JP7074709B2 - Power consumption prediction system, method and program - Google Patents

Power consumption prediction system, method and program Download PDF

Info

Publication number
JP7074709B2
JP7074709B2 JP2019066096A JP2019066096A JP7074709B2 JP 7074709 B2 JP7074709 B2 JP 7074709B2 JP 2019066096 A JP2019066096 A JP 2019066096A JP 2019066096 A JP2019066096 A JP 2019066096A JP 7074709 B2 JP7074709 B2 JP 7074709B2
Authority
JP
Japan
Prior art keywords
prediction
power consumption
movement
history
predicted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019066096A
Other languages
Japanese (ja)
Other versions
JP2020166529A (en
Inventor
ギヨーム アボー
康孝 西村
貴仁 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
KDDI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDDI Corp filed Critical KDDI Corp
Priority to JP2019066096A priority Critical patent/JP7074709B2/en
Publication of JP2020166529A publication Critical patent/JP2020166529A/en
Application granted granted Critical
Publication of JP7074709B2 publication Critical patent/JP7074709B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、所定のエリアごとに予測日の消費電力を予測するシステム、方法およびプログラムに係り、特に、エリア間での人の移動により生じる各エリアの所在人数の変化による消費電力変動を考慮した消費電力予測システム、方法およびプログラムに関する。 The present invention relates to a system, method and program for predicting power consumption on a predicted date for each predetermined area, and in particular, considers power consumption fluctuation due to a change in the number of people in each area caused by the movement of people between areas. Concerning power consumption prediction systems, methods and programs.

電気機器や電気器具の数は着実に増加しており、その結果、全体的な消費電力が増加傾向にある。電力事業者は、そのような状況に対処しなければならない。一方、発電した電力を貯蔵するための技術は費用効率が高くない。したがって、電力はジャストインタイム方式で発電し、発電量と電力需要とのバランスをとることが重要となる。さらに、配電網を適切に管理し、運用コストを削減するため、電力事業者は短期間で消費プロファイルを計画する必要がある。 The number of electrical appliances and appliances is steadily increasing, and as a result, overall power consumption is on the rise. Power companies must deal with such situations. On the other hand, the technology for storing the generated power is not cost-effective. Therefore, it is important to generate electricity in a just-in-time manner and balance the amount of electricity generated with the demand for electricity. In addition, utilities need to plan consumption profiles in a short period of time in order to properly manage the distribution network and reduce operating costs.

発電量と電力需要との比率は、近い将来(例えば、一日先)の消費電力を正確に予測できれば適正化できる。従来から、短期間の消費電力予測を実行するために、コンピュータやサーバなどの装置、あるいはエンドポイント(家庭や工場)の消費電力に着目する技術が特許文献1-4に開示されている。また、一日前に消費電力を予測するために、エンドポイントの行動パターンを判断する技術が非特許文献1-3に開示されている。例えば、各世帯から居住者の通常のふるまい(平日または週末の日中のプレゼンス、夜間の習慣など)について通知してもらい、これに基づいて消費電力が予測される。 The ratio of power generation to power demand can be optimized if the power consumption in the near future (for example, one day ahead) can be accurately predicted. Conventionally, Patent Document 1-4 discloses a technique focusing on the power consumption of a device such as a computer or a server, or an endpoint (household or factory) in order to execute a short-term power consumption prediction. Further, Non-Patent Documents 1-3 disclose a technique for determining an endpoint behavior pattern in order to predict power consumption one day in advance. For example, each household will be informed about the normal behavior of the resident (daytime presence on weekdays or weekends, nighttime habits, etc.), and power consumption will be estimated based on this.

さらに、電力消費に関連する様々な要因に関するパラメータを含めて機械学習により予測モデルを構築し、この予測モデルを用いて将来の消費電力を予測数する方式が非特許文献4に開示されている。 Further, Non-Patent Document 4 discloses a method of constructing a prediction model by machine learning including parameters related to various factors related to power consumption and predicting future power consumption using this prediction model.

米国特許第6577962号US Pat. No. 6577962 米国公開特許20170371308号US Published Patent 20170371308 米国公開特許20140229026号US Published Patent No. 20140229026 米国公開特許20100179704号US Published Patent No. 20100179704

J. Campillo, F. Wallin, D. Torstensson, and I. Vassileva. Energy demand model design for forecasting electricity consumption and simulating demand response scenarios in Sweden. International Conference on Applied Energy, Jul 2012.J. Campillo, F. Wallin, D. Torstensson, and I. Vassileva. Energy demand model design for forecasting electricity consumption and simulating demand response scenarios in Sweden. International Conference on Applied Energy, Jul 2012. P. Day, M. Fabian, D. Noble, G. Ruwisch, R. Spencer, J. Stevenson and R. Thoppay. Residential Power Load Forecasting. Procedia Computer Science, Volume 28, 2014, Pages 457-464.P. Day, M. Fabian, D. Noble, G. Ruwisch, R. Spencer, J. Stevenson and R. Thoppay. Residential Power Load Forecasting. Procedia Computer Science, Volume 28, 2014, Pages 457-464. A. Ozawa and Y. Yoshida. Residential Energy Demand Modeling based on Questionnaire Surveys. Journal of Japan Society of Energy and Resources, Vol.36, No.5, Sep 2015.A. Ozawa and Y. Yoshida. Residential Energy Demand Modeling based on Questionnaire Surveys. Journal of Japan Society of Energy and Resources, Vol.36, No.5, Sep 2015. A. D. Papalexopoulos and T. C. Hesterberg, "A regression-based approach to short-term system load forecasting," in IEEE Transactions on Power Systems, vol. 5, no. 4, pp. 1535-1547, Nov. 1990.A. D. Papalexopoulos and T. C. Hesterberg, "A regression-based approach to short-term system load forecasting," in IEEE Transactions on Power Systems, vol. 5, no. 4, pp. 1535-1547, Nov. 1990.

家庭や工場などの電力消費に関するエンドポイントから行動予定やプレゼンス情報などを通知してもらい、これに基づいて消費電力を予測する従来方式では、例えば、家庭の在宅予定に関する情報が外部に漏洩すると、空き巣などの脅威に晒される可能性が高くなるという課題があった。 In the conventional method of predicting power consumption based on notification of action schedule and presence information from endpoints related to power consumption of homes and factories, for example, if information related to home schedule is leaked to the outside, There was a problem that the possibility of being exposed to threats such as burglary increased.

また、電力消費に影響を及ぼす様々な外因に関するパラメータを含めて機械学習により予測モデルを構築しようとすると、パラメータの増加に伴って計算コストが増加し、処理負荷が高くなって短時間での予測が困難になるという課題があった。 In addition, if you try to build a prediction model by machine learning including parameters related to various external factors that affect power consumption, the calculation cost will increase as the parameters increase, and the processing load will increase, making predictions in a short time. There was a problem that it became difficult.

さらに、発明者等の分析によれば、消費電力変動に影響する外因として人の移動が大きなウエートを占めることが確認され、様々な外因を考慮した機械学習により予測モデルを構築しても、人の移動が多い状況では電力消費が大きく変動し、予測精度が低下するという課題があった。 Furthermore, according to the analysis of the inventors, it was confirmed that the movement of people occupies a large weight as an extrinsic factor that affects the fluctuation of power consumption, and even if a prediction model is constructed by machine learning considering various extrinsic factors, humans There was a problem that the power consumption fluctuated greatly and the prediction accuracy decreased in the situation where there was a lot of movement.

