumferential direction of the center pin 4. It becomes constant along. Thus, when the injection mold 2 changes from the state shown in FIG. 1 to the state shown in FIG. 2, the distance between the inner peripheral surface 3 a of the outer piece 3 and the outer peripheral surface 14 a of the large-diameter portion 14 of the center pin 4. Changes, the cavity width (W) of the cavity 7 varies, and the molten resin containing reinforcing fibers in the cavity 7 is forced to flow in the cavity 7. In the molten resin containing reinforcing fibers in the cavity 7, the orientation of the reinforcing fibers is disturbed, and the weld line 34 and surrounding reinforcing fibers are intertwined (see FIG. 4). In particular, the injection mold 2 according to the present embodiment is formed such that the cavity width (W) of the portion of the cavity 7 where the weld line 34 is formed has a maximum value (Wmax). Since the cavity width (W) on the side where the gate 13 is opened becomes the minimum value (Wmin), when the state shown in FIG. 1 is changed to the state shown in FIG. The change (ΔW) in the cavity width (W) at the portion where the weld line 34 is formed and the portion where the gate 13 opens is the largest (ΔW = (Wmax + Wmin) / 2−Wmax or ΔW = (Wmax + Wmin) / 2-Wmin). As a result, in the injection mold 2 according to the present embodiment, the molten resin containing reinforcing fibers on the side where the weld line 34 in the cavity 7 is formed and on the side where the gate 13 opens is more than the other part in the cavity 7. It can flow much and can effectively disturb the orientation of the weld line 34 and the reinforcing fibers in the vicinity thereof.
 その後、射出成形金型2は、キャビティ7内の強化繊維入りの溶融樹脂が冷えて固まり筒状品1が形作られると、第1金型5と第2金型6が分離され(型開きされ)、エジェクトスリーブ30がキャビティ7内の筒状品1をキャビティ7の外へ押し出す。これにより、射出成形された筒状品1が射出成形金型2のキャビティ7内から取り出される。 Thereafter, when the molten resin containing the reinforcing fibers in the cavity 7 is cooled and solidified to form the cylindrical product 1, the injection mold 2 is separated from the first mold 5 and the second mold 6 (the mold is opened). ), The eject sleeve 30 pushes the cylindrical product 1 in the cavity 7 out of the cavity 7. As a result, the injection-molded tubular product 1 is taken out from the cavity 7 of the injection mold 2.
 射出成形金型2は、キャビティ7内から筒状品1が取り出された後、回転駆動手段24が作動させられ、外駒3が図2に示す位置から図1の射出待機位置に回動駆動手段24によって回動されて戻され、次の射出成形に備える。 In the injection mold 2, after the cylindrical product 1 is taken out from the cavity 7, the rotation driving means 24 is operated, and the outer piece 3 is rotationally driven from the position shown in FIG. 2 to the injection standby position in FIG. 1. It is rotated back by the means 24 to prepare for the next injection molding.
 以上のような本実施形態に係る射出成形金型2によれば、射出成形された筒状品1におけるウェルドライン34及びウェルドライン34近傍の強化繊維の向きが乱され、筒状品1のウェルドライン34及びウェルドライン34近傍の強化繊維が絡み合うため、筒状品1のウェルドライン34が目立ち難くなると共に、筒状品1のウェルドライン34が形成された部分の強度が向上する。 According to the injection mold 2 according to the present embodiment as described above, the direction of the weld line 34 and the reinforcing fibers near the weld line 34 in the injection-molded tubular product 1 is disturbed, and the weld of the tubular product 1 is disturbed. Since the reinforcing fibers in the vicinity of the line 34 and the weld line 34 are entangled with each other, the weld line 34 of the tubular product 1 is less noticeable and the strength of the portion of the tubular product 1 where the weld line 34 is formed is improved.
  (筒状品の射出成形方法)
 以下に、本実施形態に係る射出成形金型2を使用した筒状品1の射出成形方法を説明する。
(Cylindrical injection molding method)
Below, the injection molding method of the cylindrical article 1 using the injection mold 2 which concerns on this embodiment is demonstrated.
 本実施形態に係る筒状品1の射出成形方法は、以下に詳述する第1乃至第4工程からなっている。 The injection molding method of the tubular product 1 according to the present embodiment includes first to fourth steps that will be described in detail below.
 先ず、射出成形の第1工程は、図1及び図3に示すように、外駒3のキャビティ形成穴18の中心18aがセンターピン4の中心軸P2に対してずらされて、キャビティ幅(W)の最大値(Wmax)及び最小値(Wmin)の位置がセンターピン4の中心軸P2とゲート13の中心を結ぶ直線(中心線33)上にあり、且つ、第1金型5と第2金型6が突き合わされて型締めされた射出待機状態において、強化繊維入りの溶融樹脂がゲート13からキャビティ7内に射出されるようになっている。この際、キャビティ幅(W)が最小値(Wmin)の位置にあるゲート13からキャビティ7内に射出された強化繊維入りの溶融樹脂は、ゲート13から周方向に180°回転した位置(キャビティ幅(W)が最大値(Wmax)の位置)で合流し、その強化繊維入りの溶融樹脂が合流する部分にウェルドライン34を形成する(図4参照)。 First, in the first step of injection molding, as shown in FIGS. 1 and 3, the center 18a of the cavity forming hole 18 of the outer piece 3 is shifted with respect to the center axis P2 of the center pin 4, and the cavity width (W ) Are on the straight line (center line 33) connecting the center axis P2 of the center pin 4 and the center of the gate 13, and the first mold 5 and the second value (Wmax). In an injection standby state in which the mold 6 is abutted and clamped, molten resin containing reinforcing fibers is injected from the gate 13 into the cavity 7. At this time, the molten resin containing reinforcing fibers injected into the cavity 7 from the gate 13 where the cavity width (W) is at the minimum value (Wmin) is rotated 180 ° from the gate 13 in the circumferential direction (cavity width). (W) is merged at the maximum value (Wmax)), and a weld line 34 is formed at the portion where the molten resin containing the reinforcing fibers merges (see FIG. 4).
 次に、射出成形の第2工程は、強化繊維入りの溶融樹脂がキャビティ7内の全域に充填され、キャビティ7内に充填された強化繊維入りの溶融樹脂が冷えて流動性を失う前に、外駒3が回転駆動手段24によって偏心回動支持部23の中心軸P1の周りを時計回り方向へ所定角度(θ)だけ回動させられ、センターピン4の中心軸P2と外駒3のキャビティ形成穴18の中心18aとが一致させられ、キャビティ7のキャビティ幅(W)がセンターピン4の周方向に沿って一定にさせられるようになっている(図2参照)。この射出成形の第2工程によれば、外駒3の内周面3aとセンターピン4の大径部14の外表面14aとの間隔が変化し、キャビティ7のキャビティ幅(W)が変動して、キャビティ7内の強化繊維入り溶融樹脂がキャビティ7内を強制的に流動させられる。そして、キャビティ7内における強化繊維入りの溶融樹脂は、強化繊維の配向が乱され、ウェルドライン34及びその周辺の強化繊維が絡み合う(図4参照)。 Next, in the second step of the injection molding, the molten resin containing the reinforcing fiber is filled in the entire area of the cavity 7, and before the molten resin containing the reinforcing fiber filled in the cavity 7 is cooled and loses fluidity, The outer piece 3 is rotated about the central axis P1 of the eccentric rotation support portion 23 by a predetermined angle (θ) clockwise by the rotation driving means 24, and the central axis P2 of the center pin 4 and the cavity of the outer piece 3 are rotated. The center 18a of the formation hole 18 is made to coincide, and the cavity width (W) of the cavity 7 is made constant along the circumferential direction of the center pin 4 (see FIG. 2). According to the second step of the injection molding, the distance between the inner peripheral surface 3a of the outer piece 3 and the outer surface 14a of the large diameter portion 14 of the center pin 4 changes, and the cavity width (W) of the cavity 7 changes. Thus, the molten resin containing reinforcing fibers in the cavity 7 is forced to flow in the cavity 7. In the molten resin containing reinforcing fibers in the cavity 7, the orientation of the reinforcing fibers is disturbed, and the weld line 34 and surrounding reinforcing fibers are intertwined (see FIG. 4).
 次に、射出成形の第3工程は、キャビティ7内の強化繊維入りの溶融樹脂が冷えて固まった後、第1金型5と第2金型6とを分離することにより、第2金型6側のキャビティ7内の筒状品(射出成形品)1と第1金型5側のゲート13とが分離され、ゲート13の切り離し痕41が筒状品1の中空円板部10の外表面に形成されるようになっている。 Next, in the third step of the injection molding, after the molten resin containing the reinforcing fibers in the cavity 7 is cooled and solidified, the first mold 5 and the second mold 6 are separated, thereby the second mold. The cylindrical product (injection molded product) 1 in the cavity 7 on the 6 side is separated from the gate 13 on the first mold 5 side, and the separation trace 41 of the gate 13 is outside the hollow disc portion 10 of the cylindrical product 1. It is designed to be formed on the surface.
 次に、射出成形の第4工程は、キャビティ7内の筒状品1をエジェクトスリーブ30でキャビティ7の外に押し出すことにより、射出成形された筒状品1がキャビティ7内から取り出される。 Next, in the fourth step of injection molding, the cylindrical product 1 in the cavity 7 is pushed out of the cavity 7 by the eject sleeve 30, whereby the injection-molded cylindrical product 1 is taken out from the cavity 7.
 以上のような本実施形態に係る射出成形方法によれば、射出成形された筒状品1におけるウェルドライン34及びウェルドライン34近傍の強化繊維の向きが乱され、筒状品1のウェルドライン34及びウェルドライン34近傍の強化繊維が絡み合うため、筒状品1のウェルドライン34が目立ち難くなると共に、筒状品1のウェルドライン34が形成された部分の強度が向上する。 According to the injection molding method according to the present embodiment as described above, the direction of the weld line 34 and the reinforcing fibers in the vicinity of the weld line 34 in the injection-molded tubular product 1 is disturbed, and the weld line 34 of the tubular product 1 is disturbed. In addition, since the reinforcing fibers in the vicinity of the weld line 34 are entangled, the weld line 34 of the tubular product 1 is less noticeable and the strength of the portion of the tubular product 1 where the weld line 34 is formed is improved.
  (筒状品)
 図4に示す本実施形態に係る筒状品1は、上述した射出成形金型2を使用し、上述した射出成形方法によって形成されている。この筒状品1は、円筒部8と、この円筒部8の一端側に一体に形成された中空円板部10と、を有している。また、筒状品1の一端側の中空円板部10には、ゲート13の切り離し痕41が形成されている。そして、筒状品1は、ウェルドライン34及びウェルドライン34近傍の強化繊維25が複雑に絡み合っている。
(Cylindrical product)
A cylindrical product 1 according to this embodiment shown in FIG. 4 is formed by the above-described injection molding method using the above-described injection mold 2. The cylindrical product 1 has a cylindrical portion 8 and a hollow disc portion 10 formed integrally with one end side of the cylindrical portion 8. Further, a separation mark 41 of the gate 13 is formed in the hollow disc portion 10 on one end side of the cylindrical product 1. The tubular product 1 is intricately intertwined with the weld line 34 and the reinforcing fibers 25 in the vicinity of the weld line 34.
 このような本実施形態に係る筒状品1は、ウェルドライン34及びウェルドライン34近傍の強化繊維の向きが乱され、ウェルドライン34及びウェルドライン34近傍の強化繊維が絡み合うため、ウェルドライン34が目立ち難くなると共に、ウェルドライン34が形成された部分の強度が向上する。 In the tubular product 1 according to the present embodiment, the weld line 34 and the direction of the reinforcing fiber in the vicinity of the weld line 34 are disturbed, and the weld line 34 and the reinforcing fiber in the vicinity of the weld line 34 are intertwined. It becomes inconspicuous and the strength of the portion where the weld line 34 is formed is improved.
 [第2実施形態]
  (筒状品の射出成形金型)
 図5乃至図6は、本発明の第2実施形態に係る射出成形金型2を示す図であり、第1実施形態に係る射出成形金型2の回転駆動手段24の変形例を示す図である。このうち、図5は、射出待機状態における射出成形金型2の構造を示す図である。また、図6は、射出待機状態における外駒3をセンターピン4に対して時計回り方向に所定角度(θ)だけ偏心回動させた場合の射出成形金型2の構造を示す図である。なお、図5(a)は、図5(b)に示す射出成形金型をA6-A6線に沿って切断して示す第2金型の平面図である。また、図5(b)は、図5(a)のA7-A7線に沿って切断して示す射出成形金型の断面図である。また、図6(a)は、図6(b)に示す射出成形金型をA8-A8線に沿って切断して示す第2金型の平面図である。また、図6(b)は、図6(a)のA9-A9線に沿って切断して示す射出成形金型の断面図である。
[Second Embodiment]
(Cylindrical injection mold)
