WO2016132575A1 - Centrifugal compressor - Google Patents

Centrifugal compressor Download PDF

Info

Publication number
WO2016132575A1
WO2016132575A1 PCT/JP2015/074207 JP2015074207W WO2016132575A1 WO 2016132575 A1 WO2016132575 A1 WO 2016132575A1 JP 2015074207 W JP2015074207 W JP 2015074207W WO 2016132575 A1 WO2016132575 A1 WO 2016132575A1
Authority
WO
WIPO (PCT)
Prior art keywords
inlet guide
inlet
guide vanes
guide vane
interval
Prior art date
Application number
PCT/JP2015/074207
Other languages
French (fr)
Japanese (ja)
Inventor
亮祐 齋藤
彰範 田▼崎▲
Original Assignee
三菱重工業株式会社
三菱重工コンプレッサ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 三菱重工コンプレッサ株式会社 filed Critical 三菱重工業株式会社
Priority to US15/551,875 priority Critical patent/US20180066674A1/en
Publication of WO2016132575A1 publication Critical patent/WO2016132575A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4213Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • F04D29/286Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors multi-stage rotors

Definitions

  • the present invention relates to a centrifugal compressor having an inlet guide vane and one suction port.
  • Centrifugal compressors are used in turbo chillers, petrochemical plants and natural gas plants.
  • a centrifugal compressor kinetic energy is given to a fluid by rotation of an impeller (impeller), and a pressure increase due to centrifugal force is obtained by blowing the fluid radially outward.
  • a turbocharger which is one of centrifugal compressors, air flowing into the upstream side of an impeller (compressor blade) is rectified and the amount of air flowing in is adjusted.
  • the inlet guide vane can adjust the amount of air flowing in by making the angle with respect to the impeller, that is, the opening, variable and changing the resistance in the flow path.
  • an inlet guide vane is fixed. Centrifugal compressors are distributed in the amount of fluid flowing into the impeller in the direction of rotation of the main shaft, and the efficiency of operation decreases as the flow rate difference increases.
  • This invention solves the subject mentioned above, and aims at providing the centrifugal compressor which can flow air into an impeller efficiently and can improve driving
  • the present invention is a centrifugal compressor, in which an inlet channel provided with a suction port in one place and a connection channel connected to the inlet channel are formed.
  • the inlet guide vane unit has an arrangement interval of 25% of the first group of the inlet guide vanes on the end side on the suction port side of all the inlet guide vanes. It is preferable that it is narrower than the arrangement interval of 25% of the second group of inlet guide vanes on the end side opposite to the suction port.
  • the relationship between the maximum value dmax and the minimum value dmin of the interval between the inlet guide vanes is preferably 0.6 ⁇ dmin / dmax ⁇ 1.0.
  • the interval between the inlet guide vanes may vary within a range of 20% or less of the amplitude of the reference line with reference to the reference line of the sin function along the rotation direction of the main shaft. preferable.
  • the inlet guide vane unit has a position in which the position where the interval between the inlet guide vanes is widest is moved from 0 ° to 40 ° to the upstream side in the rotation direction of the main shaft from the end opposite to the suction port. It is preferable that it exists in.
  • the distribution in the circumferential direction of the fluid flowing into the impeller can be averaged by changing the arrangement interval of the inlet guide vanes according to the position, and the operation efficiency can be increased.
  • FIG. 1 is a schematic configuration diagram of a compressor according to the present embodiment.
  • 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 3 is a partially enlarged view of the inlet guide vane unit.
  • FIG. 4 is a graph showing an example of the flow rate distribution of the inflowing fluid.
  • FIG. 5 is a graph showing an example of the relationship between the position and interval of the inlet guide vane.
  • FIG. 6 is a schematic diagram illustrating an example of an inlet guide vane.
  • FIG. 7 is a graph showing an example of the relationship between the position and interval of the inlet guide vane.
  • the compressor 1 can be used as a supply device of compressed air to a refrigerator, a petrochemical plant, or a natural gas plant, for example.
  • the compressor (centrifugal compressor) 1 of this embodiment is a multistage compression centrifugal compressor.
  • the compressor 1 is described as a multi-stage compression compressor, but it may be a single-stage compression compressor.
  • the compressor 1 includes a casing 2, a drive unit 4, a main shaft 6, and a compression unit 14.
  • the casing 2 is a casing, and houses the drive unit 4, the main shaft 6, and the compression unit 14.
  • the casing 2 is formed with a flow path through which fluid to be compressed, in this embodiment, air flows.
  • the opening at the upstream end of the flow path through which the air flows becomes the suction port 12, and the opening at the downstream end of the flow path through which the air flows becomes the discharge port 16.
  • the compressor 1 of this embodiment has one suction port 12.
  • the air flow path between the suction port 12 and the compression unit 14 becomes the suction flow path 102.
  • the air flow path between the discharge port 16 and the compression unit 14 becomes the discharge flow path 104.
  • the suction flow path 102 is disposed in a direction inclined with respect to the axial direction of the main shaft 6, in the present embodiment, in a direction orthogonal to the axial direction of the main shaft 6.
  • the drive unit 4 has an electric motor and a power transmission unit.
  • the drive unit 4 transmits the output of the electric motor to the main shaft 6 by the power transmission unit, and rotates the main shaft 6.
  • the main shaft 6 is inserted into the casing 2 and is supported so as to be rotatable with respect to the casing 2.
  • the main shaft 6 is rotated by the drive unit 4.
  • the rotation part of the compression part 14 is being fixed to the main shaft 6.
  • the compression unit 14 is disposed in the casing 2, compresses the air flowing in from the suction port 12, and discharges it from the discharge port 16.
  • the compression unit 14 includes compression units 18a, 18b, 18c, and 18d.
  • the compression units 18a, 18b, 18c, and 18d are arranged in this order between the suction channel 102 and the discharge channel 104.
  • the compression unit 18 a is connected to the suction channel 102.
  • the compression unit 18d is connected to the discharge flow path 104. Since the compression units 18a, 18b, 18c, and 18d have the same shape except for the arrangement positions, the compression unit 18a will be described as a representative.
  • the compression unit 18a has a flow path formed by the casing 2 so that the fluid is sucked and compressed and then discharged.
  • the flow path of the compression unit 18 a has an inlet flow path 33 and a return flow path 35.
  • the inlet channel 33 has an upstream side connected to the suction channel 102 and a downstream side connected to the return channel 35.
  • the return channel 35 is connected to the inlet channel 33 of the next-stage compression unit 18b on the downstream side.
  • an impeller (impeller) 32 is provided in the inlet flow path 33, and a return vane 34 is provided in the return flow path 35.
  • An impeller 32 is fixed to the main shaft 6.
  • the impeller 32 has a large number of blades 32a on its surface.
  • the impeller 32 rotates together with the main shaft 6 to send air flowing into the inlet channel 33 toward the return channel 35. Further, the inlet channel 33 serves as a diffuser on the downstream side of the impeller 32, and decelerates and pressurizes the fluid accelerated by the impeller 32.
  • a return vane 34 is disposed in the return flow path 35. The return vane 34 rectifies the fluid flowing through the return flow path 35. The fluid that has passed through the return flow path 35 flows into the compression unit 18b.
  • the main shaft 6 of the compression unit 14 rotates through the power transmission unit by driving the electric motor of the drive unit 4.
  • the impeller 32 rotates with the main shaft 6.
  • the fluid is sucked from the suction port 12, flows into the suction flow path 102, flows through the inlet guide vane unit 100, flows into the inlet flow path 33 of the compression unit 18a, and is accelerated by the impeller 32.
  • the diffuser converts kinetic energy into internal energy.
  • the fluid is folded back to the inlet channel 33 of the compression unit 18b by the return channel 35, accelerated by the impeller 32, and then converted into kinetic energy by the diffuser.
  • the compressor 1 is similarly compressed by the compression units 18 c and 18 d and then discharged from the discharge port 16 of the discharge flow path 104.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 3 is a partially enlarged view of the inlet guide vane unit.
  • the inlet guide vane unit 100 is disposed in the flow path on the upstream side of the impeller 32 of the compression unit 18a disposed in the uppermost stream in the fluid flow direction in the fluid flow direction.
  • the inlet guide vane unit 100 has a plurality of inlet guide vanes 101. As shown in FIG. 2, the plurality of inlet guide vanes 101 are arranged on the entire circumference of the main shaft 6 at a predetermined interval in the rotation direction of the main shaft 6. That is, the inlet guide vane 101 is arranged away from the inlet guide vane 101 adjacent in the rotation direction (circumferential direction) of the main shaft 6.
