WO2016132415A1 - Method for raising chickens - Google Patents

Method for raising chickens Download PDF

Info

Publication number
WO2016132415A1
WO2016132415A1 PCT/JP2015/006477 JP2015006477W WO2016132415A1 WO 2016132415 A1 WO2016132415 A1 WO 2016132415A1 JP 2015006477 W JP2015006477 W JP 2015006477W WO 2016132415 A1 WO2016132415 A1 WO 2016132415A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
chicken
poultry house
breeding method
house
Prior art date
Application number
PCT/JP2015/006477
Other languages
French (fr)
Japanese (ja)
Inventor
公弥 近藤
眞悟 近藤
仁男 新保
国彦 蓑島
西山 徹
清水 巧治
芥川 宏
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2016515169A priority Critical patent/JP5963068B1/en
Publication of WO2016132415A1 publication Critical patent/WO2016132415A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K15/00Devices for taming animals, e.g. nose-rings or hobbles; Devices for overturning animals in general; Training or exercising equipment; Covering boxes
    • A01K15/02Training or exercising equipment, e.g. mazes or labyrinths for animals ; Electric shock devices ; Toys specially adapted for animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K1/00Housing animals; Equipment therefor
    • A01K1/0005Stable partitions
    • A01K1/0017Gates, doors
    • A01K1/0029Crowding gates or barriers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K31/00Housing birds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K45/00Other aviculture appliances, e.g. devices for determining whether a bird is about to lay

Definitions

  • the present invention relates to a method for breeding chickens for meat (so-called broilers) and chickens for egg collection (so-called layers) that are reared in poultry houses for meat.
  • Chickens are an important source of protein throughout the world as eggs and meat.
  • breeding has been carried out with the chicken itself as a species suitable for egg collection and a species suitable for meat.
  • a chicken for egg collection is called a layer, and a chicken for meat is called a broiler.
  • Broilers have been improved in variety so that they can grow rapidly in a short period of time to obtain their meat.
  • broilers become adults in 4 to 5 months for normal chickens, but become adults in 40 to 50 days and can be shipped.
  • the cow needs only 2.1 kg for the broiler, while the cow is 15 kg and the pig is 6 kg. In other words, it has become a highly productive animal for livestock for meat.
  • broilers have grown at such a fast rate, so there are some individuals who are slow to develop muscle strength to support their weight. Such individuals gradually become unable to move themselves due to daily weight gain and remain on the poultry house floor.
  • the floor in the poultry house is moist, and bacteria and parasites are generated using manure as a hotbed.
  • Patent Document 1 discloses a chicken farm with a floor conveyor belt.
  • broilers that are kept in order to improve productivity have a belt conveyor as a floor in order to solve the problem that the meat quality is water-like due to lack of exercise, there is no tightness, and the taste is poor.
  • a chicken farm with a wire mesh is disclosed.
  • Patent Document 1 if the broiler does not move in the direction opposite to the floor on the moving floor, it will be forced to move to one side of the poultry house. Has been. Moreover, since the floor moves, the effect that it is easy to clean the floor surface is shown.
  • Patent Document 2 as in Patent Document 1, the floor becomes a belt conveyor system, and reciprocating motion is performed.
  • the lack of movement of broilers can be solved by changing the moving speed of the floor according to the growth of broilers and promoting movements that match the growth.
  • JP 54-135169 A Japanese Patent Laid-Open No. 06-319402
  • the layers are usually gauged during the egg collection period, so there is no opportunity to exercise.
  • the present invention has been conceived in view of the above-described problems, and provides a chicken breeding method that solves the lack of exercise of chickens by a simple method.
  • the chicken breeding method according to the present invention includes: A method of raising chickens in a poultry house, Feeding the chicken in the poultry house; It has the process of accelerating the movement of the chicken while moving the robot in the poultry house.
  • feeding is performed in the poultry house, and the robot is moved in the poultry house to raise the chicken's attention, thereby promoting the chicken's movement.
  • the number of individuals that have noticed the movement of the robot is about ten or so around each other, so that the entire group will not panic.
  • robots can be easily installed in existing poultry houses. It is not necessary to rebuild the poultry house itself.
  • Accelerating the movement of chickens creates a space between the chicken and the ground, which helps to lower the body temperature of the chicken.
  • the temperature in summer is high, if you keep sitting on the warm ground, the temperature of the chicken becomes too high due to the temperature of the chicken and the temperature of the ground.
  • the exercise includes an operation of standing up.
  • FIG. It is a figure which illustrates the traveling line in the chicken house of the robot of FIG. It is a figure which shows the structure of a light irradiation apparatus. It is a figure which shows the relationship between the structures of a traveling type robot. It is a figure which shows the relationship between the base of the robot of FIG. 9, and a parent control apparatus. It is a figure which shows the example of a roundabout of the robot of FIG. It is a figure which shows the top view of the poultry house in Embodiment 4.
  • FIG. It is a figure which shows the relationship with the base of a robot, a surveillance camera, and a parent control apparatus. It is a figure which illustrates the flow which eliminates the deviation of a crowd.
  • FIG. 1 It is a figure which shows the structure of the control system of the poultry house monitoring robot which concerns on this invention. It is a figure which illustrates the external appearance of the chicken house monitoring robot which concerns on this invention. It is a figure which illustrates the chicken house which a chicken house monitoring robot monitors. It is a basic processing flow of a poultry house monitoring robot. It is a figure which shows the example of the movement pattern of a chicken house monitoring robot, and a measurement point. It is a processing flow of the poultry house monitoring robot in the middle of movement.
  • the subject of the present invention is mainly a so-called broiler for meat. However, as already mentioned, it does not exclude layers. Although the following description mainly explains a broiler, you may apply to the layer which can move the inside of a poultry house freely.
  • broiler varieties varieties conventionally used as broilers can be used. Specifically, chunky, cobb, arbor acre and the like can be suitably used. These hybrids may also be used.
  • the bait used may be a publicly used bait. That is, high energy and high protein can be suitably used. Specifically, it is often called mixed feed, cereals such as corn, milo, barley, potatoes such as bran, rice bran, corn gluten feed, vegetable oil meal such as soybean oil cake, rapeseed oil cake, fish meal, skim milk powder, etc. Animal fertilizer, mixed fertilizer such as minerals such as calcium carbonate and calcium phosphate.
  • the method of feeding may be provided by a feeding device that can always be eaten.
  • the feeding device automatically feeds each feeding point from the silo containing the feed. Feeding may also include water.
  • the feeding step may include a light beam management step of changing the lighting in the poultry house according to the timing of feeding. As for broiler breeding, eating broiler feeds leads to improved productivity.
  • the robot may be one that runs or walks on the floor of a poultry house, or one that flies.
  • running means moving by rotating a rotating body such as a tire or a caterpillar.
  • Walking refers to moving by moving a plurality of legs. In this specification, both “running” and “walking” are also called “running”.
  • “Flying” means moving in the air without touching the floor. Therefore, not only using lifts such as propellers and air jets, but also those suspended from the poultry house ceiling with wires.
  • broilers are crowded because they are poised. Therefore, if a large stimulus is given to the entire body at one time, the panic will panic and the entire wing may be shocked. Therefore, the robot only needs to call the attention of the surrounding broiler while moving.
  • the height of the traveling robot (also called “traveling robot”) is preferably about the same as or twice the height of the grown broiler. If it is too high, it will irritate the entire broiler house.
  • the poultry house floor is usually covered with sawdust. Therefore, it is preferable that the traveling robot has a moving means that can move without being tired of sawdust.
  • a caterpillar, a large-diameter tire, a leg that can be walked on multiple legs, and the like can be suitably used. Appearance may expose necessary equipment. However, when entering a broiler house that has grown to some extent, it may be disguised as a chicken.
  • the flying robot also referred to as a “flying robot” has a structure that is not damaged even when it collides with an object arranged in the space.
  • the robot may not only move and notice its presence, but also emit a sound or light to alert the broiler. For this reason, the robot may be equipped with one or more of a rotating lamp, a lighting indicator lamp, a flashing indicator lamp, and a light emitter (hereinafter referred to as “attention light”) and a speaker.
  • a rotating lamp a lighting indicator lamp, a flashing indicator lamp, and a light emitter (hereinafter referred to as “attention light”) and a speaker.
  • Birds have more optic nerves than mammals and are sensitive to color. Therefore, attention is drawn to a warning light that appears to blink as a colored light such as red or blue rotates.
  • the sound be a buzzer sound that is about the same as a broiler cry or a voice that sounds when the broiler gets angry.
  • the robot is equipped with a camera.
  • H5N1 or these subspecies avian influenza nearly 100% die. Avian influenza does not occur even if water or wild birds are affected. Therefore, if wild birds near the poultry house suffer from bird flu, the broiler in the poultry house will be annihilated and a great deal of damage will occur.
  • the robot moving in the poultry house is equipped with a camera, it is possible to observe the detailed situation of each individual without entering the poultry house. Moreover, if an infrared camera is installed, it is possible to detect an increase in the body temperature of the broiler, and it is possible to quickly find an individual who has suffered a disease.
  • the robot may be self-supporting or operated (dependent) by another person.
  • the self-supporting type refers to a robot that runs or flies according to instructions of a program recorded in advance.
  • the vehicle travels or flies over a predetermined course in the poultry house, and the state during the traveling is recorded by a camera or transmitted to a supervisor.
  • Dependency formula refers to a robot in which the user controls (maneuveres) the movement of the robot itself in real time.
  • a monitoring camera is separately arranged on the ceiling of the poultry house, and the supervisor controls the position of the robot.
  • the control may be switched to a dependency equation.
  • the robot approaches from the height close to the broiler's line of sight to the vicinity of the broiler. Therefore, the camera mounted on the robot is placed at a position where the state of the broiler can be observed in more detail than the camera installed on the ceiling.
  • the observer may monitor the broiler's motion state from a separate room while moving in a self-supporting manner with a video through a camera, and mark an individual with an abnormality.
  • the marked individual can be isolated separately and examined in detail later.
  • FIG. 1 illustrates a traveling robot 1.
  • the robot 1 is a robot having a caterpillar 30.
  • 1A is a side view and FIG. 1B is a front view.
  • the appearance resembles a tank or bulldozer model.
  • a camera 12, a warning light 14, and a speaker 16 are disposed on the upper portion of the main body 10.
  • the circular rotary body 18 and the marking apparatus 22 may be provided.
  • the rotating body 18 is simply a disk-like plate that rotates, but a spiral pattern is drawn on its surface. It is said that such a state where the pattern rotates is avoided for birds whose natural enemies are raptors.
  • the marking device 22 marks individuals that are found to be abnormal when approaching the broiler and observing with a camera.
  • an ejection device that can eject water-soluble ink can be used. It should be noted that a broiler with an abnormality is slow in the first place, and can be approached enough to be marked even by a robot.
  • a guide bar 20 having a vehicle width or wider than that is provided.
  • the guide bar 20 is used to contact the individual that does not move by itself even when the robot 1 is approaching, and to notice the presence of the robot 1. More specifically, by bringing the guide bar 20 into contact with the individual, the movement of the individual is promoted.
  • a fuel cell may also be used.
  • combustion engines are not desirable. This is because exhaust gas is released into the poultry house.
  • FIG. 2 illustrates a flying robot 2.
  • FIG. 2A is a plan view
  • FIG. 2B is a front view. Forces broiler exercise, but does not need to promote so much exercise. Therefore, it is necessary not to fly at high speed, but rather to fly slowly. Therefore, the robot 2 is preferably a helicopter or multi-copter type.
  • FIG. 2 illustrates a four-rotor multi-copter type robot 2.
  • the robot 2 includes a main body 40, four rotors 41a to 41d, a frame bar 46, and a guide frame 45.
  • the four rotors 41a to 41d are arranged radially at equal intervals around the main body 40 in plan view (FIG. 2A).
  • Each of the rotors 41a to 41d is fixed to the main body 40 by a corresponding rotor support 43a to 43d.
  • a guide frame 45 is fixed to the main body 40 by a frame bar 46.
  • the guide frame 45 is provided so as to surround the movable range of the propellers of all the rotors 41a to 41d.
  • the guide frame 45 is provided so that the rotors 41a to 41d and the rotor columns 43a to 43d are not caught on those members.
  • the camera 12 is provided in the lower part of the main body 40 in the front and rear. This is for observing the lower and front broilers. Moreover, the alert light 14, the speaker 16, and the marking apparatus 22 may be provided.
  • FIG. 3 illustrates a plan view of the poultry house 50.
  • the poultry house 50 exemplifies an ordinary flat farm.
  • a feeder 54 of the feeding device 52 is provided along the supply line 56.
  • a drinking place for water is provided in the same line as the feed supply line 56.
  • the supply line 56 is connected to a silo 58. Food is distributed from the silo 58 through the supply line 56 to each feeder 54.
  • FIG. 4 illustrates a robot movement line that travels or flies within the poultry house 50.
  • Each dotted line in FIG. 4 is an example of a movement line of a self-supporting robot.
  • the number of robots in the poultry house 50 is not particularly limited.
  • Line 60 is a case where one robot is arranged in the poultry house 50. The robot moves throughout the poultry house 50, alerts all broilers and promotes the movement of the broilers.
  • the line 62 is an example in the case where two robots move by deciding each other. Each compartment may have overlapping portions. These movements can be used even when the supervisor controls the robot.
  • Robot running or flight may be changed according to broiler age. When you are still young, you will not be stuck with your weight, so you can just run a certain pattern. On the other hand, after 30 days of age, broilers grow so large that some individuals gradually become unable to move with their own weight. Therefore, after the growth is over a certain level, the supervisor may call the robot to alert the individual who is particularly slow moving.
  • Robot travel or flight may be performed at regular intervals.
  • light management is carried out in order to increase the number of broiler food intakes. Specifically, the lighting time is lengthened or the lighting time for a certain period is repeated intermittently.
  • feeding of the broiler can be promoted more efficiently than illuminating all the feeding points simultaneously.
  • spot lighting is provided separately from the lighting in the poultry house, a cylindrical condenser that changes the lighting in the poultry house to spot lighting, or lighting in the poultry house It is possible to apply a means such as moving downward. Among them, it is preferable to provide spot lighting separately because the activity becomes dull when the surroundings become dark.
  • the decoy may move in a state where it floats from the floor of the chicken house with a plurality of wires, as well as those that move by dragging the floor of the chicken house with a wire. If there is a tow wire near the floor, the chicken may catch the leg and get injured. Therefore, it is preferable that the wire is at a high position from the floor surface.
  • the decoy into a bird-shaped shape, the broiler in the poultry house is alerted, and as the bird-shaped decoy moves, a large shadow is created on the floor, and the stimulated broiler moves by itself It is also possible to promote exercise.
  • Decoy is pulled by wire.