5 to 6 are views showing an injection mold 2 according to the second embodiment of the present invention, and showing a modification of the rotation driving means 24 of the injection mold 2 according to the first embodiment. is there. Among these, FIG. 5 is a diagram showing the structure of the injection mold 2 in the injection standby state. FIG. 6 is a view showing the structure of the injection mold 2 when the outer piece 3 in the injection standby state is eccentrically rotated by a predetermined angle (θ) in the clockwise direction with respect to the center pin 4. FIG. 5 (a) is a plan view of a second mold shown by cutting the injection mold shown in FIG. 5 (b) along the line A6-A6. FIG. 5B is a cross-sectional view of the injection mold shown cut along line A7-A7 in FIG. FIG. 6A is a plan view of the second mold shown by cutting the injection mold shown in FIG. 6B along the line A8-A8. FIG. 6B is a cross-sectional view of the injection mold shown cut along the line A9-A9 in FIG.
 図5乃至図6に示す本実施形態に係る射出成形金型2は、回転駆動手段42を除く他の構成が第1実施形態に係る射出成形金型2と同様であるため、第1実施形態に係る射出成形金型2の説明と重複する説明を省略し、第1実施形態に係る射出成形金型2と異なる構成部分(回転駆動手段)について詳述する。 The injection mold 2 according to this embodiment shown in FIGS. 5 to 6 has the same configuration as the injection mold 2 according to the first embodiment except for the rotational drive means 42, and therefore the first embodiment. The description which overlaps with the description of the injection mold 2 according to the above will be omitted, and the components (rotation drive means) different from the injection mold 2 according to the first embodiment will be described in detail.
 本実施形態に係る射出成形金型2の回転駆動手段42は、第2金型6に形成されたスライダガイド穴43にスライド移動できるように収容されたスライダ44と、このスライダ44を一方向に常時付勢するばね45(圧縮コイルスプリング)と、このばね45で付勢されたスライダ44をスライド移動させる操作ピン46と、この操作ピン46を操作ピンガイド穴47に沿ってスライド移動させる駆動機構部48と、を有している。 The rotation driving means 42 of the injection mold 2 according to this embodiment includes a slider 44 accommodated in a slider guide hole 43 formed in the second mold 6 so as to be slidable, and the slider 44 in one direction. A spring 45 (compression coil spring) that is always biased, an operation pin 46 that slides the slider 44 biased by the spring 45, and a drive mechanism that slides the operation pin 46 along the operation pin guide hole 47 Part 48.
 スライダ44は、Y-Z座標面と平行な仮想平面で切断した断面形状が四角形状のロッド部50と、このロッド部50の先端に一体形成されたヘッド部51と、を有している。ロッド部50は、外駒3のフランジ部21の切り欠き溝26と係合する駆動突起25を有しており、駆動突起25を外駒3の切り欠き溝26の溝壁に引っ掛けて、スライダガイド穴43内をスライド移動することにより、外駒3を偏心回動支持部23の中心軸P1の周りに所定角度(θ)だけ回動させる。なお、駆動突起25は、スライダガイド穴43内とフランジ部収容凹部28内とを連通する窓38内を移動できるようになっている。ヘッド部51は、ロッド部50から+Y軸方向及び-Y軸方向に沿って同寸法だけ張り出すように形成されると共に、ロッド部50から+Z軸方向に沿って張り出すように形成されており、Y-Z座標面と平行な仮想平面で切断した断面形状が四角形状になっている。また、ヘッド部51は、図5(b)に示すように、先端(+X軸方向に沿った先端)から左斜め下方に向けて傾斜する傾斜面52が形成され、この傾斜面52が操作ピン46で押されることにより、ばね45の付勢力に抗する斜面分力が生じるようになっている。 The slider 44 has a rod part 50 having a quadrangular cross-section cut by a virtual plane parallel to the YZ coordinate plane, and a head part 51 integrally formed at the tip of the rod part 50. The rod portion 50 has a drive protrusion 25 that engages with the notch groove 26 of the flange portion 21 of the outer piece 3, and the drive protrusion 25 is hooked on the groove wall of the notch groove 26 of the outer piece 3 to slide the slider 50. By sliding and moving in the guide hole 43, the outer piece 3 is rotated around the central axis P1 of the eccentric rotation support portion 23 by a predetermined angle (θ). The drive protrusion 25 can move in a window 38 that communicates between the slider guide hole 43 and the flange housing recess 28. The head portion 51 is formed so as to protrude from the rod portion 50 by the same dimension along the + Y axis direction and the −Y axis direction, and is formed so as to protrude from the rod portion 50 along the + Z axis direction. The cross-sectional shape cut along a virtual plane parallel to the YZ coordinate plane is a quadrangle. Further, as shown in FIG. 5B, the head portion 51 is formed with an inclined surface 52 that is inclined from the tip (tip along the + X axis direction) obliquely downward to the left. By being pushed by 46, a slope component force that resists the biasing force of the spring 45 is generated.
 操作ピン46は、X-Y座標面と平行の仮想平面で切断した断面形状が四角形状の棒状体であり、エジェクトスリーブ30の駆動装置(図示せず)によって駆動される駆動機構部48に接続されている。この操作ピン46は、Z軸方向に沿って延びる操作ピンガイド穴47内を駆動機構部48によってスライド移動させられるようになっている。また、この操作ピン46は、図5(b)に示すように、先端(上端)から左斜め下方に向けて傾斜する傾斜面53が形成されており、この傾斜面53がスライダ44の傾斜面52に面接触し、スライダ44をスライド移動させる。なお、この操作ピン46は、スライダ44のヘッド部51の幅寸法(λ)と同一の幅寸法(λ)に形成されている(図5(a)参照)。また、この操作ピン46は、駆動機構部48によってエジェクトスリーブ30とは別にスライド移動させられる。 The operation pin 46 is a rod-like body having a quadrangular cross section cut along a virtual plane parallel to the XY coordinate plane, and is connected to a drive mechanism unit 48 driven by a drive device (not shown) of the eject sleeve 30. Has been. The operation pin 46 can be slid by the drive mechanism 48 in an operation pin guide hole 47 extending along the Z-axis direction. Further, as shown in FIG. 5B, the operation pin 46 is formed with an inclined surface 53 that is inclined obliquely downward from the tip (upper end) to the left and this inclined surface 53 is an inclined surface of the slider 44. The slider 44 is brought into sliding contact with the surface 52. The operation pin 46 is formed to have the same width dimension (λ) as the width dimension (λ) of the head portion 51 of the slider 44 (see FIG. 5A). The operation pin 46 is slid by the drive mechanism 48 separately from the eject sleeve 30.
 スライダガイド穴43は、X軸方向に沿って形成されており、スライダ44のロッド部50のスライド移動を案内するロッド部ガイド穴54と、スライダ44のヘッド部51のスライド移動を案内するヘッド部ガイド穴55と、を有している。そして、スライダガイド穴43は、ヘッド部ガイド穴55が操作ピンガイド穴47に開口している。このスライダガイド穴43のロッド部ガイド穴54は、Y-Z座標面と平行な仮想平面で切断した断面形状がスライダ44のロッド部50の断面形状と同様の四角形状であり、スライダ44のロッド部50と面接触し、スライダ44の姿勢を変化させることなく、スライダ44をX軸方向に沿ってスライド移動させる。また、スライダガイド穴43のヘッド部ガイド穴55は、Y-Z座標面と平行な仮想平面で切断した断面形状がスライダ44のヘッド部51の断面形状と同様の四角形状であり、スライダ44のヘッド部51と面接触し、スライダ44の姿勢を変化させることなく、スライダ44をX軸方向に沿ってスライド移動させる。その結果、スライダガイド穴43は、スライダ44の駆動突起25を外駒3のフランジ部21の切り欠き溝26に正確に係合させると共に、スライダ44の先端の傾斜面52を操作ピン46の傾斜面53に正確に面接触させ、外駒3を所定角度(θ)だけ正確に回動させることができる。 The slider guide hole 43 is formed along the X-axis direction, and a rod portion guide hole 54 that guides the sliding movement of the rod portion 50 of the slider 44 and a head portion that guides the sliding movement of the head portion 51 of the slider 44. And a guide hole 55. In the slider guide hole 43, the head portion guide hole 55 opens into the operation pin guide hole 47. The rod guide hole 54 of the slider guide hole 43 has a square shape that is the same as the cross-sectional shape of the rod portion 50 of the slider 44 in a cross-section taken along a virtual plane parallel to the YZ coordinate plane. The slider 44 is slid along the X-axis direction without making surface contact with the portion 50 and changing the posture of the slider 44. Further, the head portion guide hole 55 of the slider guide hole 43 has a quadrangular shape similar to the cross sectional shape of the head portion 51 of the slider 44 in a sectional shape cut along a virtual plane parallel to the YZ coordinate plane. The slider 44 is slid along the X-axis direction without changing the posture of the slider 44 in surface contact with the head portion 51. As a result, the slider guide hole 43 accurately engages the drive protrusion 25 of the slider 44 with the notch groove 26 of the flange portion 21 of the outer piece 3, and the inclined surface 52 at the tip of the slider 44 is inclined to the operation pin 46. The outer piece 3 can be accurately rotated by a predetermined angle (θ) while being brought into surface contact with the surface 53 accurately.
 操作ピンガイド穴47は、Z軸方向に沿って形成され、スライダガイド穴43と直角に交差している。この操作ピンガイド穴47は、X-Y座標面と平行な仮想平面で切断した断面形状が操作ピン46の断面形状と同様の四角形状であり、スライダ44のヘッド部51が進入できるようになっている(図5参照)。そして、操作ピンガイド穴47のスライダガイド穴43に対向する壁面56は、ばね45で付勢されたスライダ44のヘッド部51の先端面57が突き当てられるようになっており、射出待機状態におけるスライダ44の位置決め面として機能する(図5参照)。また、操作ピンガイド穴47は、射出待機状態において、操作ピン46をスライダ44に接触しない位置に収容できるようになっている。このような操作ピンガイド穴47は、操作ピン46と面接触し、操作ピン46の姿勢を変化させることなく、操作ピン46をZ軸方向に沿ってスライド移動させる。その結果、操作ピンガイド穴47は、操作ピン46の傾斜面53をスライダ44のヘッド部51の傾斜面52に正確に面接触させ、外駒3を所定角度(θ)だけ正確に回動させることができる。 The operation pin guide hole 47 is formed along the Z-axis direction and intersects the slider guide hole 43 at a right angle. The operation pin guide hole 47 has a quadrangular shape similar to that of the operation pin 46 in a cross-sectional shape cut along a virtual plane parallel to the XY coordinate plane, so that the head portion 51 of the slider 44 can enter. (See FIG. 5). The wall surface 56 of the operation pin guide hole 47 facing the slider guide hole 43 is abutted against the front end surface 57 of the head portion 51 of the slider 44 biased by the spring 45, and in the injection standby state. It functions as a positioning surface for the slider 44 (see FIG. 5). The operation pin guide hole 47 can accommodate the operation pin 46 at a position where it does not contact the slider 44 in the injection standby state. Such an operation pin guide hole 47 is in surface contact with the operation pin 46 and slides the operation pin 46 along the Z-axis direction without changing the posture of the operation pin 46. As a result, the operation pin guide hole 47 accurately brings the inclined surface 53 of the operation pin 46 into surface contact with the inclined surface 52 of the head portion 51 of the slider 44, and accurately rotates the outer piece 3 by a predetermined angle (θ). be able to.
 第1金型5の型合わせ面5aの操作ピンガイド穴47に対向する位置には、操作ピン46の先端側が第2金型6の型合わせ面6aから突出するのを可能にする有底状の操作ピン逃がし穴58が形成されている。その結果、操作ピンガイド穴47内をスライド移動する操作ピン46は、第1金型5と第2金型6が型締めされている状態において、先端を操作ピン逃がし穴58に進入させ、スライダ44をばね45の付勢力に抗してスライダガイド穴43内に押し込み、スライダ44のヘッド部51の先端をスライダ44に対向する側面60で位置決めすることができる。これにより、操作ピン46は、外駒3を射出待機状態の位置から所定角度(θ)だけ時計回り方向に回転させた位置でスライダ44を位置決めでき、且つ、ばね45で付勢されたスライダ44を停止させることができる。 At the position facing the operation pin guide hole 47 of the mold matching surface 5 a of the first mold 5, a bottomed shape that enables the tip side of the operation pin 46 to protrude from the mold matching surface 6 a of the second mold 6. The operation pin relief hole 58 is formed. As a result, the operation pin 46 that slides in the operation pin guide hole 47 causes the tip to enter the operation pin relief hole 58 in a state where the first mold 5 and the second mold 6 are clamped, and the slider 44 can be pushed into the slider guide hole 43 against the biasing force of the spring 45, and the tip of the head portion 51 of the slider 44 can be positioned by the side surface 60 facing the slider 44. As a result, the operation pin 46 can position the slider 44 at a position where the outer piece 3 is rotated clockwise from the position in the injection standby state by a predetermined angle (θ), and the slider 44 biased by the spring 45. Can be stopped.