本発明の目的は、上記の技術課題を解決し、安全で予測精度が高く、低い処理負荷により短時間での予測が可能な消費電力予測システム、方法およびプログラムを提供することにある。 An object of the present invention is to solve the above technical problems and to provide a power consumption prediction system, a method and a program which are safe, have high prediction accuracy, and can make predictions in a short time with a low processing load.

上記の目的を達成するために、本発明は、エリアごとに消費電力を予測する消費電力予測システムにおいて、以下の構成を具備した点に特徴がある。 In order to achieve the above object, the present invention is characterized in that it has the following configuration in a power consumption prediction system that predicts power consumption for each area.

(1) 各エリアのカレンダ情報に紐付いた消費電力履歴を学習して構築した履歴ベース予測モデルに予測日のカレンダ情報を適用して履歴ベース予測値を計算する履歴ベース予測手段と、カレンダ情報に紐付いたエリア間の人の移動履歴を学習して構築した移動予測モデルに予測日のカレンダ情報を適用して人の移動を予測する移動予測手段と、各エリアの所在人数に紐付いた消費電力の履歴情報を学習して構築した移動ベース予測モデルに前記予測した移動後の所在数を適用して移動ベース予測値を計算する移動ベース予測手段と、前記履歴ベース予測値と移動ベース予測値との予測差に基づいて予測日の消費電力を予測する予測精度改善手段とを具備した。 (1) For history-based prediction means that calculates history-based forecast values by applying the forecast date calendar information to the history-based forecast model constructed by learning the power consumption history associated with the calendar information in each area, and for calendar information. The movement prediction means that predicts the movement of people by applying the calendar information of the prediction date to the movement prediction model constructed by learning the movement history of people between the linked areas, and the power consumption associated with the number of people in each area. A movement-based prediction means that calculates a movement-based prediction value by applying the predicted number of locations after movement to a movement-based prediction model constructed by learning historical information, and the history-based prediction value and the movement-based prediction value. It is equipped with a prediction accuracy improving means for predicting the power consumption on the predicted date based on the prediction difference.

(2) 履歴ベース予測手段は、カレンダ情報に紐付いた消費電力および外因の履歴情報を学習して構築した履歴ベース予測モデルに予測日のカレンダ情報および外因を適用して履歴ベース予測値を計算するようにした。 (2) The history-based prediction means calculates the history-based prediction value by applying the calendar information and extrinsic factors of the prediction date to the history-based prediction model constructed by learning the history information of power consumption and extrinsic factors associated with the calendar information. I did it.

(3) 前記外因として、天気、気温、湿度、降水量、日射量、風速などの気象情報、あるいは花火大会やスポーツなどのイベント情報などのうち、少なくとも一つを使用するようにした。 (3) As the extrinsic factors, at least one of weather information such as weather, temperature, humidity, precipitation, solar radiation, and wind speed, or event information such as fireworks display and sports is used.

(4) 履歴ベース予測手段は、履歴ベース予測値を第1の周期で計算し、移動予測手段は、前記第1の周期よりも長い第2の周期で人の移動を予測するようにした。 (4) The history-based prediction means calculates the history-based prediction value in the first cycle, and the movement prediction means predicts the movement of a person in the second cycle longer than the first cycle.

(5) 予測日が複数の時間帯に分割され、移動予測手段は時間帯ごとに人の移動を予測するようにした。 (5) The prediction date is divided into multiple time zones, and the movement prediction means predicts the movement of people in each time zone.

(6) 移動ベース予測手段は、時間帯ごとに移動ベース予測モデルを構築し、移動予測手段が前記時間帯ごとに予測した人の移動を、対応する移動ベース予測モデルに適用するようにした。 (6) The movement-based prediction means constructed a movement-based prediction model for each time zone, and applied the movement of the person predicted by the movement prediction means for each time zone to the corresponding movement-based prediction model.

(7) 予測精度改善手段は、時間帯ごとに求めた履歴ベース予測値の時間帯平均と時間帯ごとに予測した移動ベース予測値との予測差を時間帯ごとに各履歴ベース予測値に適用するようにした。 (7) As a means for improving prediction accuracy, the prediction difference between the time zone average of the history-based predicted value obtained for each time zone and the movement-based predicted value predicted for each time zone is applied to each history-based predicted value for each time zone. I tried to do it.

本発明によれば、以下のような効果が達成される。 According to the present invention, the following effects are achieved.

(1) 予測日の消費電力を消費電力履歴に基づいて予測した履歴ベース予測値を、予測日の消費電力を人の移動履歴に基づいて予測した移動ベース予測値との差分に基づいて修正し、予測日の消費電力を予測することで、人の移動に起因した予測精度の低下を防止することができ、安全で予測精度が高く、低い処理負荷により短時間での予測が可能な消費電力予測システム、方法およびプログラムを提供できるようになる。 (1) Correct the history-based predicted value that predicted the power consumption of the predicted date based on the power consumption history, based on the difference from the movement-based predicted value that predicted the power consumption of the predicted day based on the movement history of people. By predicting the power consumption on the predicted date, it is possible to prevent the prediction accuracy from deteriorating due to the movement of people, and the power consumption is safe, has high prediction accuracy, and can be predicted in a short time with a low processing load. Be able to provide prediction systems, methods and programs.

(2) 履歴ベース予測手段は、カレンダ情報に紐付いた消費電力および外因の履歴情報を学習して履歴ベース予測モデルを構築するので、消費電力予測に外因を反映させることができ、高精度な消費電力予測が可能になる。 (2) The history-based prediction means learns the history information of the power consumption and extrinsic factors associated with the calendar information to build a history-based prediction model, so that the extrinsic factors can be reflected in the power consumption prediction and the consumption is highly accurate. Power prediction becomes possible.

(3) 気象情報やイベント情報などの、消費電力変動の大きな要因となる外因を考慮することで、これらの外因の消費電力予測への影響を緩和できるようになる。 (3) By considering external factors such as weather information and event information, which are major factors of power consumption fluctuations, it becomes possible to mitigate the influence of these external factors on the power consumption forecast.

(4) 履歴ベース予測値を第1の周期で計算し、移動予測を第1の周期よりも長い第2の周期で人の移動を予測することで、予測計算の負担を軽減できるようになる。 (4) By calculating the history-based prediction value in the first cycle and predicting the movement of a person in the second cycle, which is longer than the first cycle, the burden of prediction calculation can be reduced. ..

(5) 予測日を複数の時間帯に分割し、時間帯ごとに人の移動を予測することで、人の移動傾向が時間帯に応じて固有な場合も、人の移動を高精度で予測できるようになる。 (5) By dividing the predicted date into multiple time zones and predicting the movement of people in each time zone, even if the movement tendency of people is unique according to the time zone, the movement of people is predicted with high accuracy. become able to.