  • a feeder, a water feeder, and a broder (heater) are arranged in the poultry house. Therefore, it is not easy for the decoy to freely route the poultry house. Therefore, a route that reciprocates in one direction arranged from one end of the poultry house to the other end is set in the decoy. Along the route, the decoy moves back and forth in the poultry house.
  • the decoy can only reciprocate along one route. Therefore, in the case of a large poultry house, it is not easy to call attention to all chickens. Therefore, it is desirable to install multiple decoys in the poultry house.
  • FIG. 5 illustrates one form of decoy.
  • the decoy 210 has a main body 212 and wings 214 (214a, 214b).
  • the main body 212 includes a camera 216 (216s, 216t) and a camera 217.
  • the camera 216 is arranged in the traveling direction. Therefore, these are the camera 216s and the camera 216t. Note that the camera 216t is in an invisible position in FIG.
  • the camera 217 is installed in a columnar mounting portion 218 protruding from the upper surface of the main body 212. Then, by rotating the attachment portion 218, the camera 217 can photograph the situation around the decoy 210.
  • the images of the camera 216s, the camera 216t, and the camera 217 are sent to a control device 250 (see FIG. 7) installed outside the poultry house by a built-in communication means (not shown).
  • the main body 212 is provided with wire clamps 212s and 212t for locking the wires 222 (the wires 222s and 222t). In this way, the decoy 210 is lifted up and down the main body 212 by the wires 222s and 222t, and moves on the floor surface of the poultry house.
  • the main body 212 is provided with a wing 214.
  • the wing 214 includes a wing 214a and a wing 214b whose length from the main body 212 is L.
  • a motor 215 (motor 215a and motor 215b) for opening and closing the wing 214 is provided at the base of the wing 214 (the motor 215b is not visible in FIG. 5). For this reason, the wing
  • the wing 214 may be provided with a lifter 213 (a lifter 213a and a lifter 213b) inside so that the height of the wing 214 can be changed with respect to the main body 212.
  • the lifter 213 is provided at the base of the blade 214, and the position of the blade 214 together with the motor 215 can be changed.
  • the lifter 213 b is in a position that is hidden behind the main body 212 and cannot be seen.
  • the wings 214 are opened during the movement, and call attention of a chicken having a width of 2 L (actually, the width W of the main body 212 is also included) around the movement route of the decoy 210.
  • the purpose of the wing 214 is to promote movement so that the wing 214 straddles the wing 214 or avoids the path of the wing 214.
  • the decoy 210 moves at such a speed that the wings 214 and the main body 212 do not damage the chicken.
  • the wing 214 can be closed as much as necessary.
  • the alert light 14 which the robots 1 and 2 have, the speaker 16, and the marking apparatus 22 may be provided.
  • FIG. 6 illustrates a plan view of the chicken house 290.
  • the poultry house 290 exemplifies a normal flat farm.
  • a feeder 294 of the feeding device 292 is provided along the supply line 296.
  • a drinking place for water is provided in the same line as the bait supply line 296.
  • Supply line 296 is connected to silo 298. From the silo 298, feed is distributed through the supply line 296 to each feeder 294.
  • the route of the decoy 210 is set so as not to be interfered by these facilities.
  • FIG. 7 shows a state where two routes 260 (route 260a and route 260b) along the supply line 296 are set in the poultry house 290 of FIG.
  • the route 260 may be provided with three or more routes.
  • Winches 280 (winch 280a, winch 280b) for operating the decoy 210 are provided at both ends along the route 260 of the chicken house 290.
  • the winch 280a operates the wire 222t
  • the winch 280b operates the wire 222s.
  • These winches 280a and 280b are connected to the control device 250 and are driven by an instruction signal from the control device 250. Further, it is desirable that the winch 280a and the winch 280b include a tension detector in order to adjust the tension applied to each wire 222.
  • FIG. 8 shows a side sectional view of the chicken house 290.
  • a winch 280a and a winch 280b are provided at both ends of the chicken house 290.
  • struts 282 Adjacent to the winch 280, struts 282 (the struts 282a and struts 282b) are provided.
  • a pulley 283 (a pulley 283a and a pulley 283b) is provided at the tip of the column 282, respectively.
  • the wires 222 are connected to both ends of the decoy 210 from each winch 280 via a pulley 283 at the tip of the column 282.
  • the support column 282 may be configured such that the height can be changed.
  • the posture of the decoy 210 not only the tension of the wire 222 but also the position of the pulley 283 can be changed, so that the posture can be controlled without changing the height from the floor surface. It is.
  • the decoy 210 When the wire 222t and the wire 222s are pulled by both the winch 280a and the winch 280b, the decoy 210 is lifted from the floor surface 290f of the chicken house 290 (see FIG. 8A). If the wire 222t and the wire 222s are fed out by both the winch 280a and the winch 280b, the decoy 210 descends to near the floor surface 290f (see FIG. 8B).
  • the decoy 210 keeps a certain height from the floor 290f of the poultry house 290, and the direction of the winch 280a. Move to. On the other hand, if it is reversed, it moves in the direction of the winch 280b (see FIG. 8C).
  • the height H from the floor 290f of the decoy 210 can be adjusted by the difference between the tension of the winch on the pulling side and the tension of the winch on the drawing side.
  • the controller 250 instructs the appropriate tension and winding or feeding speed of both winches 280 from the feeding lengths of the wires 222 of both winches 280.
  • the decoy 210 moves in the poultry house 290 by the winch 280, the support column 282, the pulley 283, and the control device 250.
  • the decoy 210 is usually hung near the ceiling at one end of the poultry house 290.
  • the operation of the decoy 210 is performed while a light is lit in the poultry house 290. This is to prevent the chicken from sleeping when the chicken is sleeping.
  • the decoy 210 is suspended from the wall on the winch 280b side (state shown in FIG. 8A).
  • the wire 222s and the wire 222t are fed out from the winch 280b and the winch 280a, and the decoy 210 is lowered to the vicinity of the floor surface 290f (state shown in FIG. 8B).
  • the winch 280a winds the wire 222t while the winch 280b feeds the wire 222s. In this way, the decoy 210 moves while floating near the floor 290f.
  • the height H at this time is preferably the same height as the chicken viewpoint.
  • the height of the wing 214 from the floor surface 290f is preferably high enough to allow the chicken to jump over.
  • a light or LED When moving, a light or LED may be turned on, and the shadow of the decoy 210 may be projected at the bottom to alert the chicken.
  • the chicken hits the wing 214, it moves slowly. This is because the sudden movement of the decoy 210 gives stress to the chicken. Further, when an obstacle hits the wing 214, the wing 214 may be closed by an appropriate angle.
  • the broiler promotes the movement of the broiler by utilizing the action of avoiding the moving light spot and avoiding it.
  • FIG. 9 illustrates the appearance of the robot 3 according to the present invention.
  • FIG. 9A is a side view
  • FIG. 9B is a front view.
  • the robot 3 of the present invention includes a moving device 120, a light irradiation device 122, a battery 140 (see FIG. 12), a position detecting device 124 (see FIG. 12), a communication device 126 (see FIG. 12), and a control device 128 (see FIG. 12).
  • you may mount the camera apparatus 130.
  • FIG. Furthermore, the alert light 14 which the robots 1 and 2 have, the speaker 16, and the marking device 22 may be provided.
  • the tank type robot (traveling robot) shown in FIG. 1 will be described, but the multi-copter type or decoy flying robot shown in FIG. 2 may be used.
  • FIG. 10 shows a relationship between a plan view of the poultry house 50 and peripheral devices for operating the robot 3.
  • the robot 3 is normally placed on the base 170 in the poultry house 50.
  • the poultry house 50 is provided with a feeder 54 and a silo 58 as a source of food and water.
  • a parent control device 150 is prepared for the robot 3.
  • the parent control device 150 can control at least one robot 3.
  • the robot 3 may be provided with a base 170 in the poultry house 50. In the base 170, the robot 3 performs primary return, and can transmit the recorded data and charge the battery 140 (see FIG. 12).
  • the moving device 120 is not limited in form as long as the robot 3 can be moved.
  • methods such as walking with multiple legs, caterpillar, and multiple wheels can be used.
  • the floor surface of the poultry house 50 is spread with bedding such as sawdust.
  • the caterpillar can be said to be a moving means that can be suitably used in terms of capacity and cost.
  • the robot 3 will continue to describe an example in which the robot 3 has a caterpillar as the moving device 120.
  • the moving device 120 is installed in the lower housing 110b.
  • An upper housing 110a is disposed on the lower housing 110b.
  • a rotating tower 112 is provided in the upper housing 110a.
  • the rotating tower 112 is pivotally supported with respect to the upper housing 110a.
  • the rotating device 112d (see FIG. 12) of the rotating tower 112 is installed in the lower housing 110b.
  • a bumper 110s is provided around the upper casing 110a.
  • the bumper 110s is formed of a cushioning material such as foaming urethane.
  • a touch sensor 132a may be provided between the bumper 110s and the upper housing 110a. This is because the collision can be detected when the robot 3 collides with something.
  • the bumper 110s protects the chicken and the robot 3 when the robot 3 comes into contact with the chicken or when the robot 3 collides with a wall or the like.
  • the rotating tower 112 is provided with a light irradiation window 112w.
  • a light irradiation device 122 (see FIG. 11) is installed inside the light irradiation window 112w.
  • the light irradiation device 122 can irradiate light from the light irradiation window 112w and scan left and right.
  • an irradiation angle changing device 123 (see FIG. 11) for changing an irradiation position indicating how much the robot 3 is irradiated in front may be provided.
  • a camera device 130 is also mounted in the rotating tower 112.
  • the camera device 130 can grasp the situation around the robot 3 and can confirm where the light irradiated from the light irradiation window 112w is hit. Further, the surrounding situation may be recorded as image data.
  • the light irradiation device 122 is not limited to the configuration as long as it has at least the above performance.
  • FIG. 11 illustrates the configuration of the light irradiation device 122.
  • FIG. 11A is a plan view of the rotating tower 112
  • FIG. 11B is a side sectional view.
  • the light irradiation device 122 includes a light source 122a, a polygon mirror 122b, a drive motor 122c for the polygon mirror 122b, an irradiation angle changing device 123, and a light source control device 122d.
  • the light source 122a is a light source 122a that can radiate parallel rays. This is because a light spot is generated on the floor surface.
  • a laser device or an optical system having an afocal group lens that can convert light from a focal point into parallel rays is used.
  • the inventor has confirmed that chickens can be effectively induced with red laser light (wavelength 635 to 690 nm).
  • the light intensity is not particularly strong, and a light source 122a having a power of about 0.2 mW used for a laser pointer may be used. Further, the light source 122a may be plural instead of single. This is because if there are a plurality of light spots, the chicken can easily recognize.
  • the polygon mirror 122b is a polyhedral mirror, and a triangular mirror or octagonal mirror is used depending on the space in the rotating tower 112 to be installed and the scanning range.
  • the polygon mirror 122b reflects light from the light source 122a and emits light from the light irradiation window 112w.
  • the polygon mirror 122b is rotated by the drive motor 122c. Each time it rotates, light is emitted from the light irradiation window 112w and scanned.
  • the polygon mirror 122b and the drive motor 122c are fixed on one stage 123a, and an irradiation depression angle changing motor 123b for changing the depression angle of the stage 123a is provided.
  • the stage 123a is pivotally supported in the rotating tower 112 so as to be swingable by a column 123c.
  • the irradiation depression angle changing motor 123b can push up an unsupported portion of the stage 123a from below and adjust the depression angle of the stage 123a.
  • the stage 123a, the irradiation angle changing motor 123b, and the support 1123c constitute an irradiation angle changing device 123.
  • the light source control device 122d drives ON / OFF of the light source 122a, the driving motor 122c of the polygon mirror 122b, and the irradiation depression angle changing motor 123b, and adjusts the rotation angle of the polygon mirror 122b and the depression angle of the irradiation light. By adjusting the depression angle of the irradiation light, it is possible to adjust how much the light spot is generated on the floor ahead from the light irradiation device 122.
  • the light source control device 122d performs these controls according to instructions from the control device 128 (see FIG. 12). Note that the control device 128 may also serve as the light source control device 122d.
  • the example using the light source 122a and the polygon mirror 122b was shown here as the light irradiation apparatus 122, in the robot 3, the light irradiation apparatus 122 is not limited to this.
  • a plurality of laser pointers may be fixed to the upper end of the rotating tower 112 and the light spot may be scanned by rotating the rotating tower 112.
  • only the light irradiation device 122 may be rotated separately from the rotating tower 112.
  • the stage 123a on which the light source 122a is placed may be rotated.
  • Such a light irradiation device 122 may be mounted on a multicopter type or decoy robot (flying robot).
  • the rotating tower 112 is also equipped with a camera device 130.
  • the camera device 130 is mounted below the light irradiation device 122, but may be above.
  • the number of cameras 130a is not particularly limited.
  • a total of four cameras 130 a are mounted on the front, rear, left and right of the rotating tower 112.
  • Each camera 130a has a wide angle of view, and the four cameras 130a can cover 360 ° around the robot 3.
  • the image of the camera device 130 may be sent to the communication device 126 (see FIG. 12) and sent to the parent control device 150.
  • the rotating tower 112 can be rotated with respect to the upper casing 110a by a rotating device 112d (not visible in FIG. 9, see FIG. 12). Therefore, the light irradiation window 112w and the camera 130a can change an angle with respect to the upper housing 110a.
  • FIG. 12 shows the connection relationship between various devices.
  • the control device 128 is connected to the moving device 120, the light irradiation device 122, the camera device 130, the communication device 126, and the battery 140.
  • the control device 128 includes an MPU (Micro Processor Unit) 128a and a memory 128b.
  • MPU Micro Processor Unit
  • a travel route and an action program when the robot 3 self-runs are stored.
  • the communication device 126 is a wireless communication device. Communication is performed with the parent control device 150. Further, wired communication may be performed with the base 170.
  • the position detection device 124 determines the current position based on GPS or a wireless beacon provided in the poultry house 50. In addition, so-called inertial traveling may be performed in which the position from the starting point is calculated by an accelerometer and a compass and returned to the starting point independently.
  • the control device 128 knows the current position in the poultry house 50 based on the position information from the position detection device 124.
  • the touch sensor 132a is provided between the bumper 110s (see FIG. 9) and the upper housing 110a (see FIG. 9) (or the lower housing 110b). When the bumper 110s comes into contact with something, the control device 128 is notified. Such a touch sensor 132 a constitutes the travel disturbance detection device 132.
  • the travel disturbance detection device 132 can be preferably configured by the touch sensor 132a. However, the travel interference detection device 132 may be configured by colliding with something and being unable to proceed any further. For example, if the position information is acquired from the position detection device 124 every few seconds and the movement device 120 is driven, but the position information does not change, the vehicle is impeded by something and the traveling is hindered. It is also possible to configure the travel disturbance detection device 132 by determining that it is.