 以上のような本実施形態に係る射出成形金型2は、外駒3が第1実施形態に係る射出成形金型2と同様に回転駆動手段42によって回動させられる。すなわち、本実施形態に係る射出成形金型2は、図3及び図5に示すように、外駒3のキャビティ形成穴18の中心18aがセンターピン4の中心軸P2に対してずらされて、キャビティ幅(W)の最大値(Wmax)及び最小値(Wmin)の位置がセンターピン4の中心軸P2とゲート13の中心を結ぶ直線(中心線33)上にある射出待機状態で、且つ、第1金型5と第2金型6が突き合わされて型締めされた状態において、強化繊維入りの溶融樹脂がゲート13からキャビティ7内に射出される。この際、キャビティ7内に射出された強化繊維入りの溶融樹脂は、キャビティ幅(W)の最小値(Wmin)の部分からキャビティ幅(W)の最大値(Wmax)の部分に向けて均等に流動し、キャビティ幅(W)の最大値(Wmax)の部分で合流し、その合流部にウェルドライン34を形成する(図4参照)。そして、射出成形金型2は、キャビティ7内の全域に強化繊維入りの溶融樹脂が充填され、その強化繊維入りの溶融樹脂が冷えて流動性を失う前に、回転駆動手段42が作動させられて、外駒3が偏心回動支持部23の中心軸P1の周りを回転駆動手段42によって時計回り方向へ所定角度(θ)だけ回動させられる(図6参照)。これにより、射出成形金型2は、センターピン4の中心軸P2と外駒3のキャビティ形成穴18の中心18aとが一致し、キャビティ7のキャビティ幅(W)がセンターピン4の周方向に沿って一定になる。このように、射出成形金型2は、図5に示す状態から図6に示す状態に変化すると、外駒3の内周面3aとセンターピン4の大径部14の外表面14aが変化し、キャビティ7のキャビティ幅(W)が変動して、キャビティ7内の強化繊維入り溶融樹脂がキャビティ7内を強制的に流動させられる。そして、キャビティ7内における強化繊維入りの溶融樹脂は、強化繊維の配向が乱され、ウェルドライン34及びその周辺の強化繊維が絡み合う(図4参照)。 In the injection mold 2 according to this embodiment as described above, the outer piece 3 is rotated by the rotation driving means 42 in the same manner as the injection mold 2 according to the first embodiment. That is, in the injection mold 2 according to the present embodiment, as shown in FIGS. 3 and 5, the center 18a of the cavity forming hole 18 of the outer piece 3 is shifted with respect to the center axis P2 of the center pin 4, In the injection standby state where the position of the maximum value (Wmax) and the minimum value (Wmin) of the cavity width (W) is on a straight line (center line 33) connecting the center axis P2 of the center pin 4 and the center of the gate 13, and In a state where the first mold 5 and the second mold 6 are abutted and clamped, molten resin containing reinforcing fibers is injected into the cavity 7 from the gate 13. At this time, the molten resin containing reinforcing fibers injected into the cavity 7 is evenly distributed from the minimum value (Wmin) portion of the cavity width (W) toward the maximum value (Wmax) of the cavity width (W). It flows and merges at the maximum value (Wmax) of the cavity width (W), and a weld line 34 is formed at the merged portion (see FIG. 4). The injection mold 2 is filled with a molten resin containing reinforcing fibers throughout the cavity 7, and the rotation driving means 42 is operated before the molten resin containing reinforcing fibers cools and loses its fluidity. Thus, the outer piece 3 is rotated around the central axis P1 of the eccentric rotation support portion 23 by a predetermined angle (θ) in the clockwise direction by the rotation driving means 42 (see FIG. 6). Thereby, in the injection mold 2, the center axis P 2 of the center pin 4 and the center 18 a of the cavity forming hole 18 of the outer piece 3 coincide with each other, and the cavity width (W) of the cavity 7 is in the circumferential direction of the center pin 4. It becomes constant along. Thus, when the injection mold 2 changes from the state shown in FIG. 5 to the state shown in FIG. 6, the inner peripheral surface 3 a of the outer piece 3 and the outer surface 14 a of the large-diameter portion 14 of the center pin 4 change. The cavity width (W) of the cavity 7 changes, and the molten resin containing reinforcing fibers in the cavity 7 is forced to flow in the cavity 7. In the molten resin containing reinforcing fibers in the cavity 7, the orientation of the reinforcing fibers is disturbed, and the weld line 34 and surrounding reinforcing fibers are intertwined (see FIG. 4).
 以上のように、本実施形態に係る射出成形金型2は、第1実施形態に係る射出成形金型2と同様に作動し、第1実施形態に係る射出成形金型2と同様の効果を得ることができる。 As described above, the injection mold 2 according to the present embodiment operates in the same manner as the injection mold 2 according to the first embodiment, and has the same effect as the injection mold 2 according to the first embodiment. Obtainable.
 また、本実施形態に係る射出成形金型2を使用した射出成形方法は、第1実施形態に係る射出成形方法と同様の第1工程乃至第4工程からなっているため、第1実施形態に係る射出成形方法と同様の効果を得ることができる。 In addition, the injection molding method using the injection mold 2 according to this embodiment includes the same first to fourth steps as the injection molding method according to the first embodiment. The same effects as those of the injection molding method can be obtained.
 また、本実施形態に係る射出成形金型2を使用して射出成形された筒状品1は、第1実施形態に係る射出成形金型2を使用して射出成形された筒状品1と同様に、ウェルドライン34及びウェルドライン34近傍の強化繊維の向きが乱され、ウェルドライン34及びウェルドライン34近傍の強化繊維が絡み合うため、ウェルドライン34が目立ち難くなると共に、ウェルドライン34が形成された部分の強度が向上する。 Moreover, the cylindrical product 1 injection-molded using the injection mold 2 according to the present embodiment is the same as the cylindrical product 1 injection-molded using the injection mold 2 according to the first embodiment. Similarly, the direction of the reinforcing fiber in the vicinity of the weld line 34 and the weld line 34 is disturbed, and the reinforcing fiber in the vicinity of the weld line 34 and the weld line 34 is entangled, so that the weld line 34 becomes difficult to stand out and the weld line 34 is formed. The strength of the part is improved.
 [第3実施形態]
 図7乃至図8は、本発明の第3実施形態に係る筒状品1の射出成形金型2を示す図である。このうち、図7は、第1実施形態に係る射出成形金型2の変形例を示す図であり、射出待機状態における射出成形金型2の構造を示す図である。また、図8は、射出待機状態における外駒3をセンターピン4に対して時計回り方向に所定角度(θ)だけ偏心回動させた場合の射出成形金型2の構造を示す図である。なお、図7(a)は、図7(b)に示す射出成形金型をA10-A10線に沿って切断して示す第2金型の平面図である。また、図7(b)は、図7(a)のA11-A11線に沿って切断して示す射出成形金型の断面図である。また、図8(a)は、図8(b)に示す射出成形金型をA12-A12線に沿って切断して示す第2金型の平面図である。また、図8(b)は、図8(a)のA13-A13線に沿って切断して示す射出成形金型の断面図である。
[Third Embodiment]
7 to 8 are views showing an injection mold 2 of the tubular product 1 according to the third embodiment of the present invention. Among these, FIG. 7 is a figure which shows the modification of the injection mold 2 which concerns on 1st Embodiment, and is a figure which shows the structure of the injection mold 2 in an injection standby state. FIG. 8 is a view showing the structure of the injection mold 2 when the outer piece 3 in the injection standby state is eccentrically rotated by a predetermined angle (θ) in the clockwise direction with respect to the center pin 4. FIG. 7A is a plan view of the second mold shown by cutting the injection mold shown in FIG. 7B along the line A10-A10. FIG. 7B is a cross-sectional view of the injection mold shown cut along the line A11-A11 in FIG. FIG. 8A is a plan view of the second mold shown by cutting the injection mold shown in FIG. 8B along the line A12-A12. FIG. 8B is a cross-sectional view of the injection mold shown cut along the line A13-A13 in FIG.
 本実施形態に係る射出成形金型2は、キャビティ7の形状及びゲート13の位置が第1実施形態に係る射出成形金型2と相違するが、他の基本的構成が第1実施形態に係る射出成形金型2と同様であるため、第1実施形態に係る射出成形金型2に対応する構成部分に第1実施形態に係る射出成形金型2と同一符号を付し、第1実施形態の説明と重複する説明を省略する。 The injection mold 2 according to this embodiment is different from the injection mold 2 according to the first embodiment in the shape of the cavity 7 and the position of the gate 13, but the other basic configuration is related to the first embodiment. Since it is the same as the injection mold 2, the same reference numerals as those of the injection mold 2 according to the first embodiment are attached to the components corresponding to the injection mold 2 according to the first embodiment, and the first embodiment. The description overlapping with the description of is omitted.
 図7乃至図8に示すように、射出成形金型2は、射出成形する筒状品1が円筒形状であり、筒状品1が中空円板部10を備えていないため(図4及び図9参照)、第1実施形態に係る射出成形金型2の第2キャビティ部12が設けられておらず、キャビティ7が第1実施形態に係る射出成形金型2の第1キャビティ部11に対応する部分のみからなっている。また、センターピン4は、同一外径寸法で形成され(大径部14のみで形成され)、先端面17が第1金型5の突き合わせ面5aに突き当てられるようになっており、丸棒状の小径部15が省略された点において第1実施形態に係る射出成形金型2のセンターピン4と相違する。そして、ゲート13は、キャビティ7の一端側に開口するように第1金型5に形成されている。なお、本実施形態に係る射出成形金型2は、第1実施形態に係る射出成形金型2と同様に、射出待機状態において、ゲート13がキャビティ幅(W)の最小値(Wmin)の位置に配置され、ゲート13からキャビティ7に射出された強化繊維入りの溶融樹脂がキャビティ7のうちのキャビティ幅(W)が最大値(Wmax)の位置で合流するように構成されている(図3参照)。 As shown in FIGS. 7 to 8, in the injection mold 2, the cylindrical product 1 to be injection-molded has a cylindrical shape, and the cylindrical product 1 does not include the hollow disc portion 10 (FIGS. 4 and 4). 9), the second cavity portion 12 of the injection mold 2 according to the first embodiment is not provided, and the cavity 7 corresponds to the first cavity portion 11 of the injection mold 2 according to the first embodiment. It consists only of parts to do. Further, the center pin 4 is formed with the same outer diameter dimension (formed only by the large diameter portion 14), and the front end surface 17 is abutted against the abutting surface 5a of the first mold 5, and is formed in a round bar shape. This is different from the center pin 4 of the injection mold 2 according to the first embodiment in that the small diameter portion 15 is omitted. The gate 13 is formed in the first mold 5 so as to open to one end side of the cavity 7. In addition, the injection mold 2 according to the present embodiment, like the injection mold 2 according to the first embodiment, in the injection standby state, the gate 13 is positioned at the minimum value (Wmin) of the cavity width (W). The molten resin containing reinforcing fibers injected into the cavity 7 from the gate 13 is configured to merge at a position where the cavity width (W) of the cavity 7 is the maximum value (Wmax) (FIG. 3). reference).
 本実施形態に係る射出成形金型2は、第1実施形態に係る射出成形金型2と同様に、外駒3のキャビティ形成穴18の中心18aがセンターピン4の中心軸P2に対してずらされた状態で(図7(a)、図3参照)、第1金型5と第2金型6とが突き合わされて型締めされ(図7(b)参照)、強化繊維入りの溶融樹脂がゲート13からキャビティ7内に射出される。この際、キャビティ7内における強化繊維入りの溶融樹脂の合流部には、ウェルドライン34が形成される。そして、射出成形金型2は、キャビティ7内の全域に強化繊維入りの溶融樹脂が充填され、その強化繊維入りの溶融樹脂が冷えて流動性を失う前に、回転駆動手段24が作動させられて、外駒3が偏心回動支持部23の中心軸P1の周りを回転駆動手段24によって時計回り方向へ所定角度(θ)だけ回動させられ、外駒3のキャビティ形成穴18の中心18aがセンターピン4の中心軸P2に合わせられる(図8参照)。これにより、射出成形金型2は、外駒3の内周面3aとセンターピン4の外周面14aとの間隔が変化し、キャビティ7内の強化繊維入り溶融樹脂がキャビティ7内を強制的に流動させられる。その結果、キャビティ7内における強化繊維入りの溶融樹脂は、強化繊維の配向が乱され、ウェルドライン34及びその周辺の強化繊維が絡み合う。 In the injection mold 2 according to the present embodiment, the center 18a of the cavity forming hole 18 of the outer piece 3 is shifted with respect to the center axis P2 of the center pin 4 in the same manner as the injection mold 2 according to the first embodiment. In such a state (see FIGS. 7 (a) and 3), the first mold 5 and the second mold 6 are brought into contact with each other and clamped (see FIG. 7 (b)), and a molten resin containing reinforcing fibers. Is injected from the gate 13 into the cavity 7. At this time, a weld line 34 is formed at the joining portion of the molten resin containing reinforcing fibers in the cavity 7. The injection mold 2 is filled with a molten resin containing reinforcing fibers throughout the cavity 7, and the rotation driving means 24 is operated before the molten resin containing reinforcing fibers cools and loses fluidity. Thus, the outer piece 3 is rotated about the central axis P1 of the eccentric rotation support portion 23 by a predetermined angle (θ) in the clockwise direction by the rotation driving means 24, and the center 18a of the cavity forming hole 18 of the outer piece 3 is rotated. Is aligned with the central axis P2 of the center pin 4 (see FIG. 8). Thereby, in the injection mold 2, the distance between the inner peripheral surface 3 a of the outer piece 3 and the outer peripheral surface 14 a of the center pin 4 is changed, and the molten resin containing reinforcing fibers in the cavity 7 is forced inside the cavity 7. Fluidized. As a result, the molten resin containing the reinforcing fibers in the cavity 7 is disturbed in the orientation of the reinforcing fibers, and the weld line 34 and the surrounding reinforcing fibers are intertwined.
