WO2016135850A1 - Servo system and method of estimating service life of battery - Google Patents

Servo system and method of estimating service life of battery Download PDF

Info

Publication number
WO2016135850A1
WO2016135850A1 PCT/JP2015/055207 JP2015055207W WO2016135850A1 WO 2016135850 A1 WO2016135850 A1 WO 2016135850A1 JP 2015055207 W JP2015055207 W JP 2015055207W WO 2016135850 A1 WO2016135850 A1 WO 2016135850A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
encoder
servo
internal impedance
servo system
Prior art date
Application number
PCT/JP2015/055207
Other languages
French (fr)
Japanese (ja)
Inventor
清和 多田
裕 池田
大橋 学
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/055207 priority Critical patent/WO2016135850A1/en
Publication of WO2016135850A1 publication Critical patent/WO2016135850A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a servo system and a battery life estimation method for estimating the life of a battery used when electric power is not supplied to the servo system from an external power source.
  • the encoder has a function to hold information on the absolute position of the servo motor even when power is not supplied from the external power source to the servo system that controls the servo motor. While the servo system is not supplied with power from the external power supply, the encoder that detects the absolute position of the servo motor is operated by supplying power from the battery that is the auxiliary power supply, thereby allowing the encoder to hold the position information. Is common.
  • the battery has a life, and when the battery reaches the end of its life, the servo system will lose the servo motor position information. Therefore, the battery must be periodically replaced.
  • As a mechanism for simply notifying the life of a battery there is a mechanism that monitors a voltage value at the end of discharge of a battery and generates a warning when the voltage value is lower than a specified voltage value.
  • JP 2013-3033 Japanese Patent Laid-Open No. 11-339858 JP 2008-211191 A JP 2007-278851 A
  • the present invention has been made in view of the above, and an object thereof is to obtain a servo system capable of accurately estimating the life of a battery while suppressing deterioration of the battery.
  • the present invention provides a motor drive circuit for driving a servo motor based on a motor drive signal, an absolute signal of a servo motor detected by a command signal transmitted from a controller and an encoder.
  • a servo control unit that generates a motor drive signal based on the position, a battery that supplies power to the encoder when power from the external power source is not supplied to the encoder, and a period during which power from the external power source is supplied to the encoder
  • a battery control unit that measures the short-circuit current value and the open-circuit voltage value of the battery, and a storage unit that holds the internal impedance of the battery determined by the servo control unit based on the short-circuit current value and the open-circuit voltage value.
  • an external device connected to a servo system and holding information on changes in internal impedance of a battery over time estimates the battery life based on internal impedance held in a storage unit and information on change over time.
  • the servo system according to the present invention has an effect that the battery life can be accurately estimated while suppressing deterioration of the battery.
  • the figure which shows the hardware constitutions of the servo control part concerning Embodiment 1. 1 is a diagram illustrating a hardware configuration of an external device according to a first embodiment.
  • FIG. The figure which shows the time change of an internal impedance at the time of performing the lifetime estimation which sends a short circuit current to the battery in Embodiment 1.
  • FIG. 1 is a diagram showing a schematic configuration of a servo system 100 according to the first embodiment of the present invention.
  • a broken line in FIG. 1 indicates a housing of the servo system 100, and the servo system 100 includes connectors 21, 22, 23, 24, and 25 that are external interfaces and a battery 7 that is an auxiliary power source. Although the battery 7 is shown outside the casing in FIG. 1, it may be installed inside the casing.
  • the connector 21 is connected to a controller 4 that is a host controller that transmits a command signal.
  • the connector 22 is connected to an external device 12 that is an information processing apparatus such as a personal computer.
  • the connector 23 is connected to a battery 7 that is used as an auxiliary power source of the encoder 1 when power from an external power source is not supplied.
  • An encoder 1 that detects the position of the servo motor 2 is connected to the connector 24.
  • the connector 25 is connected to the servo motor 2 that is the object of servo control by the servo system 100.
  • the encoder 1 and the servo motor 2 may also be regarded as components of the servo system 100.
  • the servo system 100 includes a servo control unit 5 that generates a motor drive signal, a storage unit 11 included in the servo control unit 5, and a power generation circuit 3 that distributes power supplied from an external power source such as an AC power source to the servo system 100.
  • a motor drive circuit 6 that drives the servo motor 2, a battery 7 that is used as an auxiliary power source for the encoder 1, a battery voltage detector 8 that detects the voltage value of the battery 7, and a life measurement of the battery 7.
  • a battery control unit 10 that controls the battery 7 and an outside air temperature sensor 9 that measures the outside air temperature that is the ambient temperature in the usage environment are provided.
  • FIG. 2 is a diagram illustrating a hardware configuration of the servo control unit 5 according to the first embodiment.
  • the information processing device 30 includes a calculation device 31 such as a CPU (Central Processing Unit) that performs calculation processing, a memory 32 that the calculation device 31 uses as a work area, and a storage device 33 that stores information such as a control program of the servo control unit 5. And a communication device 34 having a communication function with other components of the servo system 100.
  • the function of the servo control unit 5 is realized by the execution of the control program by the arithmetic unit 31.
  • the function of the storage unit 11 is realized by the memory 32 or the storage device 33.
  • the storage unit 11 may be an external storage device of the information processing device 30 that is not shown in FIG. Further, the function of the controller 4 is also realized with the same configuration as the information processing apparatus 30 of FIG.
  • FIG. 3 is a diagram illustrating a hardware configuration of the external device 12 according to the first embodiment.
  • the information processing apparatus 40 may be an information processing terminal such as a personal computer or a tablet terminal, but is not limited thereto.
  • the information processing device 40 includes an arithmetic device 41 such as a CPU that performs arithmetic processing, a memory 42 that the arithmetic device 41 uses as a work area, a storage device 43 that stores information on a program and internal impedance of the battery 7 over time, and a user
  • An input device 44 that is an input interface to the servo system 100, a display device 45 that displays information to the user, and a communication device 46 that has a communication function with the servo system 100.
  • Servo system 100 controls servo motor 2 based on the absolute position of servo motor 2 detected by encoder 1.
  • the power from the external power supply is supplied to each part of the servo system 100 via the power generation circuit 3.
  • the encoder 1 may be supplied with power from the power generation circuit 3 via the servo control unit 5, or may be directly supplied with power from the power generation circuit 3.
  • a command signal is transmitted from the controller 4 to the servo controller 5.
  • the servo control unit 5 generates a motor drive signal based on the command signal and the absolute position of the servo motor 2 detected by the encoder 1.
  • the motor drive signal is sent to the motor drive circuit 6, and the motor drive circuit 6 drives the servo motor 2 based on the motor drive signal.
  • the absolute position of the servo motor 2 is stored in the encoder 1.
  • a battery 7 is connected to the servo system 100 in order to keep the absolute position of the servo motor 2 in the encoder 1 even when the power from the external power source is not supplied to the encoder 1 from the power generation circuit 3.
  • the battery 7 can supply power to the encoder 1 when power from an external power source is not supplied to the encoder 1.
  • a battery voltage detector 8 that detects the voltage value of the battery 7 is provided as a mechanism for simply notifying the life of the battery 7.
  • the battery voltage detection unit 8 monitors the voltage value of the battery 7 and generates a warning that it is the end of discharge when the voltage value of the battery 7 falls below a specified voltage value.
  • the battery 7 When the power from the external power source is supplied to the encoder 1, the battery 7 is not used.
  • the battery control unit 10 In order to check the life of the battery 7, a short-circuit current is passed through the battery 7 and a short-circuit current value that is the current value is measured.
  • the battery control unit 10 also measures the open circuit voltage value of the battery 7 together.
  • the above-described measurement timing for examining the life of the battery 7 may be executed every preset period in a period in which the battery 7 is not used.
  • the short-circuit current value and the open-circuit voltage value measured by the battery control unit 10 are sent to the servo control unit 5.
  • the servo control unit 5 receives the short-circuit current value and the open-circuit voltage value via the communication device 34 and stores them in the memory 32 or the storage device 33.