  • the inlet guide vane 101 is a plate-like member extending in the radial direction of the main shaft 6.
  • the shape of the inlet guide vane 101 differs depending on the position in the rotational direction, and the surface of the suction port 12 protrudes on the opposite side to the suction port 12 so as to guide the air flowing in from the suction port 12 to the center side of the main shaft 6.
  • the air flowing in from the suction port 12 passes between the inlet guide vanes 101 and proceeds to a position where the impeller 32 of the inlet channel 33 is disposed.
  • the distance between the entrance guide vanes 101 when the distance between the entrance guide vanes 101 is d, the distance varies depending on the position of the main shaft 6 in the rotational direction.
  • the distance d is the diameter of the smallest circle connecting the ends on the center side of the main shaft 6 of the two adjacent inlet guide vanes 101.
  • the interval between the inlet guide vanes 101 at the suction port side end portion 120 is narrower than the interval between the inlet guide vanes 101 at the end side end portion 122.
  • the suction port side end 120 is a position closest to the suction port 12 in the rotation direction R of the main shaft 6.
  • the terminal end 122 is the position closest to the terminal 112 in the rotation direction R of the main shaft 6.
  • the end 112 is a position opposite to the suction port 12 in the air flow direction in the suction flow path 102, and is a position rotated 180 degrees from the suction port side end 120 in the rotation direction R.
  • the terminal end 122 is set to 0 degree, and the angle (circumferential position) that increases as it rotates in the rotation direction R is ⁇ .
  • FIG. 4 is a graph showing an example of the flow rate distribution of the inflowing fluid. 4 flows into the inlet flow path 33 of the compressor 1 in which the interval between the inlet guide vanes 101 at the suction port side end portion 120 of the present embodiment is narrower than the interval between the inlet guide vanes 101 at the end side end portion 122. It is a measurement result of the weight flow rate of air (air after passing through the inlet guide vane 101). The comparative example is a measurement result of the weight flow rate when the interval between the inlet guide vanes 101 is constant in the rotation direction R.
  • the compressor 1 adjusts the interval of the inlet guide vane 101 according to the position, and makes the interval of the inlet guide vane 101 at the suction port side end portion 120 narrower than the interval of the inlet guide vane 101 at the end side end portion 122. Even if the suction port is one place and the air flows from only a part of the circumferential direction, the weight flow rate of the air at the position in the rotational direction R (circumferential position) is averaged as shown in FIG. Can be Specifically, by adjusting the interval between the inlet guide vanes 101, the weight flow rate of air can be averaged rather than making the interval constant.
  • the inlet guide vane unit 100 can uniformly supply air to the impeller 32.
  • the arrangement interval of the inlet guide vanes 101 of 25% of the first group 130 on the suction port side end portion 120 side of all the inlet guide vanes 101 is equal to all the inlet guide vanes 101.
  • it is preferable that the arrangement interval of the inlet guide vanes 101 of 25% of the second group 132 on the terminal end 122 side is narrower.
  • 25% of all the inlet guide vanes 101 include a decimal point the numerical value is rounded up.
  • the inlet guide vane unit 100 can average the weight flow rate of air by making the arrangement interval of the first group 130 narrower than the arrangement interval of the second group 132.
  • the inlet guide vane unit 100 can uniformly supply air to the impeller 32.
  • the inlet guide vane unit 100 has an inlet guide vane interval included in a range of 45 degrees in front and rear, that is, 90 ° with respect to the suction port side end portion 120 as a base point, and 45 ° in front and back with respect to the end side end portion 122 as a base point. You may make it narrower than the space
  • the interval between the inlet guide vanes 101 may be inlet guide vanes 101 arranged at the same interval.
  • the relationship between the maximum value dmax and the minimum value dmin of the interval between the inlet guide vanes 101 is preferably 0.6 ⁇ dmin / dmax ⁇ 1.0.
  • the interval between the inlet guide vanes 101 is preferably gradually changed in the rotation direction R. Specifically, in one rotation of the rotation direction R, it is preferable that the half circumference (for an angle range of 180 °) is an increasing region and the half circumference (for the angle range of 180 °) is a decreasing region.
  • FIG. 5 is a graph showing an example of the relationship between the position and interval of the inlet guide vane.
  • the inlet guide vane unit 100 shown in FIG. 5 has one cycle of 360 degrees per rotation, the end side end portion ⁇ is 0 °, and the interval is maximum, and the suction port side end portion 120 is ⁇ 180 °, 180 °.
  • the interval between the inlet guide vanes 101 increases or decreases.
  • the flow rate can be made more uniform by increasing or decreasing the interval between the inlet guide vanes 101 based on the sin function.
  • the difference between the maximum value and the minimum value is preferably in the above range.
  • the inlet guide vane unit may change the interval between the inlet guide vanes within a range of 20% or less of the amplitude of the reference line with reference to the reference line of the sin function along the rotation direction of the main shaft. That is, the interval between the inlet guide vanes may be shifted within a certain range from the point on the sin function.
  • the intervals between the inlet guide vanes may be the same between a plurality of sheets, and the intervals may change stepwise.
  • the weight flow rate of the air in the rotation direction can be averaged by changing the interval between the inlet guide vanes within the range of 20% or less of the amplitude of the reference line with the reference line of the sin function as a reference. More preferably, the inlet guide vane unit changes the interval between the inlet guide vanes within a range of 5% or less of the amplitude of the reference line with reference to the reference line of the sin function along the rotation direction of the main shaft. It is more preferable to change the interval between the inlet guide vanes within a range of 5% or less of the amplitude of.
  • FIG. 6 is a schematic diagram showing an example of an inlet guide vane.
  • the inlet guide vane 101 connects the extension line of the end portion on the center 142 side of the main shaft 6 of the pressure surface 140, which is the surface on the suction flow path 102 side, and the end portion and the center 142.
  • the angle ⁇ a formed with the line is preferably 0 ° or more and 10 ° or less.
  • the angle ⁇ a formed is positive in the direction opposite to the rotation direction with the end portion on the center side of the inlet guide vane 101 as the center.
  • FIG. 7 is a graph showing an example of the relationship between the position and interval of the inlet guide vane.
  • the interval between the inlet guide vanes is the maximum when ⁇ is 0 ° and the minimum when 180 °, but is not limited thereto.
  • the position where the interval between the inlet guide vanes 101 is the widest is larger than 0 ° and not more than 40 ° from the end side end 122 to the upstream side in the rotation direction of the main shaft. It is preferably between the moved positions. That is, it is preferable that the deviation 160 from the first pattern of FIG. 5 shown in FIG.
  • the weight flow rate can be adjusted in consideration of the influence of the impeller, and the weight flow rate of air in the rotational direction is averaged.
  • it is preferable that the position of the inlet guide vane 101 is shifted to the upstream side in the rotational direction as well as the position of the inlet guide vane 101 having the smallest interval, as well as the position of the inlet guide vane 101 having the widest interval. It is preferable to be at a position moved from 0 ° to 40 ° to the upstream side in the rotation direction of the main shaft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Provided is a centrifugal compressor configured so that air efficiently flows into the impeller and so that the centrifugal compressor has improved operational efficiency. A centrifugal compressor (1) has: a casing (2) having formed therein an inlet flow passage (33) having a suction opening (12) provided at one portion of the inlet flow passage (33), the casing (2) also having formed therein a connection flow passage connected to the inlet flow passage (33); a main shaft (6) inserted in the casing (2); an impeller (32) affixed to the main shaft (6) and disposed in the inlet flow passage (33); and an inlet guide vane unit (100) disposed upstream of the impeller (32) in the inlet flow passage (33) and having a plurality of inlet guide vanes (101). The inlet guide vane unit (100) is configured so that inlet guide vanes (101) on the suction opening side are arranged at smaller intervals than inlet guide vanes (101) on the side opposite the suction opening side.