 以上のような本実施形態に係る射出成形金型2によれば、射出成形された筒状品1におけるウェルドライン34及びウェルドライン34近傍の強化繊維の向きが乱され、筒状品1のウェルドライン34及びウェルドライン34近傍の強化繊維が絡み合うため、筒状品1のウェルドライン34が目立ち難くなると共に、筒状品1のウェルドライン34が形成された部分の強度が向上する。 According to the injection mold 2 according to the present embodiment as described above, the direction of the weld line 34 and the reinforcing fibers near the weld line 34 in the injection-molded tubular product 1 is disturbed, and the weld of the tubular product 1 is disturbed. Since the reinforcing fibers in the vicinity of the line 34 and the weld line 34 are entangled with each other, the weld line 34 of the tubular product 1 is less noticeable and the strength of the portion of the tubular product 1 where the weld line 34 is formed is improved.
 また、本実施形態に係る射出成形方法は、使用する射出成形金型2が第1実施形態に係る射出成形金型2と僅かに相違するものの、第1実施形態に係る射出成形方法と同様である。したがって、本実施形態に係る射出成形方法によれば、第1実施形態に係る射出成形方法と同様の効果を得ることができる。 The injection molding method according to this embodiment is the same as the injection molding method according to the first embodiment, although the injection mold 2 to be used is slightly different from the injection molding die 2 according to the first embodiment. is there. Therefore, according to the injection molding method according to the present embodiment, the same effects as those of the injection molding method according to the first embodiment can be obtained.
 図9は、本実施形態に係る射出成形金型2によって射出成形された筒状品1を示す図である。なお、図9(a)が筒状品1の正面図であり、図9(b)が筒状品1の側面図であり、図9(c)が図9(a)のA14-A14線に沿って切断して示す筒状品1の断面図である。 FIG. 9 is a view showing a cylindrical product 1 injection-molded by the injection mold 2 according to this embodiment. 9 (a) is a front view of the tubular product 1, FIG. 9 (b) is a side view of the tubular product 1, and FIG. 9 (c) is a line A14-A14 in FIG. 9 (a). It is sectional drawing of the cylindrical article 1 cut | disconnected and shown along.
 図9に示すように、筒状品1の一端側の端面61には、ゲート13の切り離し痕41が形成されている。そして、筒状品1は、ウェルドライン34及びウェルドライン34近傍の強化繊維が複雑に絡み合っている。 As shown in FIG. 9, a separation mark 41 of the gate 13 is formed on the end surface 61 on the one end side of the tubular product 1. The cylindrical product 1 is intricately intertwined with the weld line 34 and the reinforcing fibers in the vicinity of the weld line 34.
 このような本実施形態に係る筒状品1は、第1実施形態に係る筒状品1と同様に、ウェルドライン34及びウェルドライン34近傍の強化繊維の向きが乱され、ウェルドライン34及びウェルドライン34近傍の強化繊維が絡み合うため、ウェルドライン34が目立ち難くなると共に、ウェルドライン34が形成された部分の強度が向上する。 The cylindrical product 1 according to the present embodiment, like the cylindrical product 1 according to the first embodiment, is disturbed in the direction of the weld line 34 and the reinforcing fibers in the vicinity of the weld line 34, so that the weld line 34 and the weld line 34 are welded. Since the reinforcing fibers in the vicinity of the line 34 are intertwined, the weld line 34 becomes difficult to stand out, and the strength of the portion where the weld line 34 is formed is improved.
 [第4実施形態]
 図10乃至図11は、本発明の第4実施形態に係る射出成形金型2を示す図であり、第3実施形態に係る射出成形金型2の回転駆動手段24の変形例を示す図である。このうち、図10は、射出待機状態における射出成形金型2の構造を示す図である。また、図11は、射出待機状態における外駒3をセンターピン4に対して時計回り方向に所定角度(θ)だけ偏心回動させた場合の射出成形金型2の構造を示す図である。なお、図10(a)は、図10(b)に示す射出成形金型をA15-A15線に沿って切断して示す第2金型の平面図である。また、図10(b)は、図10(a)のA16-A16線に沿って切断して示す射出成形金型の断面図である。また、図11(a)は、図11(b)に示す射出成形金型をA17-A17線に沿って切断して示す第2金型の平面図である。また、図11(b)は、図11(a)のA18-A18線に沿って切断して示す射出成形金型の断面図である。
[Fourth Embodiment]
FIGS. 10 to 11 are views showing an injection mold 2 according to the fourth embodiment of the present invention, and showing a modification of the rotation driving means 24 of the injection mold 2 according to the third embodiment. is there. Among these, FIG. 10 is a diagram showing the structure of the injection mold 2 in the injection standby state. FIG. 11 is a view showing the structure of the injection mold 2 when the outer piece 3 in the injection standby state is eccentrically rotated by a predetermined angle (θ) in the clockwise direction with respect to the center pin 4. FIG. 10A is a plan view of a second mold shown by cutting the injection mold shown in FIG. 10B along the line A15-A15. FIG. 10B is a cross-sectional view of the injection mold shown cut along the line A16-A16 in FIG. FIG. 11 (a) is a plan view of a second mold shown by cutting the injection mold shown in FIG. 11 (b) along the line A17-A17. FIG. 11B is a cross-sectional view of the injection mold shown cut along line A18-A18 in FIG.
 本実施形態に係る射出成形金型2は、第3実施形態に係る射出成形金型2の回転駆動手段24を第2実施形態に係る回転駆動手段42に置き換えたものであり、第3実施形態に係る射出成形金型2と同様の筒状品1(図9に示す筒状品1)を射出成形するために使用される。 The injection mold 2 according to the present embodiment is obtained by replacing the rotation drive means 24 of the injection mold 2 according to the third embodiment with the rotation drive means 42 according to the second embodiment. It is used for injection molding the same cylindrical product 1 (cylindrical product 1 shown in FIG. 9) as the injection mold 2 according to the above.
 このような本実施形態に係る射出成形金型2を使用して射出成形された筒状品1は、第3実施形態に係る射出成形金型2を使用して射出成形された筒状品1と同様に、ウェルドライン34及びウェルドライン34近傍の強化繊維の向きが乱され、ウェルドライン34及びウェルドライン34近傍の強化繊維が絡み合うため、ウェルドライン34が目立ち難くなると共に、ウェルドライン34が形成された部分の強度が向上する。 The cylindrical product 1 injection-molded using the injection mold 2 according to the present embodiment is the cylindrical product 1 injection-molded using the injection mold 2 according to the third embodiment. In the same manner, the orientation of the weld line 34 and the reinforcement fiber in the vicinity of the weld line 34 is disturbed and the reinforcement fiber in the vicinity of the weld line 34 and the weld line 34 is entangled, so that the weld line 34 becomes difficult to stand out and the weld line 34 is formed. The strength of the applied portion is improved.
 [第5実施形態]
  (筒状品の射出成形金型)
 図12は、本発明の第5実施形態に係る筒状品1の射出成形金型2を示す図である。この図12に示す本実施形態に係る射出成形金型2は、図4に示した筒状品1を射出成形するために使用される点において、第1乃至第2実施形態に係る射出成形金型2と共通する。なお、図12(a)は、図12(c)に示す射出成形金型2の第1金型103を省略して示す平面図(第2金型104の平面図)であり、外駒151のスライダ162の中心162aをセンターピン150の中心150aに対して所定寸法(ε)だけずらした状態(射出待機状態)を示す図である。また、図12(b)は、第2金型104の平面図であり、外駒151のスライダ162の中心162aとセンターピン150の中心150aを一致させた状態を示す図である。また、図12(c)は、図12(a)のA19-A19線に沿って切断して示す射出成形金型2の断面図である。
[Fifth Embodiment]
(Cylindrical injection mold)
FIG. 12 is a view showing an injection mold 2 of the tubular product 1 according to the fifth embodiment of the present invention. The injection mold 2 according to the present embodiment shown in FIG. 12 is used for injection molding the tubular product 1 shown in FIG. 4, and the injection mold according to the first or second embodiment is used. Same as type 2. FIG. 12A is a plan view (plan view of the second mold 104) in which the first mold 103 of the injection mold 2 shown in FIG. FIG. 6 is a view showing a state (injection standby state) in which the center 162a of the slider 162 is shifted from the center 150a of the center pin 150 by a predetermined dimension (ε). 12B is a plan view of the second mold 104, and shows a state in which the center 162a of the slider 162 of the outer piece 151 and the center 150a of the center pin 150 are made to coincide. FIG. 12C is a cross-sectional view of the injection mold 2 cut along the line A19-A19 in FIG.
 図12に示す本実施形態に係る射出成形金型2は、第1金型103と第2金型104の突き合わせ面103a,104a側にキャビティ105が形成されている。キャビティ105は、図4に示す筒状品1を形作る形状になっており、強化繊維入りの溶融樹脂が充填されるようになっている。筒状品1は、図4に示したように、円筒部8と、この円筒部8の一端側に一体に形成された中空円板部10と、を有している。そして、この筒状品1を形作るキャビティ105は、円筒部8を形作る第1キャビティ部108と、第1キャビティ部108の一端側に位置して中空円板部10を形作る第2キャビティ部110と、を有している。このキャビティ105は、第2金型104に形成されており、開口端が第1金型103によって塞がれるようになっている。 In the injection mold 2 according to this embodiment shown in FIG. 12, a cavity 105 is formed on the side of the butted surfaces 103 a and 104 a of the first mold 103 and the second mold 104. The cavity 105 has a shape that forms the cylindrical product 1 shown in FIG. 4 and is filled with molten resin containing reinforcing fibers. As shown in FIG. 4, the tubular product 1 includes a cylindrical portion 8 and a hollow disc portion 10 that is integrally formed on one end side of the cylindrical portion 8. The cavity 105 that forms the cylindrical product 1 includes a first cavity part 108 that forms the cylindrical part 8, and a second cavity part 110 that is located on one end side of the first cavity part 108 and forms the hollow disk part 10. ,have. The cavity 105 is formed in the second mold 104 so that the opening end is closed by the first mold 103.
 第1金型103は、第2金型104に形成された第2キャビティ部110に開口するゲート111(ピンポイントゲート)が形成されている。このゲート111は、図12(a)において、センターピン150の中心150aを通り且つX軸方向に沿って延びる中心線174上に位置するように第1金型103に形成されている。第2金型104は、第1キャビティ部108の内周面側に位置するセンターピン150と、第1キャビティ部108の外周面側に位置する外駒151と、を有している。そして、センターピン150の外周面が第1キャビティ部108の内周面側を形作り、外駒151のキャビティ形成穴168の内周面が第1キャビティ部108の外周面側を形作るようになっている。また、第2金型104は、第2金型本体部152と、この第2金型本体部152に重ねて配置された外駒支持金型部153と、この外駒支持金型部153に重ねて配置された外駒押さえ金型部154と、を有している。 The first mold 103 is formed with a gate 111 (pinpoint gate) that opens to the second cavity portion 110 formed in the second mold 104. In FIG. 12A, the gate 111 is formed in the first mold 103 so as to be located on a center line 174 that passes through the center 150a of the center pin 150 and extends in the X-axis direction. The second mold 104 includes a center pin 150 positioned on the inner peripheral surface side of the first cavity portion 108 and an outer piece 151 positioned on the outer peripheral surface side of the first cavity portion 108. The outer peripheral surface of the center pin 150 forms the inner peripheral surface side of the first cavity portion 108, and the inner peripheral surface of the cavity forming hole 168 of the outer piece 151 forms the outer peripheral surface side of the first cavity portion 108. Yes. The second mold 104 includes a second mold main body 152, an outer piece support mold portion 153 arranged to overlap the second mold main body portion 152, and the outer piece support mold portion 153. And an outer piece presser mold part 154 arranged in an overlapping manner.
