WO2016136352A1 - Macro lens and imaging device - Google Patents

Macro lens and imaging device Download PDF

Info

Publication number
WO2016136352A1
WO2016136352A1 PCT/JP2016/051987 JP2016051987W WO2016136352A1 WO 2016136352 A1 WO2016136352 A1 WO 2016136352A1 JP 2016051987 W JP2016051987 W JP 2016051987W WO 2016136352 A1 WO2016136352 A1 WO 2016136352A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
lens
macro
object side
image plane
Prior art date
Application number
PCT/JP2016/051987
Other languages
French (fr)
Japanese (ja)
Inventor
祐美子 上原
文和 金高
久 宇野
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2016136352A1 publication Critical patent/WO2016136352A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present disclosure relates to a macro lens and an imaging device.
  • a macro lens that is suitably used for a single-lens reflex camera, a mirrorless camera, a digital still camera, and the like, has a large maximum shooting magnification, and has been improved in performance, and an imaging apparatus including such a macro lens.
  • an imaging apparatus including such a macro lens.
  • a lens that has a focal length of about 90 mm in terms of 35 mm as an angle of view suitable for portrait photography and macro photography of flowers, insects, and the like, and can be used for 35 mm version image sensors.
  • a focal length of about 90 mm in terms of 35 mm as an angle of view suitable for portrait photography and macro photography of flowers, insects, and the like
  • 35 mm version image sensors Expected.
  • the optical total length is as large as about 160 mm. Also, in the disclosure example of Patent Document 2, the total optical length is as large as about 160 mm when it corresponds to a 35 mm version image sensor.
  • wobbling means that the lens group is moved minutely in the optical axis direction by using a contrast method in order to detect the in-focus position during AF.
  • one lens group functions as both a focus lens group and a wobbling lens group.
  • the lens of the focus lens group on the image plane side from the aperture stop tends to have a higher specific gravity, it is not optimal for increasing the AF speed or wobbling.
  • the second focus lens group is composed of a single lens, and weight reduction can be realized.
  • a low-dispersion glass aspherical lens is used for the second focus lens group.
  • a macro lens capable of reducing the weight of the focus lens group, and an imaging apparatus equipped with such a macro lens, while having good optical performance and a short optical total length.
  • a macro lens according to an embodiment of the present disclosure is disposed closest to the object side, has an object-side lens group having positive refractive power, and is closer to the image plane side than the object-side lens group, and is close to an object at infinity.
  • a first focus lens group that moves on the optical axis from the object side to the image plane side during focusing on the object, an aperture stop that is fixed in the optical axis direction during focusing, and two or more lenses, and a first focus
  • a second focus lens group that is arranged on the image plane side of the lens group and moves on the optical axis from the image plane side to the object side during focusing from an object at infinity to a short distance object;
  • a final lens unit that is fixed in the optical axis direction during focusing, and satisfies the following conditional expression.
  • An imaging apparatus includes a macro lens and an imaging element that outputs an imaging signal corresponding to an optical image formed by the macro lens, and the macro lens is formed by the macro lens according to the present disclosure. It is composed.
  • the focus lens group and other imaging devices have a good optical performance, the optical total length is short, and the focus lens group can be reduced in weight.
  • the configuration of the lens group is optimized.
  • the configuration of the focus lens group and the other lens groups is optimized, so that the optical total length is obtained while having good optical performance.
  • the focus lens group can be reduced in weight. Note that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
  • FIG. 6 is an aberration diagram illustrating various aberrations at an intermediate shooting distance in Numerical Example 1 in which specific numerical values are applied to the macro lens illustrated in FIG. 1. It is an aberration diagram showing various aberrations at the same magnification shooting distance in Numerical Example 1 in which specific numerical values are applied to the macro lens shown in FIG. It is lens sectional drawing which shows the 2nd structural example of a macro lens.
  • FIG. 6 is an aberration diagram illustrating various aberrations at infinity in Numerical Example 2 in which specific numerical values are applied to the macro lens illustrated in FIG. 5.
  • FIG. 6 is an aberration diagram illustrating various aberrations at an intermediate shooting distance in Numerical Example 2 in which specific numerical values are applied to the macro lens illustrated in FIG. 5.
  • FIG. 6 is an aberration diagram showing various aberrations at the same magnification shooting distance in Numerical Example 2 in which specific numerical values are applied to the macro lens shown in FIG. 5.
  • It is lens sectional drawing which shows the 3rd structural example of a macro lens.
  • FIG. 10 is an aberration diagram illustrating various aberrations at infinity in Numerical Example 3 in which specific numerical values are applied to the macro lens illustrated in FIG. 9.
  • FIG. 10 is an aberration diagram illustrating various aberrations at infinity in Numerical Example 3 in which specific numerical values are applied to the macro lens illustrated in FIG. 9.
  • FIG. 10 is an aberration diagram illustrating various aberrations at an intermediate shooting distance in Numerical Example 3 in which specific numerical values are applied to the macro lens illustrated in FIG. 9.
  • FIG. 10 is an aberration diagram illustrating various aberrations at the same magnification shooting distance in Numerical Example 3 in which specific numerical values are applied to the macro lens illustrated in FIG. 9.
  • It is lens sectional drawing which shows the 4th structural example of a macro lens.
  • FIG. 14 is an aberration diagram showing various aberrations at infinity in Numerical Example 4 in which specific numerical values are applied to the macro lens illustrated in FIG. 13.
  • FIG. 14 is an aberration diagram illustrating various aberrations at an intermediate shooting distance in Numerical Example 4 in which specific numerical values are applied to the macro lens illustrated in FIG. 13.
  • FIG. 14 is an aberration diagram showing various aberrations at the same magnification shooting distance in Numerical Example 4 in which specific numerical values are applied to the macro lens illustrated in FIG. 13.
  • It is a block diagram which shows the example of 1 structure of an imaging
  • FIG. 1 illustrates a first configuration example of a macro lens according to an embodiment of the present disclosure.
  • FIG. 5 shows a second configuration example of the macro lens.
  • FIG. 9 shows a third configuration example of the macro lens.
  • FIG. 13 shows a fourth configuration example of the macro lens. Numerical examples in which specific numerical values are applied to these configuration examples will be described later.
  • Z1 represents an optical axis.
  • optical members such as a seal glass for protecting the image sensor and various optical filters FL may be disposed.
  • the configuration of the macro lens according to the present embodiment will be described in association with the configuration example illustrated in FIG. 1 and the like as appropriate, but the technology according to the present disclosure is not limited to the illustrated configuration example.
  • the macro lens according to the present embodiment includes an object side lens group disposed closest to the object side, a first focus lens group disposed closer to the image plane than the object side lens group, an aperture stop S, and a first lens.
  • a second focus lens group disposed on the image plane side with respect to the focus lens group, and a final lens group disposed on the most image plane side are provided.
  • the object side lens group has a positive refractive power and is fixed in the optical axis direction during focusing.
  • the aperture stop S is fixed in the optical axis direction during focusing.
  • the first lens group GR1 corresponds to the object side lens group.
  • the macro lens according to the present embodiment is capable of focusing on an object within a range including an object distance from infinity to a short distance where the photographing magnification is equal magnification by the first focus lens group and the second focus lens group. is there.
  • the upper row shows the object distance at infinity
  • the middle row shows the intermediate shooting distance where the shooting magnification is -0.5 times
  • the lower row shows the position of the lens group at the same shooting distance where the shooting magnification is the same magnification.
  • Dashed arrows indicate movement during focusing.
  • the first focus lens group and the second focus lens group exist at positions indicated by broken-line arrows as focusing from infinity to the same magnification photographing distance is performed.
  • a solid arrow indicates a moving direction of an anti-vibration lens group described later.
  • the first focus lens group moves on the optical axis from the object side to the image plane side during focusing from an infinitely distant object to a close object.
  • the second focus lens group includes two or more lenses, and moves on the optical axis from the image plane side to the object side during focusing from an infinitely distant object to a close object.
  • the second lens group GR2 corresponds to the first focus lens group.
  • the fourth lens group GR4 corresponds to the second focus lens group.
  • the third lens group GR3 corresponds to the second focus lens group.
  • the final lens group is fixed in the optical axis direction during focusing.
  • the fifth lens group GR5 corresponds to the final lens group.
  • the fourth lens group GR4 corresponds to the final lens group.
  • the macro lens according to the present embodiment satisfies the following conditional expression. 0.25 ⁇
  • fr focal length of the final lens group
  • f focal length of the entire system
  • y ′ image height
  • BF air conversion length of back focus.
  • the macro lens according to the present embodiment satisfies a predetermined conditional expression described later.
  • the macro lens by optimizing the configuration of the focus lens group and the other lens groups, macro shooting is possible and the optical total length is short while having good optical performance.
  • the focus lens group can be reduced in weight. Accordingly, it is possible to provide a macro lens having a focal length of about 90 mm corresponding to a 35 mm version image sensor.
  • the first focus lens group moves on the optical axis from the object side to the image plane side
  • the second focus lens group moves to the optical axis. Move up from the image plane side to the object side.
  • Other lens groups are fixed in the optical axis direction.
  • an inner focus type macro lens whose position is fixed with respect to the image plane IMG is used.
  • the movable group can be reduced, and the AF speed can be increased and the power can be saved.
  • moving the two lens groups is advantageous in correcting field curvature until shooting from an infinitely distant object to a close object with a photographing magnification near the same magnification.
  • the weight of the movable group can be reduced, which is effective for increasing the AF speed.
  • the second focus lens group by configuring the second focus lens group with two or more lenses, it is advantageous for correcting axial chromatic aberration and lateral chromatic aberration.
  • the movable group in focusing, by fixing the last lens group closest to the image plane to the image plane IMG, the movable group can be reduced and the mechanical structure can be simplified.
  • the power of the final lens group in the optical system becomes strong, which is advantageous for shortening the optical total length.
  • the conditional expression (2) the final lens and the image plane IMG can be brought close to each other, which is also advantageous for shortening the total optical length. More specifically, the following actions and effects can be obtained.
  • Conditional expression (1) is an expression that prescribes the focal length of the final lens unit closest to the image plane in order to shorten the optical total length.
  • the power of the final lens group becomes strong and the aberration generated by the peripheral luminous flux increases, so that the optical performance deteriorates.
  • the numerical value range of conditional expression (1) is exceeded, the power of the final lens group becomes weak, so that the optical total length becomes long, which is disadvantageous for downsizing of the lens barrel.
  • Conditional expression (2) is an expression that defines the relationship between the back focus length and the image height, which are preferable for shortening the optical total length. If the numerical value range of conditional expression (2) is not reached, the back focus becomes long, so that the total optical length becomes long, which is disadvantageous for downsizing the lens barrel. When the conditional expression (2) is exceeded, the optical system is too close to the mechanical structure inside the camera body, and there is a possibility that the optical system and the parts of the camera body interfere with each other.
  • conditional expression (2) it is desirable to set the numerical range of conditional expression (2) to the range of conditional expression (2) ′ below. 0.65 ⁇ y '/ BF ⁇ 1.2 (2)'
  • ff The combined focal length of the lens unit on the object side of the second focus lens unit.
  • Conditional expression (3) is an expression that prescribes the combined focal length of the lens group on the object side of the second focus lens group in order to reduce the weight of the second focus lens group.
  • conditional expression (3) the combined refractive power from the object side lens group to the lens group adjacent to the object side of the second focus lens group is optimized, which is advantageous for reducing the weight of the second focus lens group. It becomes. Further, it is advantageous for reducing the outer diameter of the lens barrel. If the numerical value range of conditional expression (3) is not reached, the combined refractive power of the lens group located on the object side of the second focus lens group becomes weak, so that the second focus lens while appropriately converging the light beam It becomes difficult to lead to a group.
  • the outer diameter of the lens barrel is increased.
  • Conditional expression (4) is an expression that regulates the average specific gravity of the second focus lens group in order to reduce the weight of the second focus lens group.
  • the conditional expression (4) is satisfied, the specific gravity of the lens of the second focus lens group is optimized, which is advantageous for reducing the weight of the second focus lens group, and effective for increasing the AF speed. It is also advantageous for wobbling used for moving image shooting and the like.
  • the value falls below the numerical range of the conditional expression (4), the second focus lens group becomes heavy, leading to a decrease in AF speed. In addition, it becomes difficult to provide a wobbling function used for moving image shooting or the like.
  • the numerical value range of conditional expression (4) is exceeded, the refractive index tends to decrease.
  • the focus sensitivity of the second focus lens group decreases, and the shooting magnification from the object at infinity is a short distance near the same magnification.
  • the amount of movement in focusing to the object increases. This is disadvantageous for shortening the optical total length.
  • conditional expression (4) it is desirable to set the numerical range of conditional expression (4) to the range of conditional expression (4) ′ below. 0.28 ⁇ 1 / GF ⁇ 0.40 (4) '
  • the macro lens according to the present embodiment may further include an anti-vibration lens group that moves in a direction perpendicular to the optical axis Z1.
  • the third lens group GR3 corresponds to an anti-vibration lens group.
  • a part of the fourth lens group GR4 corresponds to the anti-vibration lens group.
  • the anti-vibration lens group moves so as to have a component perpendicular to the optical axis Z1, and shifts the imaging position in the direction perpendicular to the optical axis Z1.
  • the anti-vibration lens group is located on the image plane side with respect to the first focus lens group and on the object side with respect to the second focus lens group, as in the configuration examples of the macro lenses 1 to 3 in FIGS. It is desirable to be arranged in. Thereby, the focus shift
  • the anti-vibration lens group When the anti-vibration lens group is disposed closer to the image plane than the first focus lens group and closer to the object side than the second focus lens group, it is desirable that the anti-vibration lens group has a positive refractive power. Accordingly, since the light flux is converged and guided to the second focus lens group, the height of the light flux can be lowered, which is advantageous for reducing the diameter of the second focus lens group.
  • a part of the lenses in the final lens group can be set as a vibration-proof lens group.
  • the image stabilizing lens group has a negative refractive power.
  • the axial light beam and the peripheral light beam are guided to the final lens group in a state of being separated from each other.
  • aberration correction can be performed separately for the axial light beam and the peripheral light beam, and deterioration of the peripheral performance at the time of image stabilization can be suppressed.
  • the object side lens group it is desirable that at least one lens surface of the plurality of lens surfaces constituting the object side lens group is aspherical. Since the object side lens group has a high light beam height at all photographing magnifications, it is possible to always correct the aberration of the peripheral luminous flux and to guide the luminous flux with little residual aberration to the first focus lens group.
  • the final lens group includes at least one negative lens and one positive lens. Since the negative lens can diverge the light beam with a small aperture, the back focus can be shortened and the entire optical system can be downsized. Further, chromatic aberration can be corrected well by combining a negative lens and a positive lens.
  • the most image side surface of the final lens group is a convex surface. Thereby, generation
  • FIG. 17 shows a configuration example of the imaging apparatus 100 to which the macro lens according to the present embodiment is applied.
  • the imaging device 100 is, for example, a digital still camera, and includes a camera block 10, a camera signal processing unit 20, an image processing unit 30, an LCD (Liquid Crystal Display) 40, and an R / W (reader / writer) 50. , A CPU (Central Processing Unit) 60, an input unit 70, and a lens drive control unit 80.
  • the camera block 10 is responsible for an imaging function, and includes an optical system including an imaging lens 11 and an imaging device 12 such as a CCD (Charge-Coupled Devices) or a CMOS (Complementary Metal-Oxide Semiconductor).
  • the imaging element 12 outputs an imaging signal (image signal) corresponding to the optical image by converting the optical image formed by the imaging lens 11 into an electrical signal.
  • the imaging lens 11 the macro lenses 1 to 4 of the respective configuration examples shown in FIGS. 1, 5, 9, and 13 can be applied.
  • the camera signal processing unit 20 performs various signal processing such as analog-digital conversion, noise removal, image quality correction, and conversion to luminance / color difference signals on the image signal output from the image sensor 12.
  • the image processing unit 30 performs recording and reproduction processing of an image signal, and performs compression encoding / decompression decoding processing of an image signal based on a predetermined image data format, conversion processing of data specifications such as resolution, and the like. It has become.
  • the LCD 40 has a function of displaying various data such as an operation state of the user input unit 70 and a photographed image.
  • the R / W 50 performs writing of the image data encoded by the image processing unit 30 to the memory card 1000 and reading of the image data recorded on the memory card 1000.
  • the memory card 1000 is a semiconductor memory that can be attached to and detached from a slot connected to the R / W 50, for example.
  • the CPU 60 functions as a control processing unit that controls each circuit block provided in the imaging apparatus 100, and controls each circuit block based on an instruction input signal or the like from the input unit 70.
  • the input unit 70 includes various switches and the like that are operated by a user.
  • the input unit 70 includes, for example, a shutter release button for performing a shutter operation, a selection switch for selecting an operation mode, and the like, and outputs an instruction input signal corresponding to an operation by the user to the CPU 60.
  • the lens drive control unit 80 controls driving of the lenses arranged in the camera block 10 and controls a motor (not shown) that drives each lens of the imaging lens 11 based on a control signal from the CPU 60. It has become.
  • the imaging apparatus 100 includes a shake detection unit that detects a shake of the apparatus due to a camera shake.
  • an operation in the imaging apparatus 100 will be described.
  • a shooting standby state under the control of the CPU 60, an image signal shot by the camera block 10 is output to the LCD 40 via the camera signal processing unit 20 and displayed as a camera through image.
  • the CPU 60 outputs a control signal to the lens drive control unit 80, and a predetermined value of the imaging lens 11 is controlled based on the control of the lens drive control unit 80. The lens moves.
  • the captured image signal is output from the camera signal processing unit 20 to the image processing unit 30 and subjected to compression encoding processing. Converted to digital data in data format. The converted data is output to the R / W 50 and written to the memory card 1000.
  • focusing is performed by the lens drive control unit 80 based on a control signal from the CPU 60, for example, when the shutter release button of the input unit 70 is half-pressed or when it is fully pressed for recording (photographing). This is performed by moving a predetermined lens of the imaging lens 11.
  • predetermined image data is read from the memory card 1000 by the R / W 50 in response to an operation on the input unit 70, and decompressed and decoded by the image processing unit 30. After the processing is performed, the reproduction image signal is output to the LCD 40 and the reproduction image is displayed.
  • the CPU 60 operates the lens drive control unit 80 based on a signal output from a shake detection unit (not shown), and moves the image stabilizing lens group in a direction substantially perpendicular to the optical axis Z1 according to the shake amount.
  • the imaging device is applied to a digital still camera.
  • the application range of the imaging device is not limited to a digital still camera, and can be applied to other various imaging devices. It is. For example, it can be applied to a single-lens reflex camera, a mirrorless camera, and a digital video camera. Further, it can be widely applied as a camera unit of a digital input / output device such as a mobile phone with a camera incorporated therein or a PDA (Personal Digital Assistant) with a camera incorporated therein.
  • the present invention can also be applied to an interchangeable lens camera.
  • “Surface number” indicates the number of the i-th surface counted from the object side to the image side.
  • “Ri” indicates the value (mm) of the paraxial radius of curvature of the i-th surface.
  • “Di” indicates a value (mm) of an interval on the optical axis between the i-th surface and the (i + 1) -th surface.
  • “Ni” indicates the value of the refractive index at the d-line (wavelength 587.6 nm) of the material of the optical element having the i-th surface.
  • “ ⁇ i” represents the value of the Abbe number in the d-line of the material of the optical element having the i-th surface.
  • the portion where the value of “ri” is “ ⁇ ” indicates a flat surface or a diaphragm surface (aperture stop S).
  • the surface indicated as “STO” in “surface number” indicates the aperture stop S.
  • “F” indicates the focal length of the entire lens system, “Fno” indicates the F number, and “ ⁇ ” indicates the half angle of view.
  • Some lenses used in each numerical example have an aspheric lens surface.
  • the surface marked with * is an aspherical surface.
  • the aspheric shape is defined by the following aspheric expression.
  • E ⁇ i represents an exponential expression with a base of 10, that is, “10 ⁇ i ”.
  • 0.12345E-05 represents “ 0.12345 ⁇ 10 ⁇ 5 ”.
  • x Sag amount (distance in the optical axis direction from the apex of the lens surface)
  • y Height in the direction perpendicular to the optical axis
  • c Paraxial curvature at the lens apex (reciprocal of paraxial radius of curvature)
  • conic constant
  • D tenth-order aspheric coefficient
  • Table 1 shows lens data of Numerical Example 1 in which specific numerical values are applied to the macro lens 1 shown in FIG.
  • the macro lens 1 shown in FIG. 1 includes a first lens group GR1 having a positive refractive power, a second lens group GR2 having a negative refractive power, a third lens group GR3 having a positive refractive power, A fourth lens group GR4 having negative refractive power and a fifth lens group GR5 having negative refractive power are arranged in order from the object side to the image plane side.
  • the macro lens 1 satisfies the basic configuration of the lens described in the above embodiment, and the first lens group GR1 corresponds to an object side lens group.
  • the second lens group GR2 corresponds to the first focus lens group, and the fourth lens group GR4 corresponds to the second focus lens group.
  • the fifth lens group GR5 corresponds to the final lens group.
  • the third lens group GR3 corresponds to an anti-vibration lens group.
  • the first lens group GR1 includes a biconvex positive lens G1, a cemented lens in which a biconvex positive lens G2 and a biconcave negative lens G3 are cemented, and a meniscus shape with a convex surface facing the object side.
  • a positive lens G4 is arranged in order from the object side to the image plane side.
  • the second lens group GR2 includes a biconcave negative lens G5, a cemented lens formed by cementing a biconcave negative lens G6 and a meniscus positive lens G7 having a convex surface facing the object side, from the object side. They are arranged in order toward the image plane side.
  • the third lens group GR3 is constituted by a cemented lens in which a meniscus negative lens G8 having a convex surface directed toward the object side and a biconvex positive lens G9 are cemented.
  • the fourth lens group GR4 includes, from the object side, a biconvex positive lens G11, a biconvex positive lens G12, and a meniscus negative lens G12 having a concave surface facing the object side. They are arranged in order toward the image plane side.
  • a meniscus positive lens G13 having a concave surface facing the object side, a biconcave negative lens G14, and a meniscus negative lens G15 having a concave surface facing the object side are arranged from the object side. They are arranged in order toward the image plane side.
  • An optical filter FL is disposed between the fifth lens group GR5 and the image plane IMG.
  • the aperture stop S is disposed on the object side of the third lens group GR3.
  • aspherical surfaces are formed on the seventh surface and the nineteenth surface.
  • the values of the fourth-order, sixth-order, eighth-order, and tenth-order aspheric coefficients A, B, C, and D along with the values of the conic constant ⁇ are shown in [Table 2].
  • [Table 3] shows the focal length f, F number Fno, and half angle of view ⁇ of the entire lens system.
  • the distance d ⁇ b> 7 between the first lens group GR ⁇ b> 1 and the second lens group GR ⁇ b> 2 changes during focusing from infinity to the equal magnification shooting distance.
  • the distance d12 between the second lens group GR2 and the third lens group GR3 changes.
  • the distance d16 between the aperture stop S and the fourth lens group GR4 changes.
  • the distance d21 between the fourth lens group GR4 and the fifth lens group GR5 changes.
  • Table 4 shows the values of the variable intervals at infinity, intermediate shooting distance (shooting magnification -0.5 times), and equal magnification shooting distance (shooting magnification -1.0 times).
  • FIG. 2 to 4 show various aberrations in Numerical Example 1.
  • FIG. 2 shows various aberrations at infinity
  • FIG. 3 shows an intermediate shooting distance
  • FIG. 2 to 4 show spherical aberration, astigmatism (field curvature), and distortion (distortion aberration) as various aberrations.
  • a solid line (S) indicates a value on a sagittal image plane
  • a broken line (M) indicates a value on a meridional image plane. The same applies to aberration diagrams in other numerical examples.
  • the macro lens 1 according to Numerical Example 1 has excellent imaging performance in which each aberration is well corrected at infinity, intermediate shooting distance, and equal shooting distance. It is clear that
  • Table 5 shows lens data of Numerical Example 2 in which specific numerical values are applied to the macro lens 2 shown in FIG.
  • the macro lens 2 shown in FIG. 5 includes a first lens group GR1 having a positive refractive power, a second lens group GR2 having a negative refractive power, a third lens group GR3 having a positive refractive power, A fourth lens group GR4 having negative refractive power and a fifth lens group GR5 having negative refractive power are arranged in order from the object side to the image plane side.
  • the macro lens 2 satisfies the basic configuration of the lens described in the above embodiment, and the first lens group GR1 corresponds to an object side lens group.
  • the second lens group GR2 corresponds to the first focus lens group, and the fourth lens group GR4 corresponds to the second focus lens group.
  • the fifth lens group GR5 corresponds to the final lens group.
  • the third lens group GR3 corresponds to an anti-vibration lens group.
  • the first lens group GR1 includes a biconvex positive lens G1, a cemented lens in which a biconvex positive lens G2 and a biconcave negative lens G3 are cemented, and a meniscus shape with a convex surface facing the object side.
  • a positive lens G4 is arranged in order from the object side to the image plane side.
  • the second lens group GR2 includes a biconcave negative lens G5, a cemented lens formed by cementing a biconcave negative lens G6 and a meniscus positive lens G7 having a convex surface facing the object side, from the object side. They are arranged in order toward the image plane side.
  • the third lens group GR3 is constituted by a cemented lens in which a meniscus negative lens G8 having a convex surface directed toward the object side and a biconvex positive lens G9 are cemented.
  • the fourth lens group GR4 includes, from the object side, a biconvex positive lens G11, a biconvex positive lens G12, and a meniscus negative lens G12 having a concave surface facing the object side. They are arranged in order toward the image plane side.
  • a meniscus positive lens G13 having a concave surface facing the object side, a biconcave negative lens G14, and a meniscus negative lens G15 having a concave surface facing the object side are arranged from the object side. They are arranged in order toward the image plane side.
  • An optical filter FL is disposed between the fifth lens group GR5 and the image plane IMG.
  • the aperture stop S is disposed on the object side of the third lens group GR3.
  • an aspheric surface is formed on the seventh surface.
  • the values of the fourth-order, sixth-order, eighth-order, and tenth-order aspheric coefficients A, B, C, and D on the aspheric surface are shown in [Table 6] together with the value of the conic constant ⁇ .
  • [Table 7] shows the focal length f, F number Fno, and half angle of view ⁇ of the entire lens system.
  • the distance d7 between the first lens group GR1 and the second lens group GR2 changes during focusing from infinity to the equal magnification shooting distance.
  • the distance d12 between the second lens group GR2 and the third lens group GR3 changes.
  • the distance d16 between the aperture stop S and the fourth lens group GR4 changes.
  • the distance d21 between the fourth lens group GR4 and the fifth lens group GR5 changes.
  • Table 8 shows the values of variable intervals at infinity, intermediate shooting distance (shooting magnification -0.5 times), and equal magnification shooting distance (shooting magnification -1.0 times).
  • FIG. 6 to 8 show various aberrations in Numerical Example 2.
  • FIG. 6 shows various aberrations at infinity
  • FIG. 7 shows an intermediate shooting distance
  • FIG. 8 shows an equal magnification shooting distance.
  • the macro lens 2 according to Numerical Example 2 has excellent imaging performance in which each aberration is well corrected at infinity, an intermediate shooting distance, and an equal magnification shooting distance. It is clear that
  • Table 9 shows lens data of Numerical Example 3 in which specific numerical values are applied to the macro lens 3 shown in FIG.
  • the macro lens 3 shown in FIG. 9 includes a first lens group GR1 having a positive refractive power, a second lens group GR2 having a negative refractive power, a third lens group GR3 having a positive refractive power, A fourth lens group GR4 having negative refractive power and a fifth lens group GR5 having negative refractive power are arranged in order from the object side to the image plane side.
  • the macro lens 3 satisfies the basic configuration of the lens described in the above embodiment, and the first lens group GR1 corresponds to an object side lens group.
  • the second lens group GR2 corresponds to the first focus lens group, and the fourth lens group GR4 corresponds to the second focus lens group.
  • the fifth lens group GR5 corresponds to the final lens group.
  • the third lens group GR3 corresponds to an anti-vibration lens group.
  • the first lens group GR1 includes a biconvex positive lens G1, a cemented lens in which a biconvex positive lens G2 and a biconcave negative lens G3 are cemented, and a biconvex positive lens G4. They are arranged in order from the object side to the image plane side.
  • a biconcave negative lens G5 and a cemented lens formed by cementing a biconcave negative lens G6 and a biconvex positive lens G7 are arranged in order from the object side to the image plane side. Has been configured.
  • the third lens group GR3 includes a biconvex positive lens G8 and a meniscus negative lens G9 having a concave surface facing the object side, which are arranged in order from the object side to the image surface side.
  • the fourth lens group GR4 is composed of a cemented lens in which a meniscus negative lens G10 having a convex surface directed toward the object side and a biconvex positive lens G11 are cemented.
  • the fifth lens group GR5 includes a cemented lens in which a meniscus positive lens G12 having a concave surface facing the object side and a biconcave negative lens G13 are cemented, and a meniscus negative lens G14 having a concave surface facing the object side. Are arranged in order from the object side to the image plane side.
  • An optical filter FL is disposed between the fifth lens group GR5 and the image plane IMG.
  • the aperture stop S is disposed on the object side of the third lens group GR3.
  • aspheric surfaces are formed on the sixth surface, the eighth surface, and the twentieth surface.
  • the values of the fourth-order, sixth-order, eighth-order, and tenth-order aspheric coefficients A, B, C, and D along with the values of the conic constant ⁇ are shown in [Table 10].
  • [Table 11] shows values of the focal length f, the F number Fno, and the half angle of view ⁇ of the entire lens system.
  • the distance d7 between the first lens group GR1 and the second lens group GR2 changes during focusing from infinity to the equal magnification shooting distance.
  • the distance d12 between the second lens group GR2 and the third lens group GR3 changes.
  • the distance d17 between the aperture stop S and the fourth lens group GR4 changes.
  • the distance d20 between the fourth lens group GR4 and the fifth lens group GR5 changes.
  • Table 12 shows the values of the variable intervals at infinity, intermediate shooting distance (shooting magnification -0.5 times), and equal magnification shooting distance (shooting magnification -1.0 times).
  • FIG. 10 to 12 show various aberrations in Numerical Example 3.
  • FIG. 10 shows various aberrations at infinity
  • FIG. 11 shows an intermediate shooting distance
  • FIG. 10 to 12 show various aberrations in Numerical Example 3.
  • FIG. 10 shows various aberrations at infinity
  • FIG. 11 shows an intermediate shooting distance
  • FIG. 10 to 12 show various aberrations in Numerical Example 3.
  • FIG. 10 shows various aberrations at infinity
  • FIG. 11 shows an intermediate shooting distance
  • the macro lens 3 according to Numerical Example 3 has excellent imaging performance with each aberration being corrected well at infinity, an intermediate shooting distance, and an equal magnification shooting distance. It is clear that
  • Table 13 shows lens data of Numerical Example 4 in which specific numerical values are applied to the macro lens 4 shown in FIG.
  • the macro lens 4 shown in FIG. 13 includes a first lens group GR1 having a positive refractive power, a second lens group GR2 having a negative refractive power, a third lens group GR3 having a positive refractive power, and a negative lens power.
  • the fourth lens group GR4 having a refractive power of 1 is arranged in order from the object side to the image plane side.
  • the macro lens 4 satisfies the basic configuration of the lens described in the above embodiment, and the first lens group GR1 corresponds to an object side lens group.
  • the second lens group GR2 corresponds to the first focus lens group, and the third lens group GR3 corresponds to the second focus lens group.
  • the fourth lens group GR4 corresponds to the final lens group. Part of the lenses G11 and G12 of the fourth lens group GR4 corresponds to a vibration-proof lens group.
  • the first lens group GR1 includes a biconvex positive lens G1, a biconvex positive lens G2, a meniscus negative lens G3 having a concave surface facing the object side, and a convex surface facing the object side. Are arranged in order from the object side to the image side.
  • the second lens group GR2 includes a meniscus negative lens G5 having a convex surface facing the object side, and a cemented lens formed by cementing a biconcave negative lens G6 and a biconvex positive lens G7 from the object side. They are arranged in order toward the image side.
  • the third lens group GR3 includes, from the object side, a biconvex positive lens G8, a cemented lens formed by cementing a meniscus negative lens G9 having a convex surface facing the object side, and a biconvex positive lens G10. They are arranged in order toward the image side.
  • the fourth lens group GR4 includes a cemented lens in which a biconvex positive lens G11 and a biconcave negative lens G12 are cemented, a meniscus positive lens G13 having a convex surface on the object side, and a concave surface on the object side. Is arranged in order from the object side to the image side.
  • An optical filter FL is disposed between the fourth lens group GR4 and the image plane IMG.
  • the aperture stop S is disposed between the second lens group GR2 and the third lens group GR3.
  • [Table 14] shows the focal length f, F number Fno, and half angle of view ⁇ of the entire lens system.
  • the distance d7 between the first lens group GR1 and the second lens group GR2 changes during focusing from infinity to the equal magnification shooting distance.
  • the distance d12 between the second lens group GR2 and the aperture stop S changes.
  • the distance d13 between the aperture stop S and the third lens group GR3 changes.
  • the distance d18 between the third lens group GR3 and the fourth lens group GR4 changes.
  • Table 15 shows the values of the variable intervals at infinity, intermediate shooting distance (shooting magnification -0.5 times), and equal magnification shooting distance (shooting magnification -1.0 times).
  • FIG. 14 to 16 show various aberrations in Numerical Example 4.
  • FIG. 14 shows various aberrations at infinity
  • FIG. 15 shows an intermediate shooting distance
  • FIG. 14 to 16 show various aberrations in Numerical Example 4.
  • the macro lens 4 according to Numerical Example 4 has excellent imaging performance in which each aberration is well corrected at infinity, intermediate shooting distance, and equal shooting distance. It is clear that
  • [Other numerical data of each example] [Table 16] shows a summary of values relating to the above-described conditional expressions for each numerical example. As can be seen from [Table 16], with respect to the basic conditional expressions (1) to (4), the values of the numerical examples are within the numerical range.
  • the configuration including substantially five or four lens groups has been described.
  • a configuration further including a lens having substantially no refractive power may be used.
  • this technique can take the following composition.
  • An object side lens group that is disposed closest to the object side and has a positive refractive power;
  • a first focus lens group that is closer to the image plane than the object side lens group and moves on the optical axis from the object side to the image plane side during focusing from an object at infinity to a near distance object;
  • An aperture stop fixed in the optical axis direction during focusing;
  • a second focus lens group A final lens group that is arranged closest to the image plane and fixed in the optical axis direction during focusing, A macro lens that satisfies the following conditional expression. 0.25 ⁇
  • the anti-vibration lens group includes: The macro lens according to [4], wherein the macro lens is disposed closer to the image plane than the first focus lens group and closer to the object side than the second focus lens group.
  • Focusing on an object within a range including an object distance from an infinite distance to a close distance where the photographing magnification is equal to the magnification is performed by the first focus lens group and the second focus lens group.
  • a macro lens, and an image sensor that outputs an image signal corresponding to an optical image formed by the macro lens The macro lens is An object side lens group that is disposed closest to the object side and has a positive refractive power; A first focus lens group that is closer to the image plane than the object side lens group and moves on the optical axis from the object side to the image plane side during focusing from an object at infinity to a near distance object; An aperture stop fixed in the optical axis direction during focusing; Consists of two or more lenses, arranged closer to the image plane than the first focus lens group, and moves from the image plane side to the object side on the optical axis when focusing from an object at infinity to a near object.
  • a second focus lens group A final lens group that is arranged closest to the image plane and fixed in the optical axis direction during focusing
  • An imaging apparatus that satisfies the following conditional expression. 0.25 ⁇

Abstract

A macro lens according to the present invention comprises: an object side lens group arranged nearest to an object side and having positive refractive power; a first focus lens group, arranged closer to the image plane than the object side lens group and moving from the object side toward the image plane side along the optical axis when focusing from an object at infinity to an object at close range; an aperture stop fixed in the optical axis direction during focusing; a second focus lens group composed of two or more lenses, arranged closer to the image plane than the first focus lens group, and moving from the image plane side toward the object side along the optical axis when focusing from an object at infinity to an object at close range; and a final lens group arranged nearest to the image plane and fixed in the optical axis direction during focusing.

