WO2016133056A1 - Infrared light-permeable polyester resin composition - Google Patents

Infrared light-permeable polyester resin composition Download PDF

Info

Publication number
WO2016133056A1
WO2016133056A1 PCT/JP2016/054328 JP2016054328W WO2016133056A1 WO 2016133056 A1 WO2016133056 A1 WO 2016133056A1 JP 2016054328 W JP2016054328 W JP 2016054328W WO 2016133056 A1 WO2016133056 A1 WO 2016133056A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester resin
resin composition
mass
carboxylic acid
acid
Prior art date
Application number
PCT/JP2016/054328
Other languages
French (fr)
Japanese (ja)
Inventor
卓也 下拂
知英 中川
安井 淳一
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2016512136A priority Critical patent/JPWO2016133056A1/en
Publication of WO2016133056A1 publication Critical patent/WO2016133056A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a polyester resin composition suitable for use as a design member (particularly a lamp member) having excellent infrared light transmittance, good heat resistance, and low gas properties.
  • Polybutylene terephthalate resin is widely used as an injection-molded product in the fields of automobile parts, mechanical parts, electrical / communication parts, etc. by utilizing its excellent injection moldability, mechanical properties, heat resistance, electrical properties, chemical resistance, etc. It's being used. Furthermore, it is excellent in mold transferability, and can be suitably used for lamp members for automotive extension applications that require particularly good appearance. In addition, it is necessary to highly control the heat resistance of the resin and the suppression of gas generation (lowmonyy) during molding.
  • LED lights are mounted on headlamps of luxury cars and the like, and lamp designs have begun to be renewed.
  • the reflector type light reflected from the light source is reflected by the reflector
  • the projector type light source light is condensed and irradiated on the front lens.
  • the sunlight collection is such that the condensing part becomes very hot and scratches are caused.
  • Patent Documents 1 to 3 disclose polybutylene terephthalate or a resin comprising polybutylene terephthalate and a polybutylene terephthalate copolymer, polycarbonate resin, styrene acrylonitrile resin, 1,4-cyclohexanediene.
  • a resin composition comprising an amorphous resin such as a polyester resin containing a methanol component is disclosed.
  • these technologies are useful for increasing the infrared light transmittance of polybutylene terephthalate resin, but the thermal deformation temperature is remarkably lowered by the addition of amorphous resin. It is difficult to use.
  • Patent Document 4 discloses a polyethylene terephthalate resin composition containing a pigment that does not contain carbon black but is blackened by color matching. It is disclosed. According to the present invention, the use of a non-carbon black pigment can reduce the temperature corresponding to the amount of heat stored due to the infrared light absorption of carbon black, but its temperature rise inhibiting effect is small and greatly improved. There is room.
  • JP 2004-315805 A Japanese Patent No. 5034217 JP 2008-106217 A JP 2014-125588 A Special table 2014-512420 gazette
  • an object of the present invention is to provide a polyester resin composition suitable for use as a design member (especially a lamp member) having excellent infrared light transmittance, good heat resistance, and low gas properties. is there.
  • the present invention has the following configuration.
  • the average value of the transmittance at a wavelength of 800 to 1100 nm of a 2 mm-thick flat plate obtained from the polyester resin composition is 20% or more and 75% or less
  • the thermal deformation temperature (0.45 MPa) [2]
  • the polyester resin (A) contains the polybutylene terephthalate resin (a) and the polyethylene terephthalate resin (b) in a mass ratio of 100: 0 to 50:50 [ 1] The polyester resin composition described in 1].
  • the metal constituting the organic carboxylic acid alkali metal salt (B) having 3 to 40 carbon atoms is one or more selected from lithium, sodium and potassium [1] Or the polyester resin composition as described in [2].
  • the organic carboxylic acid constituting the alkali metal salt of organic carboxylic acid having 3 to 40 carbon atoms (B) is an aliphatic carboxylic acid having 3 to 20 carbon atoms, [1] to [3 ]
  • the transmittance at a wavelength of 300 to 700 nm of a 2 mm-thick flat plate obtained from the polyester resin composition containing the colorant (D) is substantially 0% [1] to [4]
  • [6] The polyester resin composition according to [5], including a colorant (D), and the polyester resin composition satisfies the following requirement (3).
  • Color-L represents the hue L * value by the LIE * L * a * b * system of the CIE color difference system of the polyester resin composition.
  • Color-L represents the hue L * value by the LIE * L * a * b * system of the CIE color difference system of the polyester resin composition.
  • the infrared light transmittance is dramatically increased while maintaining high crystallinity. Therefore, good heat resistance (high heat distortion temperature) can be realized without adding a reinforcing filler such as talc, and both high infrared light transmittance and excellent heat resistance can be achieved. Furthermore, since a resin molded body in which gas generation is also highly controlled can be obtained, it is excellent in fogging resistance and it is possible to reduce mold contamination during injection molding.
  • the polyester resin (A) that can be used in the present invention is preferably a polyester resin having a dicarboxylic acid component and a diol component as constituent units.
  • the dicarboxylic acid component those having an aromatic dicarboxylic acid as a main component are preferable.
  • the main component is usually 70 mol% or more, preferably 80 mol% or more, more preferably 90 mol% or more, and particularly preferably 95 mol% or more with respect to all dicarboxylic acid units.
  • aromatic dicarboxylic acids aliphatic dicarboxylic acids can be used.
  • Aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, orthophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2, Fragrances such as 7-naphthalenedicarboxylic acid, diphenyl-4,4′-dicarboxylic acid, 4,4′-biphenyl ether dicarboxylic acid, 1,2-bis (phenoxy) ethane-p, p′-dicarboxylic acid, anthracene dicarboxylic acid Among these, terephthalic acid, isophthalic acid, and 2,6-naphthalenedicarboxylic acid are preferable.
  • aliphatic dicarboxylic acid examples include oxalic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, dodecanedioic acid, dimer acid, and cyclohexanedicarboxylic acid, which usually have 2 to 40 carbon atoms.
  • examples include chain or alicyclic dicarboxylic acids.
  • the above dicarboxylic acid components can be used alone or in admixture of two or more.
  • a hydroxycarboxylic acid component or a lactone component may be copolymerized. The amount used is preferably 30 mol% or less, more preferably 20 mol% or less, and still more preferably 10 mol% or less, based on all monomer components.
  • diol component examples include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, and 3-methyl-1,5.
  • -Pentanediol 2-methyl-1,5-pentanediol, 2,2-diethyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propanediol, 1,9-nonanediol
  • Examples include 1,10-decanediol, 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,2-cyclohexanedimethanol and the like. Of these, ethylene glycol, 1,3-propanediol, and 1,4-butanediol are preferable.
  • polyester resins (A) include polybutylene terephthalate, polyethylene terephthalate, polytrimethylene terephthalate, polybutylene naphthalate, and polyethylene naphthalate.
  • the polyester resin (A) preferably has an intrinsic viscosity (IV) of 0.36 to 1.60 dl / g when an o-chlorophenol solution is measured at 25 ° C., and is 0.52 to 1.25 dl. / G is more suitable, more preferred is 0.58 to 1.12 dl / g, and most preferred is 0.62 to 1.02 dl / g. It is.
  • the mechanical properties and moldability of the polyester resin composition of the present invention are improved.
  • polytrimethylene terephthalate resin (c) and polybutylene naphthalate resin (d) as a polyester resin (A).
  • the polytrimethylene terephthalate resin (c) can be used as an alternative to the polyethylene terephthalate resin (b), and the polybutylene naphthalate resin (d) can be used as an alternative to the polybutylene terephthalate resin (a). is there.
  • the polybutylene terephthalate resin (a) that can be used in the present invention is a polycondensation reaction mainly comprising terephthalic acid or an ester-forming derivative thereof and 1,4-butanediol or an ester-forming derivative thereof. It is a polymer obtained by a general polymerization method.
  • the polymer is preferably a polymer having a butylene terephthalate repeating unit of 80 mol% or more, more preferably 90 mol% or more, still more preferably 95 mol% or more, and most preferably 100 mol%.
  • Other copolymer components may be included in a range not impairing the characteristics, for example, about 20% by mass or less.
  • copolymers examples include polybutylene (terephthalate / isophthalate), polybutylene (terephthalate / adipate), polybutylene (terephthalate / sebacate), polybutylene (terephthalate / decanedicarboxylate), polybutylene (terephthalate / naphthalate), poly (butylene) / Ethylene) terephthalate, etc., may be used alone or in combination of two or more.
  • the polybutylene terephthalate resin (a) that can be used in the present invention preferably has an intrinsic viscosity (IV) of 0.36 to 1.60 dl / g when an o-chlorophenol solution is measured at 25 ° C. More preferably in the range of 0.52 to 1.25 dl / g, more preferably in the range of 0.58 to 1.12 dl / g, and 0.62 to 1.02 dl / g. Those in the g range are most preferred.
  • the intrinsic viscosity of (a) is 0.36 to 1.60 dl / g, the mechanical properties and moldability of the polyester resin composition of the present invention are improved.
  • the polybutylene naphthalate resin (d) that can be used in the present invention is the same as the polybutylene terephthalate resin (a).
  • the polyethylene terephthalate resin (b) that can be used in the present invention is a conventional polymerization method such as a polycondensation reaction mainly comprising terephthalic acid or an ester-forming derivative thereof and ethylene glycol or an ester-forming derivative thereof.
  • the resulting polymer is preferably a polymer having an ethylene terephthalate repeating unit of 80 mol% or more, more preferably 90 mol% or more, still more preferably 95 mol% or more, and most preferably 100 mol%.
  • Other copolymer components may be included in a range not impairing the characteristics, for example, about 20% by mass or less.
  • copolymers examples include polyethylene (terephthalate / isophthalate), polyethylene (terephthalate / adipate), polyethylene (terephthalate / sebacate), polyethylene (terephthalate / decanedicarboxylate), polyethylene (terephthalate / naphthalate), poly (ethylene) / Cyclohexanedimethyl) / terephthalate, poly (butylene / ethylene) terephthalate, and the like, and may be used alone or in combination of two or more.
  • the polyethylene terephthalate resin (b) the molding shrinkage of the resin composition can be controlled.
  • the polyethylene terephthalate resin (b) that can be used in the present invention preferably has an intrinsic viscosity (IV) of 0.36 to 1.60 dl / g when an o-chlorophenol solution is measured at 25 ° C. More preferably in the range of 0.45 to 1.35 dl / g, more preferably in the range of 0.50 to 1.20 dl / g, and 0.55 to 1.05 dl / g. Those in the range are most preferable.
  • the intrinsic viscosity of (b) is 0.36 to 1.60 dl / g, the mechanical properties and moldability of the polyester resin composition of the present invention are improved.
  • the polytrimethylene terephthalate resin (c) that can be used in the present invention is the same as the polyethylene terephthalate resin (b).
  • the total amount of the polybutylene terephthalate resin (a) and the polyethylene terephthalate resin (b) in the polyester resin (A) is preferably 80% by mass or more, more preferably 90% by mass or more, and 95% by mass or more. Is more preferable, and may be 100% by mass.
  • polybutylene terephthalate resin (a) means “at least one of polybutylene terephthalate resin (a) and polybutylene naphthalate resin (d)”, “polyethylene terephthalate resin (b)” , “At least one of polyethylene terephthalate resin (b) and polytrimethylene terephthalate resin (c)”.
  • the polyester resin composition of the present invention contains 0.1 to 1 part by mass of an organic metal carboxylic acid alkali metal salt (B) having 3 to 40 carbon atoms with respect to 100 parts by mass of the polyester resin (A).
  • the organic carboxylic acid alkali metal salt (B) is less than 0.1 part by mass, the infrared light transmittance of the polyester resin composition tends to decrease.
  • the organic carboxylic acid alkali metal salt (B) is blended in an amount exceeding 1 part by mass, the polyester resin composition is significantly decomposed by the catalytic action of the alkali metal salt, resulting in a decrease in molecular weight and mechanical strength.
  • the blending amount of the organic carboxylic acid alkali metal salt (B) is preferably 0.1 to 0.7 parts by mass, and 0.15 to 0.5 parts by mass with respect to 100 parts by mass of the polyester resin (A). It is more preferable.
  • the organic carboxylic acid alkali metal salt (B) having 3 to 40 carbon atoms used in the present invention is an alkali metal salt of an aliphatic, alicyclic or aromatic carboxylic acid having 3 to 40 carbon atoms.
  • an alkali metal sodium, potassium, and lithium are preferable.
  • An aliphatic carboxylic acid is a compound in which a linear or branched aliphatic group has a carboxyl group, and an unsaturated group, an alicyclic group, an aromatic group or a hydroxyl group, a phosphate ester group is part of the bond. It may have other substituents such as.
  • aliphatic carboxylic acids propionic acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, lauric acid, mytilic acid, palmitic acid, margaric acid, stearic acid, oleic acid, linoleic acid, Montanic acid and the like are preferable, and among alkali metal salts, sodium salt is preferable in terms of solubility in polyester resin and good crystal nucleation.
  • the organic carboxylic acid constituting the organic carboxylic acid alkali metal salt (B) having 3 to 40 carbon atoms is an aliphatic carboxylic acid having 3 to 20 carbon atoms from the viewpoint of melting property and compatibility with the polyester resin.
  • An aliphatic carboxylic acid having 6 to 20 carbon atoms is more preferable.
  • the aliphatic carboxylic acid metal salt having less than 14 carbon atoms is preferable in that the infrared light transmittance can be improved with a small amount.
  • the alkali metal carboxylic acid metal salt (B) acts on the polyester resin (A) as a crystal nucleating agent to form microcrystals with a uniform size, thereby increasing the infrared light transmittance. Further, the alkali metal salt of organic carboxylic acid (B) changes the carboxyl group of the polyester resin (A) to an alkali metal base by an ion exchange reaction, lowers the mobility of the molecular chain terminal, and inhibits further crystallization, It is considered that the organic carboxylic acid is liberated as the ion exchange reaction proceeds.
  • the organic carboxylic acid alkali metal salt (B) can effectively improve the infrared light transmittance with a small amount of blending compared to the alkali metal salt other than the organic carboxylic acid. This is because the organic carboxylic acid alkali metal salt (B) has a relatively small molecular weight, so when the same part by mass is added, the number of molecules increases and crystallization tends to occur, and the molecular size is relatively small. Therefore, this is considered to be due to the fact that the crystal size of the polyester resin (A) generated using this as a crystal nucleus is small (that is, the crystal is difficult to grow and microcrystallizes).
  • Two or more of the above organic carboxylic acid alkali metal salts (B) may be used in combination.
  • Use of a compound having 3 to 14 carbon atoms and a compound having 14 or more carbon atoms is preferred in that the solubility of those having 3 to 14 carbon atoms is improved and the infrared light transmittance is easily improved.
  • the polyester resin composition of the present invention contains 0.05 to 3 parts by mass of the polycarbodiimide compound (C) with respect to 100 parts by mass of the polyester resin (A).
  • the polycarbodiimide compound (C) within this range, it is possible to efficiently exhibit the thickening effect and the trapping effect of the gasifying component such as the organic carboxylic acid to be liberated.
  • the melt viscosity is increased due to the thickening effect and the shear stress is increased, whereby the dispersion of the alkali metal salt of the organic carboxylic acid (B) can be promoted.
  • the growth of crystals is suppressed by the thickening effect, and it is possible to promote the microcrystallization with the organic metal carboxylate (B). Furthermore, excellent low gas properties can be realized by the trapping effect of gasifying components such as free organic carboxylic acids and free hydroxyl group-containing compounds. If the polycarbodiimide compound (C) is more than 3 parts by mass, gelation may be caused by reaction with the polyester resin (A), or infrared light transmittance may be reduced due to compatibility problems.
  • the blending amount of the polycarbodiimide compound (C) is preferably 0.07 parts by mass, more preferably 0.08 parts by mass with respect to 100 parts by mass of the polyester resin (A). It is more preferably 1 part by mass, particularly preferably 0.15 part by mass, and the upper limit is preferably 2 parts by mass, more preferably 1 part by mass, and 0.5 parts by mass. More preferably.
  • the polycarbodiimide compound (C) can have a carboxylic acid reactive group and a hydroxyl group reactive group in one molecule.
  • a compound having a carboxylic acid reactive group and a hydroxyl group reactive group in one molecule is a free acid or a free hydroxyl group-containing compound produced by decomposition of an organic carboxylic acid alkali metal salt (B) or a fatty acid ester compound, and a subsequent heat treatment. It can capture the free acid and free hydroxyl group-containing compound generated during the process and use at high temperature, and can effectively prevent volatilization. Since free acids and free hydroxyl group-containing compounds greatly affect the generation of gas, their capture is effective in preventing volatilization. In particular, free carboxylic acid volatilizes at a relatively low temperature, and the volatiles crystallize, which often causes fogging. Therefore, capturing the free carboxylic acid is extremely important.
  • Examples of the functional group that reacts with the carboxylic acid include a glycidyl group, an oxazoline group, an oxetane group, and a carbodiimide group.
  • general glycidyl group-containing compounds, oxazoline group-containing compounds, and oxetane group-containing compounds do not react quickly, and it may be difficult to coexist with a functional group that reacts with a hydroxyl group. Since it is intense, it is often difficult to use it in applications requiring fogging resistance.
  • carbodiimide compounds have a faster reaction than glycidyl groups, oxazoline groups, and oxetane groups, and are very preferably used for capturing free carboxylic acids.
  • the functional group that reacts with a hydroxyl group is different from the functional group that reacts with a carboxylic acid, and examples thereof include an isocyanate group and an acid anhydride group, and an isocyanate group is particularly preferred from the viewpoint of reactivity.
  • the compound having a carboxylic acid group-reactive group and a hydroxyl group-reactive group in one molecule is most preferably a compound having a carbodiimide group and an isocyanate group in one molecule.
  • the merit of containing a carboxylic acid group-reactive group and a hydroxyl group-reactive group in one molecule is that these functional groups can easily react with either a thermoplastic resin or a free acid or a free hydroxyl group-containing compound, and have a large molecular weight. It is that the volatilization of the fatty acid ester decomposition product can be significantly reduced by connecting the plastic resin and the decomposition product with a reactive compound. Therefore, in the case of the thermoplastic polyester resin containing a carboxylic acid as in the present invention, effects such as hydrolysis inhibition can be imparted, and effects such as improved processability as a resin composition can be exhibited.
  • Polycarbodiimide is a compound having two or more —N ⁇ C ⁇ N— structures in one molecule, and a known one prepared by decarbonation of a diisocyanate compound can be used (US Pat. No. 2,941,956, (See Japanese Patent Publication No. 47-3279, J. Org. Chem., 28, 2069-2075 (1963), Chemical Review 1981, Vol. 81, No. 4, 619-621).
  • diisocyanate compound examples include aliphatic or alicyclic isocyanate compounds such as hexamethylene diisocyanate, dicyclohexylmethane diisocyanate, cyclohexane-1,4-diisocyanate, isophorone diisocyanate, and methylcyclohexane diisocyanate, 4,4-diphenylmethane diisocyanate, 4,4- Diphenyldimethylmethane diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,5-naphthylene diisocyanate, xylylene diisocyanate, tetramethylxylylene Range isocyanate, 1,3,5-triisopropylphenylene-2,4-diisocyanate, etc.
  • Family isocyanate compounds may be
  • the polycarbodiimide compound (C) may have a branched structure, and a functional group other than a carbodiimide group or an isocyanate group may be introduced by copolymerization. Further, a part or all of the terminal isocyanate may be blocked.
  • monoisocyanate compounds such as phenyl isocyanate, tris isocyanate, dimethylphenyl isocyanate, cyclohexyl isocyanate, butyl isocyanate, naphthyl isocyanate, -OH group, -COOH group, -SH group, -NH-R (R is hydrogen)
  • R is hydrogen
  • the merit of blocking part or all of the terminal isocyanate is that the reaction in the compound can be easily controlled, and the degree of polymerization and melt viscosity can be controlled.
  • a certain amount or more of a polycarbodiimide compound in which the terminal isocyanate is not blocked is added to the polyester resin (A)
  • the melt viscosity may be remarkably increased due to thickening, and the addition amount may be limited.
  • the amount of polycarbodiimide compound added is limited, the expected effect may not be obtained.
  • it can be solved by using a polycarbodiimide compound in which a terminal isocyanate is blocked. Even if all of the terminal isocyanates are blocked, the effect of capturing the free carboxylic acid due to the high reactivity of the carbodiimide group is high, so that a sufficiently high low gas property can be obtained.
  • the Nisshinbo Carbodilite series has an aliphatic or alicyclic structure and is preferably used.
  • the average transmittance of a 2 mm thick flat plate obtained from the polyester resin composition at a wavelength of 800 to 1100 nm is 20% or more and 75% or less. is there. Details of the transmittance measurement are as described in the Examples section, but using a 2 mm thick flat plate obtained by injection molding the polyester resin composition at a mold temperature of 60 ° C., a spectrophotometer was used. Measured. The average value is a value obtained by dividing the sum of transmittance at each wavelength by the number of measurements in the range of 800 to 1100 nm. The number of measurements depends on the sampling pitch.
  • the sampling pitch is 1 nm
  • transmittance data is obtained every 1 nm, such as 800, 801, 802,..., 1098, 1099, 1100 nm, and the number of measurements is 301. Therefore, in this case, the average value of the transmittance at a wavelength of 800 to 1100 nm is obtained by (the sum of the transmittance at each wavelength / 301).
  • the average value of the transmittance at a wavelength of 800 to 1100 nm is in this range, even if sunlight is collected, it is difficult to reach a high temperature.
  • a feature of the polyester composition of the present invention is that the infrared light transmittance is remarkably improved while maintaining high crystallinity.
  • the average value of transmittance at a wavelength of 800 to 1100 nm is preferably 25% or more, and more preferably 70% or less.
  • the thermal deformation temperature at a load of 0.45 MPa is 150 ° C. or higher.
  • the heat distortion temperature is measured as described in the Examples section. When the heat distortion temperature is less than 150 ° C., the heat resistance is insufficient, and in particular, it may not be used for applications requiring heat resistance. When the heat distortion temperature is 150 ° C. or higher, it can be said that the polyester resin composition satisfies the heat resistance as a lamp member resin.
  • the heat distortion temperature is preferably 155 ° C. or higher. In that case, the heat resistance as a lamp member resin is more highly satisfied, and 160 ° C. or higher is more preferable.
  • a technique for adding an inorganic filler such as talc is known as a technique for increasing the heat distortion temperature.
  • high heat resistance heat distortion temperature
  • This is considered to be realized by the effect of the alkali metal salt of organic carboxylic acid (B) because it is possible to form microcrystals of uniform size while maintaining or increasing the crystallinity of the resin composition.
  • the haze value of the glass plate after the fogging test can be 5% or less. According to the present invention, gas generation can be effectively suppressed and excellent fogging resistance can be achieved. When the amount of gas generated is large and the haze value of the glass plate after the fogging test (160 ° C.) exceeds 5%, there is a practical problem of fogging as various lamp parts. In addition, the mold is likely to be contaminated during injection molding, which may adversely affect quality and productivity.
  • the fogging test can be performed by the following method. Cut out a small piece of about 40 mm x 40 mm from an injection molded product (thickness 2 mm), put a total of 10 g in a glass tube (for example, ⁇ 65 x 80 mm) with an aluminum foil covered, and place it on a hot plate. set. Further, the glass tube is covered with a slide glass (for example, 78 mm ⁇ 76 mm ⁇ thickness 1 mm) so that there is no gap between the glass tube, and then heat treated at 160 ° C. for 24 hours. Deposits due to decomposition products sublimated from the resin composition are deposited). The haze value of the slide glass is measured using a haze meter or the like.
  • the polyester resin composition of the present invention can contain a colorant (D).
  • a pigment is used as the colorant, the infrared transmittance is remarkably lowered. Therefore, it is preferable to use an infrared light transmitting dye.
  • the infrared light transmitting dye known dyes can be used, and one kind or a mixture of two or more kinds of dyes may be used.
  • the dye may be added directly to the resin at the time of compounding, or may be added as a master batch. From the viewpoint of dispersibility and handling properties, it is preferable to add them in a master batch.
  • the color is preferably black from the viewpoint of design.
  • the dye that can be added to the polyester resin composition examples include dyes such as quinoline compounds, anthraquinone compounds, and perinone compounds. These have good heat resistance and are hardly thermally decomposed during compounding or injection molding of the polyester resin composition.
  • the molecular weight per molecule of the infrared light transmitting dye is preferably 350 or more, more preferably 380 or more, and further preferably 400 or more.
  • the melting point is preferably 150 ° C. or higher, more preferably 180 ° C. or higher, and further preferably 200 ° C. or higher. It is sufficient that either the molecular weight or the melting point satisfy this range, and it is particularly preferable that both the molecular weight and the melting point satisfy this range.
  • the molecular weight and melting point of each dye alone preferably satisfy the above ranges.
  • the molecular weight and the melting point satisfy the above ranges, there are cases in which the dye is also volatilized due to the vaporization of the gasification component due to the high interaction with the gasification component contained in the resin. is there.
  • anthraquinone compounds and perinone compounds can be preferably used from the viewpoint of fogging properties.
  • the colorant (D) is contained, the content thereof is preferably 0.05 to 3 parts by mass with respect to 100 parts by mass of the polyester resin (A).
  • the content of the colorant (D) is more preferably 0.1 to 2 parts by mass, and further preferably 0.2 to 1 part by mass.
  • the content as a colorant is usually about 5 to 20% by mass (especially in the case of dyes), although it depends on the type of base resin and colorant used. Often.
  • the hue of the master batch pellet is the hue L * value (Color-) according to the L * a * b * system of the CIE color difference system.
  • L is preferably 22 or less
  • hue a * value (Color-a) is from ⁇ 1.5 to 1.5
  • hue b * value (Color-b) is preferably from ⁇ 1.5 to 1.5.
  • Color of the masterbatch pellets is more preferably, a hue L * value according to the L * a * b * system of CIE color difference system (Color-L) is 21 or less, hue a * value (Color-a) is -1 1 or less, hue b * value (Color-b) is ⁇ 1 or more and 1 or less (both measured values by SCE method).
  • the transmittance at a wavelength of 300 to 700 nm of a 2 mm-thick flat plate obtained from the polyester resin composition is preferably substantially 0%.
  • the transmittance measurement at this wavelength is the same as described above. “Substantially” means that noise during measurement is not taken into consideration. Usually, when it is 0 ⁇ 0.05%, it can be regarded as substantially 0%. In the present invention, the fact that the transmittance at a wavelength of 300 to 700 nm is in the range of 0 ⁇ 0.05% is substantially 0%.
  • the transmittance at a wavelength of 300 to 700 nm is substantially 0% because the visible light hiding property is high and the design property is high.
  • the transmittance at a wavelength of 300 to 700 nm exceeds 0% (substantially 0%), the visible light concealing property is not sufficient, and the design property is low.
  • the polyester resin composition of the present invention containing a colorant (D) has a hue L * value (Color-L) of CIE color difference L * a * b * of 7 or less (SCE method) Measured value).
  • Color-L ⁇ 7 (I) When the L * value is 7 or less, the polyester resin composition of the present invention can have sufficient blackness, and can exhibit sufficient blackness even in a molded product obtained by melt molding or the like. Therefore, it is excellent in design property.
  • the hue L * value is preferably 6 or less, more preferably 5 or less. When the hue L * value is higher than 7, the blackness is insufficient and the design property is low.
  • the polyester resin composition of the present invention may contain an inorganic filler (E) as long as the characteristics of the present invention are not impaired.
  • An inorganic filler (E) is not specifically limited, A well-known thing can be used.
  • the inorganic filler (E) may be subjected to a surface treatment in order to improve compatibility and dispersibility with the polyester resin composition.
  • the average particle size of the inorganic filler (E) is preferably 3.0 ⁇ m or less.
  • 1 mass part or less is preferable with respect to 100 mass parts of polyester resins (A), and, as for content of an inorganic filler (E), 0.8 mass part or less is more preferable, and 0.5 mass part or less is further more preferable.
  • the amount exceeds 1 part by mass, coarse crystals may be generated using the inorganic filler as a crystal nucleating agent, and the infrared transmittance may be significantly reduced.
  • a technique of adding an inorganic filler such as talc is generally known as a technique for increasing the heat distortion temperature.
  • the polyester resin composition of the present invention does not contain an inorganic filler such as talc.
  • the polyester resin composition of the present invention may contain a release agent as long as the characteristics of the present invention are not impaired.
  • the content of the release agent is preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the polyester resin (A). If the release agent is less than 0.1 parts by mass, a sufficient release effect cannot be obtained, and there may be problems such as defective release and release wrinkles.
  • the mold release agent itself becomes a gas and bleeds out to contaminate the mold, and adheres to the lens cover, mirror, etc. in a temperature environment in the range of 100 ° C to 200 ° C. There is a problem of generating (fogging). When the release agent exceeds 3 parts by mass, these problems become significant.
  • the type of release agent is not particularly limited as long as it can be used for polyester.
  • long chain fatty acids or esters thereof, metal salts, amide compounds, polyethylene wax, silicon, polyethylene oxide and the like can be mentioned.
  • the long chain fatty acid preferably has 12 or more carbon atoms, and examples thereof include stearic acid, 12-hydroxystearic acid, behenic acid, and montanic acid. Partial or total carboxylic acid is esterified with monoglycol or polyglycol. Or a metal salt may be formed.
  • the amide compound include ethylene bisterephthalamide and methylene bisstearyl amide. These release agents may be used alone or as a mixture.
  • As the release agent there is a compound overlapping with the above component (B). When such a compound is used as the release agent, the total amount of the component (B) and the amount of the release agent is as described above (B ) It must be within the range of acceptable contents of components.
  • the polyester resin composition of the present invention can contain various additives in a known range as long as the characteristics of the present invention are not impaired, if necessary.
  • known additives include heat stabilizers, antioxidants, ultraviolet absorbers, light stabilizers, plasticizers, modifiers, antistatic agents, flame retardants and the like.
  • the polyester resin composition of the present invention preferably occupies 85% by mass or more in total of the components (A), (B), (C), and (D) (the component (D) is an optional component), 90 It is more preferable to occupy 95% by mass or more, and it is even more preferable to occupy 95% by mass or more.
  • the polyester resin composition of the present invention can be produced by mixing the above-described components and various stabilizers as necessary, and melt-kneading. Any method known to those skilled in the art can be used as the melt-kneading method, and a single screw extruder, a twin screw extruder, a pressure kneader, a Banbury mixer, or the like can be used. Among these, it is preferable to use a twin screw extruder. As general melt kneading conditions, in a twin screw extruder, the cylinder temperature is 230 to 270 ° C., and the kneading time is 2 to 15 minutes.
  • the method for molding the polyester resin composition of the present invention is not particularly limited, and known methods such as injection molding, extrusion molding, and blow molding can be used. Among these, an injection molding method is preferably used from the viewpoint of versatility.
  • the molded article of the polyester resin composition of the present invention can directly form (evaporate) a light reflecting metal layer on at least a part of the surface.
  • the vapor deposition method is not particularly limited, and a known method can be used.
  • the molded product molded using the polyester resin composition of the present invention can be suitably used as a design member (particularly a lamp member).
  • a design member particularly a lamp member.
  • it can be used as a member for automobile lamps (head lamps, etc.), light reflectors (extensions, reflectors, housings, etc.), lighting equipment, electrical / electronic parts, household goods, etc.
  • the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
  • the measured value described in the Example is measured by the following method.
  • a transmittance of a wavelength of 300 to 1500 nm is obtained with a sampling pitch of 1.0 nm and a slit width (12). Measurements were made to calculate the average transmittance (sum of transmittance at each wavelength / 301) at wavelengths of 800 to 1100 nm. When the colorant was used, the transmittance at a wavelength of 300 to 700 nm was separately measured.
  • MFR Melt flow rate
  • the hue of the flat plate of the polyester resin composition was measured by the following method. Using an injection molding machine EC-100N (manufactured by Toshiba Machine Co., Ltd.), a flat plate molded product having a thickness of 100 mm ⁇ 100 mm ⁇ 2 mm was injection molded using a mold having a mirror surface polished on # 6000 file on one side. Molding was performed at a cylinder temperature of 260 ° C. and a mold temperature of 60 ° C.
  • the hue L * value (CIE color difference system) on the mirror surface side of the molded plate is measured according to JIS Z 8722 and JIS Z 8781-4. did. Measurements were taken with a D65 light source, 10 ° field of view, 0 ° -d method, and SCE method. The hue of the infrared light transmissive dye masterbatch pellet was measured by the following method.
  • Aliphatic carboxylic acid alkali metal salt (B); (B-1) Sodium caprylate (manufactured by Nitto Kasei Kogyo Co., Ltd., melting point 220 ° C.) (B-2) Sodium stearate (manufactured by NOF Corporation, melting point 230 ° C.)
  • B-3 ADK STAB NA-11 (not an alkali metal carboxylate, aromatic nucleating agent, manufactured by ADEKA, melting point ⁇ 400 ° C.)
  • B-4) ADK STAB NA-21 (not an alkali metal carboxylate, aromatic nucleating agent, manufactured by ADEKA, melting point ⁇ 210 ° C.)
  • Inorganic fillers Talc (average particle size: 2.5 ⁇ m [laser diffraction method]): Microace SG-95 (manufactured by Nippon Talc Co., Ltd.) Catalog values are used for the average particle size.
  • Triglycerin flubehenate Poem TR-FB (manufactured by Riken Vitamin) Stabilizers
  • Antioxidant Irganox 1010 (BASF)
  • Example 1 to 12 Comparative Examples 1 to 10
  • Example 8 Comparative Examples 2, 3 and 4 are 260 ° C.
  • the strand was cooled with water and pelletized.
  • Each of the obtained pellets was dried at 130 ° C. for 4 hours and used for each of the above-described evaluation tests. The results are shown in Tables 1 and 2.
  • molded articles obtained from the polyester resin compositions of Examples 1 to 8 and 12 of the present invention have an infrared light transmittance of 20% or more and a heat distortion temperature of 150 ° C. or more, which is excellent. It can be seen that it has the characteristics. In all cases, the haze value of the glass plate after the fogging test was as good as 5% or less. It turns out that Example 9, 10 has provided the visible light hiding property which was excellent by addition of a black coloring agent. The physical properties were the same as before the colorant addition, and all were good. Furthermore, the haze value of the glass plate after the fogging test was also good at 5% or less.
  • Example 11 using the purple dye, the infrared light transmittance and other physical properties were good, but the hue L * exceeded 7 and the blackness was insufficient.
  • Comparative Example 1 since there was no addition of an organic metal carboxylic acid alkali metal salt or an inorganic filler, there was no problem in infrared light transmission and haze, but the heat distortion temperature was low.
  • Comparative Examples 2 and 3 were at a level to which an amorphous resin was added, and high infrared light transmittance was obtained, but the heat distortion temperature was lower than that of Comparative Example 1, and the haze of the glass plate after the fogging test was obtained. The value became high.
  • Comparative Example 8 not containing the polycarbodiimide compound (C), compared to Examples 2, 3 and 4, the infrared light transmittance was lowered and fogging was confirmed, and the heat distortion temperature was also low. Moreover, although it seems that dispersion
  • the polyester resin composition of the present invention is excellent in infrared light transmission and has good heat resistance and low gas properties, it is a design member (particularly for lamp members in which scratches due to sunlight collection are a problem) ) Is a polyester resin composition suitable for use as an industrial utility value.