 センターピン150は、内型155の軸部156の先端に一体に形成された円柱状の部分であり、軸部156と共に内型155を構成している。このセンターピン150の先端面157には、第1金型103の突き合わせ面103aに突き当てられる丸棒状の突起158が形成されている。この突起158は、センターピン150の先端面157の中央に一体に形成されており、筒状品1の中空円板部10の中央穴16を形作るようになっている(図4参照)。そして、内型155の軸部156の外周には、エジェクトスリーブ160がスライド移動可能に嵌合されている。 The center pin 150 is a cylindrical portion formed integrally with the tip of the shaft portion 156 of the inner mold 155, and constitutes the inner mold 155 together with the shaft portion 156. On the front end surface 157 of the center pin 150, a round bar-like protrusion 158 that is abutted against the abutting surface 103a of the first mold 103 is formed. This protrusion 158 is integrally formed at the center of the front end surface 157 of the center pin 150, and forms the central hole 16 of the hollow disk portion 10 of the tubular product 1 (see FIG. 4). An eject sleeve 160 is fitted on the outer periphery of the shaft portion 156 of the inner mold 155 so as to be slidable.
 外駒151は、第2金型104にスライド移動可能に収容されており、センターピン150の中心軸161に直交する平面(第2金型本体部152の表面152a)に沿ってスライド移動する。この外駒151は、筒状のスライダ162と、このスライダ162の外周側に一体に形成されてカム163の外周面(カム面)164に摺動接触する操作ロッド165と、スライダ162の外周側に一体に形成されてばね166の弾性力で操作ロッド165をカム163の外周面164に押し付けるばね受けロッド167と、を有している。 The outer piece 151 is accommodated in the second mold 104 so as to be slidable, and slides along a plane perpendicular to the central axis 161 of the center pin 150 (the surface 152a of the second mold main body 152). The outer piece 151 includes a cylindrical slider 162, an operation rod 165 that is integrally formed on the outer peripheral side of the slider 162 and slidingly contacts the outer peripheral surface (cam surface) 164 of the cam 163, and the outer peripheral side of the slider 162. And a spring receiving rod 167 that presses the operating rod 165 against the outer peripheral surface 164 of the cam 163 by the elastic force of the spring 166.
 スライダ162は、中央部分に丸穴状のキャビティ形成穴168が形成され、平面視した形状が円筒体の両側を切り落としたような二面幅形状になっており、中心162aを通り且つY軸に沿って延びる中心線170に対して線対称の形状に形成されている(図12(a)参照)。このスライダ162の幅方向(X軸に沿った方向)の両側には、Y軸方向に沿って延びるスライド面171が形成されている。そして、このスライダ162は、外駒支持金型部153及び外駒押さえ金型部154に形成された外駒ガイド穴172内に収容され、スライド面171が外駒ガイド穴172のスライドガイド面173に沿ってスライド移動できるようになっている。ここで、外駒支持金型部153の外駒ガイド穴172と外駒押さえ金型部154の外駒ガイド穴172は、同一形状であり、平面視した形状が矩形形状である。そして、外駒ガイド穴172は、センターピン150の中心150aを通り且つX軸方向に沿って延びる中心線174に対して線対称の形状に形成されると共に、センターピン150の中心150aを通り且つY軸方向に沿って延びる中心線170に対して線対称の形状に形成されている。また、外駒ガイド穴172は、スライダ162の中心162a(キャビティ形成穴168の中心)がセンターピン150の中心150aに合致した位置から所定寸法(ε)だけスライド移動した場合に、スライダ162に当接しない寸法に形成されている。なお、カム163のリフト量(ε)及びスライダ162の移動量(ε)は、筒状品1の円筒部8の肉厚や強化繊維入りの溶融樹脂の材料の違い等に応じて最適の数値が決定される。 The slider 162 is formed with a round hole-shaped cavity forming hole 168 in the central portion, and the shape in plan view is a two-sided width shape as if both sides of the cylindrical body are cut off, passing through the center 162a and on the Y axis. It is formed in a line-symmetric shape with respect to the center line 170 extending along the line (see FIG. 12A). On both sides of the slider 162 in the width direction (the direction along the X axis), slide surfaces 171 extending along the Y axis direction are formed. The slider 162 is accommodated in an outer piece guide hole 172 formed in the outer piece support die portion 153 and the outer piece holding die portion 154, and the slide surface 171 is a slide guide surface 173 of the outer piece guide hole 172. Can be slid along. Here, the outer piece guide hole 172 of the outer piece supporting mold part 153 and the outer piece guide hole 172 of the outer piece holding mold part 154 have the same shape, and the shape in plan view is a rectangular shape. The outer piece guide hole 172 is formed in a line-symmetric shape with respect to a center line 174 that passes through the center 150a of the center pin 150 and extends along the X-axis direction, and passes through the center 150a of the center pin 150. It is formed in a line-symmetric shape with respect to a center line 170 extending along the Y-axis direction. Further, the outer piece guide hole 172 contacts the slider 162 when the center 162a of the slider 162 (center of the cavity forming hole 168) slides by a predetermined dimension (ε) from the position where it matches the center 150a of the center pin 150. It is formed with dimensions that do not touch. The lift amount (ε) of the cam 163 and the movement amount (ε) of the slider 162 are optimum values according to the thickness of the cylindrical portion 8 of the tubular product 1 and the difference in the material of the molten resin containing reinforcing fibers. Is determined.
 操作ロッド165は、スライダ162のY軸方向に沿った一端側に形成され、Y軸方向に沿って延びる丸棒状のロッド本体165aの先端を球面状に丸めることによってカム当接面165bが形成されている。この操作ロッド165は、外駒支持金型部153と外駒押さえ金型部154の重ね合わせ面側に形成された第1ロッド穴175内にスライド移動できるように嵌合され、先端側が外駒支持金型部153と外駒押さえ金型部154に形成されたカム収容穴176内に突出し、カム当接面165bがカム163の外周面(カム面)164に当接するようになっている。 The operation rod 165 is formed on one end side of the slider 162 along the Y-axis direction, and a cam contact surface 165b is formed by rounding the tip of a round rod-shaped rod body 165a extending along the Y-axis direction into a spherical shape. ing. The operation rod 165 is fitted so as to be slidable into a first rod hole 175 formed on the overlapping surface side of the outer piece supporting die portion 153 and the outer piece holding die portion 154, and the distal end side is the outer piece. It protrudes into a cam accommodation hole 176 formed in the support mold part 153 and the outer piece presser mold part 154, and the cam contact surface 165 b comes into contact with the outer peripheral surface (cam surface) 164 of the cam 163.
 ばね受けロッド167は、スライダ162のY軸方向に沿った他端側に形成され、操作ロッド165が延びる方向と逆の方向へ延びている。このばね受けロッド167は、ばね(圧縮コイルばね)166の内径側の空間に挿入される丸棒状の小径のばね支持ロッド部167aと、ばね166の一端側が当接する丸棒状の大径(ばね支持ロッド部167aと比較して大径)のばね座部167bと、を有している。そして、ばね受けロッド167のばね座部167bは、外駒支持金型部153と外駒押さえ金型部154の重ね合わせ面側に形成された第2ロッド穴177内にスライド移動できるように嵌合されている。また、ばね支持ロッド部167aは、先端側が外駒支持金型部153と外駒押さえ金型部154の重ね合わせ面側に形成された第3ロッド穴178内にスライド移動できるように嵌合されている。ここで、ばね166は、外駒支持金型部153と外駒押さえ金型部154の重ね合わせ面側に形成されたばね収容室180内に収容されている。なお、ばね収容室180は、ばね座部167bの外径寸法及びばね166の外径寸法よりも大径の内径寸法の丸穴状空間であり、ばね166が圧縮された状態で収容されている。そして、ばね166は、その高さ方向の一端側がばね座部167bに当接し、その高さ方向の他端側がばね収容室180の他端側(第3ロッド穴178側)の端面180aに当接し、操作ロッド165をカム163の外周面(カム面)164に常時押し付けるようになっている。 The spring receiving rod 167 is formed on the other end side along the Y-axis direction of the slider 162, and extends in a direction opposite to the direction in which the operation rod 165 extends. The spring receiving rod 167 has a round bar-like small-diameter spring support rod portion 167a inserted into a space on the inner diameter side of a spring (compression coil spring) 166 and a round bar-like large diameter (spring support) with which one end side of the spring 166 abuts. A spring seat portion 167b having a larger diameter than the rod portion 167a. The spring seat 167b of the spring receiving rod 167 is fitted so as to be slidable into the second rod hole 177 formed on the overlapping surface side of the outer piece supporting die portion 153 and the outer piece holding die portion 154. Are combined. Further, the spring support rod portion 167a is fitted so that the tip side can slide and move into a third rod hole 178 formed on the overlapping surface side of the outer piece support die portion 153 and the outer piece holding die portion 154. ing. Here, the spring 166 is accommodated in a spring accommodating chamber 180 formed on the overlapping surface side of the outer piece supporting die portion 153 and the outer piece holding die portion 154. The spring accommodating chamber 180 is a round hole-shaped space having an inner diameter larger than the outer diameter of the spring seat portion 167b and the outer diameter of the spring 166, and is accommodated in a state where the spring 166 is compressed. . The spring 166 has one end in the height direction in contact with the spring seat 167b and the other end in the height direction contacts the end surface 180a on the other end side (the third rod hole 178 side) of the spring accommodating chamber 180. The operating rod 165 is always pressed against the outer peripheral surface (cam surface) 164 of the cam 163.
 カム163は、外駒支持金型部153と外駒押さえ金型部154に形成されたカム収容室176内に回動できるように収容され、カム軸181が第2金型本体部152に回動可能に支持されている。そして、このカム163は、カム軸181が回転駆動手段135(例えば、ステッピングモータ及び複数の歯車からなる回転駆動手段)によって回動されることにより、外駒151をリフト量(ε)だけY軸方向に沿ってスライド移動させることができるようになっている。その結果、外駒151は、スライダ162の中心162a(キャビティ形成穴168の中心)がセンターピン150の中心150aから所定寸法(ε)だけずれた位置(図12(a)に示す位置)と、スライダ162の中心162a(キャビティ形成穴168の中心)がセンターピン150の中心150aと一致する位置(図12(b)に示す位置)との間をスライド移動する。 The cam 163 is accommodated in a cam accommodating chamber 176 formed in the outer piece support die portion 153 and the outer piece presser die portion 154 so that the cam shaft 181 rotates around the second die body portion 152. It is supported movably. The cam 163 is configured such that the cam shaft 181 is rotated by a rotation driving means 135 (for example, a rotation driving means including a stepping motor and a plurality of gears), whereby the outer piece 151 is moved by a lift amount (ε). It can be slid along the direction. As a result, the outer piece 151 has a position where the center 162a of the slider 162 (center of the cavity forming hole 168) is shifted from the center 150a of the center pin 150 by a predetermined dimension (ε) (position shown in FIG. 12A). The slider 162 slides between a position (a position shown in FIG. 12B) where the center 162a of the slider 162 (the center of the cavity forming hole 168) coincides with the center 150a of the center pin 150.