  • FIG. 13 shows the relationship among the robot 3, the base 170, and the parent control device 150 in detail.
  • the base 170 is a storage place for the robot 3 arranged in the poultry house 50 (see FIG. 10).
  • a charging terminal for the battery 140 see FIG. 12
  • a wired communication terminal of the communication device 126 are connected to the robot 3. Therefore, the base 170 has a base communication device 174 between the battery charger 172 and the parent control device 150.
  • the base 170 is provided so that it can be taken out from the outside of the poultry house 50. This is because the robot 3 can be recovered without entering the poultry house 50.
  • the parent control device 150 can control at least one robot 3 from outside the poultry house 50.
  • the parent control device 150 includes a parent communication device 152.
  • the parent communication device 152 performs communication between the base communication device 174 included in the base 170 and the communication device 126 included in the robot 3 (see FIG. 12).
  • the parent control device 150 controls the robot 3 by remote control.
  • the control device 154 is provided.
  • the control device 154 includes an input device 156 capable of inputting control sticks and commands, and a display device 158 that displays the situation.
  • the parent control device 150 also has a storage device 160 that stores image data from the robot 3 and other data.
  • the parent control device 150 can instruct the robot 3 from the input device 156 to change the traveling course or change the operation.
  • the robot 3 can be run in real time, and a light spot can be generated or scanned while viewing an image from the camera device 130 (see FIG. 9).
  • the self-supporting mode is a mode in which the patrol in the poultry house 50 is automatically performed and returned again at a certain time. During this time, it is not necessary to receive an instruction from the control device 154.
  • looking around means running inside the chicken house 50 while scanning a light spot, alerting the chicken, and promoting the chicken's movement.
  • the robot 3 is stored in the base 170. Here, the battery 140 is charged and communication with the wired control device 154 is performed. The robot 3 departs for a patrol in the poultry house 50 at the specified time.
  • FIG. 14 shows a plan view of the poultry house 50.
  • the robot 3 travels on a predetermined route in the poultry house 50. As a route, it is preferable to travel along the wall of the poultry house 50. In FIG. 14, it is shown by a chain line.
  • a feeding device 54 is provided on the center side of the poultry house 50, and a healthy chicken obtains food and water there. On the other hand, a chicken with a bad condition is pushed toward the wall of the poultry house 50.
  • the robot 3 guides such a chicken to the center side of the poultry house 50 where the feeder 54 is located.
  • the robot 3 irradiates the front wall surface with light from the light source 122a (see FIG. 11) while traveling. Moreover, you may irradiate toward about 50 cm ahead of the robot 3. Since the irradiated light is a parallel light beam, a light spot 144 is generated on the floor surface in front of the robot 3. The robot 3 scans the light spot 144.
  • the scanning angle is not particularly limited. In the self-supporting mode, scanning is performed at a predetermined angle. For example, 90 ° from 45 ° to 45 ° from the front of the robot 3 is scanned.
  • the scanning speed may be about 1 to 2 seconds for 90 ° scanning. This is because the chicken cannot recognize the scanning of the light spot 144 either too early or too late.
  • the scanning method is not particularly limited.
  • the light spot is scanned only from right to left or from left to right.
  • the light spot may be scanned from right to left and again from left to right.
  • the size of the light spot is preferably about 0.5 cm to about 10 cm.
  • the color of the light spot is preferably a color that is not the color of the lighting in the poultry house. It is to stand out. In particular, red for humans can alert chickens.
  • the chicken moves to avoid the scanned area. The cause of this is not clear. Perhaps the chicken moves to avoid the light spot and escape from the light spot. Note that the chicken itself does not panic with such an operation.
  • the robot 3 does not collide with anything, it travels on the determined route and returns to the base 170 again. If you collide with something, record the number and location of the collision. When returning to the base 170, the battery 140 is charged and the image data recorded during the tour is transmitted to the parent control device 150. The number of collisions and the position are also transmitted in the same manner.
  • the avoidance method is not particularly limited, but a method of traveling a certain distance away from the wall, proceeding in parallel with the wall again, and returning to the course along the wall again is conceivable.
  • the robot 3 communicates information on this point to the parent control device 150.
  • the information notified at this time may be a position where a collision is detected or a position where an avoidance action is performed. This is because both indicate substantially the same position.
  • Robot 3 patrolls the chicken house 50 during the night for humans. Therefore, in the morning, the keeper examines the image when the robot 3 performs the avoidance action (or collides) the night before. If the cause of the avoidance action (or collision) is a chicken that has become difficult to move, when the human looks around, the point where the robot 3 has performed the avoidance action (or has collided) is examined, and the chicken with a sign of abnormality is found. Can be confirmed.
  • the robot 3 can travel in the poultry house 50 according to an instruction from the parent control device 150.
  • an image photographed by the camera device 130 is displayed on the display device 158 of the parent control device 150, and the operator can see the inside of the chicken house 50 with the line of sight of the robot 3.
  • the operator can move while irradiating light, or can move the robot 3 without irradiating light.
  • the robot 3 in order to confirm a point where the robot 3 has performed an avoidance action (or has collided), the robot 3 is pointed to that point, and an image taken by the camera device 130 shows the vicinity of the point. It becomes possible to confirm.
  • chickens in the poultry house 50 are regarded as a flock and the growth state is improved.
  • the chickens in the poultry house 50 can move around freely. However, if a dense flock is formed in the poultry house 50, some of the chickens in the poultry house 50 often do not have the opportunity to eat food, and often develop poorly. Therefore, when a plurality of chickens are concentrated in a specific place in the poultry house 50, it is necessary to give each chicken an equal opportunity to feed by eliminating this crowded state.
  • FIG. 15 shows a plan view of the poultry house 50.
  • the surveillance camera 70 is provided on the ceiling of the poultry house 50.
  • the robot 3, the base 170 of the robot 3, and the parent control device 150 are also provided.
  • the robot 3 in the present embodiment is the robot 3 described in the second embodiment, and may be a robot to which a function that may be added described in the third embodiment is added. Of course, a flying robot may be used.
  • FIG. 16 shows the connection relationship between the robot 3, the base 170, the parent control device 150, and the monitoring camera 70, as in FIG.
  • the monitoring camera 70 is connected to the parent control device 150. Therefore, the image of the monitoring camera 70 can be monitored by the display device 158.
  • the robot 3 When the state of the flock of chickens in the poultry house 50 is monitored with the surveillance camera 70 of this embodiment and the flock is biased when viewed over the whole poultry house, the robot 3 is sent to the place where the chickens are concentrated, Spread dense crowds. In addition, it may be said that it is promoting the movement of a chicken that the robot 3 spreads a dense flock.
  • the method for detecting the swarm deviation with the monitoring camera 70 is not particularly limited.
  • a human may look at the image of the surveillance camera 70 to determine whether or not there is a bias. Further, the bias may be digitized by image processing. If it can be judged that there is a bias in the flock by image processing, the flock of chicken can be moved by the surveillance camera 70 and the robot 3 even if the human is not looking at it. Can be resolved.
  • FIG. 17 shows a processing flow of the parent control device 150.
  • step S100 an end determination is made (step S102).
  • the end determination is not particularly limited, and it may be possible to stop at a specific time or to give a stop instruction.
  • step S150 the process stops (step S150).
  • the surveillance camera 70 takes a picture of the floor surface to obtain image data G (step S104).
  • the image data G is divided into predetermined sections.
  • An infrared camera may be used in order to increase the accuracy of the number counting in the subsequent image processing.
  • n is a natural number. If it is divided into 9 sections, n is 9. Note that all the sections need not have the same size and the same shape.
  • the wall side may be a long section along the wall side.
  • step S106 the number of chickens in each section gk is counted (step S106).
  • C (g1), C (g2), ..., C (gk), ..., C (gn) be the number of chickens in each compartment.
  • the chickens in the compartment are individually spindle-shaped and separated from the adjacent chickens, so the number can be counted with image processing software.
  • “k” is a natural number satisfying 1 ⁇ k ⁇ n and is a variable representing an arbitrary section among the divided sections.
  • the floor area of the poultry house 50 is known in advance, and the number of chickens currently present in the poultry house 50 is also known. Therefore, if chickens are uniformly distributed in the poultry house 50, it is determined how many chickens are in one section. This is defined as the block average number Cav.
  • the feeder 54 etc. are also installed in the division.
  • the sections may not be the same size. Therefore, the section average number Cav may not be the same in all sections. In other words, the section average number Cav may be provided for each section.
  • the number of chickens C (gk) counted in each section is compared with the section average number Cav (step S108). It can be determined that the large sections in which the number of chickens C (gk) in the section is larger than the section average number Cav are densely crowded.
  • “m” is a weight constant. For example, if m is 1.1, even if there are 1.1 times as many chickens as the average number of sections Cav, it is not considered that there is a bias in the flock. That is, it may be determined that the degree of crowding (group bias) is not more than a certain degree of the section average number Cav.
  • step S108 If it is determined in step S108 that there is a group bias (Y branch of step S108), the parent control device 150 dispatches the robot 3 to the section gk (step S110).
  • the robot 3 described in the second embodiment moves to the section gk while scanning the light spot, and, for example, reciprocates in the section gk to disperse the swarm.
  • step S108 If it is determined that there is no group bias (N branch in step S108), the process returns to the end process (step S102).
  • the surveillance camera 70 is arranged on the ceiling of the poultry house 50, the presence or absence of a flock of chickens is determined based on the image of the camera, and the robot 3 eliminates the flock of individual flocks, whereby individual chickens are eliminated. Can get the opportunity to eat food. In other words, the number of individuals with poor growth without eating food can be reduced, and productivity can be improved.
  • Embodiment 5 Note that the relationship between the robot and the lighting of the poultry house described in Embodiment 1 may be applied in this embodiment, and detailed description thereof is omitted. (Embodiment 5)
  • FIG. 18 shows a configuration of a poultry house monitoring robot according to the present invention.
  • the poultry house monitoring robot 301 includes a traveling unit 310, a communication device 312, a position detection unit 314, a battery 316, a control unit 320, and a sensor unit 330.
  • the sensor unit 330 includes temperature sensors 331a and 331b, humidity sensors 332a and 332b, carbon dioxide sensors 333a and 333b, ammonia sensors 334a and 334b, and the like.
  • the kind of sensor is not limited to these, Sensors other than the above may be mounted. Further, only one type of sensor may be mounted on the sensor unit 330. Here, the description will be continued assuming that the sensor is mounted. These sensors are prepared in two sets for the upper part and the lower part.
  • the sensor unit 330 may be equipped with a camera 340 and a thermosensor 341.
  • the functions of the robot 1, the robot 2, the robot 3, and the decoy 210 described in the first, second, and third embodiments can be appropriately installed.
  • FIG. 19 shows an example of the appearance of the poultry house monitoring robot 301.
  • the shape of the poultry house monitoring robot 301 is not particularly limited. However, for example, in the case of a broiler house, bedding such as sawdust is laid on the floor. This bedding is formed to a thickness of 2 to 5 cm. Therefore, it is necessary to have a traveling means that can travel on such a litter.
  • forms such as walking with multiple legs and a caterpillar can be suitably used.
  • a tank type robot using the caterpillar 362 is illustrated.
  • An upper sensor dome 364 in which the sensor unit 330 is incorporated is provided on the upper surface of the main body 360.
  • the camera 340 and the thermosensor 341 are housed in a camera tower 366.
  • the camera tower 366 rotates to have a 360 ° field of view.
  • a lower sensor dome 363 is provided on the lower surface of the main body 360. This is because the environment directly above the bedding can be measured.
  • FIG. 20 illustrates a plan view of the chicken house 400 monitored by the chicken house monitoring robot 1.
  • the poultry house 400 is provided with a feeding / water supply apparatus 410 having a pipe 411, a feeder 412 and a silo 413. Further, a ventilation fan 402 for performing ventilation, a broder 403 for heating the inside of the poultry house 400, a cooling pad 404 for cooling the intake air when taking air into the poultry house 400, a fine adjustment fan 405 attached to the wall, etc.
  • Environmental control devices are provided.
  • the poultry house 400 is provided with a charging station 406 for charging the poultry house monitoring robot 301.
  • the charging station 406 charges the battery 316 of the poultry house robot 301 when the poultry house monitoring robot 301 comes to a predetermined position.
  • a reference signal transmitter 407 for allowing the poultry house monitoring robot 301 to recognize its own position in the poultry house 400 may be provided.
  • the reference signal transmitters 407 are provided on the ceilings at the four corners of the poultry house 400 and transmit signals having different frequencies.
  • control unit 370 that receives and records measurement data transmitted from the poultry house monitoring robot 301 may be provided.
  • the control unit 370 receives measurement data from the poultry house monitoring robot 301, and records and tabulates it.
  • the control unit 370 is provided with a display screen 372, which can receive and display a video signal from the poultry house monitoring robot 301.
  • the control unit 370 may be provided with a control device 373 for the poultry house monitoring robot 301. This is for operating the poultry house monitoring robot 301 from the control unit 370 side.
  • traveling section 310 includes motors 310a and 310b that drive left and right drive wheels, and caterpillar 362 (see FIG. 22). These motors 310 a and 310 b are connected to the control unit 320. And it drives by the instruction
  • FIG. The poultry house monitoring robot 1 can drive the left and right motors 310a and 310b independently to change the direction straight, backward, and left and right.
  • the battery 316 supplies power to each device in FIG. Further, electric power is stored by supplying electric power from the outside.
  • the battery 316 is preferably a secondary battery.
  • the communication device 312 is a wireless communication device.
  • the communication protocol is not particularly limited. For example, a system using a public line may be used.
  • the communication device 312 transmits the measurement data acquired by the poultry house monitoring robot 301. Moreover, you may receive the instruction
  • the position detection means 314 includes a method using a reference signal transmitter 407 provided in the poultry house 400, a method using GPS, a method by triangulation using the radio of the communication device 312 and a moving direction and movement from the charging station 406.
  • a method (so-called inertial navigation) for obtaining a position from speed and travel time can be used.
  • the reference signal transmitter 407 provided in the poultry house 400 is used is shown.
  • a chargeable / dischargeable secondary battery can be suitably used as the battery 316.
  • the battery 316 supplies power to all the electric consumption parts of the poultry house monitoring robot 301.
  • the sensor unit 330 is a set of sensors that measure the environmental index of the chicken's living space.
  • the sensor unit 330 preferably includes at least temperature sensors 331a and 331b, humidity sensors 332a and 332b, carbon dioxide sensors 333a and 333b, and ammonia sensors 334a and 334b. These sensors are provided at two locations in the upper sensor dome 364 and the lower sensor dome 363 provided on the upper surface of the main body 360. Sensors provided in the upper sensor dome 364 have an extension “a”, and sensors provided in the lower sensor dome 363 have an extension “b”.