(6) 移動ベース予測手段は、時間帯ごとに移動ベース予測モデルを構築し、移動予測手段が時間帯ごとに予測した人の移動を、対応する移動ベース予測モデルに適用するので、人の移動傾向が時間帯に応じて固有な場合も、移動ベース予測値を高精度で予測できるようになる。 (6) The movement-based prediction means builds a movement-based prediction model for each time zone, and applies the movement of the person predicted by the movement prediction means for each time zone to the corresponding movement-based prediction model. Even if the trend is unique depending on the time zone, the movement-based prediction value can be predicted with high accuracy.

(7) 履歴ベース予測値の時間帯平均と時間帯ごとに予測した移動ベース予測値との予測差を時間帯ごとに各履歴ベース予測値に適用することで、電力消費傾向が時間帯に依存する場合も高精度な消費電力予測が可能になる。 (7) By applying the prediction difference between the time zone average of the history-based predicted value and the movement-based predicted value predicted for each time zone to each history-based predicted value for each time zone, the power consumption tendency depends on the time zone. Even in this case, highly accurate power consumption prediction becomes possible.

本発明の一実施形態に係る消費電力予測システムの主要部の構成を示したブロック図である。It is a block diagram which showed the structure of the main part of the power consumption prediction system which concerns on one Embodiment of this invention. 履歴ベース予測モデルによる消費電力の予測方法を示した図である。It is a figure which showed the prediction method of the power consumption by the history-based prediction model. エリア間の人の流れを予測する方法を示した図である。It is a figure which showed the method of predicting the flow of people between areas. 予測日に設定される時間帯の例を示した図である。It is a figure which showed the example of the time zone set in the predicted day. 移動ベース予測モデルによる移動予測の方法を示した図である。It is a figure which showed the method of the movement prediction by the movement-based prediction model. 予測差の計算方法を示した図である。It is a figure which showed the calculation method of the prediction difference. 予測差に基づいて履歴ベース予測値の精度を改善する方法を示した図である。It is a figure which showed the method of improving the accuracy of the history-based predicted value based on the prediction difference. 本発明の一実施形態の機能ブロック図である。It is a functional block diagram of one Embodiment of this invention. 機能ブロック図の動作を示したフローチャートである。It is a flowchart which showed the operation of the functional block diagram. 予測差に基づいて予測精度が改善された例を示した図である。It is a figure which showed the example which improved the prediction accuracy based on the prediction difference.

以下、図面を参照して本発明の実施の形態について詳細に説明する。図1は、本発明の一実施形態に係る消費電力予測システムの主要部の構成を示したブロック図であり、市町村あるいは都道府県といった比較的大きなエリアを対象に、消費電力の履歴情報に基づいて将来の消費電力(履歴ベース予測値)を予測する電力予測部1と、各エリアの所在人数に基づいて消費電力(移動ベース予測値)を予測し、各予測値の予測差に応じて履歴ベース予測値を調整しその予測精度を改善する予測精度改善部2とから構成される。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing the configuration of the main part of the power consumption prediction system according to the embodiment of the present invention, based on the history information of power consumption for a relatively large area such as a municipality or a prefecture. The power prediction unit 1 that predicts future power consumption (history-based predicted value) and the power consumption (movement-based predicted value) are predicted based on the number of people in each area, and the history-based according to the prediction difference of each predicted value. It is composed of a prediction accuracy improving unit 2 that adjusts a predicted value and improves the prediction accuracy.

電力予測部1において、消費電力履歴データベースiDB-h1には、エリアごとにカレンダ情報と紐付いた過去の消費電力が履歴情報ci-1として登録されている。このような消費電力履歴ci-1は、Advanced Metering Infrastructure(AMI)を使用して収集できる。 In the power prediction unit 1, the past power consumption associated with the calendar information for each area is registered as history information ci-1 in the power consumption history database iDB-h1. Such power consumption history ci-1 can be collected using the Advanced Metering Infrastructure (AMI).

外因データベースeDB-i1~eDB-iNには、エリアごとに消費電力に影響を及ぼす外因として、天気、気温、湿度、降水量、日射量、風速といった過去の気象情報や将来の気象予報、あるいは花火大会やスポーツなどのイベント情報などが、カレンダ情報と紐づいた履歴情報ei-i1~ei-iNとして登録されている。このような外因履歴ei-i1~ei-iNは、API (Application Programming Interface)を介して収集できる。 External factors databases eDB-i 1 to eDB-i N include past weather information such as weather, temperature, humidity, precipitation, solar radiation, and wind speed, as well as future weather forecasts, as external factors that affect power consumption in each area. Alternatively, event information such as fireworks festivals and sports is registered as history information ei-i 1 to ei-i N linked to calendar information. Such extrinsic history ei-i 1 to ei-i N can be collected via API (Application Programming Interface).

消費電力推定サーバSV1には、第1MLアルゴリズムa1が登録されている。第1MLアルゴリズムa1は、消費電力履歴データベースiDB-h1においてカレンダ情報と紐付けられた消費電力履歴ci-1と、外因データベースeDB-i1~eDB-iNにおいてカレンダ情報と紐付けられた外因履歴ei-i1~ei-iNとの関係を機械学習(ML)することで重回帰分析を行い、予測エリアの予測日における消費電力を当該予測日の気象予報やイベント情報などの外因に基づいて予測する履歴ベース予測モデルM1を構築する。 The first ML algorithm a1 is registered in the power consumption estimation server SV1. The first ML algorithm a1 has a power consumption history ci-1 associated with the calendar information in the power consumption history database iDB-h1 and an extrinsic factor history associated with the calendar information in the extrinsic factors databases eDB-i 1 to eDB-i N. Multiple regression analysis is performed by machine learning (ML) on the relationship between ei-i 1 and ei-i N , and the power consumption of the forecast area on the forecast date is based on external factors such as weather forecasts and event information on the forecast date. Build a history-based forecasting model M 1 for forecasting.

前記履歴ベース予測モデルM1は、予測日のカレンダ情報および気象予報等の外因に基づいて、図2に示すように、予測エリアの予測日の消費電力Yhを、次式(1)に基づいて30分周期で予測する。本実施形態では、毎日の午前10時に翌日の消費電力が予測され、48個の履歴ベース予測値Yhi(i∈{0, 1…, 47})が履歴ベース予測値データベースiDB-f1に蓄積される。 As shown in FIG. 2, the history-based prediction model M 1 sets the power consumption Yh of the prediction area in the prediction area based on the following equation (1) based on external factors such as calendar information of the prediction date and weather forecast. Predict every 30 minutes. In this embodiment, the power consumption of the next day is predicted at 10 am every day, and 48 history-based predicted values Yhi (i ∈ {0, 1…, 47}) are accumulated in the history-based predicted value database iDB-f1. To.

Figure 0007074709000001
Figure 0007074709000001

ここで、Yhiはi番目の周期における履歴ベース予測値、β0,iはi番目の周期に適用される回帰直線の切片、Nは機械学習パラメータ数、βk,iはi番目の周期におけるk番目の機械学習パラメータの回帰係数、pk,iはi番目の周期に適用されるk番目の機械学習パラメータの値である。 Where Yhi is the history-based prediction value in the i-th cycle, β 0, i is the section of the regression line applied to the i-th cycle, N is the number of machine learning parameters, and β k, i is the i-th cycle. The regression coefficients of the k-th machine learning parameter, p k, i , are the values of the k-th machine learning parameter applied to the i-th period.