  • the arithmetic device 31 obtains the internal impedance of the battery 7 based on the short-circuit current value and the open-circuit voltage value that are the measurement results of the battery control unit 10 and causes the storage unit 11 to hold them.
  • the servo control unit 5 transmits the internal impedance held in the storage unit 11 to the external device 12 connected to the servo system 100.
  • FIG. 4 is a diagram showing a change with time of the internal impedance of the battery 7 in the first embodiment. It is shown that the internal impedance of the battery 7 increases with time, and the battery 7 cannot be used when it reaches Z, which is the internal impedance corresponding to the lifetime of FIG.
  • the information shown in FIG. 4 is held in the storage device 43.
  • the external device 12 receives the internal impedance of the battery 7 obtained from the measurement result transmitted from the servo control unit 5 of the servo system 100 via the communication device 46 and causes the memory 42 or the storage device 43 to hold it.
  • the arithmetic unit 41 calculates the lifetime of the battery 7, that is, the remaining usable time based on the internal impedance obtained from the measurement result and the information on the temporal change of the internal impedance shown in FIG. 4 held in the storage device 43. And the result can be displayed on the display device 45.
  • the outside temperature measured by the outside temperature sensor 9 is transferred by the servo control unit 5 to the external device 12, and the external device 12 changes over time in the internal impedance shown in FIG. 4 based on the measured outside temperature. You may change the slope or offset value of the graph. Thereby, the life estimation of the battery 7 by the external device 12 becomes more accurate.
  • the external device 12 can update the calculation result of the life estimation of the battery 7, that is, update the estimated value of the remaining usable time for each set period described above, and based on this update result, the calculation history can be updated.
  • Storage of data, graphing of calculation history, or creation of a database of calculation history can be facilitated.
  • These operations can be executed by a user instruction from the input device 44, and the contents of the graph and the database can be displayed on the display device 45 in accordance with the user instruction.
  • the user can know the latest information about the life of the battery 7. Therefore, when the remaining usable time of the battery 7 is extremely reduced, it is possible to specify retrospectively the time when the life of the battery 7 is significantly reduced from the stored calculation history. If the time can be specified, it can be used to investigate the cause of a significant decrease in the life of the battery 7.
  • the user may instruct the timing of executing the lifetime measurement by supplying a short-circuit current to the battery 7. Specifically, during a period when power is supplied to the servo system 100 from an external power source and the battery 7 is not being used, the user instructs life measurement via the input device 44 at a desired timing, and the instruction is servo controlled.
  • the unit 5 may inform the battery control unit 10 so that a short-circuit current is passed through the battery 7 to perform the life measurement.
  • FIG. 5 is a diagram illustrating a change over time in internal impedance when lifetime estimation is performed in which a short-circuit current is passed through the battery 7 according to the first embodiment.
  • a short-circuit current is passed through the battery 7 for life estimation, the battery capacity is temporarily consumed.
  • the internal impedance increases as shown by the steps of the solid line graph of FIG.
  • the graph of the internal impedance after the life estimation indicated by the solid line in FIG. 5 has a gentler slope than the graph of the broken line when no short-circuit current is passed.
  • the time when the internal impedance corresponding to the life of the battery 7 becomes Z extends from the life 1 to the life 2. That is, the effect of suppressing the deterioration of the battery 7 can be obtained by supplying a short-circuit current.
  • a short-circuit current is caused to flow through the battery 7 during a period when the battery 7 is not used as the power source of the encoder 1.
  • the internal impedance of the battery 7 is obtained from the current value and the open voltage of the battery 7. Based on the internal impedance, the life of the battery 7 is estimated in the external device 12 connected to the servo system 100. Thereby, it is possible to accurately estimate the life of the battery 7 while suppressing deterioration of the battery 7. Therefore, after extending the life of the battery 7, it is possible to perform replacement and maintenance work of the battery 7 with a margin at an appropriate time, and to improve the economic efficiency of the servo system 100 by eliminating unnecessary battery replacement. Can do.
  • FIG. FIG. 6 is a diagram showing a schematic configuration of the servo system 200 according to the second embodiment of the present invention.
  • the configuration of the servo system 200 is a configuration in which a dummy load resistor 13 is added to the configuration of the servo system 100 in FIG. 1, and the other configuration is the same as the configuration of the servo system 100 in FIG. 1.
  • a current from the battery 7 can flow through the dummy load resistor 13.
  • the dummy load resistor 13 is shown as being provided outside the casing of the servo system 200, but it may be installed inside the casing of the servo system 200.
  • the battery control unit 10 supplies a short-circuit current to the battery 7 in order to check the life of the battery 7.
  • the battery control unit 10 includes the battery 7.
  • the dummy load resistor 13 is connected to the battery 7 during the period when the electric power from the external power source is supplied to the encoder 1, and the current is caused to flow through the battery 7 to measure the current value.
  • the battery control unit 10 also measures the open circuit voltage value of the battery 7 together.
  • the servo control unit 5 obtains the internal impedance of the battery 7 based on the current value of the current flowing through the dummy load resistor 13 measured by the battery control unit 10 and the open-circuit voltage value of the battery 7 and causes the storage unit 11 to hold it. Other operations are the same as those in the first embodiment. Therefore, the first embodiment can be considered as a case where the resistance value of the dummy load resistor 13 of the second embodiment is zero.
  • the current value of the current flowing through the dummy load resistor 13 is smaller than the short-circuit current value, but the battery 7 is used less frequently as in the first embodiment. It is possible to prevent the generation of an oxide film in the internal electrode. Furthermore, since the current value of the current flowing through the dummy load resistor 13 is smaller than the short-circuit current value, it is possible to reduce the increase in internal impedance indicated by the steps of the solid line graph of FIG.
  • the servo system 200 and the method for estimating the life of the battery 7 according to the second embodiment in addition to the effect obtained in the first embodiment, the increase in internal impedance indicated by the steps of the solid line graph of FIG. The effect of further reducing deterioration of the battery 7 can be obtained.
  • FIG. 7 is a diagram showing a schematic configuration of a servo system 300 according to the third embodiment of the present invention.
  • FIG. 8 is a diagram showing a schematic configuration of another servo system 400 according to the third embodiment of the present invention.
  • the servo system 300 in FIG. 7 is provided with a storage unit 14 in the controller 4 except for the storage unit 11 from the servo system 100 in FIG. 1, but other configurations are the same as the configuration of the servo system 100 in FIG. 1. is there.
  • the servo system 400 in FIG. 8 is provided with the storage unit 14 in the controller 4 except for the storage unit 11 from the servo system 200 in FIG. 6, but other configurations are the same as the configuration of the servo system 200 in FIG. 6. is there. Since the hardware configuration of the controller 4 is shown in FIG. 2 as described above, the function of the storage unit 14 in FIGS. 7 and 8 is realized by the memory 32 or the storage device 33.
  • the internal impedance of the battery 7 obtained by the arithmetic device 31 of the servo control unit 5 is held in the storage unit 11 included in the servo control unit 5.
  • the storage unit 14 included in the controller 4 holds the internal impedance obtained by the servo control unit 5.
  • the controller 4 transmits the internal impedance held in the storage unit 14 to the external device 12 connected also to the controller 4.
  • the external device 12 estimates the lifetime of the battery 7, that is, the remaining usable time by calculation based on the internal impedance obtained from the measurement result and information on the internal impedance held over time.
  • the other operations are the same as those in the first or second embodiment.
  • the internal impedance of the battery 7 obtained by the servo control unit 5 may be held in the memory 42 or the storage device 43 of the external device 12. Furthermore, the external device 12 may execute the calculation of the internal impedance of the battery 7 itself. As a result, the external device 12 can perform all operations other than the measurement of current and voltage.
  • the servo systems 300 and 400 and the battery life estimation method according to the third embodiment it is not necessary to maintain the internal impedance in the servo system, so in addition to the effects obtained in the first or second embodiment.
  • the degree of freedom of the battery life estimation method can be increased.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