  • Measured data such as temperature / humidity at the height of the chicken and measured data such as temperature / humidity directly above the laying are very effective for providing a comfortable environment for the chicken.
  • the humidity directly above the bedding reflects the humidity of the bedding. Therefore, it is possible to obtain a guideline that the air conditioning of the poultry house 400 must be controlled so that the litter is further dried.
  • the ventilation volume is reduced, saving energy.
  • the ventilation rate near the floor must be increased.
  • the upper sensor dome 364 may be provided with an illuminance meter 335 and a microphone device 336.
  • the illuminometer 335 measures the brightness in the chicken house 400.
  • the microphone device 336 may measure the volume of a specific frequency band. When the chicken feels alert or afraid, it makes a relatively high-pitched call. This is to measure the sound.
  • the camera 340 is equipped with a camera that can capture normal visible light.
  • the interior of the poultry house 400 is usually set to about 25 lux. Therefore, it is desirable that the F number has a lens as small as possible.
  • a spotlight 340a may be provided.
  • the thermosensor 341 has a two-dimensional imaging surface. This is because the object to be photographed can be seen as an image of temperature distribution. If the camera 340 and the thermosensor 341 are arranged side by side and the optical axis of the lens is directed in the same direction, the temperature distribution of the image taken by the camera 340 can be observed.
  • the camera 340, the spotlight 340a, and the thermo sensor 341 are provided in a camera tower 66 provided on the upper surface of the main body 360.
  • the control unit 320 is connected to the sensors of the sensor unit 330, the traveling unit 310, the communication unit 312, and the position detection unit 314. Then, an instruction signal is transmitted to each unit, and a signal from each unit is received.
  • the control unit 320 is provided with a clock 321 and a memory 3 22 inside.
  • the operation of the control unit 320 is controlled by a control program 323 installed in the memory 322.
  • the target point list 324 is stored in the memory 322.
  • the target point list 324 may be position coordinates in the chicken house 400, for example.
  • FIG. 21 shows a flow of basic operations of the poultry house monitoring robot 301.
  • the poultry house monitoring robot 301 has a self-supporting mode and a maneuvering mode.
  • the chicken house 400 is run by the control program 323 in which the chicken house monitoring robot 301 is built, and the environmental index is measured at a predetermined measurement point.
  • step S400 when control unit 320 of poultry house monitoring robot 301 starts processing (step S400), initial setting is performed (step S402).
  • the initial setting includes time adjustment, battery remaining amount confirmation, initial target point setting, and the like.
  • the poultry house monitoring robot 301 starts moving.
  • the feedback conditions are time and remaining battery capacity. For example, when the scheduled activity time is determined, the elapsed time from the departure time is confirmed, and if the scheduled activity time is exceeded, the feedback condition is satisfied. Even within the scheduled activity time, if the remaining battery level is low, the feedback condition is satisfied.
  • step S404 When the return condition is satisfied (Y branch of step S404), the target point is set in the charging station 406 of the poultry house 400 and moved. When the charging station 406 is reached, the process is terminated (step S420).
  • step S406 it is determined whether or not the target point has been reached.
  • the target point is the position of the moving destination where the poultry house monitoring robot 1 moves in the poultry house 400. This is recorded in advance as a target point list 324 in the memory 322.
  • the initial target point is set during the initial setting (step S402). Therefore, the poultry house monitoring robot 301 moves toward the first target point in the target point list 324.
  • the control unit 320 knows the position in the poultry house 400 by the position detection means 314.
  • the position detection unit 314 calculates the position in the chicken house 400 based on a signal from the reference signal transmitter 407 provided in the chicken house 400.
  • the chicken house 400 is provided with four reference signal transmitters 407 having different transmission frequencies.
  • the poultry house monitoring robot 301 can know the position in the poultry house 400 from the ratio of the received intensity of these signals. Therefore, the own position and the position of the target point are compared, and the traveling unit 310 is controlled so that the difference is reduced.
  • FIG. 22 illustrates the set target points.
  • a dotted line indicates a patrol route of chicken house monitoring robot 301 that travels inside chicken house 400.
  • the numbers in circles are the set target points.
  • the poultry house monitoring robot 301 visits the target points set on the patrol route in numerical order, and performs measurement by the sensors at the points.
  • the chicken house monitoring robot 302 not only measures the environmental index, but also promotes chicken movement. At this time, in order to call attention of the chicken, scanning of a light spot, lighting of a warning light, and sound generation may be performed.
  • An apparatus for implementing these can be implemented by the configuration of the robots 1, 2, 3, and 201 described in the first, second, third, and fourth embodiments.
  • step S404 the process is repeated from step S404.
  • the poultry house monitoring robot 301 reaches the target point (Y branch in step S406), it stops and measures the environmental index with sensors (step 408).
  • Environmental indices such as temperature and humidity at the point where the poultry house monitoring robot 301 stops are measured on the upper surface side and lower surface side of the main body 360. These measurement data are transmitted by the communication apparatus 312 with the positional information and measurement time of a measurement point (step S410).
  • step 412 When the measurement data is transmitted, the next target point is read from the memory 322, and movement toward the point is started (step 412). The process flow returns to step S404.
  • the poultry house monitoring robot 301 basically moves within the poultry house 400 to a predetermined target point, and measures the environmental index at the target point. Then, the operation of transmitting measurement data is repeated.
  • the poultry house monitoring robot 301 photographs the surroundings with the camera 340 and the thermo sensor 341 of the camera tower 366 while moving.
  • the illuminance meter 335 and the microphone device 336 measure ambient illuminance and sound.
  • FIG. 23 shows an operation flow while the poultry house monitoring robot 301 is running.
  • step S500 it is determined whether or not the target point has been reached (step S502).
  • step S502 the process flow ends (step S520). This is because environmental measurement is performed.
  • step S504 it is determined whether or not the illuminance is lower than the predetermined brightness ThL (step S504).
  • the inside of the poultry house 400 should be maintained at a brightness of about 25 lux for a certain period of time, but if a malfunction occurs in the lighting device or the like, a dark spot is formed in the poultry house 400.
  • step S506 it is determined whether or not the sound volume in a predetermined high frequency band is equal to or higher than a threshold value Thi (step S506).
  • a threshold value Thi Thi
  • step S508 it is determined whether or not a sudden sound has occurred.
  • Chickens are adaptable to relatively continuous noise. However, he is afraid of sudden sounds.
  • step S510 the poultry house monitoring robot 1 stops on the spot and transmits the current position, time, and observation result (step S510). .
  • step S512 the movement is started again (step S512).
  • the poultry house monitoring robot 301 can be operated from the outside by the control device 373 of the control unit 370. If the monitor recognizes an abnormality in the chicken house 400 based on the video on the display screen 372 of the control unit 370 or the measurement data from the chicken house monitoring robot 301, the monitoring device 301 moves the chicken house monitoring robot 301 to a desired location. To move. At this time, the chicken can be observed up close by the image of the camera 340.
  • the presence or absence of contact dermatitis and feather dirt can be easily detected.
  • people looked around they had to pick up and observe chicken legs such as the heels and knee joints.
  • the camera 340 from the same height as the chicken, it is possible to detect infections of the heels and knee joints at an early stage by observing the feet of the walking chicken.
  • thermosensor 341 By observing the image with the thermosensor 341, it is possible to discover an individual whose body temperature has risen, and conversely, an individual whose body temperature has decreased.
  • the control unit 370 records measurement data from the poultry house monitoring robot 301. And these measurement data may be totaled. In the recorded data, the position data in the poultry house 3100 and the observation time data are combined. Therefore, the temperature and humidity of the floor can be displayed together with the temperature distribution and humidity distribution in the poultry house 400.
  • the robot 3 was equipped with three laser pointers on the upper part of the rotatable rotating tower 112, and scanned 90 ° in 2 seconds while traveling.
  • the laser pointer used was red (wavelength 635 nm) and 0.2 mW.
  • the light spot was generated about 50 cm above the floor of the left hand wall in front of the robot 3. That is, three light spots are generated at a position 50 cm in front of the robot 3 (running direction), and 90 ° is scanned at an angular velocity of about 2 seconds.
  • 6300 chicken houses 50 were used as test areas (chick houses 50 where the robot 1 was run), and 6600 chicken houses 50 were used as control areas.
  • the chicken species is chunky. After entering the chicks, they went from 3 days old to 7 days old morning.
  • Robot 3 made a total of 16 tours, 3 days old night, 4 days old night, 5 days old night, and 6 days old night. In the control zone, the robot 3 is not running at night. Therefore, the broilers in the test group exercise more than the broilers in the control group for a total of 16 times.
  • the average body weight at the time of entering the chick was 46.56 g in the test group and 48.03 g in the control group, and the test group was lighter than the control group.
  • the body weight at 7 days of age was 165.00 g in the test group and 160.90 g in the control group, and the test group was heavier than the control group.
  • the multiplication factor was 3.54 times in the test group and 3.35 times in the control group, and the test group was heavier than the control group.
  • the broiler breeding method according to the present invention can be suitably applied to broilers kept in close proximity.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Zoology (AREA)
  • Birds (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Housing For Livestock And Birds (AREA)

Abstract

Broilers have been bred so as to quickly grow. As a result, some individuals cannot walk because of overweight. To solve this problem, it is required to encourage broilers to take moderate exercise. Provided is a method for raising chickens in a chicken house, said method being characterized by comprising: a step for feeding the chickens in the chicken house; and a step for encouraging the chickens to take exercise by moving a robot in the chicken house. Thus, the attention of the chickens in the chicken house is attracted by the robot so that the chickens are encouraged to take exercise.

Description

ニワトリの飼育方法Chicken breeding method
 本発明は食肉用として鶏舎中で飼育される食肉用ニワトリ(所謂ブロイラー)や、採卵用のニワトリ(所謂レイヤー)の飼育方法に関する。 The present invention relates to a method for breeding chickens for meat (so-called broilers) and chickens for egg collection (so-called layers) that are reared in poultry houses for meat.
 現在ニワトリはほとんどが家畜用として育てられている。ニワトリは卵および食肉として、世界中で重要な蛋白源となっている。そして、卵および食肉用としての生産性を向上させるために、ニワトリ自体を採卵に適した種と食肉用に適した種として品種改良が行われてきた。採卵用のニワトリは、レイヤーと呼ばれ、食肉用のニワトリはブロイラーと呼ばれている。 Currently, most chickens are raised for livestock. Chickens are an important source of protein throughout the world as eggs and meat. In order to improve the productivity for eggs and meat, breeding has been carried out with the chicken itself as a species suitable for egg collection and a species suitable for meat. A chicken for egg collection is called a layer, and a chicken for meat is called a broiler.
 ブロイラーは、その肉を得るために短期間で急成長するように品種が改良されている。現在では、ブロイラーは、通常のニワトリなら4~5ヶ月で成鳥となるところ、40~50日で成鳥となり出荷が可能となる。また、1kgの肉を得るために与える餌の量としては、牛が15kg、豚が6kgに対して、ブロイラーは、わずか2.1kgでよい。すなわち、食肉用の家畜として大変生産性が高い動物となっている。 Broilers have been improved in variety so that they can grow rapidly in a short period of time to obtain their meat. Currently, broilers become adults in 4 to 5 months for normal chickens, but become adults in 40 to 50 days and can be shipped. Moreover, as for the amount of feed given to obtain 1 kg of meat, the cow needs only 2.1 kg for the broiler, while the cow is 15 kg and the pig is 6 kg. In other words, it has become a highly productive animal for livestock for meat.
 一方、ブロイラーは、これだけ早い速度で成長するようになったため、自らの体重を支えるだけの筋力の発達が遅れ気味になる個体もいる。このような個体は、日々の体重の増加により次第に自分で動けなくなり、鶏舎の床に座ったままとなる。鶏舎内の床は、湿っていたり、糞尿を温床として細菌や寄生虫などが発生している。 On the other hand, broilers have grown at such a fast rate, so there are some individuals who are slow to develop muscle strength to support their weight. Such individuals gradually become unable to move themselves due to daily weight gain and remain on the poultry house floor. The floor in the poultry house is moist, and bacteria and parasites are generated using manure as a hotbed.
 したがって、鶏舎の床に座りっぱなしになると、疫病等にかかりやすくなる。また、自ら餌を摂取できないので、成長も停止する。そこで、鶏舎内のブロイラーの運動を促進することにより、疫病にかからないようにし、また餌の摂取量を高めることで、生産性を向上させることが考えられた。 Therefore, if you sit on the floor of the poultry house, you are more likely to get plague. In addition, growth stops because it cannot feed itself. Therefore, it has been considered to improve the productivity by promoting the movement of broilers in the poultry house so as not to cause epidemics and increasing the intake of food.
 特許文献1には、床をベルトコンベアにした養鶏舎が開示されている。特許文献1では、生産性を向上させるために密飼されるブロイラーは運動不足のために肉質は水っぽく、しまりがなく、味が悪いという課題を解決するために、ベルトコンベアを床として、その上に金網を置いた養鶏舎が開示されている。 Patent Document 1 discloses a chicken farm with a floor conveyor belt. In Patent Document 1, broilers that are kept in order to improve productivity have a belt conveyor as a floor in order to solve the problem that the meat quality is water-like due to lack of exercise, there is no tightness, and the taste is poor. A chicken farm with a wire mesh is disclosed.
 特許文献1では、動く床の上ではブロイラーは、床と反体方向に動かなければ、養鶏舎の一方側に追いやられるので、必然的に動かざるを得なくなるため、運動不足が解消されるとされている。また、床が動くため、床面の掃除もやりやすいという効果が示されている。 In Patent Document 1, if the broiler does not move in the direction opposite to the floor on the moving floor, it will be forced to move to one side of the poultry house. Has been. Moreover, since the floor moves, the effect that it is easy to clean the floor surface is shown.
 特許文献2では、特許文献1と同様に床がベルトコンベア方式になって、往復運動が行われる。また、ブロイラーの成長に合わせて床の移動速度を変化させ、成長に合わせた運動を促進することで、ブロイラーの運動不足の解消を図れるとされている。 In Patent Document 2, as in Patent Document 1, the floor becomes a belt conveyor system, and reciprocating motion is performed. In addition, it is said that the lack of movement of broilers can be solved by changing the moving speed of the floor according to the growth of broilers and promoting movements that match the growth.
特開昭54-135169号公報JP 54-135169 A 特開平06-319402号公報Japanese Patent Laid-Open No. 06-319402
 ブロイラーが運動不足になった場合、間引くしかなく、生産性の低下をもたらすものであった。したがって、ブロイラーの運動を促進するのは、生産性向上のため望まれることである。しかし、特許文献1および2のように、床面がベルトコンベア方式になっていると、既設の養鶏舎に導入することは極めて困難になる。鶏舎の基礎工事からやり直さなければならないからである。 When broilers lacked exercise, they had no choice but to reduce productivity. Therefore, it is desirable to promote broiler movement to improve productivity. However, as in Patent Documents 1 and 2, when the floor surface is a belt conveyor system, it is extremely difficult to introduce the floor into an existing poultry house. This is because it has to start over from the basic construction of the poultry house.
