WO2016136323A1 - Energy predict system, energy predict method, computer program for causing execution thereof, recording medium whereupon said program is recorded, and operation assistance system - Google Patents

Energy predict system, energy predict method, computer program for causing execution thereof, recording medium whereupon said program is recorded, and operation assistance system Download PDF

Info

Publication number
WO2016136323A1
WO2016136323A1 PCT/JP2016/051186 JP2016051186W WO2016136323A1 WO 2016136323 A1 WO2016136323 A1 WO 2016136323A1 JP 2016051186 W JP2016051186 W JP 2016051186W WO 2016136323 A1 WO2016136323 A1 WO 2016136323A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
prediction
series data
energy
load
Prior art date
Application number
PCT/JP2016/051186
Other languages
French (fr)
Japanese (ja)
Inventor
彰彦 小川
郷志 清水
聰子 藏田
Original Assignee
株式会社E.I.エンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社E.I.エンジニアリング filed Critical 株式会社E.I.エンジニアリング
Priority to JP2016550284A priority Critical patent/JP6118975B2/en
Publication of WO2016136323A1 publication Critical patent/WO2016136323A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass

Definitions

  • the present invention relates to an energy prediction system, an energy prediction method, a computer program for executing the energy prediction method, a recording medium storing the program, and an operation support system. More specifically, an energy prediction system that predicts an energy load after the present time in an energy facility that uses or manufactures energy such as electric power, cooling, heating, steam, and hot water, an energy prediction method, a computer program that executes this, and a computer program
  • the present invention relates to a recording medium on which a program is recorded and a driving support system.
  • the similarity between the past weather actual data and the weather forecast data on the prediction target day is calculated, and the power demand is predicted from the power demand data corresponding to the past weather actual data.
  • it since it depends on weather data, it may be affected by sudden weather fluctuations, and further improvement in prediction accuracy has been desired.
  • the present invention provides an energy prediction system, an energy prediction method, a computer program for executing the same, and a computer program for executing the energy prediction system capable of calculating a highly accurate predicted value corresponding to the actual measurement value of the day.
  • An object of the present invention is to provide a recording medium that records the above and a driving support system.
  • the energy prediction system is characterized in that the energy load after the present time in an energy facility that uses or manufactures energy such as electric power, cooling, heating, steam, and hot water is predicted.
  • An analysis condition setting unit that sets the comparison time and the number of comparison days and selects a comparison target for performing the cluster analysis from the classified load pattern, and the current date and time series data from the predetermined time on the predicted day to the set comparison time before, ,
  • a time-series data setting unit that sets data based on measured values classified into the selected load pattern, and calculates a similarity to the current date / time series data for each of the past time-series data by the cluster analysis.
  • a plurality of past time-series data having a high value are selected, and measured values of the selected past time-series data at a time ahead of a predetermined prediction time from the predetermined time are weighted and added according to the degree of similarity, and the predetermined time on the prediction day
  • a predicted value calculation unit that calculates a predicted value of the energy load at the predicted time ahead of the predicted time.
  • the cluster analysis used in the present invention is an evaluation of the similarity between clusters of different days, with the data extracted from the predetermined time on the prediction day to the comparison time as one cluster from the time series data of energy load. It is a technique to do.
  • the time series data to be subjected to cluster analysis is set based on the actual measured value of energy load up to the present time. Since the actual measurement values are influenced by the environment and situation at the time of measurement, the time-series data set by the actual measurement values reflect all conditions (elements), and can be realized without complicated settings. It is possible to make predictions according to. In addition, since the measured values are classified into load patterns based on the characteristics of the selected energy load, the set time series data is based on the measurement results in a common or similar environment, They will be similar to each other. Therefore, the accuracy of cluster analysis is further improved. Since the predicted value is calculated by weighting and adding according to the calculated similarity, the accuracy is further improved.
  • the predicted value is calculated by adding a weighted average of the difference between the measured value at the predetermined time and the measured value at the predicted time of the selected past time series data to the measured value at the predetermined time on the prediction day. Good. Since the weighted average of the difference between the actual measurement value at the predetermined time on the prediction day and the actual measurement value at the prediction time is added to the actual measurement value at the predetermined time on the prediction day, a more accurate predicted value that is more realistic.
  • the predicted value calculation unit may select a plurality of past time series data in descending order of the similarity. Since the past time series data is selected in descending order of similarity, the accuracy is further improved.
  • the load pattern may be a combination of at least one selected from a group including at least all days, holidays, weekdays, special days, production plans, and weather information.
  • the predicted value calculation unit weights and adds an actual measurement value of the selected past time-series data at a time that is a predetermined second predicted time ahead from the predetermined time according to the similarity, and from the predetermined time on the prediction day
  • a temporary actual measurement value setting unit that sets a predicted value of the energy load at the next second prediction time ahead of the second prediction time as a temporary actual measurement value of the time
  • the time-series data setting unit includes the prediction day New current date and time series data from the next second predicted time to the comparison time before, and past time series data for each day of the set comparison days in the same time zone as the new current date and time series data.
  • a time-series data updating unit that updates the measured value classified into the selected load pattern and the temporary measured value, and the temporary measured value setting unit sets the temporary measured value for each second predicted time.
  • the time series data update unit updates the time series data for each second prediction time, and the prediction value calculation unit repeatedly performs the cluster analysis for each second prediction time,
  • the energy load from the predetermined time to the long-term predicted time ahead may be predicted. Since the predicted value calculated for each second prediction time is set as a temporary actual measurement value at that time and the time series data is updated, the cluster analysis is repeated every second prediction time until the long-term prediction time set
  • the energy load can be predicted. For example, it is possible to predict an energy load until an arbitrary time elapses, such as 24 hours ahead or 48 hours ahead on the prediction day.
  • the temporary actual measurement value is replaced with the actual measurement value every time the actual measurement value at the next second prediction time on the prediction day is stored.
  • the temporary actual measurement value is always replaced with the latest actual measurement value, so that the prediction accuracy is improved.
  • the load pattern classification unit may further include a long-term load pattern set in units of days of at least two consecutive days.
  • the energy facility is a complex facility or region including a plurality of facilities having a plurality of power generation devices and / or thermoelectric devices, and the prediction calculation unit calculates the prediction value for each facility and adds the prediction values. Then, the predicted value of the energy load of the complex facility or the entire area may be calculated. This not only predicts the energy load at a single facility with multiple generators and / or thermoelectric devices, but also predicts the overall energy load of a complex facility, apartment house, or area where multiple such facilities are assembled. It becomes possible and contributes to energy saving.
  • the cluster analysis may be, for example, an intergroup average distance method.
  • the similarity may be a reciprocal of a distance of the past time series data with respect to the current date / time series data.
  • the similarity may be a cosine of an angle between vectors of the past time series data and the current date and time series data.
  • the energy prediction method is characterized by an energy prediction method for predicting an energy load after the present time in an energy facility that uses or manufactures energy such as electric power, cooling, heating, steam, and hot water.
  • the actual measured value of the energy load up to the present time is stored for each measurement time, the measured value is classified into load patterns based on the characteristics of the energy load for each day, and the comparison time and the number of comparison days for performing the cluster analysis are set.
  • the comparison target for performing the cluster analysis is selected from the classified load patterns, and the current date / time series data from the predetermined time on the predicted day to the set comparison time and the past in the same time zone as the current date / time series data.
  • the past time-series data of the set comparison days for each day was classified into the selected load pattern Set by measurement, calculate a similarity to the current time series data for each of the past time series data by the cluster analysis, and select a plurality of past time series data having a high similarity, and the selected past time series data Calculating a predicted value of the energy load at the predicted time ahead of the predicted time from the predetermined time on the prediction day by weighting and adding measured values at a predetermined time ahead of the predetermined time according to the similarity. It is in.
  • the energy prediction system described in any of the above is realized by a computer program for executing the system, and this computer program is recorded on a recording medium.
  • the operation support system is characterized in that, in a configuration that supports the operation of energy equipment that uses or manufactures energy such as electric power, cooling, heating, steam, hot water supply, etc.
  • a measured value storage unit that stores measured values of energy load at each measurement time
  • a load pattern classification unit that classifies the measured values into load patterns based on the characteristics of the energy load every day
  • comparison time and comparison for performing cluster analysis An analysis condition setting unit that sets the number of days and selects a comparison target to be subjected to the cluster analysis from the classified load patterns, current date / time series data from a predetermined time on the predicted date to the set comparison time, and the current date / time Load pattern that selects past time series data for each day of the set comparison days in the same time zone as the series data
  • a time-series data setting unit that is set based on classified actual measurement values, and a plurality of past time-series data having a high degree of similarity are calculated by calculating a similarity to the current time-series
  • the measured value of the selected past time-series data at the predetermined time ahead from the predetermined time is weighted according to the degree of similarity, and the predicted time at the prediction time ahead from the predetermined time on the prediction day
  • a predicted value calculation unit for calculating a predicted value of the energy load, and supporting operation of the energy equipment based on the predicted value.
  • the energy prediction method the computer program for executing the program, the recording medium storing the program, and the driving support system according to the present invention, the prediction with high accuracy according to the actual measurement value of the day The value can be calculated.
  • FIG. 8 is a diagram corresponding to FIG. 7 illustrating another example of an inter-vector angle representing a similarity instead of a distance.
  • the energy prediction system 1 predicts an energy load after the present time in an energy facility that uses or manufactures energy such as electric power, cooling, heating, steam, and hot water.
  • energy facilities include power generation equipment such as cogeneration, solar power generation, boiler equipment such as high pressure boilers, cold water equipment such as absorption refrigerators, hot water equipment such as hot water boilers, and hot water supply equipment such as hot water boilers.
  • power generation equipment such as cogeneration, solar power generation
  • boiler equipment such as high pressure boilers
  • cold water equipment such as absorption refrigerators
  • hot water equipment such as hot water boilers
  • hot water supply equipment such as hot water boilers.
  • the energy load include demand (consumption, usage) and production (supply) such as electric power, cold water, hot water, and steam.
  • the hardware of the energy prediction system 1 generally includes a user interface 2 and a processing unit 3 that processes the software 10 of the energy prediction system 1.
  • the user interface 2 includes a monitor 2a, a keyboard 2b, and a mouse 2c, and is used by the user to operate buttons and input fields on the screen displayed on the monitor 2a.
  • the processing unit 3 is connected to the CPU 3a, the temporary storage memory 3b, the HDD 3c, and the like through a bus 3d such as a data bus and an address bus.
  • the CPU 3a, the temporary storage memory 3b, the HDD 3c, and the like operate the software 10 in cooperation.
  • the software 10 of the energy prediction system 1 generally includes an actual measurement value storage unit 20, a load pattern classification unit 30, an analysis condition setting unit 40, a time series data setting unit 50, a predicted value calculation unit 60, An output unit 70 and a recording unit 80 are included.
  • Measured value storage unit 20 stores measured values of energy load up to the present time for each measurement time.
  • the measured value storage unit 20 receives measured values from various sensors of energy equipment connected to the energy prediction system 1.
  • the measurement time is a cycle for measuring the energy load, and any unit of second (second), minute (minute), hour (hour) such as 30 seconds, 10 minutes, 1 hour or the like may be used.
  • the prediction accuracy is improved by shortening the measurement time (cycle), the time (number of times) required for the calculation is increased, so it may be set as appropriate according to the required accuracy. It is also possible to capture meteorological information described later together with the actual measurement values.
  • the load pattern classification unit 30 classifies the actual measurement values stored in the actual measurement value storage unit 20 into load patterns based on the characteristics of the energy load every day.
  • the load pattern is at least one combination selected from the group including at least all days, holidays, weekdays, singular days, production plans, and weather information.
  • the special day indicates a day (environment) that is different from a normal business day such as holding an event in a commercial facility or a special sale day.
  • the production plan indicates the number of machines operating in a factory and the production schedule of products to be produced.
  • Meteorological information refers to, for example, various weathers published by the Japan Meteorological Agency, such as air temperature for a given time, daily average temperature, maximum temperature, minimum temperature, average relative humidity, maximum humidity, weather, atmospheric pressure, wind speed, precipitation, etc. Data and seasons. In this way, by classifying by characteristics that affect the pattern of energy load, unique differences between time series data to be compared are reduced, and similarity calculation described later is performed on time series data in similar environments. And the prediction accuracy can be improved.
  • the analysis condition setting unit 40 includes a comparison time setting unit 41 that sets a comparison time for performing cluster analysis, a comparison day setting unit 42 for setting comparison days for performing cluster analysis, and a load pattern classification unit for comparing comparison targets for performing cluster analysis.
  • the load pattern selection unit 43 selects the load pattern classified by 30.
  • the comparison time indicates a time zone (a period from the start time to the end time) of the time series data to be subjected to cluster analysis, and can be appropriately set regardless of the unit of time as described above.
  • the comparison days indicate the number of later-described past time series data to be compared (similarity calculation) with the current date / time series data, and preferably two or more.
  • the prediction accuracy is improved by increasing the number of comparison days, the calculation time (number of times) is increased, so that it may be set appropriately according to the required accuracy.
  • an upper selection day setting unit 44 for setting the number of days (number) for selecting past time-series data having a high degree of similarity by cluster analysis described later.
  • the analysis condition setting unit 40 also sets a calculation time and a prediction time for calculating the similarity of the past time series data with respect to the current date and time series data. These times can be set as appropriate regardless of the unit of time as described above.
  • the calculation time is a cycle for calculating the degree of similarity, and is matched with the above-described measurement time, for example.
  • the prediction time is a predetermined time from a predetermined time on the prediction day to a predetermined time (prediction time) to be predicted.
  • the analysis condition setting unit 40 also sets the second predicted time. This second prediction time is a predetermined time from a predetermined time on the prediction day in the long-term prediction described later to a predetermined time to be predicted (next second predicted time).
  • the predicted time and the second predicted time can be arbitrarily set and may be the same, for example, the same as the above-described measurement time.
  • the time series data setting unit 50 is set by the current date / time series data from the predetermined time on the predicted day to the comparison time set by the comparison time setting unit 41 and the comparison day setting unit 42 in the same time zone as the current date / time series data.
  • the past time-series data for each past day of the comparison days thus set is set by the actually measured values classified into the load patterns selected by the load pattern selection unit 43.
  • N is a number obtained by dividing the comparison time by the measurement time.
  • the time series data setting unit 50 includes new current date / time series data from the next second prediction time that is the second prediction time ahead of the predetermined time on the prediction day to the comparison time set by the comparison time setting unit 41,
  • the current time-series data and the past time-series data for each day of the comparison days set by the past comparison days setting unit 42 in the same time zone are classified into the load patterns selected by the load pattern selection unit 43.
  • a time-series data update unit 51 that updates the measured values and the temporary measured values described later is included.
  • the predicted value calculation unit 60 includes a similarity calculation unit 61 that calculates the similarity, a past time series data selection unit 62 that selects past time series data having a high similarity, and a weight that calculates a weighting factor according to the similarity.
  • a coefficient calculation unit 63 is provided.
  • the similarity calculation unit 61 calculates the similarity to the current date / time series data for each past time series data created by the time series data setting unit 50 by cluster analysis.
  • the past time series data selection unit 62 selects a plurality of past time series data according to the set selection conditions. For example, in the present embodiment, the past time series data for the number of days (number) set by the higher selection day setting unit 44 is selected from the set past time series data in descending order of similarity.
  • the weighting factor calculation unit 63 calculates a weighting factor according to the similarity of the past time series data selected by the past time series data selection unit 62. Then, the predicted value calculation unit 60 weights the actually measured value at the time ahead of the predetermined prediction time from the predetermined time of the past time series data selected by the past time series data selection unit 62 with the weight coefficient calculated by the weight coefficient calculation unit 63. It is added and calculated as the predicted value of the energy load at the prediction time ahead of the predetermined prediction time from the predetermined time on the prediction day (short time prediction).
  • an intergroup average distance method is used for cluster analysis. This average distance method between groups calculates distances for all individual pairs (measured values for each calculation time) of the current time series data (cluster) and past time series data (cluster) and calculates the average as the similarity. To do. The greater the similarity (the reciprocal of the distance), the more similar the current date / time series data and the past time series data.