Description

遠心圧縮機Centrifugal compressor
 本発明は、入口ガイドベーンを有し、吸引口が1か所の遠心圧縮機に関する。 The present invention relates to a centrifugal compressor having an inlet guide vane and one suction port.
 ターボ冷凍機、石油化学プラントや天然ガスプラント等においては、遠心圧縮機が用いられている。遠心圧縮機では、インペラ(羽根車)の回転により流体に運動エネルギーを与えると共に、径方向外側に流体を吹き出すことで遠心力による圧力上昇を得ている。特許文献1には、遠心圧縮機の1つであるターボチャージャ(過給機)において、インペラ(コンプレッサ用ブレード)の上流側に流入した空気を整流し、かつ、流入する空気の量を調整する入口ガイドベーンを備えているものがある(特許文献1参照)。 Centrifugal compressors are used in turbo chillers, petrochemical plants and natural gas plants. In a centrifugal compressor, kinetic energy is given to a fluid by rotation of an impeller (impeller), and a pressure increase due to centrifugal force is obtained by blowing the fluid radially outward. In Patent Document 1, in a turbocharger (supercharger) which is one of centrifugal compressors, air flowing into the upstream side of an impeller (compressor blade) is rectified and the amount of air flowing in is adjusted. Some have an inlet guide vane (see Patent Document 1).
特開2010-71140号公報JP 2010-71140 A
 入口ガイドベーンは、羽根車に対する角度、つまり開度を可変とし、流路内の抵抗を変更可能とすることで、流入する空気の量を調整することができる。また、遠心圧縮機には、入口ガイドベーンが固定されているものもある。遠心圧縮機は、主軸の回転方向において、インペラに流入する流体の量に分布ができ、流量の差が大きくなると運転の効率が低下する。 The inlet guide vane can adjust the amount of air flowing in by making the angle with respect to the impeller, that is, the opening, variable and changing the resistance in the flow path. In some centrifugal compressors, an inlet guide vane is fixed. Centrifugal compressors are distributed in the amount of fluid flowing into the impeller in the direction of rotation of the main shaft, and the efficiency of operation decreases as the flow rate difference increases.
 本発明は上述した課題を解決するものであり、羽根車に効率よく空気を流入させることができ、運転効率を向上できる遠心圧縮機を提供することを目的とする。 This invention solves the subject mentioned above, and aims at providing the centrifugal compressor which can flow air into an impeller efficiently and can improve driving | operation efficiency.
 上述の目的を達成するために、本発明は、遠心圧縮機であって、1か所に吸引口が設けられた入口流路と前記入口流路に接続された接続流路とが形成されたケーシングと、前記ケーシングに挿入された主軸と、前記主軸に固定され、前記入口流路に配置された羽根車と、前記入口流路の前記羽根車よりも上流側に配置された複数の入口ガイドベーンを有する入口ガイドベーンユニットと、を有し、前記入口ガイドベーンユニットは、前記吸引口側の前記入口ガイドベーンの配置間隔が、前記吸引口側とは反対側の前記入口ガイドベーンの配置間隔よりも狭いことを特徴とする。 In order to achieve the above-described object, the present invention is a centrifugal compressor, in which an inlet channel provided with a suction port in one place and a connection channel connected to the inlet channel are formed. A casing, a main shaft inserted into the casing, an impeller fixed to the main shaft and disposed in the inlet flow path, and a plurality of inlet guides disposed on the upstream side of the impeller in the inlet flow path An inlet guide vane unit having a vane, wherein the inlet guide vane unit has an arrangement interval of the inlet guide vanes on the side opposite to the suction port side. It is characterized by being narrower than.
 ここで、前記入口ガイドベーンユニットは、全ての入口ガイドベーンのうち前記吸引口側の端部側にある25%の第1群の前記入口ガイドベーンの配置間隔が、全ての入口ガイドベーンのうち前記吸引口とは反対側の端部側にある25%の第2群の前記入口ガイドベーンの配置間隔よりも狭いことが好ましい。 Here, the inlet guide vane unit has an arrangement interval of 25% of the first group of the inlet guide vanes on the end side on the suction port side of all the inlet guide vanes. It is preferable that it is narrower than the arrangement interval of 25% of the second group of inlet guide vanes on the end side opposite to the suction port.
 また、前記入口ガイドベーンユニットは、前記入口ガイドベーンの間隔の最大値dmaxと最小値dminとの関係が0.6≦dmin/dmax<1.0であることが好ましい。 In the inlet guide vane unit, the relationship between the maximum value dmax and the minimum value dmin of the interval between the inlet guide vanes is preferably 0.6 ≦ dmin / dmax <1.0.
 また、前記入口ガイドベーンユニットは、前記入口ガイドベーンの間隔が、前記主軸の回転方向に沿ってsin関数の基準線を基準とし、前記基準線の振幅の20%以下の範囲で変化することが好ましい。 In the inlet guide vane unit, the interval between the inlet guide vanes may vary within a range of 20% or less of the amplitude of the reference line with reference to the reference line of the sin function along the rotation direction of the main shaft. preferable.
 また、前記入口ガイドベーンユニットは、前記入口ガイドベーンの間隔の最も広い位置が、前記吸引口とは反対側の端部から前記主軸の回転方向上流側に0°より大きく40°以下移動した位置にあることが好ましい。 Further, the inlet guide vane unit has a position in which the position where the interval between the inlet guide vanes is widest is moved from 0 ° to 40 ° to the upstream side in the rotation direction of the main shaft from the end opposite to the suction port. It is preferable that it exists in.
 本発明によれば、入口ガイドベーンの配置間隔を位置に応じて変化させることで、羽根車に流入する流体の周方向の分布を平均化することができ、運転効率を高くすることができる。 According to the present invention, the distribution in the circumferential direction of the fluid flowing into the impeller can be averaged by changing the arrangement interval of the inlet guide vanes according to the position, and the operation efficiency can be increased.
図1は、本実施形態に係る圧縮機の概略構成図である。FIG. 1 is a schematic configuration diagram of a compressor according to the present embodiment. 図2は、図1のA-A線断面図である。2 is a cross-sectional view taken along line AA in FIG. 図3は、入口ガイドベーンユニットの部分拡大図である。FIG. 3 is a partially enlarged view of the inlet guide vane unit. 図4は、流入する流体の流量の分布の一例を示すグラフである。FIG. 4 is a graph showing an example of the flow rate distribution of the inflowing fluid. 図5は、入口ガイドベーンの位置と間隔との関係の一例を示すグラフである。FIG. 5 is a graph showing an example of the relationship between the position and interval of the inlet guide vane. 図6は、入口ガイドベーンの一例を示す模式図である。FIG. 6 is a schematic diagram illustrating an example of an inlet guide vane. 図7は、入口ガイドベーンの位置と間隔との関係の一例を示すグラフである。FIG. 7 is a graph showing an example of the relationship between the position and interval of the inlet guide vane.
 以下に、本発明に係る実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、下記実施の形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。圧縮機1は、例えば、冷凍機、石油化学プラントや天然ガスプラントへの圧縮空気の供給装置として用いることができる。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. In addition, constituent elements in the following embodiments include those that can be easily replaced by those skilled in the art or those that are substantially the same. The compressor 1 can be used as a supply device of compressed air to a refrigerator, a petrochemical plant, or a natural gas plant, for example.
 図1に示すように、本実施形態の圧縮機(遠心圧縮機)1は、多段圧縮の遠心圧縮機である。本実施形態では、圧縮機1を多段式圧縮の圧縮機の場合で説明するが一段圧縮の圧縮機でもよい。圧縮機1は、ケーシング2と、駆動部4と、主軸6と、圧縮部14と、を有する。 As shown in FIG. 1, the compressor (centrifugal compressor) 1 of this embodiment is a multistage compression centrifugal compressor. In the present embodiment, the compressor 1 is described as a multi-stage compression compressor, but it may be a single-stage compression compressor. The compressor 1 includes a casing 2, a drive unit 4, a main shaft 6, and a compression unit 14.