A servo system (100) is provided with: a motor drive circuit (6) which drives a servo motor (2) on the basis of a motor drive signal; a servo control unit (5) which generates the motor drive signal on the basis of a command signal transmitted from a controller (4) and an absolute position of the servo motor, detected by an encoder (1); a battery (7) which supplies electric power to the encoder if electric power is not being supplied to the encoder from an external power supply; a battery control unit (10) which measures a short-circuit current value and an open-circuit voltage value of the battery while electric power is being supplied to the encoder from the external power supply; and a storage unit (11) which retains an internal impedance of the battery, obtained by the servo control unit on the basis of the short-circuit current value and the open-circuit voltage value. An external device (12) which is connected to the servo system and which retains information relating to changes in the internal impedance of the battery over time estimates the service life of the battery on the basis of the internal impedance retained by the storage unit and the information relating to changes in the internal impedance over time.

Description

サーボシステムおよびバッテリの寿命推定方法Servo system and battery life estimation method
 本発明は、サーボシステムに外部電源から電力が供給されない場合に使用されるバッテリの寿命を推定するサーボシステムおよびバッテリの寿命推定方法に関する。 The present invention relates to a servo system and a battery life estimation method for estimating the life of a battery used when electric power is not supplied to the servo system from an external power source.
 サーボモータを駆動制御するサーボシステムに外部電源から電力が供給されていない状態でも、エンコーダはサーボモータの絶対位置の情報を保持する機能がある。サーボシステムに外部電源から電力が供給されていない間は、サーボモータの絶対位置を検出するエンコーダに、補助電源であるバッテリから電力を供給して動作させることで、位置情報をエンコーダに保持させることが一般的である。 The encoder has a function to hold information on the absolute position of the servo motor even when power is not supplied from the external power source to the servo system that controls the servo motor. While the servo system is not supplied with power from the external power supply, the encoder that detects the absolute position of the servo motor is operated by supplying power from the battery that is the auxiliary power supply, thereby allowing the encoder to hold the position information. Is common.
 バッテリには寿命があり、バッテリが寿命を迎えることはサーボシステムにとってサーボモータの位置情報の消失につながる。したがって、バッテリを定期的に交換しなければならない。バッテリの寿命を簡易的に知らせる仕組みとして、バッテリの放電末期の電圧値を監視し、規定された電圧値以下になると、警告を発生するものがある。 The battery has a life, and when the battery reaches the end of its life, the servo system will lose the servo motor position information. Therefore, the battery must be periodically replaced. As a mechanism for simply notifying the life of a battery, there is a mechanism that monitors a voltage value at the end of discharge of a battery and generates a warning when the voltage value is lower than a specified voltage value.
 サーボモータの位置情報の消失を防ぐためには、上記警告の発生の前にバッテリを交換する必要があるものの、あまり早めにバッテリを交換するのは不経済である。したがって、バッテリの寿命推定が適切に実行されることが望まれている。交換時期の目安をより早く正確に知るために、バッテリの寿命を把握するには、電源供給の累積時間、使用環境における周囲温度、バッテリ電圧の推移といった情報を元に、計算するのが一般的な方法である。これらのバッテリの寿命推定方法については、以下の特許文献1から4にすでに開示されている。 In order to prevent the loss of servo motor position information, it is necessary to replace the battery before the occurrence of the warning, but it is uneconomical to replace the battery too early. Therefore, it is desired that battery life estimation is appropriately performed. In order to ascertain the replacement time faster and more accurately, it is common to calculate the battery life based on information such as the cumulative power supply time, ambient temperature in the usage environment, and battery voltage. It is a simple method. These battery life estimation methods have already been disclosed in Patent Documents 1 to 4 below.
特開2013-3033号公報JP 2013-3033 A 特開平11-339858号公報Japanese Patent Laid-Open No. 11-339858 特開2008-211919号公報JP 2008-211191 A 特開2007-278851号公報JP 2007-278851 A
 上記従来の技術においては、電源供給の累積時間、使用環境における周囲温度、バッテリ電圧の推移といった情報を装置内部に記憶させ、それらの情報に基づいてバッテリの寿命推定を実現している。しかしながら、基本的に常時外部電源から電力が供給されており、バッテリの使用頻度が低いサーボシステムの場合は、バッテリの不使用時において内部電極に酸化膜が発生し、自己放電も加わることで、バッテリの劣化が進む現象が存在する。上記の先行技術文献に示された方法は、単にバッテリの寿命推定をするのみで、バッテリの不使用時における劣化を抑える機能は有していない。したがって、バッテリの使用頻度が少ないサーボシステムにおいて、バッテリの劣化を抑えつつ、バッテリの正確な寿命推定を実現する方法が望まれていた。 In the above-described conventional technology, information such as the accumulated time of power supply, the ambient temperature in the usage environment, and the transition of the battery voltage is stored in the apparatus, and the life of the battery is estimated based on the information. However, in the case of a servo system where power is constantly supplied from an external power source and the battery is not used frequently, an oxide film is generated on the internal electrode when the battery is not used, and self-discharge is also applied. There is a phenomenon in which the battery deteriorates. The methods disclosed in the above prior art documents merely estimate the life of the battery, and do not have a function of suppressing deterioration when the battery is not in use. Therefore, there has been a demand for a method for realizing accurate battery life estimation while suppressing deterioration of the battery in a servo system with a low battery usage frequency.
 本発明は、上記に鑑みてなされたものであって、バッテリの劣化を抑えつつ、バッテリの正確な寿命の推定が可能になるサーボシステムを得ることを目的とする。 The present invention has been made in view of the above, and an object thereof is to obtain a servo system capable of accurately estimating the life of a battery while suppressing deterioration of the battery.
 上述した課題を解決し、目的を達成するために、本発明は、モータ駆動信号に基づいてサーボモータを駆動するモータ駆動回路と、コントローラから送信された指令信号およびエンコーダが検出したサーボモータの絶対位置に基づいて、モータ駆動信号を生成するサーボ制御部と、エンコーダに外部電源からの電力が供給されない場合にエンコーダに電力を供給するバッテリと、エンコーダに外部電源からの電力が供給されている期間に、バッテリの短絡電流値および開放電圧値を測定するバッテリ制御部と、短絡電流値および開放電圧値に基づいてサーボ制御部が求めたバッテリの内部インピーダンスを保持する記憶部と、を備えたサーボシステムである。本発明は、サーボシステムに接続され、バッテリの内部インピーダンスの経時変化の情報を保持する外部機器が、記憶部が保持する内部インピーダンスと経時変化の情報とに基づいてバッテリの寿命を推定することを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention provides a motor drive circuit for driving a servo motor based on a motor drive signal, an absolute signal of a servo motor detected by a command signal transmitted from a controller and an encoder. A servo control unit that generates a motor drive signal based on the position, a battery that supplies power to the encoder when power from the external power source is not supplied to the encoder, and a period during which power from the external power source is supplied to the encoder A battery control unit that measures the short-circuit current value and the open-circuit voltage value of the battery, and a storage unit that holds the internal impedance of the battery determined by the servo control unit based on the short-circuit current value and the open-circuit voltage value. System. According to the present invention, an external device connected to a servo system and holding information on changes in internal impedance of a battery over time estimates the battery life based on internal impedance held in a storage unit and information on change over time. Features.
 本発明にかかるサーボシステムは、バッテリの劣化を抑えつつ、バッテリの正確な寿命の推定が可能になるという効果を奏する。 The servo system according to the present invention has an effect that the battery life can be accurately estimated while suppressing deterioration of the battery.
本発明の実施の形態1にかかるサーボシステムの概略構成を示す図The figure which shows schematic structure of the servo system concerning Embodiment 1 of this invention. 実施の形態1にかかるサーボ制御部のハードウェア構成を示す図The figure which shows the hardware constitutions of the servo control part concerning Embodiment 1. 実施の形態1にかかる外部機器のハードウェア構成を示す図1 is a diagram illustrating a hardware configuration of an external device according to a first embodiment. 実施の形態1にかかるバッテリの内部インピーダンスの経時変化を示す図The figure which shows the time-dependent change of the internal impedance of the battery concerning Embodiment 1. FIG. 実施の形態1におけるバッテリに短絡電流を流す寿命推定を実行した場合における内部インピーダンスの時間変化を示す図The figure which shows the time change of an internal impedance at the time of performing the lifetime estimation which sends a short circuit current to the battery in Embodiment 1. 本発明の実施の形態2にかかるサーボシステムの概略構成を示す図The figure which shows schematic structure of the servo system concerning Embodiment 2 of this invention. 本発明の実施の形態3にかかるサーボシステムの概略構成を示す図The figure which shows schematic structure of the servo system concerning Embodiment 3 of this invention. 本発明の実施の形態3にかかる別のサーボシステムの概略構成を示す図The figure which shows schematic structure of another servo system concerning Embodiment 3 of this invention.