 また、養鶏舎の床全体が動くと、養鶏舎内のブロイラー全羽がパニックを起こし、一斉に死んでしまうというおそれもある。 Also, if the whole poultry house floor moves, all broiler chickens in the poultry house will panic and die all at once.
 また、近年増えている密閉型鶏舎や、床下に温水を流し暖房を行う鶏舎では、床面がベルトコンベア方式を設置しにくいという問題もある。 Also, in the closed-type poultry house that has been increasing in recent years and the poultry house that heats by flowing warm water under the floor, there is also a problem that it is difficult to install the belt conveyor system on the floor surface.
 なお、レイヤーは、通常採卵期間はゲージ飼いされるので、運動する機会はない。しかし、ゲージ飼いされる前や、採卵期間でも広さに余裕のある鶏舎では、運動を促進するという要求がある。したがって、上記の課題はブロイラーに限った課題ではない。 It should be noted that the layers are usually gauged during the egg collection period, so there is no opportunity to exercise. However, there is a demand to promote exercise before keeping a gauge or in a poultry house that has enough space even during the egg collection period. Therefore, the above problem is not limited to broilers.
 本発明は上記の課題に鑑みて想到されたもので、簡易な方法でニワトリの運動不足を解消させるニワトリの飼育方法を提供するものである。 The present invention has been conceived in view of the above-described problems, and provides a chicken breeding method that solves the lack of exercise of chickens by a simple method.
 より具体的に本発明に係るニワトリの飼育方法は、
鶏舎内でニワトリを飼育する方法であって、
前記鶏舎内で前記ニワトリに給餌する工程と、
前記鶏舎内でロボットを移動させながら前記ニワトリの運動を促進する工程を有することを特徴とする。
More specifically, the chicken breeding method according to the present invention includes:
A method of raising chickens in a poultry house,
Feeding the chicken in the poultry house;
It has the process of accelerating the movement of the chicken while moving the robot in the poultry house.
 本発明に係るニワトリの飼育方法では、鶏舎内で給餌すると共に、鶏舎内でロボットを移動させ、ニワトリの注意を喚起することで、ニワトリの運動を促進する。この方法であれば、ロボットの移動に気付いた個体はその周囲の十数羽ずつ程度であるので、群れ全体にわたってパニックに陥ることはない。 In the chicken breeding method according to the present invention, feeding is performed in the poultry house, and the robot is moved in the poultry house to raise the chicken's attention, thereby promoting the chicken's movement. With this method, the number of individuals that have noticed the movement of the robot is about ten or so around each other, so that the entire group will not panic.
 また、ロボットは既設の養鶏舎でも簡単に導入することができる。鶏舎自体を立て直す必要はないからである。 Also, robots can be easily installed in existing poultry houses. It is not necessary to rebuild the poultry house itself.
 さらに、カメラ付ロボットを複数台鶏舎内で移動させることで、1人の飼育員が多くのニワトリを観察することができ、鶏舎の省人化が可能になる。 Furthermore, by moving multiple camera-equipped robots inside the poultry house, a single breeder can observe many chickens, thereby saving labor in the poultry house.
 ニワトリ(特にブロイラー)の運動を促進することで、ニワトリと地面の間に空間を作り、ニワトリの体温低下に役立つ。夏季の温度が高い場合に、暖かい地面に座り続けているとニワトリの体温と地面の温度によってニワトリの体温が高くなりすぎ熱死するという問題が起こるが、これを解消することもできる。ここで、運動には立ち上がるという動作も含む。 Accelerating the movement of chickens (especially broilers) creates a space between the chicken and the ground, which helps to lower the body temperature of the chicken. When the temperature in summer is high, if you keep sitting on the warm ground, the temperature of the chicken becomes too high due to the temperature of the chicken and the temperature of the ground. Here, the exercise includes an operation of standing up.
走行型ロボットの外観を例示する図である。It is a figure which illustrates the external appearance of a traveling robot. 飛行型ロボットの外観を例示する図である。It is a figure which illustrates the external appearance of a flight type robot. 鶏舎の平面図の例示である。It is an illustration of the top view of a poultry house. 鶏舎内を走行するロボットの走行ラインの例示である。It is an illustration of the running line of the robot which runs the inside of a poultry house. ワイヤーで移動するデコイの外観を例示する図である。It is a figure which illustrates the external appearance of the decoy which moves with a wire. デコイが配置される鶏舎の平面図である。It is a top view of the poultry house where a decoy is arranged. デコイの配置を表す平面図である。It is a top view showing arrangement | positioning of a decoy. デコイの配置を表す鶏舎側面の段面図である。It is a step view of the side of a poultry house showing the arrangement of decoys. 光スポットを照射する走行型ロボットの外観を例示する図であるIt is a figure which illustrates the external appearance of the traveling robot which irradiates a light spot. 図9のロボットの鶏舎内の走行ラインを例示する図である。It is a figure which illustrates the traveling line in the chicken house of the robot of FIG. 光照射装置の構成を示す図である。It is a figure which shows the structure of a light irradiation apparatus. 走行型ロボットの構成間の関係を示す図である。It is a figure which shows the relationship between the structures of a traveling type robot. 図9のロボットの基地および親制御装置との関係を示す図である。It is a figure which shows the relationship between the base of the robot of FIG. 9, and a parent control apparatus. 図9のロボットの見回り例を示す図である。It is a figure which shows the example of a roundabout of the robot of FIG. 実施の形態4における鶏舎の平面図を示す図である。It is a figure which shows the top view of the poultry house in Embodiment 4. FIG. ロボットの基地、監視カメラおよび親制御装置との関係を示す図である。It is a figure which shows the relationship with the base of a robot, a surveillance camera, and a parent control apparatus. 群れの偏りを解消するフローを例示する図である。It is a figure which illustrates the flow which eliminates the deviation of a crowd. 本発明に係る鶏舎監視ロボットの制御系の構成を示す図である。It is a figure which shows the structure of the control system of the poultry house monitoring robot which concerns on this invention. 本発明に係る鶏舎監視ロボットの外観を例示する図である。It is a figure which illustrates the external appearance of the chicken house monitoring robot which concerns on this invention. 鶏舎監視ロボットが監視する鶏舎を例示する図である。It is a figure which illustrates the chicken house which a chicken house monitoring robot monitors. 鶏舎監視ロボットの基本的な処理フローである。It is a basic processing flow of a poultry house monitoring robot. 鶏舎監視ロボットの移動パターンと計測地点の例を示す図である。It is a figure which shows the example of the movement pattern of a chicken house monitoring robot, and a measurement point. 移動の最中の鶏舎監視ロボットの処理フローである。It is a processing flow of the poultry house monitoring robot in the middle of movement.
 以下に本発明に係るニワトリの飼育方法について図面を利用しながら説明を行う。なお、本発明において以下の説明は単に複数の実施形態を例示するものであり、本発明は発明の趣旨を逸脱しない限りにおいて、以下の実施形態は改変することができる。また、各実施形態は、特定の機能について理解しやすいように記載したものであり、特定の実施形態で示した機能を他の実施形態に追加してもよい。 Hereinafter, the chicken breeding method according to the present invention will be described with reference to the drawings. In the present invention, the following description merely illustrates a plurality of embodiments, and the following embodiments can be modified without departing from the spirit of the present invention. Each embodiment is described so that a specific function can be easily understood, and the function shown in the specific embodiment may be added to another embodiment.
 (実施の形態1)
 本発明において主として対象としているのは、食肉用のニワトリ所謂ブロイラーである。しかし、すでに述べたようにレイヤーを排除するものではない。以下の説明はブロイラーを主として説明するが、鶏舎内を自由に移動できるレイヤーに適用してもよい。
(Embodiment 1)
The subject of the present invention is mainly a so-called broiler for meat. However, as already mentioned, it does not exclude layers. Although the following description mainly explains a broiler, you may apply to the layer which can move the inside of a poultry house freely.
 ブロイラーの品種としては、従来ブロイラーとして使用される品種を利用することができる。具体的には、チャンキー、コッブ、アーバーエーカー等が好適に利用することができる。また、これらの交配種を用いてもよい。 ** As broiler varieties, varieties conventionally used as broilers can be used. Specifically, chunky, cobb, arbor acre and the like can be suitably used. These hybrids may also be used.
 用いる餌は公的に用いられているものでよい。すなわち高エネルギーで高タンパク質のものが好適に利用できる。具体的には、配合飼料と呼ばれるものがよく、とうもろこし、マイロ、大麦といった穀類、ふすま、米ぬか、コーングルテンフィードといった糟糠類、大豆油かす、なたね油かすといった植物性油かす類、魚粉、脱脂粉乳といった動物質性原料、炭酸カルシウムやリン酸カルシウムといったミネラル類などの混合肥料である。 The bait used may be a publicly used bait. That is, high energy and high protein can be suitably used. Specifically, it is often called mixed feed, cereals such as corn, milo, barley, potatoes such as bran, rice bran, corn gluten feed, vegetable oil meal such as soybean oil cake, rapeseed oil cake, fish meal, skim milk powder, etc. Animal fertilizer, mixed fertilizer such as minerals such as calcium carbonate and calcium phosphate.
 給餌の方法は、常に食べられるような給餌装置によって与えられてよい。給餌装置は、飼料がはいったサイロから自動的に各給餌点に飼料が送られるものである。また、給餌には、水を含めてよい。さらに、本発明の飼育方法において、給餌の工程には、鶏舎内の照明を給餌のタイミングに合わせて変化させる光線管理工程を含めてもよい。ブロイラーの飼育については、ブロイラーが餌を食べることが生産性の向上に繋がるからである。 The method of feeding may be provided by a feeding device that can always be eaten. The feeding device automatically feeds each feeding point from the silo containing the feed. Feeding may also include water. Furthermore, in the breeding method of the present invention, the feeding step may include a light beam management step of changing the lighting in the poultry house according to the timing of feeding. As for broiler breeding, eating broiler feeds leads to improved productivity.
 次に本発明でブロイラーの注意を喚起するロボットについて説明する。ロボットは、鶏舎内を移動することで、ブロイラーがロボットの存在に気づく。ロボットが移動することでロボットに気づいたブロイラーが自ら立ち上がり移動することで運動を促進する。 Next, a robot that alerts the broiler in the present invention will be described. As the robot moves through the poultry house, the broiler notices the presence of the robot. As the robot moves, the broilers that have noticed the robot stand up and move by themselves to promote movement.
 ロボットは、鶏舎の床面を走行若しくは歩行するもの、若しくは飛行するものであってよい。ここで、「走行」とは、タイヤ、キャタピラといった回転体を回転させることで移動することをいう。「歩行」とは、複数の足を移動させることで移動することをいう。なお、本明細書では、「走行」と「歩行」はともに「走行」とも呼ぶ。 The robot may be one that runs or walks on the floor of a poultry house, or one that flies. Here, “running” means moving by rotating a rotating body such as a tire or a caterpillar. “Walking” refers to moving by moving a plurality of legs. In this specification, both “running” and “walking” are also called “running”.
 「飛行」とは、床面に接することなく、空中を移動することをいう。したがって、プロペラ、空気噴射といった揚力を使うことだけでなく、鶏舎の天井からワイヤーで吊り下げたものであってもよい。 “Flying” means moving in the air without touching the floor. Therefore, not only using lifts such as propellers and air jets, but also those suspended from the poultry house ceiling with wires.
 ブロイラーは密飼されているので、群れをなしているといってよい。したがって、全体に一度に大きな刺激を与えると、パニックがパニックを呼び、全羽がショック死することもある。したがって、ロボットは、動きながら、その周辺のブロイラーの注意を喚起すればよい。 ブ It can be said that broilers are crowded because they are poised. Therefore, if a large stimulus is given to the entire body at one time, the panic will panic and the entire wing may be shocked. Therefore, the robot only needs to call the attention of the surrounding broiler while moving.
 走行するロボット(「走行型ロボット」とも呼ぶ。)の高さは、好ましくは成長したブロイラーと同じ程度もしくは2倍程度が望ましい。高すぎると鶏舎全体のブロイラーに刺激を与えてしまうからである。 The height of the traveling robot (also called “traveling robot”) is preferably about the same as or twice the height of the grown broiler. If it is too high, it will irritate the entire broiler house.
 鶏舎の床は通常おがくず等が敷き詰められている。したがって、走行型ロボットは、おがくずにうまることなく、移動できる移動手段を有するものがよい。例えば、キャタピラ、大径のタイヤ、多足歩行のできる足等が好適に利用できる。外観は必要な装置が露出していてもよい。しかし、ある程度成長したブロイラーの鶏舎に入れる場合は、ニワトリの形態をまねて偽装してもよい。 The poultry house floor is usually covered with sawdust. Therefore, it is preferable that the traveling robot has a moving means that can move without being tired of sawdust. For example, a caterpillar, a large-diameter tire, a leg that can be walked on multiple legs, and the like can be suitably used. Appearance may expose necessary equipment. However, when entering a broiler house that has grown to some extent, it may be disguised as a chicken.
 また、鶏舎には、給餌装置や給水装置といった装置が備えられており、これらへの餌や水の補給は天井側から行われる場合が多い。つまり、鶏舎内の空間には、ホースやワイヤーが固定されている場合が多い。したがって、飛行するロボット(「飛行型ロボット」とも呼ぶ。)は、空間中に配置された物に衝突しても破損を受けない構造のものが望ましい。 Also, poultry houses are equipped with devices such as a feeding device and a water supply device, and replenishment of food and water to these devices is often performed from the ceiling side. That is, there are many cases where a hose or a wire is fixed in the space inside the poultry house. Therefore, it is desirable that the flying robot (also referred to as a “flying robot”) has a structure that is not damaged even when it collides with an object arranged in the space.
 また、カラスよけやジェット機のエンジンの中心に円形の模様が描かれているように、鳥類は丸い模様若しくは丸い回転体を猛禽類などの眼として忌避する性質があるといわれている。したがって、そのような模様もしくは回転体を有していてもよい。 Also, as a circular pattern is drawn at the center of crow protection and jet engines, birds are said to have the property of avoiding round patterns or round rotating bodies as eyes of birds of prey. Therefore, you may have such a pattern or a rotary body.