Description

マクロレンズおよび撮像装置Macro lens and imaging device
 本開示は、マクロレンズおよび撮像装置に関する。詳しくは、一眼レフレックスカメラ、ミラーレスカメラ、およびデジタルスチルカメラ等に好適に用いられ、最大撮影倍率が大きく、高性能化の図られたマクロレンズ、およびそのようなマクロレンズを備えた撮像装置に関する。 The present disclosure relates to a macro lens and an imaging device. Specifically, a macro lens that is suitably used for a single-lens reflex camera, a mirrorless camera, a digital still camera, and the like, has a large maximum shooting magnification, and has been improved in performance, and an imaging apparatus including such a macro lens. About.
 一眼レフレックスカメラの普及により、35mm版のイメージセンサに対応したレンズを提供することへの要求が高くなっている。また、無限遠物体から撮影倍率が等倍付近の近距離物体までの撮影を可能にしたレンズにマクロレンズがある。特に、複数のフォーカスレンズ群を異なる移動量で移動させてフォーカシングを行うフローティング方式の光学系があり、一眼レフレックスカメラ等に適したマクロレンズが提案されている(例えば、特許文献1参照)。また、近年ミラーレスカメラの普及により、それに適したマクロレンズも提案されている(例えば、特許文献2、特許文献3参照)。 With the spread of single-lens reflex cameras, there is an increasing demand for providing lenses compatible with 35 mm version image sensors. In addition, there is a macro lens as a lens that enables shooting from an object at infinity to a short distance object whose shooting magnification is close to the same magnification. In particular, there is a floating optical system that performs focusing by moving a plurality of focus lens groups with different movement amounts, and a macro lens suitable for a single-lens reflex camera or the like has been proposed (for example, see Patent Document 1). In recent years, with the spread of mirrorless cameras, macro lenses suitable for them have also been proposed (see, for example, Patent Document 2 and Patent Document 3).
特開2010-145830号公報JP 2010-145830 A 特開2011-048232号公報JP 2011-048232 A 特開2014-219601号公報JP 2014-219601 A
 ポートレート撮影や花および昆虫等のマクロ撮影に適した画角として35mm換算で焦点距離が90mm程度であり、等倍撮影可能でかつ35mm版のイメージセンサに対応したレンズを提供することがユーザから期待されている。特に35mm版のイメージセンサに対応させる場合、鏡筒の全長や径が大きくなる傾向があるため、より小型化かつ軽量化を実現することは重要である。 From the user, it is possible to provide a lens that has a focal length of about 90 mm in terms of 35 mm as an angle of view suitable for portrait photography and macro photography of flowers, insects, and the like, and can be used for 35 mm version image sensors. Expected. In particular, in the case of corresponding to a 35 mm version image sensor, since the total length and diameter of the lens barrel tend to increase, it is important to realize a smaller size and a lighter weight.
 しかしながら、特許文献1の開示例では、最も物体側のレンズの面頂からイメージセンサまでの距離、すなわち光学全長が160mm程度と大きくなっている。また、特許文献2の開示例でも、35mm版のイメージセンサに対応させると光学全長が160mm程度と大きくなっている。 However, in the disclosed example of Patent Document 1, the distance from the top of the lens on the most object side to the image sensor, that is, the optical total length is as large as about 160 mm. Also, in the disclosure example of Patent Document 2, the total optical length is as large as about 160 mm when it corresponds to a 35 mm version image sensor.
 さらに、近年ではデジタルカメラが静止画および動画撮影の両方の機能を兼ね備えているため、静止画撮影時のAF(オートフォーカス)速度の高速化に加え、動画撮影時のウォブリングを可能にすることが求められている。ここで、ウォブリングとは、AF時の合焦位置を検出するために、コントラスト方式を用いて、光軸方向にレンズ群を微小に動かすことである。また、1つのレンズ群が、フォーカスレンズ群とウォブリングレンズ群との両方の機能を果たす場合が多い。ここで、特許文献2の開示例では、開口絞りより像面側のフォーカスレンズ群のレンズは比重が重い傾向にあるため、AF速度の高速化やウォブリングに最適ではない。 Furthermore, in recent years, since digital cameras have both still image and movie shooting functions, in addition to increasing the AF (autofocus) speed during still image shooting, it is possible to enable wobbling during movie shooting. It has been demanded. Here, wobbling means that the lens group is moved minutely in the optical axis direction by using a contrast method in order to detect the in-focus position during AF. In many cases, one lens group functions as both a focus lens group and a wobbling lens group. Here, in the disclosed example of Patent Document 2, since the lens of the focus lens group on the image plane side from the aperture stop tends to have a higher specific gravity, it is not optimal for increasing the AF speed or wobbling.
 また、特許文献3の開示例では、第2フォーカスレンズ群が1枚で構成されており、軽量化が実現できている。その一方で、第2フォーカスレンズ群には低分散硝材の非球面レンズが使用されており、35mm版のイメージセンサに対応させると、レンズの大口径化に伴い、製造の難易度が高くなるという課題がある。 Further, in the disclosed example of Patent Document 3, the second focus lens group is composed of a single lens, and weight reduction can be realized. On the other hand, a low-dispersion glass aspherical lens is used for the second focus lens group. When the lens is made to correspond to a 35 mm version image sensor, the manufacturing difficulty increases as the lens diameter increases. There are challenges.
 そこで、35mm版のイメージセンサに対応した焦点距離90mm程度を有し、マクロ撮影が可能で、良好な光学性能を有しながらも、光学全長が短く、フォーカスレンズ群を軽量化したレンズ系の開発が望まれている。 Therefore, the development of a lens system that has a focal length of about 90 mm corresponding to a 35 mm version image sensor, is capable of macro photography, has good optical performance, has a short optical total length, and has a reduced focus lens group. Is desired.
 従って、良好な光学性能を有しながらも、光学全長が短く、フォーカスレンズ群を軽量化することができるマクロレンズ、およびそのようなマクロレンズを搭載した撮像装置を提供することが望ましい。 Therefore, it is desirable to provide a macro lens capable of reducing the weight of the focus lens group, and an imaging apparatus equipped with such a macro lens, while having good optical performance and a short optical total length.
 本開示の一実施の形態に係るマクロレンズは、最も物体側に配置され、正の屈折力を有する物体側レンズ群と、物体側レンズ群よりも像面側にあり、無限遠物体から近距離物体へのフォーカシングに際して、光軸上を物体側から像面側へ移動する第1フォーカスレンズ群と、フォーカシングに際して光軸方向に固定の開口絞りと、2枚以上のレンズで構成され、第1フォーカスレンズ群よりも像面側に配置されると共に、無限遠物体から近距離物体へのフォーカシングに際して、光軸上を像面側から物体側へ移動する第2フォーカスレンズ群と、最も像面側に配置され、フォーカシングに際して光軸方向に固定の最終レンズ群とを備え、かつ、以下の条件式を満足するものである。
 0.25<|fr/f|<2.0 ……(1)
 0.65<y’/BF<1.3 ……(2)
ただし、
 fr:最終レンズ群の焦点距離
 f:全系の焦点距離
 y’:像高
 BF:バックフォーカスの空気換算長
とする。
A macro lens according to an embodiment of the present disclosure is disposed closest to the object side, has an object-side lens group having positive refractive power, and is closer to the image plane side than the object-side lens group, and is close to an object at infinity. A first focus lens group that moves on the optical axis from the object side to the image plane side during focusing on the object, an aperture stop that is fixed in the optical axis direction during focusing, and two or more lenses, and a first focus A second focus lens group that is arranged on the image plane side of the lens group and moves on the optical axis from the image plane side to the object side during focusing from an object at infinity to a short distance object; And a final lens unit that is fixed in the optical axis direction during focusing, and satisfies the following conditional expression.
0.25 <| fr / f | <2.0 (1)
0.65 <y '/ BF <1.3 (2)
However,
fr: focal length of the final lens group f: focal length of the entire system y ′: image height BF: air conversion length of back focus.
 本開示の一実施の形態に係る撮像装置は、マクロレンズと、マクロレンズによって形成された光学像に応じた撮像信号を出力する撮像素子とを含み、マクロレンズを、上記本開示によるマクロレンズによって構成したものである。 An imaging apparatus according to an embodiment of the present disclosure includes a macro lens and an imaging element that outputs an imaging signal corresponding to an optical image formed by the macro lens, and the macro lens is formed by the macro lens according to the present disclosure. It is composed.
 本開示の一実施の形態に係るマクロレンズまたは撮像装置では、良好な光学性能を有しながらも、光学全長が短く、フォーカスレンズ群を軽量化することができるように、フォーカスレンズ群とその他のレンズ群の構成の最適化が図られている。 In the macro lens or the imaging device according to an embodiment of the present disclosure, the focus lens group and other imaging devices have a good optical performance, the optical total length is short, and the focus lens group can be reduced in weight. The configuration of the lens group is optimized.
 本開示の一実施の形態に係るマクロレンズまたは撮像装置によれば、フォーカスレンズ群とその他のレンズ群の構成の最適化を図るようにしたので、良好な光学性能を有しながらも、光学全長が短く、フォーカスレンズ群を軽量化することができる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
According to the macro lens or the imaging device according to the embodiment of the present disclosure, the configuration of the focus lens group and the other lens groups is optimized, so that the optical total length is obtained while having good optical performance. The focus lens group can be reduced in weight.
Note that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
本開示の一実施の形態に係るマクロレンズの第1の構成例を示すレンズ断面図である。It is a lens sectional view showing the 1st example of composition of the macro lens concerning one embodiment of this indication. 図1に示したマクロレンズに具体的な数値を適用した数値実施例1における無限遠での諸収差を示す収差図である。It is an aberration diagram showing various aberrations at infinity in Numerical Example 1 in which specific numerical values are applied to the macro lens shown in FIG. 図1に示したマクロレンズに具体的な数値を適用した数値実施例1における中間撮影距離での諸収差を示す収差図である。FIG. 6 is an aberration diagram illustrating various aberrations at an intermediate shooting distance in Numerical Example 1 in which specific numerical values are applied to the macro lens illustrated in FIG. 1. 図1に示したマクロレンズに具体的な数値を適用した数値実施例1における等倍撮影距離での諸収差を示す収差図である。It is an aberration diagram showing various aberrations at the same magnification shooting distance in Numerical Example 1 in which specific numerical values are applied to the macro lens shown in FIG. マクロレンズの第2の構成例を示すレンズ断面図である。It is lens sectional drawing which shows the 2nd structural example of a macro lens. 図5に示したマクロレンズに具体的な数値を適用した数値実施例2における無限遠での諸収差を示す収差図である。FIG. 6 is an aberration diagram illustrating various aberrations at infinity in Numerical Example 2 in which specific numerical values are applied to the macro lens illustrated in FIG. 5. 図5に示したマクロレンズに具体的な数値を適用した数値実施例2における中間撮影距離での諸収差を示す収差図である。FIG. 6 is an aberration diagram illustrating various aberrations at an intermediate shooting distance in Numerical Example 2 in which specific numerical values are applied to the macro lens illustrated in FIG. 5. 図5に示したマクロレンズに具体的な数値を適用した数値実施例2における等倍撮影距離での諸収差を示す収差図である。FIG. 6 is an aberration diagram showing various aberrations at the same magnification shooting distance in Numerical Example 2 in which specific numerical values are applied to the macro lens shown in FIG. 5. マクロレンズの第3の構成例を示すレンズ断面図である。It is lens sectional drawing which shows the 3rd structural example of a macro lens. 図9に示したマクロレンズに具体的な数値を適用した数値実施例3における無限遠での諸収差を示す収差図である。FIG. 10 is an aberration diagram illustrating various aberrations at infinity in Numerical Example 3 in which specific numerical values are applied to the macro lens illustrated in FIG. 9. 図9に示したマクロレンズに具体的な数値を適用した数値実施例3における中間撮影距離での諸収差を示す収差図である。FIG. 10 is an aberration diagram illustrating various aberrations at an intermediate shooting distance in Numerical Example 3 in which specific numerical values are applied to the macro lens illustrated in FIG. 9. 図9に示したマクロレンズに具体的な数値を適用した数値実施例3における等倍撮影距離での諸収差を示す収差図である。FIG. 10 is an aberration diagram illustrating various aberrations at the same magnification shooting distance in Numerical Example 3 in which specific numerical values are applied to the macro lens illustrated in FIG. 9. マクロレンズの第4の構成例を示すレンズ断面図である。It is lens sectional drawing which shows the 4th structural example of a macro lens. 図13に示したマクロレンズに具体的な数値を適用した数値実施例4における無限遠での諸収差を示す収差図である。FIG. 14 is an aberration diagram showing various aberrations at infinity in Numerical Example 4 in which specific numerical values are applied to the macro lens illustrated in FIG. 13. 図13に示したマクロレンズに具体的な数値を適用した数値実施例4における中間撮影距離での諸収差を示す収差図である。FIG. 14 is an aberration diagram illustrating various aberrations at an intermediate shooting distance in Numerical Example 4 in which specific numerical values are applied to the macro lens illustrated in FIG. 13. 図13に示したマクロレンズに具体的な数値を適用した数値実施例4における等倍撮影距離での諸収差を示す収差図である。FIG. 14 is an aberration diagram showing various aberrations at the same magnification shooting distance in Numerical Example 4 in which specific numerical values are applied to the macro lens illustrated in FIG. 13. 撮像装置の一構成例を示すブロック図である。It is a block diagram which shows the example of 1 structure of an imaging device.
 以下、本開示の実施の形態について図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
 1.レンズの基本構成
 2.作用・効果
 3.撮像装置への適用例
 4.レンズの数値実施例
 5.その他の実施の形態
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The description will be given in the following order.
1. 1. Basic configuration of lens Action and effect 3. Application example to imaging device 4. Numerical example of lens Other embodiments
[1.レンズの基本構成]
 図1は、本開示の一実施の形態に係るマクロレンズの第1の構成例を示している。図5は、マクロレンズの第2の構成例を示している。図9は、マクロレンズの第3の構成例を示している。図13は、マクロレンズの第4の構成例を示している。これらの構成例に具体的な数値を適用した数値実施例は後述する。図1等において、Z1は光軸を示す。マクロレンズと像面IMGとの間には、撮像素子保護用のシールガラスや各種の光学フィルタFL等の光学部材が配置されていてもよい。
 以下、本実施の形態に係るマクロレンズの構成を、適宜図1等に示した構成例に対応付けて説明するが、本開示による技術は、図示した構成例に限定されるものではない。
[1. Basic lens configuration]
FIG. 1 illustrates a first configuration example of a macro lens according to an embodiment of the present disclosure. FIG. 5 shows a second configuration example of the macro lens. FIG. 9 shows a third configuration example of the macro lens. FIG. 13 shows a fourth configuration example of the macro lens. Numerical examples in which specific numerical values are applied to these configuration examples will be described later. In FIG. 1 and the like, Z1 represents an optical axis. Between the macro lens and the image plane IMG, optical members such as a seal glass for protecting the image sensor and various optical filters FL may be disposed.
Hereinafter, the configuration of the macro lens according to the present embodiment will be described in association with the configuration example illustrated in FIG. 1 and the like as appropriate, but the technology according to the present disclosure is not limited to the illustrated configuration example.
 本実施の形態に係るマクロレンズは、最も物体側に配置された物体側レンズ群と、物体側レンズ群よりも像面側に配置された第1フォーカスレンズ群と、開口絞りSと、第1フォーカスレンズ群よりも像面側に配置された第2フォーカスレンズ群と、最も像面側に配置された最終レンズ群とを備えている。 The macro lens according to the present embodiment includes an object side lens group disposed closest to the object side, a first focus lens group disposed closer to the image plane than the object side lens group, an aperture stop S, and a first lens. A second focus lens group disposed on the image plane side with respect to the focus lens group, and a final lens group disposed on the most image plane side are provided.
 物体側レンズ群は、正の屈折力を有し、フォーカシングに際して光軸方向に固定とされている。開口絞りSは、フォーカシングに際して光軸方向に固定とされている。なお、図1、図5、図9、および図13の各マクロレンズ1~4において、第1レンズ群GR1が物体側レンズ群に相当する。 The object side lens group has a positive refractive power and is fixed in the optical axis direction during focusing. The aperture stop S is fixed in the optical axis direction during focusing. In each of the macro lenses 1 to 4 in FIGS. 1, 5, 9, and 13, the first lens group GR1 corresponds to the object side lens group.
 本実施の形態に係るマクロレンズは、第1フォーカスレンズ群および第2フォーカスレンズ群によって、物体距離として、無限遠から撮影倍率が等倍となる近距離までを含む範囲内の物体に対するフォーカシングが可能である。 The macro lens according to the present embodiment is capable of focusing on an object within a range including an object distance from infinity to a short distance where the photographing magnification is equal magnification by the first focus lens group and the second focus lens group. is there.