 以上のような射出成形金型2は、第1金型103と第2金型104が突き合わされて型締めされた状態において、強化繊維入りの溶融樹脂がゲート111からキャビティ105内に射出される。この際、外駒151は、図12(a)に示すように、センターピン150に対して所定寸法(ε)だけずれた位置に保持されている。また、この際、キャビティ105内における強化繊維入りの溶融樹脂の合流部には、ウェルドライン34が生じる(図4参照)。ここで、キャビティ105内における強化繊維入りの溶融樹脂の合流部は、ゲート111の開口位置からセンターピン150の中心150aの周りに180°回転した中心線174上の位置になる。そして、キャビティ105内の全域に強化繊維入りの溶融樹脂が充填され、その強化繊維入りの溶融樹脂が冷えて流動性を失う前に、回転駆動手段135が作動させられて、カム163が回転駆動手段135によって所定角度(180°)回動させられると、外駒151のスライダ162の中心162a(キャビティ形成穴168の中心)とセンターピン150の中心150aとが一致するまで外駒151がばね166を押し縮めてスライド移動する(図12(b)参照)。これにより、射出成形金型2は、センターピン150の外周面とキャビティ形成穴18の内周面との間隔が変化し、キャビティ幅(W)が変化して、キャビティ105内の強化繊維入り溶融樹脂がキャビティ105内を強制的に流動させられる。その結果、キャビティ105内における強化繊維入りの溶融樹脂は、強化繊維の配向が乱され、ウェルドライン34及びその周辺の強化繊維が絡み合う(図4参照)。 In the injection mold 2 as described above, molten resin containing reinforcing fibers is injected from the gate 111 into the cavity 105 in a state where the first mold 103 and the second mold 104 are abutted and clamped. . At this time, the outer piece 151 is held at a position shifted from the center pin 150 by a predetermined dimension (ε), as shown in FIG. At this time, a weld line 34 is formed in the joining portion of the molten resin containing reinforcing fibers in the cavity 105 (see FIG. 4). Here, the joining portion of the molten resin containing reinforcing fibers in the cavity 105 is located on the center line 174 rotated 180 ° around the center 150 a of the center pin 150 from the opening position of the gate 111. Then, the entire area in the cavity 105 is filled with molten resin containing reinforcing fibers, and before the molten resin containing reinforcing fibers cools and loses its fluidity, the rotation driving means 135 is operated to drive the cam 163 to rotate. When the means 135 is rotated by a predetermined angle (180 °), the outer piece 151 is moved to the spring 166 until the center 162a (center of the cavity forming hole 168) of the slider 162 of the outer piece 151 and the center 150a of the center pin 150 coincide. And slide to move (see FIG. 12B). Thereby, in the injection mold 2, the distance between the outer peripheral surface of the center pin 150 and the inner peripheral surface of the cavity forming hole 18 is changed, the cavity width (W) is changed, and the molten fiber containing reinforcing fibers in the cavity 105 is melted. The resin is forced to flow in the cavity 105. As a result, in the molten resin containing reinforcing fibers in the cavity 105, the orientation of the reinforcing fibers is disturbed, and the weld line 34 and the surrounding reinforcing fibers are intertwined (see FIG. 4).
 その後、射出成形金型2は、キャビティ105内の強化繊維入りの溶融樹脂が冷えて固まり筒状品1が形作られると、第1金型103と第2金型104が分離され(型開きされ)、エジェクトスリーブ160がキャビティ105内の筒状品1をキャビティ105の外へ押し出す。これにより、射出成形された筒状品1が射出成形金型2のキャビティ105内から取り出される。 Thereafter, when the molten resin containing reinforcing fibers in the cavity 105 is cooled and solidified to form the cylindrical product 1, the injection mold 2 is separated from the first mold 103 and the second mold 104 (the mold is opened). ), The eject sleeve 160 pushes the cylindrical product 1 in the cavity 105 out of the cavity 105. As a result, the injection-molded tubular product 1 is taken out from the cavity 105 of the injection mold 2.
 射出成形金型2は、キャビティ105内から筒状品1が取り出された後、回転駆動手段135が作動させられ、回転駆動手段135によってカム163が回動させられると、ばね166でカム163に押し付けられた外駒151が図12(b)の位置から図12(a)の初期位置(射出待機状態の位置)に戻され、次の射出成形に備える。 In the injection mold 2, after the cylindrical product 1 is taken out from the cavity 105, the rotation driving means 135 is operated, and when the cam 163 is rotated by the rotation driving means 135, the spring 166 moves the cam 163. The pressed outer piece 151 is returned from the position shown in FIG. 12B to the initial position shown in FIG. 12A (the position in the injection standby state) to prepare for the next injection molding.
 以上のような本実施形態に係る射出成形金型2によれば、射出成形された筒状品1におけるウェルドライン34及びウェルドライン34近傍の強化繊維の向きが乱され、筒状品1のウェルドライン34及びウェルドライン34近傍の強化繊維が絡み合うため、筒状品1のウェルドライン34が目立ち難くなると共に、筒状品1のウェルドライン34が形成された部分の強度が向上する。 According to the injection mold 2 according to the present embodiment as described above, the direction of the weld line 34 and the reinforcing fibers near the weld line 34 in the injection-molded tubular product 1 is disturbed, and the weld of the tubular product 1 is disturbed. Since the reinforcing fibers in the vicinity of the line 34 and the weld line 34 are entangled with each other, the weld line 34 of the tubular product 1 is less noticeable and the strength of the portion of the tubular product 1 where the weld line 34 is formed is improved.
  (筒状品の射出成形方法)
 以下に、本実施形態に係る射出成形金型2を使用した筒状品1の射出成形方法を説明する。
(Cylindrical injection molding method)
Below, the injection molding method of the cylindrical article 1 using the injection mold 2 which concerns on this embodiment is demonstrated.
 図12(a),(c)に示すように、射出成形金型2は、第2金型104の外駒151(スライダ162の中心162aで、且つ、キャビティ形成穴168の中心)がセンターピン150(センターピン150の中心150a)に対して所定寸法(ε)だけずらした状態(射出待機状態)で保持され、第1金型103と第2金型104が突き合わされて型締めされる。その後、キャビティ105内には、強化繊維入り溶融樹脂がゲート111から射出される(射出成形の第1工程)。この際、ゲート111からキャビティ105内に射出された溶融樹脂は、ゲート111から周方向に180°回転した位置で合流し、その強化繊維入りの溶融樹脂が合流する部分にウェルドライン34を形成する(図4参照)。 As shown in FIGS. 12A and 12C, the injection mold 2 has the outer pin 151 of the second mold 104 (the center 162a of the slider 162 and the center of the cavity forming hole 168) as a center pin. 150 (center 150a of the center pin 150) is held in a state shifted by a predetermined dimension (ε) (injection standby state), and the first mold 103 and the second mold 104 are abutted and clamped. Thereafter, molten resin containing reinforcing fibers is injected from the gate 111 into the cavity 105 (first step of injection molding). At this time, the molten resin injected into the cavity 105 from the gate 111 merges at a position rotated 180 ° in the circumferential direction from the gate 111, and a weld line 34 is formed at a portion where the molten resin containing reinforcing fibers merges. (See FIG. 4).
 射出成形金型2は、強化繊維入りの溶融樹脂がキャビティ105内の全域に充填され、キャビティ105内に充填された強化繊維入りの溶融樹脂の流動性が損なわれる前に、カム163が回転駆動手段135によって所定角度(θ)だけ回動させられ、外駒151が図12(a)の位置から図12(b)の位置までスライド移動させられ、外駒151のスライダ162の中心162a(キャビティ形成穴168の中心)とセンターピン150の中心150aとが一致する(射出成形の第2工程)。この際、キャビティ105内の強化繊維入りの溶融樹脂は、外駒151とセンターピン150の間に形成された隙間の変化に応じてキャビティ105の周方向に強制的に流動させられる。その結果、キャビティ105内の強化繊維入りの溶融樹脂は、ウェルドライン34及びその周辺の繊維配向が乱され、ウェルドライン34及びその周辺の強化繊維が絡み合い、ウェルドライン34が目立ち難くなる。 In the injection mold 2, the cam 163 is rotationally driven before the molten resin containing reinforcing fibers is filled in the entire area of the cavity 105 and the fluidity of the molten resin containing reinforcing fibers filled in the cavity 105 is impaired. The outer piece 151 is rotated by a predetermined angle (θ) by means 135, and the outer piece 151 is slid from the position shown in FIG. 12A to the position shown in FIG. 12B, and the center 162 a (cavity) of the slider 162 of the outer piece 151. The center of the formation hole 168 and the center 150a of the center pin 150 coincide (second step of injection molding). At this time, the molten resin containing reinforcing fibers in the cavity 105 is forced to flow in the circumferential direction of the cavity 105 in accordance with a change in the gap formed between the outer piece 151 and the center pin 150. As a result, the molten resin containing the reinforcing fibers in the cavity 105 is disturbed in the fiber orientation of the weld line 34 and its surroundings, and the weld line 34 and its surrounding reinforcing fibers are entangled so that the weld line 34 is hardly noticeable.
 射出成形金型2は、キャビティ105内の強化繊維入りの溶融樹脂が冷えて固まった後、第1金型103と第2金型104とが分離される(型開きされる)。この際、第2金型104側のキャビティ105内の筒状品(射出成形品)1と第1金型103側のゲート111とが分離され、ゲート111の切り離し痕41が筒状品1の中空円板部10の外表面に形成される(射出成形の第3工程)。 In the injection mold 2, after the molten resin containing the reinforcing fibers in the cavity 105 is cooled and solidified, the first mold 103 and the second mold 104 are separated (the mold is opened). At this time, the cylindrical product (injection molded product) 1 in the cavity 105 on the second mold 104 side and the gate 111 on the first mold 103 side are separated, and a separation mark 41 of the gate 111 is formed on the cylindrical product 1. It is formed on the outer surface of the hollow disc portion 10 (third step of injection molding).
 次に、キャビティ105内の筒状品1は、エジェクトスリーブ160によってキャビティ105の外に押し出される。これにより、射出成形された筒状品1は、キャビティ105内から取り出される(射出成形の第4工程)。 Next, the cylindrical product 1 in the cavity 105 is pushed out of the cavity 105 by the eject sleeve 160. Thereby, the injection-molded cylindrical product 1 is taken out from the cavity 105 (fourth step of injection molding).
 以上のような本実施形態に係る射出成形方法によれば、射出成形された筒状品1におけるウェルドライン34及びウェルドライン34近傍の強化繊維の向きが乱され、筒状品1のウェルドライン34及びウェルドライン34近傍の強化繊維が絡み合うため、筒状品1のウェルドライン34が目立ち難くなると共に、筒状品1のウェルドライン34が形成された部分の強度が向上する(図4参照)。 According to the injection molding method according to the present embodiment as described above, the direction of the weld line 34 and the reinforcing fibers in the vicinity of the weld line 34 in the injection-molded tubular product 1 is disturbed, and the weld line 34 of the tubular product 1 is disturbed. In addition, since the reinforcing fibers in the vicinity of the weld line 34 are entangled, the weld line 34 of the tubular product 1 is less noticeable and the strength of the portion of the tubular product 1 where the weld line 34 is formed is improved (see FIG. 4).
 なお、本実施形態に係る射出成形金型2は、キャビティ105の形状を図9に示す筒状品1の形状に合わせて変更し、ゲート111をキャビティ105に開口させることにより、第3及び第4実施形態に係る射出成形金型2と同様に、図9に示す筒状品1を射出成形することができる。 In the injection mold 2 according to the present embodiment, the shape of the cavity 105 is changed in accordance with the shape of the cylindrical product 1 shown in FIG. Similarly to the injection mold 2 according to the fourth embodiment, the cylindrical product 1 shown in FIG. 9 can be injection molded.
 [その他の実施形態]
 また、上記各実施形態に係る射出成形金型2のゲート13,111は、ウェルドライン34及びウェルドライン34近傍の強化繊維の向きを乱すことができ、筒状品1のウェルドライン34の強度を向上させることができる限り、キャビティ7,105への開口位置をずらしてもよい。
[Other Embodiments]
Moreover, the gates 13 and 111 of the injection mold 2 according to each of the above embodiments can disturb the direction of the weld line 34 and the reinforcing fiber in the vicinity of the weld line 34, and the strength of the weld line 34 of the tubular product 1 can be increased. As long as it can be improved, the opening position to the cavities 7 and 105 may be shifted.
 また、上記第1~2及び第5実施形態において、筒状品1の円筒部8の肉厚及び中空円板部10の肉厚を均一にした態様を例示したが、筒状品1の円筒部8の肉厚及び中空円板部10の肉厚を変化させてもよい。また、上記第3乃至第4実施形態において、筒状品1の肉厚を均一にした態様を例示したが、筒状品1の肉厚を変化させてもよい。 Further, in the first to second and fifth embodiments, the aspect in which the thickness of the cylindrical portion 8 of the cylindrical product 1 and the thickness of the hollow disc portion 10 are made uniform is illustrated. The thickness of the portion 8 and the thickness of the hollow disc portion 10 may be changed. Moreover, in the said 3rd thru | or 4th embodiment, although the aspect which made the thickness of the cylindrical goods 1 uniform was illustrated, you may change the thickness of the cylindrical goods 1. FIG.
 1……筒状品、2……射出成形金型、3,151……外駒、4,150……センターピン、7,105……キャビティ、13,111……ゲート(ピンポイントゲート)、34……ウェルドライン DESCRIPTION OF SYMBOLS 1 ... Cylindrical product, 2 ... Injection mold, 3, 151 ... Outer piece, 4,150 ... Center pin, 7, 105 ... Cavity, 13, 111 ... Gate (pin point gate), 34 …… Weld line