 ロボットは、移動してその存在を気づかせるだけでなく、音や光を発してブロイラーの注意を喚起してもよい。そのため、ロボットに回転灯、点灯表示灯、点滅表示灯や発光体のいずれか若しくは複数(以後「注意喚起ライト」とする。)、スピーカーが搭載されていてもよい。鳥類は、哺乳類と比較して視神経の数が多く、色に対しては敏感である。したがって、赤色や青色など色のついたライトが回転することで点滅しているように見える注意喚起ライトには注意を喚起される。 The robot may not only move and notice its presence, but also emit a sound or light to alert the broiler. For this reason, the robot may be equipped with one or more of a rotating lamp, a lighting indicator lamp, a flashing indicator lamp, and a light emitter (hereinafter referred to as “attention light”) and a speaker. Birds have more optic nerves than mammals and are sensitive to color. Therefore, attention is drawn to a warning light that appears to blink as a colored light such as red or blue rotates.
 また、音は突発音よりブロイラーの鳴き声程度のブザー音若しくは、ブロイラーが怒った際に鳴く声等を発するのが望ましい。 In addition, it is desirable that the sound be a buzzer sound that is about the same as a broiler cry or a voice that sounds when the broiler gets angry.
 また、ロボットにはカメラが搭載されていると望ましい。ニワトリはH5N1型またはこれらの亜種の鳥インフルエンザに羅患すると、ほぼ100%が死亡する。鳥インフルエンザは水鳥や野鳥は羅患しても発病しない。したがって、鶏舎の近くに野生する鳥類が鳥インフルエンザに羅患していると、鶏舎のブロイラーが全滅し、多大な被害が発生する。 Also, it is desirable that the robot is equipped with a camera. When chickens suffer from H5N1 or these subspecies avian influenza, nearly 100% die. Avian influenza does not occur even if water or wild birds are affected. Therefore, if wild birds near the poultry house suffer from bird flu, the broiler in the poultry house will be annihilated and a great deal of damage will occur.
 そのため、鶏舎自体はできる限り、密閉するのが望ましい。そうすると、密閉された鶏舎に病原体を持ち込むのはもはや人間しかいない。したがって、人ができる限り鶏舎内に入らなくても、外部から内部の様子を観察できるようにするのが望ましい。 Therefore, it is desirable to seal the poultry house as much as possible. Then only humans can bring pathogens into the closed poultry house. Therefore, it is desirable that the inside can be observed from the outside even if the person does not enter the house as much as possible.
 鶏舎内を移動するロボットがカメラを搭載していると、個々の個体について詳細な状況を鶏舎に入ることなく観察することができる。また、赤外線カメラが搭載してあれば、ブロイラーの体温上昇を検知することができ、病気にかかった個体をいち早く発見することも可能だからである。 If the robot moving in the poultry house is equipped with a camera, it is possible to observe the detailed situation of each individual without entering the poultry house. Moreover, if an infrared camera is installed, it is possible to detect an increase in the body temperature of the broiler, and it is possible to quickly find an individual who has suffered a disease.
 ロボットは、自立式であっても、他者に操縦(依存式)されていてもよい。自立式とは、予め記録されたプログラムの指示によって、走行若しくは飛行するロボットをいう。自立式の場合は、鶏舎内の決められたコースを走行若しくは飛行し、その走行中の様子をカメラで記録若しくは、監視者に送信する。 The robot may be self-supporting or operated (dependent) by another person. The self-supporting type refers to a robot that runs or flies according to instructions of a program recorded in advance. In the case of the self-supporting type, the vehicle travels or flies over a predetermined course in the poultry house, and the state during the traveling is recorded by a camera or transmitted to a supervisor.
 依存式とは、使用者がロボットの動き自体をリアルタイムで制御(操縦)するロボットをいう。依存式の場合は、別途鶏舎の天井に監視カメラを配置し、ロボットの位置を見ながら監視者が操縦するのが望ましい。なお、基本的には自立式で移動し、カメラによる監視によって異常の認められるブロイラーを発見した場合は、依存式に制御が切り替わる方式であってもよい。 Dependency formula refers to a robot in which the user controls (maneuveres) the movement of the robot itself in real time. In the case of the dependency type, it is desirable that a monitoring camera is separately arranged on the ceiling of the poultry house, and the supervisor controls the position of the robot. In addition, basically, when a broiler that moves in a self-supporting manner and is found to be abnormal by monitoring with a camera, the control may be switched to a dependency equation.
 ロボットは、ブロイラーの目線に近い高さから、ブロイラーの近くまで接近する。したがって、ロボットに搭載したカメラは、天井に設置されたカメラ等よりも詳しくブロイラーの状態を観察できる位置に置かれる。 The robot approaches from the height close to the broiler's line of sight to the vicinity of the broiler. Therefore, the camera mounted on the robot is placed at a position where the state of the broiler can be observed in more detail than the camera installed on the ceiling.
 そこで監視者は、自立式で移動しながらブロイラーの運動状態を別室からカメラを通じた映像で監視し、異常が認められる個体にマーキングをしてもよい。マーキングされた個体は、後ほど別途隔離し詳しく調べるなどすることができる。 Therefore, the observer may monitor the broiler's motion state from a separate room while moving in a self-supporting manner with a video through a camera, and mark an individual with an abnormality. The marked individual can be isolated separately and examined in detail later.
 図1には、走行するロボット1を例示する。ロボット1はキャタピラ30を有したロボットである。図1(a)は側面図で、図1(b)は正面図である。外観は戦車若しくはブルドーザーの模型に似ている。本体10の上部には、カメラ12と注意喚起ライト14およびスピーカー16が配置されている。また、円形の回転体18およびマーキング装置22が備えられていてもよい。 FIG. 1 illustrates a traveling robot 1. The robot 1 is a robot having a caterpillar 30. 1A is a side view and FIG. 1B is a front view. The appearance resembles a tank or bulldozer model. A camera 12, a warning light 14, and a speaker 16 are disposed on the upper portion of the main body 10. Moreover, the circular rotary body 18 and the marking apparatus 22 may be provided.
 回転体18は、単に円盤状の板が回転するだけであるが、その表面に渦巻き状の模様が描かれている。このような模様が回転する状態は、猛禽類を天敵とする鳥類は忌避するといわれている。 The rotating body 18 is simply a disk-like plate that rotates, but a spiral pattern is drawn on its surface. It is said that such a state where the pattern rotates is avoided for birds whose natural enemies are raptors.
 また、マーキング装置22は、ブロイラーに接近してカメラで観察したときに、異常を認められる個体に印をつけるものである。例えば、水溶性のインクを発射できる噴射装置等が利用できる。なお、異常の認められるブロイラーは、そもそも動きが遅くなっているので、ロボットでも十分マーキングできるほど接近することができる。 Also, the marking device 22 marks individuals that are found to be abnormal when approaching the broiler and observing with a camera. For example, an ejection device that can eject water-soluble ink can be used. It should be noted that a broiler with an abnormality is slow in the first place, and can be approached enough to be marked even by a robot.
 進行方向には、車幅若しくはそれより広いガイドバー20が設けられている。ガイドバー20は、ロボット1の接近でも自ら移動しない個体に接触してロボット1の存在を気づかせるためのものである。より具体的には、ガイドバー20をその個体に接触することで、その個体の自らの移動を促進などする。 In the traveling direction, a guide bar 20 having a vehicle width or wider than that is provided. The guide bar 20 is used to contact the individual that does not move by itself even when the robot 1 is approaching, and to notice the presence of the robot 1. More specifically, by bringing the guide bar 20 into contact with the individual, the movement of the individual is promoted.
 駆動は充電可能な電池で駆動するのが望ましい。また燃料電池を利用してもよい。一方、燃焼式のエンジンは望ましくない。鶏舎内に排気ガスが放出されるからである。 It is desirable to drive with a rechargeable battery. A fuel cell may also be used. On the other hand, combustion engines are not desirable. This is because exhaust gas is released into the poultry house.
 図2には、飛行するロボット2を例示する。図2(a)は平面図であり、図2(b)は正面図である。ブロイラーの運動を強要するが、それほど激しい運動を促進する必要はない。したがって、早い速度で飛行することはなく、むしろゆっくりと飛行できることが必要となる。したがって、ロボット2はヘリコプター若しくはマルチコプター型のものが好ましい。図2には、4ローターのマルチコプタータイプのロボット2を例示する。 FIG. 2 illustrates a flying robot 2. FIG. 2A is a plan view, and FIG. 2B is a front view. Forces broiler exercise, but does not need to promote so much exercise. Therefore, it is necessary not to fly at high speed, but rather to fly slowly. Therefore, the robot 2 is preferably a helicopter or multi-copter type. FIG. 2 illustrates a four-rotor multi-copter type robot 2.
 ロボット2は、本体40と、4つのローター41a~41dと、フレームバー46およびガイドフレーム45を含む。4つのローター41a~41dは、平面視(図2(a))で、本体40を中心として放射状に等間隔に配置されている。それぞれのローター41a~41dは、対応するローター支柱43a~43dで本体40に固定されている。 The robot 2 includes a main body 40, four rotors 41a to 41d, a frame bar 46, and a guide frame 45. The four rotors 41a to 41d are arranged radially at equal intervals around the main body 40 in plan view (FIG. 2A). Each of the rotors 41a to 41d is fixed to the main body 40 by a corresponding rotor support 43a to 43d.
 本体40には、またフレームバー46によってガイドフレーム45が固定されている。ガイドフレーム45は、全てのローター41a~41dのプロペラの可動範囲を囲むように設けられている。鶏舎内では、天井から床に向かって配置されている部材も多くある。ガイドフレーム45は、それらの部材にローター41a~41dやローター支柱43a~43dがひっかからないために設けられている。 A guide frame 45 is fixed to the main body 40 by a frame bar 46. The guide frame 45 is provided so as to surround the movable range of the propellers of all the rotors 41a to 41d. In the poultry house, there are many members arranged from the ceiling toward the floor. The guide frame 45 is provided so that the rotors 41a to 41d and the rotor columns 43a to 43d are not caught on those members.
 本体40の下部には、前後にカメラ12が備えられている。下方や正面のブロイラーを観察するためである。また、注意喚起ライト14と、スピーカー16、マーキング装置22も備えられていてよい。 The camera 12 is provided in the lower part of the main body 40 in the front and rear. This is for observing the lower and front broilers. Moreover, the alert light 14, the speaker 16, and the marking apparatus 22 may be provided.
 次に上記のロボット1若しくはロボット2についてその動きを説明する。図3には、鶏舎50の平面図を例示する。鶏舎50は通常の平飼い用を例示している。給餌装置52の給餌器54が供給ライン56に沿って設けられている。また、水の飲み場は餌の供給ライン56と同じラインに設けられている。供給ライン56はサイロ58に接続されている。サイロ58から餌が供給ライン56を通って、各給餌器54に分配される。 Next, the movement of the robot 1 or the robot 2 will be described. FIG. 3 illustrates a plan view of the poultry house 50. The poultry house 50 exemplifies an ordinary flat farm. A feeder 54 of the feeding device 52 is provided along the supply line 56. Further, a drinking place for water is provided in the same line as the feed supply line 56. The supply line 56 is connected to a silo 58. Food is distributed from the silo 58 through the supply line 56 to each feeder 54.
 図4には、鶏舎50内を走行若しくは飛行するロボット移動ラインを例示する。図4の各点線は、自立型のロボットの移動ラインの一例である。鶏舎50内のロボットの数は特に限定されるものではない。ライン60は鶏舎50内に1台のロボットが配置された場合である。ロボットは、鶏舎50内をくまなく移動し、全てのブロイラーに注意を喚起し、ブロイラーの運動を促進する。 FIG. 4 illustrates a robot movement line that travels or flies within the poultry house 50. Each dotted line in FIG. 4 is an example of a movement line of a self-supporting robot. The number of robots in the poultry house 50 is not particularly limited. Line 60 is a case where one robot is arranged in the poultry house 50. The robot moves throughout the poultry house 50, alerts all broilers and promotes the movement of the broilers.
 ライン62は、2台のロボットが互いに区画を決めて移動する場合の例である。互いの区画はオーバーラップしている部分があってもよい。これらの動きは、監視者がロボットを操縦する場合でも用いることができる。 The line 62 is an example in the case where two robots move by deciding each other. Each compartment may have overlapping portions. These movements can be used even when the supervisor controls the robot.
 ロボットの走行若しくは飛行は、ブロイラーの日齢によって変化させてもよい。まだ幼齢の時は、自分の体重で動けなくなることはないので、一定のパターンを走行させるだけでもよい。一方、30日齢を過ぎると、ブロイラーも大きく成長するので、次第に自らの体重で動けなくなる個体も出てくる。そこで、一定以上に成長した後は、監視者がロボットを操縦しながら、特に動きの鈍い個体だけに注意を喚起する等してもよい。 Robot running or flight may be changed according to broiler age. When you are still young, you will not be stuck with your weight, so you can just run a certain pattern. On the other hand, after 30 days of age, broilers grow so large that some individuals gradually become unable to move with their own weight. Therefore, after the growth is over a certain level, the supervisor may call the robot to alert the individual who is particularly slow moving.
 この際は、ロボットに搭載されたカメラだけでなく、鶏舎の天井付近に設けられた監視カメラでロボットの周囲を確認しながら走行させるのが望ましい。ロボットのカメラの視界だけであると、視界から外れた所で、座ったままの個体を見落とすおそれがあるからである。 In this case, it is desirable to run while checking the surroundings of the robot not only with the camera mounted on the robot but also with the surveillance camera provided near the ceiling of the poultry house. This is because if only the field of view of the camera of the robot is used, there is a risk of overlooking an individual who is sitting outside the field of view.
 ロボットの走行若しくは飛行は、一定の間隔をあけて行ってよい。鶏舎内は、ブロイラーの餌の摂取回数を多くするため、光線管理が行われている。具体的には、点灯時間を長くする若しくは一定期間の点灯時間が断続的に繰り返される。 Robot travel or flight may be performed at regular intervals. In the poultry house, light management is carried out in order to increase the number of broiler food intakes. Specifically, the lighting time is lengthened or the lighting time for a certain period is repeated intermittently.
 そこで、ロボットは、点灯している間だけ移動させるのがよい。消灯されている間は、ブロイラーも寝ていると考えられるからである。なお、ここで、消灯とは、完全に灯りを消すだけでなく、点灯時よりも照度を落とした状態も含む。 Therefore, it is better to move the robot only while it is lit. This is because it is considered that the broiler is also sleeping while it is turned off. Here, “off” not only completely turns off the light but also includes a state in which the illuminance is lower than when the light is on.
 また、ブロイラーが明所に集まるという習性を利用して、ロボットを移動させる時に、ブロイラーに給餌する場所、すなわち給餌点を周囲より明るく照らすことが好ましい。特に、屋外からの昼光の入らないウィンドレス鶏舎に有効である。 In addition, it is preferable to illuminate the place where the broiler is fed, that is, the feeding point, brighter than the surroundings when moving the robot using the habit that broilers gather in the light. This is especially effective for Windless poultry houses where daylight does not enter from outside.