 図1等において、上段は物体距離が無限遠、中段は撮影倍率が-0.5倍となる中間撮影距離、下段は撮影倍率が等倍となる等倍撮影距離におけるレンズ群の位置を示している。破線の矢印はフォーカシングに際して移動することを示す。無限遠から等倍撮影距離にフォーカシングするに従って破線の矢印で示す位置に、第1フォーカスレンズ群および第2フォーカスレンズ群が存在する。また、実線の矢印は後述する防振レンズ群の移動方向を示している。 In FIG. 1 and the like, the upper row shows the object distance at infinity, the middle row shows the intermediate shooting distance where the shooting magnification is -0.5 times, and the lower row shows the position of the lens group at the same shooting distance where the shooting magnification is the same magnification. Yes. Dashed arrows indicate movement during focusing. The first focus lens group and the second focus lens group exist at positions indicated by broken-line arrows as focusing from infinity to the same magnification photographing distance is performed. A solid arrow indicates a moving direction of an anti-vibration lens group described later.
 第1フォーカスレンズ群は、無限遠物体から近距離物体へのフォーカシングに際して、光軸上を物体側から像面側へ移動する。第2フォーカスレンズ群は、2枚以上のレンズで構成され、無限遠物体から近距離物体へのフォーカシングに際して、光軸上を像面側から物体側へ移動する。なお、図1、図5、図9、および図13の各マクロレンズ1~4において、第2レンズ群GR2が第1フォーカスレンズ群に相当する。また、図1、図5、および図9の各マクロレンズ1~3において、第4レンズ群GR4が第2フォーカスレンズ群に相当する。図13のマクロレンズ4では、第3レンズ群GR3が第2フォーカスレンズ群に相当する。 The first focus lens group moves on the optical axis from the object side to the image plane side during focusing from an infinitely distant object to a close object. The second focus lens group includes two or more lenses, and moves on the optical axis from the image plane side to the object side during focusing from an infinitely distant object to a close object. In each of the macro lenses 1 to 4 in FIGS. 1, 5, 9, and 13, the second lens group GR2 corresponds to the first focus lens group. Further, in each of the macro lenses 1 to 3 of FIGS. 1, 5, and 9, the fourth lens group GR4 corresponds to the second focus lens group. In the macro lens 4 of FIG. 13, the third lens group GR3 corresponds to the second focus lens group.
 最終レンズ群は、フォーカシングに際して光軸方向に固定とされている。なお、図1、図5、および図9の各マクロレンズ1~3において、第5レンズ群GR5が最終レンズ群に相当する。図13のマクロレンズ4では、第4レンズ群GR4が最終レンズ群に相当する。 The final lens group is fixed in the optical axis direction during focusing. In each of the macro lenses 1 to 3 in FIGS. 1, 5, and 9, the fifth lens group GR5 corresponds to the final lens group. In the macro lens 4 of FIG. 13, the fourth lens group GR4 corresponds to the final lens group.
 本実施の形態に係るマクロレンズは、以下の条件式を満足している。
 0.25<|fr/f|<2.0 ……(1)
 0.65<y’/BF<1.3 ……(2)
ただし、
 fr:最終レンズ群の焦点距離
 f:全系の焦点距離
 y’:像高
 BF:バックフォーカスの空気換算長
とする。
The macro lens according to the present embodiment satisfies the following conditional expression.
0.25 <| fr / f | <2.0 (1)
0.65 <y '/ BF <1.3 (2)
However,
fr: focal length of the final lens group f: focal length of the entire system y ′: image height BF: air conversion length of back focus.
 その他、本実施の形態に係るマクロレンズは、後述する所定の条件式等を満足することが望ましい。 In addition, it is desirable that the macro lens according to the present embodiment satisfies a predetermined conditional expression described later.
[2.作用・効果]
 次に、本実施の形態に係るマクロレンズの作用および効果を説明する。併せて、本実施の形態に係るマクロレンズにおける望ましい構成を説明する。
 なお、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。
[2. Action / Effect]
Next, functions and effects of the macro lens according to the present embodiment will be described. In addition, a desirable configuration of the macro lens according to the present embodiment will be described.
Note that the effects described in the present specification are merely examples and are not limited, and other effects may be obtained.
 本実施の形態に係るマクロレンズによれば、フォーカスレンズ群とその他のレンズ群の構成の最適化を図ることで、マクロ撮影が可能で、良好な光学性能を有しながらも、光学全長が短く、フォーカスレンズ群を軽量化することができる。これにより、35mm版のイメージセンサに対応した焦点距離90mm程度のマクロレンズの提供が可能となる。 According to the macro lens according to the present embodiment, by optimizing the configuration of the focus lens group and the other lens groups, macro shooting is possible and the optical total length is short while having good optical performance. The focus lens group can be reduced in weight. Accordingly, it is possible to provide a macro lens having a focal length of about 90 mm corresponding to a 35 mm version image sensor.
 本実施の形態に係るマクロレンズでは、無限遠物体から近距離物体へのフォーカシングに際して、第1フォーカスレンズ群が光軸上を物体側から像面側へ移動し、第2フォーカスレンズ群が光軸上を像面側から物体側へ移動する。その他のレンズ群は光軸方向に固定されている。フォーカス機能を担う第1および第2フォーカスレンズ群以外は像面IMGに対して位置が固定のインナーフォーカスタイプのマクロレンズとする。これにより、可動群を減らすことができ、AF速度の高速化、および省電力化が可能となる。また、フォーカシングに際し、2つのレンズ群を動かすことで、無限遠物体から撮影倍率が等倍付近の近距離物体までの撮影に至るまで、像面湾曲の補正に有利となる。 In the macro lens according to the present embodiment, when focusing from an object at infinity to a short distance object, the first focus lens group moves on the optical axis from the object side to the image plane side, and the second focus lens group moves to the optical axis. Move up from the image plane side to the object side. Other lens groups are fixed in the optical axis direction. Other than the first and second focus lens groups responsible for the focus function, an inner focus type macro lens whose position is fixed with respect to the image plane IMG is used. Thereby, the movable group can be reduced, and the AF speed can be increased and the power can be saved. Further, in focusing, moving the two lens groups is advantageous in correcting field curvature until shooting from an infinitely distant object to a close object with a photographing magnification near the same magnification.
 また、フォーカシングに際し、開口絞りSを像面IMGに対して固定とすることで、可動群の重量を軽量化することができ、AF速度の高速化に効果的である。また、第2フォーカスレンズ群を2枚以上のレンズで構成することで、軸上色収差および倍率色収差の補正に有利となる。 Further, by fixing the aperture stop S to the image plane IMG at the time of focusing, the weight of the movable group can be reduced, which is effective for increasing the AF speed. In addition, by configuring the second focus lens group with two or more lenses, it is advantageous for correcting axial chromatic aberration and lateral chromatic aberration.
 また、フォーカシングに際し、最も像面側の最終レンズ群を像面IMGに対して固定することで、可動群を減らし、メカ構造を単純化することができる。 Also, in focusing, by fixing the last lens group closest to the image plane to the image plane IMG, the movable group can be reduced and the mechanical structure can be simplified.
 本実施の形態に係るマクロレンズでは、上記条件式(1)を満足することにより、光学系における最終レンズ群のパワーが強くなり、光学全長の短縮に有利となる。また、上記条件式(2)を満足することにより、最終レンズと像面IMGとを近づけることができ、やはり光学全長の短縮に有利となる。より詳しくは、以下の作用および効果が得られる。 In the macro lens according to the present embodiment, when the conditional expression (1) is satisfied, the power of the final lens group in the optical system becomes strong, which is advantageous for shortening the optical total length. Further, by satisfying the conditional expression (2), the final lens and the image plane IMG can be brought close to each other, which is also advantageous for shortening the total optical length. More specifically, the following actions and effects can be obtained.
 条件式(1)は、光学全長を短縮するために好ましい最も像面側の最終レンズ群の焦点距離を規定する式である。条件式(1)の数値範囲を下回った場合には、最終レンズ群のパワーが強くなり、周辺光束で生じる収差が増大するため、光学性能が劣化する。また、撮像素子への光線入射角が撮像面に対して平行に近づいて行くため、撮像素子におけるシェーディングが悪化する。条件式(1)の数値範囲を上回った場合には、最終レンズ群のパワーが弱くなるため、光学全長が長くなり、鏡筒の小型化に不利である。 Conditional expression (1) is an expression that prescribes the focal length of the final lens unit closest to the image plane in order to shorten the optical total length. When the value falls below the numerical range of conditional expression (1), the power of the final lens group becomes strong and the aberration generated by the peripheral luminous flux increases, so that the optical performance deteriorates. In addition, since the light incident angle on the image sensor approaches parallel to the image capturing surface, shading in the image sensor deteriorates. When the numerical value range of conditional expression (1) is exceeded, the power of the final lens group becomes weak, so that the optical total length becomes long, which is disadvantageous for downsizing of the lens barrel.
 また、上記効果をさらに得るためには、条件式(1)の数値範囲を以下の条件式(1)’の範囲に設定することが望ましい。
 0.4<|fr/f|<1.0 ……(1)’
In order to further obtain the above effect, it is desirable to set the numerical range of conditional expression (1) to the range of conditional expression (1) ′ below.
0.4 <| fr / f | <1.0 (1) ′
 条件式(2)は、光学全長を短縮するために好ましいバックフォーカスの長さと像高の高さとの関係を規定する式である。条件式(2)の数値範囲を下回った場合には、バックフォーカスが長くなるため、光学全長が長くなり、鏡筒の小型化に不利である。条件式(2)を上回った場合には、光学系がカメラボディ内部のメカ構造に近づきすぎるため、光学系とカメラボディの部品とが干渉する恐れがある。 Conditional expression (2) is an expression that defines the relationship between the back focus length and the image height, which are preferable for shortening the optical total length. If the numerical value range of conditional expression (2) is not reached, the back focus becomes long, so that the total optical length becomes long, which is disadvantageous for downsizing the lens barrel. When the conditional expression (2) is exceeded, the optical system is too close to the mechanical structure inside the camera body, and there is a possibility that the optical system and the parts of the camera body interfere with each other.
 なお、上記効果をさらに得るためには、条件式(2)の数値範囲を以下の条件式(2)’の範囲に設定することが望ましい。
 0.65<y’/BF<1.2 ……(2)’
In order to further obtain the above effect, it is desirable to set the numerical range of conditional expression (2) to the range of conditional expression (2) ′ below.
0.65 <y '/ BF <1.2 (2)'
 さらに上記効果を高めるために、数値範囲を以下の条件式(2)’’の範囲に設定することが、より望ましい。
 0.7<y’/BF<1.15 ……(2)’’
In order to further enhance the above effect, it is more desirable to set the numerical range to the range of the following conditional expression (2) ″.
0.7 <y '/ BF <1.15 (2)''
 また、本実施の形態に係るマクロレンズでは、以下の条件式(3)を満足することが望ましい。
 0<f/ff<0.8 ……(3)
ただし、
 ff:第2フォーカスレンズ群よりも物体側のレンズ群の合成焦点距離
とする。
In the macro lens according to the present embodiment, it is preferable that the following conditional expression (3) is satisfied.
0 <f / ff <0.8 (3)
However,
ff: The combined focal length of the lens unit on the object side of the second focus lens unit.
 条件式(3)は、第2フォーカスレンズ群の軽量化のために、第2フォーカスレンズ群よりも物体側のレンズ群の合成焦点距離を規定する式である。条件式(3)を満足することにより、物体側レンズ群から第2フォーカスレンズ群の物体側に隣接するレンズ群までの合成の屈折力が適正化され、第2フォーカスレンズ群の軽量化に有利となる。また、鏡筒外径の小径化にも有利となる。条件式(3)の数値範囲を下回った場合には、第2フォーカスレンズ群よりも物体側に位置するレンズ群の合成の屈折力が弱くなるため、光束を適切に収斂しながら第2フォーカスレンズ群に導くことが困難となる。これにより、第2フォーカスレンズ群の径が大きくなり、重量が増大し、AF速度の低下やウォブリングの機能を持たせることが難しくなる。また、鏡筒外径の大径化にもつながる。条件式(3)の数値範囲を上回った場合には、第2フォーカスレンズ群よりも物体側に位置する群の合成の屈折力が強くなるため、像面湾曲等の諸収差の発生が増大する。さらに、第2フォーカスレンズ群に導かれる光束がテレセントリックでなくなるため、フォーカシングによる収差変動も増大する。 Conditional expression (3) is an expression that prescribes the combined focal length of the lens group on the object side of the second focus lens group in order to reduce the weight of the second focus lens group. By satisfying conditional expression (3), the combined refractive power from the object side lens group to the lens group adjacent to the object side of the second focus lens group is optimized, which is advantageous for reducing the weight of the second focus lens group. It becomes. Further, it is advantageous for reducing the outer diameter of the lens barrel. If the numerical value range of conditional expression (3) is not reached, the combined refractive power of the lens group located on the object side of the second focus lens group becomes weak, so that the second focus lens while appropriately converging the light beam It becomes difficult to lead to a group. This increases the diameter of the second focus lens group, increases the weight, and makes it difficult to reduce the AF speed and provide a wobbling function. In addition, the outer diameter of the lens barrel is increased. When the numerical value range of the conditional expression (3) is exceeded, the combined refractive power of the group located closer to the object side than the second focus lens group becomes strong, and thus the occurrence of various aberrations such as field curvature increases. . Furthermore, since the light beam guided to the second focus lens group is not telecentric, fluctuations in aberration due to focusing also increase.
 なお、上記効果をさらに得るためには、条件式(3)の数値範囲を以下の条件式(3)’の範囲に設定することが望ましい。
 0.3<f/ff<0.8 ……(3)’
In order to further obtain the above effect, it is desirable to set the numerical range of conditional expression (3) to the range of conditional expression (3) ′ below.
0.3 <f / ff <0.8 (3) '
 さらに上記効果を高めるために、数値範囲を以下の条件式(3)’’の範囲に設定することが、より望ましい。
 0.35<f/ff<0.7 ……(3)’’
In order to further enhance the above effect, it is more desirable to set the numerical range within the range of the following conditional expression (3) ″.
0.35 <f / ff <0.7 (3) ''
 また、本実施の形態に係るマクロレンズでは、以下の条件式(4)を満足することが望ましい。
 0.24<1/GF<0.40 ……(4)
ただし、
 GF:第2フォーカスレンズ群の平均比重
とする。
In the macro lens according to the present embodiment, it is preferable that the following conditional expression (4) is satisfied.
0.24 <1 / GF <0.40 (4)
However,
GF: The average specific gravity of the second focus lens group.
 条件式(4)は、第2フォーカスレンズ群の軽量化のために、第2フォーカスレンズ群の平均比重を規定する式である。条件式(4)を満足することにより、第2フォーカスレンズ群のレンズの比重が適正化され、第2フォーカスレンズ群の軽量化に有利となり、AF速度の高速化に効果的である。また、動画撮影等に用いられるウォブリングにも有利となる。条件式(4)の数値範囲を下回った場合には、第2フォーカスレンズ群が重量化し、AF速度の低下につながる。また、動画撮影等に用いられるウォブリングの機能を持たせることが難しくなる。条件式(4)の数値範囲を上回った場合には、屈折率が下がる傾向にあるので、第2フォーカスレンズ群のピント敏感度が低下し、無限遠物体から撮影倍率が等倍付近の近距離物体までのフォーカシングにおける移動量が増大する。これは、光学全長の短縮に不利である。 Conditional expression (4) is an expression that regulates the average specific gravity of the second focus lens group in order to reduce the weight of the second focus lens group. When the conditional expression (4) is satisfied, the specific gravity of the lens of the second focus lens group is optimized, which is advantageous for reducing the weight of the second focus lens group, and effective for increasing the AF speed. It is also advantageous for wobbling used for moving image shooting and the like. When the value falls below the numerical range of the conditional expression (4), the second focus lens group becomes heavy, leading to a decrease in AF speed. In addition, it becomes difficult to provide a wobbling function used for moving image shooting or the like. When the numerical value range of conditional expression (4) is exceeded, the refractive index tends to decrease. Therefore, the focus sensitivity of the second focus lens group decreases, and the shooting magnification from the object at infinity is a short distance near the same magnification. The amount of movement in focusing to the object increases. This is disadvantageous for shortening the optical total length.
 なお、上記効果をさらに得るためには、条件式(4)の数値範囲を以下の条件式(4)’の範囲に設定することが望ましい。
 0.28<1/GF<0.40 ……(4)’
In order to further obtain the above effect, it is desirable to set the numerical range of conditional expression (4) to the range of conditional expression (4) ′ below.
0.28 <1 / GF <0.40 (4) '
 さらに上記効果を高めるために、数値範囲を以下の条件式(4)’’の範囲に設定することが、より望ましい。
 0.28<1/GF<0.32 ……(4)’’
In order to further enhance the above effect, it is more desirable to set the numerical range within the range of the following conditional expression (4) ″.
0.28 <1 / GF <0.32 (4) ''
 本実施の形態に係るマクロレンズにおいて、光軸Z1と垂直方向に移動する防振レンズ群をさらに備えていてもよい。なお、図1、図5、および図9の各マクロレンズ1~3において、第3レンズ群GR3が防振レンズ群に相当する。また、図13のマクロレンズ4では、第4レンズ群GR4の一部のレンズが防振レンズ群に相当する。 The macro lens according to the present embodiment may further include an anti-vibration lens group that moves in a direction perpendicular to the optical axis Z1. In each of the macro lenses 1 to 3 in FIGS. 1, 5, and 9, the third lens group GR3 corresponds to an anti-vibration lens group. Further, in the macro lens 4 of FIG. 13, a part of the fourth lens group GR4 corresponds to the anti-vibration lens group.