 以下に、本発明の実施の形態にかかるサーボシステムおよびバッテリの寿命推定方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a servo system and a battery life estimation method according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本発明の実施の形態1にかかるサーボシステム100の概略構成を示す図である。図1の破線はサーボシステム100の筐体を示しており、サーボシステム100は、外部インタフェースであるコネクタ21,22,23,24,25および補助電源であるバッテリ7を備えている。バッテリ7は、図1では筐体の外部に示されているが筐体の内部に設置されてもかまわない。コネクタ21には、指令信号を送信する上位コントローラであるコントローラ4が接続されている。コネクタ22には、パーソナルコンピュータといった情報処理装置である外部機器12が接続されている。コネクタ23には、外部電源からの電力が供給されていないときにエンコーダ1の補助電源として使用されるバッテリ7が接続されている。コネクタ24には、サーボモータ2の位置を検出するエンコーダ1が接続されている。コネクタ25には、サーボシステム100によるサーボ制御の対象であるサーボモータ2が接続されている。エンコーダ1およびサーボモータ2も、サーボシステム100の構成要素とみなしてもかまわない。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a schematic configuration of a servo system 100 according to the first embodiment of the present invention. A broken line in FIG. 1 indicates a housing of the servo system 100, and the servo system 100 includes connectors 21, 22, 23, 24, and 25 that are external interfaces and a battery 7 that is an auxiliary power source. Although the battery 7 is shown outside the casing in FIG. 1, it may be installed inside the casing. The connector 21 is connected to a controller 4 that is a host controller that transmits a command signal. The connector 22 is connected to an external device 12 that is an information processing apparatus such as a personal computer. The connector 23 is connected to a battery 7 that is used as an auxiliary power source of the encoder 1 when power from an external power source is not supplied. An encoder 1 that detects the position of the servo motor 2 is connected to the connector 24. The connector 25 is connected to the servo motor 2 that is the object of servo control by the servo system 100. The encoder 1 and the servo motor 2 may also be regarded as components of the servo system 100.
 サーボシステム100は、モータ駆動信号を生成するサーボ制御部5と、サーボ制御部5が有する記憶部11と、交流電源といった外部電源から供給される電力をサーボシステム100内部に分配する電源生成回路3と、サーボモータ2を駆動するモータ駆動回路6と、エンコーダ1の補助電源として使用されるバッテリ7と、バッテリ7の電圧値を検出するバッテリ電圧検出部8と、バッテリ7の寿命測定のためにバッテリ7を制御するバッテリ制御部10と、使用環境における周囲温度である外気温度を測定する外気温度センサ9と、を備える。 The servo system 100 includes a servo control unit 5 that generates a motor drive signal, a storage unit 11 included in the servo control unit 5, and a power generation circuit 3 that distributes power supplied from an external power source such as an AC power source to the servo system 100. A motor drive circuit 6 that drives the servo motor 2, a battery 7 that is used as an auxiliary power source for the encoder 1, a battery voltage detector 8 that detects the voltage value of the battery 7, and a life measurement of the battery 7. A battery control unit 10 that controls the battery 7 and an outside air temperature sensor 9 that measures the outside air temperature that is the ambient temperature in the usage environment are provided.
 図2は、実施の形態1にかかるサーボ制御部5のハードウェア構成を示す図である。情報処理装置30は、演算処理を行うCPU(Central Processing Unit)といった演算装置31と、演算装置31がワークエリアに用いるメモリ32と、サーボ制御部5の制御プログラムといった情報を記憶する記憶装置33と、サーボシステム100の他の構成要素との通信機能を有する通信装置34と、を備える。サーボ制御部5の機能は、演算装置31による上記制御プログラムの実行により実現される。記憶部11の機能は、メモリ32または記憶装置33により実現される。記憶部11は、図2に示されない、情報処理装置30の外付けの記憶装置であってもかまわない。また、コントローラ4の機能も図2の情報処理装置30と同様な構成で実現される。 FIG. 2 is a diagram illustrating a hardware configuration of the servo control unit 5 according to the first embodiment. The information processing device 30 includes a calculation device 31 such as a CPU (Central Processing Unit) that performs calculation processing, a memory 32 that the calculation device 31 uses as a work area, and a storage device 33 that stores information such as a control program of the servo control unit 5. And a communication device 34 having a communication function with other components of the servo system 100. The function of the servo control unit 5 is realized by the execution of the control program by the arithmetic unit 31. The function of the storage unit 11 is realized by the memory 32 or the storage device 33. The storage unit 11 may be an external storage device of the information processing device 30 that is not shown in FIG. Further, the function of the controller 4 is also realized with the same configuration as the information processing apparatus 30 of FIG.
 図3は、実施の形態1にかかる外部機器12のハードウェア構成を示す図である。情報処理装置40は、パーソナルコンピュータまたはタブレット端末といった情報処理端末であってよいが、これらに限定されない。情報処理装置40は、演算処理を行うCPUといった演算装置41と、演算装置41がワークエリアに用いるメモリ42と、プログラムおよびバッテリ7の内部インピーダンスの経時変化の情報を記憶する記憶装置43と、ユーザとの間の入力インタフェースである入力装置44と、ユーザに情報を表示する表示装置45と、サーボシステム100との通信機能を有する通信装置46と、を備える。 FIG. 3 is a diagram illustrating a hardware configuration of the external device 12 according to the first embodiment. The information processing apparatus 40 may be an information processing terminal such as a personal computer or a tablet terminal, but is not limited thereto. The information processing device 40 includes an arithmetic device 41 such as a CPU that performs arithmetic processing, a memory 42 that the arithmetic device 41 uses as a work area, a storage device 43 that stores information on a program and internal impedance of the battery 7 over time, and a user An input device 44 that is an input interface to the servo system 100, a display device 45 that displays information to the user, and a communication device 46 that has a communication function with the servo system 100.
 サーボシステム100は、エンコーダ1が検出したサーボモータ2の絶対位置に基づいて、サーボモータ2を制御する。外部電源からの電力は、電源生成回路3を介してサーボシステム100の各部に供給される。エンコーダ1には、電源生成回路3からサーボ制御部5を介して電力が供給されてもよいし、電源生成回路3から電力が直接供給されてもかまわない。 Servo system 100 controls servo motor 2 based on the absolute position of servo motor 2 detected by encoder 1. The power from the external power supply is supplied to each part of the servo system 100 via the power generation circuit 3. The encoder 1 may be supplied with power from the power generation circuit 3 via the servo control unit 5, or may be directly supplied with power from the power generation circuit 3.
 コントローラ4からサーボ制御部5に指令信号が送信される。サーボ制御部5は、指令信号およびエンコーダ1が検出したサーボモータ2の絶対位置に基づいてモータ駆動信号を生成する。モータ駆動信号はモータ駆動回路6に送られ、モータ駆動回路6は、モータ駆動信号に基づいてサーボモータ2を駆動する。サーボモータ2の絶対位置はエンコーダ1に記憶される。エンコーダ1に外部電源からの電力が電源生成回路3から供給されていない状態でも、サーボモータ2の絶対位置をエンコーダ1に保持させるために、サーボシステム100にはバッテリ7が接続されている。バッテリ7は、エンコーダ1に外部電源からの電力が供給されていないときに、エンコーダ1に電力を供給することが可能である。 A command signal is transmitted from the controller 4 to the servo controller 5. The servo control unit 5 generates a motor drive signal based on the command signal and the absolute position of the servo motor 2 detected by the encoder 1. The motor drive signal is sent to the motor drive circuit 6, and the motor drive circuit 6 drives the servo motor 2 based on the motor drive signal. The absolute position of the servo motor 2 is stored in the encoder 1. A battery 7 is connected to the servo system 100 in order to keep the absolute position of the servo motor 2 in the encoder 1 even when the power from the external power source is not supplied to the encoder 1 from the power generation circuit 3. The battery 7 can supply power to the encoder 1 when power from an external power source is not supplied to the encoder 1.
 しかしながら、バッテリ7には寿命があるため、寿命が来る前に交換しなければならない。バッテリ7の寿命を簡易に通知する仕組みとして、バッテリ7の電圧値を検出するバッテリ電圧検出部8が備えられている。バッテリ電圧検出部8は、バッテリ7の電圧値を監視し、バッテリ7の電圧値が規定された電圧値以下になると、放電末期であるとして警告を発生する。 However, since the battery 7 has a lifetime, it must be replaced before it reaches the end of its lifetime. A battery voltage detector 8 that detects the voltage value of the battery 7 is provided as a mechanism for simply notifying the life of the battery 7. The battery voltage detection unit 8 monitors the voltage value of the battery 7 and generates a warning that it is the end of discharge when the voltage value of the battery 7 falls below a specified voltage value.
 エンコーダ1に外部電源からの電力が供給されている時は、バッテリ7は使用されていない。エンコーダ1に外部電源からの電力が電源生成回路3を介して供給されている期間、即ちバッテリ7がエンコーダ1の電源として使用されていない期間の予め定めたタイミングで、バッテリ制御部10は、バッテリ7の寿命を調べるためにバッテリ7に短絡電流を流しその電流値である短絡電流値を測定する。バッテリ制御部10は、あわせてバッテリ7の開放電圧値も測定する。バッテリ7の寿命を調べるための上記測定のタイミングは、バッテリ7が使用されていない期間における予め設定した設定周期毎に実行してもよい。 When the power from the external power source is supplied to the encoder 1, the battery 7 is not used. At a predetermined timing during a period in which power from the external power source is supplied to the encoder 1 via the power source generation circuit 3, that is, a period in which the battery 7 is not used as a power source for the encoder 1, the battery control unit 10 In order to check the life of the battery 7, a short-circuit current is passed through the battery 7 and a short-circuit current value that is the current value is measured. The battery control unit 10 also measures the open circuit voltage value of the battery 7 together. The above-described measurement timing for examining the life of the battery 7 may be executed every preset period in a period in which the battery 7 is not used.