このように、本実施形態では予測日の消費電力が30分周期で予測され、48個/日の履歴ベース予測値Yhiが得られるので、電気事業者は特にピーク時の消費の変動を綿密に予測することができる。 In this way, in this embodiment, the power consumption on the predicted day is predicted every 30 minutes, and the history-based predicted value Yhi of 48 pieces / day can be obtained. Can be predicted.

予測精度改善部2において、移動履歴データベースiDB-h2には、エリアごとに他のエリアからの人の流れおよび他のエリアへの人の流れが、カレンダ情報と紐づいた履歴情報mi-1として登録されている。このような移動履歴mi-1は、自身の所在地を共有することに同意したユーザのスマートフォンが有する位置識別機能を介して収集できる。 In the prediction accuracy improvement unit 2, the movement history database iDB-h2 has the history information mi-1 in which the flow of people from other areas and the flow of people to other areas are linked to the calendar information for each area. It is registered. Such movement history mi-1 can be collected via the location identification function of the smartphone of the user who has agreed to share his / her location.

移動予測サーバSV2には、第3MLアルゴリズムa3が登録されている。第3MLアルゴリズムa3は、予測日のエリア間の人の流れを、図3に示すように、移動履歴データベースiDB-h2に登録されている各エリア間での人の移動履歴mi-1を要素とする遷移行列に基づいて予測し、更に移動後の各エリアの所在人数を計算する移動予測モデルM3を構築する。 The third ML algorithm a3 is registered in the movement prediction server SV2. The third ML algorithm a3 uses the movement history mi-1 of people between each area registered in the movement history database iDB-h2 as an element for the flow of people between areas on the predicted date, as shown in FIG. We construct a movement prediction model M 3 that makes predictions based on the transition matrix to be performed and then calculates the number of people in each area after movement.

図3は、4つのエリアA,B,C,D間を相互に移動する人の流れを示しており、遷移行列では、要素mADがエリアAからエリアDへの人の流れを表し、要素mDAがエリアDからエリアAへの人の流れを表し、要素mAAがエリアAからエリアAへの人の流れを表している。人の流れの予測結果mfは移動予測データベースiDB-f2に登録される。 FIG. 3 shows the flow of people moving between the four areas A, B, C, and D. In the transition matrix, the element m AD represents the flow of people from area A to area D, and the elements. m DA represents the flow of people from Area D to Area A, and element m A A represents the flow of people from Area A to Area A. The prediction result mf of the flow of people is registered in the movement prediction database iDB-f2.

ここで、例えば人の一般的な移動パターンを考えると、朝に通勤で職場まで移動した後、夕方まで職場で勤務し、勤務を終えた夜に家に移動するなど、移動の合間に一定時間同じ場所に居続ける移動パターンが想定される。また、人の流れの予測周期を短くすると、各エリアの境界近傍での僅かな人の流れも予測に影響するので予測演算の負荷が増加する。 Here, for example, considering the general movement pattern of people, after moving to work by commuting in the morning, working at work until evening, and moving to home at night after work, for a certain period of time between movements. A movement pattern that stays in the same place is assumed. Further, if the prediction cycle of the flow of people is shortened, a slight flow of people near the boundary of each area also affects the prediction, so that the load of the prediction calculation increases.

そこで、本実施形態では移動履歴mi-1に基づく移動予測を、前記履歴ベース予測に用いる重回帰分析のパラメータとしては取り込まずに独立させ、その予測周期を前記履歴ベース予測の周期(30分)よりも長くすることで処理負荷の軽減を図る。 Therefore, in the present embodiment, the movement prediction based on the movement history mi-1 is made independent without being incorporated as a parameter of the multiple regression analysis used for the history-based prediction, and the prediction cycle is set to the history-based prediction cycle (30 minutes). The processing load is reduced by making it longer than.

本実施形態では、後に詳述するように、予測日を4つの時間帯T1,T2,T3,T4に分割し、時間帯T1,T2,T3,T4ごとに消費電力予測Yhが計算されるところ、前記移動予測モデルM3も、エリア間での人の移動および各エリアの所在人数を、一つの予測モデルで時間帯T1,T2,T3,T4ごとに予測する。各時間帯T1,T2,T3,T4は等間隔である必要はなく、人の移動パターンが類似する時間間隔で分割しても良い。 In this embodiment, as will be described in detail later, the predicted date is divided into four time zones T 1 , T 2 , T 3 , and T 4 , and consumed in each time zone T 1 , T 2 , T 3 , and T 4. Where the power prediction Yh is calculated, the movement prediction model M 3 also uses one prediction model to determine the movement of people between areas and the number of people in each area during the time zones T 1 , T 2 , T 3 , and T 4 . Predict each. The time zones T 1 , T 2 , T 3 , and T 4 do not have to be evenly spaced, and may be divided at time intervals that have similar movement patterns of people.

前記消費電力推定サーバSV1には更に、第2MLアルゴリズムa2が登録されている。第2MLアルゴリズムa2は、移動予測データベースiDB-f2に登録されている各エリアの人の流れの予測値mfに基づいて推定される当該エリアの所在人数、移動履歴データベースiDB-h2に登録されている移動履歴mi-1および消費電力履歴データベースiDB-h1に登録されている消費電力履歴ci-1の関係を機械学習(ML)することで、各時間帯T1,T2,T3,T4に対応する4つの移動ベース予測モデルM2j (M21,M22,M23,M24) を構築する。 The second ML algorithm a2 is further registered in the power consumption estimation server SV1. The second ML algorithm a2 is registered in the movement history database iDB-h2, which is the number of people in the area estimated based on the predicted value mf of the flow of people in each area registered in the movement prediction database iDB-f2. By machine learning (ML) the relationship between the movement history mi-1 and the power consumption history ci-1 registered in the power consumption history database iDB-h1, each time zone T 1 , T 2 , T 3 , T 4 We construct four movement-based prediction models M 2j (M 21 , M 22 , M 23 , M 24 ) corresponding to.

各移動ベース予測モデルM21,M22,M23,M24は、図4,5に示すように、エリアごとに各時間帯T1,T2,T3,T4で予測された予測日の各所在人数に基づいて消費電力の移動ベース予測値Ymj(j∈{1, 2, 3, 4})を時間帯T1,T2,T3,T4ごとに計算する。 As shown in Figures 4 and 5, each movement-based prediction model M 21 , M 22 , M 23 , and M 24 predicts the prediction dates for each time zone T 1 , T 2 , T 3 , and T 4 for each area. Calculate the mobile-based predicted value Ymj (j ∈ {1, 2, 3, 4}) of power consumption for each time zone T 1 , T 2 , T 3 , and T 4 based on the number of people in each location.