 防振レンズ群は、光軸Z1と垂直方向の成分を持つように移動し、光軸Z1と垂直方向に結像位置を変移させる。防振レンズ群は、図1、図5、および図9の各マクロレンズ1~3の構成例のように、第1フォーカスレンズ群よりも像面側で、かつ第2フォーカスレンズ群より物体側に配置されていることが望ましい。これにより、防振時に発生するピントずれを軽減することができる。また、特に遠距離の撮影時には、テレセントリックな軸上光束が防振レンズ群を通過するため、防振時の軸上性能の変動を抑えることができる。 The anti-vibration lens group moves so as to have a component perpendicular to the optical axis Z1, and shifts the imaging position in the direction perpendicular to the optical axis Z1. The anti-vibration lens group is located on the image plane side with respect to the first focus lens group and on the object side with respect to the second focus lens group, as in the configuration examples of the macro lenses 1 to 3 in FIGS. It is desirable to be arranged in. Thereby, the focus shift | offset | difference which generate | occur | produces at the time of vibration isolation can be reduced. In particular, when photographing at a long distance, since the telecentric axial light beam passes through the anti-vibration lens group, fluctuations in on-axis performance during anti-vibration can be suppressed.
 防振レンズ群を第1フォーカスレンズ群よりも像面側で、かつ第2フォーカスレンズ群より物体側に配置した場合、防振レンズ群は正の屈折力を持つことが望ましい。これにより、光束を収斂しながら第2フォーカスレンズ群に導くため、光束の高さを下げることができ、第2フォーカスレンズ群の小径化に有利となる。 When the anti-vibration lens group is disposed closer to the image plane than the first focus lens group and closer to the object side than the second focus lens group, it is desirable that the anti-vibration lens group has a positive refractive power. Accordingly, since the light flux is converged and guided to the second focus lens group, the height of the light flux can be lowered, which is advantageous for reducing the diameter of the second focus lens group.
 また、図13のマクロレンズ4の構成例のように、最終レンズ群内の一部のレンズを防振レンズ群にすることもできる。この場合、防振レンズ群は負の屈折力を持つことが望ましい。この場合、開口絞りSよりも離れた位置で防振が可能となるため、軸上光束と周辺光束は互いに離れた状態で最終レンズ群に導かれる。これにより、最終レンズ群において、軸上光束と周辺光束とに分けて収差補正することができ、防振時の周辺性能の劣化を抑えることができる。 Further, as in the configuration example of the macro lens 4 in FIG. 13, a part of the lenses in the final lens group can be set as a vibration-proof lens group. In this case, it is desirable that the image stabilizing lens group has a negative refractive power. In this case, since vibration isolation is possible at a position farther from the aperture stop S, the axial light beam and the peripheral light beam are guided to the final lens group in a state of being separated from each other. Thereby, in the final lens group, aberration correction can be performed separately for the axial light beam and the peripheral light beam, and deterioration of the peripheral performance at the time of image stabilization can be suppressed.
 また、本実施の形態に係るマクロレンズにおいて、物体側レンズ群を構成する複数のレンズ面のうち少なくとも1つのレンズ面が非球面形状であることが望ましい。物体側レンズ群は全ての撮影倍率において、光線高さが高いため、常に周辺光束の収差補正を行うことができ、残収差が少ない光束を第1フォーカスレンズ群に導くことができる。 In the macro lens according to the present embodiment, it is desirable that at least one lens surface of the plurality of lens surfaces constituting the object side lens group is aspherical. Since the object side lens group has a high light beam height at all photographing magnifications, it is possible to always correct the aberration of the peripheral luminous flux and to guide the luminous flux with little residual aberration to the first focus lens group.
 また、最終レンズ群は少なくとも、1枚の負レンズと1枚の正レンズとからなることが望ましい。負レンズにより、レンズの口径が小さいまま光束を発散させることができるので、バックフォーカスを短縮し、光学系全体を小型化することができる。さらに、負レンズと正レンズとを組み合わせることにより、色収差を良好に補正することができる。 Further, it is desirable that the final lens group includes at least one negative lens and one positive lens. Since the negative lens can diverge the light beam with a small aperture, the back focus can be shortened and the entire optical system can be downsized. Further, chromatic aberration can be corrected well by combining a negative lens and a positive lens.
 また、最終レンズ群の最も像面側の面は凸面であることが望ましい。これにより、ゴーストの発生を抑制することができる。 In addition, it is desirable that the most image side surface of the final lens group is a convex surface. Thereby, generation | occurrence | production of a ghost can be suppressed.
[3.撮像装置への適用例]
 図17は、本実施の形態に係るマクロレンズを適用した撮像装置100の一構成例を示している。この撮像装置100は、例えばデジタルスチルカメラであり、カメラブロック10と、カメラ信号処理部20と、画像処理部30と、LCD(Liquid Crystal Display)40と、R/W(リーダ/ライタ)50と、CPU(Central Processing Unit)60と、入力部70と、レンズ駆動制御部80とを備えている。
[3. Application example to imaging device]
FIG. 17 shows a configuration example of the imaging apparatus 100 to which the macro lens according to the present embodiment is applied. The imaging device 100 is, for example, a digital still camera, and includes a camera block 10, a camera signal processing unit 20, an image processing unit 30, an LCD (Liquid Crystal Display) 40, and an R / W (reader / writer) 50. , A CPU (Central Processing Unit) 60, an input unit 70, and a lens drive control unit 80.
 カメラブロック10は、撮像機能を担うものであり、撮像レンズ11を含む光学系と、CCD(Charge Coupled Devices)やCMOS(Complementary Metal Oxide Semiconductor)等の撮像素子12とを有している。撮像素子12は、撮像レンズ11によって形成された光学像を電気信号へ変換することで、光学像に応じた撮像信号(画像信号)を出力するようになっている。撮像レンズ11として、図1、図5、図9および図13に示した各構成例のマクロレンズ1~4を適用可能である。 The camera block 10 is responsible for an imaging function, and includes an optical system including an imaging lens 11 and an imaging device 12 such as a CCD (Charge-Coupled Devices) or a CMOS (Complementary Metal-Oxide Semiconductor). The imaging element 12 outputs an imaging signal (image signal) corresponding to the optical image by converting the optical image formed by the imaging lens 11 into an electrical signal. As the imaging lens 11, the macro lenses 1 to 4 of the respective configuration examples shown in FIGS. 1, 5, 9, and 13 can be applied.
 カメラ信号処理部20は、撮像素子12から出力された画像信号に対してアナログ-デジタル変換、ノイズ除去、画質補正、輝度・色差信号への変換等の各種の信号処理を行うものである。 The camera signal processing unit 20 performs various signal processing such as analog-digital conversion, noise removal, image quality correction, and conversion to luminance / color difference signals on the image signal output from the image sensor 12.
 画像処理部30は、画像信号の記録再生処理を行うものであり、所定の画像データフォーマットに基づく画像信号の圧縮符号化・伸張復号化処理や解像度等のデータ仕様の変換処理等を行うようになっている。 The image processing unit 30 performs recording and reproduction processing of an image signal, and performs compression encoding / decompression decoding processing of an image signal based on a predetermined image data format, conversion processing of data specifications such as resolution, and the like. It has become.
 LCD40は、ユーザの入力部70に対する操作状態や撮影した画像等の各種のデータを表示する機能を有している。R/W50は、画像処理部30によって符号化された画像データのメモリカード1000への書き込み、およびメモリカード1000に記録された画像データの読み出しを行うものである。メモリカード1000は、例えば、R/W50に接続されたスロットに対して着脱可能な半導体メモリーである。 The LCD 40 has a function of displaying various data such as an operation state of the user input unit 70 and a photographed image. The R / W 50 performs writing of the image data encoded by the image processing unit 30 to the memory card 1000 and reading of the image data recorded on the memory card 1000. The memory card 1000 is a semiconductor memory that can be attached to and detached from a slot connected to the R / W 50, for example.
 CPU60は、撮像装置100に設けられた各回路ブロックを制御する制御処理部として機能するものであり、入力部70からの指示入力信号等に基づいて各回路ブロックを制御するようになっている。入力部70は、ユーザによって所要の操作が行われる各種のスイッチ等からなる。入力部70は例えば、シャッタ操作を行うためのシャッタレリーズボタンや、動作モードを選択するための選択スイッチ等によって構成され、ユーザによる操作に応じた指示入力信号をCPU60に対して出力するようになっている。レンズ駆動制御部80は、カメラブロック10に配置されたレンズの駆動を制御するものであり、CPU60からの制御信号に基づいて撮像レンズ11の各レンズを駆動する図示しないモータ等を制御するようになっている。 The CPU 60 functions as a control processing unit that controls each circuit block provided in the imaging apparatus 100, and controls each circuit block based on an instruction input signal or the like from the input unit 70. The input unit 70 includes various switches and the like that are operated by a user. The input unit 70 includes, for example, a shutter release button for performing a shutter operation, a selection switch for selecting an operation mode, and the like, and outputs an instruction input signal corresponding to an operation by the user to the CPU 60. ing. The lens drive control unit 80 controls driving of the lenses arranged in the camera block 10 and controls a motor (not shown) that drives each lens of the imaging lens 11 based on a control signal from the CPU 60. It has become.
 図示は省略するが、この撮像装置100は、手ぶれに伴う装置のぶれを検出するぶれ検出部を備えている。 Although illustration is omitted, the imaging apparatus 100 includes a shake detection unit that detects a shake of the apparatus due to a camera shake.
 以下に、撮像装置100における動作を説明する。
 撮影の待機状態では、CPU60による制御の下で、カメラブロック10において撮影された画像信号が、カメラ信号処理部20を介してLCD40に出力され、カメラスルー画像として表示される。また、例えば入力部70からのフォーカシングのための指示入力信号が入力されると、CPU60がレンズ駆動制御部80に制御信号を出力し、レンズ駆動制御部80の制御に基づいて撮像レンズ11の所定のレンズが移動する。
Hereinafter, an operation in the imaging apparatus 100 will be described.
In a shooting standby state, under the control of the CPU 60, an image signal shot by the camera block 10 is output to the LCD 40 via the camera signal processing unit 20 and displayed as a camera through image. Further, for example, when an instruction input signal for focusing is input from the input unit 70, the CPU 60 outputs a control signal to the lens drive control unit 80, and a predetermined value of the imaging lens 11 is controlled based on the control of the lens drive control unit 80. The lens moves.
 入力部70からの指示入力信号によりカメラブロック10の図示しないシャッタが動作されると、撮影された画像信号がカメラ信号処理部20から画像処理部30に出力されて圧縮符号化処理され、所定のデータフォーマットのデジタルデータに変換される。変換されたデータはR/W50に出力され、メモリカード1000に書き込まれる。 When a shutter (not shown) of the camera block 10 is operated by an instruction input signal from the input unit 70, the captured image signal is output from the camera signal processing unit 20 to the image processing unit 30 and subjected to compression encoding processing. Converted to digital data in data format. The converted data is output to the R / W 50 and written to the memory card 1000.
 なお、フォーカシングは、例えば、入力部70のシャッタレリーズボタンが半押しされた場合や記録(撮影)のために全押しされた場合等に、CPU60からの制御信号に基づいてレンズ駆動制御部80が撮像レンズ11の所定のレンズを移動させることにより行われる。 Note that focusing is performed by the lens drive control unit 80 based on a control signal from the CPU 60, for example, when the shutter release button of the input unit 70 is half-pressed or when it is fully pressed for recording (photographing). This is performed by moving a predetermined lens of the imaging lens 11.
 メモリカード1000に記録された画像データを再生する場合には、入力部70に対する操作に応じて、R/W50によってメモリカード1000から所定の画像データが読み出され、画像処理部30によって伸張復号化処理が行われた後、再生画像信号がLCD40に出力されて再生画像が表示される。 When reproducing the image data recorded on the memory card 1000, predetermined image data is read from the memory card 1000 by the R / W 50 in response to an operation on the input unit 70, and decompressed and decoded by the image processing unit 30. After the processing is performed, the reproduction image signal is output to the LCD 40 and the reproduction image is displayed.
 また、CPU60は、図示しないぶれ検出部から出力される信号に基づいてレンズ駆動制御部80を動作させ、ぶれ量に応じて防振レンズ群を光軸Z1に略垂直な方向に移動させる。 Further, the CPU 60 operates the lens drive control unit 80 based on a signal output from a shake detection unit (not shown), and moves the image stabilizing lens group in a direction substantially perpendicular to the optical axis Z1 according to the shake amount.
 なお、上記した実施の形態においては、撮像装置をデジタルスチルカメラに適用した例を示したが、撮像装置の適用範囲はデジタルスチルカメラに限られることはなく、他の種々の撮像装置に適用可能である。例えば、一眼レフレックスカメラ、ミラーレスカメラ、およびデジタルビデオカメラに適用することができる。また、カメラが組み込まれた携帯電話や、カメラが組み込まれたPDA(Personal Digital Assistant)等のデジタル入出力機器のカメラ部等として広く適用することができる。また、レンズ交換式のカメラにも適用することができる。 In the above-described embodiment, an example in which the imaging device is applied to a digital still camera has been described. However, the application range of the imaging device is not limited to a digital still camera, and can be applied to other various imaging devices. It is. For example, it can be applied to a single-lens reflex camera, a mirrorless camera, and a digital video camera. Further, it can be widely applied as a camera unit of a digital input / output device such as a mobile phone with a camera incorporated therein or a PDA (Personal Digital Assistant) with a camera incorporated therein. The present invention can also be applied to an interchangeable lens camera.
<4.レンズの数値実施例>
 次に、本実施の形態に係るマクロレンズの具体的な数値実施例について説明する。ここでは、図1、図5、図9および図13に示した各構成例のマクロレンズ1~4に、具体的な数値を適用した数値実施例を説明する。
<4. Numerical Examples of Lens>
Next, specific numerical examples of the macro lens according to the present embodiment will be described. Here, numerical examples in which specific numerical values are applied to the macro lenses 1 to 4 of the respective configuration examples shown in FIGS. 1, 5, 9 and 13 will be described.
 なお、以下の各表や説明において示した記号の意味等については、下記に示す通りである。「面番号」は、物体側から像側へ数えたi番目の面の番号を示している。「ri」は、i番目の面の近軸の曲率半径の値(mm)を示す。「di」はi番目の面とi+1番目の面との間の光軸上の間隔の値(mm)を示す。「Ni」はi番目の面を有する光学要素の材質のd線(波長587.6nm)における屈折率の値を示す。「νi」はi番目の面を有する光学要素の材質のd線におけるアッベ数の値を示す。「ri」の値が「∞」となっている部分は平面、または絞り面(開口絞りS)を示す。「面番号」において「STO」と記した面は開口絞りSであることを示す。「f」はレンズ系全体の焦点距離、「Fno」はFナンバー、「ω」は半画角を示す。 The meanings of symbols shown in the following tables and explanations are as shown below. “Surface number” indicates the number of the i-th surface counted from the object side to the image side. “Ri” indicates the value (mm) of the paraxial radius of curvature of the i-th surface. “Di” indicates a value (mm) of an interval on the optical axis between the i-th surface and the (i + 1) -th surface. “Ni” indicates the value of the refractive index at the d-line (wavelength 587.6 nm) of the material of the optical element having the i-th surface. “Νi” represents the value of the Abbe number in the d-line of the material of the optical element having the i-th surface. The portion where the value of “ri” is “∞” indicates a flat surface or a diaphragm surface (aperture stop S). The surface indicated as “STO” in “surface number” indicates the aperture stop S. “F” indicates the focal length of the entire lens system, “Fno” indicates the F number, and “ω” indicates the half angle of view.
 各数値実施例において用いられたレンズには、レンズ面が非球面に形成されたものがある。「面番号」において*印を付した面は非球面であることを示す。非球面形状は以下の非球面の式によって定義される。なお、後述する非球面係数を示す各表において、「E-i」は10を底とする指数表現、すなわち、「10-i」を表しており、例えば、「0.12345E-05」は「0.12345×10-5」を表している。 Some lenses used in each numerical example have an aspheric lens surface. In the “surface number”, the surface marked with * is an aspherical surface. The aspheric shape is defined by the following aspheric expression. In each table showing aspherical coefficients described later, “E−i” represents an exponential expression with a base of 10, that is, “10 −i ”. For example, “0.12345E-05” represents “ 0.12345 × 10 −5 ”.
(非球面の式)
 x=cy2/[1+{1-(1+κ)c221/2]+Ay4+By6+Cy8+Dy10
(Aspherical formula)
x = cy 2 / [1+ {1− (1 + κ) c 2 y 2 } 1/2 ] + Ay 4 + By 6 + Cy 8 + Dy 10
ここで、
 x:サグ量(レンズ面頂点からの光軸方向の距離)
 y:光軸と垂直な方向の高さ
 c:レンズ頂点での近軸曲率(近軸曲率半径の逆数)
 κ:円錐定数
 A:4次の非球面係数
 B:6次の非球面係数
 C:8次の非球面係数
 D:10次の非球面係数
である。
here,
x: Sag amount (distance in the optical axis direction from the apex of the lens surface)
y: Height in the direction perpendicular to the optical axis c: Paraxial curvature at the lens apex (reciprocal of paraxial radius of curvature)
κ: conic constant A: fourth-order aspheric coefficient B: sixth-order aspheric coefficient C: eighth-order aspheric coefficient D: tenth-order aspheric coefficient