 ケーシング2は、筐体であり、駆動部4と主軸6と圧縮部14とが収容されている。ケーシング2は、圧縮する対象の流体、本実施形態では空気が流れる流路が形成されている。ケーシング2は、空気が流れる流路の上流の端の開口が吸引口12となり、空気が流れる流路の下流の端の開口が吐出口16となる。本実施形態の圧縮機1は、吸引口12が1つである。ケーシング2は、吸引口12と圧縮部14との間の空気の流路が吸引流路102となる。ケーシング2は、吐出口16と圧縮部14との間の空気の流路が吐出流路104となる。圧縮機1は、吸引流路102が、主軸6の軸方向に対して傾斜した向き、本実施形態では、主軸6の軸方向に直交する向きに配置されている。 The casing 2 is a casing, and houses the drive unit 4, the main shaft 6, and the compression unit 14. The casing 2 is formed with a flow path through which fluid to be compressed, in this embodiment, air flows. In the casing 2, the opening at the upstream end of the flow path through which the air flows becomes the suction port 12, and the opening at the downstream end of the flow path through which the air flows becomes the discharge port 16. The compressor 1 of this embodiment has one suction port 12. In the casing 2, the air flow path between the suction port 12 and the compression unit 14 becomes the suction flow path 102. In the casing 2, the air flow path between the discharge port 16 and the compression unit 14 becomes the discharge flow path 104. In the compressor 1, the suction flow path 102 is disposed in a direction inclined with respect to the axial direction of the main shaft 6, in the present embodiment, in a direction orthogonal to the axial direction of the main shaft 6.
 駆動部4は、電動機および動力伝達部を有する。駆動部4は、電動機の出力を動力伝達部で主軸6に伝達し、主軸6を回転させる。主軸6は、ケーシング2に挿入され、ケーシング2に対して回転可能に支持されている。主軸6は、駆動部4により回転される。主軸6は、圧縮部14の回転部が固定されている。 The drive unit 4 has an electric motor and a power transmission unit. The drive unit 4 transmits the output of the electric motor to the main shaft 6 by the power transmission unit, and rotates the main shaft 6. The main shaft 6 is inserted into the casing 2 and is supported so as to be rotatable with respect to the casing 2. The main shaft 6 is rotated by the drive unit 4. The rotation part of the compression part 14 is being fixed to the main shaft 6.
 圧縮部14は、ケーシング2に配置されており、吸引口12から流入した空気を圧縮して吐出口16から排出する。圧縮部14は、圧縮ユニット18a、18b、18c、18dを有する。圧縮ユニット18a、18b、18c、18dは、吸引流路102と吐出流路104との間にこの順で配置されている。圧縮ユニット18aは、吸引流路102と接続されている。圧縮ユニット18dは、吐出流路104と接続されている。圧縮ユニット18a、18b、18c、18dは、配置位置が異なるのみで同様の形状であるので、代表して圧縮ユニット18aについて説明する。 The compression unit 14 is disposed in the casing 2, compresses the air flowing in from the suction port 12, and discharges it from the discharge port 16. The compression unit 14 includes compression units 18a, 18b, 18c, and 18d. The compression units 18a, 18b, 18c, and 18d are arranged in this order between the suction channel 102 and the discharge channel 104. The compression unit 18 a is connected to the suction channel 102. The compression unit 18d is connected to the discharge flow path 104. Since the compression units 18a, 18b, 18c, and 18d have the same shape except for the arrangement positions, the compression unit 18a will be described as a representative.
 圧縮ユニット18aは、流体を吸引して圧縮した後に吐出するようにケーシング2により形成された流路を有している。圧縮ユニット18aの流路は、入口流路33と、返流路35と、を有する。入口流路33は、上流側が吸引流路102と接続し、下流側が返流路35と接続する。返流路35は、下流側が次の段の圧縮ユニット18bの入口流路33と接続する。圧縮ユニット18aは、入口流路33に羽根車(インペラ)32が設けられ、返流路35にリターンベーン34が設けられる。羽根車(インペラ)32は、主軸6に固定されている。羽根車32は、表面に多数のブレード32aが配置されている。羽根車32は、主軸6とともに回転することで、入口流路33に流入する空気を返流路35に向けて送る。また、入口流路33は、羽根車32の下流側がディフューザとなり、羽根車32で加速された流体を減速させて昇圧させる。返流路35は、リターンベーン34が配置されている。リターンベーン34は、返流路35を流れる流体を整流する。返流路35を通過した流体は、圧縮ユニット18bに流入する。 The compression unit 18a has a flow path formed by the casing 2 so that the fluid is sucked and compressed and then discharged. The flow path of the compression unit 18 a has an inlet flow path 33 and a return flow path 35. The inlet channel 33 has an upstream side connected to the suction channel 102 and a downstream side connected to the return channel 35. The return channel 35 is connected to the inlet channel 33 of the next-stage compression unit 18b on the downstream side. In the compression unit 18 a, an impeller (impeller) 32 is provided in the inlet flow path 33, and a return vane 34 is provided in the return flow path 35. An impeller 32 is fixed to the main shaft 6. The impeller 32 has a large number of blades 32a on its surface. The impeller 32 rotates together with the main shaft 6 to send air flowing into the inlet channel 33 toward the return channel 35. Further, the inlet channel 33 serves as a diffuser on the downstream side of the impeller 32, and decelerates and pressurizes the fluid accelerated by the impeller 32. A return vane 34 is disposed in the return flow path 35. The return vane 34 rectifies the fluid flowing through the return flow path 35. The fluid that has passed through the return flow path 35 flows into the compression unit 18b.
 圧縮機1は、駆動部4の電動機の駆動により動力伝達部を介して圧縮部14の主軸6が回転する。すると、主軸6と共に羽根車32が回転する。これにより、流体は、吸引口12から吸入され、吸引流路102に流入し、入口ガイドベーンユニット100を経て、圧縮ユニット18aの入口流路33に流入し、羽根車32で加速された後、ディフューザで運動エネルギーを内部エネルギーに変換される。さらに、流体は、返流路35により、圧縮ユニット18bの入口流路33に折り返され、羽根車32で加速された後、ディフューザで運動エネルギーを内部エネルギーに変換される。圧縮機1は、圧縮ユニット18c、18dで同様に圧縮された後、吐出流路104の吐出口16から吐出される。 In the compressor 1, the main shaft 6 of the compression unit 14 rotates through the power transmission unit by driving the electric motor of the drive unit 4. Then, the impeller 32 rotates with the main shaft 6. As a result, the fluid is sucked from the suction port 12, flows into the suction flow path 102, flows through the inlet guide vane unit 100, flows into the inlet flow path 33 of the compression unit 18a, and is accelerated by the impeller 32. The diffuser converts kinetic energy into internal energy. Further, the fluid is folded back to the inlet channel 33 of the compression unit 18b by the return channel 35, accelerated by the impeller 32, and then converted into kinetic energy by the diffuser. The compressor 1 is similarly compressed by the compression units 18 c and 18 d and then discharged from the discharge port 16 of the discharge flow path 104.
 次に、図1に加え、図2から図3を用いて、入口ガイドベーンユニット(IGV、案内ガイドベーン)100について説明する。図2は、図1のA-A線断面図である。図3は、入口ガイドベーンユニットの部分拡大図である。 Next, the inlet guide vane unit (IGV, guide guide vane) 100 will be described with reference to FIGS. 2 to 3 in addition to FIG. 2 is a cross-sectional view taken along line AA in FIG. FIG. 3 is a partially enlarged view of the inlet guide vane unit.
 入口ガイドベーンユニット100は、上述したように、流体の流れ方向において、流体の流れ方向の最上流に配置された圧縮ユニット18aの羽根車32の上流側の流路に配置されている。入口ガイドベーンユニット100は、複数の入口ガイドベーン101を有する。複数の入口ガイドベーン101は、図2に示すように、主軸6の回転方向に所定の間隔で、主軸6の全周に配置されている。つまり、入口ガイドベーン101は、主軸6の回転方向(周方向)に隣接する入口ガイドベーン101と離れて配置されている。入口ガイドベーン101は、主軸6の径方向に伸びた板状の部材である。入口ガイドベーン101は、回転方向の位置によって、形状が異なり、吸引口12の面が、吸引口12から流入した空気を主軸6の中心側に案内するように吸引口12とは反対側に凸の曲面となる。吸引口12から流入した空気は、入口ガイドベーン101の間を通過して、入口流路33の羽根車32が配置されている位置に進む。 As described above, the inlet guide vane unit 100 is disposed in the flow path on the upstream side of the impeller 32 of the compression unit 18a disposed in the uppermost stream in the fluid flow direction in the fluid flow direction. The inlet guide vane unit 100 has a plurality of inlet guide vanes 101. As shown in FIG. 2, the plurality of inlet guide vanes 101 are arranged on the entire circumference of the main shaft 6 at a predetermined interval in the rotation direction of the main shaft 6. That is, the inlet guide vane 101 is arranged away from the inlet guide vane 101 adjacent in the rotation direction (circumferential direction) of the main shaft 6. The inlet guide vane 101 is a plate-like member extending in the radial direction of the main shaft 6. The shape of the inlet guide vane 101 differs depending on the position in the rotational direction, and the surface of the suction port 12 protrudes on the opposite side to the suction port 12 so as to guide the air flowing in from the suction port 12 to the center side of the main shaft 6. The curved surface. The air flowing in from the suction port 12 passes between the inlet guide vanes 101 and proceeds to a position where the impeller 32 of the inlet channel 33 is disposed.