前記消費電力推定サーバSV1は更に、図6に示すように、前記履歴ベース予測モデルM1が30分周期で予測した履歴ベース予測値Yhiの時間帯T1,T2,T3,T4のごとの平均値(時間帯平均)Yh_aj(Yh_a1,Yh2_a2,Yh3_a3,Yh4_a4)を計算し、各時間帯平均Yh_ajと、前記各移動ベース予測モデルM2jが時間帯T1,T2,T3,T4ごとに予測した移動ベース予測値Ymj(Ym1,Ym2,Ym3,Ym4)とを次式(2)に適用して、時間帯T1,T2,T3,T4ごとに予測差γj(γ1,γ2,γ3,γ4)を計算する。 As shown in FIG. 6, the power consumption estimation server SV1 further has a history-based prediction value Yhi predicted by the history - based prediction model M 1 in a 30 - minute cycle. Average value for each (time zone average) Yh_aj (Yh_a1, Yh2_a2, Yh3_a3, Yh4_a4) is calculated, and each time zone average Yh_aj and each movement-based prediction model M 2j are time zones T 1 , T 2 , T 3 , Applying the movement-based predicted values Ymj (Ym1, Ym2, Ym3, Ym4) predicted for each T 4 to the following equation (2), the prediction difference γj for each time zone T 1 , T 2 , T 3 , T 4 Calculate (γ1, γ2, γ3, γ4).

γj = Ymj - Yh_aj …(2) γj = Ymj --Yh_aj… (2)

前記消費電力推定サーバSV1は更に、図7に示すように、時間帯T1,T2,T3,T4ごとに計算した予測差γ1,γ2,γ3,γ4を、それぞれ各時間帯の履歴ベース予測値Yhiから、次式(3)に基づいて調整することで、予測精度の改善された消費電力予測値Yiを計算する。精度改善された消費電力予測値YiはデータベースiDB-efに蓄積される。 As shown in FIG. 7, the power consumption estimation server SV1 further records the predicted differences γ1, γ2, γ3, and γ4 calculated for each time zone T1, T2 , T3, and T4 in each time zone. From the base predicted value Yhi, the power consumption predicted value Yi with improved prediction accuracy is calculated by adjusting based on the following equation (3). The predicted power consumption value Yi with improved accuracy is stored in the database iDB-ef.

Yi = Yhi +γj …(3) Yi = Yhi + γj… (3)

図8は、消費電力推定サーバSV1および移動推定サーバSV2が協調し、各データベースDBに蓄積されている履歴情報を用いて各予測モデルMを構築しながら予測日の消費電力を予測し、さらにその予測精度を改善する構成を示した機能ブロック図であり、図9は、その手順を示したフローチャートである。 In FIG. 8, the power consumption estimation server SV1 and the mobile estimation server SV2 cooperate to predict the power consumption on the predicted date while constructing each prediction model M using the history information stored in each database DB, and further predict the power consumption. It is a functional block diagram which showed the structure which improves the prediction accuracy, and FIG. 9 is a flowchart which showed the procedure.

履歴ベース予測部101は、各エリアのカレンダ情報に紐付いた消費電力履歴ci-1および外因履歴ei-i1~ei-iNを機械学習して構築した履歴ベース予測モデルM1に、予測日のカレンダ情報および外因を適用して消費電力の履歴ベース予測値Yhiを計算する。前記外因としては、天気、気温、湿度、降水量、日射量、風速などの気象情報、あるいは花火大会やスポーツなどのイベント情報を使用できる。前記履歴ベース予測部101は、前記履歴ベース予測モデルM1に予測日のカレンダ情報および外因を適用し、第1の周期(例えば、30分)で履歴ベース予測値Yhiを計算することができる。 The history-based prediction unit 101 uses the history-based prediction model M 1 constructed by machine learning the power consumption history ci-1 and extrinsic history ei-i 1 to ei-i N linked to the calendar information of each area, and the prediction date. Calculate the history-based predicted value Yhi of power consumption by applying the calendar information and extrinsic factors of. As the extrinsic factor, meteorological information such as weather, temperature, humidity, precipitation, solar radiation, and wind speed, or event information such as fireworks display and sports can be used. The history-based prediction unit 101 can apply the calendar information and extrinsic factors of the prediction date to the history-based prediction model M 1 and calculate the history-based prediction value Yhi in the first cycle (for example, 30 minutes).

移動予測部102は、エリア間のカレンダ情報に紐付いた人の移動履歴mi-1を学習して構築した移動予測モデルM3に、予測日のカレンダ情報を適用して各エリア間の人の流れmfを予測する。移動予測モデルM3は、前記第1の周期よりも長い第2の周期で人の移動mfを予測することができる。 The movement prediction unit 102 applies the calendar information of the prediction date to the movement prediction model M 3 constructed by learning the movement history mi-1 of the person associated with the calendar information between areas, and the flow of people between each area. Predict mf. The movement prediction model M 3 can predict the movement mf of a person in a second cycle longer than the first cycle.

移動ベース予測部103は、予測日を複数の時間帯(本実施形態では、4つの時間帯T1,T2,T3,T4)に分割し、各エリアの所在人数に紐付いた消費電力履歴ci-1および外因ei-i1~ei-iNを学習して、移動ベース予測モデルM21,M22,M23,M24を前記時間帯ごとに構築する。そして、各移動ベース予測モデルM21,M22,M23,M24に、前記予測した人の流れ後の各エリアの所在人数mfを適用することで消費電力の移動ベース予測値Ymjを計算する。 The movement-based prediction unit 103 divides the prediction date into a plurality of time zones (in this embodiment, four time zones T 1 , T 2 , T 3 , and T 4 ), and power consumption associated with the number of people in each area. The history ci-1 and the extrinsic factors ei-i 1 to ei-i N are learned, and the movement-based prediction models M 21 , M 22 , M 23 , and M 24 are constructed for each time zone. Then, the movement-based prediction value Ymj of power consumption is calculated by applying the predicted number of people mf in each area after the flow of people to each movement-based prediction model M 21 , M 22 , M 23 , M 24 . ..

予測差計算部104は、履歴ベース予測値Yhiの時間帯平均Yhi_ajと移動ベース予測値Ymjとの予測差γjを計算する。予測差計算部104は、時間帯T1,T2,T3,T4ごとに求めた履歴ベース予測値Yhiの時間帯平均Yh_aj(Yh_a1,Yh_a2,Yh_a3,Yh_a4)と、時間帯T1,T2,T3,T4ごとに計算した移動ベース予測値Ymj(Ym1,Ym2,Ym3,Ym4)との予測差γj(γ1,γ2,γ3,γ4)を計算することができる。 The prediction difference calculation unit 104 calculates the prediction difference γj between the time zone average Yhi_aj of the history-based prediction value Yhi and the movement-based prediction value Ymj. The prediction difference calculation unit 104 has a time zone average Yh_aj (Yh_a1, Yh_a2, Yh_a3, Yh_a4) of the history-based predicted value Yhi obtained for each time zone T 1 , T 2 , T 3 , and T 4 , and a time zone T 1 , The prediction difference γj (γ1, γ2, γ3, γ4) from the movement-based predicted value Ymj (Ym1, Ym2, Ym3, Ym4) calculated for each of T 2 , T 3 , and T 4 can be calculated.