 これにより、ロボットの走行に気づいて立ち上がったブロイラーが給餌点に移動し、給餌促進の効果が得られる。 This makes it possible for the broiler that has stood up and noticed the robot's travel to move to the feeding point, thereby providing an effect of promoting feeding.
 具体的には、ロボットの走行位置に応じて、近傍の給餌点のみを照らすことにより、全ての給餌点を同時に照らすより効率的にブロイラーの給餌促進を行うことができる。 Specifically, according to the traveling position of the robot, by illuminating only the nearby feeding points, feeding of the broiler can be promoted more efficiently than illuminating all the feeding points simultaneously.
 ここで、給餌点を周囲より明るく照らす手段としては、鶏舎内の照明とは別にスポット照明を設けたり、鶏舎内の照明をスポット照明に変える筒状の集光器を取り付けたり、鶏舎内の照明を下方に移動したり、等の手段が適用できる。この中では、周囲が暗くなると活動が鈍くなるため別にスポット照明を設けるのが好ましい。 Here, as a means to illuminate the feeding point brighter than the surroundings, spot lighting is provided separately from the lighting in the poultry house, a cylindrical condenser that changes the lighting in the poultry house to spot lighting, or lighting in the poultry house It is possible to apply a means such as moving downward. Among them, it is preferable to provide spot lighting separately because the activity becomes dull when the surroundings become dark.
(実施の形態2)
 次に他の飛行型ロボットであるデコイについて説明する。デコイは鶏舎内を移動することで、ブロイラーに注意を喚起する。デコイの移動に気づいたブロイラーが自ら移動することで運動を促進する。
(Embodiment 2)
Next, a decoy that is another flying robot will be described. The decoy alerts the broiler by moving through the house. The broiler who notices the movement of the decoy moves by himself and promotes the movement.
 デコイは、鶏舎の床面をワイヤーで引き摺られて移動するものはもとより、複数のワイヤーで鶏舎の床面から浮いた状態で移動するものであってもよい。床面近くに牽引用のワイヤーがあると、ニワトリが脚を引っ掛けて怪我をする虞がある。したがって、ワイヤーは床面から高い位置にあると好適である。またデコイを鳥型の形状にすることで、鶏舎内のブロイラーに注意を喚起させ、鳥型の形状のデコイが移動することで床面に大きな影ができ、刺激を受けたブロイラーが自ら移動することで運動促進を行うこともできる。 The decoy may move in a state where it floats from the floor of the chicken house with a plurality of wires, as well as those that move by dragging the floor of the chicken house with a wire. If there is a tow wire near the floor, the chicken may catch the leg and get injured. Therefore, it is preferable that the wire is at a high position from the floor surface. In addition, by making the decoy into a bird-shaped shape, the broiler in the poultry house is alerted, and as the bird-shaped decoy moves, a large shadow is created on the floor, and the stimulated broiler moves by itself It is also possible to promote exercise.
 デコイはワイヤーで牽引される。一方、鶏舎内には給餌器や給水器、ブルーダー(暖房機)が配置される。従って、デコイは鶏舎を自由に引き回すのは容易ではない。そこでデコイには、鶏舎の一端から他端に向かって配置された1つの方向を往復するルートが設定される。そのルートに沿ってデコイは鶏舎の中を往復移動する。 Decoy is pulled by wire. On the other hand, a feeder, a water feeder, and a broder (heater) are arranged in the poultry house. Therefore, it is not easy for the decoy to freely route the poultry house. Therefore, a route that reciprocates in one direction arranged from one end of the poultry house to the other end is set in the decoy. Along the route, the decoy moves back and forth in the poultry house.
 上記のようにデコイは、1つのルートに沿った往復移動しかできない。したがって、広い鶏舎の場合は、全てのニワトリに注意を喚起させるのは容易でない。そのため、デコイは鶏舎の中に複数台設置されるのが望ましい。 As mentioned above, the decoy can only reciprocate along one route. Therefore, in the case of a large poultry house, it is not easy to call attention to all chickens. Therefore, it is desirable to install multiple decoys in the poultry house.
 また、デコイには、カメラを搭載しておくのが望ましい。デコイの移動はニワトリに注意を喚起し、運動を促進する点にある。したがって、デコイの移動によって、どこかにニワトリを挟んだり、引っ掛けたりして傷つけないために、移動するデコイは周囲に注意する必要があるからである。 Also, it is desirable to install a camera on the decoy. The movement of the decoy is to draw attention to the chicken and promote exercise. Therefore, the moving decoy needs to pay attention to the surroundings so that the chicken is not pinched or caught somewhere by moving the decoy.
 図5には、デコイの一形態を例示する。デコイ210は、本体212と、翼214(214a、214b)を有する。本体212には、カメラ216(216s、216t)、カメラ217が備えられている。カメラ216は、進行方向に向いて配置されている。したがって、これらをカメラ216s、カメラ216tとする。なお、カメラ216tは図5では、見えない位置にある。 FIG. 5 illustrates one form of decoy. The decoy 210 has a main body 212 and wings 214 (214a, 214b). The main body 212 includes a camera 216 (216s, 216t) and a camera 217. The camera 216 is arranged in the traveling direction. Therefore, these are the camera 216s and the camera 216t. Note that the camera 216t is in an invisible position in FIG.
 カメラ217は、本体212の上面に突設された円柱状の取付部218内に設置されている。そして、取付部218が回転することで、カメラ217は、デコイ210の周囲の状況を撮影することができる。カメラ216s、カメラ216tおよびカメラ217の映像は、内蔵された通信手段(図示せず)によって鶏舎外に設置される制御装置250(図7参照)に送られる。 The camera 217 is installed in a columnar mounting portion 218 protruding from the upper surface of the main body 212. Then, by rotating the attachment portion 218, the camera 217 can photograph the situation around the decoy 210. The images of the camera 216s, the camera 216t, and the camera 217 are sent to a control device 250 (see FIG. 7) installed outside the poultry house by a built-in communication means (not shown).
 本体212には、ワイヤー222(ワイヤー222sとワイヤー222t)を係止するワイヤー留め212s、212tが設けられる。このようにこのデコイ210は、本体212の前後をワイヤー222sとワイヤー222tで吊り上げられ、鶏舎の床面上を移動する。 The main body 212 is provided with wire clamps 212s and 212t for locking the wires 222 (the wires 222s and 222t). In this way, the decoy 210 is lifted up and down the main body 212 by the wires 222s and 222t, and moves on the floor surface of the poultry house.
 本体212には、翼214が備えられる。翼214は本体212からの長さがLの翼214aと翼214bで構成される。翼214の根元には、翼214を開閉するモータ215(モータ215aとモータ215b)が備えられている(なお、モータ215bは、図5では隠れて見えない。)。このため、翼214は、その先端が本体212に沿った位置(閉じた状態:図5では点線で示した)と離れた位置(開いた状態)およびこれらの間の位置に設定することができる。これらのモータ215aおよび215bによる翼214aと214bの開閉は、制御装置250からの指示で行われる。 The main body 212 is provided with a wing 214. The wing 214 includes a wing 214a and a wing 214b whose length from the main body 212 is L. A motor 215 (motor 215a and motor 215b) for opening and closing the wing 214 is provided at the base of the wing 214 (the motor 215b is not visible in FIG. 5). For this reason, the wing | blade 214 can set the front-end | tip to the position (closed state: shown with the dotted line in FIG. 5) and the distant position (open state) along the main body 212, and the position between these. . Opening and closing of the blades 214a and 214b by the motors 215a and 215b is performed according to instructions from the control device 250.
 また、翼214は、本体212に対して翼214の高さが変更できるように、内部にリフター213(リフター213aおよびリフター213b)が設けられていても良い。なお、リフター213は翼214の根元に設けられ、モータ215ごと翼214の位置を変更できる。また、図5では、リフター213bは、本体212に隠れて見えない位置にある。 Further, the wing 214 may be provided with a lifter 213 (a lifter 213a and a lifter 213b) inside so that the height of the wing 214 can be changed with respect to the main body 212. The lifter 213 is provided at the base of the blade 214, and the position of the blade 214 together with the motor 215 can be changed. In FIG. 5, the lifter 213 b is in a position that is hidden behind the main body 212 and cannot be seen.
 翼214は、移動の際に開いた状態にされ、デコイ210の移動ルートを中心とした2Lの幅(実際は、本体212の幅Wも含まれる)のニワトリの注意を喚起する。翼214の目的は、ニワトリに翼214を跨ぐか、翼214の進路を回避するように運動を促進することである。 The wings 214 are opened during the movement, and call attention of a chicken having a width of 2 L (actually, the width W of the main body 212 is also included) around the movement route of the decoy 210. The purpose of the wing 214 is to promote movement so that the wing 214 straddles the wing 214 or avoids the path of the wing 214.
 したがって、デコイ210は、翼214や本体212でニワトリを傷つけることがない程度の速度で移動する。 Therefore, the decoy 210 moves at such a speed that the wings 214 and the main body 212 do not damage the chicken.
 また、デコイ210の進行方向の幅2Lの範囲に障害物等が認められる場合は、その場合だけ、翼214を必要なだけ閉じることができる。また、ロボット1や2が有している注意喚起ライト14と、スピーカー16、マーキング装置22が備えられていてもよい。 Also, when an obstacle or the like is recognized in the range of the width 2L in the traveling direction of the decoy 210, the wing 214 can be closed as much as necessary. Moreover, the alert light 14 which the robots 1 and 2 have, the speaker 16, and the marking apparatus 22 may be provided.
 次にデコイ210の設置および動作について説明する。図6には、鶏舎290の平面図を例示する。鶏舎290は通常の平飼い用を例示している。給餌装置292の給餌器294が供給ライン296に沿って設けられている。また、水の飲み場は餌の供給ライン296と同じラインに設けられている。供給ライン296はサイロ298に接続されている。サイロ298から餌が供給ライン296を通って、各給餌器294に分配される。 Next, the installation and operation of the decoy 210 will be described. FIG. 6 illustrates a plan view of the chicken house 290. The poultry house 290 exemplifies a normal flat farm. A feeder 294 of the feeding device 292 is provided along the supply line 296. In addition, a drinking place for water is provided in the same line as the bait supply line 296. Supply line 296 is connected to silo 298. From the silo 298, feed is distributed through the supply line 296 to each feeder 294.
 デコイ210のルートは、これらの設備の干渉を受けないように設定される。図7では、図6の鶏舎290に供給ライン296にそったルート260(ルート260a、ルート260b)が2本設定された状態を示す。もちろん、ルート260は3本以上のルートを設けても良い。 The route of the decoy 210 is set so as not to be interfered by these facilities. FIG. 7 shows a state where two routes 260 (route 260a and route 260b) along the supply line 296 are set in the poultry house 290 of FIG. Of course, the route 260 may be provided with three or more routes.
 鶏舎290のルート260に沿った両端には、デコイ210を操作するウインチ280(ウインチ280a、ウインチ280b)が設けられる。ウインチ280aはワイヤー222tを操作し、ウインチ280bはワイヤー222sを操作するものとする。これらのウインチ280a、280bは、制御装置250と接続され、制御装置250の指示信号によって駆動する。また、ウインチ280a、ウインチ280bは、それぞれのワイヤー222にかかる張力を調整するため、張力の検出器が内蔵されているものが望ましい。 Winches 280 (winch 280a, winch 280b) for operating the decoy 210 are provided at both ends along the route 260 of the chicken house 290. The winch 280a operates the wire 222t, and the winch 280b operates the wire 222s. These winches 280a and 280b are connected to the control device 250 and are driven by an instruction signal from the control device 250. Further, it is desirable that the winch 280a and the winch 280b include a tension detector in order to adjust the tension applied to each wire 222.
 図8には、鶏舎290の側面断面図を示す。鶏舎290の両端には、ウインチ280aとウインチ280bが設けられている。ウインチ280に隣接して、支柱282(支柱282aおよび支柱282b)が設けられる。支柱282の先端には、滑車283(滑車283a、滑車283b)がそれぞれ設けられる。ワイヤー222は、それぞれのウインチ280から支柱282の先端の滑車283を介してデコイ210の両端に接続されている。 FIG. 8 shows a side sectional view of the chicken house 290. At both ends of the chicken house 290, a winch 280a and a winch 280b are provided. Adjacent to the winch 280, struts 282 (the struts 282a and struts 282b) are provided. A pulley 283 (a pulley 283a and a pulley 283b) is provided at the tip of the column 282, respectively. The wires 222 are connected to both ends of the decoy 210 from each winch 280 via a pulley 283 at the tip of the column 282.
 支柱282は高さが変えられるように構成されていてもよい。デコイ210の姿勢を変える際に、ワイヤー222の張力だけでなく、滑車283の位置も変化できるようにしておくことで、床面からの高さを変えずに、姿勢を制御することができるからである。 The support column 282 may be configured such that the height can be changed. When changing the posture of the decoy 210, not only the tension of the wire 222 but also the position of the pulley 283 can be changed, so that the posture can be controlled without changing the height from the floor surface. It is.
 ウインチ280aおよびウインチ280b両方でワイヤー222t、ワイヤー222sを引っ張れば、デコイ210は、鶏舎290の床面290fから浮き上がる(図8(a)参照)。また、ウインチ280aおよびウインチ280b両方でワイヤー222tとワイヤー222sを繰り出せば、デコイ210は、床面290f近くまで降下する(図8(b)参照)。 When the wire 222t and the wire 222s are pulled by both the winch 280a and the winch 280b, the decoy 210 is lifted from the floor surface 290f of the chicken house 290 (see FIG. 8A). If the wire 222t and the wire 222s are fed out by both the winch 280a and the winch 280b, the decoy 210 descends to near the floor surface 290f (see FIG. 8B).
 また、ウインチ280aでワイヤー222tを牽引し、ウインチ280bでワイヤー222sを適度な張力をかけながら繰り出すことで、デコイ210は鶏舎290の床面290fから一定の高さを保ったまま、ウインチ280aの方向に移動する。また、逆にすれば、ウインチ280bの方向に移動する(図8(c)参照)。 In addition, by pulling the wire 222t with the winch 280a and feeding the wire 222s with an appropriate tension with the winch 280b, the decoy 210 keeps a certain height from the floor 290f of the poultry house 290, and the direction of the winch 280a. Move to. On the other hand, if it is reversed, it moves in the direction of the winch 280b (see FIG. 8C).
 デコイ210の床面290fからの高さHは牽引する側のウインチの張力と繰り出す側のウインチの張力の差で調節することができる。制御装置250は、両ウインチ280のワイヤー222の繰り出し長さから、両ウインチ280の適切な張力および巻き取り若しくは繰り出し速度の指示を行う。 The height H from the floor 290f of the decoy 210 can be adjusted by the difference between the tension of the winch on the pulling side and the tension of the winch on the drawing side. The controller 250 instructs the appropriate tension and winding or feeding speed of both winches 280 from the feeding lengths of the wires 222 of both winches 280.