 バッテリ制御部10により測定された短絡電流値および開放電圧値は、サーボ制御部5に送られる。サーボ制御部5は、通信装置34を介して短絡電流値および開放電圧値を受け取り、メモリ32または記憶装置33に保持させる。そして、演算装置31が、バッテリ制御部10の測定結果である短絡電流値および開放電圧値に基づいて、バッテリ7の内部インピーダンスを求めて記憶部11に保持させる。そして、サーボ制御部5は、記憶部11に保持された内部インピーダンスを、サーボシステム100に接続された外部機器12に送信する。 The short-circuit current value and the open-circuit voltage value measured by the battery control unit 10 are sent to the servo control unit 5. The servo control unit 5 receives the short-circuit current value and the open-circuit voltage value via the communication device 34 and stores them in the memory 32 or the storage device 33. Then, the arithmetic device 31 obtains the internal impedance of the battery 7 based on the short-circuit current value and the open-circuit voltage value that are the measurement results of the battery control unit 10 and causes the storage unit 11 to hold them. Then, the servo control unit 5 transmits the internal impedance held in the storage unit 11 to the external device 12 connected to the servo system 100.
 上述したように、外部機器12は、バッテリ7の内部インピーダンスの経時変化の情報を記憶装置43に保持している。図4は、実施の形態1におけるバッテリ7の内部インピーダンスの経時変化を示す図である。バッテリ7の内部インピーダンスは時間と共に増加して行き、図4の寿命に対応する内部インピーダンスであるZに達するとバッテリ7は使用できなくなることが示されている。図4に示した情報が記憶装置43に保持されている。外部機器12は、サーボシステム100のサーボ制御部5から送信された測定結果から求めたバッテリ7の内部インピーダンスを通信装置46を介して受け取り、メモリ42または記憶装置43に保持させる。そして、演算装置41が、測定結果から求めた内部インピーダンスと記憶装置43に保持されている図4が示す内部インピーダンスの経時変化の情報に基づいて、バッテリ7の寿命、即ち残存使用可能時間を計算により推定することができ、その結果を表示装置45に表示することができる。 As described above, the external device 12 holds the information on the change over time of the internal impedance of the battery 7 in the storage device 43. FIG. 4 is a diagram showing a change with time of the internal impedance of the battery 7 in the first embodiment. It is shown that the internal impedance of the battery 7 increases with time, and the battery 7 cannot be used when it reaches Z, which is the internal impedance corresponding to the lifetime of FIG. The information shown in FIG. 4 is held in the storage device 43. The external device 12 receives the internal impedance of the battery 7 obtained from the measurement result transmitted from the servo control unit 5 of the servo system 100 via the communication device 46 and causes the memory 42 or the storage device 43 to hold it. Then, the arithmetic unit 41 calculates the lifetime of the battery 7, that is, the remaining usable time based on the internal impedance obtained from the measurement result and the information on the temporal change of the internal impedance shown in FIG. 4 held in the storage device 43. And the result can be displayed on the display device 45.
 なお、図4に示される内部インピーダンスの経時変化のグラフは、外気温度センサ9が測定したサーボシステム100の周囲の外気温度に基づいて変更してもかまわない。具体的には、外気温度センサ9が測定した外気温度をサーボ制御部5が外部機器12に転送し、外部機器12は測定された外気温度に基づいて、図4に示される内部インピーダンスの経時変化のグラフの勾配あるいはオフセット値などを変更してもかまわない。これにより外部機器12によるバッテリ7の寿命推定がより正確になる。 4 may be changed based on the outside air temperature around the servo system 100 measured by the outside air temperature sensor 9. Specifically, the outside temperature measured by the outside temperature sensor 9 is transferred by the servo control unit 5 to the external device 12, and the external device 12 changes over time in the internal impedance shown in FIG. 4 based on the measured outside temperature. You may change the slope or offset value of the graph. Thereby, the life estimation of the battery 7 by the external device 12 becomes more accurate.
 さらに、外部機器12は、上述した設定周期毎にバッテリ7の寿命推定の計算結果の更新、即ち残存使用可能時間の推定値の更新をすることが可能であり、この更新結果に基づいて計算履歴の保管、計算履歴のグラフ化または計算履歴のデータベースの作成も容易にできる。これらの作業は入力装置44からのユーザの指示で実行可能で、上記グラフおよびデータベースの内容はユーザの指示に従って、表示装置45に表示することができる。これにより、ユーザはバッテリ7の寿命について最新の情報を知ることができる。従って、バッテリ7の残存使用可能時間が極端に減った場合などに、保管されている計算履歴から、バッテリ7の寿命が大幅に減少した時期を過去に遡って特定することが可能になる。時期を特定することができれば、バッテリ7の寿命の大幅な減少の原因究明に役立てることができる。 Furthermore, the external device 12 can update the calculation result of the life estimation of the battery 7, that is, update the estimated value of the remaining usable time for each set period described above, and based on this update result, the calculation history can be updated. Storage of data, graphing of calculation history, or creation of a database of calculation history can be facilitated. These operations can be executed by a user instruction from the input device 44, and the contents of the graph and the database can be displayed on the display device 45 in accordance with the user instruction. Thereby, the user can know the latest information about the life of the battery 7. Therefore, when the remaining usable time of the battery 7 is extremely reduced, it is possible to specify retrospectively the time when the life of the battery 7 is significantly reduced from the stored calculation history. If the time can be specified, it can be used to investigate the cause of a significant decrease in the life of the battery 7.
 また、バッテリ7に短絡電流を流して寿命測定を実行するタイミングは、ユーザが指示してもかまわない。具体的には、サーボシステム100に外部電源から電力が供給されバッテリ7が使用されていない期間に、ユーザが所望のタイミングで入力装置44を介して寿命測定を指示して、その指示をサーボ制御部5がバッテリ制御部10に伝えることにより、バッテリ7に短絡電流を流して寿命測定を実行するようにしてもかまわない。 In addition, the user may instruct the timing of executing the lifetime measurement by supplying a short-circuit current to the battery 7. Specifically, during a period when power is supplied to the servo system 100 from an external power source and the battery 7 is not being used, the user instructs life measurement via the input device 44 at a desired timing, and the instruction is servo controlled. The unit 5 may inform the battery control unit 10 so that a short-circuit current is passed through the battery 7 to perform the life measurement.
 図5は、実施の形態1におけるバッテリ7に短絡電流を流す寿命推定を実行した場合における内部インピーダンスの時間変化を示す図である。寿命推定のためにバッテリ7に短絡電流を流すと、一時的にはバッテリ容量を消費する。これに伴い、図5の実線のグラフのステップで示されるように内部インピーダンスが上昇する。しかし、短絡電流を流したことにより、バッテリ7の使用頻度が少ないことで生じる、内部電極における酸化膜の発生を防ぐことができる。その結果、図5の実線で示される寿命推定後の内部インピーダンスのグラフは、短絡電流を流さなかった場合の破線のグラフに比べて傾きが緩やかになっている。この結果、バッテリ7の寿命に対応する内部インピーダンスであるZになる時間が、寿命1から寿命2へと延びる。即ち、短絡電流を流したことによって、バッテリ7の劣化を抑える効果を得ることができる。 FIG. 5 is a diagram illustrating a change over time in internal impedance when lifetime estimation is performed in which a short-circuit current is passed through the battery 7 according to the first embodiment. When a short-circuit current is passed through the battery 7 for life estimation, the battery capacity is temporarily consumed. Along with this, the internal impedance increases as shown by the steps of the solid line graph of FIG. However, by causing the short-circuit current to flow, it is possible to prevent the generation of an oxide film in the internal electrode, which occurs when the battery 7 is used less frequently. As a result, the graph of the internal impedance after the life estimation indicated by the solid line in FIG. 5 has a gentler slope than the graph of the broken line when no short-circuit current is passed. As a result, the time when the internal impedance corresponding to the life of the battery 7 becomes Z extends from the life 1 to the life 2. That is, the effect of suppressing the deterioration of the battery 7 can be obtained by supplying a short-circuit current.
 以上説明したように、実施の形態1にかかるサーボシステム100およびバッテリ7の寿命推定方法によれば、バッテリ7がエンコーダ1の電源として使用されていない期間にバッテリ7に短絡電流を流して、短絡電流値とバッテリ7の開放電圧とからバッテリ7の内部インピーダンスを求める。そして、内部インピーダンスに基づいて、サーボシステム100に接続した外部機器12においてバッテリ7の寿命を推定する。これにより、バッテリ7の劣化を抑えつつ、バッテリ7の正確な寿命の推定が可能となる。従って、バッテリ7の寿命を延ばした上で、適切な時期に余裕を持ってバッテリ7の交換および保守作業を行うことができ、無駄なバッテリ交換を省いてサーボシステム100の経済性を向上させることができる。 As described above, according to the servo system 100 and the method for estimating the life of the battery 7 according to the first embodiment, a short-circuit current is caused to flow through the battery 7 during a period when the battery 7 is not used as the power source of the encoder 1. The internal impedance of the battery 7 is obtained from the current value and the open voltage of the battery 7. Based on the internal impedance, the life of the battery 7 is estimated in the external device 12 connected to the servo system 100. Thereby, it is possible to accurately estimate the life of the battery 7 while suppressing deterioration of the battery 7. Therefore, after extending the life of the battery 7, it is possible to perform replacement and maintenance work of the battery 7 with a margin at an appropriate time, and to improve the economic efficiency of the servo system 100 by eliminating unnecessary battery replacement. Can do.