 入口ガイドベーンユニット100は、入口ガイドベーン101の間隔をdとした場合、主軸6の回転方向の位置によって間隔が変化する。ここで、間隔dは、図3に示すように、隣接する2つの入口ガイドベーン101の主軸6の中心側の端部を結ぶ最小の円の直径である。入口ガイドベーンユニット100は、吸引口側端部120の入口ガイドベーン101の間隔を、終端側端部122の入口ガイドベーン101の間隔よりも狭い。吸引口側端部120は、主軸6の回転方向Rにおいて、吸引口12に最も近い位置である。終端側端部122は、主軸6の回転方向Rにおいて、終端112に最も近い位置である。終端112は、吸引流路102における空気の流れ方向の吸引口12とは反対側の位置であり、回転方向Rにおいて、吸引口側端部120から180度回転した位置である。ここで、本実施形態では、終端側端部122を0度とし、回転方向Rに回転するほど増加する角度(周方向位置)をθとする。 In the entrance guide vane unit 100, when the distance between the entrance guide vanes 101 is d, the distance varies depending on the position of the main shaft 6 in the rotational direction. Here, as shown in FIG. 3, the distance d is the diameter of the smallest circle connecting the ends on the center side of the main shaft 6 of the two adjacent inlet guide vanes 101. In the inlet guide vane unit 100, the interval between the inlet guide vanes 101 at the suction port side end portion 120 is narrower than the interval between the inlet guide vanes 101 at the end side end portion 122. The suction port side end 120 is a position closest to the suction port 12 in the rotation direction R of the main shaft 6. The terminal end 122 is the position closest to the terminal 112 in the rotation direction R of the main shaft 6. The end 112 is a position opposite to the suction port 12 in the air flow direction in the suction flow path 102, and is a position rotated 180 degrees from the suction port side end 120 in the rotation direction R. Here, in the present embodiment, the terminal end 122 is set to 0 degree, and the angle (circumferential position) that increases as it rotates in the rotation direction R is θ.
 図4は、流入する流体の流量の分布の一例を示すグラフである。図4は、本実施形態の吸引口側端部120の入口ガイドベーン101の間隔を、終端側端部122の入口ガイドベーン101の間隔よりも狭くした圧縮機1の入口流路33に流入する空気(入口ガイドベーン101を通過した後の空気)の重量流量の計測結果である。比較例は、入口ガイドベーン101の間隔を、回転方向Rにおいて一定とした場合の重量流量の計測結果である。圧縮機1は、入口ガイドベーン101の間隔を位置によって調整し、吸引口側端部120の入口ガイドベーン101の間隔を、終端側端部122の入口ガイドベーン101の間隔よりも狭くすることで、吸引口が1か所であり、周方向の一部からのみ空気が流入する構造であっても、図4に示すように回転方向Rの位置(周方向位置)における空気の重量流量を平均化することができる。具体的には、入口ガイドベーン101の間隔を調整することで、間隔を一定とするよりも、空気の重量流量を平均化することができる。入口ガイドベーンユニット100は、羽根車32に均一に空気を供給することができる。 FIG. 4 is a graph showing an example of the flow rate distribution of the inflowing fluid. 4 flows into the inlet flow path 33 of the compressor 1 in which the interval between the inlet guide vanes 101 at the suction port side end portion 120 of the present embodiment is narrower than the interval between the inlet guide vanes 101 at the end side end portion 122. It is a measurement result of the weight flow rate of air (air after passing through the inlet guide vane 101). The comparative example is a measurement result of the weight flow rate when the interval between the inlet guide vanes 101 is constant in the rotation direction R. The compressor 1 adjusts the interval of the inlet guide vane 101 according to the position, and makes the interval of the inlet guide vane 101 at the suction port side end portion 120 narrower than the interval of the inlet guide vane 101 at the end side end portion 122. Even if the suction port is one place and the air flows from only a part of the circumferential direction, the weight flow rate of the air at the position in the rotational direction R (circumferential position) is averaged as shown in FIG. Can be Specifically, by adjusting the interval between the inlet guide vanes 101, the weight flow rate of air can be averaged rather than making the interval constant. The inlet guide vane unit 100 can uniformly supply air to the impeller 32.
 ここで、入口ガイドベーンユニット100は、全ての入口ガイドベーン101のうち吸引口側端部120側にある25%の第1群130の入口ガイドベーン101の配置間隔が、全ての入口ガイドベーン101のうち終端側端部122側にある25%の第2群132の入口ガイドベーン101の配置間隔よりも狭いことが好ましい。ここで、全ての入口ガイドベーン101の25%の枚数が、小数点を含む場合、数値を切り上げる。入口ガイドベーンユニット100は、第1群130の配置間隔を第2群132の配置間隔よりも狭くすることで、空気の重量流量を平均化することができる。入口ガイドベーンユニット100は、羽根車32に均一に空気を供給することができる。 Here, in the inlet guide vane unit 100, the arrangement interval of the inlet guide vanes 101 of 25% of the first group 130 on the suction port side end portion 120 side of all the inlet guide vanes 101 is equal to all the inlet guide vanes 101. Among them, it is preferable that the arrangement interval of the inlet guide vanes 101 of 25% of the second group 132 on the terminal end 122 side is narrower. Here, when 25% of all the inlet guide vanes 101 include a decimal point, the numerical value is rounded up. The inlet guide vane unit 100 can average the weight flow rate of air by making the arrangement interval of the first group 130 narrower than the arrangement interval of the second group 132. The inlet guide vane unit 100 can uniformly supply air to the impeller 32.
 また、上述では、吸引口側端部120側、終端側端部122側のそれぞれに配置された全体の枚数のうち25%の枚数の入口ガイドベーン101の間隔を比較したがこれに限定されない。入口ガイドベーンユニット100は、吸引口側端部120を基点として、前後45度、つまり90°の範囲に含まれる入口ガイドベーンの間隔を、終端側端部122を基点として、前後45°、つまり90°の範囲に含まれる入口ガイドベーン101の間隔よりも狭くしてもよい。このように角度を基準にして設定した範囲に含まれる入口ガイドベーン101の間隔が上記関係を満たすことでも均一に空気を供給することができる。 In the above description, the intervals of 25% of the inlet guide vanes 101 out of the total number of sheets arranged on the suction port side end portion 120 side and the terminal end side end portion 122 side are compared, but the present invention is not limited to this. The inlet guide vane unit 100 has an inlet guide vane interval included in a range of 45 degrees in front and rear, that is, 90 ° with respect to the suction port side end portion 120 as a base point, and 45 ° in front and back with respect to the end side end portion 122 as a base point. You may make it narrower than the space | interval of the inlet guide vane 101 contained in the range of 90 degrees. As described above, even when the interval between the inlet guide vanes 101 included in the range set based on the angle satisfies the above relationship, the air can be supplied uniformly.
 また、入口ガイドベーン101の間隔は、回転方向において、徐々に変化することが好ましいが、同じ間隔で配置された入口ガイドベーン101があってもよい。 In addition, although it is preferable that the interval between the inlet guide vanes 101 gradually change in the rotation direction, there may be inlet guide vanes 101 arranged at the same interval.
 入口ガイドベーンユニット100は、入口ガイドベーン101の間隔の最大値dmaxと最小値dminとの関係が0.6≦dmin/dmax<1.0であることが好ましい。配置間隔の差を上記範囲とすることで、より確実に空気の重量流量を平均化することができる。 In the inlet guide vane unit 100, the relationship between the maximum value dmax and the minimum value dmin of the interval between the inlet guide vanes 101 is preferably 0.6 ≦ dmin / dmax <1.0. By setting the difference in the arrangement interval in the above range, the weight flow rate of air can be more reliably averaged.