Abstract

The invention is a polyester resin composition that satisfies requirements (1) and (2) below and contains 0.1-1 part by mass of a C3-40 organoarboxylic acid alkali metal salt (B) and 0.05-3 parts by mass of a polycarbodiimide compound (C) per 100 parts by mass of a polyester resin (A), wherein the polyester resin composition has excellent infrared light permeability as well as good heat resistance and low gassing, and is suitable for use as a design member (in particular, a lamp member). (1) The average value of the transmittance at a wavelength of 800-1100 nm of a 2 mm thick plate obtained from this polyester resin composition is 20 to 75%. (2) The heat deformation temperature (0.45 MPa) is 150°C or higher.

Description

赤外光透過性ポリエステル樹脂組成物Infrared light transmitting polyester resin composition
 本発明は、赤外光透過性に優れ、かつ良好な耐熱性、低ガス性を有する、意匠部材(特にランプ部材)として用いるのに好適なポリエステル樹脂組成物に関する。 The present invention relates to a polyester resin composition suitable for use as a design member (particularly a lamp member) having excellent infrared light transmittance, good heat resistance, and low gas properties.
 ポリブチレンテレフタレート樹脂は、その優れた射出成形性、機械特性、耐熱性、電気特性、耐薬品性等を利用して、自動車部品、機械部品、電気・通信部品等の分野で射出成形品として広く利用されている。さらに金型転写性にも優れ、特に良好な外観が求められる自動車のエクステンション用途等のランプ部材にも好適に用いられる。またその用途から、樹脂の耐熱性や成形時等におけるガス発生抑制(低ガス性)を高度に制御する必要がある。 Polybutylene terephthalate resin is widely used as an injection-molded product in the fields of automobile parts, mechanical parts, electrical / communication parts, etc. by utilizing its excellent injection moldability, mechanical properties, heat resistance, electrical properties, chemical resistance, etc. It's being used. Furthermore, it is excellent in mold transferability, and can be suitably used for lamp members for automotive extension applications that require particularly good appearance. In addition, it is necessary to highly control the heat resistance of the resin and the suppression of gas generation (low gasity) during molding.
 一方、近年、高級車等のヘッドランプにはLEDライトが搭載され、ランプデザインもこれまでと一新され始めている。例えば、リフレクタータイプ(光源の光をリフレクターで反射して照射)では光源直近の部分をアルミニウム蒸着する必要があるが、それをプロジェクタータイプ(光源の光を前方のレンズへ集光して照射)に変更し、光源直近の部分を黒原着仕様とするデザインも出てきている。しかしこの変更によって、太陽光がプロジェクターレンズで反射し、その光が周辺の黒部分に集光した際、集光部分が非常に高温になることに起因してキズが付くというような太陽光集光問題が発生するようになった(この現象自体は昔から知られていたが、ランプデザイン上これまではあまり問題になることはなかった)。この問題を受けて、太陽光が集光しても高温にならないような赤外光を透過する材料や、高温となってもキズが付かない、耐熱性を有する材料が求められている。 On the other hand, in recent years, LED lights are mounted on headlamps of luxury cars and the like, and lamp designs have begun to be renewed. For example, in the reflector type (light reflected from the light source is reflected by the reflector), it is necessary to deposit aluminum on the part immediately adjacent to the light source, but this is the projector type (light source light is condensed and irradiated on the front lens). There are also designs that have been changed to have a black original specification for the part closest to the light source. However, due to this change, when the sunlight is reflected by the projector lens and the light is collected on the surrounding black part, the sunlight collection is such that the condensing part becomes very hot and scratches are caused. The light problem started to occur (although this phenomenon has been known for a long time, it has never been a problem in lamp design). In response to this problem, there is a demand for a material that transmits infrared light that does not become high temperature even when sunlight is condensed, and a material that has heat resistance and does not get scratched even at high temperatures.
 赤外光を透過させる技術として、例えば特許文献1~3には、ポリブチレンテレフタレートまたはポリブチレンテレフタレートとポリブチレンテレフタレート共重合体からなる樹脂と、ポリカーボネート樹脂、スチレンアクリロニトリル樹脂、1,4-シクロヘキサンジメタノール成分を含むポリエステル樹脂等の非晶樹脂を配合してなる樹脂組成物が開示されている。しかし、これらの技術はポリブチレンテレフタレート系樹脂の赤外光透過性を上げるのには有用であるが、非晶樹脂の添加により熱変形温度が著しく低下するため、特にランプ部材用途としては実用的に使用が困難である。 As a technique for transmitting infrared light, for example, Patent Documents 1 to 3 disclose polybutylene terephthalate or a resin comprising polybutylene terephthalate and a polybutylene terephthalate copolymer, polycarbonate resin, styrene acrylonitrile resin, 1,4-cyclohexanediene. A resin composition comprising an amorphous resin such as a polyester resin containing a methanol component is disclosed. However, these technologies are useful for increasing the infrared light transmittance of polybutylene terephthalate resin, but the thermal deformation temperature is remarkably lowered by the addition of amorphous resin. It is difficult to use.
 また太陽光日射による温度上昇を抑える黒原着ポリエステル樹脂組成物を得る技術として、例えば特許文献4には、カーボンブラックを含有せず、調色により黒色とした顔料を含有するポリエチレンテレフタレート樹脂組成物が開示されている。本発明によれば非カーボンブラック系顔料の使用により、カーボンブラックの赤外光吸収性により蓄熱する熱量分に相当する温度の低下が可能であるが、その温度上昇抑制効果は小さく、大いに改善の余地がある。 Moreover, as a technique for obtaining a black original polyester resin composition that suppresses temperature rise caused by solar sunshine, for example, Patent Document 4 discloses a polyethylene terephthalate resin composition containing a pigment that does not contain carbon black but is blackened by color matching. It is disclosed. According to the present invention, the use of a non-carbon black pigment can reduce the temperature corresponding to the amount of heat stored due to the infrared light absorption of carbon black, but its temperature rise inhibiting effect is small and greatly improved. There is room.
 一方、赤外光透過性を高めるため、ポリエステルに脂肪族カルボン酸のアルカリ金属塩を添加する技術が開示されている(例えば特許文献5参照)。本技術により赤外光の透過性を高めることは可能であるが、本技術の組成によれば脂肪族カルボン酸のアルカリ金属塩やその分解物に起因するブリードアウトや射出成形時の金型汚れ等が問題になる可能性が非常に高い。 On the other hand, a technique for adding an alkali metal salt of an aliphatic carboxylic acid to polyester in order to enhance infrared light transmittance is disclosed (for example, see Patent Document 5). Although it is possible to increase the infrared light transmittance by this technology, according to the composition of this technology, bleedout caused by alkali metal salt of aliphatic carboxylic acid or its decomposition product and mold contamination during injection molding Is very likely to be a problem.
特開2004-315805号公報JP 2004-315805 A 特許第5034217号公報Japanese Patent No. 5034217 特開2008-106217号公報JP 2008-106217 A 特開2014-125588号公報JP 2014-125588 A 特表2014-512420号公報Special table 2014-512420 gazette
 本発明は、かかる従来技術の課題を背景になされたものである。すなわち、本発明の目的は、赤外光透過性に優れ、かつ良好な耐熱性、低ガス性を有する、意匠部材(特にランプ部材)として用いるのに好適なポリエステル樹脂組成物を提供することにある。 The present invention has been made against the background of the problems of the prior art. That is, an object of the present invention is to provide a polyester resin composition suitable for use as a design member (especially a lamp member) having excellent infrared light transmittance, good heat resistance, and low gas properties. is there.
 すなわち、本発明は以下の構成を有するものである。
[1] ポリエステル樹脂(A)100質量部に対して、炭素数3~40の有機カルボン酸アルカリ金属塩(B)0.1~1質量部、及びポリカルボジイミド化合物(C)0.05~3質量部を含有するポリエステル樹脂組成物であり、該ポリエステル樹脂組成物が下記要件(1)及び(2)を満たすことを特徴とするポリエステル樹脂組成物。
(1)該ポリエステル樹脂組成物から得られた厚さ2mmの平板の波長800~1100nmにおける透過率の平均値が20%以上75%以下であること
(2)熱変形温度(0.45MPa)が150℃以上であること
[2] 前記ポリエステル樹脂(A)が、ポリブチレンテレフタレート樹脂(a)とポリエチレンテレフタレート樹脂(b)とを質量比で100:0~50:50の割合で含んでいる[1]に記載のポリエステル樹脂組成物。
[3] 前記炭素数3~40の有機カルボン酸アルカリ金属塩(B)を構成する金属が、リチウム、ナトリウム、及びカリウムから選ばれる1種または2種以上であることを特徴とする[1]または[2]に記載のポリエステル樹脂組成物。
[4] 前記炭素数3~40の有機カルボン酸アルカリ金属塩(B)を構成する有機カルボン酸が、炭素数3~20の脂肪族カルボン酸であることを特徴とする[1]~[3]のいずれかに記載のポリエステル樹脂組成物。
[5] 着色剤(D)を含み、該ポリエステル樹脂組成物から得られた厚さ2mmの平板の波長300~700nmにおける透過率が実質的に0%であることを特徴とする[1]~[4]のいずれかに記載のポリエステル樹脂組成物。
[6] 着色剤(D)を含み、該ポリエステル樹脂組成物が下記要件(3)を満たすことを特徴とする[5]に記載のポリエステル樹脂組成物。
(3)Color-L≦7
[上数式中、Color-Lはポリエステル樹脂組成物のCIE色差系のL系による色相L値を示す。]
[7] [1]~[6]のいずれかに記載のポリエステル樹脂組成物を用いて成形されたランプ用部品。
That is, the present invention has the following configuration.
[1] 0.1 to 1 part by mass of an organic carboxylic acid alkali metal salt (B) having 3 to 40 carbon atoms and 0.05 to 3 polycarbodiimide compound (C) with respect to 100 parts by mass of the polyester resin (A) A polyester resin composition containing a mass part, wherein the polyester resin composition satisfies the following requirements (1) and (2).
(1) The average value of the transmittance at a wavelength of 800 to 1100 nm of a 2 mm-thick flat plate obtained from the polyester resin composition is 20% or more and 75% or less (2) The thermal deformation temperature (0.45 MPa) [2] The polyester resin (A) contains the polybutylene terephthalate resin (a) and the polyethylene terephthalate resin (b) in a mass ratio of 100: 0 to 50:50 [ 1] The polyester resin composition described in 1].
[3] The metal constituting the organic carboxylic acid alkali metal salt (B) having 3 to 40 carbon atoms is one or more selected from lithium, sodium and potassium [1] Or the polyester resin composition as described in [2].
[4] The organic carboxylic acid constituting the alkali metal salt of organic carboxylic acid having 3 to 40 carbon atoms (B) is an aliphatic carboxylic acid having 3 to 20 carbon atoms, [1] to [3 ] The polyester resin composition in any one of.
[5] The transmittance at a wavelength of 300 to 700 nm of a 2 mm-thick flat plate obtained from the polyester resin composition containing the colorant (D) is substantially 0% [1] to [4] The polyester resin composition according to any one of [4].
[6] The polyester resin composition according to [5], including a colorant (D), and the polyester resin composition satisfies the following requirement (3).
(3) Color-L ≦ 7
[In the above formula, Color-L represents the hue L * value by the LIE * L * a * b * system of the CIE color difference system of the polyester resin composition. ]
[7] A lamp part molded using the polyester resin composition according to any one of [1] to [6].
 本発明のポリエステル樹脂組成物の特徴の1つは、高い結晶性を維持したまま、赤外光透過性を飛躍的に高めた点である。そのため、タルク等の強化フィラーを添加せずとも良好な耐熱性(高い熱変形温度)を実現でき、高い赤外光透過性と優れた耐熱性を両立できる。さらにガス発生をも高度に制御した樹脂成形体を得ることができるため、耐フォギング性に優れるとともに射出成形時の金型汚れ等を低減することが可能である。 One of the characteristics of the polyester resin composition of the present invention is that the infrared light transmittance is dramatically increased while maintaining high crystallinity. Therefore, good heat resistance (high heat distortion temperature) can be realized without adding a reinforcing filler such as talc, and both high infrared light transmittance and excellent heat resistance can be achieved. Furthermore, since a resin molded body in which gas generation is also highly controlled can be obtained, it is excellent in fogging resistance and it is possible to reduce mold contamination during injection molding.
 以下、本発明を詳述する。 Hereinafter, the present invention will be described in detail.
[ポリエステル樹脂(A)]
 本発明で使用可能なポリエステル樹脂(A)としては、ジカルボン酸成分およびジオール成分を構成単位とするポリエステル樹脂であることが好ましい。
 ジカルボン酸成分としては、芳香族ジカルボン酸を主成分とするものが好ましい。主成分とは、全ジカルボン酸単位に対して、通常70モル%以上、好ましくは80モル%以上、より好ましくは90モル%以上、特に好ましくは95モル%以上を示す。芳香族ジカルボン酸以外では、脂肪族ジカルボン酸が使用可能である。
[Polyester resin (A)]
The polyester resin (A) that can be used in the present invention is preferably a polyester resin having a dicarboxylic acid component and a diol component as constituent units.
As the dicarboxylic acid component, those having an aromatic dicarboxylic acid as a main component are preferable. The main component is usually 70 mol% or more, preferably 80 mol% or more, more preferably 90 mol% or more, and particularly preferably 95 mol% or more with respect to all dicarboxylic acid units. In addition to aromatic dicarboxylic acids, aliphatic dicarboxylic acids can be used.
 芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸、オルソフタル酸、2,6-ナフタレンジカルボン酸、1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、ジフェニル-4,4’-ジカルボン酸、4,4’-ビフェニルエーテルジカルボン酸、1,2-ビス(フェノキシ)エタン-p,p’-ジカルボン酸、アントラセンジカルボン酸などの芳香族ジカルボン酸が挙げられ、これらの中では、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸が好ましい。
 脂肪族ジカルボン酸としては、具体的には、シュウ酸、コハク酸、グルタル酸、アジピン酸、セバシン酸、ドデカン二酸、ダイマー酸ならびにシクロヘキサンジカルボン酸等の、通常、炭素数が2以上40以下の鎖状あるいは脂環式ジカルボン酸が挙げられる。
 以上のジカルボン酸成分は、単独でも2種以上混合して使用することもできる。
 ジカルボン酸成分及びジオール成分以外に、ヒドロキシカルボン酸成分やラクトン成分を共重合しても構わない。その使用量は、全モノマー成分に対して、30モル%以下が好ましく、20モル%以下がより好ましく、10モル%以下がさらに好ましい。
Aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, orthophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2, Fragrances such as 7-naphthalenedicarboxylic acid, diphenyl-4,4′-dicarboxylic acid, 4,4′-biphenyl ether dicarboxylic acid, 1,2-bis (phenoxy) ethane-p, p′-dicarboxylic acid, anthracene dicarboxylic acid Among these, terephthalic acid, isophthalic acid, and 2,6-naphthalenedicarboxylic acid are preferable.
Specific examples of the aliphatic dicarboxylic acid include oxalic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, dodecanedioic acid, dimer acid, and cyclohexanedicarboxylic acid, which usually have 2 to 40 carbon atoms. Examples include chain or alicyclic dicarboxylic acids.
The above dicarboxylic acid components can be used alone or in admixture of two or more.
In addition to the dicarboxylic acid component and the diol component, a hydroxycarboxylic acid component or a lactone component may be copolymerized. The amount used is preferably 30 mol% or less, more preferably 20 mol% or less, and still more preferably 10 mol% or less, based on all monomer components.
 ジオール成分としては、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、2-メチル-1,5-ペンタンジオール、2,2-ジエチル-1,3-プロパンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,4-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,2-シクロヘキサンジメタノールなどが挙げられる。これらの中では、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオールが好ましい。 Examples of the diol component include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, and 3-methyl-1,5. -Pentanediol, 2-methyl-1,5-pentanediol, 2,2-diethyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propanediol, 1,9-nonanediol, Examples include 1,10-decanediol, 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,2-cyclohexanedimethanol and the like. Of these, ethylene glycol, 1,3-propanediol, and 1,4-butanediol are preferable.
 好ましいポリエステル樹脂(A)としては、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンナフタレート、ポリエチレンナフタレートが挙げられる。
 ポリエステル樹脂(A)は、o-クロロフェノール溶液を25℃で測定したときの固有粘度(IV)が0.36~1.60dl/gであることが好適であり、0.52~1.25dl/gの範囲にあるものがより好適であり、0.58~1.12dl/gの範囲にあるものがさらに好適であり、0.62~1.02dl/gの範囲にあるものが最も好適である。(A)の固有粘度が、0.36~1.60dl/gであることにより、本発明のポリエステル樹脂組成物の機械的特性、成形性が良好となる。
 本発明において、ポリブチレンテレフタレート樹脂(a)及びポリエチレンテレフタレート樹脂(b)を特定の配合量で含有することが好ましい。
 また、本発明において、ポリエステル樹脂(A)としては、ポリトリメチレンテレフタレート樹脂(c)、ポリブチレンナフタレート樹脂(d)を使用することも好ましい。その場合、ポリトリメチレンテレフタレート樹脂(c)は、ポリエチレンテレフタレート樹脂(b)の代替として使用可能であり、ポリブチレンナフタレート樹脂(d)は、ポリブチレンテレフタレート樹脂(a)の代替として使用可能である。
Preferable polyester resins (A) include polybutylene terephthalate, polyethylene terephthalate, polytrimethylene terephthalate, polybutylene naphthalate, and polyethylene naphthalate.
The polyester resin (A) preferably has an intrinsic viscosity (IV) of 0.36 to 1.60 dl / g when an o-chlorophenol solution is measured at 25 ° C., and is 0.52 to 1.25 dl. / G is more suitable, more preferred is 0.58 to 1.12 dl / g, and most preferred is 0.62 to 1.02 dl / g. It is. When the intrinsic viscosity of (A) is 0.36 to 1.60 dl / g, the mechanical properties and moldability of the polyester resin composition of the present invention are improved.
In this invention, it is preferable to contain polybutylene terephthalate resin (a) and polyethylene terephthalate resin (b) with a specific compounding quantity.