予測精度改善部105は、履歴ベース予測値Yhiを予測差γmjで修正し、予測精度の改善された消費電力予測値Yiを出力する。予測精度改善部105は、時間帯T1の履歴ベース予測値Yhiには予測差γ1を適用する。同様に、時間帯T2の履歴ベース予測値Yhiには予測差γ2を適用し、時間帯T3の履歴ベース予測値Yhiには予測差γ3を適用し、時間帯T4の履歴ベース予測値Yhiには予測差γ4を適用することができる。これにより、予測精度の改善された消費電力予測値Yiを出力することができる。 The prediction accuracy improvement unit 105 corrects the history-based prediction value Yhi with the prediction difference γmj, and outputs the power consumption prediction value Yi with improved prediction accuracy. The prediction accuracy improvement unit 105 applies the prediction difference γ1 to the history - based prediction value Yhi in the time zone T1. Similarly, the prediction difference γ2 is applied to the history-based predicted value Yhi of the time zone T 2 , the prediction difference γ3 is applied to the history-based predicted value Yhi of the time zone T 3 , and the history-based predicted value of the time zone T 4 is applied. The predicted difference γ4 can be applied to Yhi. As a result, it is possible to output the power consumption predicted value Yi with improved prediction accuracy.

次いで、図9のフローチャートを参照して説明する。ステップS1では、消費電力の予測エリアおよび予測日が指定される。ステップS2では、予測エリアの予測日に関する気象予報やイベント情報などの外因が取得される。ステップS3では、予測エリアの予測日の消費電力を予測する予測モデルが登録済みであるか否かが判断され、未登録であればステップS4へ進む。 Next, it will be described with reference to the flowchart of FIG. In step S1, the power consumption prediction area and the prediction date are designated. In step S2, extrinsic factors such as weather forecasts and event information related to the forecast date of the forecast area are acquired. In step S3, it is determined whether or not the prediction model for predicting the power consumption on the prediction date of the prediction area has been registered, and if not registered, the process proceeds to step S4.

ステップS4では、前記履歴ベース予測部101において履歴ベース予測モデルM1が構築される。前記履歴ベース予測部101はさらに、予測エリア、予測日のカレンダ情報および予測エリアの予測日に関する気象予測やイベント情報などの外因を前記履歴ベース予測モデルM1に適用することで、履歴ベース予測値Yhiが30分周期で計算される。
In step S4, the history-based prediction model M 1 is constructed in the history-based prediction unit 101. The history-based prediction unit 101 further applies external factors such as the forecast area, the calendar information of the forecast date, and the weather forecast and the event information regarding the forecast date of the forecast area to the history-based forecast model M 1 , so that the history-based forecast value is obtained. Yhi is calculated every 30 minutes.

これと並行して、ステップS5では、移動予測部102において、予測エリアの予測日における流入人数および流出人数を予測する移動予測モデルM3が構築される。移動予測部102はさらに、前記移動予測モデルM3に予測エリアおよび予測日のカレンダ情報を適用することで予測エリアの予測日における人の移動予測値mfを計算する。 In parallel with this, in step S5, the movement prediction unit 102 constructs a movement prediction model M 3 that predicts the number of inflows and the number of outflows on the prediction date of the prediction area. The movement prediction unit 102 further applies the calendar information of the prediction area and the prediction date to the movement prediction model M 3 to calculate the movement prediction value mf of the person on the prediction date of the prediction area.

ステップS6では、移動ベース予測部103において、予測エリアの予測日の消費電力を、当該予測日の前記流入人数/流出人数に基づいて推定される各エリアの所在人数に基づいて予測する移動ベース予測モデルM21,M22,M23,M24が、前記時間帯T1,T2,T3,T4ごとに構築される。履歴ベース予測部103はさらに、時間帯T1,T2,T3,T4ごとに予測した移動予測を、対応する各移動ベース予測モデルM21,M22,M23,M24に適用することで、予測エリアの予測日における移動ベース予測値Ymjを時間帯ごとに計算(Ym1,Ym2,Ym3,Ym4)する。 In step S6, the movement-based prediction unit 103 predicts the power consumption of the predicted area on the predicted day based on the number of people in each area estimated based on the number of inflows / outflows on the predicted day. Models M 21 , M 22 , M 23 , and M 24 are constructed for each of the time zones T 1 , T 2 , T 3 , and T 4 . The history-based prediction unit 103 further applies the movement prediction predicted for each time zone T 1 , T 2 , T 3 , and T 4 to the corresponding movement-based prediction models M 21 , M 22 , M 23 , and M 24 . Therefore, the movement-based predicted value Ymj on the predicted date of the predicted area is calculated for each time zone (Ym1, Ym2, Ym3, Ym4).

このように、本実施形態では履歴ベース予測モデルM1の構築および予測(ステップS4)と、移動予測モデルM3の構築および予測(ステップS5)ならびに移動ベース予測モデルM21,M22,M23,M24の構築および予測(ステップS6)とが並行して行われるので、全体的な処理コストを低減できるようになる。 As described above, in the present embodiment, the construction and prediction of the history-based prediction model M 1 (step S4), the construction and prediction of the movement prediction model M 3 (step S5), and the movement-based prediction models M 21 , M 22 , and M 23 . , M 24 is constructed and predicted (step S6) in parallel, so that the overall processing cost can be reduced.

ステップS7では、前記履歴ベース予測値Yhiの時間帯平均Yh_aj(Yh_a1,Yh_a2,Yh_a3,Yh_a4)が計算される。ステップS8では、図7に示したように、時間帯T1,T2,T3,T4ごとに、履歴ベース予測値の時間帯平均Yh_aj(Yh_a1,Yh_a2,Yh_a3,Yh_a4)と前記時間帯T1,T2,T3,T4ごとに予測された移動ベース予測値Ymj(Ym1,Ym2,Ym3,Ym4)との予測差γが前記予測差計算部104により計算される。 In step S7, the time zone average Yh_aj (Yh_a1, Yh_a2, Yh_a3, Yh_a4) of the history-based predicted value Yhi is calculated. In step S8, as shown in FIG. 7, for each time zone T 1 , T 2 , T 3 , and T 4 , the time zone average Yh_aj (Yh_a1, Yh_a2, Yh_a3, Yh_a4) of the history-based predicted value and the time zone are described. The prediction difference γ from the movement-based prediction value Ymj (Ym1, Ym2, Ym3, Ym4) predicted for each of T 1 , T 2 , T 3 , and T 4 is calculated by the prediction difference calculation unit 104.

ステップS9では、予測精度改善部105が、各履歴ベース予測値Yhiに、その時間帯T1,T2,T3,T4に応じた予測差γ1,γ2,γ3,γ4を反映して予測精度を改善する。なお、前記ステップS4において、予測モデルが登録済みであると判断されるとステップS10へ進み、登録済みの各予測モデルが、その後に取得した履歴情報に基づいて更新される。 In step S9, the prediction accuracy improvement unit 105 reflects the prediction differences γ1, γ2, γ3, and γ4 according to the time zones T1, T2 , T3, and T4 in each history-based prediction value Yhi for prediction. Improve accuracy. If it is determined in step S4 that the prediction model has been registered, the process proceeds to step S10, and each registered prediction model is updated based on the history information acquired thereafter.