 入口ガイドベーンユニット100は、入口ガイドベーン101の間隔が回転方向Rに徐々に変化することが好ましい。具体的には、回転方向Rの一周のうち、半周(角度範囲180°分)は、増加する領域とし、半周(角度範囲180°分)は、減少する領域とすることが好ましい。 In the inlet guide vane unit 100, the interval between the inlet guide vanes 101 is preferably gradually changed in the rotation direction R. Specifically, in one rotation of the rotation direction R, it is preferable that the half circumference (for an angle range of 180 °) is an increasing region and the half circumference (for the angle range of 180 °) is a decreasing region.
 図5は、入口ガイドベーンの位置と間隔との関係の一例を示すグラフである。図5に示す入口ガイドベーンユニット100は、一周360度が1周期となり、終端側端部であるθが0°で間隔が最大となり、吸引口側端部120であるθが-180°、180°で間隔が最小となるsin関数に基づいて、入口ガイドベーン101の間隔が増減する。図5に示すように、sin関数に基づいて、入口ガイドベーン101の間隔が増減することで、より流量を均一にできる。また、sin関数で変化させる場合も最大値と最小値の差は上記範囲とすることが好ましい。 FIG. 5 is a graph showing an example of the relationship between the position and interval of the inlet guide vane. The inlet guide vane unit 100 shown in FIG. 5 has one cycle of 360 degrees per rotation, the end side end portion θ is 0 °, and the interval is maximum, and the suction port side end portion 120 is −180 °, 180 °. Based on the sine function that minimizes the interval at °, the interval between the inlet guide vanes 101 increases or decreases. As shown in FIG. 5, the flow rate can be made more uniform by increasing or decreasing the interval between the inlet guide vanes 101 based on the sin function. Also, when changing by the sine function, the difference between the maximum value and the minimum value is preferably in the above range.
 ここで、sin関数に基づいて、sin関数上の点に基づいて、入口ガイドベーンの間隔を変化させることが好ましいが、これに限定されない。入口ガイドベーンユニットは、主軸の回転方向に沿ったsin関数の基準線を基準とし、基準線の振幅の20%以下の範囲で入口ガイドベーンの間隔を変化するようにしてもよい。つまり、入口ガイドベーンの間隔は、sin関数上の点から一定の範囲でずれてもよい。例えば、入口ガイドベーンの間隔が複数枚の間で同じ間隔とし、間隔が段階的に変化するようにしてもよい。このように、sin関数の基準線を基準とし、基準線の振幅の20%以下の範囲で入口ガイドベーンの間隔を変化することでも、回転方向において空気の重量流量を平均化することができる。また、入口ガイドベーンユニットは、主軸の回転方向に沿ったsin関数の基準線を基準とし、基準線の振幅の5%以下の範囲で入口ガイドベーンの間隔を変化することがより好ましく、基準線の振幅の5%以下の範囲で入口ガイドベーンの間隔を変化することがさらに好ましい。 Here, based on the sin function, it is preferable to change the interval of the inlet guide vanes based on the points on the sin function, but the present invention is not limited to this. The inlet guide vane unit may change the interval between the inlet guide vanes within a range of 20% or less of the amplitude of the reference line with reference to the reference line of the sin function along the rotation direction of the main shaft. That is, the interval between the inlet guide vanes may be shifted within a certain range from the point on the sin function. For example, the intervals between the inlet guide vanes may be the same between a plurality of sheets, and the intervals may change stepwise. As described above, the weight flow rate of the air in the rotation direction can be averaged by changing the interval between the inlet guide vanes within the range of 20% or less of the amplitude of the reference line with the reference line of the sin function as a reference. More preferably, the inlet guide vane unit changes the interval between the inlet guide vanes within a range of 5% or less of the amplitude of the reference line with reference to the reference line of the sin function along the rotation direction of the main shaft. It is more preferable to change the interval between the inlet guide vanes within a range of 5% or less of the amplitude of.
 図6は、入口ガイドベーンの一例を示す模式図である。また、入口ガイドベーン101は、図6に示すように、吸引流路102側の面である圧力面140の主軸6の中心142側の端部の延長線と、端部と中心142を結んだ線とのなす角θaが、0°以上10°以下であることが好ましい。このように、なす角θaは、入口ガイドベーン101の中心側の端部を中心として、回転方向と反対側の方向が正となる。入口ガイドベーン101の圧力面140が上記範囲を満たす形状とすることで、整流効果をより向上させることができる。 FIG. 6 is a schematic diagram showing an example of an inlet guide vane. Further, as shown in FIG. 6, the inlet guide vane 101 connects the extension line of the end portion on the center 142 side of the main shaft 6 of the pressure surface 140, which is the surface on the suction flow path 102 side, and the end portion and the center 142. The angle θa formed with the line is preferably 0 ° or more and 10 ° or less. Thus, the angle θa formed is positive in the direction opposite to the rotation direction with the end portion on the center side of the inlet guide vane 101 as the center. By making the pressure surface 140 of the inlet guide vane 101 into a shape that satisfies the above range, the rectifying effect can be further improved.
 図7は、入口ガイドベーンの位置と間隔との関係の一例を示すグラフである。図5に示す例では、入口ガイドベーンの間隔を、θが0°の時に最大となり、180°の時に最小となる間隔としたがこれに限定されない。入口ガイドベーンユニット100は、図7の第2パターンに示すように、入口ガイドベーン101の間隔の最も広い位置が、終端側端部122から主軸の回転方向上流側に0°より大きく40°以下移動した位置の間にあることが好ましい。つまり、図7に示す図5の第1パターンとのずれ量160を回転方向上流側に0°より大きく40度以下とすることが好ましい。このように、入口ガイドベーン101の間隔の最も広い位置を回転方向上流側にずらすことで、インペラの影響を加味して、重量流量を調整することができ、回転方向において空気の重量流量を平均化することができる。ここで、入口ガイドベーンの間隔は、入口ガイドベーン101の間隔の最も広い位置と同様に入口ガイドベーン101の間隔の最も狭い位置も回転方向上流側にずらすことが好ましく、吸引口側端部120から主軸の回転方向上流側に0°より大きく40°以下移動した位置にあることが好ましい。 FIG. 7 is a graph showing an example of the relationship between the position and interval of the inlet guide vane. In the example shown in FIG. 5, the interval between the inlet guide vanes is the maximum when θ is 0 ° and the minimum when 180 °, but is not limited thereto. In the inlet guide vane unit 100, as shown in the second pattern of FIG. 7, the position where the interval between the inlet guide vanes 101 is the widest is larger than 0 ° and not more than 40 ° from the end side end 122 to the upstream side in the rotation direction of the main shaft. It is preferably between the moved positions. That is, it is preferable that the deviation 160 from the first pattern of FIG. 5 shown in FIG. 7 is larger than 0 ° and not more than 40 degrees on the upstream side in the rotation direction. In this way, by shifting the position with the widest interval between the inlet guide vanes 101 to the upstream side in the rotational direction, the weight flow rate can be adjusted in consideration of the influence of the impeller, and the weight flow rate of air in the rotational direction is averaged. Can be Here, it is preferable that the position of the inlet guide vane 101 is shifted to the upstream side in the rotational direction as well as the position of the inlet guide vane 101 having the smallest interval, as well as the position of the inlet guide vane 101 having the widest interval. It is preferable to be at a position moved from 0 ° to 40 ° to the upstream side in the rotation direction of the main shaft.
 1 圧縮機
 2 ケーシング
 4 駆動部
 6 主軸
 12 吸引口
 14 圧縮部
 16 吐出口
 18a、18b、18c、18d 圧縮ユニット
 32 羽根車
 32a ブレード
 33 入口流路
 34 リターンベーン
 35 返流路
 100 入口ガイドベーンユニット
 101 入口ガイドベーン
 102 吸引流路
 104 吐出流路
 120 吸引口側端部
 122 終端側端部
 130 第1群
 132 第2群
 160 ずれ量
DESCRIPTION OF SYMBOLS 1 Compressor 2 Casing 4 Drive part 6 Main shaft 12 Suction port 14 Compression part 16 Discharge port 18a, 18b, 18c, 18d Compression unit 32 Impeller 32a Blade 33 Inlet flow path 34 Return vane 35 Return flow path 100 Inlet guide vane unit 101 Inlet guide vane 102 Suction channel 104 Discharge channel 120 Suction port side end 122 Terminal side end 130 First group 132 Second group 160 Deviation amount