Moreover, in this invention, it is also preferable to use polytrimethylene terephthalate resin (c) and polybutylene naphthalate resin (d) as a polyester resin (A). In that case, the polytrimethylene terephthalate resin (c) can be used as an alternative to the polyethylene terephthalate resin (b), and the polybutylene naphthalate resin (d) can be used as an alternative to the polybutylene terephthalate resin (a). is there.
 本発明で用いることができるポリブチレンテレフタレート樹脂(a)とは、テレフタル酸あるいはそのエステル形成性誘導体と、1,4-ブタンジオールあるいはそのエステル形成性誘導体とを主成分とし重縮合反応させる等の一般的な重合方法によって得られる重合体である。ブチレンテレフタレート繰返し単位が80モル%以上の重合体であることが好ましく、ブチレンテレフタレート繰返し単位は90モル%以上がより好ましく、95モル%以上がさらに好ましく、100モル%が最も好ましい。特性を損なわない範囲、例えば20質量%程度以下で、他の共重合成分を含んでも良い。共重合体の例としては、ポリブチレン(テレフタレート/イソフタレート)、ポリブチレン(テレフタレート/アジペート)、ポリブチレン(テレフタレート/セバケート)、ポリブチレン(テレフタレート/デカンジカルボキシレート)、ポリブチレン(テレフタレート/ナフタレート)、ポリ(ブチレン/エチレン)テレフタレート等が挙げられ、単独で用いても2種以上混合しても良い。 The polybutylene terephthalate resin (a) that can be used in the present invention is a polycondensation reaction mainly comprising terephthalic acid or an ester-forming derivative thereof and 1,4-butanediol or an ester-forming derivative thereof. It is a polymer obtained by a general polymerization method. The polymer is preferably a polymer having a butylene terephthalate repeating unit of 80 mol% or more, more preferably 90 mol% or more, still more preferably 95 mol% or more, and most preferably 100 mol%. Other copolymer components may be included in a range not impairing the characteristics, for example, about 20% by mass or less. Examples of copolymers include polybutylene (terephthalate / isophthalate), polybutylene (terephthalate / adipate), polybutylene (terephthalate / sebacate), polybutylene (terephthalate / decanedicarboxylate), polybutylene (terephthalate / naphthalate), poly (butylene) / Ethylene) terephthalate, etc., may be used alone or in combination of two or more.
 本発明で用いることができるポリブチレンテレフタレート樹脂(a)は、o-クロロフェノール溶液を25℃で測定したときの固有粘度(IV)が0.36~1.60dl/gであることが好適であり、0.52~1.25dl/gの範囲にあるものがより好適であり、0.58~1.12dl/gの範囲にあるものがさらに好適であり、0.62~1.02dl/gの範囲にあるものが最も好適である。(a)の固有粘度が、0.36~1.60dl/gであることにより、本発明のポリエステル樹脂組成物の機械的特性、成形性が良好となる。 The polybutylene terephthalate resin (a) that can be used in the present invention preferably has an intrinsic viscosity (IV) of 0.36 to 1.60 dl / g when an o-chlorophenol solution is measured at 25 ° C. More preferably in the range of 0.52 to 1.25 dl / g, more preferably in the range of 0.58 to 1.12 dl / g, and 0.62 to 1.02 dl / g. Those in the g range are most preferred. When the intrinsic viscosity of (a) is 0.36 to 1.60 dl / g, the mechanical properties and moldability of the polyester resin composition of the present invention are improved.
 本発明で用いることができるポリブチレンナフタレート樹脂(d)についても、ポリブチレンテレフタレート樹脂(a)と同様である。 The polybutylene naphthalate resin (d) that can be used in the present invention is the same as the polybutylene terephthalate resin (a).
 本発明で用いることができるポリエチレンテレフタレート樹脂(b)とは、テレフタル酸あるいそのエステル形成性誘導体とエチレングリコールあるいはそのエステル形成性誘導体とを主成分とし重縮合反応させる等の通常の重合方法によって得られる重合体である。エチレンテレフタレート繰返し単位が80モル%以上の重合体であることが好ましく、エチレンテレフタレート繰返し単位は90モル%以上がより好ましく、95モル%以上がさらに好ましく、100モル%が最も好ましい。特性を損なわない範囲、例えば20質量%程度以下で、他の共重合成分を含んでも良い。共重合体の例としては、ポリエチレン(テレフタレート/イソフタレート)、ポリエチレン(テレフタレート/アジペート)、ポリエチレン(テレフタレート/セバケート)、ポリエチレン(テレフタレート/デカンジカルボキシレート)、ポリエチレン(テレフタレート/ナフタレート)、ポリ(エチレン/シクロヘキサンジメチル)/テレフタレート、ポリ(ブチレン/エチレン)テレフタレート等が挙げられ、単独で用いても2種以上混合しても良い。上記のポリエチレンテレフタレート樹脂(b)を用いることによって、樹脂組成物の成形収縮率を制御することができる。 The polyethylene terephthalate resin (b) that can be used in the present invention is a conventional polymerization method such as a polycondensation reaction mainly comprising terephthalic acid or an ester-forming derivative thereof and ethylene glycol or an ester-forming derivative thereof. The resulting polymer. The polymer is preferably a polymer having an ethylene terephthalate repeating unit of 80 mol% or more, more preferably 90 mol% or more, still more preferably 95 mol% or more, and most preferably 100 mol%. Other copolymer components may be included in a range not impairing the characteristics, for example, about 20% by mass or less. Examples of copolymers include polyethylene (terephthalate / isophthalate), polyethylene (terephthalate / adipate), polyethylene (terephthalate / sebacate), polyethylene (terephthalate / decanedicarboxylate), polyethylene (terephthalate / naphthalate), poly (ethylene) / Cyclohexanedimethyl) / terephthalate, poly (butylene / ethylene) terephthalate, and the like, and may be used alone or in combination of two or more. By using the polyethylene terephthalate resin (b), the molding shrinkage of the resin composition can be controlled.
 本発明で用いることができるポリエチレンテレフタレート樹脂(b)は、o-クロロフェノール溶液を25℃で測定したときの固有粘度(IV)が0.36~1.60dl/gであることが好適であり、0.45~1.35dl/gの範囲にあるものがより好適であり、0.50~1.20dl/gの範囲にあるものがさらに好適であり、0.55~1.05dl/gの範囲にあるものが最も好適である。(b)の固有粘度が0.36~1.60dl/gであることにより、本発明のポリエステル樹脂組成物の機械的特性、成形性が良好となる。 The polyethylene terephthalate resin (b) that can be used in the present invention preferably has an intrinsic viscosity (IV) of 0.36 to 1.60 dl / g when an o-chlorophenol solution is measured at 25 ° C. More preferably in the range of 0.45 to 1.35 dl / g, more preferably in the range of 0.50 to 1.20 dl / g, and 0.55 to 1.05 dl / g. Those in the range are most preferable. When the intrinsic viscosity of (b) is 0.36 to 1.60 dl / g, the mechanical properties and moldability of the polyester resin composition of the present invention are improved.
 本発明で用いることができるポリトリメチレンテレフタレート樹脂(c)についても、ポリエチレンテレフタレート樹脂(b)と同様である。 The polytrimethylene terephthalate resin (c) that can be used in the present invention is the same as the polyethylene terephthalate resin (b).
 本発明において、ポリブチレンテレフタレート樹脂(a)及びポリエチレンテレフタレート樹脂(b)の配合量は、(a)と(b)の質量比((a):(b))で100:0~50:50であることが好ましい。より好ましくは(a):(b)=100:0~60:40、さらに好ましくは(a):(b)=100:0~70:30、特に好ましくは(a):(b)=100:0~80:20、最も好ましくは(a):(b)=100:0~90:10である。ポリエチレンテレフタレート樹脂(b)の配合によって、樹脂組成物の成形収縮率を制御することが可能であるが、配合量が50質量部を超えると樹脂組成物の射出成形時の離型性の悪化や樹脂の耐熱性の低下が生じたり、ポリエステル樹脂組成物の結晶化速度が遅くなるために、100℃~200℃の範囲の温度環境下で結晶化が徐々に進行し、しだいに赤外光透過性が低下したりする場合がある。
 本発明において、ポリエステル樹脂(A)中の、ポリブチレンテレフタレート樹脂(a)及びポリエチレンテレフタレート樹脂(b)の合計量は、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上がさらに好ましく、100質量%であっても良い。
In the present invention, the blending amount of the polybutylene terephthalate resin (a) and the polyethylene terephthalate resin (b) is 100: 0 to 50:50 in terms of mass ratio ((a) :( b)) of (a) and (b). It is preferable that More preferably (a) :( b) = 100: 0 to 60:40, still more preferably (a) :( b) = 100: 0 to 70:30, particularly preferably (a) :( b) = 100 : 0 to 80:20, most preferably (a) :( b) = 100: 0 to 90:10. Although it is possible to control the molding shrinkage of the resin composition by blending the polyethylene terephthalate resin (b), if the blending amount exceeds 50 parts by mass, the mold releasability during injection molding of the resin composition may deteriorate. Since the heat resistance of the resin is reduced and the crystallization speed of the polyester resin composition is slow, crystallization gradually proceeds in a temperature environment of 100 ° C. to 200 ° C. and gradually transmits infrared light. May decrease.
In the present invention, the total amount of the polybutylene terephthalate resin (a) and the polyethylene terephthalate resin (b) in the polyester resin (A) is preferably 80% by mass or more, more preferably 90% by mass or more, and 95% by mass or more. Is more preferable, and may be 100% by mass.
 上記の配合量の説明において、「ポリブチレンテレフタレート樹脂(a)」は、「ポリブチレンテレフタレート樹脂(a)、ポリブチレンナフタレート樹脂(d)の少なくとも一方」、「ポリエチレンテレフタレート樹脂(b)」は、「ポリエチレンテレフタレート樹脂(b)、ポリトリメチレンテレフタレート樹脂(c)の少なくとも一方」と読み替えて考えることができる。 In the description of the above blending amounts, “polybutylene terephthalate resin (a)” means “at least one of polybutylene terephthalate resin (a) and polybutylene naphthalate resin (d)”, “polyethylene terephthalate resin (b)” , “At least one of polyethylene terephthalate resin (b) and polytrimethylene terephthalate resin (c)”.
[炭素数3~40の有機カルボン酸アルカリ金属塩(B)]
 本発明のポリエステル樹脂組成物は、ポリエステル樹脂(A)100質量部に対し、炭素数3~40の有機カルボン酸アルカリ金属塩(B)0.1~1質量部を含有する。
 有機カルボン酸アルカリ金属塩(B)が0.1質量部未満の場合、ポリエステル樹脂組成物の赤外光透過性が低下する傾向がある。また、有機カルボン酸アルカリ金属塩(B)を、1質量部を超えて配合した場合、アルカリ金属塩の触媒作用によりポリエステル樹脂組成物が著しく分解し、分子量や機械的強度の低下が生じる。有機カルボン酸アルカリ金属塩(B)の配合量は、ポリエステル樹脂(A)100質量部に対し0.1~0.7質量部であることが好ましく、0.15~0.5質量部であることがより好ましい。
[Alkali metal salt of organic carboxylic acid having 3 to 40 carbon atoms (B)]
The polyester resin composition of the present invention contains 0.1 to 1 part by mass of an organic metal carboxylic acid alkali metal salt (B) having 3 to 40 carbon atoms with respect to 100 parts by mass of the polyester resin (A).
When the organic carboxylic acid alkali metal salt (B) is less than 0.1 part by mass, the infrared light transmittance of the polyester resin composition tends to decrease. Moreover, when the organic carboxylic acid alkali metal salt (B) is blended in an amount exceeding 1 part by mass, the polyester resin composition is significantly decomposed by the catalytic action of the alkali metal salt, resulting in a decrease in molecular weight and mechanical strength. The blending amount of the organic carboxylic acid alkali metal salt (B) is preferably 0.1 to 0.7 parts by mass, and 0.15 to 0.5 parts by mass with respect to 100 parts by mass of the polyester resin (A). It is more preferable.
 本発明に用いる炭素数3~40の有機カルボン酸アルカリ金属塩(B)とは、炭素数3~40の脂肪族、脂環族または芳香族のカルボン酸のアルカリ金属塩である。アルカリ金属としては、ナトリウム、カリウム、リチウムが好ましい。
 脂肪族カルボン酸とは、直鎖または分岐した脂肪族基にカルボキシル基が付いた化合物であり、結合の一部に、不飽和基、脂環族基、芳香族基あるいは水酸基、リン酸エステル基等のその他の置換基を有していても良い。
The organic carboxylic acid alkali metal salt (B) having 3 to 40 carbon atoms used in the present invention is an alkali metal salt of an aliphatic, alicyclic or aromatic carboxylic acid having 3 to 40 carbon atoms. As the alkali metal, sodium, potassium, and lithium are preferable.
An aliphatic carboxylic acid is a compound in which a linear or branched aliphatic group has a carboxyl group, and an unsaturated group, an alicyclic group, an aromatic group or a hydroxyl group, a phosphate ester group is part of the bond. It may have other substituents such as.
 脂肪族カルボン酸の中で、プロピオン酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミスチリン酸、パルミチン酸、マルガリン酸、ステアリン酸、オレイン酸、リノール酸、モンタン酸等が好ましく、アルカリ金属塩の中では、ナトリウム塩がポリエステル樹脂に対する溶解性、良結晶核形成性の点で好ましい。 Among the aliphatic carboxylic acids, propionic acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, lauric acid, mytilic acid, palmitic acid, margaric acid, stearic acid, oleic acid, linoleic acid, Montanic acid and the like are preferable, and among alkali metal salts, sodium salt is preferable in terms of solubility in polyester resin and good crystal nucleation.
 炭素数3~40の有機カルボン酸アルカリ金属塩(B)を構成する有機カルボン酸は、融解性、ポリエステル樹脂との相溶性の観点より、炭素数3~20の脂肪族カルボン酸であることが好ましく、炭素数6~20の脂肪族カルボン酸であることがより好ましい。これらの中でも、炭素数が14未満の脂肪族カルボン酸金属塩は、少量の配合で赤外光透過性を向上させることができる点で好ましい。 The organic carboxylic acid constituting the organic carboxylic acid alkali metal salt (B) having 3 to 40 carbon atoms is an aliphatic carboxylic acid having 3 to 20 carbon atoms from the viewpoint of melting property and compatibility with the polyester resin. An aliphatic carboxylic acid having 6 to 20 carbon atoms is more preferable. Among these, the aliphatic carboxylic acid metal salt having less than 14 carbon atoms is preferable in that the infrared light transmittance can be improved with a small amount.
 上記有機カルボン酸アルカリ金属塩(B)による赤外光透過性向上作用についての詳細は定かではないが、ポリエステル樹脂(A)と有機カルボン酸アルカリ金属塩(B)との組成物の示差走査熱量分析(DSC)の結果、ポリエステル樹脂(A)単体に比べ、降温時結晶化ピークが高温側にシフトし、シャープになること、さらには組成物中から有機カルボン酸が検出されたことから、次のように推定している。
 前記DSCの挙動はすなわち、結晶化速度が速くなり、結晶サイズが均一化されていることを意味する。よって有機カルボン酸アルカリ金属塩(B)が結晶核剤としてポリエステル樹脂(A)に作用し、均一な大きさの微結晶を形成することにより、赤外光透過性が高くなると考えている。さらに有機カルボン酸アルカリ金属塩(B)は、ポリエステル樹脂(A)のカルボキシル基をイオン交換反応でアルカリ金属塩基に変化させて、分子鎖末端の運動性を低下させ、さらなる結晶化を阻害し、該イオン交換反応の進行に伴って、有機カルボン酸が遊離してくるものと考えられる。
The details of the effect of improving the infrared light transmittance by the organic carboxylic acid alkali metal salt (B) are not clear, but the differential scanning calorific value of the composition of the polyester resin (A) and the organic carboxylic acid alkali metal salt (B). As a result of analysis (DSC), compared with the polyester resin (A) alone, the crystallization peak at the time of temperature shift shifted to a high temperature side and became sharper, and further, organic carboxylic acid was detected in the composition. It is estimated as follows.
The behavior of the DSC means that the crystallization speed is increased and the crystal size is made uniform. Therefore, it is considered that the alkali metal carboxylic acid metal salt (B) acts on the polyester resin (A) as a crystal nucleating agent to form microcrystals with a uniform size, thereby increasing the infrared light transmittance. Further, the alkali metal salt of organic carboxylic acid (B) changes the carboxyl group of the polyester resin (A) to an alkali metal base by an ion exchange reaction, lowers the mobility of the molecular chain terminal, and inhibits further crystallization, It is considered that the organic carboxylic acid is liberated as the ion exchange reaction proceeds.
 有機カルボン酸アルカリ金属塩(B)は、有機カルボン酸系以外のアルカリ金属塩と比較して、少量の配合で効果的に赤外光透過性を向上させることができる。これは有機カルボン酸アルカリ金属塩(B)の分子量が比較的小さいため、同質量部添加の場合、分子数が多くなり結晶化が分散して起こりやすくなること、また、分子サイズが比較的小さいため、これを結晶核として生成するポリエステル樹脂(A)の結晶サイズが小さくなることに起因する(すなわち結晶が成長しにくく微結晶化する)効果と考えられる。 The organic carboxylic acid alkali metal salt (B) can effectively improve the infrared light transmittance with a small amount of blending compared to the alkali metal salt other than the organic carboxylic acid. This is because the organic carboxylic acid alkali metal salt (B) has a relatively small molecular weight, so when the same part by mass is added, the number of molecules increases and crystallization tends to occur, and the molecular size is relatively small. Therefore, this is considered to be due to the fact that the crystal size of the polyester resin (A) generated using this as a crystal nucleus is small (that is, the crystal is difficult to grow and microcrystallizes).
 上記有機カルボン酸アルカリ金属塩(B)は、2種以上を併用しても良い。炭素数3以上14未満のものと炭素数14以上のものとを併用すると、炭素数3以上14未満のものの溶解性が向上して、赤外光透過性が向上しやすい点で好ましい。 Two or more of the above organic carboxylic acid alkali metal salts (B) may be used in combination. Use of a compound having 3 to 14 carbon atoms and a compound having 14 or more carbon atoms is preferred in that the solubility of those having 3 to 14 carbon atoms is improved and the infrared light transmittance is easily improved.
[ポリカルボジイミド化合物(C)]
 本発明のポリエステル樹脂組成物は、ポリエステル樹脂(A)100質量部に対し、ポリカルボジイミド化合物(C)0.05~3質量部を含有する。
 ポリカルボジイミド化合物(C)をこの範囲にすることで、増粘効果と遊離する有機カルボン酸等のガス化成分の捕捉効果を効率良く発揮できる。混練時には増粘効果によって溶融粘度が上がり、せん断応力が高くなることで、有機カルボン酸アルカリ金属塩(B)の分散を促進することができる。また増粘効果により結晶の生長が抑制され、有機カルボン酸アルカリ金属塩(B)による微結晶化を促すことが可能となる。さらには遊離する有機カルボン酸や遊離水酸基含有化合物等のガス化成分の捕捉効果により、優れた低ガス性を実現できる。
 ポリカルボジイミド化合物(C)が3質量部より多いと、ポリエステル樹脂(A)との反応によりゲル化を引き起こしたり、相溶性の問題から赤外光透過性が低下する場合がある。また、ポリカルボジイミド化合物(C)が0.05質量部未満であると有機カルボン酸アルカリ金属塩(B)の分散が不均一となったり、遊離酸や遊離水酸基含有化合物の捕捉効果が小さくなり、低ガス性が損なわれる場合がある。ポリカルボジイミド化合物(C)の配合量は、ポリエステル樹脂(A)100質量部に対して、下限は0.07質量部であることが好ましく、0.08質量部であることがより好ましく、0.1質量部であることがさらに好ましく、0.15質量部であることが特に好ましく、上限は2質量部であることが好ましく、1質量部であることがより好ましく、0.5質量部であることがさらに好ましい。