  • the intergroup average distance method the current date / time series data, the time series data m (m ⁇ M) days ago, and the distance are defined by the following equation (3). M is the number of comparison days.
  • the distance dm between the points p and q is calculated, and the distance dm that is short (small) has high similarity.
  • the similarity calculation unit 61 calculates the distance dm for each past time series data, and the past time series data selection unit 62 selects a plurality of past time series data in descending order of the reciprocal of the distance dm (high similarity).
  • the weight coefficient calculation unit 63 calculates the weight coefficient wm from the reciprocal (similarity) of the distance dm of the past time series data selected by the past time series data selection unit 62.
  • the weighting coefficient wm is the distance dm obtained from the selected past time-series data for the number of days (number, S) set by the upper selection days setting unit 44 as the reciprocal (similarity) of the distance dm, as shown in the following equation 4. It is the number (relative weight) divided by the sum of the reciprocals.
  • the predicted value xt + 1 of the predicted time t + 1 that is a predetermined time (predicted time 1) from the time point t (predetermined time) is calculated by the following equation 5.
  • the weighted average of the differences between the time points t + 1 and t in the selected past time series data for the number of days (number, S) set by the upper selection day setting unit 44 is the actual measurement value at the time point t on the prediction day. Add to xt to get the predicted value xt + 1.
  • the predicted value calculation unit 60 weights and adds the actual measured values at the predetermined second predicted time ahead from the predetermined time of the selected past time-series data according to the similarity, and performs the second prediction from the predetermined time on the predicted day.
  • a temporary actual measurement value setting unit 64 is provided that sets the predicted value of the energy load at the next second predicted time ahead as the temporary actual measurement value at that time. By repeating the same process as the short-time prediction described above every second prediction time of the actual measurement value, it is possible to perform a long-term prediction time (for example, prediction for 24 hours or 48 hours ahead (long-term prediction)). .
  • the temporary actual measurement value is replaced with the actual measurement value every time the actual measurement value at the next second prediction time on the prediction day is stored.
  • the output unit 70 outputs, for example, a prediction value or a prediction graph obtained by the prediction value calculation unit 60 to a monitor or paper. For example, the measured value and the predicted value thereafter are distinguished from each other and displayed on the graph. In addition to changing the color of the long-term prediction graph, the average square error ratio (EEP) between the predicted value and the actually measured value is displayed. It is also possible to output these in the form of a table as a form.
  • the recording unit 80 records various data such as the calculated predicted value and the output form.
  • the short-term prediction procedure sets conditions for the day prediction by cluster analysis (S1), and calculates the similarity of past time series data by cluster analysis based on the set conditions (S2).
  • S1 A plurality of past time series data are selected in descending order of similarity (S3), a weighting factor is calculated, a predicted value ahead of a predetermined time is calculated using the weighting factor (S4), and the result is output ( S5).
  • the actual measurement values are stored for each measurement time by the actual measurement value storage unit 20 and are classified into load patterns based on energy load characteristics by the load pattern classification unit 30.
  • the comparison time is set by the comparison time setting unit 41, and the comparison days are set by the comparison day setting unit.
  • the analysis condition setting unit 40 also sets calculation time and prediction time. For example, the current time (predetermined time) is set as 5:30, the comparison time is 4 hours, the comparison days are 30 days, the calculation time is 10 minutes, and the prediction time is 30 minutes.
  • the upper selection days setting unit 44 also sets the upper selection days, and is, for example, the top six (pieces).
  • the load pattern classified by the load pattern classification unit 30 is selected by the load pattern selection unit 43.
  • the same load pattern as that of the predicted day is selected.
  • past actual measurement values in an environment similar to the prediction day can be set as a cluster analysis target, and the accuracy is further improved.
  • the time-series data setting unit 50 sets a plurality of current time-series data and past time-series data in the same time zone as the current date-and-time series data for each day based on actually measured values.
  • weekday data is selected as the same load pattern as the current date and time series data on the forecasted day of the weekday, and past time series data is created for each day in the same time zone (predetermined time from the specified time) for the latest 30 weekdays. Is done.
  • the distance (similarity) for the current date / time series data is calculated for each past time series data set by the above-mentioned average distance method between groups by the similarity calculation unit 61.
  • the past time series data selection step (S3) the past time series data selection unit 62 selects the top six places with the short distance (high similarity). For example, the distance to the current date / time series data of the predicted current day is calculated for each past time series data of 30 minutes on the most recent weekday, and the top six shortest distances dm (similarity 1 / dm is large) are selected as similar days.
  • the weighting factor of the similar day selected by the weighting factor calculation unit 63 is calculated, and the predicted time ahead of the prediction time in the past time-series data selected by the predicted value calculation unit 60 is set to a predetermined value.
  • the predicted value is calculated by adding the weighted average of the difference between the actual measurement value and the time to the actual measurement value at the predetermined time on the prediction day. For example, in the past time series data of the selected similar date, a value obtained by multiplying the difference between the measured values of the predicted time ahead of the predicted time and the predetermined time (current time) by the weighting factor wm of the day is obtained. These are calculated in the top six places to obtain the total, and the total value is added to the actual measurement value at the predetermined time on the prediction day to obtain the predicted value of the predicted time.
  • the long-term prediction shown in FIG. 4b can be performed simultaneously with the short-time prediction described above or independently.
  • the all-day prediction (until 24:00 (PM 12:00) on the prediction day) as the long-term prediction of the energy load on the prediction day, first, sets the conditions for the day prediction by cluster analysis (S11), A temporary actual measurement value at the next second predicted time is set (S12), the time series data is updated based on the set condition (S13), and the similarity of the past time series data updated by the cluster analysis is calculated ( S14), a plurality of past time-series data are selected in descending order of similarity (S15), a weighting factor is calculated, and the predicted value of the measurement time ahead is calculated using the weighting factor (S16).
  • the above steps (S12 to S16) are repeated until the set long-term predicted time ahead (S17). If the prediction of the long-term prediction time (until 24:00 (PM 12:00) on the prediction day) is completed, the result is output (S18).
  • the condition setting step (S11) is the same as the previous condition setting step (S1).
  • the provisional actual measurement value setting unit 64 calculates the predicted value of the next second prediction time in the second prediction time ahead from the predetermined time as the provisional actual measurement value. Calculation of the predicted value of the next second predicted time is the same as in the short-time prediction step (S2 to S4). For example, the predicted value of the next second predicted time 10 minutes (second predicted time, calculation time) ahead of a predetermined time (current time) is calculated as a temporary measured value. The calculation of the temporary actual measurement value is the same process as the short-time prediction described above.
  • the time series data update unit 51 changes the time zone of the previous date and time series data and the past time series data. For example, assuming that the next second predicted time at which the temporary actual measurement value was calculated in the previous step (S12) is a new predetermined time, the actual measurement value and the temporary actual measurement value in the time zone from that time to the comparison time before Update series data. Since there is no actual actual measurement value at the next second predicted time in the current date / time series data, the temporary date / time data described above is used as the current date / time series data. Then, similarly to the short-time prediction, a predicted value of a new next second predicted time ahead of the second predicted time (calculation time) is calculated.
  • a prediction of a predetermined prediction time ahead (30 minutes in the above example) is performed, but in the long-term prediction, the prediction of the second prediction time ahead is performed every second prediction time (in this example, 10 minutes). The process is repeated until the long-term prediction time has elapsed (in this example, 24:00 (PM 12:00) on the prediction day). In this way, it is possible to predict the transition (fluctuation) of the energy load over time.
  • the prediction line of the energy load is corrected by replacing the temporary actual measurement value with the actual actual measurement value as time elapses, so that highly accurate prediction is possible.
  • the energy load prediction short-term prediction and / or long-term prediction
  • the power load for the previous day of a complex facility consisting of a store, a factory, a bank, and an office is predicted for each facility for its demand amount A1 to 4, and the next day of the entire complex facility.
  • Power demand A is predicted.
  • a prediction method using a conventionally known Kalman filter can be applied to the previous day prediction.
  • the power supply / demand balance for this power demand prediction A is predicted.
  • the power generation amount Eb5 of renewable energy for example, the solar power generation amount is predicted every 30 minutes, for example, by predicting the outside air temperature and the sunshine duration according to the weather forecast on the next day.
  • Renewable energy is not limited to photovoltaic power generation but may be wind power generation.
  • the power generation plan is determined in consideration of the power supply capacity and unit price of the power plant that is scheduled to supply power based on the predicted power demand A, including the power generation amount Eb5 from the above-mentioned renewable energy.
  • the power generation amounts Eb1, 2 and the first and second adjustment power amounts Eb3, 4 of the first and second power plants are determined.
  • the energy prediction system 1 uses the measured power values E1 to E5 of each facility to calculate a predicted value for a predetermined time ahead (for example, 30 minutes ahead at 12:00) by the cluster analysis method. calculate. And based on the predicted value by the short-time prediction, for example, the power generation amount of the adjusted power 2 at the predicted time can be controlled. Furthermore, as shown in the figure, since power load prediction (long-term prediction) is performed until 24:00 on the prediction day, it is possible to predict power load predicted values Ef1 to Ef1 to 5 hours ahead of 1 hour and 2 hours.
  • reference numerals E1 and E2 indicate actual measured power values of the first and second power plants
  • reference numerals E3 and E4 indicate first and second adjusted power actual measured values
  • symbol Ef1,2 shows the predicted electric power generation value of a 1st, 2nd power plant
  • symbol Ef3,4 shows the 1st, 2nd adjustment electric power prediction value
  • symbol E5 shows a photovoltaic power generation prediction value. It is possible to predict not only the energy load in a single facility with multiple generators and / or thermoelectric devices, but also the overall energy load of a complex facility, apartment house, or area where multiple such facilities are assembled. .
  • the all-day prediction is described with the long-term prediction time being 24:00 (PM 12:00) on the day of the short-term prediction.
  • the long-term prediction time is not limited to the prediction until 24:00 on the prediction day, and for example, 24 hours, 48 hours (two consecutive days), or any other arbitrary period (time) can be set.
  • the forecast may extend to the next day as well as the forecast day. Therefore, in such a case, the load pattern classification unit 30 may further include a long-term load pattern set in units of days of at least two consecutive days.
  • At least two consecutive days are: 2 weekdays, all weekdays (Monday to Friday), weekends (Friday and Saturdays and Saturdays and Sundays, Friday to Sunday), holidays (Sundays and holidays and the following day) Weekdays), several days such as one week, one month, long vacation, event period, season, etc.
  • weekdays all weekdays (Monday to Friday), weekends (Friday and Saturdays and Saturdays and Sundays, Friday to Sunday), holidays (Sundays and holidays and the following day) Weekdays), several days such as one week, one month, long vacation, event period, season, etc.
  • the next day can be predicted without using weather conditions.
  • the prediction method using the Kalman filter is applied to the previous day prediction, but it is also possible to continuously predict from the previous day prediction to the current day prediction (for example, 48 hours) instead of the Kalman filter.
  • the prediction method using the Kalman filter is applied to the previous day prediction, but it is also possible to continuously predict from the previous day prediction to the current day prediction (for example, 48 hours) instead of the Kalman filter.
  • prediction may be performed by applying each load pattern for each prediction day.
  • the distance between the past time series data and the current date / time series data is obtained as the similarity using the inter-group average distance method, but it is also possible to use the cosine of the angle between vectors instead.
  • the examples of the current date / time series data P1 shown in FIG. 7 (a) and the past time series data Q1 shown in FIG. 7 (b) have the same shape with only different ratios. Therefore, the angle between the vectors p1 and q1 of the time series data is 0 as shown in FIG.
  • the angle between the vectors p1 and q1 of the time series data is 0 as shown in FIG.
  • the example of the current date / time series data P2 shown in FIG. 8A and the past time series data Q2 shown in FIG. 8B as shown in FIG. 8C, between the time series data vectors p1 and q1.
  • the angle is ⁇ , and this vector angle is used.
  • this cos ⁇ m is used as a similar index and corresponds to the reciprocal of the distance in the above embodiment.
  • the size of the past time series data can be adjusted to the size of the current date series data by applying the ratio of the following formula (8).
  • cluster analysis is not limited to the average distance between groups method, for example, the distance between centroids (distance between centroids of two clusters), the nearest distance method (minimum value of the distance between two individuals belonging to different clusters) ), The farthest distance method (maximum value of the distance between two individuals belonging to different clusters), and the like can also be employed.
  • the distance dm is calculated for each past time series data of the extracted comparison days, and the past time series data having the shortest distance is selected from the top to the sixth.
  • the number to be selected is merely an example and can be set as appropriate. Further, the selection is not limited to the order from the top, but, for example, a selection satisfying the following relationship 10 may be selected.
  • the weighted average of the difference between the actual measurement value at the predetermined time and the actual measurement value at the prediction time of the past time series data for which the prediction value is selected is added to the actual measurement value at the predetermined time on the prediction day. Calculated.
  • the present invention is not limited to this, and a weighted average of actually measured values of predicted times of past time-series data may be used as shown in the following formula 11.
  • the number of comparison days is 30 days, but it is only an example and can be set as appropriate. Further, instead of setting a specific number of days, it is also possible to target all or a specific period of past time series data having a common load pattern with the predicted day. Therefore, the accuracy of the predicted value is improved as the accumulation of actually measured values increases.
  • various known methods such as a Kalman filter are used to load data by using various data of weather forecasts (average temperature, maximum temperature, minimum temperature, average relative humidity, maximum humidity, hourly temperature). The patterns may be further classified, and the past time series data (similar date) to be subjected to cluster analysis may be set based on the classification result.
  • the measurement time is not limited to the time (time) at which the energy load is actually measured, and the actual measurement value is also limited to a numerical value that is actually measured at the measurement time (measurement time). Is not something For example, it is also possible to divide the actual measurement time (for example, 60 minutes) into a plurality of parts, obtain actual measurement values at the divided time (for example, 10 minutes), for example, by linear interpolation, and use these values as actual measurement values. It is.
  • the program for executing the energy prediction system is configured as a support system for operators by incorporating software into a personal computer as an operation support system for district heating and cooling and building heat sources, capturing actual load data and storing actual data, for example. be able to. It can also be used for optimal operation control by incorporating it into BEMS and FEMS control devices and control panels for electric power and centralized heat source equipment, and it can also be used by incorporating it into panels for household power visualization (HEMS) and the like. .
  • HEMS household power visualization
  • the present invention can be used as an energy prediction system. Moreover, it can utilize as a driving
  • the optimum operation pattern of the power generation facility and the thermoelectric facility can be assumed by predicting the load of the power, cold heat, heat, steam, and hot water supply on the next day of the power generation facility and the heat source facility. It is also possible to predict a load ahead of a predetermined time from actual measurement data at the beginning of operation of a building, factory, etc., and further use it for optimum operation management from a heat load prediction curve from the data at that time to the long-term prediction time ahead of the day. .
  • the power load is similarly predicted for a predetermined time ahead, and the power load curve from the current power data to the long-term prediction time ahead of the day is used for demand control, and the production equipment is operated as necessary. It can be used for planning, and if it has power generation facilities, it can also be used for optimal operation management of power generation facilities. Furthermore, demand control can be performed based on the result of long-term prediction from data on the amount of power used every arbitrary time, not only in buildings and factories, but also at home.
  • the predicted values of all power consumptions that use power in a certain region can be aggregated every hour, and combined with a smart meter to predict the daily power usage in the region. By using the predicted load value, the number of distributed generators including solar power generation and wind power generation can be controlled and the load can be adjusted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Operations Research (AREA)
  • Power Engineering (AREA)
  • Quality & Reliability (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

The purpose of the present invention is to provide an energy predict system, energy predict method, computer program for causing execution thereof, recording medium whereupon said program is recorded, and operating assistance system, which are capable of computing high-precision prediction values in line with actual measured values on a given day. Provided is an energy predict system, comprising: an analysis condition setting unit 40 which sets a comparison time period and a number of comparison days whereupon a clustering analysis is carried out, and selects a comparison subject from load patterns which have been classified into categories; a time series data setting unit 50 which sets time series data of a given day and past time series data by actual measured values which have been classified into the selected load pattern; and a prediction value computation unit 60 which selects a plurality of instances of the past time series data which has a high degree of similarity, performs weighted summation according to the degree of similarity on the actual measured values from a prescribed time of the selected past time series data to a time which is a prescribed predicted amount of time in advance of the prescribed time, and computes a prediction value of an energy load from the prescribed time to a prediction time which is the predicted amount of time in advance on the given day.