Claims (5)

  1.  1か所に吸引口が設けられた入口流路と前記入口流路に接続された接続流路とが形成されたケーシングと、
     前記ケーシングに挿入された主軸と、
     前記主軸に固定され、前記入口流路に配置された羽根車と、
     前記入口流路の前記羽根車よりも上流側に配置された複数の入口ガイドベーンを有する入口ガイドベーンユニットと、を有し、
     前記入口ガイドベーンユニットは、前記吸引口側の前記入口ガイドベーンの配置間隔が、前記吸引口側とは反対側の前記入口ガイドベーンの配置間隔よりも狭いことを特徴とする遠心圧縮機。
    A casing formed with an inlet channel provided with a suction port in one place and a connection channel connected to the inlet channel;
    A main shaft inserted into the casing;
    An impeller fixed to the main shaft and disposed in the inlet channel;
    An inlet guide vane unit having a plurality of inlet guide vanes arranged upstream of the impeller of the inlet channel;
    The inlet guide vane unit is a centrifugal compressor characterized in that an arrangement interval of the inlet guide vanes on the suction port side is narrower than an arrangement interval of the inlet guide vanes on the side opposite to the suction port side.
  2.  前記入口ガイドベーンユニットは、全ての入口ガイドベーンのうち前記吸引口側の端部側にある25%の第1群の前記入口ガイドベーンの配置間隔が、全ての入口ガイドベーンのうち前記吸引口とは反対側の端部側にある25%の第2群の前記入口ガイドベーンの配置間隔よりも狭いことを特徴とする請求項1に記載の遠心圧縮機。 The inlet guide vane unit has an arrangement interval of 25% of the first group of the inlet guide vanes on the end side on the suction port side among all the inlet guide vanes. 2. The centrifugal compressor according to claim 1, wherein the centrifugal guide compressor is narrower than an arrangement interval of 25% of the second group of the inlet guide vanes on the opposite end side.
  3.  前記入口ガイドベーンユニットは、前記入口ガイドベーンの間隔の最大値dmaxと最小値dminとの関係が0.6≦dmin/dmax<1.0であることを特徴とする請求項1または2に記載の遠心圧縮機。 3. The inlet guide vane unit according to claim 1, wherein a relationship between a maximum value dmax and a minimum value dmin of the interval between the inlet guide vanes is 0.6 ≦ dmin / dmax <1.0. Centrifugal compressor.
  4.  前記入口ガイドベーンユニットは、前記入口ガイドベーンの間隔が、前記主軸の回転方向に沿ってsin関数の基準線を基準とし、前記基準線の振幅の20%以下の範囲で変化することを特徴とする請求項1から3のいずれか一項に記載の遠心圧縮機。 The inlet guide vane unit is characterized in that the interval between the inlet guide vanes changes within a range of 20% or less of the amplitude of the reference line with reference to the reference line of the sin function along the rotation direction of the main shaft. The centrifugal compressor according to any one of claims 1 to 3.
  5.  前記入口ガイドベーンユニットは、前記入口ガイドベーンの間隔の最も広い位置が、前記吸引口とは反対側の端部から前記主軸の回転方向上流側に0°より大きく40°以下移動した位置にあることを特徴とする請求項4に記載の遠心圧縮機。 In the inlet guide vane unit, the position where the gap between the inlet guide vanes is the widest is the position moved from 0 ° to 40 ° to the upstream side in the rotation direction of the main shaft from the end opposite to the suction port. The centrifugal compressor according to claim 4.
PCT/JP2015/074207 2015-02-20 2015-08-27 Centrifugal compressor WO2016132575A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/551,875 US20180066674A1 (en) 2015-02-20 2015-08-27 Centrifugal compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015032352A JP6258237B2 (en) 2015-02-20 2015-02-20 Centrifugal compressor
JP2015-032352 2015-02-20