実施の形態2.
 図6は、本発明の実施の形態2にかかるサーボシステム200の概略構成を示す図である。サーボシステム200の構成は、図1のサーボシステム100の構成にダミー負荷抵抗13が追加された構成であり、それ以外の構成は図1のサーボシステム100の構成と同様である。ダミー負荷抵抗13にはバッテリ7からの電流を流すことが可能である。図6では、ダミー負荷抵抗13はサーボシステム200の筐体の外部に備えられているように示されているが、サーボシステム200の筐体の内部に設置されていてもかまわない。
Embodiment 2. FIG.
FIG. 6 is a diagram showing a schematic configuration of the servo system 200 according to the second embodiment of the present invention. The configuration of the servo system 200 is a configuration in which a dummy load resistor 13 is added to the configuration of the servo system 100 in FIG. 1, and the other configuration is the same as the configuration of the servo system 100 in FIG. 1. A current from the battery 7 can flow through the dummy load resistor 13. In FIG. 6, the dummy load resistor 13 is shown as being provided outside the casing of the servo system 200, but it may be installed inside the casing of the servo system 200.
 実施の形態1においては、バッテリ制御部10がバッテリ7の寿命を調べるためにバッテリ7に短絡電流を流していたが、実施の形態2にかかるサーボシステム200においては、バッテリ制御部10がバッテリ7の寿命を調べるために、エンコーダ1に外部電源からの電力が供給されている期間に、バッテリ7にダミー負荷抵抗13を接続してバッテリ7に電流を流させその電流値を測定する。バッテリ制御部10は、あわせてバッテリ7の開放電圧値も測定する。サーボ制御部5は、バッテリ制御部10によって測定されたダミー負荷抵抗13に流れる電流の電流値とバッテリ7の開放電圧値に基づいてバッテリ7の内部インピーダンスを求めて記憶部11に保持させる。他の動作は実施の形態1と同様である。従って、実施の形態1は、実施の形態2のダミー負荷抵抗13の抵抗値が0の場合と考えることもできる。 In the first embodiment, the battery control unit 10 supplies a short-circuit current to the battery 7 in order to check the life of the battery 7. However, in the servo system 200 according to the second embodiment, the battery control unit 10 includes the battery 7. In order to check the life of the battery, the dummy load resistor 13 is connected to the battery 7 during the period when the electric power from the external power source is supplied to the encoder 1, and the current is caused to flow through the battery 7 to measure the current value. The battery control unit 10 also measures the open circuit voltage value of the battery 7 together. The servo control unit 5 obtains the internal impedance of the battery 7 based on the current value of the current flowing through the dummy load resistor 13 measured by the battery control unit 10 and the open-circuit voltage value of the battery 7 and causes the storage unit 11 to hold it. Other operations are the same as those in the first embodiment. Therefore, the first embodiment can be considered as a case where the resistance value of the dummy load resistor 13 of the second embodiment is zero.
 ダミー負荷抵抗13の抵抗値が値を持っている場合は、ダミー負荷抵抗13に流れる電流の電流値は短絡電流値より小さくなるが、実施の形態1と同様にバッテリ7の使用頻度が少ないことで生じる、内部電極における酸化膜の発生を防ぐことができる。さらに、ダミー負荷抵抗13に流れる電流の電流値が短絡電流値より小さくなるので、図5の実線のグラフのステップで示される内部インピーダンスの上昇を減らすことができる。 When the resistance value of the dummy load resistor 13 has a value, the current value of the current flowing through the dummy load resistor 13 is smaller than the short-circuit current value, but the battery 7 is used less frequently as in the first embodiment. It is possible to prevent the generation of an oxide film in the internal electrode. Furthermore, since the current value of the current flowing through the dummy load resistor 13 is smaller than the short-circuit current value, it is possible to reduce the increase in internal impedance indicated by the steps of the solid line graph of FIG.
 即ち、実施の形態2にかかるサーボシステム200およびバッテリ7の寿命推定方法によれば、実施の形態1で得られる効果に加えて、図5の実線のグラフのステップで示される内部インピーダンスの上昇を減らしてバッテリ7の劣化をさらに抑える効果を得ることができる。 That is, according to the servo system 200 and the method for estimating the life of the battery 7 according to the second embodiment, in addition to the effect obtained in the first embodiment, the increase in internal impedance indicated by the steps of the solid line graph of FIG. The effect of further reducing deterioration of the battery 7 can be obtained.
実施の形態3.
 図7は、本発明の実施の形態3にかかるサーボシステム300の概略構成を示す図である。図8は、本発明の実施の形態3にかかる別のサーボシステム400の概略構成を示す図である。図7のサーボシステム300は、図1のサーボシステム100から記憶部11を除いて、コントローラ4に記憶部14を設けているが、それ以外の構成は図1のサーボシステム100の構成と同様である。図8のサーボシステム400は、図6のサーボシステム200から記憶部11を除いて、コントローラ4に記憶部14を設けているが、それ以外の構成は図6のサーボシステム200の構成と同様である。コントローラ4のハードウェア構成は、前述したように図2で示されるので、図7および図8の記憶部14の機能は、メモリ32または記憶装置33により実現される。
Embodiment 3 FIG.
FIG. 7 is a diagram showing a schematic configuration of a servo system 300 according to the third embodiment of the present invention. FIG. 8 is a diagram showing a schematic configuration of another servo system 400 according to the third embodiment of the present invention. The servo system 300 in FIG. 7 is provided with a storage unit 14 in the controller 4 except for the storage unit 11 from the servo system 100 in FIG. 1, but other configurations are the same as the configuration of the servo system 100 in FIG. 1. is there. The servo system 400 in FIG. 8 is provided with the storage unit 14 in the controller 4 except for the storage unit 11 from the servo system 200 in FIG. 6, but other configurations are the same as the configuration of the servo system 200 in FIG. 6. is there. Since the hardware configuration of the controller 4 is shown in FIG. 2 as described above, the function of the storage unit 14 in FIGS. 7 and 8 is realized by the memory 32 or the storage device 33.
 実施の形態1および実施の形態2においては、サーボ制御部5の演算装置31が求めたバッテリ7の内部インピーダンスをサーボ制御部5が有する記憶部11に保持させていた。しかし、実施の形態3にかかるサーボシステム300およびサーボシステム400においては、コントローラ4が備える記憶部14にサーボ制御部5が求めた内部インピーダンスを保持させる。そして、コントローラ4は、記憶部14に保持された内部インピーダンスを、コントローラ4にも接続された外部機器12に送信する。外部機器12は測定結果から求められたこの内部インピーダンスと保持している内部インピーダンスの経時変化の情報に基づいてバッテリ7の寿命、即ち残存使用可能時間を計算により推定する。これ以外の動作は、実施の形態1または実施の形態2と同様である。 In the first embodiment and the second embodiment, the internal impedance of the battery 7 obtained by the arithmetic device 31 of the servo control unit 5 is held in the storage unit 11 included in the servo control unit 5. However, in the servo system 300 and the servo system 400 according to the third embodiment, the storage unit 14 included in the controller 4 holds the internal impedance obtained by the servo control unit 5. Then, the controller 4 transmits the internal impedance held in the storage unit 14 to the external device 12 connected also to the controller 4. The external device 12 estimates the lifetime of the battery 7, that is, the remaining usable time by calculation based on the internal impedance obtained from the measurement result and information on the internal impedance held over time. The other operations are the same as those in the first or second embodiment.
 なお、サーボ制御部5が求めたバッテリ7の内部インピーダンスは、外部機器12のメモリ42または記憶装置43に保持させてもかまわない。さらには、バッテリ7の内部インピーダンスの計算自体を外部機器12が実行するようにしてもかまわない。これにより電流および電圧の測定以外の作業を外部機器12が全て実行することが可能になる。 Note that the internal impedance of the battery 7 obtained by the servo control unit 5 may be held in the memory 42 or the storage device 43 of the external device 12. Furthermore, the external device 12 may execute the calculation of the internal impedance of the battery 7 itself. As a result, the external device 12 can perform all operations other than the measurement of current and voltage.
 実施の形態3にかかるサーボシステム300,400およびバッテリの寿命推定方法によれば、内部インピーダンスをサーボシステム内に保持させなくて済むので、実施の形態1または実施の形態2で得られる効果に加えて、バッテリの寿命推定方法の自由度を高めることが可能となる。 According to the servo systems 300 and 400 and the battery life estimation method according to the third embodiment, it is not necessary to maintain the internal impedance in the servo system, so in addition to the effects obtained in the first or second embodiment. Thus, the degree of freedom of the battery life estimation method can be increased.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 エンコーダ、2 サーボモータ、3 電源生成回路、4 コントローラ、5 サーボ制御部、6 モータ駆動回路、7 バッテリ、8 バッテリ電圧検出部、9 外気温度センサ、10 バッテリ制御部、11,14 記憶部、12 外部機器、13 ダミー負荷抵抗、21,22,23,24,25 コネクタ、30,40 情報処理装置、31,41 演算装置、32,42 メモリ、33,43 記憶装置、34,46 通信装置、44 入力装置、45 表示装置、100,200,300,400 サーボシステム。 1 encoder, 2 servo motor, 3 power generation circuit, 4 controller, 5 servo control unit, 6 motor drive circuit, 7 battery, 8 battery voltage detection unit, 9 outside air temperature sensor, 10 battery control unit, 11, 14 storage unit, 12, external device, 13 dummy load resistance, 21, 22, 23, 24, 25 connector, 30, 40 information processing device, 31, 41 arithmetic device, 32, 42 memory, 33, 43 storage device, 34, 46 communication device, 44 input devices, 45 display devices, 100, 200, 300, 400 servo systems.