Description

エネルギー予測システム、エネルギー予測方法、これを実行させるためのコンピュータプログラム及びこのプログラムを記録した記録媒体並びに運転支援システムENERGY PREDICTION SYSTEM, ENERGY PREDICTION METHOD, COMPUTER PROGRAM FOR EXECUTING THE SAME, RECORDING MEDIUM CONTAINING THE PROGRAM, AND OPERATION SUPPORT SYSTEM
 本発明は、エネルギー予測システム、エネルギー予測方法、これを実行させるためのコンピュータプログラム及びこのプログラムを記録した記録媒体並びに運転支援システムに関する。さらに詳しくは、電力、冷房、暖房、蒸気、給湯等のエネルギーを使用又は製造するエネルギー設備における現時点以降のエネルギー負荷を予測するエネルギー予測システム、エネルギー予測方法、これを実行させるためのコンピュータプログラム及びこのプログラムを記録した記録媒体並びに運転支援システムに関する。 The present invention relates to an energy prediction system, an energy prediction method, a computer program for executing the energy prediction method, a recording medium storing the program, and an operation support system. More specifically, an energy prediction system that predicts an energy load after the present time in an energy facility that uses or manufactures energy such as electric power, cooling, heating, steam, and hot water, an energy prediction method, a computer program that executes this, and a computer program The present invention relates to a recording medium on which a program is recorded and a driving support system.
 予測日の熱や電力等の各種エネルギー負荷は、その日の気象状況、施設や建物等の利用状況(人間の数やイベントの有無等)、設置設備の稼働状況等の各種要因が複雑に絡み合って影響を受ける。重回帰式やカルマンフィルター等を用いて負荷を予測する従来の手法では、各種説明変数を設定することで、理論的には予測値の精度向上を図ることができる。しかし、あらゆる状況を網羅(考慮)する説明変数を設定することは現実的に困難であり、予測精度の向上にも限界があった。 Various energy loads such as heat and electric power for the predicted day are intricately intertwined with various factors such as the weather conditions of the day, the usage status of facilities and buildings (number of people, presence of events, etc.), and the operating status of installed equipment. to be influenced. In the conventional method of predicting a load using a multiple regression equation, a Kalman filter, or the like, it is theoretically possible to improve the accuracy of a predicted value by setting various explanatory variables. However, it is practically difficult to set an explanatory variable that covers (considerates) every situation, and there is a limit to improving the prediction accuracy.
 他のエネルギー負荷の予測方法として、例えば特許文献1,2に記載の如きものも知られている。特許文献1の手法では、ARMAモデル式を用いて算出した予測負荷を外部環境予測情報(翌日の予想最高外気温)に基づき修正している。しかしながら、外気温以外の他の要因が考慮されておらず、さらなる予測精度の向上が望まれていた。 As other energy load prediction methods, for example, those described in Patent Documents 1 and 2 are known. In the method of Patent Document 1, the predicted load calculated using the ARMA model formula is corrected based on the external environment prediction information (the predicted maximum outside temperature on the next day). However, other factors than the outside temperature are not taken into consideration, and further improvement in prediction accuracy has been desired.
 また、特許文献2の手法では、過去の気象実績データと予測対象日の気象予測データとの類似度を計算し、過去の気象実績データに対応する電力需要データから電力需要量を予測している。しかし、気象データに依存しているため、突発的な気象変動の影響を受ける場合があり、さらなる予測精度の向上が望まれていた。 Moreover, in the method of patent document 2, the similarity between the past weather actual data and the weather forecast data on the prediction target day is calculated, and the power demand is predicted from the power demand data corresponding to the past weather actual data. . However, since it depends on weather data, it may be affected by sudden weather fluctuations, and further improvement in prediction accuracy has been desired.
特開平5-18565号公報JP-A-5-18565 特開2013-66318号公報JP 2013-66318 A
 かかる従来の実情に鑑みて、本発明は、当日の実測値に即した精度の高い予測値を算出することの可能なエネルギー予測システム、エネルギー予測方法、これを実行させるためのコンピュータプログラム及びこのプログラムを記録した記録媒体並びに運転支援システムを提供することを目的とする。 In view of such a conventional situation, the present invention provides an energy prediction system, an energy prediction method, a computer program for executing the same, and a computer program for executing the energy prediction system capable of calculating a highly accurate predicted value corresponding to the actual measurement value of the day. An object of the present invention is to provide a recording medium that records the above and a driving support system.
 上記目的を達成するため、本発明に係るエネルギー予測システムの特徴は、電力、冷房、暖房、蒸気、給湯等のエネルギーを使用又は製造するエネルギー設備における現時点以降のエネルギー負荷を予測する構成において、前記現時点までの前記エネルギー負荷の実測値を計測時間毎に記憶する実測値記憶部と、前記実測値を日毎に前記エネルギー負荷の特性に基づく負荷パターンに分類する負荷パターン分類部と、クラスター分析を行う比較時間及び比較日数を設定すると共に前記クラスター分析を行う比較対象を分類された負荷パターンから選択する分析条件設定部と、予測当日の所定時刻から設定された比較時間前までの当日時系列データと、前記当日時系列データと同一時間帯における過去の設定された比較日数の日毎の過去時系列データとを選択された負荷パターンに分類された実測値により設定する時系列データ設定部と、前記クラスター分析により前記過去時系列データ毎に前記当日時系列データに対する類似度を計算して類似度が高い過去時系列データを複数選定し、選定した過去時系列データの前記所定時刻から所定の予測時間先の時刻における実測値を前記類似度に応じて重み付け加算して前記予測当日の前記所定時刻から前記予測時間先の予測時刻における前記エネルギー負荷の予測値を算出する予測値算出部とを備えたことにある。
 なお、本発明で用いるクラスター分析とは、エネルギー負荷の時系列データから、予測当日の所定の時刻から比較時間前までの抽出したデータを1つのクラスターとして、日の異なるクラスター間の類似度を評価する手法である。
In order to achieve the above object, the energy prediction system according to the present invention is characterized in that the energy load after the present time in an energy facility that uses or manufactures energy such as electric power, cooling, heating, steam, and hot water is predicted. Performs cluster analysis with an actual value storage unit that stores the actual value of the energy load up to the present time for each measurement time, a load pattern classification unit that classifies the actual value into a load pattern based on the characteristics of the energy load every day An analysis condition setting unit that sets the comparison time and the number of comparison days and selects a comparison target for performing the cluster analysis from the classified load pattern, and the current date and time series data from the predetermined time on the predicted day to the set comparison time before, , The past time series for each day of the comparison days set in the past in the same time zone as the current time series data A time-series data setting unit that sets data based on measured values classified into the selected load pattern, and calculates a similarity to the current date / time series data for each of the past time-series data by the cluster analysis. A plurality of past time-series data having a high value are selected, and measured values of the selected past time-series data at a time ahead of a predetermined prediction time from the predetermined time are weighted and added according to the degree of similarity, and the predetermined time on the prediction day To a predicted value calculation unit that calculates a predicted value of the energy load at the predicted time ahead of the predicted time.
The cluster analysis used in the present invention is an evaluation of the similarity between clusters of different days, with the data extracted from the predetermined time on the prediction day to the comparison time as one cluster from the time series data of energy load. It is a technique to do.
 上記特徴によれば、クラスター分析の対象となる時系列データは、現時点までのエネルギー負荷の実測値により設定される。実測値は測定時の環境・状況の影響を受けたものであるので、実測値により設定される時系列データは、あらゆる条件(要素)が反映したものとなり、複雑な設定を行うことなく、現実に即した予測が可能となる。しかも、この実測値には選択されたエネルギー負荷の特性に基づく負荷パターンに分類されたものを用いるので、設定される時系列データは共通又は類似する環境下での測定結果に基づくものであり、互いに類似することとなる。よって、クラスター分析の精度はさらに向上する。そして、算出した類似度に応じて重み付け加算して予測値を算出するので、さらに精度が向上することとなる。 According to the above characteristics, the time series data to be subjected to cluster analysis is set based on the actual measured value of energy load up to the present time. Since the actual measurement values are influenced by the environment and situation at the time of measurement, the time-series data set by the actual measurement values reflect all conditions (elements), and can be realized without complicated settings. It is possible to make predictions according to. In addition, since the measured values are classified into load patterns based on the characteristics of the selected energy load, the set time series data is based on the measurement results in a common or similar environment, They will be similar to each other. Therefore, the accuracy of cluster analysis is further improved. Since the predicted value is calculated by weighting and adding according to the calculated similarity, the accuracy is further improved.
 前記予測値は、前記選定した過去時系列データの前記所定時刻の実測値と前記予測時刻の実測値との差分の加重平均が前記予測当日の前記所定時刻の実測値に加算されて算出されるとよい。予測当日の所定時刻の実測値と予測時刻の実測値との差分の加重平均を予測当日の所定時刻の実測値に加算するので、より現実に即した高精度の予測値となる。 The predicted value is calculated by adding a weighted average of the difference between the measured value at the predetermined time and the measured value at the predicted time of the selected past time series data to the measured value at the predetermined time on the prediction day. Good. Since the weighted average of the difference between the actual measurement value at the predetermined time on the prediction day and the actual measurement value at the prediction time is added to the actual measurement value at the predetermined time on the prediction day, a more accurate predicted value that is more realistic.
 前記予測値算出部は、前記類似度が高い順に過去時系列データを複数選択するとよい。類似度が高い順に過去時系列データを選択するので、より精度が向上する。 The predicted value calculation unit may select a plurality of past time series data in descending order of the similarity. Since the past time series data is selected in descending order of similarity, the accuracy is further improved.
 前記負荷パターンは、全日、休日、平日、特異日、生産計画及び気象情報を少なくとも含む群から選択される少なくとも1種以上の組合せであるとよい。これにより、現実の状況に即した予測ができ、より現実に即した高精度の予測値となる。 The load pattern may be a combination of at least one selected from a group including at least all days, holidays, weekdays, special days, production plans, and weather information. Thereby, prediction according to the actual situation can be performed, and a highly accurate prediction value according to reality can be obtained.
 前記予測値算出部は、前記選定した過去時系列データの前記所定時刻から所定の第二予測時間先の時刻における実測値を前記類似度に応じて重み付け加算して前記予測当日の前記所定時刻から前記第二予測時間先の次回第二予測時刻における前記エネルギー負荷の予測値を当該時刻の仮実測値として設定する仮実測値設定部を有し、前記時系列データ設定部は、前記予測当日の前記次回第二予測時刻から前記比較時間前までの新たな当日時系列データと、前記新たな当日時系列データと同一時間帯における過去の前記設定された比較日数の日毎の過去時系列データとを前記選択された負荷パターンに分類された実測値及び前記仮実測値により更新する時系列データ更新部を有し、前記仮実測値設定部が前記第二予測時間毎に前記仮実測値を設定すると共に、前記時系列データ更新部が前記第二予測時間毎に時系列データを更新し、前記予測値算出部が前記クラスター分析を前記第二予測時間毎に繰り返し行うことで前記予測当日の前記所定時刻から長期予測時間先までのエネルギー負荷の予測を行うとよい。第二予測時間毎に算出した予測値を当該時刻の仮実測値として設定すると共に時系列データを更新するので、クラスター分析を第二予測時間毎に繰り返し行うことで設定した長期予測時間先までのエネルギー負荷の予測を行うことが可能となる。例えば、予測当日の24時間先や48時間先など任意の時間経過後までのエネルギー負荷の予測も可能となる。 The predicted value calculation unit weights and adds an actual measurement value of the selected past time-series data at a time that is a predetermined second predicted time ahead from the predetermined time according to the similarity, and from the predetermined time on the prediction day A temporary actual measurement value setting unit that sets a predicted value of the energy load at the next second prediction time ahead of the second prediction time as a temporary actual measurement value of the time, and the time-series data setting unit includes the prediction day New current date and time series data from the next second predicted time to the comparison time before, and past time series data for each day of the set comparison days in the same time zone as the new current date and time series data. A time-series data updating unit that updates the measured value classified into the selected load pattern and the temporary measured value, and the temporary measured value setting unit sets the temporary measured value for each second predicted time. The time series data update unit updates the time series data for each second prediction time, and the prediction value calculation unit repeatedly performs the cluster analysis for each second prediction time, The energy load from the predetermined time to the long-term predicted time ahead may be predicted. Since the predicted value calculated for each second prediction time is set as a temporary actual measurement value at that time and the time series data is updated, the cluster analysis is repeated every second prediction time until the long-term prediction time set The energy load can be predicted. For example, it is possible to predict an energy load until an arbitrary time elapses, such as 24 hours ahead or 48 hours ahead on the prediction day.
 係る場合、前記仮実測値は、前記予測当日の前記次回第二予測時刻における実測値が記憶される度にその実測値に置換されることが望ましい。これにより、仮実測値が常に最新の実測値に置換されることとなるので、予測精度が向上する。 In this case, it is desirable that the temporary actual measurement value is replaced with the actual measurement value every time the actual measurement value at the next second prediction time on the prediction day is stored. As a result, the temporary actual measurement value is always replaced with the latest actual measurement value, so that the prediction accuracy is improved.
 また、前記負荷パターン分類部は、少なくとも連続する2日以上の日数単位で設定された長期負荷パターンをさらに有するとよい。これにより、長期間を通じて生じる変化をも考慮でき、さらに現実に即した予測となり、さらに予測精度を向上させることができる。 The load pattern classification unit may further include a long-term load pattern set in units of days of at least two consecutive days. As a result, changes that occur over a long period of time can be taken into consideration, and the prediction is more realistic, and the prediction accuracy can be further improved.
 前記エネルギー設備は、複数の発電機器及び/又は熱電機器を有する施設を複数備えた複合施設又は地域であり、前記予測算出部は、前記施設単位で前記予測値を算出すると共にその予測値を合算して前記複合施設又は地域全体の前記エネルギー負荷の予測値を算出するようにしてもよい。これにより、複数の発電機器及び/又は熱電機器を有する単一の施設におけるエネルギー負荷の予測だけではなく、そのような施設が複数集合した複合施設、集合住宅、地域の全体のエネルギー負荷の予測も可能となり、省エネにも寄与する。 The energy facility is a complex facility or region including a plurality of facilities having a plurality of power generation devices and / or thermoelectric devices, and the prediction calculation unit calculates the prediction value for each facility and adds the prediction values. Then, the predicted value of the energy load of the complex facility or the entire area may be calculated. This not only predicts the energy load at a single facility with multiple generators and / or thermoelectric devices, but also predicts the overall energy load of a complex facility, apartment house, or area where multiple such facilities are assembled. It becomes possible and contributes to energy saving.
 前記クラスター分析は、例えば群間平均距離法であるとよい。係る場合、前記類似度は、前記過去時系列データの前記当日時系列データに対する距離の逆数であるとよい。また、前記類似度は、前記過去時系列データと前記当日時系列データとのベクトル間角度の余弦であってもよい。 The cluster analysis may be, for example, an intergroup average distance method. In this case, the similarity may be a reciprocal of a distance of the past time series data with respect to the current date / time series data. The similarity may be a cosine of an angle between vectors of the past time series data and the current date and time series data.
 上記目的を達成するため、本発明に係るエネルギー予測方法の特徴は、電力、冷房、暖房、蒸気、給湯等のエネルギーを使用又は製造するエネルギー設備における現時点以降のエネルギー負荷を予測するエネルギー予測方法において、前記現時点までの前記エネルギー負荷の実測値を計測時間毎に記憶し、前記実測値を日毎に前記エネルギー負荷の特性に基づく負荷パターンに分類し、クラスター分析を行う比較時間及び比較日数を設定すると共に前記クラスター分析を行う比較対象を分類された負荷パターンから選択し、予測当日の所定時刻から設定された比較時間前までの当日時系列データと、前記当日時系列データと同一時間帯における過去の設定された比較日数の日毎の過去時系列データとを選択された負荷パターンに分類された実測値により設定し、前記クラスター分析により前記過去時系列データ毎に前記当日時系列データに対する類似度を計算して類似度が高い過去時系列データを複数選定し、選定した過去時系列データの前記所定時刻から所定の予測時間先の時刻における実測値を前記類似度に応じて重み付け加算して前記予測当日の前記所定時刻から前記予測時間先の予測時刻における前記エネルギー負荷の予測値を算出することにある。 In order to achieve the above object, the energy prediction method according to the present invention is characterized by an energy prediction method for predicting an energy load after the present time in an energy facility that uses or manufactures energy such as electric power, cooling, heating, steam, and hot water. The actual measured value of the energy load up to the present time is stored for each measurement time, the measured value is classified into load patterns based on the characteristics of the energy load for each day, and the comparison time and the number of comparison days for performing the cluster analysis are set. The comparison target for performing the cluster analysis is selected from the classified load patterns, and the current date / time series data from the predetermined time on the predicted day to the set comparison time and the past in the same time zone as the current date / time series data. The past time-series data of the set comparison days for each day was classified into the selected load pattern Set by measurement, calculate a similarity to the current time series data for each of the past time series data by the cluster analysis, and select a plurality of past time series data having a high similarity, and the selected past time series data Calculating a predicted value of the energy load at the predicted time ahead of the predicted time from the predetermined time on the prediction day by weighting and adding measured values at a predetermined time ahead of the predetermined time according to the similarity. It is in.
 上記のいずれかに記載のエネルギー予測システムは、それを実行させるためのコンピュータプログラムにより実現され、このコンピュータプログラムは記録媒体に記録される。 The energy prediction system described in any of the above is realized by a computer program for executing the system, and this computer program is recorded on a recording medium.
 上記目的を達成するため、本発明に係る運転支援システムの特徴は、電力、冷房、暖房、蒸気、給湯等のエネルギーを使用又は製造するエネルギー設備の運転を支援する構成において、前記現時点までの前記エネルギー負荷の実測値を計測時間毎に記憶する実測値記憶部と、前記実測値を日毎に前記エネルギー負荷の特性に基づく負荷パターンに分類する負荷パターン分類部と、クラスター分析を行う比較時間及び比較日数を設定すると共に前記クラスター分析を行う比較対象を分類された負荷パターンから選択する分析条件設定部と、予測当日の所定時刻から設定された比較時間前までの当日時系列データと、前記当日時系列データと同一時間帯における過去の設定された比較日数の日毎の過去時系列データとを選択された負荷パターンに分類された実測値により設定する時系列データ設定部と、前記クラスター分析により前記過去時系列データ毎に前記当日時系列データに対する類似度を計算して類似度が高い過去時系列データを複数選定し、選定した過去時系列データの前記所定時刻から所定の予測時間先の時刻における実測値を前記類似度に応じて重み付け加算して前記予測当日の前記所定時刻から前記予測時間先の予測時刻における前記エネルギー負荷の予測値を算出する予測値算出部とを備え、前記予測値に基づいて前記エネルギー設備の運転を支援することにある。 In order to achieve the above object, the operation support system according to the present invention is characterized in that, in a configuration that supports the operation of energy equipment that uses or manufactures energy such as electric power, cooling, heating, steam, hot water supply, etc. A measured value storage unit that stores measured values of energy load at each measurement time, a load pattern classification unit that classifies the measured values into load patterns based on the characteristics of the energy load every day, comparison time and comparison for performing cluster analysis An analysis condition setting unit that sets the number of days and selects a comparison target to be subjected to the cluster analysis from the classified load patterns, current date / time series data from a predetermined time on the predicted date to the set comparison time, and the current date / time Load pattern that selects past time series data for each day of the set comparison days in the same time zone as the series data A time-series data setting unit that is set based on classified actual measurement values, and a plurality of past time-series data having a high degree of similarity are calculated by calculating a similarity to the current time-series data for each of the past time-series data by the cluster analysis. The measured value of the selected past time-series data at the predetermined time ahead from the predetermined time is weighted according to the degree of similarity, and the predicted time at the prediction time ahead from the predetermined time on the prediction day A predicted value calculation unit for calculating a predicted value of the energy load, and supporting operation of the energy equipment based on the predicted value.