Claims (7)

  1.  強化繊維入りの溶融樹脂をゲートからキャビティ内に射出することにより、前記キャビティ内で前記強化繊維入りの溶融樹脂が合流してウェルドラインが形成される筒状品の射出成形金型において、
     前記キャビティは、前記筒状品の内周面側を形作るセンターピンと、前記筒状品の外周面側を形作る外駒との間に形成され、
      前記外駒は、前記センターピンに対して移動させられることにより、前記センターピンとの間隔を変えて、前記前記キャビティ内の前記強化繊維入りの溶融樹脂を強制的に流動させ、前記ウェルドラインの前記強化繊維の向きを乱す、
     ことを特徴とする筒状品の射出成形金型。
    By injecting molten resin containing reinforcing fibers into the cavity from the gate, the molten resin containing reinforcing fibers merges in the cavity to form a weld line.
    The cavity is formed between a center pin that forms the inner peripheral surface side of the cylindrical product and an outer piece that forms the outer peripheral surface side of the cylindrical product,
    The outer piece is moved with respect to the center pin, thereby changing the distance to the center pin to forcibly flow the molten resin containing the reinforcing fibers in the cavity, and the weld line Disturb the direction of the reinforcing fiber,
    A cylindrical product injection mold characterized by the above.
  2.  前記外駒は、前記センターピンの中心軸に対して偏心した状態で回動させられる、
     ことを特徴とする請求項1に記載の筒状品の射出成形金型。
    The outer piece is rotated in an eccentric state with respect to the center axis of the center pin.
    The cylindrical product injection mold according to claim 1.
  3.  前記外駒は、前記センターピンの中心軸に直交する平面に沿ってスライド移動させられる、
     ことを特徴とする請求項1に記載の筒状品の射出成形金型。
    The outer piece is slid along a plane orthogonal to the center axis of the center pin.
    The cylindrical product injection mold according to claim 1.
  4.  前記キャビティは、前記筒状品の円筒部を形作るキャビティ部を有し、
     前記キャビティ部の内周面は、前記センターピンの外周面で形作られ、
     前記キャビティ部の外周面は、前記外駒のキャビティ形成穴の内周面で形作られ、
     前記外駒の前記キャビティ形成穴の中心は、前記外駒が前記センターピンに対して移動させられることにより、前記センターピンの中心軸に対してずれた位置から前記センターピンの中心軸に一致する位置まで移動させられる、
     ことを特徴とする請求項2又は3に記載の筒状品の射出成形金型。
    The cavity has a cavity portion that forms a cylindrical portion of the tubular product,
    The inner peripheral surface of the cavity portion is formed by the outer peripheral surface of the center pin,
    The outer peripheral surface of the cavity portion is formed by the inner peripheral surface of the cavity forming hole of the outer piece,
    The center of the cavity forming hole of the outer piece is aligned with the center axis of the center pin from a position shifted from the center axis of the center pin when the outer piece is moved with respect to the center pin. Moved to,
    A cylindrical product injection mold according to claim 2 or 3.
  5.  前記ゲートは、前記キャビティ形成穴の中心が前記センターピンの中心軸から最も大きくずれた位置において、前記キャビティ部の前記内周面と前記外周面との間隔が最も狭い位置側に射出できるように配置され、
     前記ウェルドラインは、前記キャビティ形成穴の中心が前記センターピンの中心軸から最も大きくずれた位置において、前記キャビティ部の前記内周面と前記外周面との間隔が最も広い位置に形成される、
     ことを特徴とする請求項4に記載の筒状品の射出成形金型。
    The gate can be ejected to a position where the distance between the inner peripheral surface and the outer peripheral surface of the cavity portion is the narrowest at the position where the center of the cavity forming hole is most greatly displaced from the center axis of the center pin. Arranged,
    The weld line is formed at a position where the center of the cavity forming hole is most deviated from the center axis of the center pin at a position where the interval between the inner peripheral surface and the outer peripheral surface of the cavity portion is the widest.
    The cylindrical product injection mold according to claim 4.
  6.  強化繊維入りの溶融樹脂をゲートからキャビティ内に射出することにより、前記キャビティ内で前記強化繊維入りの溶融樹脂が合流してウェルドラインが形成される筒状品の射出成形方法において、
     前記キャビティは、前記筒状品の内周面側を形作るセンターピンと、前記筒状品の外周面側を形作る外駒との間に形成され、
     前記外駒を前記センターピンに対して移動させることにより、前記センターピンとの間隔を変えて、前記キャビティ内の前記強化繊維入りの溶融樹脂を強制的に流動させ、前記ウェルドラインの前記強化繊維の向きを乱す、
     ことを特徴とする筒状品の射出成形方法。
    Injecting molten resin containing reinforcing fibers into the cavity from the gate, the molten resin containing reinforcing fibers merges in the cavity to form a weld line.
    The cavity is formed between a center pin that forms the inner peripheral surface side of the cylindrical product and an outer piece that forms the outer peripheral surface side of the cylindrical product,
    By moving the outer piece with respect to the center pin, the distance between the center pin is changed, the molten resin containing the reinforcing fibers in the cavity is forced to flow, and the reinforcing fibers of the weld line Disturb the direction,
    An injection molding method for a cylindrical product characterized by the above.
  7.  強化繊維入りの溶融樹脂がゲートからキャビティ内に射出され、前記キャビティ内で前記強化繊維入りの溶融樹脂が合流してウェルドラインが形成される繊維強化樹脂材料製筒状品において、
     前記キャビティは、前記筒状品の内周面側を形作るセンターピンと、前記筒状品の外周面側を形作る外駒との間に形成され、
     前記外駒が前記センターピンに対して移動させられることにより、前記センターピンとの間隔が変化させられ、前記キャビティ内の前記強化繊維入りの溶融樹脂が強制的に流動させられ、前記ウェルドラインの前記強化繊維の向きが乱された、
     ことを特徴とする繊維強化樹脂材料製筒状品。
    In the tubular product made of fiber reinforced resin material in which molten resin containing reinforcing fibers is injected from the gate into the cavity, and the molten resin containing reinforcing fibers merges in the cavity to form a weld line,
    The cavity is formed between a center pin that forms the inner peripheral surface side of the cylindrical product and an outer piece that forms the outer peripheral surface side of the cylindrical product,
    By moving the outer piece relative to the center pin, the distance from the center pin is changed, the molten resin containing the reinforcing fibers in the cavity is forced to flow, and the weld line The direction of the reinforcing fiber was disturbed,
    A tubular product made of fiber-reinforced resin material.
PCT/JP2016/054797 2015-02-23 2016-02-19 Cylindrical product made of fiber-reinforced resin material, injection molding die therefor, and injection molding method WO2016136601A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/552,728 US10300641B2 (en) 2015-02-23 2016-02-19 Cylindrical article made of fiber-reinforced resin material, injection molding mold thereof, and injection molding method
CN201680011641.4A CN107249848B (en) 2015-02-23 2016-02-19 The injection moulding mold and ejection forming method of fiber-reinforced resin material tubular element, tubular element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-032469 2015-02-23
JP2015032469A JP6512858B2 (en) 2015-02-23 2015-02-23 Fiber-reinforced resin material cylindrical product, injection molding die therefor, and injection molding method