Claims (10)

  1.  モータ駆動信号に基づいてサーボモータを駆動するモータ駆動回路と、
     コントローラから送信された指令信号およびエンコーダが検出した前記サーボモータの絶対位置に基づいて、前記モータ駆動信号を生成するサーボ制御部と、
     前記エンコーダに外部電源からの電力が供給されない場合に前記エンコーダに電力を供給するバッテリと、
     前記エンコーダに前記外部電源からの電力が供給されている期間に、前記バッテリの短絡電流値および開放電圧値を測定するバッテリ制御部と、
     前記短絡電流値および前記開放電圧値に基づいて前記サーボ制御部が求めた前記バッテリの内部インピーダンスを保持する記憶部と、
     を備えたサーボシステムであって、
     前記サーボシステムに接続され、前記バッテリの内部インピーダンスの経時変化の情報を保持する外部機器が、前記記憶部が保持する前記内部インピーダンスと前記経時変化の情報とに基づいて前記バッテリの寿命を推定する
     ことを特徴とするサーボシステム。
    A motor drive circuit for driving the servo motor based on the motor drive signal;
    A servo control unit that generates the motor drive signal based on the command signal transmitted from the controller and the absolute position of the servomotor detected by the encoder;
    A battery for supplying power to the encoder when power from an external power source is not supplied to the encoder;
    A battery control unit that measures a short-circuit current value and an open-circuit voltage value of the battery during a period when power from the external power source is supplied to the encoder;
    A storage unit that holds the internal impedance of the battery obtained by the servo control unit based on the short-circuit current value and the open-circuit voltage value;
    A servo system comprising:
    An external device connected to the servo system and holding information on the change in internal impedance of the battery with time estimates the life of the battery based on the internal impedance held by the storage unit and the information on change over time. Servo system characterized by that.
  2.  モータ駆動信号に基づいてサーボモータを駆動するモータ駆動回路と、
     コントローラから送信された指令信号およびエンコーダが検出した前記サーボモータの絶対位置に基づいて、前記モータ駆動信号を生成するサーボ制御部と、
     前記エンコーダに外部電源からの電力が供給されない場合に前記エンコーダに電力を供給するバッテリと、
     前記バッテリからの電流を流すことが可能なダミー負荷抵抗と、
     前記エンコーダに前記外部電源からの電力が供給されている期間に、前記バッテリから前記ダミー負荷抵抗に電流を流させたときの電流値および前記バッテリの開放電圧値を測定するバッテリ制御部と、
     前記電流値および前記開放電圧値に基づいて前記サーボ制御部が求めた前記バッテリの内部インピーダンスを保持する記憶部と、
     を備えたサーボシステムであって、
     前記サーボシステムに接続され、前記バッテリの内部インピーダンスの経時変化の情報を保持する外部機器が、前記記憶部が保持する前記内部インピーダンスと前記経時変化の情報とに基づいて前記バッテリの寿命を推定する
     ことを特徴とするサーボシステム。
    A motor drive circuit for driving the servo motor based on the motor drive signal;
    A servo control unit that generates the motor drive signal based on the command signal transmitted from the controller and the absolute position of the servomotor detected by the encoder;
    A battery for supplying power to the encoder when power from an external power source is not supplied to the encoder;
    A dummy load resistor capable of flowing a current from the battery;
    A battery control unit that measures a current value and an open-circuit voltage value of the battery when a current is passed from the battery to the dummy load resistor during a period when power from the external power source is supplied to the encoder;
    A storage unit for holding the internal impedance of the battery obtained by the servo control unit based on the current value and the open-circuit voltage value;
    A servo system comprising:
    An external device connected to the servo system and holding information on the change in internal impedance of the battery with time estimates the life of the battery based on the internal impedance held by the storage unit and the information on change over time. Servo system characterized by that.
  3.  モータ駆動信号に基づいてサーボモータを駆動するモータ駆動回路と、
     コントローラから送信された指令信号およびエンコーダが検出した前記サーボモータの絶対位置に基づいて、前記モータ駆動信号を生成するサーボ制御部と、
     前記エンコーダに外部電源からの電力が供給されない場合に前記エンコーダに電力を供給するバッテリと、
     前記エンコーダに前記外部電源からの電力が供給されている期間に、前記バッテリの短絡電流値および開放電圧値を測定するバッテリ制御部と、
     を備えたサーボシステムであって、
     前記コントローラは、前記短絡電流値および前記開放電圧値に基づいて前記サーボ制御部が求めた前記バッテリの内部インピーダンスを保持する記憶部を有し、
     前記サーボシステムに接続され、前記バッテリの内部インピーダンスの経時変化の情報を保持する外部機器が、前記記憶部が保持する前記内部インピーダンスと前記経時変化の情報とに基づいて前記バッテリの寿命を推定する
     ことを特徴とするサーボシステム。
    A motor drive circuit for driving the servo motor based on the motor drive signal;
    A servo control unit that generates the motor drive signal based on the command signal transmitted from the controller and the absolute position of the servomotor detected by the encoder;
    A battery for supplying power to the encoder when power from an external power source is not supplied to the encoder;
    A battery control unit that measures a short-circuit current value and an open-circuit voltage value of the battery during a period when power from the external power source is supplied to the encoder;
    A servo system comprising:
    The controller has a storage unit that holds the internal impedance of the battery obtained by the servo control unit based on the short-circuit current value and the open-circuit voltage value;
    An external device connected to the servo system and holding information on the change in internal impedance of the battery with time estimates the life of the battery based on the internal impedance held by the storage unit and the information on change over time. Servo system characterized by that.
  4.  モータ駆動信号に基づいてサーボモータを駆動するモータ駆動回路と、
     コントローラから送信された指令信号およびエンコーダが検出した前記サーボモータの絶対位置に基づいて、前記モータ駆動信号を生成するサーボ制御部と、
     前記エンコーダに外部電源からの電力が供給されない場合に前記エンコーダに電力を供給するバッテリと、
     前記バッテリからの電流を流すことが可能なダミー負荷抵抗と、
     前記エンコーダに前記外部電源からの電力が供給されている期間に、前記バッテリから前記ダミー負荷抵抗に電流を流させたときの電流値および前記バッテリの開放電圧値を測定するバッテリ制御部と、
     を備えたサーボシステムであって、
     前記コントローラは、前記短絡電流値および前記開放電圧値に基づいて前記サーボ制御部が求めた前記バッテリの内部インピーダンスを保持する記憶部を有し、
     前記サーボシステムに接続され、前記バッテリの内部インピーダンスの経時変化の情報を保持する外部機器が、前記記憶部が保持する前記内部インピーダンスと前記経時変化の情報とに基づいて前記バッテリの寿命を推定する
     ことを特徴とするサーボシステム。
    A motor drive circuit for driving the servo motor based on the motor drive signal;
    A servo control unit that generates the motor drive signal based on the command signal transmitted from the controller and the absolute position of the servomotor detected by the encoder;
    A battery for supplying power to the encoder when power from an external power source is not supplied to the encoder;
    A dummy load resistor capable of flowing a current from the battery;
    A battery control unit that measures a current value and an open-circuit voltage value of the battery when a current is passed from the battery to the dummy load resistor during a period when power from the external power source is supplied to the encoder;
    A servo system comprising:
    The controller has a storage unit that holds the internal impedance of the battery obtained by the servo control unit based on the short-circuit current value and the open-circuit voltage value;
    An external device connected to the servo system and holding information on the change in internal impedance of the battery with time estimates the life of the battery based on the internal impedance held by the storage unit and the information on change over time. Servo system characterized by that.
  5.  前記バッテリの電圧値が規定された電圧値以下になると警告を発生するバッテリ電圧検出部をさらに備える
     ことを特徴とする請求項1から4のいずれか1項に記載のサーボシステム。
    The servo system according to any one of claims 1 to 4, further comprising a battery voltage detection unit that generates a warning when the voltage value of the battery becomes equal to or less than a specified voltage value.
  6.  外気温度を測定する外気温度センサをさらに備え、
     前記外部機器は、前記外気温度に基づいて前記経時変化の情報を変更する
     ことを特徴とする請求項1から4のいずれか1項に記載のサーボシステム。
    An outside temperature sensor for measuring the outside temperature,
    The servo system according to any one of claims 1 to 4, wherein the external device changes the information on the temporal change based on the outside air temperature.
  7.  モータ駆動信号に基づいてサーボモータを駆動するモータ駆動回路と、コントローラから送信された指令信号およびエンコーダが検出した前記サーボモータの絶対位置に基づいて、前記モータ駆動信号を生成するサーボ制御部と、前記エンコーダに外部電源からの電力が供給されない場合に前記エンコーダに電力を供給するバッテリと、を備えたサーボシステムにおけるバッテリの寿命推定方法であって、
     前記エンコーダに前記外部電源からの電力が供給されている期間に、前記バッテリの短絡電流値および開放電圧値を測定するステップと、
     前記短絡電流値および前記開放電圧値に基づいて前記バッテリの内部インピーダンスを求めるステップと、
     前記内部インピーダンスと前記内部インピーダンスの経時変化の情報とに基づいて前記バッテリの寿命を推定するステップと、
     を備えた
     ことを特徴とするバッテリの寿命推定方法。
    A motor drive circuit that drives the servo motor based on the motor drive signal; a servo control unit that generates the motor drive signal based on the command signal transmitted from the controller and the absolute position of the servo motor detected by the encoder; A battery for supplying power to the encoder when power from an external power source is not supplied to the encoder, and a battery life estimation method in a servo system comprising:
    Measuring a short-circuit current value and an open-circuit voltage value of the battery during a period in which power from the external power supply is supplied to the encoder;
    Obtaining an internal impedance of the battery based on the short-circuit current value and the open-circuit voltage value;
    Estimating the lifetime of the battery based on the internal impedance and information on changes in the internal impedance over time;
    A battery life estimation method comprising:
  8.  モータ駆動信号に基づいてサーボモータを駆動するモータ駆動回路と、コントローラから送信された指令信号およびエンコーダが検出した前記サーボモータの絶対位置に基づいて、前記モータ駆動信号を生成するサーボ制御部と、前記エンコーダに外部電源からの電力が供給されない場合に前記エンコーダに電力を供給するバッテリと、前記バッテリからの電流を流すことが可能なダミー負荷抵抗と、を備えたサーボシステムにおけるバッテリの寿命推定方法であって、
     前記エンコーダに前記外部電源からの電力が供給されている期間に、前記バッテリから前記ダミー負荷抵抗に電流を流させたときの電流値および前記バッテリの開放電圧値を測定するステップと、
     前記電流値および前記開放電圧値に基づいて前記バッテリの内部インピーダンスを求めるステップと、
     前記内部インピーダンスと前記内部インピーダンスの経時変化の情報とに基づいて前記バッテリの寿命を推定するステップと、
     を備えた
     ことを特徴とするバッテリの寿命推定方法。
    A motor drive circuit that drives the servo motor based on the motor drive signal; a servo control unit that generates the motor drive signal based on the command signal transmitted from the controller and the absolute position of the servo motor detected by the encoder; A battery life estimation method in a servo system comprising: a battery that supplies power to the encoder when power from an external power source is not supplied to the encoder; and a dummy load resistor that can flow current from the battery Because
    Measuring the current value and the open-circuit voltage value of the battery when a current is passed from the battery to the dummy load resistor during a period when power from the external power source is supplied to the encoder;
    Obtaining an internal impedance of the battery based on the current value and the open-circuit voltage value;
    Estimating the lifetime of the battery based on the internal impedance and information on changes in the internal impedance over time;
    A battery life estimation method comprising:
  9.  前記サーボシステムは、前記バッテリの電圧値が規定された電圧値以下になると警告を発生するバッテリ電圧検出部をさらに備える
     ことを特徴とする請求項7または8に記載のバッテリの寿命推定方法。
    9. The battery life estimation method according to claim 7, wherein the servo system further includes a battery voltage detection unit that generates a warning when a voltage value of the battery becomes equal to or less than a specified voltage value.
  10.  前記サーボシステムは、外気温度を測定する外気温度センサをさらに備え、
     前記外気温度に基づいて前記経時変化の情報を変更するステップをさらに備える
     ことを特徴とする請求項7または8に記載のバッテリの寿命推定方法。
    The servo system further includes an outside air temperature sensor for measuring outside air temperature,
    The battery life estimation method according to claim 7, further comprising a step of changing the information on the change with time based on the outside air temperature.
PCT/JP2015/055207 2015-02-24 2015-02-24 Servo system and method of estimating service life of battery WO2016135850A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/055207 WO2016135850A1 (en) 2015-02-24 2015-02-24 Servo system and method of estimating service life of battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/055207 WO2016135850A1 (en) 2015-02-24 2015-02-24 Servo system and method of estimating service life of battery