[数値実施例1]
 [表1]に、図1に示したマクロレンズ1に具体的な数値を適用した数値実施例1のレンズデータを示す。
[Numerical Example 1]
Table 1 shows lens data of Numerical Example 1 in which specific numerical values are applied to the macro lens 1 shown in FIG.
 図1に示したマクロレンズ1は、正の屈折力を有する第1レンズ群GR1と、負の屈折力を有する第2レンズ群GR2と、正の屈折力を有する第3レンズ群GR3と、正の屈折力を有する第4レンズ群GR4と、負の屈折力を有する第5レンズ群GR5とが物体側より像面側へ順に配置されてなる。 The macro lens 1 shown in FIG. 1 includes a first lens group GR1 having a positive refractive power, a second lens group GR2 having a negative refractive power, a third lens group GR3 having a positive refractive power, A fourth lens group GR4 having negative refractive power and a fifth lens group GR5 having negative refractive power are arranged in order from the object side to the image plane side.
 マクロレンズ1は、上記実施の形態で説明したレンズの基本構成を満足しており、第1レンズ群GR1は物体側レンズ群に相当する。第2レンズ群GR2は第1フォーカスレンズ群に相当し、第4レンズ群GR4は第2フォーカスレンズ群に相当する。第5レンズ群GR5は、最終レンズ群に相当する。第3レンズ群GR3は、防振レンズ群に相当する。 The macro lens 1 satisfies the basic configuration of the lens described in the above embodiment, and the first lens group GR1 corresponds to an object side lens group. The second lens group GR2 corresponds to the first focus lens group, and the fourth lens group GR4 corresponds to the second focus lens group. The fifth lens group GR5 corresponds to the final lens group. The third lens group GR3 corresponds to an anti-vibration lens group.
 第1レンズ群GR1は、両凸形状の正レンズG1と、両凸形状の正レンズG2および両凹形状の負レンズG3が接合されてなる接合レンズと、物体側に凸面を向けたメニスカス形状の正レンズG4とが、物体側より像面側へ順に配置されて構成されている。 The first lens group GR1 includes a biconvex positive lens G1, a cemented lens in which a biconvex positive lens G2 and a biconcave negative lens G3 are cemented, and a meniscus shape with a convex surface facing the object side. A positive lens G4 is arranged in order from the object side to the image plane side.
 第2レンズ群GR2は、両凹形状の負レンズG5と、両凹形状の負レンズG6および物体側に凸面を向けたメニスカス形状の正レンズG7が接合されてなる接合レンズとが、物体側より像面側へ順に配置されて構成されている。 The second lens group GR2 includes a biconcave negative lens G5, a cemented lens formed by cementing a biconcave negative lens G6 and a meniscus positive lens G7 having a convex surface facing the object side, from the object side. They are arranged in order toward the image plane side.
 第3レンズ群GR3は、物体側に凸面を向けたメニスカス形状の負レンズG8と両凸形状の正レンズG9とが接合されてなる接合レンズによって構成されている。 The third lens group GR3 is constituted by a cemented lens in which a meniscus negative lens G8 having a convex surface directed toward the object side and a biconvex positive lens G9 are cemented.
 第4レンズ群GR4は、両凸形状の正レンズG11と、両凸形状の正レンズG12および物体側に凹面を向けたメニスカス形状の負レンズG12が接合されてなる接合レンズとが、物体側より像面側へ順に配置されて構成されている。 The fourth lens group GR4 includes, from the object side, a biconvex positive lens G11, a biconvex positive lens G12, and a meniscus negative lens G12 having a concave surface facing the object side. They are arranged in order toward the image plane side.
 第5レンズ群GR5は、物体側に凹面を向けたメニスカス形状の正レンズG13と、両凹形状の負レンズG14と、物体側に凹面を向けたメニスカス形状の負レンズG15とが、物体側より像面側へ順に配置されて構成されている。 In the fifth lens group GR5, a meniscus positive lens G13 having a concave surface facing the object side, a biconcave negative lens G14, and a meniscus negative lens G15 having a concave surface facing the object side are arranged from the object side. They are arranged in order toward the image plane side.
 第5レンズ群GR5と像面IMGとの間には光学フィルタFLが配置されている。開口絞りSは第3レンズ群GR3の物体側に配置されている。 An optical filter FL is disposed between the fifth lens group GR5 and the image plane IMG. The aperture stop S is disposed on the object side of the third lens group GR3.
 マクロレンズ1において、第7面、および第19面には非球面が形成されている。それらの非球面における4次、6次、8次、10次の非球面係数A、B、C、Dの値を円錐定数κの値と共に[表2]に示す。 In the macro lens 1, aspherical surfaces are formed on the seventh surface and the nineteenth surface. The values of the fourth-order, sixth-order, eighth-order, and tenth-order aspheric coefficients A, B, C, and D along with the values of the conic constant κ are shown in [Table 2].
 [表3]には、レンズ系全体の焦点距離f、FナンバーFno、および半画角ωの値を示す。マクロレンズ1では、無限遠から等倍撮影距離へのフォーカシングに際して、第1レンズ群GR1と第2レンズ群GR2との間の間隔d7が変化する。また、第2レンズ群GR2と第3レンズ群GR3との間の間隔d12が変化する。また、開口絞りSと第4レンズ群GR4との間の間隔d16が変化する。また、第4レンズ群GR4と第5レンズ群GR5との間の間隔d21が変化する。これらの無限遠、中間撮影距離(撮影倍率-0.5倍)、および等倍撮影距離(撮影倍率-1.0倍)における可変間隔の値を、[表4]に示す。 [Table 3] shows the focal length f, F number Fno, and half angle of view ω of the entire lens system. In the macro lens 1, the distance d <b> 7 between the first lens group GR <b> 1 and the second lens group GR <b> 2 changes during focusing from infinity to the equal magnification shooting distance. Further, the distance d12 between the second lens group GR2 and the third lens group GR3 changes. Further, the distance d16 between the aperture stop S and the fourth lens group GR4 changes. Further, the distance d21 between the fourth lens group GR4 and the fifth lens group GR5 changes. Table 4 shows the values of the variable intervals at infinity, intermediate shooting distance (shooting magnification -0.5 times), and equal magnification shooting distance (shooting magnification -1.0 times).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 図2~図4に、数値実施例1における諸収差を示す。図2には無限遠、図3には中間撮影距離、図4には等倍撮影距離における諸収差を示す。図2~図4には諸収差として、球面収差、非点収差(像面湾曲)、およびディストーション(歪曲収差)を示す。像面湾曲の収差図において実線(S)はサジタル像面、破線(M)はメリディオナル像面における値を示す。以降の他の数値実施例における収差図についても同様である。 2 to 4 show various aberrations in Numerical Example 1. FIG. 2 shows various aberrations at infinity, FIG. 3 shows an intermediate shooting distance, and FIG. 2 to 4 show spherical aberration, astigmatism (field curvature), and distortion (distortion aberration) as various aberrations. In the aberration diagram of field curvature, a solid line (S) indicates a value on a sagittal image plane, and a broken line (M) indicates a value on a meridional image plane. The same applies to aberration diagrams in other numerical examples.
 各収差図から分かるように、数値実施例1に係るマクロレンズ1は、無限遠、中間撮影距離、および等倍撮影距離において、各収差が良好に補正され、優れた結像性能を有していることが明らかである。 As can be seen from each aberration diagram, the macro lens 1 according to Numerical Example 1 has excellent imaging performance in which each aberration is well corrected at infinity, intermediate shooting distance, and equal shooting distance. It is clear that
[数値実施例2]
 [表5]に、図5に示したマクロレンズ2に具体的な数値を適用した数値実施例2のレンズデータを示す。
[Numerical Example 2]
Table 5 shows lens data of Numerical Example 2 in which specific numerical values are applied to the macro lens 2 shown in FIG.
 図5に示したマクロレンズ2は、正の屈折力を有する第1レンズ群GR1と、負の屈折力を有する第2レンズ群GR2と、正の屈折力を有する第3レンズ群GR3と、正の屈折力を有する第4レンズ群GR4と、負の屈折力を有する第5レンズ群GR5とが物体側より像面側へ順に配置されてなる。 The macro lens 2 shown in FIG. 5 includes a first lens group GR1 having a positive refractive power, a second lens group GR2 having a negative refractive power, a third lens group GR3 having a positive refractive power, A fourth lens group GR4 having negative refractive power and a fifth lens group GR5 having negative refractive power are arranged in order from the object side to the image plane side.
 マクロレンズ2は、上記実施の形態で説明したレンズの基本構成を満足しており、第1レンズ群GR1は物体側レンズ群に相当する。第2レンズ群GR2は第1フォーカスレンズ群に相当し、第4レンズ群GR4は第2フォーカスレンズ群に相当する。第5レンズ群GR5は、最終レンズ群に相当する。第3レンズ群GR3は、防振レンズ群に相当する。 The macro lens 2 satisfies the basic configuration of the lens described in the above embodiment, and the first lens group GR1 corresponds to an object side lens group. The second lens group GR2 corresponds to the first focus lens group, and the fourth lens group GR4 corresponds to the second focus lens group. The fifth lens group GR5 corresponds to the final lens group. The third lens group GR3 corresponds to an anti-vibration lens group.
 第1レンズ群GR1は、両凸形状の正レンズG1と、両凸形状の正レンズG2および両凹形状の負レンズG3が接合されてなる接合レンズと、物体側に凸面を向けたメニスカス形状の正レンズG4とが、物体側より像面側へ順に配置されて構成されている。 The first lens group GR1 includes a biconvex positive lens G1, a cemented lens in which a biconvex positive lens G2 and a biconcave negative lens G3 are cemented, and a meniscus shape with a convex surface facing the object side. A positive lens G4 is arranged in order from the object side to the image plane side.
 第2レンズ群GR2は、両凹形状の負レンズG5と、両凹形状の負レンズG6および物体側に凸面を向けたメニスカス形状の正レンズG7が接合されてなる接合レンズとが、物体側より像面側へ順に配置されて構成されている。 The second lens group GR2 includes a biconcave negative lens G5, a cemented lens formed by cementing a biconcave negative lens G6 and a meniscus positive lens G7 having a convex surface facing the object side, from the object side. They are arranged in order toward the image plane side.
 第3レンズ群GR3は、物体側に凸面を向けたメニスカス形状の負レンズG8と両凸形状の正レンズG9とが接合されてなる接合レンズによって構成されている。 The third lens group GR3 is constituted by a cemented lens in which a meniscus negative lens G8 having a convex surface directed toward the object side and a biconvex positive lens G9 are cemented.
 第4レンズ群GR4は、両凸形状の正レンズG11と、両凸形状の正レンズG12および物体側に凹面を向けたメニスカス形状の負レンズG12が接合されてなる接合レンズとが、物体側より像面側へ順に配置されて構成されている。 The fourth lens group GR4 includes, from the object side, a biconvex positive lens G11, a biconvex positive lens G12, and a meniscus negative lens G12 having a concave surface facing the object side. They are arranged in order toward the image plane side.
 第5レンズ群GR5は、物体側に凹面を向けたメニスカス形状の正レンズG13と、両凹形状の負レンズG14と、物体側に凹面を向けたメニスカス形状の負レンズG15とが、物体側より像面側へ順に配置されて構成されている。 In the fifth lens group GR5, a meniscus positive lens G13 having a concave surface facing the object side, a biconcave negative lens G14, and a meniscus negative lens G15 having a concave surface facing the object side are arranged from the object side. They are arranged in order toward the image plane side.
 第5レンズ群GR5と像面IMGとの間には光学フィルタFLが配置されている。開口絞りSは第3レンズ群GR3の物体側に配置されている。 An optical filter FL is disposed between the fifth lens group GR5 and the image plane IMG. The aperture stop S is disposed on the object side of the third lens group GR3.
 マクロレンズ2において、第7面には非球面が形成されている。非球面における4次、6次、8次、10次の非球面係数A、B、C、Dの値を円錐定数κの値と共に[表6]に示す。 In the macro lens 2, an aspheric surface is formed on the seventh surface. The values of the fourth-order, sixth-order, eighth-order, and tenth-order aspheric coefficients A, B, C, and D on the aspheric surface are shown in [Table 6] together with the value of the conic constant κ.
 [表7]には、レンズ系全体の焦点距離f、FナンバーFno、および半画角ωの値を示す。マクロレンズ2では、無限遠から等倍撮影距離へのフォーカシングに際して、第1レンズ群GR1と第2レンズ群GR2との間の間隔d7が変化する。また、第2レンズ群GR2と第3レンズ群GR3との間の間隔d12が変化する。また、開口絞りSと第4レンズ群GR4との間の間隔d16が変化する。また、第4レンズ群GR4と第5レンズ群GR5との間の間隔d21が変化する。これらの無限遠、中間撮影距離(撮影倍率-0.5倍)、および等倍撮影距離(撮影倍率-1.0倍)における可変間隔の値を、[表8]に示す。 [Table 7] shows the focal length f, F number Fno, and half angle of view ω of the entire lens system. In the macro lens 2, the distance d7 between the first lens group GR1 and the second lens group GR2 changes during focusing from infinity to the equal magnification shooting distance. Further, the distance d12 between the second lens group GR2 and the third lens group GR3 changes. Further, the distance d16 between the aperture stop S and the fourth lens group GR4 changes. Further, the distance d21 between the fourth lens group GR4 and the fifth lens group GR5 changes. Table 8 shows the values of variable intervals at infinity, intermediate shooting distance (shooting magnification -0.5 times), and equal magnification shooting distance (shooting magnification -1.0 times).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 図6~図8に、数値実施例2における諸収差を示す。図6には無限遠、図7には中間撮影距離、図8には等倍撮影距離における諸収差を示す。 6 to 8 show various aberrations in Numerical Example 2. FIG. 6 shows various aberrations at infinity, FIG. 7 shows an intermediate shooting distance, and FIG. 8 shows an equal magnification shooting distance.
 各収差図から分かるように、数値実施例2に係るマクロレンズ2は、無限遠、中間撮影距離、および等倍撮影距離において、各収差が良好に補正され、優れた結像性能を有していることが明らかである。 As can be seen from each aberration diagram, the macro lens 2 according to Numerical Example 2 has excellent imaging performance in which each aberration is well corrected at infinity, an intermediate shooting distance, and an equal magnification shooting distance. It is clear that
[数値実施例3]
 [表9]に、図9に示したマクロレンズ3に具体的な数値を適用した数値実施例3のレンズデータを示す。
[Numerical Example 3]
Table 9 shows lens data of Numerical Example 3 in which specific numerical values are applied to the macro lens 3 shown in FIG.
 図9に示したマクロレンズ3は、正の屈折力を有する第1レンズ群GR1と、負の屈折力を有する第2レンズ群GR2と、正の屈折力を有する第3レンズ群GR3と、正の屈折力を有する第4レンズ群GR4と、負の屈折力を有する第5レンズ群GR5とが物体側より像面側へ順に配置されてなる。 The macro lens 3 shown in FIG. 9 includes a first lens group GR1 having a positive refractive power, a second lens group GR2 having a negative refractive power, a third lens group GR3 having a positive refractive power, A fourth lens group GR4 having negative refractive power and a fifth lens group GR5 having negative refractive power are arranged in order from the object side to the image plane side.
 マクロレンズ3は、上記実施の形態で説明したレンズの基本構成を満足しており、第1レンズ群GR1は物体側レンズ群に相当する。第2レンズ群GR2は第1フォーカスレンズ群に相当し、第4レンズ群GR4は第2フォーカスレンズ群に相当する。第5レンズ群GR5は、最終レンズ群に相当する。第3レンズ群GR3は、防振レンズ群に相当する。 The macro lens 3 satisfies the basic configuration of the lens described in the above embodiment, and the first lens group GR1 corresponds to an object side lens group. The second lens group GR2 corresponds to the first focus lens group, and the fourth lens group GR4 corresponds to the second focus lens group. The fifth lens group GR5 corresponds to the final lens group. The third lens group GR3 corresponds to an anti-vibration lens group.
 第1レンズ群GR1は、両凸形状の正レンズG1と、両凸形状の正レンズG2および両凹形状の負レンズG3が接合されてなる接合レンズと、両凸形状の正レンズG4とが、物体側より像面側へ順に配置されて構成されている。 The first lens group GR1 includes a biconvex positive lens G1, a cemented lens in which a biconvex positive lens G2 and a biconcave negative lens G3 are cemented, and a biconvex positive lens G4. They are arranged in order from the object side to the image plane side.
 第2レンズ群GR2は、両凹形状の負レンズG5と、両凹形状の負レンズG6および両凸形状の正レンズG7が接合されてなる接合レンズとが、物体側より像面側へ順に配置されて構成されている。 In the second lens group GR2, a biconcave negative lens G5 and a cemented lens formed by cementing a biconcave negative lens G6 and a biconvex positive lens G7 are arranged in order from the object side to the image plane side. Has been configured.
 第3レンズ群GR3は、両凸形状の正レンズG8と、物体側に凹面を向けたメニスカス形状の負レンズG9とが、物体側より像面側へ順に配置されて構成されている。 The third lens group GR3 includes a biconvex positive lens G8 and a meniscus negative lens G9 having a concave surface facing the object side, which are arranged in order from the object side to the image surface side.
 第4レンズ群GR4は、物体側に凸面を向けたメニスカス形状の負レンズG10および両凸形状の正レンズG11が接合されてなる接合レンズによって構成されている。 The fourth lens group GR4 is composed of a cemented lens in which a meniscus negative lens G10 having a convex surface directed toward the object side and a biconvex positive lens G11 are cemented.
 第5レンズ群GR5は、物体側に凹面を向けたメニスカス形状の正レンズG12および両凹形状の負レンズG13が接合されてなる接合レンズと、物体側に凹面を向けたメニスカス形状の負レンズG14とが、物体側より像面側へ順に配置されて構成されている。 The fifth lens group GR5 includes a cemented lens in which a meniscus positive lens G12 having a concave surface facing the object side and a biconcave negative lens G13 are cemented, and a meniscus negative lens G14 having a concave surface facing the object side. Are arranged in order from the object side to the image plane side.
 第5レンズ群GR5と像面IMGとの間には光学フィルタFLが配置されている。開口絞りSは第3レンズ群GR3の物体側に配置されている。 An optical filter FL is disposed between the fifth lens group GR5 and the image plane IMG. The aperture stop S is disposed on the object side of the third lens group GR3.