図10は、消費電力の予測値と実測値との関係を時間帯T1,T2,T3,T4(V列)ごとに比較した例を示した図であり、履歴ベース予測値(X列)を移動ベース予測値との予測差(γ1,γ2,γ3,γ4)に基づいて修正した後の予測値(Y列)は、いずれも実測値(Z列)に近付いており、履歴ベース予測値Yhiの精度が移動ベース予測値Ymjにより改善されていることが判る。 FIG. 10 is a diagram showing an example of comparing the relationship between the predicted value of power consumption and the measured value for each time zone T 1 , T 2 , T 3 , T 4 (column V), and is a diagram showing a history-based predicted value (history-based predicted value). The predicted values (Y column) after correcting the X column) based on the predicted difference (γ1, γ2, γ3, γ4) from the movement-based predicted values are all close to the measured values (Z column) and have a history. It can be seen that the accuracy of the base prediction value Yhi is improved by the movement base prediction value Ymj.

1…電力予測部,2…精度改善部,101…前記履歴ベース予測部,102…移動予測部,103…移動ベース予測部,104…予測差計算部,105…予測精度改善部,SV1…消費電力推定サーバ,SV2…移動推定サーバ 1 ... Power prediction unit, 2 ... Accuracy improvement unit, 101 ... History-based prediction unit, 102 ... Movement prediction unit, 103 ... Movement-based prediction unit, 104 ... Prediction difference calculation unit, 105 ... Prediction accuracy improvement unit, SV1 ... Consumption Power estimation server, SV2 ... Mobile estimation server

Claims (12)

エリアごとに消費電力を予測する消費電力予測システムにおいて、
各エリアのカレンダ情報に紐付いた消費電力履歴を学習して構築した履歴ベース予測モデルに予測日のカレンダ情報を適用して履歴ベース予測値を計算する履歴ベース予測手段と、
カレンダ情報に紐付いたエリア間の人の移動履歴を学習して構築した移動予測モデルに予測日のカレンダ情報を適用して人の移動を予測する移動予測手段と、
各エリアの所在人数に紐付いた消費電力の履歴情報を学習して構築した移動ベース予測モデルに前記予測した移動後の所在数を適用して移動ベース予測値を計算する移動ベース予測手段と、
前記履歴ベース予測値と移動ベース予測値との予測差に基づいて予測日の消費電力を予測する予測精度改善手段とを具備したことを特徴とする消費電力予測システム。
In a power consumption prediction system that predicts power consumption for each area
A history-based prediction means that calculates the history-based prediction value by applying the calendar information of the prediction date to the history-based prediction model constructed by learning the power consumption history associated with the calendar information of each area.
A movement prediction means that predicts the movement of people by applying the calendar information of the prediction date to the movement prediction model constructed by learning the movement history of people between areas linked to the calendar information.
A movement-based prediction means that calculates a movement-based prediction value by applying the predicted number of locations after movement to a movement-based prediction model constructed by learning historical information on power consumption associated with the number of people in each area.
The power consumption prediction system is provided with a prediction accuracy improving means for predicting the power consumption on the prediction date based on the prediction difference between the history-based prediction value and the movement-based prediction value.
前記履歴ベース予測手段は、カレンダ情報に紐付いた消費電力および外因の履歴情報を学習して構築した履歴ベース予測モデルに予測日のカレンダ情報および外因を適用して履歴ベース予測値を計算することを特徴とする請求項1の消費電力予測システム。 The history-based prediction means applies the calendar information of the prediction date and the extrinsic factors to the history-based prediction model constructed by learning the history information of the power consumption and the extrinsic factors associated with the calendar information to calculate the history-based prediction value. The power consumption prediction system according to claim 1, which is characterized. 前記外因が、天気、気温、湿度、降水量、日射量、風速の少なくとも一つを含む気象情報であることを特徴とする請求項2に記載の消費電力予測システム。 The power consumption prediction system according to claim 2, wherein the extrinsic factor is meteorological information including at least one of weather, temperature, humidity, precipitation, solar radiation, and wind speed. 前記外因が、消費電力予測に影響を及ぼすイベントの情報であることを特徴とする請求項2または3に記載の消費電力予測システム。 The power consumption prediction system according to claim 2 or 3, wherein the extrinsic factor is information on an event that affects the power consumption prediction. 前記履歴ベース予測手段は、履歴ベース予測値を第1の周期で計算し、前記移動予測手段は、人の移動を前記第1の周期よりも長い第2の周期で予測することを特徴とする請求項1ないし4のいずれかに記載の消費電力予測システム。 The history-based prediction means calculates the history-based prediction value in the first cycle, and the movement prediction means predicts the movement of a person in a second cycle longer than the first cycle. The power consumption prediction system according to any one of claims 1 to 4. 前記予測日が複数の時間帯に分割され、
前記移動予測手段は、前記時間帯ごとに人の移動を予測することを特徴とする請求項1ないし5のいずれかに記載の消費電力予測システム。
The predicted date is divided into multiple time zones,
The power consumption prediction system according to any one of claims 1 to 5, wherein the movement prediction means predicts the movement of a person for each time zone.
前記移動ベース予測手段は、前記時間帯ごとに移動ベース予測モデルを構築し、
前記移動予測手段が前記時間帯ごとに予測した人の移動を、対応する移動ベース予測モデルに適用することを特徴とする請求項6に記載の消費電力予測システム。
The movement-based prediction means builds a movement-based prediction model for each time zone.
The power consumption prediction system according to claim 6, wherein the movement predicting means applies the movement of a person predicted for each time zone to a corresponding movement-based prediction model.
前記予測精度改善手段は、時間帯ごとに求めた履歴ベース予測値の時間帯平均と時間帯ごとに予測した移動ベース予測値との予測差を時間帯ごとに各履歴ベース予測値に適用することを特徴とする請求項7に記載の消費電力予測システム。 The prediction accuracy improving means applies the prediction difference between the time zone average of the history-based predicted values obtained for each time zone and the movement-based predicted value predicted for each time zone to each history-based predicted value for each time zone. The power consumption prediction system according to claim 7. エリアごとに消費電力をコンピュータが予測する消費電力予測方法において、
各エリアのカレンダ情報に紐付いた消費電力履歴を学習して構築した履歴ベース予測モデルに予測日のカレンダ情報を適用して履歴ベース予測値を計算する手順と、
カレンダ情報に紐付いたエリア間の人の移動履歴を学習して構築した移動予測モデルに予測日のカレンダ情報を適用して人の移動を予測する手順と、
各エリアの所在人数に紐付いた消費電力の履歴情報を学習して構築した移動ベース予測モデルに前記予測した移動後の所在数を適用して移動ベース予測値を計算する手順と、
前記履歴ベース予測値と移動ベース予測値との予測差に基づいて予測日の消費電力を予測する手順とを含むことを特徴とする消費電力予測方法。
In the power consumption prediction method in which the computer predicts the power consumption for each area
The procedure to calculate the history-based prediction value by applying the calendar information of the prediction date to the history-based prediction model constructed by learning the power consumption history associated with the calendar information of each area.
The procedure for predicting the movement of people by applying the calendar information of the prediction date to the movement prediction model constructed by learning the movement history of people between areas linked to the calendar information.
A procedure for calculating a movement-based predicted value by applying the predicted number of locations after movement to a movement-based prediction model constructed by learning historical information on power consumption associated with the number of people in each area.
A power consumption prediction method comprising a procedure for predicting power consumption on a prediction date based on a prediction difference between a history-based prediction value and a movement-based prediction value.
前記履歴ベース予測値を計算する手順は、カレンダ情報に紐付いた消費電力および外因の履歴情報を学習して構築した予測モデルに予測日のカレンダ情報および外因を適用して履歴ベース予測値を計算することを特徴とする請求項9の消費電力予測方法。 In the procedure for calculating the history-based predicted value, the history-based predicted value is calculated by applying the calendar information and the extrinsic factor of the predicted date to the prediction model constructed by learning the history information of the power consumption and the extrinsic factor associated with the calendar information. The power consumption prediction method according to claim 9, wherein the power consumption is predicted. エリアごとに消費電力が予測する消費電力予測プログラムにおいて、
各エリアのカレンダ情報に紐付いた消費電力履歴を学習して構築した予測モデルに予測日のカレンダ情報を適用して履歴ベース予測値を計算する手順と、
カレンダ情報に紐付いたエリア間の人の移動履歴を学習して構築した予測モデルに予測日のカレンダ情報を適用して人の移動を予測する手順と、
各エリアの所在人数に紐付いた消費電力の履歴情報を学習して構築した予測モデルに前記予測した移動後の所在数を適用して移動ベース予測値を計算する手順と、
前記履歴ベース予測値と移動ベース予測値との予測差に基づいて予測日の消費電力を予測する手順とを、コンピュータに実行させることを特徴とする消費電力予測プログラム。
In the power consumption prediction program that the power consumption predicts for each area
The procedure to calculate the history-based forecast value by applying the calendar information of the forecast date to the forecast model constructed by learning the power consumption history associated with the calendar information of each area.
The procedure for predicting the movement of people by applying the calendar information of the prediction date to the prediction model constructed by learning the movement history of people between areas linked to the calendar information.
A procedure for calculating a movement-based predicted value by applying the predicted number of locations after movement to a prediction model constructed by learning historical information on power consumption associated with the number of people in each area.
A power consumption prediction program characterized by causing a computer to execute a procedure for predicting power consumption on a predicted date based on a prediction difference between a history-based predicted value and a movement-based predicted value.
前記履歴ベース予測値を計算する手順は、カレンダ情報に紐付いた消費電力および外因の履歴情報を学習して構築した予測モデルに予測日のカレンダ情報および外因を適用して履歴ベース予測値を計算することを特徴とする請求項11の消費電力予測プログラム。 In the procedure for calculating the history-based predicted value, the history-based predicted value is calculated by applying the calendar information and the extrinsic factor of the predicted date to the prediction model constructed by learning the history information of the power consumption and the extrinsic factor associated with the calendar information. The power consumption prediction program according to claim 11, wherein the power consumption is predicted.
JP2019066096A 2019-03-29 2019-03-29 Power consumption prediction system, method and program Active JP7074709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019066096A JP7074709B2 (en) 2019-03-29 2019-03-29 Power consumption prediction system, method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019066096A JP7074709B2 (en) 2019-03-29 2019-03-29 Power consumption prediction system, method and program