Publications (1)

Publication Number Publication Date
WO2016135850A1 true WO2016135850A1 (en) 2016-09-01

Family

ID=56788254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055207 WO2016135850A1 (en) 2015-02-24 2015-02-24 Servo system and method of estimating service life of battery

Country Status (1)

Country Link
WO (1) WO2016135850A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019054020A1 (en) * 2017-09-15 2019-03-21 パナソニックIpマネジメント株式会社 Battery management device, battery system, and battery management method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04355387A (en) * 1991-05-31 1992-12-09 Nec Corp Capacity tester for storage battery
JPH09115554A (en) * 1995-10-23 1997-05-02 Japan Storage Battery Co Ltd Residual service life estimating method of negative electrode absorbing type sealed lead-acid battery
JP2000329583A (en) * 1999-05-21 2000-11-30 Matsushita Electric Ind Co Ltd Absolute encoder
JP2001208813A (en) * 2000-01-25 2001-08-03 Shin Kobe Electric Mach Co Ltd System for determining residual life of lead-acid battery for motor-driven forklift
JP2010139260A (en) * 2008-12-09 2010-06-24 Hitachi Ltd System of estimating remaining life of secondary battery and method for estimating remaining life thereof
JP2011220695A (en) * 2010-02-10 2011-11-04 Ministry Of National Defense Chung Shan Inst Of Science & Technology State detection method of battery module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04355387A (en) * 1991-05-31 1992-12-09 Nec Corp Capacity tester for storage battery
JPH09115554A (en) * 1995-10-23 1997-05-02 Japan Storage Battery Co Ltd Residual service life estimating method of negative electrode absorbing type sealed lead-acid battery
JP2000329583A (en) * 1999-05-21 2000-11-30 Matsushita Electric Ind Co Ltd Absolute encoder
JP2001208813A (en) * 2000-01-25 2001-08-03 Shin Kobe Electric Mach Co Ltd System for determining residual life of lead-acid battery for motor-driven forklift
JP2010139260A (en) * 2008-12-09 2010-06-24 Hitachi Ltd System of estimating remaining life of secondary battery and method for estimating remaining life thereof
JP2011220695A (en) * 2010-02-10 2011-11-04 Ministry Of National Defense Chung Shan Inst Of Science & Technology State detection method of battery module

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019054020A1 (en) * 2017-09-15 2019-03-21 パナソニックIpマネジメント株式会社 Battery management device, battery system, and battery management method
CN111066195A (en) * 2017-09-15 2020-04-24 松下知识产权经营株式会社 Battery management device, battery system and battery management method
JPWO2019054020A1 (en) * 2017-09-15 2020-09-10 パナソニックIpマネジメント株式会社 Battery management system, battery system, and battery management method
JP7065435B2 (en) 2017-09-15 2022-05-12 パナソニックIpマネジメント株式会社 Battery management system, battery system, and battery management method
US11448707B2 (en) 2017-09-15 2022-09-20 Panasonic Intellectual Property Management Co., Ltd. Battery management device, battery system, and battery management method for estimating transition of AC resistance value of secondary battery
CN111066195B (en) * 2017-09-15 2024-02-02 松下知识产权经营株式会社 Battery management device, battery system, and battery management method

Similar Documents

Publication Publication Date Title
JP6564116B2 (en) Battery control device, battery pack
CN110515002B (en) Battery capacity monitor
US9954384B2 (en) Instrumented super-cell
EP3133714A1 (en) Battery monitoring method and apparatus
TW201606328A (en) Battery remaining power predicting device and battery pack
JP2016208773A (en) Motor controller including life prediction means of smoothing capacitor
WO2010125733A1 (en) Current control apparatus and protection apparatus
CN109795368B (en) Power supply control system and power supply control method
JP2006312528A (en) Electric power storage device of elevator
JP2018503210A (en) Computer power supply apparatus having fan control circuit for cooling standby power supply unit when computer is turned off and control method thereof
JP5428810B2 (en) Remaining life estimation method and remaining life estimation system
KR20120079674A (en) Apparatus and method for managing battery based on differential soc estimation and battery pack using it
JP5454520B2 (en) Encoder and encoder system
WO2016135850A1 (en) Servo system and method of estimating service life of battery
TW201814309A (en) State-of-charge indication method and related system
JP7231346B2 (en) Method for determining lifetime of power storage system, and power storage system
US10991169B2 (en) Method for determining a mean time to failure of an electrical device
JP2018050395A (en) Inverter apparatus
JP6652998B1 (en) Information processing apparatus and control method
KR20180036237A (en) Cell balancing control apparatus and method
CN112346552A (en) Power supply monitoring method and device, computer equipment and storage medium
JP2015175759A (en) current measuring device
JP2016181127A (en) Usb fan device having usb power supply protection function
JP2008148495A (en) System, method and program for power failure, and uninterruptible power supply
JP2022140892A (en) Electric device and method of determining abnormality in electric device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15883148

Country of ref document: EP

Kind code of ref document: A1