 上記本発明に係るエネルギー予測システム、エネルギー予測方法、これを実行させるためのコンピュータプログラム及びこのプログラムを記録した記録媒体並びに運転支援システムの特徴によれば、当日の実測値に即した精度の高い予測値を算出することが可能となった。 According to the features of the energy prediction system, the energy prediction method, the computer program for executing the program, the recording medium storing the program, and the driving support system according to the present invention, the prediction with high accuracy according to the actual measurement value of the day The value can be calculated.
 本発明の他の目的、構成及び効果については、以下の発明の実施の形態の項から明らかになるであろう。 Other objects, configurations, and effects of the present invention will be apparent from the following embodiments of the present invention.
本発明に係るエネルギー予測システムのハードウエアの構成を示す図である。It is a figure which shows the structure of the hardware of the energy prediction system which concerns on this invention. 本発明に係るエネルギー予測システムのソフトウエアの構成を示す図である。It is a figure which shows the structure of the software of the energy prediction system which concerns on this invention. 群間平均距離法における距離の定義を説明する模式図であり、(a)は当日時系列データ、(b)はm日前の過去時系列データ、(c)は当日時系列データとm日前の過去時系列データとの距離dmを模式的に示す。It is a schematic diagram explaining the definition of the distance in the group average distance method, (a) is the current date and time series data, (b) is the past time series data of m days ago, (c) is the current date and time series data and m days ago. The distance dm with the past time series data is typically shown. 短時間予測手順を示すフロー図である。It is a flowchart which shows a short-time prediction procedure. 長期間予測手順を示すフロー図である。It is a flowchart which shows a long-term prediction procedure. 長期間予測と実測値(experience)との比較の一例を示す図であり、(a)は5時30分時点、(b)は7時時点、(c)は13時時点、(d)は16時時点、(e)は長期間予測の予測線図の変化の一例を示す。It is a figure which shows an example of a comparison with long-term prediction and measured value (experience), (a) is a time of 5:30, (b) is a time of 7 o'clock, (c) is a time of 13:00, (d) is a time At 16:00, (e) shows an example of a change in the prediction diagram of the long-term prediction. エネルギー設備の運転支援を説明するグラフであり、(a)は前日の電力需要予測、(b)は前日の電力需給バランス予測、(c)は当日の短時間予測による電力発電量の調整の例を示す。It is a graph explaining the driving | operation assistance of an energy installation, (a) is the electric power demand prediction of the previous day, (b) is the electric power supply-and-demand balance prediction of the previous day, (c) is an example of adjustment of the electric power generation amount by the short-time prediction of the day Indicates. 距離に代わって類似度を表すベクトル間角度を模式的に示す図であり、(a)は当日時系列データ、(b)は(a)と類似形状の過去時系列データ、(c)は(a)と(b)の時系列データ間のベクトル間角度を模式的に示す。It is a figure which shows typically the angle between vectors showing a similarity instead of distance, (a) is present date series data, (b) is past time series data of (a) and similar shape, (c) is ( An angle between vectors between time series data of a) and (b) is shown typically. 距離に代わって類似度を表すベクトル間角度の他の例を示す図7相当図である。FIG. 8 is a diagram corresponding to FIG. 7 illustrating another example of an inter-vector angle representing a similarity instead of a distance.
 次に、適宜添付図面を参照しながら、本発明をさらに詳しく説明する。
 本発明に係るエネルギー予測システム1は、電力、冷房、暖房、蒸気、給湯等のエネルギーを使用又は製造するエネルギー設備における現時点以降のエネルギー負荷を予測する。エネルギー設備としては、例えばコージェネレーション、太陽光発電等の発電系機器、高圧ボイラ等のボイラ系機器、吸収冷凍機等の冷水系機器、温水ボイラ等の温水系機器、給湯ボイラ等の給湯系機器等の各種発電機器や熱電機器、これら機器を含むビル、工場、各種店舗や施設、これらを複数備える複合施設や地域である。また、エネルギー負荷としては、例えば電力、冷水、温水、蒸気等の各需要量(消費量、使用量)や製造量(供給量)が挙げられる。
Next, the present invention will be described in more detail with reference to the accompanying drawings as appropriate.
The energy prediction system 1 according to the present invention predicts an energy load after the present time in an energy facility that uses or manufactures energy such as electric power, cooling, heating, steam, and hot water. Examples of energy facilities include power generation equipment such as cogeneration, solar power generation, boiler equipment such as high pressure boilers, cold water equipment such as absorption refrigerators, hot water equipment such as hot water boilers, and hot water supply equipment such as hot water boilers. These are various power generation devices and thermoelectric devices such as buildings, factories, various stores and facilities including these devices, and complex facilities and regions including a plurality of these. Examples of the energy load include demand (consumption, usage) and production (supply) such as electric power, cold water, hot water, and steam.
 本発明に係るエネルギー予測システム1のハードウエアは、図1に示すように、大略、ユーザーインターフェイス2と、エネルギー予測システム1のソフトウエア10を処理する処理部3とから構成される。ユーザーインターフェイス2は、モニタ2a、キーボード2b、マウス2cを備え、モニタ2aに表示される画面上のボタンや入力欄をユーザーが操作するためのものである。また、処理部3は、CPU3a、一時記憶メモリ3b、HDD3c等とデータバス、アドレスバス等のバス3dにより接続されている。CPU3a、一時記憶メモリ3b、HDD3c等は連携して、ソフトウエア10を稼働させる。 As shown in FIG. 1, the hardware of the energy prediction system 1 according to the present invention generally includes a user interface 2 and a processing unit 3 that processes the software 10 of the energy prediction system 1. The user interface 2 includes a monitor 2a, a keyboard 2b, and a mouse 2c, and is used by the user to operate buttons and input fields on the screen displayed on the monitor 2a. The processing unit 3 is connected to the CPU 3a, the temporary storage memory 3b, the HDD 3c, and the like through a bus 3d such as a data bus and an address bus. The CPU 3a, the temporary storage memory 3b, the HDD 3c, and the like operate the software 10 in cooperation.
 図2に示すように、エネルギー予測システム1のソフトウエア10は、大略、実測値記憶部20、負荷パターン分類部30、分析条件設定部40、時系列データ設定部50、予測値算出部60、出力部70及び記録部80から構成される。 As shown in FIG. 2, the software 10 of the energy prediction system 1 generally includes an actual measurement value storage unit 20, a load pattern classification unit 30, an analysis condition setting unit 40, a time series data setting unit 50, a predicted value calculation unit 60, An output unit 70 and a recording unit 80 are included.
 実測値記憶部20は、現時点までのエネルギー負荷の実測値を計測時間毎に記憶する。実測値記憶部20には、エネルギー予測システム1に接続されたエネルギー設備の各種センサから測定値が入力される。計測時間とは、エネルギー負荷を計測する周期であり、例えば30秒、10分、1時間等のように、秒(second)、分(minute)、時(hour)の単位を問わない。計測時間(周期)を短くすることで予測精度は向上するが、計算に要する時間(回数)は増大するので、要求される精度に応じて適宜設定すればよい。なお、実測値と共に後述の気象情報を取り込むことも可能である。 Measured value storage unit 20 stores measured values of energy load up to the present time for each measurement time. The measured value storage unit 20 receives measured values from various sensors of energy equipment connected to the energy prediction system 1. The measurement time is a cycle for measuring the energy load, and any unit of second (second), minute (minute), hour (hour) such as 30 seconds, 10 minutes, 1 hour or the like may be used. Although the prediction accuracy is improved by shortening the measurement time (cycle), the time (number of times) required for the calculation is increased, so it may be set as appropriate according to the required accuracy. It is also possible to capture meteorological information described later together with the actual measurement values.
 負荷パターン分類部30は、実測値記憶部20に記憶される実測値を日毎にエネルギー負荷の特性に基づく負荷パターンに分類する。負荷パターンとは、全日、休日、平日、特異日、生産計画及び気象情報を少なくとも含む群から選択される少なくとも1種以上の組合せである。特異日とは、例えば商業施設等におけるイベントの開催や特売日等の通常の営業日と異なる状態(環境)となる日を示す。生産計画とは、工場等での稼働する機械の台数や生産する製品等の生産スケジュール等を示す。気象情報とは、例えば所定の時間毎の気温、1日の平均気温、最高気温、最低気温、平均相対湿度、最高湿度、天気、気圧、風速、降水量等の気象庁が公表している各種気象データや季節等である。このように、エネルギー負荷のパターンに影響を与える特性で分類しておくことで、比較する時系列データ相互間での特異な相違を減らし、類似する環境下の時系列データで後述の類似度計算を行うことができ、予測精度を向上させることができる。 The load pattern classification unit 30 classifies the actual measurement values stored in the actual measurement value storage unit 20 into load patterns based on the characteristics of the energy load every day. The load pattern is at least one combination selected from the group including at least all days, holidays, weekdays, singular days, production plans, and weather information. The special day indicates a day (environment) that is different from a normal business day such as holding an event in a commercial facility or a special sale day. The production plan indicates the number of machines operating in a factory and the production schedule of products to be produced. Meteorological information refers to, for example, various weathers published by the Japan Meteorological Agency, such as air temperature for a given time, daily average temperature, maximum temperature, minimum temperature, average relative humidity, maximum humidity, weather, atmospheric pressure, wind speed, precipitation, etc. Data and seasons. In this way, by classifying by characteristics that affect the pattern of energy load, unique differences between time series data to be compared are reduced, and similarity calculation described later is performed on time series data in similar environments. And the prediction accuracy can be improved.
 分析条件設定部40は、クラスター分析を行う比較時間を設定する比較時間設定部41と、クラスター分析を行う比較日数を設定する比較日数設定部42と、クラスター分析を行う比較対象を負荷パターン分類部30によって分類された負荷パターンから選択する負荷パターン選択部43を有する。比較時間は、クラスター分析の対象とする時系列データの時間帯(開始時刻から終了時刻までの期間)を指し、上記と同様に時間の単位を問わずに適宜設定することができる。また、比較日数は、当日時系列データと比較(類似度計算)する後述の過去時系列データの個数を指し、好ましくは、2以上の複数である。比較日数を多くすることで予測精度は向上するが、計算時間(回数)は増大するので、要求される精度に応じて適宜設定すればよい。本実施形態では、後述するクラスター分析による類似度が高い過去時系列データを選定する日数(個数)を設定する上位選定日数設定部44を有する。 The analysis condition setting unit 40 includes a comparison time setting unit 41 that sets a comparison time for performing cluster analysis, a comparison day setting unit 42 for setting comparison days for performing cluster analysis, and a load pattern classification unit for comparing comparison targets for performing cluster analysis. The load pattern selection unit 43 selects the load pattern classified by 30. The comparison time indicates a time zone (a period from the start time to the end time) of the time series data to be subjected to cluster analysis, and can be appropriately set regardless of the unit of time as described above. The comparison days indicate the number of later-described past time series data to be compared (similarity calculation) with the current date / time series data, and preferably two or more. Although the prediction accuracy is improved by increasing the number of comparison days, the calculation time (number of times) is increased, so that it may be set appropriately according to the required accuracy. In the present embodiment, there is an upper selection day setting unit 44 for setting the number of days (number) for selecting past time-series data having a high degree of similarity by cluster analysis described later.
 また、分析条件設定部40は、当日時系列データに対する過去時系列データの類似度を計算する計算時間及び予測時間も合わせて設定する。これらの時間も上記と同様に時間の単位を問わずに適宜設定することができる。計算時間とは、類似度を計算する周期であり、例えば上述の計測時間と一致させる。予測時間とは、予測当日の所定時刻から予測したい所定の時刻(予測時刻)までの所定時間である。さらに、本実施形態では、分析条件設定部40は、第二予測時間も設定する。この第二予測時間は、後述する長期間予測における予測当日の所定時刻から予測したい所定の時刻(次回第二予測時刻)までの所定時間である。予測時間と第二予測時間は任意に設定でき、同一であってもよく、例えば上述の計測時間に一致させることもできる。 The analysis condition setting unit 40 also sets a calculation time and a prediction time for calculating the similarity of the past time series data with respect to the current date and time series data. These times can be set as appropriate regardless of the unit of time as described above. The calculation time is a cycle for calculating the degree of similarity, and is matched with the above-described measurement time, for example. The prediction time is a predetermined time from a predetermined time on the prediction day to a predetermined time (prediction time) to be predicted. Furthermore, in this embodiment, the analysis condition setting unit 40 also sets the second predicted time. This second prediction time is a predetermined time from a predetermined time on the prediction day in the long-term prediction described later to a predetermined time to be predicted (next second predicted time). The predicted time and the second predicted time can be arbitrarily set and may be the same, for example, the same as the above-described measurement time.
 時系列データ設定部50は、予測当日の所定時刻から比較時間設定部41によって設定された比較時間前までの当日時系列データと、当日時系列データと同一時間帯における比較日数設定部42によって設定された比較日数の過去の日毎の過去時系列データとを負荷パターン選択部43によって選択された負荷パターンに分類された実測値により設定する。 The time series data setting unit 50 is set by the current date / time series data from the predetermined time on the predicted day to the comparison time set by the comparison time setting unit 41 and the comparison day setting unit 42 in the same time zone as the current date / time series data. The past time-series data for each past day of the comparison days thus set is set by the actually measured values classified into the load patterns selected by the load pattern selection unit 43.
 ここで、予測当日のt時点(所定時刻)からN時点前までの当日時系列データは、下記数1で表される。なお、Nは、比較時間を計測時間で除した数である。 Here, the current date / time series data from the time point t (predetermined time) to the time point N before the prediction date is expressed by the following formula 1. N is a number obtained by dividing the comparison time by the measurement time.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 また、当日時系列データと同一時間帯における予測当日よりm日前の過去時系列データは、下記数2で表される。 In addition, the past time series data m days before the forecast date in the same time zone as the current date and time series data is expressed by the following formula 2.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 また、時系列データ設定部50は、予測当日の所定時刻の第二予測時間先となる次回第二予測時刻から比較時間設定部41によって設定された比較時間前までの新たな当日時系列データと、当該新たな当日時系列データと同一時間帯における過去の比較日数設定部42によって設定された比較日数の日毎の過去時系列データとを負荷パターン選択部43によって選択された負荷パターンに分類された実測値及び後述の仮実測値により更新する時系列データ更新部51を有する。 Further, the time series data setting unit 50 includes new current date / time series data from the next second prediction time that is the second prediction time ahead of the predetermined time on the prediction day to the comparison time set by the comparison time setting unit 41, The current time-series data and the past time-series data for each day of the comparison days set by the past comparison days setting unit 42 in the same time zone are classified into the load patterns selected by the load pattern selection unit 43. A time-series data update unit 51 that updates the measured values and the temporary measured values described later is included.
 予測値算出部60は、類似度を計算する類似度計算部61と、類似度が高い過去時系列データを選定する過去時系列データ選定部62と、類似度に応じた重み係数を算出する重み係数算出部63を備える。類似度計算部61は、クラスター分析により時系列データ設定部50で作成された過去時系列データ毎に当日時系列データに対する類似度を計算する。過去時系列データ選定部62は、設定された選定条件に従い過去時系列データを複数選定する。例えば、本実施形態では、設定した過去時系列データの中から類似度が高い順に上位選定日数設定部44で設定された日数(個数)分の過去時系列データを選定する。重み係数算出部63は、過去時系列データ選定部62が選定した過去時系列データの類似度に応じた重み係数を算出する。そして、予測値算出部60は、過去時系列データ選定部62が選定した過去時系列データの所定時刻から所定の予測時間先の時刻における実測値を重み係数算出部63が算出した重み係数により重み付け加算して予測当日の所定時刻から所定の予測時間先の予測時刻におけるエネルギー負荷の予測値として算出する(短時間予測)。 The predicted value calculation unit 60 includes a similarity calculation unit 61 that calculates the similarity, a past time series data selection unit 62 that selects past time series data having a high similarity, and a weight that calculates a weighting factor according to the similarity. A coefficient calculation unit 63 is provided. The similarity calculation unit 61 calculates the similarity to the current date / time series data for each past time series data created by the time series data setting unit 50 by cluster analysis. The past time series data selection unit 62 selects a plurality of past time series data according to the set selection conditions. For example, in the present embodiment, the past time series data for the number of days (number) set by the higher selection day setting unit 44 is selected from the set past time series data in descending order of similarity. The weighting factor calculation unit 63 calculates a weighting factor according to the similarity of the past time series data selected by the past time series data selection unit 62. Then, the predicted value calculation unit 60 weights the actually measured value at the time ahead of the predetermined prediction time from the predetermined time of the past time series data selected by the past time series data selection unit 62 with the weight coefficient calculated by the weight coefficient calculation unit 63. It is added and calculated as the predicted value of the energy load at the prediction time ahead of the predetermined prediction time from the predetermined time on the prediction day (short time prediction).
 ここで、本実施形態において、クラスター分析には群間平均距離法を用いる。この群間平均距離法は、当日時系列データ(クラスター)と過去時系列データ(クラスター)とのすべての個体のペア(計算時間毎の実測値)について距離を求めてその平均を類似度として算出する。類似度(距離の逆数)が大きい程、当日時系列データと過去時系列データとは類似することとなる。
 群間平均距離法では、当日時系列データとm(m≦M)日前の時系列データと距離を下記数3で定義する。なお、Mは、比較日数である。
Here, in this embodiment, an intergroup average distance method is used for cluster analysis. This average distance method between groups calculates distances for all individual pairs (measured values for each calculation time) of the current time series data (cluster) and past time series data (cluster) and calculates the average as the similarity. To do. The greater the similarity (the reciprocal of the distance), the more similar the current date / time series data and the past time series data.
In the intergroup average distance method, the current date / time series data, the time series data m (m ≦ M) days ago, and the distance are defined by the following equation (3). M is the number of comparison days.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003