 マクロレンズ3において、第6面、第8面、および第20面には非球面が形成されている。それらの非球面における4次、6次、8次、10次の非球面係数A、B、C、Dの値を円錐定数κの値と共に[表10]に示す。 In the macro lens 3, aspheric surfaces are formed on the sixth surface, the eighth surface, and the twentieth surface. The values of the fourth-order, sixth-order, eighth-order, and tenth-order aspheric coefficients A, B, C, and D along with the values of the conic constant κ are shown in [Table 10].
 [表11]には、レンズ系全体の焦点距離f、FナンバーFno、および半画角ωの値を示す。マクロレンズ3では、無限遠から等倍撮影距離へのフォーカシングに際して、第1レンズ群GR1と第2レンズ群GR2との間の間隔d7が変化する。また、第2レンズ群GR2と第3レンズ群GR3との間の間隔d12が変化する。また、開口絞りSと第4レンズ群GR4との間の間隔d17が変化する。また、第4レンズ群GR4と第5レンズ群GR5との間の間隔d20が変化する。これらの無限遠、中間撮影距離(撮影倍率-0.5倍)、および等倍撮影距離(撮影倍率-1.0倍)における可変間隔の値を、[表12]に示す。 [Table 11] shows values of the focal length f, the F number Fno, and the half angle of view ω of the entire lens system. In the macro lens 3, the distance d7 between the first lens group GR1 and the second lens group GR2 changes during focusing from infinity to the equal magnification shooting distance. Further, the distance d12 between the second lens group GR2 and the third lens group GR3 changes. Further, the distance d17 between the aperture stop S and the fourth lens group GR4 changes. Further, the distance d20 between the fourth lens group GR4 and the fifth lens group GR5 changes. Table 12 shows the values of the variable intervals at infinity, intermediate shooting distance (shooting magnification -0.5 times), and equal magnification shooting distance (shooting magnification -1.0 times).
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 図10~図12に、数値実施例3における諸収差を示す。図10には無限遠、図11には中間撮影距離、図12には等倍撮影距離における諸収差を示す。 10 to 12 show various aberrations in Numerical Example 3. FIG. FIG. 10 shows various aberrations at infinity, FIG. 11 shows an intermediate shooting distance, and FIG.
 各収差図から分かるように、数値実施例3に係るマクロレンズ3は、無限遠、中間撮影距離、および等倍撮影距離において、各収差が良好に補正され、優れた結像性能を有していることが明らかである。 As can be seen from each aberration diagram, the macro lens 3 according to Numerical Example 3 has excellent imaging performance with each aberration being corrected well at infinity, an intermediate shooting distance, and an equal magnification shooting distance. It is clear that
[数値実施例4]
 [表13]に、図13に示したマクロレンズ4に具体的な数値を適用した数値実施例4のレンズデータを示す。
[Numerical Example 4]
Table 13 shows lens data of Numerical Example 4 in which specific numerical values are applied to the macro lens 4 shown in FIG.
 図13に示したマクロレンズ4は、正の屈折力を有する第1レンズ群GR1と、負の屈折力を有する第2レンズ群GR2と、正の屈折力を有する第3レンズ群GR3と、負の屈折力を有する第4レンズ群GR4とが物体側より像面側へ順に配置されてなる。 The macro lens 4 shown in FIG. 13 includes a first lens group GR1 having a positive refractive power, a second lens group GR2 having a negative refractive power, a third lens group GR3 having a positive refractive power, and a negative lens power. The fourth lens group GR4 having a refractive power of 1 is arranged in order from the object side to the image plane side.
 マクロレンズ4は、上記実施の形態で説明したレンズの基本構成を満足しており、第1レンズ群GR1は物体側レンズ群に相当する。第2レンズ群GR2は第1フォーカスレンズ群に相当し、第3レンズ群GR3は第2フォーカスレンズ群に相当する。第4レンズ群GR4は、最終レンズ群に相当する。第4レンズ群GR4の一部のレンズG11,G12は、防振レンズ群に相当する。 The macro lens 4 satisfies the basic configuration of the lens described in the above embodiment, and the first lens group GR1 corresponds to an object side lens group. The second lens group GR2 corresponds to the first focus lens group, and the third lens group GR3 corresponds to the second focus lens group. The fourth lens group GR4 corresponds to the final lens group. Part of the lenses G11 and G12 of the fourth lens group GR4 corresponds to a vibration-proof lens group.
 第1レンズ群GR1は、両凸形状の正レンズG1と、両凸形状の正レンズG2および物体側に凹面を向けたメニスカス形状の負レンズG3が接合されてなる接合レンズと、物体側に凸面を向けたメニスカス形状の正レンズG4とが、物体側より像側へ順に配置されて構成されている。 The first lens group GR1 includes a biconvex positive lens G1, a biconvex positive lens G2, a meniscus negative lens G3 having a concave surface facing the object side, and a convex surface facing the object side. Are arranged in order from the object side to the image side.
 第2レンズ群GR2は、物体側に凸面を向けたメニスカス形状の負レンズG5と、両凹形状の負レンズG6および両凸形状の正レンズG7が接合されてなる接合レンズとが、物体側より像側へ順に配置されて構成されている。 The second lens group GR2 includes a meniscus negative lens G5 having a convex surface facing the object side, and a cemented lens formed by cementing a biconcave negative lens G6 and a biconvex positive lens G7 from the object side. They are arranged in order toward the image side.
 第3レンズ群GR3は、両凸形状の正レンズG8と、物体側に凸面を向けたメニスカス形状の負レンズG9および両凸形状の正レンズG10が接合されて成る接合レンズとが、物体側より像側へ順に配置されて構成されている。 The third lens group GR3 includes, from the object side, a biconvex positive lens G8, a cemented lens formed by cementing a meniscus negative lens G9 having a convex surface facing the object side, and a biconvex positive lens G10. They are arranged in order toward the image side.
 第4レンズ群GR4は、両凸形状の正レンズG11および両凹形状の負レンズG12が接合されてなる接合レンズと、物体側に凸面を向けたメニスカス形状の正レンズG13と、物体側に凹面を向けたメニスカス形状の負レンズG14とが、物体側より像側へ順に配置されて構成されている。 The fourth lens group GR4 includes a cemented lens in which a biconvex positive lens G11 and a biconcave negative lens G12 are cemented, a meniscus positive lens G13 having a convex surface on the object side, and a concave surface on the object side. Is arranged in order from the object side to the image side.
 第4レンズ群GR4と像面IMGとの間には光学フィルタFLが配置されている。開口絞りSは第2レンズ群GR2と第3レンズ群GR3との間に配置されている。 An optical filter FL is disposed between the fourth lens group GR4 and the image plane IMG. The aperture stop S is disposed between the second lens group GR2 and the third lens group GR3.
 [表14]には、レンズ系全体の焦点距離f、FナンバーFno、および半画角ωの値を示す。マクロレンズ4では、無限遠から等倍撮影距離へのフォーカシングに際して、第1レンズ群GR1と第2レンズ群GR2との間の間隔d7が変化する。また、第2レンズ群GR2と開口絞りSとの間の間隔d12が変化する。また、開口絞りSと第3レンズ群GR3との間の間隔d13が変化する。また、第3レンズ群GR3と第4レンズ群GR4との間の間隔d18が変化する。これらの無限遠、中間撮影距離(撮影倍率-0.5倍)、および等倍撮影距離(撮影倍率-1.0倍)における可変間隔の値を、[表15]に示す。 [Table 14] shows the focal length f, F number Fno, and half angle of view ω of the entire lens system. In the macro lens 4, the distance d7 between the first lens group GR1 and the second lens group GR2 changes during focusing from infinity to the equal magnification shooting distance. Further, the distance d12 between the second lens group GR2 and the aperture stop S changes. Further, the distance d13 between the aperture stop S and the third lens group GR3 changes. Further, the distance d18 between the third lens group GR3 and the fourth lens group GR4 changes. Table 15 shows the values of the variable intervals at infinity, intermediate shooting distance (shooting magnification -0.5 times), and equal magnification shooting distance (shooting magnification -1.0 times).
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 図14~図16に、数値実施例4における諸収差を示す。図14には無限遠、図15には中間撮影距離、図16には等倍撮影距離における諸収差を示す。 14 to 16 show various aberrations in Numerical Example 4. FIG. FIG. 14 shows various aberrations at infinity, FIG. 15 shows an intermediate shooting distance, and FIG.
 各収差図から分かるように、数値実施例4に係るマクロレンズ4は、無限遠、中間撮影距離、および等倍撮影距離において、各収差が良好に補正され、優れた結像性能を有していることが明らかである。 As can be seen from each aberration diagram, the macro lens 4 according to Numerical Example 4 has excellent imaging performance in which each aberration is well corrected at infinity, intermediate shooting distance, and equal shooting distance. It is clear that
[各実施例のその他の数値データ]
 [表16]には、上述の各条件式に関する値を、各数値実施例についてまとめたものを示す。[表16]から分かるように、基本となる条件式(1)~(4)について、各数値実施例の値がその数値範囲内となっている。
[Other numerical data of each example]
[Table 16] shows a summary of values relating to the above-described conditional expressions for each numerical example. As can be seen from [Table 16], with respect to the basic conditional expressions (1) to (4), the values of the numerical examples are within the numerical range.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
<5.その他の実施の形態>
 本開示による技術は、上記実施の形態および実施例の説明に限定されず種々の変形実施が可能である。
 例えば、上記各数値実施例において示した各部の形状および数値は、いずれも本技術を実施するための具体化のほんの一例に過ぎず、これらによって本技術の技術的範囲が限定的に解釈されることがあってはならないものである。
<5. Other Embodiments>
The technology according to the present disclosure is not limited to the description of the above-described embodiments and examples, and various modifications can be made.
For example, the shapes and numerical values of the respective parts shown in the numerical examples are merely examples of embodiments for carrying out the present technology, and the technical scope of the present technology is interpreted in a limited manner by these. There should be no such thing.
 また、上記実施の形態および実施例では、実質的に5または4つのレンズ群からなる構成について説明したが、実質的に屈折力を有さないレンズをさらに備えた構成であってもよい。 In the above-described embodiments and examples, the configuration including substantially five or four lens groups has been described. However, a configuration further including a lens having substantially no refractive power may be used.
 また例えば、本技術は以下のような構成を取ることができる。
[1]
 最も物体側に配置され、正の屈折力を有する物体側レンズ群と、
 前記物体側レンズ群よりも像面側にあり、無限遠物体から近距離物体へのフォーカシングに際して、光軸上を物体側から像面側へ移動する第1フォーカスレンズ群と、
 フォーカシングに際して光軸方向に固定の開口絞りと、
 2枚以上のレンズで構成され、前記第1フォーカスレンズ群よりも像面側に配置されると共に、無限遠物体から近距離物体へのフォーカシングに際して、光軸上を像面側から物体側へ移動する第2フォーカスレンズ群と、
 最も像面側に配置され、フォーカシングに際して光軸方向に固定の最終レンズ群と
 を備え、
 かつ、以下の条件式を満足するマクロレンズ。
 0.25<|fr/f|<2.0 ……(1)
 0.65<y’/BF<1.3 ……(2)
ただし、
 fr:前記最終レンズ群の焦点距離
 f:全系の焦点距離
 y’:像高
 BF:バックフォーカスの空気換算長
とする。
[2]
 さらに以下の条件式を満足する
 上記[1]に記載のマクロレンズ。
 0<f/ff<0.8 ……(3)
ただし、
 ff:前記第2フォーカスレンズ群よりも物体側のレンズ群の合成焦点距離
とする。
[3]
 さらに以下の条件式を満足する
 上記[1]または[2]に記載のマクロレンズ。
 0.24<1/GF<0.40 ……(4)
ただし、
 GF:前記第2フォーカスレンズ群の平均比重
とする。
[4]
 光軸と垂直方向に移動する防振レンズ群、をさらに備える
 上記[1]ないし[3]のいずれか1つに記載のマクロレンズ。
[5]
 前記防振レンズ群は、
 前記第1フォーカスレンズ群よりも像面側で、かつ前記第2フォーカスレンズ群より物体側に配置されている
 上記[4]に記載のマクロレンズ。
[6]
 前記防振レンズ群は、正の屈折力を持つ
 上記[4]または[5]に記載のマクロレンズ。
[7]
 前記最終レンズ群内の一部のレンズが、光軸と垂直方向に移動する防振レンズ群とされている
 上記[1]ないし[3]のいずれか1つに記載のマクロレンズ。
[8]
 前記防振レンズ群は、負の屈折力を持つ
 上記[7]に記載のマクロレンズ。
[9]
 前記第1フォーカスレンズ群および前記第2フォーカスレンズ群によって、物体距離として、無限遠から撮影倍率が等倍となる近距離までを含む範囲内の物体に対するフォーカシングを行う
 上記[1]ないし[8]のいずれか1つに記載のマクロレンズ。
[10]
 実質的に屈折力を有さないレンズをさらに備えた
 上記[1]ないし[9]のいずれか1つに記載のマクロレンズ。
[11]
 マクロレンズと、前記マクロレンズによって形成された光学像に応じた撮像信号を出力する撮像素子とを含み、
 前記マクロレンズは、
 最も物体側に配置され、正の屈折力を有する物体側レンズ群と、
 前記物体側レンズ群よりも像面側にあり、無限遠物体から近距離物体へのフォーカシングに際して、光軸上を物体側から像面側へ移動する第1フォーカスレンズ群と、
 フォーカシングに際して光軸方向に固定の開口絞りと、
 2枚以上のレンズで構成され、前記第1フォーカスレンズ群よりも像面側に配置されると共に、無限遠物体から近距離物体へのフォーカシングに際して、光軸上を像面側から物体側へ移動する第2フォーカスレンズ群と、
 最も像面側に配置され、フォーカシングに際して光軸方向に固定の最終レンズ群と
 を備え、
 かつ、以下の条件式を満足する撮像装置。
 0.25<|fr/f|<2.0 ……(1)
 0.65<y’/BF<1.3 ……(2)
ただし、
 fr:前記最終レンズ群の焦点距離
 f:全系の焦点距離
 y’:像高
 BF:バックフォーカスの空気換算長
とする。
[12]
 前記マクロレンズは、実質的に屈折力を有さないレンズをさらに備える
 上記[11]に記載の撮像装置。
For example, this technique can take the following composition.
[1]
An object side lens group that is disposed closest to the object side and has a positive refractive power;
A first focus lens group that is closer to the image plane than the object side lens group and moves on the optical axis from the object side to the image plane side during focusing from an object at infinity to a near distance object;
An aperture stop fixed in the optical axis direction during focusing;
Consists of two or more lenses, arranged closer to the image plane than the first focus lens group, and moves from the image plane side to the object side on the optical axis when focusing from an object at infinity to a near object. A second focus lens group,
A final lens group that is arranged closest to the image plane and fixed in the optical axis direction during focusing,
A macro lens that satisfies the following conditional expression.
0.25 <| fr / f | <2.0 (1)
0.65 <y '/ BF <1.3 (2)
However,
fr: focal length of the last lens group f: focal length of the entire system y ′: image height BF: air conversion length of back focus.
[2]
The macro lens according to [1], further satisfying the following conditional expression:
0 <f / ff <0.8 (3)
However,
ff: The combined focal length of the lens unit on the object side of the second focus lens unit.
[3]
The macro lens according to [1] or [2], further satisfying the following conditional expression:
0.24 <1 / GF <0.40 (4)
However,
GF: The average specific gravity of the second focus lens group.
[4]
The macro lens according to any one of [1] to [3], further including a vibration-proof lens group that moves in a direction perpendicular to the optical axis.
[5]
The anti-vibration lens group includes:
The macro lens according to [4], wherein the macro lens is disposed closer to the image plane than the first focus lens group and closer to the object side than the second focus lens group.
[6]
The macro lens according to [4] or [5], wherein the vibration-proof lens group has a positive refractive power.
[7]
The macro lens according to any one of [1] to [3], wherein a part of the lenses in the final lens group is an anti-vibration lens group that moves in a direction perpendicular to the optical axis.
[8]
The macro lens according to [7], wherein the anti-vibration lens group has negative refractive power.
[9]
Focusing on an object within a range including an object distance from an infinite distance to a close distance where the photographing magnification is equal to the magnification is performed by the first focus lens group and the second focus lens group. The macro lens according to any one of the above.
[10]
The macro lens according to any one of [1] to [9], further including a lens having substantially no refractive power.
[11]
A macro lens, and an image sensor that outputs an image signal corresponding to an optical image formed by the macro lens,
The macro lens is
An object side lens group that is disposed closest to the object side and has a positive refractive power;
A first focus lens group that is closer to the image plane than the object side lens group and moves on the optical axis from the object side to the image plane side during focusing from an object at infinity to a near distance object;
An aperture stop fixed in the optical axis direction during focusing;
Consists of two or more lenses, arranged closer to the image plane than the first focus lens group, and moves from the image plane side to the object side on the optical axis when focusing from an object at infinity to a near object. A second focus lens group,
A final lens group that is arranged closest to the image plane and fixed in the optical axis direction during focusing,
An imaging apparatus that satisfies the following conditional expression.
0.25 <| fr / f | <2.0 (1)
0.65 <y '/ BF <1.3 (2)
However,
fr: focal length of the last lens group f: focal length of the entire system y ′: image height BF: air conversion length of back focus.
[12]
The imaging device according to [11], wherein the macro lens further includes a lens having substantially no refractive power.
 本出願は、日本国特許庁において2015年2月26日に出願された日本特許出願番号第2015-036470号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。 This application claims priority on the basis of Japanese Patent Application No. 2015-036470 filed on February 26, 2015 at the Japan Patent Office. The entire contents of this application are incorporated herein by reference. This is incorporated into the application.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 Those skilled in the art will envision various modifications, combinations, subcombinations, and changes, depending on design requirements and other factors, which are within the scope of the appended claims and their equivalents. It is understood that