[Polycarbodiimide compound (C)]
The polyester resin composition of the present invention contains 0.05 to 3 parts by mass of the polycarbodiimide compound (C) with respect to 100 parts by mass of the polyester resin (A).
By making the polycarbodiimide compound (C) within this range, it is possible to efficiently exhibit the thickening effect and the trapping effect of the gasifying component such as the organic carboxylic acid to be liberated. At the time of kneading, the melt viscosity is increased due to the thickening effect and the shear stress is increased, whereby the dispersion of the alkali metal salt of the organic carboxylic acid (B) can be promoted. Further, the growth of crystals is suppressed by the thickening effect, and it is possible to promote the microcrystallization with the organic metal carboxylate (B). Furthermore, excellent low gas properties can be realized by the trapping effect of gasifying components such as free organic carboxylic acids and free hydroxyl group-containing compounds.
If the polycarbodiimide compound (C) is more than 3 parts by mass, gelation may be caused by reaction with the polyester resin (A), or infrared light transmittance may be reduced due to compatibility problems. Further, when the polycarbodiimide compound (C) is less than 0.05 parts by mass, the dispersion of the organic carboxylic acid alkali metal salt (B) becomes non-uniform, and the scavenging effect of the free acid or the free hydroxyl group-containing compound is reduced. Low gas properties may be impaired. The blending amount of the polycarbodiimide compound (C) is preferably 0.07 parts by mass, more preferably 0.08 parts by mass with respect to 100 parts by mass of the polyester resin (A). It is more preferably 1 part by mass, particularly preferably 0.15 part by mass, and the upper limit is preferably 2 parts by mass, more preferably 1 part by mass, and 0.5 parts by mass. More preferably.
 ポリカルボジイミド化合物(C)は、一分子中にカルボン酸反応性基と水酸基反応性基を有することができる。
 このような一分子中にカルボン酸反応性基と水酸基反応性基を有する化合物は、有機カルボン酸アルカリ金属塩(B)や脂肪酸エステル化合物の分解により生じる遊離酸や遊離水酸基含有化合物、後の熱処理過程や高温下使用時で発生した遊離酸や遊離水酸基含有化合物を即座に捕捉し、揮発を防ぐ効果を発揮できる。
 遊離酸や遊離水酸基含有化合物はガスの発生に大きく影響することから、その捕捉は揮発防止に有効である。特に遊離カルボン酸は、比較的低温で揮発し、かつその揮発物が結晶化するため、フォギングの原因となることが多いことから、遊離カルボン酸の捕捉は極めて重要である。
The polycarbodiimide compound (C) can have a carboxylic acid reactive group and a hydroxyl group reactive group in one molecule.
Such a compound having a carboxylic acid reactive group and a hydroxyl group reactive group in one molecule is a free acid or a free hydroxyl group-containing compound produced by decomposition of an organic carboxylic acid alkali metal salt (B) or a fatty acid ester compound, and a subsequent heat treatment. It can capture the free acid and free hydroxyl group-containing compound generated during the process and use at high temperature, and can effectively prevent volatilization.
Since free acids and free hydroxyl group-containing compounds greatly affect the generation of gas, their capture is effective in preventing volatilization. In particular, free carboxylic acid volatilizes at a relatively low temperature, and the volatiles crystallize, which often causes fogging. Therefore, capturing the free carboxylic acid is extremely important.
 カルボン酸と反応する官能基としては、グリシジル基、オキサゾリン基、オキセタン基、カルボジイミド基等が挙げられる。しかし、一般のグリシジル基含有化合物、オキサゾリン基含有化合物、オキセタン基含有化合物は反応が速やかでなく、また、水酸基と反応する官能基との共存が困難な場合もあり、さらには化合物自体の揮発が激しいため、耐フォギング性が求められる用途への使用は困難な場合が多い。一方、カルボジイミド化合物はグリシジル基、オキサゾリン基、オキセタン基に比べ反応が速やかであり、遊離カルボン酸を捕捉するための使用は非常に好ましい。
 水酸基と反応する官能基としては、カルボン酸と反応する官能基とは異なるものであり、例えばイソシアネート基、酸無水物基等が挙げられるが、反応性の観点からイソシアネート基が特に好ましい。鋭意に検討した結果、一分子中にカルボン酸基反応性基と水酸基反応性基とを有する化合物としては、一分子中にカルボジイミド基とイソシアネート基を有する化合物が最も好ましい。
Examples of the functional group that reacts with the carboxylic acid include a glycidyl group, an oxazoline group, an oxetane group, and a carbodiimide group. However, general glycidyl group-containing compounds, oxazoline group-containing compounds, and oxetane group-containing compounds do not react quickly, and it may be difficult to coexist with a functional group that reacts with a hydroxyl group. Since it is intense, it is often difficult to use it in applications requiring fogging resistance. On the other hand, carbodiimide compounds have a faster reaction than glycidyl groups, oxazoline groups, and oxetane groups, and are very preferably used for capturing free carboxylic acids.
The functional group that reacts with a hydroxyl group is different from the functional group that reacts with a carboxylic acid, and examples thereof include an isocyanate group and an acid anhydride group, and an isocyanate group is particularly preferred from the viewpoint of reactivity. As a result of extensive studies, the compound having a carboxylic acid group-reactive group and a hydroxyl group-reactive group in one molecule is most preferably a compound having a carbodiimide group and an isocyanate group in one molecule.
 カルボン酸基反応性基と水酸基反応性基とを一分子中に含有するメリットは、これらの官能基が熱可塑性樹脂および遊離酸や遊離水酸基含有化合物のいずれとも反応が容易となり、分子量の大きい熱可塑性樹脂と分解物が反応性化合物で繋がることで、脂肪酸エステル分解物の揮発を大幅に低減できることである。したがって、本発明のようなカルボン酸を含有する熱可塑性ポリエステル樹脂の場合、加水分解抑制等の効果も付与でき、樹脂組成物としての加工性向上等の効果を発現させることも可能である。 The merit of containing a carboxylic acid group-reactive group and a hydroxyl group-reactive group in one molecule is that these functional groups can easily react with either a thermoplastic resin or a free acid or a free hydroxyl group-containing compound, and have a large molecular weight. It is that the volatilization of the fatty acid ester decomposition product can be significantly reduced by connecting the plastic resin and the decomposition product with a reactive compound. Therefore, in the case of the thermoplastic polyester resin containing a carboxylic acid as in the present invention, effects such as hydrolysis inhibition can be imparted, and effects such as improved processability as a resin composition can be exhibited.
 ポリカルボジイミドは、一分子内に-N=C=N-の構造を2つ以上有する化合物であり、ジイソシアネート化合物の脱二酸化炭素反応により作製される公知のものを使用できる(米国特許第2941956号、特公昭47-3279号公報、J.Org.Chem.,28,2069~2075(1963)、Chemical Review 1981、Vol.81,No.4,619~621参照)。 Polycarbodiimide is a compound having two or more —N═C═N— structures in one molecule, and a known one prepared by decarbonation of a diisocyanate compound can be used (US Pat. No. 2,941,956, (See Japanese Patent Publication No. 47-3279, J. Org. Chem., 28, 2069-2075 (1963), Chemical Review 1981, Vol. 81, No. 4, 619-621).
 上記ジイソシアネート化合物としては、ヘキサメチレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、シクロヘキサン-1,4-ジイソシアネート、イソホロンジイソシアネート、メチルシクロヘキサンジイソシアネート等の脂肪族または脂環族イソシアネート化合物、4,4-ジフェニルメタンジイソシアネート、4,4-ジフェニルジメチルメタンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1,5-ナフチレンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、1,3,5-トリイソプロピルフェニレン-2,4-ジイソシアネート等の芳香族イソシアネート化合物が挙げられ、これらを単独もしくは2種以上を共重合して用いることができる。 Examples of the diisocyanate compound include aliphatic or alicyclic isocyanate compounds such as hexamethylene diisocyanate, dicyclohexylmethane diisocyanate, cyclohexane-1,4-diisocyanate, isophorone diisocyanate, and methylcyclohexane diisocyanate, 4,4-diphenylmethane diisocyanate, 4,4- Diphenyldimethylmethane diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,5-naphthylene diisocyanate, xylylene diisocyanate, tetramethylxylylene Range isocyanate, 1,3,5-triisopropylphenylene-2,4-diisocyanate, etc. Family isocyanate compounds may be mentioned, it can be used by copolymerizing them singly or in combination.
 また、ポリカルボジイミド化合物(C)は、分岐構造を有しても良く、カルボジイミド基やイソシアネート基以外の官能基を共重合により導入しても良い。さらに末端のイソシアネートを一部もしくは全部を封鎖させても良い。末端封鎖剤としては、フェニルイソシアネート、トリスイソシアネート、ジメチルフェニルイソシアネート、シクロヘキシルイソシアネート、ブチルイソシアネート、ナフチルイソシアネート等のモノイソシアネート化合物、-OH基、-COOH基、-SH基、-NH-R(Rは水素原子またはアルキル基)等を有する化合物を用いることができる。
 末端のイソシアネートを一部もしくは全部封鎖するメリットは、コンパウンド中の反応を制御しやすくなり、重合度や溶融粘度を制御できることである。ポリエステル樹脂(A)に末端のイソシアネートを封鎖していないポリカルボジイミド化合物を一定量以上添加すると、増粘により溶融粘度が著しく高くなることがあり、添加量が制限される場合がある。これによりポリカルボジイミド化合物の添加量が制限されると、期待する効果が得られない場合がある。このような問題が生じた場合、末端のイソシアネートを封鎖したポリカルボジイミド化合物を使用することで解決可能である。
 末端のイソシアネートを全部封鎖したとしても、カルボジイミド基の反応性の高さに起因して遊離カルボン酸を捕捉する効果は高いため、十分に高い低ガス性が得られる。
Further, the polycarbodiimide compound (C) may have a branched structure, and a functional group other than a carbodiimide group or an isocyanate group may be introduced by copolymerization. Further, a part or all of the terminal isocyanate may be blocked. As end-capping agents, monoisocyanate compounds such as phenyl isocyanate, tris isocyanate, dimethylphenyl isocyanate, cyclohexyl isocyanate, butyl isocyanate, naphthyl isocyanate, -OH group, -COOH group, -SH group, -NH-R (R is hydrogen) A compound having an atom or an alkyl group) or the like can be used.
The merit of blocking part or all of the terminal isocyanate is that the reaction in the compound can be easily controlled, and the degree of polymerization and melt viscosity can be controlled. When a certain amount or more of a polycarbodiimide compound in which the terminal isocyanate is not blocked is added to the polyester resin (A), the melt viscosity may be remarkably increased due to thickening, and the addition amount may be limited. Thus, if the amount of polycarbodiimide compound added is limited, the expected effect may not be obtained. When such a problem arises, it can be solved by using a polycarbodiimide compound in which a terminal isocyanate is blocked.
Even if all of the terminal isocyanates are blocked, the effect of capturing the free carboxylic acid due to the high reactivity of the carbodiimide group is high, so that a sufficiently high low gas property can be obtained.
 市販の製品として、ラインケミー社製のスタバックゾールシリーズ、日清紡社製のカルボジライトシリーズ、三井武田ケミカル社製のコスモネートLK、コスモネートLL、BASF INOAC ポリウレタン社製のルプラネートMM-103等が挙げられる。中でも、脂肪酸との相溶性の観点から、脂肪族もしくは脂環族構造からなるポリカルボジイミド化合物を使用することが好ましい。芳香族系ポリカルボジイミドであると、脂肪酸との相溶性が悪い場合があり、カルボジイミド基と脂肪酸が効率良く反応できず効果が低減する。上記の市販品では、日清紡社製カルボジライトシリーズが脂肪族もしくは脂環族構造からなり、好ましく用いられる。 Commercially available products include Starbucks series from Rhein Chemie, Carbodilite series from Nisshinbo, Cosmonate LK from Co., Ltd., Cosmonate LL, Rupranate MM-103 from BASF INOAC Polyurethane, etc. It is done. Especially, it is preferable to use the polycarbodiimide compound which consists of an aliphatic or alicyclic structure from a compatible viewpoint with a fatty acid. If it is an aromatic polycarbodiimide, the compatibility with the fatty acid may be poor, and the carbodiimide group and the fatty acid cannot react efficiently, reducing the effect. In the above-mentioned commercial products, the Nisshinbo Carbodilite series has an aliphatic or alicyclic structure and is preferably used.
 本発明のポリエステル樹脂組成物は、上記した構成を有することで、該ポリエステル樹脂組成物から得られた厚さ2mmの平板の波長800~1100nmにおける透過率の平均値が20%以上75%以下である。透過率測定の詳細は、実施例の項に記載する通りであるが、該ポリエステル樹脂組成物を金型温度60℃で射出成形して得られた厚さ2mmの平板を用い、分光光度計で測定される。平均値とは、800~1100nmにおいて、各波長における透過率の和を測定数で割った値である。測定数はサンプリングピッチによって異なる。例えば、サンプリングピッチが1nmの場合、800、801、802、・・・、1098、1099、1100nmのように1nmごとの透過率データが得られ、測定数は301個となる。よってこの場合、波長800~1100nmにおける透過率の平均値は(各波長における透過率の和/301)で求められる。
 波長800~1100nmの透過率の平均値がこの範囲にあることで、太陽光が集光しても高温になりにくい。
 本発明のポリエステル組成物の特徴は、高い結晶性を維持したまま、赤外光透過性を飛躍的に高めた点である。そのため太陽光が集光しても極めて高温になりにくく、キズが付きにくい。波長800~1100nmの透過率の平均値が75%を超えると、樹脂組成物の結晶性が著しく低下し、耐熱性が損なわれるため好ましくない。波長800~1100nmの透過率の平均値が20%未満であると、太陽光の集光により非常に高温となる場合がある。波長800~1100nmの透過率の平均値は、25%以上が好ましく、また70%以下が好ましい。
Since the polyester resin composition of the present invention has the above-described configuration, the average transmittance of a 2 mm thick flat plate obtained from the polyester resin composition at a wavelength of 800 to 1100 nm is 20% or more and 75% or less. is there. Details of the transmittance measurement are as described in the Examples section, but using a 2 mm thick flat plate obtained by injection molding the polyester resin composition at a mold temperature of 60 ° C., a spectrophotometer was used. Measured. The average value is a value obtained by dividing the sum of transmittance at each wavelength by the number of measurements in the range of 800 to 1100 nm. The number of measurements depends on the sampling pitch. For example, when the sampling pitch is 1 nm, transmittance data is obtained every 1 nm, such as 800, 801, 802,..., 1098, 1099, 1100 nm, and the number of measurements is 301. Therefore, in this case, the average value of the transmittance at a wavelength of 800 to 1100 nm is obtained by (the sum of the transmittance at each wavelength / 301).
When the average value of the transmittance at a wavelength of 800 to 1100 nm is in this range, even if sunlight is collected, it is difficult to reach a high temperature.
A feature of the polyester composition of the present invention is that the infrared light transmittance is remarkably improved while maintaining high crystallinity. For this reason, even if sunlight is condensed, it is difficult for the temperature to become very high and scratches are hardly formed. If the average transmittance of wavelengths from 800 to 1100 nm exceeds 75%, the crystallinity of the resin composition is remarkably lowered and the heat resistance is impaired. If the average value of the transmittance at a wavelength of 800 to 1100 nm is less than 20%, the temperature may become very high due to sunlight collection. The average value of transmittance at a wavelength of 800 to 1100 nm is preferably 25% or more, and more preferably 70% or less.
 本発明のポリエステル樹脂組成物は、上記した構成を有することで、荷重0.45MPaにおける熱変形温度が150℃以上である。熱変形温度は、実施例の項に記載に従い測定される。
 熱変形温度が150℃未満であると、耐熱性が不足し、特に耐熱性が要求される用途には使用できない場合がある。熱変形温度が150℃以上の場合、ポリエステル樹脂組成物はランプ部材用樹脂としての耐熱性を満足するといえる。熱変形温度は155℃以上が好ましく、その場合、ランプ部材用樹脂としての耐熱性をより高度に満足し、160℃以上がより好ましく、その場合、さらに高度に満足するといえる。
 一般的に熱変形温度を上げる技術として、タルク等の無機フィラーを添加する技術が知られているが、本発明によれば、無機フィラーを添加せずとも高い耐熱性(熱変形温度)が得られる。これは有機カルボン酸アルカリ金属塩(B)の効果により、樹脂組成物の結晶化度を維持もしくは上げながら、均一な大きさの微結晶を形成できるために実現するものと考えられる。
Since the polyester resin composition of the present invention has the above-described configuration, the thermal deformation temperature at a load of 0.45 MPa is 150 ° C. or higher. The heat distortion temperature is measured as described in the Examples section.
When the heat distortion temperature is less than 150 ° C., the heat resistance is insufficient, and in particular, it may not be used for applications requiring heat resistance. When the heat distortion temperature is 150 ° C. or higher, it can be said that the polyester resin composition satisfies the heat resistance as a lamp member resin. The heat distortion temperature is preferably 155 ° C. or higher. In that case, the heat resistance as a lamp member resin is more highly satisfied, and 160 ° C. or higher is more preferable.
In general, a technique for adding an inorganic filler such as talc is known as a technique for increasing the heat distortion temperature. However, according to the present invention, high heat resistance (heat distortion temperature) can be obtained without adding an inorganic filler. It is done. This is considered to be realized by the effect of the alkali metal salt of organic carboxylic acid (B) because it is possible to form microcrystals of uniform size while maintaining or increasing the crystallinity of the resin composition.