 図3(a)に示す当日時系列データ(第1のクラスター)Pと、同図(b)に示す予測当日よりm日前の過去時系列データ(第2のクラスター)Qは、同図(c)に示す如く、tとt-1とt-2で形成される空間に配置される点p,qとして捉えることができる。群間平均距離法では、この点p,q間の距離dmを算出し、距離dmが短い(小さい)ものが類似度が高い。類似度計算部61はこの距離dmを過去時系列データ毎に計算し、過去時系列データ選定部62は距離dmの逆数が大きい(類似度が高い)順に過去時系列データを複数選定する。 The current date / time series data (first cluster) P shown in FIG. 3A and the past time series data (second cluster) Q m days before the forecast date shown in FIG. ), It can be understood as points p and q arranged in a space formed by t, t−1, and t−2. In the group average distance method, the distance dm between the points p and q is calculated, and the distance dm that is short (small) has high similarity. The similarity calculation unit 61 calculates the distance dm for each past time series data, and the past time series data selection unit 62 selects a plurality of past time series data in descending order of the reciprocal of the distance dm (high similarity).
 重み係数算出部63は、過去時系列データ選定部62が選定した過去時系列データの距離dmの逆数(類似度)から重み係数wmを算出する。重み係数wmは、下記数4の通り、距離dmの逆数(類似度)を上位選定日数設定部44で設定された日数(個数、S)分の選定した過去時系列データの求めた距離dmの逆数の和で除した数(相対重み)である。 The weight coefficient calculation unit 63 calculates the weight coefficient wm from the reciprocal (similarity) of the distance dm of the past time series data selected by the past time series data selection unit 62. The weighting coefficient wm is the distance dm obtained from the selected past time-series data for the number of days (number, S) set by the upper selection days setting unit 44 as the reciprocal (similarity) of the distance dm, as shown in the following equation 4. It is the number (relative weight) divided by the sum of the reciprocals.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004

 そして、t時点(所定時刻)から所定時間(予測時間l)先の予測時刻t+lの予測値xt+lは、下記数5により算出される。本実施形態では、上位選定日数設定部44で設定された日数(個数、S)分の選定した過去時系列データにおけるt+l時点とt時点との差分の加重平均を予測当日のt時点の実測値xtに加算して予測値xt+1とする。 Then, the predicted value xt + 1 of the predicted time t + 1 that is a predetermined time (predicted time 1) from the time point t (predetermined time) is calculated by the following equation 5. In the present embodiment, the weighted average of the differences between the time points t + 1 and t in the selected past time series data for the number of days (number, S) set by the upper selection day setting unit 44 is the actual measurement value at the time point t on the prediction day. Add to xt to get the predicted value xt + 1.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005