Claims (10)

  1.  最も物体側に配置され、正の屈折力を有する物体側レンズ群と、
     前記物体側レンズ群よりも像面側にあり、無限遠物体から近距離物体へのフォーカシングに際して、光軸上を物体側から像面側へ移動する第1フォーカスレンズ群と、
     フォーカシングに際して光軸方向に固定の開口絞りと、
     2枚以上のレンズで構成され、前記第1フォーカスレンズ群よりも像面側に配置されると共に、無限遠物体から近距離物体へのフォーカシングに際して、光軸上を像面側から物体側へ移動する第2フォーカスレンズ群と、
     最も像面側に配置され、フォーカシングに際して光軸方向に固定の最終レンズ群と
     を備え、
     かつ、以下の条件式を満足するマクロレンズ。
     0.25<|fr/f|<2.0 ……(1)
     0.65<y’/BF<1.3 ……(2)
    ただし、
     fr:前記最終レンズ群の焦点距離
     f:全系の焦点距離
     y’:像高
     BF:バックフォーカスの空気換算長
    とする。
    An object side lens group that is disposed closest to the object side and has a positive refractive power;
    A first focus lens group that is closer to the image plane than the object side lens group and moves on the optical axis from the object side to the image plane side during focusing from an object at infinity to a near distance object;
    An aperture stop fixed in the optical axis direction during focusing;
    Consists of two or more lenses, arranged closer to the image plane than the first focus lens group, and moves from the image plane side to the object side on the optical axis when focusing from an object at infinity to a near object. A second focus lens group,
    A final lens group that is arranged closest to the image plane and fixed in the optical axis direction during focusing,
    A macro lens that satisfies the following conditional expression.
    0.25 <| fr / f | <2.0 (1)
    0.65 <y '/ BF <1.3 (2)
    However,
    fr: focal length of the last lens group f: focal length of the entire system y ′: image height BF: air conversion length of back focus.
  2.  さらに以下の条件式を満足する
     請求項1に記載のマクロレンズ。
     0<f/ff<0.8 ……(3)
    ただし、
     ff:前記第2フォーカスレンズ群よりも物体側のレンズ群の合成焦点距離
    とする。
    The macro lens according to claim 1, further satisfying the following conditional expression.
    0 <f / ff <0.8 (3)
    However,
    ff: The combined focal length of the lens unit on the object side of the second focus lens unit.
  3.  さらに以下の条件式を満足する
     請求項1に記載のマクロレンズ。
     0.24<1/GF<0.40 ……(4)
    ただし、
     GF:前記第2フォーカスレンズ群の平均比重
    とする。
    The macro lens according to claim 1, further satisfying the following conditional expression.
    0.24 <1 / GF <0.40 (4)
    However,
    GF: The average specific gravity of the second focus lens group.
  4.  光軸と垂直方向に移動する防振レンズ群、をさらに備える
     請求項1に記載のマクロレンズ。
    The macro lens according to claim 1, further comprising an anti-vibration lens group that moves in a direction perpendicular to the optical axis.
  5.  前記防振レンズ群は、
     前記第1フォーカスレンズ群よりも像面側で、かつ前記第2フォーカスレンズ群より物体側に配置されている
     請求項4に記載のマクロレンズ。
    The anti-vibration lens group includes:
    The macro lens according to claim 4, wherein the macro lens is disposed closer to the image plane than the first focus lens group and closer to the object side than the second focus lens group.
  6.  前記防振レンズ群は、正の屈折力を持つ
     請求項5に記載のマクロレンズ。
    The macro lens according to claim 5, wherein the vibration-proof lens group has a positive refractive power.
  7.  前記最終レンズ群内の一部のレンズが、光軸と垂直方向に移動する防振レンズ群とされている
     請求項1に記載のマクロレンズ。
    The macro lens according to claim 1, wherein some lenses in the final lens group are anti-vibration lens groups that move in a direction perpendicular to the optical axis.
  8.  前記防振レンズ群は、負の屈折力を持つ
     請求項7に記載のマクロレンズ。
    The macro lens according to claim 7, wherein the anti-vibration lens group has negative refractive power.
  9.  前記第1フォーカスレンズ群および前記第2フォーカスレンズ群によって、物体距離として、無限遠から撮影倍率が等倍となる近距離までを含む範囲内の物体に対するフォーカシングを行う
     請求項1に記載のマクロレンズ。
    2. The macro lens according to claim 1, wherein focusing is performed on an object within a range including an object distance from an infinite distance to a short distance at which the photographing magnification is equal to magnification by the first focus lens group and the second focus lens group.
  10.  マクロレンズと、前記マクロレンズによって形成された光学像に応じた撮像信号を出力する撮像素子とを含み、
     前記マクロレンズは、
     最も物体側に配置され、正の屈折力を有する物体側レンズ群と、
     前記物体側レンズ群よりも像面側にあり、無限遠物体から近距離物体へのフォーカシングに際して、光軸上を物体側から像面側へ移動する第1フォーカスレンズ群と、
     フォーカシングに際して光軸方向に固定の開口絞りと、
     2枚以上のレンズで構成され、前記第1フォーカスレンズ群よりも像面側に配置されると共に、無限遠物体から近距離物体へのフォーカシングに際して、光軸上を像面側から物体側へ移動する第2フォーカスレンズ群と、
     最も像面側に配置され、フォーカシングに際して光軸方向に固定の最終レンズ群と
     を備え、
     かつ、以下の条件式を満足する撮像装置。
     0.25<|fr/f|<2.0 ……(1)
     0.65<y’/BF<1.3 ……(2)
    ただし、
     fr:前記最終レンズ群の焦点距離
     f:全系の焦点距離
     y’:像高
     BF:バックフォーカスの空気換算長
    とする。
    A macro lens, and an image sensor that outputs an image signal corresponding to an optical image formed by the macro lens,
    The macro lens is
    An object side lens group that is disposed closest to the object side and has a positive refractive power;
    A first focus lens group that is closer to the image plane than the object side lens group and moves on the optical axis from the object side to the image plane side during focusing from an object at infinity to a near distance object;
    An aperture stop fixed in the optical axis direction during focusing;
    Consists of two or more lenses, arranged closer to the image plane than the first focus lens group, and moves from the image plane side to the object side on the optical axis when focusing from an object at infinity to a near object. A second focus lens group,
    A final lens group that is arranged closest to the image plane and fixed in the optical axis direction during focusing,
    An imaging apparatus that satisfies the following conditional expression.
    0.25 <| fr / f | <2.0 (1)
    0.65 <y '/ BF <1.3 (2)
    However,
    fr: focal length of the last lens group f: focal length of the entire system y ′: image height BF: air conversion length of back focus.
PCT/JP2016/051987 2015-02-26 2016-01-25 Macro lens and imaging device WO2016136352A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015036470 2015-02-26
JP2015-036470 2015-02-26