 本発明のポリエステル樹脂組成物は、フォギング試験(160℃)後のガラスプレートのヘイズ値が5%以下とすることができる。本発明によれば、ガスの発生を効果的に抑制でき、優れた耐フォギング性を有することができる。
 ガスの発生量が多く、フォギング試験(160℃)後のガラスプレートのヘイズ値が5%を超えると、各種ランプ部品として実用上、フォギングの問題がある。さらに射出成形時に金型を汚染しやすくなり、品位や生産性に悪影響を及ぼす場合がある。
In the polyester resin composition of the present invention, the haze value of the glass plate after the fogging test (160 ° C.) can be 5% or less. According to the present invention, gas generation can be effectively suppressed and excellent fogging resistance can be achieved.
When the amount of gas generated is large and the haze value of the glass plate after the fogging test (160 ° C.) exceeds 5%, there is a practical problem of fogging as various lamp parts. In addition, the mold is likely to be contaminated during injection molding, which may adversely affect quality and productivity.
 前記フォギング試験は以下の方法で実施することができる。
 射出成形品(厚さ2mm)から40mm×40mm程度の大きさの小片を切り出し、その合計10gを、アルミ箔を被せて底を作製したガラス筒(例えばφ65×80mm)に入れ、ホットプレート上にセットする。さらに、上記ガラス筒に隙間ができないようにスライドガラス(例えば78mm×76mm×厚さ1mm)で蓋をした後、160℃で24時間、熱処理を行う(この熱処理の結果、スライドガラス内壁にはポリエステル樹脂組成物より昇華した分解物等による付着物が析出する)。スライドガラスのヘイズ値を、ヘイズメーター等を用いて測定する。
The fogging test can be performed by the following method.
Cut out a small piece of about 40 mm x 40 mm from an injection molded product (thickness 2 mm), put a total of 10 g in a glass tube (for example, φ65 x 80 mm) with an aluminum foil covered, and place it on a hot plate. set. Further, the glass tube is covered with a slide glass (for example, 78 mm × 76 mm × thickness 1 mm) so that there is no gap between the glass tube, and then heat treated at 160 ° C. for 24 hours. Deposits due to decomposition products sublimated from the resin composition are deposited). The haze value of the slide glass is measured using a haze meter or the like.
[着色剤(D)]
 本発明のポリエステル樹脂組成物は、着色剤(D)を含有することができる。
 着色剤として顔料を用いると赤外透過性が著しく低下するため、赤外光透過性染料を用いることが好ましい。赤外光透過性染料は公知のものを使用することができ、1種もしくは2種以上の染料を混合して用いても良い。染料はコンパウンド時に直接樹脂に添加しても良いし、マスターバッチとして添加しても良い。分散性、ハンドリング性の観点から、マスターバッチで添加するほうが好ましい。色は意匠性の観点から黒が好ましい。
 ポリエステル樹脂組成物に添加可能な染料としては、例えばキノリン系化合物、アントラキノン系化合物、ペリノン系化合物等の染料を挙げることができる。これらは耐熱性が良好であり、ポリエステル樹脂組成物のコンパウンドや射出成形時に熱分解しにくい。
 耐熱性やフォギング性の観点から、赤外光透過性染料の1分子あたりの分子量は350以上が好ましく、380以上がより好ましく、400以上がさらに好ましい。融点は150℃以上が好ましく、180℃以上がより好ましく、200℃以上がさらに好ましい。分子量、もしくは融点のいずれか一方がこの範囲を満たせばよく、分子量、融点がともにこの範囲を満たすことが特に好ましい。赤外光透過性染料を2種以上混合して用いる場合、それぞれの染料単体での分子量、融点が上記範囲を満たすことが好ましい。
 ただし、分子量、融点が上記範囲を満たしても、樹脂中に含まれるガス化成分との相互作用が高い等の影響で、ガス化成分が揮散する際に誘発されて染料もともに揮散する場合がある。本発明においては、フォギング性の観点からアントラキノン系化合物、ペリノン系化合物が好ましく使用できる。
 着色剤(D)を含む場合、その含有量はポリエステル樹脂(A)100質量部に対し、0.05~3質量部であることが好ましい。0.05質量部未満では、隠蔽性が低く、意匠性が損なわれる場合がある。3質量部を超えるとブリードアウトやフォギングが問題となる場合がある。着色剤(D)の含有量は、0.1~2質量部がより好ましく、0.2~1質量部がさらに好ましい。
 着色剤がマスターバッチとして市販されている場合は、用いられているベース樹脂や着色剤の種類にもよるが、(特に染料の場合)着色剤としての含有量は通常、5~20質量%程度であることが多い。
[Colorant (D)]
The polyester resin composition of the present invention can contain a colorant (D).
When a pigment is used as the colorant, the infrared transmittance is remarkably lowered. Therefore, it is preferable to use an infrared light transmitting dye. As the infrared light transmitting dye, known dyes can be used, and one kind or a mixture of two or more kinds of dyes may be used. The dye may be added directly to the resin at the time of compounding, or may be added as a master batch. From the viewpoint of dispersibility and handling properties, it is preferable to add them in a master batch. The color is preferably black from the viewpoint of design.
Examples of the dye that can be added to the polyester resin composition include dyes such as quinoline compounds, anthraquinone compounds, and perinone compounds. These have good heat resistance and are hardly thermally decomposed during compounding or injection molding of the polyester resin composition.
From the viewpoint of heat resistance and fogging properties, the molecular weight per molecule of the infrared light transmitting dye is preferably 350 or more, more preferably 380 or more, and further preferably 400 or more. The melting point is preferably 150 ° C. or higher, more preferably 180 ° C. or higher, and further preferably 200 ° C. or higher. It is sufficient that either the molecular weight or the melting point satisfy this range, and it is particularly preferable that both the molecular weight and the melting point satisfy this range. When two or more infrared light transmissive dyes are used in combination, the molecular weight and melting point of each dye alone preferably satisfy the above ranges.
However, even if the molecular weight and the melting point satisfy the above ranges, there are cases in which the dye is also volatilized due to the vaporization of the gasification component due to the high interaction with the gasification component contained in the resin. is there. In the present invention, anthraquinone compounds and perinone compounds can be preferably used from the viewpoint of fogging properties.
When the colorant (D) is contained, the content thereof is preferably 0.05 to 3 parts by mass with respect to 100 parts by mass of the polyester resin (A). If it is less than 0.05 part by mass, the concealability is low and the designability may be impaired. If it exceeds 3 parts by mass, bleeding out and fogging may become a problem. The content of the colorant (D) is more preferably 0.1 to 2 parts by mass, and further preferably 0.2 to 1 part by mass.
When the colorant is commercially available as a masterbatch, the content as a colorant is usually about 5 to 20% by mass (especially in the case of dyes), although it depends on the type of base resin and colorant used. Often.
 前記赤外光透過性染料をマスターバッチとして添加する場合、該マスターバッチペレットの色相(ペレット形状での測定値)は、CIE色差系のL系による色相L値(Color-L)が22以下、色相a値(Color-a)が-1.5以上1.5以下、色相b値(Color-b)が-1.5以上1.5以下であることが好ましい(いずれもSCE方式による測定値)。
 赤外光透過性染料のマスターバッチの色相が上記範囲内にあることにより、本発明のポリエステル樹脂組成物は染料の分散性、ハンドリング性を損なうことなく、十分な黒色性を得ることができる。
 マスターバッチの色相が上記範囲を超えると、ポリエステル樹脂組成物が十分な黒色性を得られず、意匠性が損なわれる場合がある。
 該マスターバッチペレットの色相は、より好ましくは、CIE色差系のL系による色相L値(Color-L)が21以下、色相a値(Color-a)が-1以上1以下、色相b値(Color-b)が-1以上1以下である(いずれもSCE方式による測定値)。
When the infrared light transmitting dye is added as a master batch, the hue of the master batch pellet (measured value in the form of pellet) is the hue L * value (Color-) according to the L * a * b * system of the CIE color difference system. L) is preferably 22 or less, hue a * value (Color-a) is from −1.5 to 1.5, and hue b * value (Color-b) is preferably from −1.5 to 1.5. (All measured values by SCE method).
When the hue of the master batch of the infrared light transmitting dye is within the above range, the polyester resin composition of the present invention can obtain sufficient blackness without impairing the dispersibility and handling of the dye.
If the hue of the masterbatch exceeds the above range, the polyester resin composition may not obtain sufficient blackness, and the designability may be impaired.
Color of the masterbatch pellets is more preferably, a hue L * value according to the L * a * b * system of CIE color difference system (Color-L) is 21 or less, hue a * value (Color-a) is -1 1 or less, hue b * value (Color-b) is −1 or more and 1 or less (both measured values by SCE method).
 着色剤(D)を含んだ本発明のポリエステル樹脂組成物は、該ポリエステル樹脂組成物から得られた厚さ2mmの平板の波長300~700nmにおける透過率が実質的に0%であることが好ましい。この波長での透過率測定については、前記と同様である。
 「実質的に」とは、測定時のノイズを考慮しないことを意味する。通常、0±0.05%である場合、実質的に0%であると見なせる。本発明では、波長300~700nmにおける透過率が0±0.05%の範囲であることを、実質的に0%とする。
 波長300~700nmの透過率が実質的に0%であると、可視光隠蔽性が高く、意匠性が高いため好ましい。波長300~700nmの透過率が0%(実質的に0%)を超えると、可視光隠蔽性が十分でないため、意匠性が低い。
In the polyester resin composition of the present invention containing the colorant (D), the transmittance at a wavelength of 300 to 700 nm of a 2 mm-thick flat plate obtained from the polyester resin composition is preferably substantially 0%. . The transmittance measurement at this wavelength is the same as described above.
“Substantially” means that noise during measurement is not taken into consideration. Usually, when it is 0 ± 0.05%, it can be regarded as substantially 0%. In the present invention, the fact that the transmittance at a wavelength of 300 to 700 nm is in the range of 0 ± 0.05% is substantially 0%.
It is preferable that the transmittance at a wavelength of 300 to 700 nm is substantially 0% because the visible light hiding property is high and the design property is high. When the transmittance at a wavelength of 300 to 700 nm exceeds 0% (substantially 0%), the visible light concealing property is not sufficient, and the design property is low.
 着色剤(D)を含んだ本発明のポリエステル樹脂組成物は、意匠性の観点から、CIE色差系のL系による色相L値(Color-L)が7以下(SCE方式による測定値)であることが好ましい。
Color-L≦7 …(I)
 L値が7以下であることにより、本発明のポリエステル樹脂組成物は十分な黒色性を有することができ、溶融成形等により得られる成形品においても、十分な黒色性を発現することができるため、意匠性に優れる。色相L値は、好ましくは6以下、より好ましくは5以下である。色相L値が7より高いと、黒色性が不足し、意匠性が低い。
From the viewpoint of design, the polyester resin composition of the present invention containing a colorant (D) has a hue L * value (Color-L) of CIE color difference L * a * b * of 7 or less (SCE method) Measured value).
Color-L ≦ 7 (I)
When the L * value is 7 or less, the polyester resin composition of the present invention can have sufficient blackness, and can exhibit sufficient blackness even in a molded product obtained by melt molding or the like. Therefore, it is excellent in design property. The hue L * value is preferably 6 or less, more preferably 5 or less. When the hue L * value is higher than 7, the blackness is insufficient and the design property is low.
 本発明のポリエステル樹脂組成物には、耐熱性及び剛性をより向上させるために、本発明としての特性を損なわない範囲において、無機フィラー(E)を含有させても良い。無機フィラー(E)は特に限定されず、公知のものを使用できる。また、無機フィラー(E)は、ポリエステル樹脂組成物との相溶性および分散性を高めるため、表面処理されていても良い。
 表面外観の観点から無機フィラー(E)の平均粒子径は3.0μm以下が好ましい。また、無機フィラー(E)の含有量は、ポリエステル樹脂(A)100質量部に対して、1質量部以下が好ましく、0.8質量部以下がより好ましく、0.5質量部以下がさらに好ましい。1質量部を超えると、無機フィラーを結晶核剤として粗大な結晶が生成し、赤外透過性が著しく低下する場合がある。
 上記で説明した通り、一般的に熱変形温度を上げる技術として、タルク等の無機フィラーを添加する技術が知られている。しかし、該無機フィラーを結晶核として生成する結晶のサイズに起因して、赤外光透過性が著しく低下する場合があり、太陽光の集光により温度上昇しやすくなる。よって、本発明のポリエステル樹脂組成物の一つの好ましい態様としては、タルク等の無機フィラーを含有しないものである。
In order to further improve heat resistance and rigidity, the polyester resin composition of the present invention may contain an inorganic filler (E) as long as the characteristics of the present invention are not impaired. An inorganic filler (E) is not specifically limited, A well-known thing can be used. In addition, the inorganic filler (E) may be subjected to a surface treatment in order to improve compatibility and dispersibility with the polyester resin composition.
In view of surface appearance, the average particle size of the inorganic filler (E) is preferably 3.0 μm or less. Moreover, 1 mass part or less is preferable with respect to 100 mass parts of polyester resins (A), and, as for content of an inorganic filler (E), 0.8 mass part or less is more preferable, and 0.5 mass part or less is further more preferable. . When the amount exceeds 1 part by mass, coarse crystals may be generated using the inorganic filler as a crystal nucleating agent, and the infrared transmittance may be significantly reduced.
As described above, a technique of adding an inorganic filler such as talc is generally known as a technique for increasing the heat distortion temperature. However, due to the size of the crystals that produce the inorganic filler as crystal nuclei, the infrared light transmittance may be significantly reduced, and the temperature is likely to rise due to sunlight collection. Therefore, as one preferable aspect of the polyester resin composition of the present invention, it does not contain an inorganic filler such as talc.
 本発明のポリエステル樹脂組成物は、離型性をより向上させるために、本発明としての特性を損なわない範囲において、離型剤を含有させても良い。
 離型剤の含有量は、ポリエステル樹脂(A)100質量部に対し、0.1~3質量部が好ましい。離型剤が0.1質量部未満であると十分な離型効果が得られず、離型不良や離型ジワ等が問題となる場合がある。離型剤はそれ自体がガスとなったり、及びブリードアウトしたりすることによって、金型を汚染したり、100℃~200℃の範囲の温度環境下でレンズカバーやミラー等に付着し曇りを発生(フォギング)させたりする問題がある。離型剤が3質量部を超えると、これらの問題が顕著となる。
In order to further improve the releasability, the polyester resin composition of the present invention may contain a release agent as long as the characteristics of the present invention are not impaired.
The content of the release agent is preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the polyester resin (A). If the release agent is less than 0.1 parts by mass, a sufficient release effect cannot be obtained, and there may be problems such as defective release and release wrinkles. The mold release agent itself becomes a gas and bleeds out to contaminate the mold, and adheres to the lens cover, mirror, etc. in a temperature environment in the range of 100 ° C to 200 ° C. There is a problem of generating (fogging). When the release agent exceeds 3 parts by mass, these problems become significant.
 離型剤の種類としては、ポリエステルに使用可能なものであれば特に制限はない。例えば、長鎖脂肪酸またはそのエステルや金属塩、アマイド系化合物、ポリエチレンワックス、シリコン、ポリエチレンオキシド等が挙げられる。長鎖脂肪酸としては、特に炭素数12以上が好ましく、例えばステアリン酸、12-ヒドロキシステアリン酸、ベヘン酸、モンタン酸等が挙げられ、部分的もしくは全カルボン酸が、モノグリコールやポリグリコールによりエステル化されていてもよく、または金属塩を形成していても良い。アマイド系化合物としては、エチレンビステレフタルアミド、メチレンビスステアリルアミド等が挙げられる。これら離型剤は、単独であるいは混合物として用いても良い。離型剤として、上記(B)成分と重複する化合物があるが、そのような化合物を離型剤として用いる場合、(B)成分の量と離型剤の量の合計は、前記した(B)成分の許容される含有量の範囲である必要がある。 The type of release agent is not particularly limited as long as it can be used for polyester. For example, long chain fatty acids or esters thereof, metal salts, amide compounds, polyethylene wax, silicon, polyethylene oxide and the like can be mentioned. The long chain fatty acid preferably has 12 or more carbon atoms, and examples thereof include stearic acid, 12-hydroxystearic acid, behenic acid, and montanic acid. Partial or total carboxylic acid is esterified with monoglycol or polyglycol. Or a metal salt may be formed. Examples of the amide compound include ethylene bisterephthalamide and methylene bisstearyl amide. These release agents may be used alone or as a mixture. As the release agent, there is a compound overlapping with the above component (B). When such a compound is used as the release agent, the total amount of the component (B) and the amount of the release agent is as described above (B ) It must be within the range of acceptable contents of components.
 その他、本発明のポリエステル樹脂組成物には、必要に応じて、本発明としての特性を損なわない範囲において、公知の範囲で各種添加剤を含有させることができる。公知の添加剤としては、例えば耐熱安定剤、酸化防止剤、紫外線吸収剤、光安定剤、可塑剤、変性剤、帯電防止剤、難燃剤等が挙げられる。
 本発明のポリエステル樹脂組成物は、(A)、(B)、(C)、及び(D)成分((D)成分は任意成分)の合計で、85質量%以上を占めることが好ましく、90質量%以上を占めることがより好ましく、95質量%以上を占めることがさらに好ましい。
In addition, the polyester resin composition of the present invention can contain various additives in a known range as long as the characteristics of the present invention are not impaired, if necessary. Examples of known additives include heat stabilizers, antioxidants, ultraviolet absorbers, light stabilizers, plasticizers, modifiers, antistatic agents, flame retardants and the like.
The polyester resin composition of the present invention preferably occupies 85% by mass or more in total of the components (A), (B), (C), and (D) (the component (D) is an optional component), 90 It is more preferable to occupy 95% by mass or more, and it is even more preferable to occupy 95% by mass or more.