 さらに、予測値算出部60は、選定した過去時系列データの所定時刻から所定の第二予測時間先の時刻における実測値を類似度に応じて重み付け加算して予測当日の所定時刻から第二予測時間先の次回第二予測時刻におけるエネルギー負荷の予測値を当該時刻の仮実測値として設定する仮実測値設定部64を有する。上述の短時間予測と同様の処理を実測値の第二予測時間毎に繰り返し行うことで、長期予測時間経過後(例えば24時間先や48時間先の予測(長期間予測))が可能となる。そして、仮実測値は、予測当日の次回第二予測時刻における実測値が記憶される度にその実測値に置換される。 Further, the predicted value calculation unit 60 weights and adds the actual measured values at the predetermined second predicted time ahead from the predetermined time of the selected past time-series data according to the similarity, and performs the second prediction from the predetermined time on the predicted day. A temporary actual measurement value setting unit 64 is provided that sets the predicted value of the energy load at the next second predicted time ahead as the temporary actual measurement value at that time. By repeating the same process as the short-time prediction described above every second prediction time of the actual measurement value, it is possible to perform a long-term prediction time (for example, prediction for 24 hours or 48 hours ahead (long-term prediction)). . The temporary actual measurement value is replaced with the actual measurement value every time the actual measurement value at the next second prediction time on the prediction day is stored.
 出力部70は、例えば予測値算出部60が求めた予測値や予測グラフをモニタや紙等に出力する。例えば、実測値とその後の予測値とを区別させてグラフに表示する。また、長期間予測のグラフの色を変えて表示すると共に、予測値と実測値との平均2乗誤差平方根の割合(EEP)を表示する。また、これらを帳票として表形式で出力することも可能である。記録部80は、求めた予測値や出力した帳票等の各種データを記録する。 The output unit 70 outputs, for example, a prediction value or a prediction graph obtained by the prediction value calculation unit 60 to a monitor or paper. For example, the measured value and the predicted value thereafter are distinguished from each other and displayed on the graph. In addition to changing the color of the long-term prediction graph, the average square error ratio (EEP) between the predicted value and the actually measured value is displayed. It is also possible to output these in the form of a table as a form. The recording unit 80 records various data such as the calculated predicted value and the output form.
 次に、図4aを参照しながら予測当日のエネルギー負荷の短時間予測の手順について説明する。
 短時間予測手順は、図4aに示すように、クラスター分析による当日予測の条件を設定し(S1)、設定された条件に基づいてクラスター分析による過去時系列データの類似度を計算し(S2)、類似度の高い順番に過去時系列データを複数選定し(S3)、重み係数を算出してその重み係数を用いて所定時間先の予測値を算出し(S4)、その結果を出力する(S5)。なお、実測値は、実測値記憶部20により計測時間毎に記憶されると共に、負荷パターン分類部30によりエネルギー負荷の特性に基づく負荷パターンに分類される。
Next, a procedure for short-term prediction of the energy load on the prediction day will be described with reference to FIG. 4a.
As shown in FIG. 4a, the short-term prediction procedure sets conditions for the day prediction by cluster analysis (S1), and calculates the similarity of past time series data by cluster analysis based on the set conditions (S2). A plurality of past time series data are selected in descending order of similarity (S3), a weighting factor is calculated, a predicted value ahead of a predetermined time is calculated using the weighting factor (S4), and the result is output ( S5). The actual measurement values are stored for each measurement time by the actual measurement value storage unit 20 and are classified into load patterns based on energy load characteristics by the load pattern classification unit 30.
 条件設定ステップ(S1)では、比較時間設定部41により比較時間が設定され、比較日数設定部42により比較日数が設定される。また、分析条件設定部40により、計算時間及び予測時間も設定される。例えば、現時点(所定時刻)は5時30分、比較時間は4時間、比較日数は30日、計算時間は10分、予測時間は30分として設定される。また、上位選定日数設定部44により上位選定日数も設定され、例えば上位6位(個)である。 In the condition setting step (S1), the comparison time is set by the comparison time setting unit 41, and the comparison days are set by the comparison day setting unit. The analysis condition setting unit 40 also sets calculation time and prediction time. For example, the current time (predetermined time) is set as 5:30, the comparison time is 4 hours, the comparison days are 30 days, the calculation time is 10 minutes, and the prediction time is 30 minutes. Further, the upper selection days setting unit 44 also sets the upper selection days, and is, for example, the top six (pieces).
 さらに、負荷パターン選択部43により負荷パターン分類部30によって分類された負荷パターンが選択される。この負荷パターンの選択は、予測当日の負荷パターンと同一のものが選択される。これにより、予測当日に類似する環境下における過去の実測値をクラスター分析の対象とすることができ、より精度が向上する。そして、分析条件設定部40の設定条件に従い、時系列データ設定部50は、実測値により当日時系列データと、当日時系列データと同一時間帯における過去時系列データを日毎に複数設定する。例えば、平日の予測当日の当日時系列データと同じ負荷パターンとして平日のデータが選択され、直近の平日30日分の同じ時間帯(所定時刻から比較時間前)で日毎に過去時系列データが作成される。 Furthermore, the load pattern classified by the load pattern classification unit 30 is selected by the load pattern selection unit 43. For the selection of the load pattern, the same load pattern as that of the predicted day is selected. As a result, past actual measurement values in an environment similar to the prediction day can be set as a cluster analysis target, and the accuracy is further improved. Then, according to the setting conditions of the analysis condition setting unit 40, the time-series data setting unit 50 sets a plurality of current time-series data and past time-series data in the same time zone as the current date-and-time series data for each day based on actually measured values. For example, weekday data is selected as the same load pattern as the current date and time series data on the forecasted day of the weekday, and past time series data is created for each day in the same time zone (predetermined time from the specified time) for the latest 30 weekdays. Is done.
 類似度計算ステップ(S2)では、類似度計算部61により上述の群間平均距離法により設定された過去時系列データ毎に当日時系列データに対する距離(類似度)が計算される。そして、過去時系列データ選定ステップ(S3)では、過去時系列データ選定部62により、求めた距離が短い(類似度が高い)上位6位を選定する。例えば、直近の平日30分の過去時系列データ毎に予測当日の当日時系列データに対する距離が計算され、その距離dmの短い(類似度1/dmが大きい)上位6位が類似日として選定される。 In the similarity calculation step (S2), the distance (similarity) for the current date / time series data is calculated for each past time series data set by the above-mentioned average distance method between groups by the similarity calculation unit 61. Then, in the past time series data selection step (S3), the past time series data selection unit 62 selects the top six places with the short distance (high similarity). For example, the distance to the current date / time series data of the predicted current day is calculated for each past time series data of 30 minutes on the most recent weekday, and the top six shortest distances dm (similarity 1 / dm is large) are selected as similar days. The
 次に、予測値算出ステップ(S4)では、重み係数算出部63により選定した類似日の重み係数が算出され、予測値算出部60により選定した過去時系列データにおける予測時間先の予測時刻と所定時刻との実測値の差分の加重平均を予測当日の所定時刻の実測値に加算して予測値を算出する。例えば、選定した類似日の過去時系列データでは、予測時間先の予測時刻と所定時刻(現時点)との実測値の差分にその日の重み係数wmを乗じた値を求める。これを上位6位で各々計算してその合計を求め、その合計値を予測当日の所定時刻の実測値に加算して、予測時刻の予測値となる。 Next, in the predicted value calculation step (S4), the weighting factor of the similar day selected by the weighting factor calculation unit 63 is calculated, and the predicted time ahead of the prediction time in the past time-series data selected by the predicted value calculation unit 60 is set to a predetermined value. The predicted value is calculated by adding the weighted average of the difference between the actual measurement value and the time to the actual measurement value at the predetermined time on the prediction day. For example, in the past time series data of the selected similar date, a value obtained by multiplying the difference between the measured values of the predicted time ahead of the predicted time and the predetermined time (current time) by the weighting factor wm of the day is obtained. These are calculated in the top six places to obtain the total, and the total value is added to the actual measurement value at the predetermined time on the prediction day to obtain the predicted value of the predicted time.
 ここで、図4bに示す長期間予測は、上述の短時間予測と同時に又は単独に実行することが可能である。
 同図に示すように、予測当日のエネルギー負荷の長期間予測としての終日(予測当日の24時(PM12時)まで)予測は、まず、クラスター分析による当日予測の条件を設定し(S11)、次回第二予測時間における仮実測値を設定し(S12)、設定された条件に基づいて時系列データを更新して(S13)、クラスター分析により更新した過去時系列データの類似度を計算し(S14)、類似度の高い順番に過去時系列データを複数選定し(S15)、重み係数を算出してその重み係数を用いて計測時間先の予測値を算出する(S16)。そして、設定した長期予測時間先となるまで(S17)、上記ステップ(S12~S16)が繰り返される。長期予測時間(予測当日の24時(PM12時)まで)の予測が完了すれば、その結果が出力される(S18)。条件設定ステップ(S11)は、先の条件設定ステップ(S1)と同様である。
Here, the long-term prediction shown in FIG. 4b can be performed simultaneously with the short-time prediction described above or independently.
As shown in the figure, the all-day prediction (until 24:00 (PM 12:00) on the prediction day) as the long-term prediction of the energy load on the prediction day, first, sets the conditions for the day prediction by cluster analysis (S11), A temporary actual measurement value at the next second predicted time is set (S12), the time series data is updated based on the set condition (S13), and the similarity of the past time series data updated by the cluster analysis is calculated ( S14), a plurality of past time-series data are selected in descending order of similarity (S15), a weighting factor is calculated, and the predicted value of the measurement time ahead is calculated using the weighting factor (S16). The above steps (S12 to S16) are repeated until the set long-term predicted time ahead (S17). If the prediction of the long-term prediction time (until 24:00 (PM 12:00) on the prediction day) is completed, the result is output (S18). The condition setting step (S11) is the same as the previous condition setting step (S1).
 仮実測値設定ステップ(S12)では、仮実測値設定部64により所定時刻から第二予測時間先における次回第二予測時刻の予測値を仮実測値として算出する。次回第二予測時刻の予測値の算出は、上記短時間予測ステップ(S2~S4)と同様である。例えば、所定時刻(現時点)から10分(第二予測時間、計算時間)先の次回第二予測時刻の予測値を仮実測値して算出する。この仮実測値の算出は、上述の短時間予測と同様の処理である。 In the provisional actual measurement value setting step (S12), the provisional actual measurement value setting unit 64 calculates the predicted value of the next second prediction time in the second prediction time ahead from the predetermined time as the provisional actual measurement value. Calculation of the predicted value of the next second predicted time is the same as in the short-time prediction step (S2 to S4). For example, the predicted value of the next second predicted time 10 minutes (second predicted time, calculation time) ahead of a predetermined time (current time) is calculated as a temporary measured value. The calculation of the temporary actual measurement value is the same process as the short-time prediction described above.
 次に、時系列データ更新ステップ(S13)では、時系列データ更新部51により先の当日時系列データ及び過去時系列データの時間帯が変更される。例えば、先のステップ(S12)にて仮実測値を算出した次回第二予測時刻を新たな所定時刻と仮定して、その時刻から比較時間前までの時間帯における実測値及び仮実測値により時系列データを更新する。当日時系列データには、次回第二予測時刻の現実の実測値は存在しないので、上述の仮実測値を用いて当日時系列データとする。そして、上記短時間予測と同様に、第二予測時間(計算時間)先の新たな次回第二予測時刻の予測値を算出する。すなわち、短時間予測では所定の予測時間先(上記の例では30分)の予測を行うが、長期間予測では第二予測時間(本例では10分)毎に第二予測時間先の予測を長期予測時間経過後(本例では、予測当日の24時(PM12時))まで繰り返して行う。このように、時間の経過によるエネルギー負荷の推移(変動)の予測も可能である。 Next, in the time series data update step (S13), the time series data update unit 51 changes the time zone of the previous date and time series data and the past time series data. For example, assuming that the next second predicted time at which the temporary actual measurement value was calculated in the previous step (S12) is a new predetermined time, the actual measurement value and the temporary actual measurement value in the time zone from that time to the comparison time before Update series data. Since there is no actual actual measurement value at the next second predicted time in the current date / time series data, the temporary date / time data described above is used as the current date / time series data. Then, similarly to the short-time prediction, a predicted value of a new next second predicted time ahead of the second predicted time (calculation time) is calculated. That is, in the short-term prediction, a prediction of a predetermined prediction time ahead (30 minutes in the above example) is performed, but in the long-term prediction, the prediction of the second prediction time ahead is performed every second prediction time (in this example, 10 minutes). The process is repeated until the long-term prediction time has elapsed (in this example, 24:00 (PM 12:00) on the prediction day). In this way, it is possible to predict the transition (fluctuation) of the energy load over time.
 ここで、実測値記憶部20には、第二予測時間が経過すれば、エネルギー負荷の実測値が記憶される。そこで、実測値が記憶される度に対応する仮実測値を現実の実測値に置換する。そして、上記処理を実行することで、第二予測時間経過毎に予測は修正(更新)されることとなり、より現実に即した高精度な予測となる。例えば、図5に示すように、時間経過と共に仮実測値を現実の実測値に置き換えてエネルギー負荷の予測線を修正していくので、精度の高い予測が可能となる。 Here, when the second predicted time has elapsed, the actual measurement value of the energy load is stored in the actual measurement value storage unit 20. Therefore, the temporary actual measurement value corresponding to each time the actual measurement value is stored is replaced with the actual actual measurement value. And by performing the said process, prediction will be corrected (updated) for every 2nd prediction time progress, and it will become highly accurate prediction according to reality. For example, as shown in FIG. 5, the prediction line of the energy load is corrected by replacing the temporary actual measurement value with the actual actual measurement value as time elapses, so that highly accurate prediction is possible.
 さらに、上述の如く算出した予測当日のエネルギー負荷予測(短時間予測及び/又は長期間予測)を用いて、エネルギー設備の運転を支援することも可能である。
 例えば図6(a)に示すように、例えば店舗、工場、銀行、オフィスよりなる複合施設の前日の24時間の電力負荷を施設ごとにその需要量A1~4を予測して複合施設全体の翌日の電力需要Aを予測する。この前日予測には、例えば、従来周知のカルマンフィルターを用いた予測方法を適用できる。
Furthermore, it is also possible to support the operation of the energy equipment using the energy load prediction (short-term prediction and / or long-term prediction) on the prediction day calculated as described above.
For example, as shown in FIG. 6 (a), for example, the power load for the previous day of a complex facility consisting of a store, a factory, a bank, and an office is predicted for each facility for its demand amount A1 to 4, and the next day of the entire complex facility. Power demand A is predicted. For example, a prediction method using a conventionally known Kalman filter can be applied to the previous day prediction.
 そして、図6(b)に示すように、この電力需要予測Aに対する電力需給バランスを予測する。再生可能エネルギーの発電量Eb5について、例えば翌日の天気予報による外気温度及び日照時間予測により太陽光発電量を例えば30分ごとに予測する。再生可能エネルギーは、太陽光発電に限られず風力発電でも良い。このように、上記の再生可能エネルギーによる発電量Eb5を含めて、電力需要予測値Aに基づいて電力供給を予定している発電所の発電供給能力と発電単価を考慮して発電計画が決定される。同図の例では、第一、第二発電所の発電量Eb1,2及び第一、第二調整電力量Eb3,4が決定される。 Then, as shown in FIG. 6B, the power supply / demand balance for this power demand prediction A is predicted. Regarding the power generation amount Eb5 of renewable energy, for example, the solar power generation amount is predicted every 30 minutes, for example, by predicting the outside air temperature and the sunshine duration according to the weather forecast on the next day. Renewable energy is not limited to photovoltaic power generation but may be wind power generation. In this way, the power generation plan is determined in consideration of the power supply capacity and unit price of the power plant that is scheduled to supply power based on the predicted power demand A, including the power generation amount Eb5 from the above-mentioned renewable energy. The In the example of the figure, the power generation amounts Eb1, 2 and the first and second adjustment power amounts Eb3, 4 of the first and second power plants are determined.
 当日の各施設の電力使用量は、上述した前日の予測電力量Aと相違が出ると共に太陽光発電量E5も異なる。そこで、例えば図6(c)に示すように、エネルギー予測システム1が各施設の電力実測値E1~5を用いてクラスター分析法により所定時間先(例えば12時の30分先)の予測値を算出する。そして、その短時間予測による予測値に基づいて、例えばその予測時刻における調整電力2の発電量を制御することができる。さらに、同図に示すように、予測当日の24時までの電力負荷予測(長期間予測)を行っているので、1時間、2時間先の電力負荷予測値Ef1~5をも予測することができるので、調整電力2で調整できないような場合には、調整電力1も含めて発電量を調整する準備を行うことが可能である。さらに、必要に応じて電力市場からの電力調達に事前に対応することが可能である。このように、エネルギー予測システム1で算出される予測値に基づいてエネルギー設備の運転を制御(支援)することができる。同図において、符号E1,2は第一、第二発電所の電力実測値、符号E3,4は第一、第二調整電力実測値を示す。また、符号Ef1,2は第一、第二発電所の予測発電値、符号Ef3,4は第一、第二調整電力予測値、符号E5は太陽光発電予測値を示す。複数の発電機器及び/又は熱電機器を有する単一の施設におけるエネルギー負荷の予測だけではなく、そのような施設が複数集合した複合施設、集合住宅、地域の全体のエネルギー負荷の予測も可能である。 The power usage of each facility on the day is different from the above-mentioned predicted power consumption A on the previous day, and the solar power generation amount E5 is also different. Therefore, for example, as shown in FIG. 6C, the energy prediction system 1 uses the measured power values E1 to E5 of each facility to calculate a predicted value for a predetermined time ahead (for example, 30 minutes ahead at 12:00) by the cluster analysis method. calculate. And based on the predicted value by the short-time prediction, for example, the power generation amount of the adjusted power 2 at the predicted time can be controlled. Furthermore, as shown in the figure, since power load prediction (long-term prediction) is performed until 24:00 on the prediction day, it is possible to predict power load predicted values Ef1 to Ef1 to 5 hours ahead of 1 hour and 2 hours. Therefore, when the adjustment power 2 cannot be adjusted, preparation for adjusting the power generation amount including the adjustment power 1 can be made. Furthermore, it is possible to respond in advance to power procurement from the power market as required. In this way, the operation of the energy facility can be controlled (supported) based on the predicted value calculated by the energy prediction system 1. In the figure, reference numerals E1 and E2 indicate actual measured power values of the first and second power plants, and reference numerals E3 and E4 indicate first and second adjusted power actual measured values. Moreover, the code | symbol Ef1,2 shows the predicted electric power generation value of a 1st, 2nd power plant, code | symbol Ef3,4 shows the 1st, 2nd adjustment electric power prediction value, and the code | symbol E5 shows a photovoltaic power generation prediction value. It is possible to predict not only the energy load in a single facility with multiple generators and / or thermoelectric devices, but also the overall energy load of a complex facility, apartment house, or area where multiple such facilities are assembled. .
 最後に、本発明の他の実施形態の可能性について言及する。なお、上述の実施形態と同様の部材には同一の符号を附してある。 Finally, mention is made of the possibilities of other embodiments of the invention. In addition, the same code | symbol is attached | subjected to the member similar to the above-mentioned embodiment.
 上記実施形態における長期間予測として、長期予測時間を短時間予測の当日の24時(PM12時)とした終日予測を例に説明した。しかし、長期予測時間は、予測当日の24時までの予測に限られるものではなく、例えば、24時間、48時間(連続する2日間)やその他任意の期間(時間)を設定することができる。しかし、設定する長期予測時間によっては、予測当日だけでなくその翌日にまで予測が及ぶ場合がある。そこで、係る場合、負荷パターン分類部30は、少なくとも連続する2日以上の日数単位で設定された長期負荷パターンをさらに有しているとよい。ここで、少なくとも連続する2日以上の日数単位とは、平日2日間、全平日(月曜日から金曜日)、週末(金曜日及び土曜日や土曜日及び日曜日、金曜日から日曜日)、休み明け(日祝日及びその翌日の平日)、一週間等の数日間、1ヶ月間、長期休暇、イベント開催期間、季節などが挙げられる。このように、任意の長期予測時間が属する期間毎にエネルギー負荷のパターンに影響を与える特性(長期負荷パターン)で分類しておくことで、期間を通じて生じる共通の変化をも考慮して類似する期間での時系列データで後述の類似度計算を行うことができ、予測精度を向上させることができる。 As an example of the long-term prediction in the above-described embodiment, the all-day prediction is described with the long-term prediction time being 24:00 (PM 12:00) on the day of the short-term prediction. However, the long-term prediction time is not limited to the prediction until 24:00 on the prediction day, and for example, 24 hours, 48 hours (two consecutive days), or any other arbitrary period (time) can be set. However, depending on the long-term forecast time to be set, the forecast may extend to the next day as well as the forecast day. Therefore, in such a case, the load pattern classification unit 30 may further include a long-term load pattern set in units of days of at least two consecutive days. Here, at least two consecutive days are: 2 weekdays, all weekdays (Monday to Friday), weekends (Friday and Saturdays and Saturdays and Sundays, Friday to Sunday), holidays (Sundays and holidays and the following day) Weekdays), several days such as one week, one month, long vacation, event period, season, etc. In this way, by classifying the characteristics that affect the energy load pattern (long-term load pattern) for each period to which any long-term predicted time belongs, similar periods that take into account common changes that occur throughout the period Similarity calculation, which will be described later, can be performed on the time-series data in the above, and the prediction accuracy can be improved.
 特に、長期負荷パターンが例えば曜日の組み合わせより構成される場合、気象条件を用いることなく翌日の予測が可能となる。すなわち、地理的に離れた場所にある建物や施設のエネルギー予測も可能となり、離れた地点であっても図6に示す如き合算(集計)して予測することができる。また、上記実施形態では、前日予測にカルマンフィルターを用いた予測手法を適用したが、カルマンフィルターに代えて前日予測から当日予測まで(例えば48時間)を連続して予測することも可能となる。もちろん、さらに精度を向上させるために、曜日の組み合わせに気象条件も加味して長期負荷パターンを設定することも可能である。なお、翌日に跨いで予測する長期間予測においても、短時間予測と同様にその予測当日毎にそれぞれの負荷パターンを適用して予測しても構わない。 Especially, when the long-term load pattern is composed of a combination of days of the week, for example, the next day can be predicted without using weather conditions. In other words, it is possible to predict the energy of buildings and facilities that are geographically distant from each other, and even a distant point can be predicted by addition (aggregation) as shown in FIG. In the above embodiment, the prediction method using the Kalman filter is applied to the previous day prediction, but it is also possible to continuously predict from the previous day prediction to the current day prediction (for example, 48 hours) instead of the Kalman filter. Of course, in order to further improve the accuracy, it is possible to set a long-term load pattern in consideration of weather conditions in combination with the day of the week. In addition, in the long-term prediction that is predicted over the next day, similarly to the short-term prediction, prediction may be performed by applying each load pattern for each prediction day.
 上記実施形態において、群間平均距離法を用いて過去時系列データの当日時系列データに対する距離を類似度として求めたが、これに代えてベクトル間角度の余弦を用いることも可能である。 In the above embodiment, the distance between the past time series data and the current date / time series data is obtained as the similarity using the inter-group average distance method, but it is also possible to use the cosine of the angle between vectors instead.
 図7(a)に示す当日時系列データP1と同図(b)に示す過去時系列データQ1の例は、比率が異なるだけで同じ形状を呈する。そのため、同図(c)に示す如く、時系列データのベクトルp1,q1間の角度は0となる。他方、図8(a)に示す当日時系列データP2と同図(b)に示す過去時系列データQ2の例では、同図(c)に示す如く、時系列データのベクトルp1,q1間の角度はθとなり、このベクトル間角度を用いる。 The examples of the current date / time series data P1 shown in FIG. 7 (a) and the past time series data Q1 shown in FIG. 7 (b) have the same shape with only different ratios. Therefore, the angle between the vectors p1 and q1 of the time series data is 0 as shown in FIG. On the other hand, in the example of the current date / time series data P2 shown in FIG. 8A and the past time series data Q2 shown in FIG. 8B, as shown in FIG. 8C, between the time series data vectors p1 and q1. The angle is θ, and this vector angle is used.
 ここで、上記時系列データを各時間での大きさを座標値とするN+1次元空間のベクトルで表すと、当日時系列データとm日前の過去時系列データの2つのベクトル角θの余弦は、以下となる。 Here, when the time series data is represented by a vector in an N + 1 dimensional space with the size at each time as a coordinate value, the cosines of the two vector angles θ of the current date and time series data and the past time series data m days ago are: It becomes as follows.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006