Publications (2)

Publication Number Publication Date
JP2020166529A JP2020166529A (en) 2020-10-08
JP7074709B2 true JP7074709B2 (en) 2022-05-24

Family

ID=72716205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019066096A Active JP7074709B2 (en) 2019-03-29 2019-03-29 Power consumption prediction system, method and program

Country Status (1)

Country Link
JP (1) JP7074709B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7328940B2 (en) 2020-07-16 2023-08-17 Kddi株式会社 Power demand forecasting method and system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011231946A (en) 2010-04-23 2011-11-17 Panasonic Electric Works Co Ltd Resource management system
JP2012194700A (en) 2011-03-15 2012-10-11 Toshiba Corp Energy demand forecasting device and program
JP2017146815A (en) 2016-02-18 2017-08-24 株式会社日立製作所 Power demand prediction device and method
JP2017153333A (en) 2016-02-26 2017-08-31 国立大学法人九州大学 Power demand prediction device and power demand prediction system including the same, and power demand predication method
JP2017208952A (en) 2016-05-19 2017-11-24 株式会社日立製作所 Demand/supply operation support device and demand/supply operation support method
JP2018055650A (en) 2016-09-30 2018-04-05 大和ハウス工業株式会社 Power demand prediction system, power demand prediction method and power demand prediction program
JP2018124727A (en) 2017-01-31 2018-08-09 株式会社東芝 Electric power demand prediction device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011231946A (en) 2010-04-23 2011-11-17 Panasonic Electric Works Co Ltd Resource management system
JP2012194700A (en) 2011-03-15 2012-10-11 Toshiba Corp Energy demand forecasting device and program
JP2017146815A (en) 2016-02-18 2017-08-24 株式会社日立製作所 Power demand prediction device and method
JP2017153333A (en) 2016-02-26 2017-08-31 国立大学法人九州大学 Power demand prediction device and power demand prediction system including the same, and power demand predication method
JP2017208952A (en) 2016-05-19 2017-11-24 株式会社日立製作所 Demand/supply operation support device and demand/supply operation support method
JP2018055650A (en) 2016-09-30 2018-04-05 大和ハウス工業株式会社 Power demand prediction system, power demand prediction method and power demand prediction program
JP2018124727A (en) 2017-01-31 2018-08-09 株式会社東芝 Electric power demand prediction device

Also Published As

Publication number Publication date
JP2020166529A (en) 2020-10-08

Similar Documents

Publication Publication Date Title
JP6118975B2 (en) Energy prediction system, method of operating energy prediction system, computer program for executing the same, computer-readable recording medium storing this program, and driving support system
Behm et al. How to model European electricity load profiles using artificial neural networks
Hahn et al. Electric load forecasting methods: Tools for decision making
JP6292076B2 (en) Time series prediction ensemble
Phuangpornpitak et al. A study of load demand forecasting models in electric power system operation and planning
Graf et al. Measuring competitiveness of the EPEX spot market for electricity
Ajbar et al. Prediction of municipal water production in touristic Mecca City in Saudi Arabia using neural networks
JP2017516247A (en) Smart system operating method and apparatus for power consumption optimization
Kim Modeling special-day effects for forecasting intraday electricity demand
Fan et al. Customer directrix load-based large-scale demand response for integrating renewable energy sources
US20140122181A1 (en) Demand response load forecaster
CN103218675A (en) Short-term load prediction method based on clustering and sliding window
Park et al. A framework for baseline load estimation in demand response: Data mining approach
CN106355285B (en) Power load prediction method based on parameter correction
JP6094369B2 (en) Power demand forecasting device, power demand forecasting method, and power demand forecasting program
Ghasemkhani et al. Reinforcement learning based pricing for demand response
JP2021531725A (en) Techniques for estimating and predicting solar power
CN112330077B (en) Power load prediction method, power load prediction device, computer equipment and storage medium
Barbour et al. Enhancing household-level load forecasts using daily load profile clustering
Day et al. Residential power load forecasting
Du et al. Procurement of regulation services for a grid with high‐penetration wind generation resources: a case study of ERCOT
JP7074709B2 (en) Power consumption prediction system, method and program
JP2017011780A (en) Power generation amount prediction control device, power generation amount prediction method and power generation amount prediction program
Mishra et al. Performance evaluation of prophet and STL-ETS methods for load forecasting
Raman et al. Demand baseline estimation using similarity‐based technique for tropical and wet climates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220512

R150 Certificate of patent or registration of utility model

Ref document number: 7074709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150