 本発明のポリエステル樹脂組成物を製造する方法としては、上述した各成分及び必要に応じて各種安定剤等を混合し、溶融混練することによって製造できる。溶融混練方法は当業者に周知のいずれの方法を用いることが可能であり、単軸押出機、二軸押出機、加圧ニーダー、バンバリーミキサー等を使用することができる。中でも二軸押出機を使用することが好ましい。一般的な溶融混練条件としては、二軸押出機ではシリンダー温度は230~270℃、混練時間は2~15分である。 As a method for producing the polyester resin composition of the present invention, it can be produced by mixing the above-described components and various stabilizers as necessary, and melt-kneading. Any method known to those skilled in the art can be used as the melt-kneading method, and a single screw extruder, a twin screw extruder, a pressure kneader, a Banbury mixer, or the like can be used. Among these, it is preferable to use a twin screw extruder. As general melt kneading conditions, in a twin screw extruder, the cylinder temperature is 230 to 270 ° C., and the kneading time is 2 to 15 minutes.
 本発明のポリエステル樹脂組成物の成形方法としては特に制限されず、射出成形、押出成形、ブロー成形等の公知の方法を用いることができる。中でも、汎用性の観点から、射出成形法が好ましく使用される。 The method for molding the polyester resin composition of the present invention is not particularly limited, and known methods such as injection molding, extrusion molding, and blow molding can be used. Among these, an injection molding method is preferably used from the viewpoint of versatility.
 本発明のポリエステル樹脂組成物の成形品は、表面の少なくとも一部に、光反射金属層を直接形成(蒸着)することができる。蒸着方法は特に制限されず、公知の方法を用いることができる。 The molded article of the polyester resin composition of the present invention can directly form (evaporate) a light reflecting metal layer on at least a part of the surface. The vapor deposition method is not particularly limited, and a known method can be used.
 本発明のポリエステル樹脂組成物を用いて成形された成形品は、意匠部材(特にランプ部材)として好適に使用できる。例えば自動車用ランプ(ヘッドランプ等)部材、光反射体(エクステンション、リフレクター、ハウジング等)、さらには照明器具、電気・電子部品、家庭雑貨品等の部材として使用できる。 The molded product molded using the polyester resin composition of the present invention can be suitably used as a design member (particularly a lamp member). For example, it can be used as a member for automobile lamps (head lamps, etc.), light reflectors (extensions, reflectors, housings, etc.), lighting equipment, electrical / electronic parts, household goods, etc.
 以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例に記載された測定値は、以下の方法によって測定したものである。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. In addition, the measured value described in the Example is measured by the following method.
(1)赤外光(波長800~1100nm)/可視光(波長300~700nm)の透過率
 実施例・比較例で得たペレットを、射出成形機を用いて成形を行った。射出成形機EC-100N(東芝機械社製)を用い、100mm×100mm×2mm厚みの平板成形品を射出成形した。成形はシリンダー温度260℃、金型温度60℃で行った。
 分光光度計UV‐3150(島津製作所社製)(標準白色板には硫酸バリウム系白色板を使用)を用いて、サンプリングピッチ1.0nm、スリット幅(12)として波長300~1500nmの透過率を測定し、波長800~1100nmの透過率の平均値(各波長における透過率の和/301)を算出した。
 着色剤を用いた場合は、別途、波長300~700nmの透過率を測定した。
(1) Transmittance of infrared light (wavelength 800 to 1100 nm) / visible light (wavelength 300 to 700 nm) The pellets obtained in Examples and Comparative Examples were molded using an injection molding machine. Using an injection molding machine EC-100N (manufactured by Toshiba Machine Co., Ltd.), a flat plate molded product having a thickness of 100 mm × 100 mm × 2 mm was injection molded. Molding was performed at a cylinder temperature of 260 ° C. and a mold temperature of 60 ° C.
Using a spectrophotometer UV-3150 (manufactured by Shimadzu Corporation) (a barium sulfate-based white plate is used as a standard white plate), a transmittance of a wavelength of 300 to 1500 nm is obtained with a sampling pitch of 1.0 nm and a slit width (12). Measurements were made to calculate the average transmittance (sum of transmittance at each wavelength / 301) at wavelengths of 800 to 1100 nm.
When the colorant was used, the transmittance at a wavelength of 300 to 700 nm was separately measured.
(2)熱変形温度(荷重:0.45MPa)
 射出成形機EC-100Nを用いてISO-3167の多目的試験片を成形し、ISO-75に従って、荷重0.45MPaで熱変形温度を測定した。
(2) Thermal deformation temperature (load: 0.45 MPa)
A multi-purpose test piece of ISO-3167 was molded using an injection molding machine EC-100N, and the heat distortion temperature was measured at a load of 0.45 MPa according to ISO-75.
(3)ヘイズ値
 厚さ2mmの射出成形品から40mm×40mm程度の大きさの小片を切り出し、その合計10gを、アルミ箔を被せて底を作製したガラス筒(φ65×80mm)に入れ、ホットプレート(ネオホットプレートHT-1000、アズワン社製)上にセットした。さらに、上記ガラス筒にスライドガラス(78mm×76mm×厚さ1mm)で蓋をした後、160℃で24時間、熱処理を実施した。この熱処理の結果、スライドガラス内壁には樹脂組成物より昇華した分解物等による付着物が析出した。これらのスライドガラスのヘイズ値を、ヘイズメーターNDH2000(日本電色工業社製)を用いて測定した。
(3) Haze value A small piece having a size of about 40 mm × 40 mm was cut out from an injection molded product having a thickness of 2 mm, and a total of 10 g was put into a glass tube (φ65 × 80 mm) whose aluminum foil was covered to make a bottom, and hot It was set on a plate (Neo Hot Plate HT-1000, manufactured by AS ONE). Furthermore, after the glass tube was covered with a slide glass (78 mm × 76 mm × thickness 1 mm), heat treatment was performed at 160 ° C. for 24 hours. As a result of this heat treatment, deposits due to decomposition products sublimated from the resin composition were deposited on the inner wall of the slide glass. The haze values of these slide glasses were measured using a haze meter NDH2000 (manufactured by Nippon Denshoku Industries Co., Ltd.).
(4)MFR(メルトフローレート)
 ISO-1133に準じてA法で測定した。温度、荷重条件は250℃、2160gで測定した。
(4) MFR (melt flow rate)
Measurement was carried out by method A according to ISO-1133. Temperature and load conditions were measured at 250 ° C. and 2160 g.
(5)曲げ強度、たわみ率、曲げ弾性率
 ISO-178に準じて測定した。
(5) Flexural strength, deflection rate, flexural modulus Measured according to ISO-178.
(6)色相L
 ポリエステル樹脂組成物の平板の色相は以下の方法にて測定した。
 射出成形機EC-100N(東芝機械社製)を用い、#6000番のやすりで磨かれた鏡面を片面に有する金型を用い、100mm×100mm×2mm厚みの平板成形品を射出成形した。成形はシリンダー温度260℃、金型温度60℃で行った。
 精密型分光光度色彩計TC-1500SX(東京電色社製)を用いて、JIS Z 8722、JIS Z 8781-4に準じて、成形板の鏡面側の色相L値(CIE色差系)を測定した。D65光源、10°視野、0°-d法、SCE方式にて測定した。
 赤外光透過性染料マスターバッチペレットの色相は以下の方法にて測定した。
 精密型分光光度色彩計TC-1500SX(東京電色社製)を用いて、JIS Z 8722、JIS Z 8781-4に準じて、ペレットを付属のケースに入れ、回転台にセットし、色相L値(CIE色差系)を測定した。D65光源、10°視野、0°-d法、SCE方式にて測定した。
(6) Hue L * Value The hue of the flat plate of the polyester resin composition was measured by the following method.
Using an injection molding machine EC-100N (manufactured by Toshiba Machine Co., Ltd.), a flat plate molded product having a thickness of 100 mm × 100 mm × 2 mm was injection molded using a mold having a mirror surface polished on # 6000 file on one side. Molding was performed at a cylinder temperature of 260 ° C. and a mold temperature of 60 ° C.
Using a precision spectrophotometric colorimeter TC-1500SX (manufactured by Tokyo Denshoku Co., Ltd.), the hue L * value (CIE color difference system) on the mirror surface side of the molded plate is measured according to JIS Z 8722 and JIS Z 8781-4. did. Measurements were taken with a D65 light source, 10 ° field of view, 0 ° -d method, and SCE method.
The hue of the infrared light transmissive dye masterbatch pellet was measured by the following method.
Using a precision spectrophotometric colorimeter TC-1500SX (manufactured by Tokyo Denshoku Co., Ltd.), in accordance with JIS Z 8722 and JIS Z 8781-4, put the pellet in the attached case, set it on the turntable, and hue L * The a * b * value (CIE color difference system) was measured. Measurements were taken with a D65 light source, 10 ° field of view, 0 ° -d method, and SCE method.
 実施例及び比較例に使用した配合成分を次に示す。 The compounding components used in Examples and Comparative Examples are shown below.
ポリエステル樹脂(A);
 ポリブチレンテレフタレート樹脂(a):IV=0.83dl/g、酸価=30eq/t
 ポリエチレンテレフタレート樹脂(b):IV=0.62dl/g、酸価=30eq/t
 ポリトリメチレンテレフタレート樹脂(c):IV=0.93dl/g、コルテラ(シェル社製)
非晶樹脂;
 ポリカーボネート樹脂:カリバー301‐40(住化スタイロンポリカーボネート社製)
Polyester resin (A);
Polybutylene terephthalate resin (a): IV = 0.83 dl / g, acid value = 30 eq / t
Polyethylene terephthalate resin (b): IV = 0.62 dl / g, acid value = 30 eq / t
Polytrimethylene terephthalate resin (c): IV = 0.93 dl / g, Cortera (manufactured by Shell)
Amorphous resin;
Polycarbonate resin: Caliber 301-40 (manufactured by Sumika Stylon Polycarbonate)
脂肪族カルボン酸アルカリ金属塩(B);
 (B-1)カプリル酸ナトリウム(日東化成工業社製、融点220℃)
 (B-2)ステアリン酸ナトリウム(日本油脂社製、融点230℃)
その他の核剤:
 (B-3)アデカスタブNA-11(カルボン酸アルカリ金属塩ではない、芳香族系核剤、ADEKA社製、融点≧400℃)
 (B-4)アデカスタブNA-21(カルボン酸アルカリ金属塩ではない、芳香族系核剤、ADEKA社製、融点≧210℃)
Aliphatic carboxylic acid alkali metal salt (B);
(B-1) Sodium caprylate (manufactured by Nitto Kasei Kogyo Co., Ltd., melting point 220 ° C.)
(B-2) Sodium stearate (manufactured by NOF Corporation, melting point 230 ° C.)
Other nucleating agents:
(B-3) ADK STAB NA-11 (not an alkali metal carboxylate, aromatic nucleating agent, manufactured by ADEKA, melting point ≧ 400 ° C.)
(B-4) ADK STAB NA-21 (not an alkali metal carboxylate, aromatic nucleating agent, manufactured by ADEKA, melting point ≧ 210 ° C.)
ポリカルボジイミド化合物(C);
 (C-1)カルボジライトHMV-15CA(日清紡ケミカル社製、末端のイソシアネートを全部封鎖したポリカルボジイミド)
 (C-2)カルボジライトLA-1(日清紡ケミカル社製、末端にイソシアネートを有するポリカルボジイミド)
Polycarbodiimide compound (C);
(C-1) Carbodilite HMV-15CA (manufactured by Nisshinbo Chemical Co., Ltd., polycarbodiimide with all terminal isocyanates blocked)
(C-2) Carbodilite LA-1 (manufactured by Nisshinbo Chemical Co., Ltd., polycarbodiimide having an isocyanate at the end)
着色剤(D);
 (D-1)赤外光透過性染料マスターバッチ:PBF-TT2399B-PBT(PBT(ポリブチレンテレフタレート)樹脂ベースの黒色染料マスターバッチ、アントラキノン系化合物及びペリノン系化合物を混合した調色品、染料含有率合計10質量%;レジノカラー工業社製)、ペレット色相:Color-L=19.5、Color-a=-0.2、Color-b=-0.9
 (D-2)紫色染料:DCC-V01301(Ningbo DCC Chemicals社製)
Colorant (D);
(D-1) Infrared light transmissive dye masterbatch: PBF-TT2399B-PBT (PBT (polybutylene terephthalate) resin-based black dye masterbatch, toning product mixed with anthraquinone compound and perinone compound, containing dye 10% by mass in total; manufactured by Resino Color Industry Co., Ltd.), pellet hue: Color-L = 19.5, Color-a = −0.2, Color-b = −0.9
(D-2) Purple dye: DCC-V01301 (manufactured by Ningbo DCC Chemicals)
無機フィラー;
 タルク(平均粒子径:2.5μm[レーザー回折法]):ミクロエースSG-95(日本タルク社製)前記平均粒子径は、カタログ値を採用した。
Inorganic fillers;
Talc (average particle size: 2.5 μm [laser diffraction method]): Microace SG-95 (manufactured by Nippon Talc Co., Ltd.) Catalog values are used for the average particle size.
離型剤;
 トリグリセリンフルベヘン酸エステル:ポエムTR-FB(理研ビタミン社製)
安定剤;
 酸化防止剤:Irganox1010(BASF社製)
Release agent;
Triglycerin flubehenate: Poem TR-FB (manufactured by Riken Vitamin)
Stabilizers;
Antioxidant: Irganox 1010 (BASF)
(実施例1~12、比較例1~10)
 表1、2に示す組み合わせで配合した配合成分を、シリンダー温度250℃(実施例8、比較例2、3、4は260℃)に設定した同方向二軸押出機でコンパウンドを行い、得られたストランドを水冷し、ペレット化した。得られた各ペレットを130℃で4時間乾燥し、上述の各評価試験に用いた。結果を表1、2に記す。
(Examples 1 to 12, Comparative Examples 1 to 10)
It is obtained by compounding the compounding ingredients blended in the combinations shown in Tables 1 and 2 with a co-directional twin-screw extruder set at a cylinder temperature of 250 ° C. (Example 8, Comparative Examples 2, 3 and 4 are 260 ° C.). The strand was cooled with water and pelletized. Each of the obtained pellets was dried at 130 ° C. for 4 hours and used for each of the above-described evaluation tests. The results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、実施例1~8、12の本発明のポリエステル樹脂組成物から得られる成形品は、赤外光透過率が20%以上、熱変形温度が150℃以上であり、優れた特性を有することが分かる。また、いずれもフォギング試験後のガラスプレートのヘイズ値が5%以下と良好であった。
 実施例9、10は、黒色着色剤の添加により優れた可視光隠蔽性を付与できていることが分かる。物性は着色剤添加前と差異なく、いずれも良好であった。さらにフォギング試験後のガラスプレートのヘイズ値も5%以下と良好であった。紫色染料を用いた実施例11は、赤外光透過率及びその他の物性は良好であったが、色相Lが7を超えて、黒色性が不十分であった。
 比較例1は、有機カルボン酸アルカリ金属塩、無機フィラーの添加がないため、赤外光透過性、ヘイズは問題なかったが、熱変形温度が低かった。比較例2、3は、非晶樹脂を添加した水準であり、高い赤外光透過性が得られたが、比較例1よりも熱変形温度が低下するとともに、フォギング試験後のガラスプレートのヘイズ値が高くなった。無機フィラーを添加することで(比較例4)、熱変形温度がやや上昇したものの十分ではなかった。
 比較例1の組成に無機フィラーを添加すると(比較例5、6)、熱変形温度は高くなるものの、赤外光透過性が低下してしまうため、熱変形温度と赤外光透過性の物性の両立が困難であった。
 有機カルボン酸アルカリ金属塩の添加量が少ない比較例7は、赤外光透過性、熱変形温度が低かった。
 ポリカルボジイミド化合物(C)を含まない比較例8は、実施例2、3、4に比べて赤外光透過性の低下、フォギングの悪化が確認され、熱変形温度も低かった。また有機カルボン酸アルカリ金属塩(B)の分散が不均一であるためと思われるが、熱変形温度に関しては測定バラつきが非常に大きい問題もあった。
 有機カルボン酸アルカリ金属塩以外の結晶核剤を使用した比較例9、10は、透明性、熱変形温度の向上が見られなかった。微結晶化効果が十分でなく、結晶サイズが大きくなったことが原因と推定している。
As shown in Table 1, molded articles obtained from the polyester resin compositions of Examples 1 to 8 and 12 of the present invention have an infrared light transmittance of 20% or more and a heat distortion temperature of 150 ° C. or more, which is excellent. It can be seen that it has the characteristics. In all cases, the haze value of the glass plate after the fogging test was as good as 5% or less.
It turns out that Example 9, 10 has provided the visible light hiding property which was excellent by addition of a black coloring agent. The physical properties were the same as before the colorant addition, and all were good. Furthermore, the haze value of the glass plate after the fogging test was also good at 5% or less. In Example 11 using the purple dye, the infrared light transmittance and other physical properties were good, but the hue L * exceeded 7 and the blackness was insufficient.
In Comparative Example 1, since there was no addition of an organic metal carboxylic acid alkali metal salt or an inorganic filler, there was no problem in infrared light transmission and haze, but the heat distortion temperature was low. Comparative Examples 2 and 3 were at a level to which an amorphous resin was added, and high infrared light transmittance was obtained, but the heat distortion temperature was lower than that of Comparative Example 1, and the haze of the glass plate after the fogging test was obtained. The value became high. By adding the inorganic filler (Comparative Example 4), although the heat distortion temperature slightly increased, it was not sufficient.
When an inorganic filler is added to the composition of Comparative Example 1 (Comparative Examples 5 and 6), although the heat distortion temperature is increased, the infrared light transmittance is decreased. Therefore, the heat distortion temperature and the infrared light transmissive physical properties are reduced. It was difficult to achieve both.
In Comparative Example 7 in which the amount of the organic carboxylic acid alkali metal salt was small, the infrared light transmittance and the heat distortion temperature were low.
In Comparative Example 8 not containing the polycarbodiimide compound (C), compared to Examples 2, 3 and 4, the infrared light transmittance was lowered and fogging was confirmed, and the heat distortion temperature was also low. Moreover, although it seems that dispersion | distribution of organic carboxylic-acid alkali metal salt (B) is non-uniform | heterogenous, there also existed a problem that the measurement variation was very large regarding heat deformation temperature.
In Comparative Examples 9 and 10 using a crystal nucleating agent other than the organic metal carboxylic acid alkali metal salt, improvement in transparency and heat distortion temperature was not observed. It is presumed that the microcrystallization effect was not sufficient and the crystal size was increased.
 本発明のポリエステル樹脂組成物は、赤外光透過性に優れ、かつ良好な耐熱性、低ガス性を有するため、意匠部材(特に太陽光集光によるキズ付きが問題となっているランプ部材用途)として用いるのに好適なポリエステル樹脂組成物であり、産業上の利用価値が大きい。 Since the polyester resin composition of the present invention is excellent in infrared light transmission and has good heat resistance and low gas properties, it is a design member (particularly for lamp members in which scratches due to sunlight collection are a problem) ) Is a polyester resin composition suitable for use as an industrial utility value.