 本実施形態では、このcosθmを類似の指標として、上記実施形態の距離の逆数に相当する。例えば、このcosθmを大きい順に上位S個を抽出し、下記数7の重み係数を用いるとよい。図8に示すように、時系列データの大きさが相違していても類似を判定することができる。 In the present embodiment, this cos θm is used as a similar index and corresponds to the reciprocal of the distance in the above embodiment. For example, it is preferable to extract the top S in the descending order of cos θm and use the weighting coefficient of Equation 7 below. As shown in FIG. 8, the similarity can be determined even if the time series data has different sizes.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007

 なお、短時間予測において、下記数8の比率を適用することで、過去時系列データの大きさを当日時系列データの大きさの程度に合わせることができる。 In the short-time prediction, the size of the past time series data can be adjusted to the size of the current date series data by applying the ratio of the following formula (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008

 ベクトル間角度による類似の判定では、時系列データの形状が全く同じ場合、1となり実際の値は極めて小さくても最も類似している可能性もあり、予測値にずれが生じる恐れがある。そこで、下記数9の補正により予測値のずれを抑制する。 In the similar determination based on the angle between vectors, if the shape of the time-series data is exactly the same, it becomes 1, and even if the actual value is very small, there is a possibility that it is most similar, and there is a possibility that the predicted value will be shifted. Therefore, the deviation of the predicted value is suppressed by the correction of the following formula 9.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 また、クラスター分析は群間平均距離法に限られるものではなく、例えば重心間距離法(二つのクラスターの重心間の距離)、最近距離法(異なるクラスターに属する二つの個体間の距離の最小値)、最遠距離法(異なるクラスターに属する二つの個体間の距離の最大値)等の手法を採用することも可能である。 In addition, cluster analysis is not limited to the average distance between groups method, for example, the distance between centroids (distance between centroids of two clusters), the nearest distance method (minimum value of the distance between two individuals belonging to different clusters) ), The farthest distance method (maximum value of the distance between two individuals belonging to different clusters), and the like can also be employed.
 上記実施形態において、抽出した比較日数の各過去時系列データについて距離dmを算出し、その距離が短い過去時系列データを上位から順に6位まで選定した。しかし、選定する個数はあくまで例示に過ぎず、適宜設定できる。また、上位から順に選定する場合に限らず、例えば下記数10の関係を満たすものを選定するようにしてもよい。なお、Rは任意に設定でき、例えばR=1.62である。 In the above embodiment, the distance dm is calculated for each past time series data of the extracted comparison days, and the past time series data having the shortest distance is selected from the top to the sixth. However, the number to be selected is merely an example and can be set as appropriate. Further, the selection is not limited to the order from the top, but, for example, a selection satisfying the following relationship 10 may be selected. Note that R can be set arbitrarily, for example, R = 1.62.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 さらに、上記実施形態における短時間予測において、予測値を選定した過去時系列データの所定時刻の実測値と予測時刻の実測値との差分の加重平均を予測当日の所定時刻の実測値に加算して算出した。しかし、これに限らず、下記数11の通り、過去時系列データの予測時刻の実測値の加重平均でも構わない。 Further, in the short-time prediction in the above embodiment, the weighted average of the difference between the actual measurement value at the predetermined time and the actual measurement value at the prediction time of the past time series data for which the prediction value is selected is added to the actual measurement value at the predetermined time on the prediction day. Calculated. However, the present invention is not limited to this, and a weighted average of actually measured values of predicted times of past time-series data may be used as shown in the following formula 11.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011

 上記実施形態において、比較日数を30日としたがあくまで例示に過ぎず、適宜設定することができる。また、特定の日数を設定するのではなく、予測当日と負荷パターンが共通する過去時系列データの全て或いは特定の期間を対象とすることもできる。よって、実測値の蓄積が増えるほど、予測値の精度を向上する。また、負荷パターンの選択においては、例えば天気予報(平均気温、最高気温、最低気温、平均相対湿度、最大湿度、時間毎の気温)の各種データを用いてカルマンフィルター等の各種周知の手法により負荷パターンをさらに分類し、その分類結果に基づいてクラスター分析の対象とする過去時系列データ(類似日)を設定するようにしてもよい。 In the above embodiment, the number of comparison days is 30 days, but it is only an example and can be set as appropriate. Further, instead of setting a specific number of days, it is also possible to target all or a specific period of past time series data having a common load pattern with the predicted day. Therefore, the accuracy of the predicted value is improved as the accumulation of actually measured values increases. In selecting a load pattern, for example, various known methods such as a Kalman filter are used to load data by using various data of weather forecasts (average temperature, maximum temperature, minimum temperature, average relative humidity, maximum humidity, hourly temperature). The patterns may be further classified, and the past time series data (similar date) to be subjected to cluster analysis may be set based on the classification result.
 また、上記実施形態において、計測時間(計測時刻)は現実にエネルギー負荷を測定する時間(時刻)に限られるものではなく、実測値も計測時間(計測時刻)に現実に測定される数値に限られるものではない。例えば、実際の計測時間(例えば60分)を複数に分割し、その分割された時間(例えば10分)での実測値を例えば直線補間等により求め、これらの値を実測値とすることも可能である。 In the above embodiment, the measurement time (measurement time) is not limited to the time (time) at which the energy load is actually measured, and the actual measurement value is also limited to a numerical value that is actually measured at the measurement time (measurement time). Is not something For example, it is also possible to divide the actual measurement time (for example, 60 minutes) into a plurality of parts, obtain actual measurement values at the divided time (for example, 10 minutes), for example, by linear interpolation, and use these values as actual measurement values. It is.
 本発明に係るエネルギー予測システムを実行するプログラムは、例えば、地域冷暖房及びビル熱源の運転支援システムとしてパソコンにソフトを組み込み、実負荷データを取り込むと共に実データを蓄えて運転員の支援システムとして構成することができる。また、電力及び集中方式の熱源設備のBEMS、FEMSの制御装置、制御盤に組み込んで最適運転制御に使用でき、家庭用の電力見える化(HEMS)等のパネルに組込んで使用することもできる。 The program for executing the energy prediction system according to the present invention is configured as a support system for operators by incorporating software into a personal computer as an operation support system for district heating and cooling and building heat sources, capturing actual load data and storing actual data, for example. be able to. It can also be used for optimal operation control by incorporating it into BEMS and FEMS control devices and control panels for electric power and centralized heat source equipment, and it can also be used by incorporating it into panels for household power visualization (HEMS) and the like. .
 本発明は、エネルギー予測システムとして利用することができる。また、エネルギー予測システムにより算出される予測値を用いてエネルギー設備の運転を支援する運転支援システムとして利用することができる。例えば、発電設備及び熱源設備の翌日の電力、冷熱、温熱、蒸気、給湯の負荷予測をして発電設備、熱電設備の最適運転パターンを想定することができる。また、ビル、工場等の稼働当初の実測データから所定時間先の負荷を予測し、更にその時点のデータからその日の長期予測時間先までの熱負荷予測カーブから最適運転管理に利用することもできる。さらに、電力負荷も同様に所定時間先の電力負荷を予測し、更にその時点の電力データからその日の長期予測時間先までの電力負荷カーブをデマンドコントロールに利用し、必要に応じて生産設備の運転計画に利用でき、発電設備を持つ場合は発電設備の最適運転管理にも利用することができる。さらに、ビル、工場に限らず家庭においても、任意時間毎の電力使用量のデータから長期間予測の結果に基づいてデマンドコントロールを行うことができる。また、本発明によりある地域で電力を使用している全ての電力使用量の予測値を時間毎に集計し、スマートメータと組み合わせて地域の1日の電力使用予測ができ、デマンド管理と共にこの電力負荷予測値を利用して太陽光発電、風力発電を含め分散型発電機の台数制御及び負荷の調整ができる。 The present invention can be used as an energy prediction system. Moreover, it can utilize as a driving | operation assistance system which assists the driving | operation of an energy installation using the predicted value calculated by an energy prediction system. For example, the optimum operation pattern of the power generation facility and the thermoelectric facility can be assumed by predicting the load of the power, cold heat, heat, steam, and hot water supply on the next day of the power generation facility and the heat source facility. It is also possible to predict a load ahead of a predetermined time from actual measurement data at the beginning of operation of a building, factory, etc., and further use it for optimum operation management from a heat load prediction curve from the data at that time to the long-term prediction time ahead of the day. . In addition, the power load is similarly predicted for a predetermined time ahead, and the power load curve from the current power data to the long-term prediction time ahead of the day is used for demand control, and the production equipment is operated as necessary. It can be used for planning, and if it has power generation facilities, it can also be used for optimal operation management of power generation facilities. Furthermore, demand control can be performed based on the result of long-term prediction from data on the amount of power used every arbitrary time, not only in buildings and factories, but also at home. In addition, according to the present invention, the predicted values of all power consumptions that use power in a certain region can be aggregated every hour, and combined with a smart meter to predict the daily power usage in the region. By using the predicted load value, the number of distributed generators including solar power generation and wind power generation can be controlled and the load can be adjusted.
1:エネルギー予測システム、2:ユーザーインターフェイス、2a:モニタ、2b:キーボード、2c:マウス、3:処理部、3a:CPU、3b:一時記憶メモリ、3c:HDD、3d:バス、10:ソフトウエア、20:実測値記憶部、30:負荷パターン分類部、40:分析条件設定部、41:比較時間設定部、42:比較日数設定部、43:負荷パターン選択部、44:上位選定日数設定部、50:時系列データ設定部、51:時系列データ更新部、60:予測値算出部、61:類似度計算部、62:過去時系列データ選定部、63:重み係数算出部、64:仮実測値設定部、70:出力部、80:記録部、100:エネルギー設備、P:当日時系列データ、Q:過去時系列データ 1: Energy prediction system, 2: User interface, 2a: Monitor, 2b: Keyboard, 2c: Mouse, 3: Processing unit, 3a: CPU, 3b: Temporary storage memory, 3c: HDD, 3d: Bus, 10: Software 20: Measured value storage unit, 30: Load pattern classification unit, 40: Analysis condition setting unit, 41: Comparison time setting unit, 42: Comparison day setting unit, 43: Load pattern selection unit, 44: Upper selection day setting unit , 50: time series data setting unit, 51: time series data update unit, 60: predicted value calculation unit, 61: similarity calculation unit, 62: past time series data selection unit, 63: weight coefficient calculation unit, 64: temporary Actual value setting unit, 70: output unit, 80: recording unit, 100: energy equipment, P: current date / time series data, Q: past time series data

Claims (15)