Publications (1)

Publication Number Publication Date
WO2016136352A1 true WO2016136352A1 (en) 2016-09-01

Family

ID=56788358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051987 WO2016136352A1 (en) 2015-02-26 2016-01-25 Macro lens and imaging device

Country Status (1)

Country Link
WO (1) WO2016136352A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018031832A (en) * 2016-08-23 2018-03-01 富士フイルム株式会社 Imaging lens and imaging apparatus
JP2018031831A (en) * 2016-08-23 2018-03-01 富士フイルム株式会社 Imaging lens and imaging apparatus
CN110166675A (en) * 2019-06-14 2019-08-23 深圳扑浪创新科技有限公司 Synchronous shooting device and sync pulse jamming method
CN110351405A (en) * 2019-07-03 2019-10-18 肯维捷斯(武汉)科技有限公司 A kind of mobile communication equipment with microcosmic imaging function
CN110351470A (en) * 2019-07-31 2019-10-18 肯维捷斯(武汉)科技有限公司 A kind of camera module
JP2020060660A (en) * 2018-10-09 2020-04-16 キヤノン株式会社 Optical system and image capturing device
JP2022016822A (en) * 2020-07-13 2022-01-25 キヤノン株式会社 Optical system and image capturing device having the same
WO2023236486A1 (en) * 2022-06-06 2023-12-14 Oppo广东移动通信有限公司 Camera and electronic apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013152279A (en) * 2012-01-24 2013-08-08 Olympus Imaging Corp Photographic lens system and imaging apparatus including the same
JP2014142601A (en) * 2012-12-27 2014-08-07 Panasonic Corp Inner focus lens system, interchangeable lens unit and camera system
JP2014219601A (en) * 2013-05-09 2014-11-20 ソニー株式会社 Macro lens and imaging unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013152279A (en) * 2012-01-24 2013-08-08 Olympus Imaging Corp Photographic lens system and imaging apparatus including the same
JP2014142601A (en) * 2012-12-27 2014-08-07 Panasonic Corp Inner focus lens system, interchangeable lens unit and camera system
JP2014219601A (en) * 2013-05-09 2014-11-20 ソニー株式会社 Macro lens and imaging unit

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018031832A (en) * 2016-08-23 2018-03-01 富士フイルム株式会社 Imaging lens and imaging apparatus
JP2018031831A (en) * 2016-08-23 2018-03-01 富士フイルム株式会社 Imaging lens and imaging apparatus
JP2020060660A (en) * 2018-10-09 2020-04-16 キヤノン株式会社 Optical system and image capturing device
CN114706204A (en) * 2018-10-09 2022-07-05 佳能株式会社 Optical system and image pickup apparatus
JP7163126B2 (en) 2018-10-09 2022-10-31 キヤノン株式会社 Optical system and imaging device
CN110166675A (en) * 2019-06-14 2019-08-23 深圳扑浪创新科技有限公司 Synchronous shooting device and sync pulse jamming method
CN110166675B (en) * 2019-06-14 2024-02-13 深圳扑浪创新科技有限公司 Synchronous shooting device and synchronous shooting method
CN110351405A (en) * 2019-07-03 2019-10-18 肯维捷斯(武汉)科技有限公司 A kind of mobile communication equipment with microcosmic imaging function
CN110351470A (en) * 2019-07-31 2019-10-18 肯维捷斯(武汉)科技有限公司 A kind of camera module
JP2022016822A (en) * 2020-07-13 2022-01-25 キヤノン株式会社 Optical system and image capturing device having the same
JP7254747B2 (en) 2020-07-13 2023-04-10 キヤノン株式会社 Optical system and imaging device having the same
WO2023236486A1 (en) * 2022-06-06 2023-12-14 Oppo广东移动通信有限公司 Camera and electronic apparatus

Similar Documents

Publication Publication Date Title
JP4771182B2 (en) Zoom lens and imaging device
JP6597626B2 (en) Wide angle lens and imaging device
WO2016136352A1 (en) Macro lens and imaging device
JP4352347B2 (en) Zoom lens and imaging device
JP2011209347A (en) Zoom lens and imaging apparatus
JP4697555B2 (en) Zoom lens and imaging device
JP2010061007A (en) Zoom lens and image capturing apparatus
WO2018139160A1 (en) Zoom lens and imaging device
JP5891860B2 (en) Zoom lens and imaging device
JP4697556B2 (en) Zoom lens and imaging device
JP2011022191A (en) Zoom lens and imaging apparatus
JP5141375B2 (en) Zoom lens and imaging device
JP2015059997A (en) Zoom lens and imaging apparatus
JP6747458B2 (en) Zoom lens and optical equipment
JP6641718B2 (en) Zoom lens and imaging device
JP2010191214A (en) Zoom lens and imaging apparatus
JP5884688B2 (en) Imaging lens and imaging device
JP6287647B2 (en) Zoom lens and imaging device
US20240061211A1 (en) Imaging lens and imaging apparatus
JP2014044249A (en) Variable focal length lens system and image pickup device
JP2012168388A (en) Zoom lens and imaging apparatus
JP2015152665A (en) zoom lens and optical equipment
JP2015090424A (en) Zoom lens and imaging apparatus
JP2012252278A (en) Zoom lens and imaging apparatus
JP2012078426A (en) Zoom lens and imaging apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16755102

Country of ref document: EP

Kind code of ref document: A1