Claims (7)

  1.  ポリエステル樹脂(A)100質量部に対して、炭素数3~40の有機カルボン酸アルカリ金属塩(B)0.1~1質量部、及びポリカルボジイミド化合物(C)0.05~3質量部を含有するポリエステル樹脂組成物であり、該ポリエステル樹脂組成物が下記要件(1)及び(2)を満たすことを特徴とするポリエステル樹脂組成物。
    (1)該ポリエステル樹脂組成物から得られた厚さ2mmの平板の波長800~1100nmにおける透過率の平均値が20%以上75%以下であること
    (2)熱変形温度(0.45MPa)が150℃以上であること
    0.1 to 1 part by mass of an organic carboxylic acid alkali metal salt (B) having 3 to 40 carbon atoms and 0.05 to 3 parts by mass of a polycarbodiimide compound (C) with respect to 100 parts by mass of the polyester resin (A) A polyester resin composition comprising the polyester resin composition, wherein the polyester resin composition satisfies the following requirements (1) and (2).
    (1) The average value of the transmittance at a wavelength of 800 to 1100 nm of a 2 mm-thick flat plate obtained from the polyester resin composition is 20% or more and 75% or less (2) The thermal deformation temperature (0.45 MPa) 150 ° C or higher
  2.  前記ポリエステル樹脂(A)が、ポリブチレンテレフタレート樹脂(a)とポリエチレンテレフタレート樹脂(b)とを質量比で100:0~50:50の割合で含んでいる請求項1に記載のポリエステル樹脂組成物。 The polyester resin composition according to claim 1, wherein the polyester resin (A) contains a polybutylene terephthalate resin (a) and a polyethylene terephthalate resin (b) in a mass ratio of 100: 0 to 50:50. .
  3.  前記炭素数3~40の有機カルボン酸アルカリ金属塩(B)を構成する金属が、リチウム、ナトリウム、及びカリウムから選ばれる1種または2種以上であることを特徴とする請求項1または2に記載のポリエステル樹脂組成物。 3. The metal constituting the alkali metal salt of organic carboxylic acid having 3 to 40 carbon atoms (B) is one or more selected from lithium, sodium, and potassium. The polyester resin composition as described.
  4.  前記炭素数3~40の有機カルボン酸アルカリ金属塩(B)を構成する有機カルボン酸が、炭素数3~20の脂肪族カルボン酸であることを特徴とする請求項1~3のいずれかに記載のポリエステル樹脂組成物。 4. The organic carboxylic acid constituting the organic carboxylic acid alkali metal salt (B) having 3 to 40 carbon atoms is an aliphatic carboxylic acid having 3 to 20 carbon atoms. The polyester resin composition as described.
  5.  着色剤(D)を含み、該ポリエステル樹脂組成物から得られた厚さ2mmの平板の波長300~700nmにおける透過率が実質的に0%であることを特徴とする請求項1~4のいずれかに記載のポリエステル樹脂組成物。 The transmittance at a wavelength of 300 to 700 nm of a 2 mm-thick flat plate obtained from the polyester resin composition containing the colorant (D) is substantially 0%. A polyester resin composition according to claim 1.
  6.  着色剤(D)を含み、該ポリエステル樹脂組成物が下記要件(3)を満たすことを特徴とする請求項5に記載のポリエステル樹脂組成物。
    (3)Color-L≦7
    [上数式中、Color-Lはポリエステル樹脂組成物のCIE色差系のL系による色相L値を示す。]
    The polyester resin composition according to claim 5, wherein the polyester resin composition contains a colorant (D) and satisfies the following requirement (3).
    (3) Color-L ≦ 7
    [In the above formula, Color-L represents the hue L * value by the LIE * L * a * b * system of the CIE color difference system of the polyester resin composition. ]
  7.  請求項1~6のいずれかに記載のポリエステル樹脂組成物を用いて成形されたランプ用部品。
     