  1. 電力、冷房、暖房、蒸気、給湯等のエネルギーを使用又は製造するエネルギー設備における現時点以降のエネルギー負荷を予測するエネルギー予測システムであって、
    前記現時点までの前記エネルギー負荷の実測値を計測時間毎に記憶する実測値記憶部と、
    前記実測値を日毎に前記エネルギー負荷の特性に基づく負荷パターンに分類する負荷パターン分類部と、
    クラスター分析を行う比較時間及び比較日数を設定すると共に前記クラスター分析を行う比較対象を分類された負荷パターンから選択する分析条件設定部と、
    予測当日の所定時刻から設定された比較時間前までの当日時系列データと、前記当日時系列データと同一時間帯における過去の設定された比較日数の日毎の過去時系列データとを選択された負荷パターンに分類された実測値により設定する時系列データ設定部と、
    前記クラスター分析により前記過去時系列データ毎に前記当日時系列データに対する類似度を計算して類似度が高い過去時系列データを複数選定し、選定した過去時系列データの前記所定時刻から所定の予測時間先の時刻における実測値を前記類似度に応じて重み付け加算して前記予測当日の前記所定時刻から前記予測時間先の予測時刻における前記エネルギー負荷の予測値を算出する予測値算出部とを備えたエネルギー予測システム。
    An energy prediction system that predicts the energy load after the present time in an energy facility that uses or manufactures energy such as electric power, cooling, heating, steam, and hot water,
    An actual value storage unit that stores the actual value of the energy load up to the present time for each measurement time;
    A load pattern classification unit for classifying the actual measurement values into load patterns based on the characteristics of the energy load every day;
    An analysis condition setting unit for setting a comparison time and a comparison day for performing cluster analysis and selecting a comparison target for performing the cluster analysis from classified load patterns;
    The load in which the current date / time series data from the predetermined time on the prediction day to the set comparison time and the past time series data of the past set comparison days in the same time zone as the current date / time series data are selected. A time-series data setting unit that is set based on actual measurement values classified into patterns,
    A plurality of past time series data having a high degree of similarity is selected by calculating a similarity to the current date / time series data for each of the past time series data by the cluster analysis, and a predetermined prediction is made from the predetermined time of the selected past time series data. A prediction value calculation unit that calculates the predicted value of the energy load at the prediction time ahead of the prediction time from the predetermined time on the prediction day by weighting and adding the actual measurement values at the time ahead in accordance with the similarity. Energy prediction system.
  2. 前記予測値は、前記選定した過去時系列データの前記所定時刻の実測値と前記予測時刻の実測値との差分の加重平均が前記予測当日の前記所定時刻の実測値に加算されて算出される請求項1記載のエネルギー予測システム。 The predicted value is calculated by adding a weighted average of the difference between the measured value at the predetermined time and the measured value at the predicted time of the selected past time series data to the measured value at the predetermined time on the prediction day. The energy prediction system according to claim 1.
  3. 前記予測値算出部は、前記類似度が高い順に過去時系列データを複数選択する請求項1又は2記載のエネルギー予測システム。 The energy prediction system according to claim 1, wherein the predicted value calculation unit selects a plurality of past time-series data in descending order of the similarity.
  4. 前記負荷パターンは、全日、休日、平日、特異日、生産計画及び気象情報を少なくとも含む群から選択される少なくとも1種以上の組合せである請求項1~3のいずれかに記載のエネルギー予測システム。 The energy prediction system according to any one of claims 1 to 3, wherein the load pattern is at least one combination selected from the group including at least all days, holidays, weekdays, singular days, production plans, and weather information.
  5. 前記予測値算出部は、前記選定した過去時系列データの前記所定時刻から所定の第二予測時間先の時刻における実測値を前記類似度に応じて重み付け加算して前記予測当日の前記所定時刻から前記第二予測時間先の次回第二予測時刻における前記エネルギー負荷の予測値を当該時刻の仮実測値として設定する仮実測値設定部を有し、前記時系列データ設定部は、前記予測当日の前記次回第二予測時刻から前記比較時間前までの新たな当日時系列データと、前記新たな当日時系列データと同一時間帯における過去の前記設定された比較日数の日毎の過去時系列データとを前記選択された負荷パターンに分類された実測値及び前記仮実測値により更新する時系列データ更新部を有し、前記仮実測値設定部が前記第二予測時間毎に前記仮実測値を設定すると共に、前記時系列データ更新部が前記第二予測時間毎に時系列データを更新し、前記予測値算出部が前記クラスター分析を前記第二予測時間毎に繰り返し行うことで前記予測当日の前記所定時刻から長期予測時間先までのエネルギー負荷の予測を行う請求項1~4のいずれかに記載のエネルギー予測システム。 The predicted value calculation unit weights and adds an actual measurement value of the selected past time-series data at a time that is a predetermined second predicted time ahead from the predetermined time according to the similarity, and from the predetermined time on the prediction day A temporary actual measurement value setting unit that sets a predicted value of the energy load at the next second prediction time ahead of the second prediction time as a temporary actual measurement value of the time, and the time-series data setting unit includes the prediction day New current date and time series data from the next second predicted time to the comparison time before, and past time series data for each day of the set comparison days in the same time zone as the new current date and time series data. A time-series data updating unit that updates the measured value classified into the selected load pattern and the temporary measured value, and the temporary measured value setting unit sets the temporary measured value for each second predicted time. And the time-series data update unit updates the time-series data for each second prediction time, and the prediction value calculation unit repeatedly performs the cluster analysis for each second prediction time, so that the prediction day The energy prediction system according to any one of claims 1 to 4, wherein the energy load is predicted from a predetermined time to a long-term predicted time ahead.
  6. 前記仮実測値は、前記予測当日の前記次回第二予測時刻における実測値が記憶される度にその実測値に置換される請求項5記載のエネルギー予測システム。 6. The energy prediction system according to claim 5, wherein the temporary actual measurement value is replaced with the actual measurement value each time the actual measurement value at the next second prediction time on the prediction day is stored.
  7. 前記負荷パターン分類部は、少なくとも連続する2日以上の日数単位で設定された長期負荷パターンをさらに有する請求項5又は6記載のエネルギー予測システム。 The energy prediction system according to claim 5 or 6, wherein the load pattern classification unit further includes a long-term load pattern set in units of at least two consecutive days.
  8. 前記エネルギー設備は、複数の発電機器及び/又は熱電機器を有する施設を複数備えた複合施設又は地域であり、前記予測算出部は、前記施設単位で前記予測値を算出すると共にその予測値を合算して前記複合施設又は地域全体の前記エネルギー負荷の予測値を算出する請求項1~7のいずれかに記載のエネルギー予測システム。 The energy facility is a complex facility or region including a plurality of facilities having a plurality of power generation devices and / or thermoelectric devices, and the prediction calculation unit calculates the prediction value for each facility and adds the prediction values. The energy prediction system according to any one of claims 1 to 7, wherein a predicted value of the energy load of the complex facility or the entire region is calculated.
  9. 前記クラスター分析は、群間平均距離法である請求項1~8のいずれかに記載のエネルギー予測システム。 The energy prediction system according to any one of claims 1 to 8, wherein the cluster analysis is an intergroup average distance method.
  10. 前記類似度は、前記過去時系列データの前記当日時系列データに対する距離の逆数である請求項9記載のエネルギー予測システム。 The energy prediction system according to claim 9, wherein the similarity is a reciprocal of a distance of the past time series data with respect to the current date and time series data.
  11. 前記類似度は、前記過去時系列データと前記当日時系列データとのベクトル間角度の余弦である請求項9記載のエネルギー予測システム。 The energy prediction system according to claim 9, wherein the similarity is a cosine of an angle between vectors of the past time series data and the current date and time series data.
  12. 電力、冷房、暖房、蒸気、給湯等のエネルギーを使用又は製造するエネルギー設備における現時点以降のエネルギー負荷を予測するエネルギー予測方法であって、
    前記現時点までの前記エネルギー負荷の実測値を計測時間毎に記憶し、
    前記実測値を日毎に前記エネルギー負荷の特性に基づく負荷パターンに分類し、
    クラスター分析を行う比較時間及び比較日数を設定すると共に前記クラスター分析を行う比較対象を分類された負荷パターンから選択し、
    予測当日の所定時刻から設定された比較時間前までの当日時系列データと、前記当日時系列データと同一時間帯における過去の設定された比較日数の日毎の過去時系列データとを選択された負荷パターンに分類された実測値により設定し、
    前記クラスター分析により前記過去時系列データ毎に前記当日時系列データに対する類似度を計算して類似度が高い過去時系列データを複数選定し、選定した過去時系列データの前記所定時刻から所定の予測時間先の時刻における実測値を前記類似度に応じて重み付け加算して前記予測当日の前記所定時刻から前記予測時間先の予測時刻における前記エネルギー負荷の予測値を算出するエネルギー予測方法。
    An energy prediction method for predicting an energy load after the present time in an energy facility that uses or manufactures energy such as electric power, cooling, heating, steam, and hot water,
    Storing the actual measured value of the energy load up to the present time for each measurement time;
    Classify the measured values into load patterns based on the characteristics of the energy load every day;
    Set comparison time and comparison days for cluster analysis and select comparison target for cluster analysis from classified load patterns,
    The load in which the current date / time series data from the predetermined time on the prediction day to the set comparison time and the past time series data of the past set comparison days in the same time zone as the current date / time series data are selected. Set according to the measured values classified into patterns,
    A plurality of past time series data having a high degree of similarity is selected by calculating a similarity to the current date / time series data for each of the past time series data by the cluster analysis, and a predetermined prediction is made from the predetermined time of the selected past time series data. An energy prediction method for calculating a predicted value of the energy load at a prediction time ahead of the prediction time from the predetermined time on the prediction day by weighting and adding measured values at a time ahead in accordance with the similarity.
  13. 請求項1~11のいずれかに記載のエネルギー予測システムを実行させるためのコンピュータプログラム。 A computer program for executing the energy prediction system according to any one of claims 1 to 11.
  14. 請求項13記載のコンピュータプログラムを記録した記録媒体。 A recording medium recording the computer program according to claim 13.
  15. 電力、冷房、暖房、蒸気、給湯等のエネルギーを使用又は製造するエネルギー設備の運転を支援する運転支援システムであって、
    前記現時点までの前記エネルギー負荷の実測値を計測時間毎に記憶する実測値記憶部と、
    前記実測値を日毎に前記エネルギー負荷の特性に基づく負荷パターンに分類する負荷パターン分類部と、
    クラスター分析を行う比較時間及び比較日数を設定すると共に前記クラスター分析を行う比較対象を分類された負荷パターンから選択する分析条件設定部と、
    予測当日の所定時刻から設定された比較時間前までの当日時系列データと、前記当日時系列データと同一時間帯における過去の設定された比較日数の日毎の過去時系列データとを選択された負荷パターンに分類された実測値により設定する時系列データ設定部と、
    前記クラスター分析により前記過去時系列データ毎に前記当日時系列データに対する類似度を計算して類似度が高い過去時系列データを複数選定し、選定した過去時系列データの前記所定時刻から所定の予測時間先の時刻における実測値を前記類似度に応じて重み付け加算して前記予測当日の前記所定時刻から前記予測時間先の予測時刻における前記エネルギー負荷の予測値を算出する予測値算出部とを備え、
    前記予測値に基づいて前記エネルギー設備の運転を支援する運転支援システム。
    An operation support system that supports the operation of energy equipment that uses or manufactures energy such as electric power, cooling, heating, steam, and hot water,
    An actual value storage unit that stores the actual value of the energy load up to the present time for each measurement time;
    A load pattern classification unit for classifying the actual measurement values into load patterns based on the characteristics of the energy load every day;
    An analysis condition setting unit for setting a comparison time and a comparison day for performing cluster analysis and selecting a comparison target for performing the cluster analysis from classified load patterns;
    The load in which the current date / time series data from the predetermined time on the prediction day to the set comparison time and the past time series data of the past set comparison days in the same time zone as the current date / time series data are selected. A time-series data setting unit that is set based on actual measurement values classified into patterns,
    A plurality of past time series data having a high degree of similarity is selected by calculating a similarity to the current date / time series data for each of the past time series data by the cluster analysis, and a predetermined prediction is made from the predetermined time of the selected past time series data. A prediction value calculation unit that calculates the predicted value of the energy load at the prediction time ahead of the prediction time from the predetermined time on the prediction day by weighting and adding the actual measurement values at the time ahead in accordance with the similarity. ,
    A driving support system that supports driving of the energy facility based on the predicted value.
PCT/JP2016/051186 2015-02-27 2016-01-15 Energy predict system, energy predict method, computer program for causing execution thereof, recording medium whereupon said program is recorded, and operation assistance system WO2016136323A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016550284A JP6118975B2 (en) 2015-02-27 2016-01-15 Energy prediction system, method of operating energy prediction system, computer program for executing the same, computer-readable recording medium storing this program, and driving support system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-038926 2015-02-27
JP2015038926 2015-02-27

Publications (1)

Publication Number Publication Date
WO2016136323A1 true WO2016136323A1 (en) 2016-09-01

Family

ID=56788103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051186 WO2016136323A1 (en) 2015-02-27 2016-01-15 Energy predict system, energy predict method, computer program for causing execution thereof, recording medium whereupon said program is recorded, and operation assistance system

Country Status (2)

Country Link
JP (1) JP6118975B2 (en)
WO (1) WO2016136323A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018124727A (en) * 2017-01-31 2018-08-09 株式会社東芝 Electric power demand prediction device
CN109978277A (en) * 2019-04-09 2019-07-05 江苏安纳泰克能源服务有限公司 Region online load prediction technique and device in photovoltaic power generation
JP2019160291A (en) * 2018-03-12 2019-09-19 株式会社E.I.エンジニアリング Operation support system, operation support method, computer program for executing the same, and recording medium for recording program
CN110570041A (en) * 2019-09-11 2019-12-13 国网天津市电力公司 AP clustering-based prospective year typical daily load prediction method
JP2020149475A (en) * 2019-03-14 2020-09-17 株式会社東芝 Prediction device, prediction method and computer program
JP2020166622A (en) * 2019-03-29 2020-10-08 三菱重工業株式会社 Power generation amount prediction device, power generation amount prediction method, and program
CN112052978A (en) * 2019-06-06 2020-12-08 株式会社日立制作所 Water demand prediction system and method
WO2021140607A1 (en) * 2020-01-09 2021-07-15 日本電気株式会社 Information processing device, control method, and storage medium
JP2021117895A (en) * 2020-01-29 2021-08-10 株式会社日立製作所 Energy management system and energy management method
CN113326985A (en) * 2021-05-31 2021-08-31 广东电网有限责任公司 Short-term load prediction method and device
JP2021140487A (en) * 2020-03-05 2021-09-16 株式会社東芝 Information processing apparatus, information processing method, and computer program
CN113408795A (en) * 2021-06-03 2021-09-17 国网河北省电力有限公司高邑县供电分公司 Power load prediction system and method based on grey theory
CN113743673A (en) * 2021-09-09 2021-12-03 中国南方电网有限责任公司 Power load prediction method during typhoon
JP2022018848A (en) * 2020-07-16 2022-01-27 Kddi株式会社 Power demand prediction method and system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018182357A1 (en) 2017-03-30 2018-10-04 Samsung Electronics Co., Ltd. Data learning server and method for generating and using learning model thereof
US10970128B2 (en) 2018-04-13 2021-04-06 Samsung Electronics Co., Ltd. Server, air conditioner and method for controlling thereof
CN112700033B (en) * 2020-12-16 2023-05-09 浙江中控技术股份有限公司 Gas heat value estimation method and device based on combustion time sequence model

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997025676A1 (en) * 1996-01-08 1997-07-17 Matsushita Electric Industrial Co., Ltd. Time-series signal predicting apparatus
JP2000285098A (en) * 1999-03-29 2000-10-13 Toshiba Corp Time series predicting device and method and recording medium recording software for predicting time series
JP2001188772A (en) * 1999-12-28 2001-07-10 Ishikawajima Harima Heavy Ind Co Ltd Method and device for predicting demand of plant
JP2002260187A (en) * 2001-03-02 2002-09-13 Nippon Telegraph & Telephone East Corp Method, device, and program for predicting parking state

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997025676A1 (en) * 1996-01-08 1997-07-17 Matsushita Electric Industrial Co., Ltd. Time-series signal predicting apparatus
JP2000285098A (en) * 1999-03-29 2000-10-13 Toshiba Corp Time series predicting device and method and recording medium recording software for predicting time series
JP2001188772A (en) * 1999-12-28 2001-07-10 Ishikawajima Harima Heavy Ind Co Ltd Method and device for predicting demand of plant
JP2002260187A (en) * 2001-03-02 2002-09-13 Nippon Telegraph & Telephone East Corp Method, device, and program for predicting parking state

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018124727A (en) * 2017-01-31 2018-08-09 株式会社東芝 Electric power demand prediction device
JP2019160291A (en) * 2018-03-12 2019-09-19 株式会社E.I.エンジニアリング Operation support system, operation support method, computer program for executing the same, and recording medium for recording program
JP7210338B2 (en) 2019-03-14 2023-01-23 株式会社東芝 Prediction device, prediction method and computer program
JP2020149475A (en) * 2019-03-14 2020-09-17 株式会社東芝 Prediction device, prediction method and computer program
JP2020166622A (en) * 2019-03-29 2020-10-08 三菱重工業株式会社 Power generation amount prediction device, power generation amount prediction method, and program
WO2020203854A1 (en) * 2019-03-29 2020-10-08 三菱重工業株式会社 Power generation amount prediction device, power generation amount prediction method, and program
CN109978277A (en) * 2019-04-09 2019-07-05 江苏安纳泰克能源服务有限公司 Region online load prediction technique and device in photovoltaic power generation
CN112052978A (en) * 2019-06-06 2020-12-08 株式会社日立制作所 Water demand prediction system and method
CN110570041A (en) * 2019-09-11 2019-12-13 国网天津市电力公司 AP clustering-based prospective year typical daily load prediction method
WO2021140607A1 (en) * 2020-01-09 2021-07-15 日本電気株式会社 Information processing device, control method, and storage medium
JPWO2021140607A1 (en) * 2020-01-09 2021-07-15
JP2021117895A (en) * 2020-01-29 2021-08-10 株式会社日立製作所 Energy management system and energy management method
JP7345408B2 (en) 2020-01-29 2023-09-15 株式会社日立製作所 Energy management system and energy management method
JP2021140487A (en) * 2020-03-05 2021-09-16 株式会社東芝 Information processing apparatus, information processing method, and computer program
JP2022018848A (en) * 2020-07-16 2022-01-27 Kddi株式会社 Power demand prediction method and system
JP7328940B2 (en) 2020-07-16 2023-08-17 Kddi株式会社 Power demand forecasting method and system
CN113326985A (en) * 2021-05-31 2021-08-31 广东电网有限责任公司 Short-term load prediction method and device
CN113408795A (en) * 2021-06-03 2021-09-17 国网河北省电力有限公司高邑县供电分公司 Power load prediction system and method based on grey theory
CN113743673A (en) * 2021-09-09 2021-12-03 中国南方电网有限责任公司 Power load prediction method during typhoon
CN113743673B (en) * 2021-09-09 2023-12-22 中国南方电网有限责任公司 Power load prediction method during typhoon

Also Published As

Publication number Publication date
JP6118975B2 (en) 2017-05-10
JPWO2016136323A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6118975B2 (en) Energy prediction system, method of operating energy prediction system, computer program for executing the same, computer-readable recording medium storing this program, and driving support system
Erdinc et al. End-user comfort oriented day-ahead planning for responsive residential HVAC demand aggregation considering weather forecasts
Pratt et al. Transactive home energy management systems: The impact of their proliferation on the electric grid
Hahn et al. Electric load forecasting methods: Tools for decision making
JP5492848B2 (en) Power demand forecasting system and method
Yun et al. Building hourly thermal load prediction using an indexed ARX model
Klobasa Analysis of demand response and wind integration in Germany's electricity market
Kwac et al. Data-driven targeting of customers for demand response
CN105989420A (en) Method of determining user electricity consumption behavior features, method of predicting user electricity consumption load and device
Park et al. A framework for baseline load estimation in demand response: Data mining approach
Feng et al. Day-ahead hourly electricity load modeling by functional regression
JP7114956B2 (en) Power demand calculation device and program
Moon et al. Interpretable short-term electrical load forecasting scheme using cubist
Popescu et al. Simulation models for the analysis of space heat consumption of buildings
Wen et al. Demand side management in smart grid: A dynamic-price-based demand response model
Maki et al. Employing electricity-consumption monitoring systems and integrative time-series analysis models: A case study in Bogor, Indonesia
Dagnely et al. Predicting hourly energy consumption. Can regression modeling improve on an autoregressive baseline?
Mohammadi et al. A multi-objective fuzzy optimization model for electricity generation and consumption management in a micro smart grid
KR101705869B1 (en) System for performing optimal managing of complex equipments based thermal energy demanding forcasting and method thereof
Ma et al. A synchronous prediction method for hourly energy consumption of abnormal monitoring branch based on the data-driven
Chinthavali et al. Quantification of energy cost savings through optimization and control of appliances within smart neighborhood homes
Nguyen et al. A machine learning-based approach for the prediction of electricity consumption
JP7074709B2 (en) Power consumption prediction system, method and program
Zhang et al. Dynamic building energy consumption forecast using weather forecast interpolations
Le Ray et al. Data-driven demand response characterization and quantification

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016550284

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16755073

Country of ref document: EP

Kind code of ref document: A1