Publications (1)

Publication Number Publication Date
WO2016136601A1 true WO2016136601A1 (en) 2016-09-01

Family

ID=56788523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054797 WO2016136601A1 (en) 2015-02-23 2016-02-19 Cylindrical product made of fiber-reinforced resin material, injection molding die therefor, and injection molding method

Country Status (4)

Country Link
US (1) US10300641B2 (en)
JP (1) JP6512858B2 (en)
CN (1) CN107249848B (en)
WO (1) WO2016136601A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110709226A (en) * 2017-06-02 2020-01-17 株式会社普利司通 Resin member

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200101656A1 (en) * 2018-10-02 2020-04-02 Johns Manville Molds for making insulation products
CN111730800B (en) * 2020-08-10 2020-11-24 浙江大学 Method for improving out-of-roundness of self-reinforced self-sensing electric melting pipe fitting and injection mold

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06226764A (en) * 1993-02-02 1994-08-16 Enplas Corp Method for coating metal component with synthetic resin
JPH08127076A (en) * 1994-10-31 1996-05-21 Fuji Univance:Kk Molding of accumulator piston
US5637328A (en) * 1994-05-23 1997-06-10 General Motors Corporation Pulsating gas-assisted injection molding apparatus
JP2000167863A (en) * 1998-12-09 2000-06-20 Toyobo Co Ltd Method for reinforcing weld
JP2007160683A (en) * 2005-12-13 2007-06-28 Fuji Xerox Co Ltd Resin molding mold, resin molding, and method for molding resin molding
JP2010059316A (en) * 2008-09-04 2010-03-18 Teijin Chem Ltd Lens barrel comprising glass fiber-reinforced flame retardant resin composition
JP2014195941A (en) * 2013-03-29 2014-10-16 日本電気株式会社 Injection molding machine and injection molding method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544204A (en) 1991-08-09 1993-02-23 Shibata Ind Co Ltd Breakwater
JP3383971B2 (en) 1996-06-27 2003-03-10 日本ビクター株式会社 Valve gate device of injection molding machine
JP4229687B2 (en) 2002-01-15 2009-02-25 株式会社エンプラス Injection molded resin gear, injection molded resin rotating body, and injection molded body
DE102011056601A1 (en) * 2011-12-19 2013-06-20 Voss Automotive Gmbh Hollow cylindrical screw part and method for its production

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06226764A (en) * 1993-02-02 1994-08-16 Enplas Corp Method for coating metal component with synthetic resin
US5637328A (en) * 1994-05-23 1997-06-10 General Motors Corporation Pulsating gas-assisted injection molding apparatus
JPH08127076A (en) * 1994-10-31 1996-05-21 Fuji Univance:Kk Molding of accumulator piston
JP2000167863A (en) * 1998-12-09 2000-06-20 Toyobo Co Ltd Method for reinforcing weld
JP2007160683A (en) * 2005-12-13 2007-06-28 Fuji Xerox Co Ltd Resin molding mold, resin molding, and method for molding resin molding
JP2010059316A (en) * 2008-09-04 2010-03-18 Teijin Chem Ltd Lens barrel comprising glass fiber-reinforced flame retardant resin composition
JP2014195941A (en) * 2013-03-29 2014-10-16 日本電気株式会社 Injection molding machine and injection molding method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110709226A (en) * 2017-06-02 2020-01-17 株式会社普利司通 Resin member

Also Published As

Publication number Publication date
CN107249848A (en) 2017-10-13
JP6512858B2 (en) 2019-05-15
US10300641B2 (en) 2019-05-28
US20180029261A1 (en) 2018-02-01
CN107249848B (en) 2019-10-11
JP2016155225A (en) 2016-09-01

Similar Documents

Publication Publication Date Title
WO2016136601A1 (en) Cylindrical product made of fiber-reinforced resin material, injection molding die therefor, and injection molding method
CN104067005B (en) Form the assembly of a part for vehicle and be used for the method for the element producing this assembly
US11559930B2 (en) Injection-moulded component, joint, injection-moulding device, and method for producing an injection-moulded component
US20160368193A1 (en) Molding die and manufacturing method using molding die
US7611655B2 (en) Molding metal mold and method for producing a molded item
JP2016049757A (en) Molding equipment
WO2016009721A1 (en) Cylindrical article made of fiber-reinforced resin material, injection-molding mold therefor, and injection-molding method
KR101562508B1 (en) Core unit guide block assembly
JP6271870B2 (en) Manufacturing method of resin roller shaft, molding die and roller shaft
JP2008229999A (en) Resin molding mold
JP2003089132A (en) Insert molding method, connector, method for manufacturing the same, and mold
CN101186088B (en) Molding metal mold and method for manufacturing molding product
WO2017033592A1 (en) Injection molding method for mesh filter, injection molding mold, and mesh filter
CN113482172A (en) Wood structure assembled connecting device
CN108145904B (en) Mold device, method for manufacturing insert molded article, and insert molded article
JP6605086B2 (en) Cylindrical injection mold and cylindrical injection molding method
CN1302296C (en) Lenses for aligning onto image acquisition lens accurately
JP2007106125A (en) Die for manufacturing hollow molded article
KR20160094796A (en) Multi-component injection mold
JPH11314246A (en) Molded product having movable part and its production
JP7218627B2 (en) Detection gear for rotation angle detection device, rotation angle detection device, and method for manufacturing detection gear for rotation angle detection device
JP2003080570A (en) Mold for injection molding
JP2009143062A (en) Molding die mechanism of thin-wall injection molded piece
US10189195B2 (en) Platen for an injection molding machine
JP2002098857A (en) Die unit for injection molding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16755347

Country of ref document: EP

Kind code of ref document: A1