    A lamp part molded using the polyester resin composition according to any one of claims 1 to 6.
PCT/JP2016/054328 2015-02-16 2016-02-15 Infrared light-permeable polyester resin composition WO2016133056A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016512136A JPWO2016133056A1 (en) 2015-02-16 2016-02-15 Infrared light transmitting polyester resin composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-027536 2015-02-16
JP2015027536 2015-02-16
JP2015-135075 2015-07-06
JP2015135075 2015-07-06

Publications (1)

Publication Number Publication Date
WO2016133056A1 true WO2016133056A1 (en) 2016-08-25

Family

ID=56689382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054328 WO2016133056A1 (en) 2015-02-16 2016-02-15 Infrared light-permeable polyester resin composition

Country Status (2)

Country Link
JP (1) JPWO2016133056A1 (en)
WO (1) WO2016133056A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143479A1 (en) * 2017-02-06 2018-08-09 ウィンテックポリマー株式会社 Production method of thermoplastic aromatic polyester resin composition
CN109306154A (en) * 2017-07-28 2019-02-05 现代摩比斯株式会社 Polyester and resin composition and the product being produced from it
US20200385413A1 (en) * 2018-02-23 2020-12-10 Nisshinbo Chemical Inc. Metal alkoxide, and aqueous resin crosslinking composition and aqueous resin composition which use same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140354A (en) * 1984-08-01 1986-02-26 Teijin Ltd Resin composition
JPS6274955A (en) * 1985-09-30 1987-04-06 Unitika Ltd Sealing polyester resin composition
JPS63101449A (en) * 1986-10-17 1988-05-06 Mitsui Petrochem Ind Ltd Production of polyester resin composition
JP2004262969A (en) * 2003-02-06 2004-09-24 Daicel Chem Ind Ltd Polyester thermoplastic resin composition and molded article
JP2008195784A (en) * 2007-02-09 2008-08-28 Mitsubishi Chemicals Corp Polyester-based resin composition and molded article thereof
JP2014125588A (en) * 2012-12-27 2014-07-07 Teijin Ltd Polyester composition and polyester molded article

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2532878T3 (en) * 2011-03-08 2015-04-01 Basf Se Transparent laser polyesters with carboxylic acid salts

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140354A (en) * 1984-08-01 1986-02-26 Teijin Ltd Resin composition
JPS6274955A (en) * 1985-09-30 1987-04-06 Unitika Ltd Sealing polyester resin composition
JPS63101449A (en) * 1986-10-17 1988-05-06 Mitsui Petrochem Ind Ltd Production of polyester resin composition
JP2004262969A (en) * 2003-02-06 2004-09-24 Daicel Chem Ind Ltd Polyester thermoplastic resin composition and molded article
JP2008195784A (en) * 2007-02-09 2008-08-28 Mitsubishi Chemicals Corp Polyester-based resin composition and molded article thereof
JP2014125588A (en) * 2012-12-27 2014-07-07 Teijin Ltd Polyester composition and polyester molded article

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143479A1 (en) * 2017-02-06 2018-08-09 ウィンテックポリマー株式会社 Production method of thermoplastic aromatic polyester resin composition
JPWO2018143479A1 (en) * 2017-02-06 2019-02-07 ウィンテックポリマー株式会社 Method for producing thermoplastic aromatic polyester resin composition
US11236229B2 (en) 2017-02-06 2022-02-01 Polyplastics Co., Ltd. Production method of thermoplastic aromatic polyester resin composition
CN109306154A (en) * 2017-07-28 2019-02-05 现代摩比斯株式会社 Polyester and resin composition and the product being produced from it
JP2019026842A (en) * 2017-07-28 2019-02-21 ヒュンダイ・モービス・カンパニー・リミテッド Polyester resin composition and molded article produced from that composition
CN109306154B (en) * 2017-07-28 2021-07-23 现代摩比斯株式会社 Polyester resin composition and articles made therefrom
US20200385413A1 (en) * 2018-02-23 2020-12-10 Nisshinbo Chemical Inc. Metal alkoxide, and aqueous resin crosslinking composition and aqueous resin composition which use same
US11685753B2 (en) * 2018-02-23 2023-06-27 Nisshinbo Chemical Inc. Metal alkoxide, and aqueous resin crosslinking composition and aqueous resin composition which use same

Also Published As

Publication number Publication date
JPWO2016133056A1 (en) 2017-11-24

Similar Documents

Publication Publication Date Title
JP6690530B2 (en) Infrared light transmitting polyester resin composition
JP5316716B2 (en) Thermoplastic polyester resin composition and light reflector using the same
JP4232863B2 (en) Metallized polyester composition
JP5909534B2 (en) Polyester resin composition and camera module including the same
JP6787128B2 (en) Infrared light transmissive polyester resin composition
EP2084228B1 (en) Polyester compositions, methods of manufacture, and uses thereof
WO2017026476A1 (en) Thermoplastic polyester resin composition and light reflector using same
WO2016133056A1 (en) Infrared light-permeable polyester resin composition
JP5729169B2 (en) Thermoplastic polyester resin composition and light reflector using the same
JP3498815B2 (en) Polyester resin composition for lamp case
JP2009249583A (en) Polylactic acid composition and molding
JPWO2003022925A1 (en) Flame retardant polyethylene terephthalate resin composition
US6579609B1 (en) Metallized polyester composition
JP6540288B2 (en) Infrared ray transmitting polyester resin composition
US20100227182A1 (en) Thermoplastic molded vehicle light bezel
WO2016194757A1 (en) Infrared-light-transmitting polyester resin composition
JP3500279B2 (en) Polyester resin composition and molded article thereof
JP6540258B2 (en) Polyester resin composition for automobile lamp members
WO2020246335A1 (en) Resin composition and method for producing same
JP3281269B2 (en) Polybutylene terephthalate resin composition and molded article thereof
JP7091895B2 (en) Thermoplastic resin composition and its molded product
JP2000198910A (en) Thermoplastic polyester resin composition for luminaire part
KR20150078902A (en) Polyester Resin Composition
JP5577755B2 (en) Polyester resin composition
JP2004002609A (en) Flavoring agent container part for automobile use

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016512136

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16752442

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16752442

Country of ref document: EP

Kind code of ref document: A1