Publications (1)

Publication Number Publication Date
WO2016132575A1 true WO2016132575A1 (en) 2016-08-25

Family

ID=56689219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074207 WO2016132575A1 (en) 2015-02-20 2015-08-27 Centrifugal compressor

Country Status (3)

Country Link
US (1) US20180066674A1 (en)
JP (1) JP6258237B2 (en)
WO (1) WO2016132575A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7143194B2 (en) * 2018-11-28 2022-09-28 株式会社Ihi air supply device
WO2021148239A1 (en) * 2020-01-23 2021-07-29 Nuovo Pignone Tecnologie - S.R.L. A return channel with non-constant return channel vanes pitch and centrifugal turbomachine including said return channel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5267805A (en) * 1975-12-04 1977-06-04 Mitsubishi Heavy Ind Ltd Centrifugal blower
US20050265833A1 (en) * 2004-06-01 2005-12-01 Kabushiki Kaisha Toshiba Pump
JP2006200489A (en) * 2005-01-24 2006-08-03 Hitachi Industries Co Ltd Centrifugal fluid machine and its suction casing
JP2010523884A (en) * 2007-04-05 2010-07-15 ボーグワーナー・インコーポレーテッド Ring fan and shroud air guidance system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10024335B2 (en) * 2014-06-26 2018-07-17 General Electric Company Apparatus for transferring energy between a rotating element and fluid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5267805A (en) * 1975-12-04 1977-06-04 Mitsubishi Heavy Ind Ltd Centrifugal blower
US20050265833A1 (en) * 2004-06-01 2005-12-01 Kabushiki Kaisha Toshiba Pump
JP2006200489A (en) * 2005-01-24 2006-08-03 Hitachi Industries Co Ltd Centrifugal fluid machine and its suction casing
JP2010523884A (en) * 2007-04-05 2010-07-15 ボーグワーナー・インコーポレーテッド Ring fan and shroud air guidance system

Also Published As

Publication number Publication date
US20180066674A1 (en) 2018-03-08
JP6258237B2 (en) 2018-01-10
JP2016153639A (en) 2016-08-25

Similar Documents

Publication Publication Date Title
US8016557B2 (en) Airfoil diffuser for a centrifugal compressor
US20130259644A1 (en) Multi-stage centrifugal compressor and return channels therefor
EP1990544A3 (en) Multistage centrifugal compressor
US20210115943A1 (en) Centrifugal compressor
JP4969433B2 (en) Centrifugal compressor
JP6258237B2 (en) Centrifugal compressor
US10077778B2 (en) Multistage centrifugal compressor
JP2020097940A (en) Improved scroll for turbomachine, turbomachine including scroll, and operation method
JP2010236401A (en) Centrifugal fluid machine
US20140271173A1 (en) Centrifugal compressor with axial impeller exit
WO2017119229A1 (en) Compressor
US10544800B2 (en) Inlet guide vane and centrifugal compressor
BE1017069A3 (en) Turbo-compressor comprises rotor rotatably fitted in housing with an inlet-forming part which extends axially from the rotor
AU2021211077B2 (en) A diffuser with non-constant diffuser vanes pitch and centrifugal turbomachine including said diffuser
CN110966260A (en) Two-section diffuser
CA3164872A1 (en) A return channel with non-constant return channel vanes pitch and centrifugal turbomachine including said return channel
JP2015075034A (en) Air machine
CN113906222A (en) Stator blade for a centrifugal compressor
KR20150057482A (en) Centrifugal compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882676

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15551875

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15882676

Country of ref document: EP

Kind code of ref document: A1