 このように、デコイ210はウインチ280と、支柱282と、滑車283と制御装置250によって、鶏舎290内を移動する。 Thus, the decoy 210 moves in the poultry house 290 by the winch 280, the support column 282, the pulley 283, and the control device 250.
 次にこのような構成を有するデコイ210の動作について説明する。デコイ210は、通常、鶏舎290の一端の天井付近に吊り下げられている。デコイ210の稼動は、鶏舎290内に電灯が灯されている間に行う。ニワトリが寝ている際には、ニワトリの睡眠を邪魔しないようにするためである。 Next, the operation of the decoy 210 having such a configuration will be described. The decoy 210 is usually hung near the ceiling at one end of the poultry house 290. The operation of the decoy 210 is performed while a light is lit in the poultry house 290. This is to prevent the chicken from sleeping when the chicken is sleeping.
 今、デコイ210がウインチ280b側の壁に吊り下げられているとする(図8(a)の状態)。デコイ210を稼動させる場合は、まず、ウインチ280bおよびウインチ280aからワイヤー222sおよびワイヤー222tを繰り出し、デコイ210を床面290f付近まで降下させる(図8(b)の状態)。 Now, it is assumed that the decoy 210 is suspended from the wall on the winch 280b side (state shown in FIG. 8A). When operating the decoy 210, first, the wire 222s and the wire 222t are fed out from the winch 280b and the winch 280a, and the decoy 210 is lowered to the vicinity of the floor surface 290f (state shown in FIG. 8B).
 そして、ウインチ280bがワイヤー222sを繰り出しながら、ウインチ280aがワイヤー222tを巻き取る。このようにすることで、デコイ210は、床面290f付近を浮いたまま移動する。この時の高さHは、ニワトリの視点と同じ程度の高さがよい。また翼214の床面290fからの高さは、ニワトリが跳び越せる程度の高さであるのが望ましい。 The winch 280a winds the wire 222t while the winch 280b feeds the wire 222s. In this way, the decoy 210 moves while floating near the floor 290f. The height H at this time is preferably the same height as the chicken viewpoint. The height of the wing 214 from the floor surface 290f is preferably high enough to allow the chicken to jump over.
 移動の際には、ライトまたはLEDを点灯して、下部にデコイ210の影を投影して、ニワトリに注意を喚起してもよい。またニワトリが翼214に当たる場合は、ゆっくりと、移動する。デコイ210の急激な移動は、ニワトリにストレスを与えるからである。また、障害物が翼214にあたる場合は、翼214を適度な角度だけ閉じてもよい。これらの操作は制御装置250を通じて、監視者が行うことができる。 When moving, a light or LED may be turned on, and the shadow of the decoy 210 may be projected at the bottom to alert the chicken. When the chicken hits the wing 214, it moves slowly. This is because the sudden movement of the decoy 210 gives stress to the chicken. Further, when an obstacle hits the wing 214, the wing 214 may be closed by an appropriate angle. These operations can be performed by the supervisor through the control device 250.
 なお、実施の形態1で説明したロボットと鶏舎の照明の関係は、本実施形態で適応してもよく、詳細な説明は省略する。 Note that the relationship between the robot and the lighting of the chicken house described in the first embodiment may be applied in this embodiment, and a detailed description thereof will be omitted.
 (実施の形態3)
 以下に本実施の形態に係る飼育方法について説明する。本実施の形態では、ブロイラーは、移動する光スポットを忌避し、それを避けるように行動することを利用して、ブロイラーの運動を促進する。
(Embodiment 3)
The breeding method according to the present embodiment will be described below. In the present embodiment, the broiler promotes the movement of the broiler by utilizing the action of avoiding the moving light spot and avoiding it.
 図9に本発明に係るロボット3の外観を例示する。図9(a)は側面図で、図9(b)は正面図である。本発明のロボット3は、移動装置120と、光照射装置122と、バッテリー140(図12参照)、位置検出装置124(図12参照)、通信装置126(図12参照)および制御装置128(図12参照)を有する。また、カメラ装置130を搭載してもよい。さらに、ロボット1や2が有している注意喚起ライト14と、スピーカー16、マーキング装置22が備えられていてもよい。なお、ここでは図1で示した戦車タイプのロボット(走行型ロボット)で説明するが、図2で示したマルチコプタータイプやデコイの飛行型ロボットであってもよい。 FIG. 9 illustrates the appearance of the robot 3 according to the present invention. FIG. 9A is a side view, and FIG. 9B is a front view. The robot 3 of the present invention includes a moving device 120, a light irradiation device 122, a battery 140 (see FIG. 12), a position detecting device 124 (see FIG. 12), a communication device 126 (see FIG. 12), and a control device 128 (see FIG. 12). Moreover, you may mount the camera apparatus 130. FIG. Furthermore, the alert light 14 which the robots 1 and 2 have, the speaker 16, and the marking device 22 may be provided. Here, the tank type robot (traveling robot) shown in FIG. 1 will be described, but the multi-copter type or decoy flying robot shown in FIG. 2 may be used.
 図10には、鶏舎50の平面図およびロボット3を稼動させるための周辺装置の関係を示す。ロボット3は、鶏舎50中の基地170に通常載置される。鶏舎50には、給餌器54および餌と水の供給源であるサイロ58が備えられている。ロボット3には親制御装置150が用意される。親制御装置150は、少なくとも1台のロボット3を制御することができる。さらに、ロボット3には、鶏舎50内に基地170が設けられても良い。基地170は、ロボット3が一次帰還し、記録したデータの送信やバッテリー140(図12参照)への充電などを行うことが出来る。 FIG. 10 shows a relationship between a plan view of the poultry house 50 and peripheral devices for operating the robot 3. The robot 3 is normally placed on the base 170 in the poultry house 50. The poultry house 50 is provided with a feeder 54 and a silo 58 as a source of food and water. A parent control device 150 is prepared for the robot 3. The parent control device 150 can control at least one robot 3. Further, the robot 3 may be provided with a base 170 in the poultry house 50. In the base 170, the robot 3 performs primary return, and can transmit the recorded data and charge the battery 140 (see FIG. 12).
 再び図9を参照して、移動装置120は、ロボット3を移動させることができれば、形態が限定されるものではない。例えば、複数足歩行やキャタピラ、複数車輪といった方法を利用することができる。なお、鶏舎50の床面にはオガコ等の敷料が敷き詰められている。このような床面を移動するに際しては、キャタピラは、能力面およびコスト面から好適に利用できる移動手段であるといえる。ここでは、ロボット3は、キャタピラを移動装置120として有する例について説明を続ける。 Referring to FIG. 9 again, the moving device 120 is not limited in form as long as the robot 3 can be moved. For example, methods such as walking with multiple legs, caterpillar, and multiple wheels can be used. In addition, the floor surface of the poultry house 50 is spread with bedding such as sawdust. When moving on such a floor surface, the caterpillar can be said to be a moving means that can be suitably used in terms of capacity and cost. Here, the robot 3 will continue to describe an example in which the robot 3 has a caterpillar as the moving device 120.
 移動装置120は下部筐体110bに設置される。下部筐体110bの上には上部筐体110aが配置される。上部筐体110aには、回転塔112が設けられる。回転塔112は、上部筐体110aに対して回転可能に枢支されている。なお、回転塔112の回動装置112d(図12参照)は、下部筐体110b中に設置されている。 The moving device 120 is installed in the lower housing 110b. An upper housing 110a is disposed on the lower housing 110b. A rotating tower 112 is provided in the upper housing 110a. The rotating tower 112 is pivotally supported with respect to the upper housing 110a. The rotating device 112d (see FIG. 12) of the rotating tower 112 is installed in the lower housing 110b.
 また、上部筐体110aの周囲には、バンパー110sが設けられている。バンパー110sは、発砲ウレタン等のクッション材で形成されている。バンパー110sと上部筐体110aの間には、タッチセンサ132aが備えられていてもよい。ロボット3が何かに衝突した際に、衝突を検知することができるからである。バンパー110sは、ロボット3がニワトリに接触したり、またロボット3が壁等に衝突した際に、ニワトリおよびロボット3を保護する。 In addition, a bumper 110s is provided around the upper casing 110a. The bumper 110s is formed of a cushioning material such as foaming urethane. A touch sensor 132a may be provided between the bumper 110s and the upper housing 110a. This is because the collision can be detected when the robot 3 collides with something. The bumper 110s protects the chicken and the robot 3 when the robot 3 comes into contact with the chicken or when the robot 3 collides with a wall or the like.
 回転塔112には、光照射窓112wが設けられている。また光照射窓112wの内部には、光照射装置122(図11参照)が設置されている。光照射装置122は、光照射窓112wから光を照射し左右に走査することができる。また、ロボット3の前方のどれくらいの位置に照射するかを表す照射位置を変更する照射角変更装置123(図11参照)が備えられていてもよい。 The rotating tower 112 is provided with a light irradiation window 112w. A light irradiation device 122 (see FIG. 11) is installed inside the light irradiation window 112w. The light irradiation device 122 can irradiate light from the light irradiation window 112w and scan left and right. Further, an irradiation angle changing device 123 (see FIG. 11) for changing an irradiation position indicating how much the robot 3 is irradiated in front may be provided.
 また、回転塔112中には、カメラ装置130も搭載されている。カメラ装置130は、ロボット3の周囲の状況を把握したり、光照射窓112wから照射された光がどこに当たっているかを確認することができる。また、周囲の状況を画像データとして記録してもよい。 In addition, a camera device 130 is also mounted in the rotating tower 112. The camera device 130 can grasp the situation around the robot 3 and can confirm where the light irradiated from the light irradiation window 112w is hit. Further, the surrounding situation may be recorded as image data.
 光照射装置122は少なくとも上記の性能を有していれば、構成に限定されるものではない。ここでは図11に、光照射装置122の構成を例示する。図11(a)は回転塔112の平面図であり、図11(b)は、側面断面図である。光照射装置122は、光源122aと、ポリゴンミラー122b、ポリゴンミラー122bの駆動モータ122c、照射角変更装置123および光源制御装置122dを含む。 The light irradiation device 122 is not limited to the configuration as long as it has at least the above performance. Here, FIG. 11 illustrates the configuration of the light irradiation device 122. FIG. 11A is a plan view of the rotating tower 112, and FIG. 11B is a side sectional view. The light irradiation device 122 includes a light source 122a, a polygon mirror 122b, a drive motor 122c for the polygon mirror 122b, an irradiation angle changing device 123, and a light source control device 122d.
 光源122aは、平行光線を照射することのできる光源122aが用いられる。光スポットを床面に発生させるためである。レーザー装置や、焦点からの光を平行光線にできるアフォーカル系の組レンズを有する光学系が用いられる。特に発明者は、赤の光(波長635~690nm)のレーザー光で、効果的にニワトリを誘導できることを確認している。光の強度も特に強い光が必要ではなく、レーザーポインターに用いられる0.2mW程度のパワーの光源122aでよい。また、光源122aは単数ではなく、複数あってもよい。光スポットが複数あるとニワトリが認識しやすいからである。 The light source 122a is a light source 122a that can radiate parallel rays. This is because a light spot is generated on the floor surface. A laser device or an optical system having an afocal group lens that can convert light from a focal point into parallel rays is used. In particular, the inventor has confirmed that chickens can be effectively induced with red laser light (wavelength 635 to 690 nm). The light intensity is not particularly strong, and a light source 122a having a power of about 0.2 mW used for a laser pointer may be used. Further, the light source 122a may be plural instead of single. This is because if there are a plurality of light spots, the chicken can easily recognize.
 ポリゴンミラー122bは、多面体ミラーであり、設置される回転塔112中のスペースや、走査範囲によって、三角形から八角形程度のものが用いられる。ポリゴンミラー122bは、光源122aからの光を反射して、光照射窓112wから光を射出する。 The polygon mirror 122b is a polyhedral mirror, and a triangular mirror or octagonal mirror is used depending on the space in the rotating tower 112 to be installed and the scanning range. The polygon mirror 122b reflects light from the light source 122a and emits light from the light irradiation window 112w.
 ポリゴンミラー122bは、駆動モータ122cによって回転する。回転する毎に、光照射窓112wから光が放出され、かつ走査される。また、ポリゴンミラー122bと駆動モータ122cは、1つのステージ123a上に固定されており、そのステージ123aの俯角を変更する照射俯角変更モータ123bが設けられる。ステージ123aは、回転塔112内に支柱123cで揺動可能に枢支されている。照射俯角変更モータ123bは、ステージ123aの枢支されていない部分を下から突き上げ、ステージ123aの俯角を調整することができる。ステージ123aと照射俯角変更モータ123bと支柱1123cは、照射角変更装置123を構成する。 The polygon mirror 122b is rotated by the drive motor 122c. Each time it rotates, light is emitted from the light irradiation window 112w and scanned. The polygon mirror 122b and the drive motor 122c are fixed on one stage 123a, and an irradiation depression angle changing motor 123b for changing the depression angle of the stage 123a is provided. The stage 123a is pivotally supported in the rotating tower 112 so as to be swingable by a column 123c. The irradiation depression angle changing motor 123b can push up an unsupported portion of the stage 123a from below and adjust the depression angle of the stage 123a. The stage 123a, the irradiation angle changing motor 123b, and the support 1123c constitute an irradiation angle changing device 123.
 光源制御装置122dは、光源122aのON/OFFと、ポリゴンミラー122bの駆動モータ122c、および照射俯角変更モータ123bを駆動し、ポリゴンミラー122bの回転角度と、照射光の俯角を調整する。照射光の俯角を調整することで、光照射装置122からどの程度前方の床目に光スポットを発生させるかを調整することができる。光源制御装置122dは、制御装置128(図12参照)からの指示によって、これらの制御を行う。なお、光源制御装置122dは、制御装置128が兼務してもよい。 The light source control device 122d drives ON / OFF of the light source 122a, the driving motor 122c of the polygon mirror 122b, and the irradiation depression angle changing motor 123b, and adjusts the rotation angle of the polygon mirror 122b and the depression angle of the irradiation light. By adjusting the depression angle of the irradiation light, it is possible to adjust how much the light spot is generated on the floor ahead from the light irradiation device 122. The light source control device 122d performs these controls according to instructions from the control device 128 (see FIG. 12). Note that the control device 128 may also serve as the light source control device 122d.
 なお、ここでは光照射装置122として、光源122aとポリゴンミラー122bを用いた例を示したが、ロボット3では、光照射装置122はこれに限定されない。例えば、レーザーポインターを複数個回転塔112上端に固定し、回転塔112を回転することで光スポットを走査するように構成してもよい。また、光照射装置122の部分だけを回転塔112とは別に回動させるようにしてもよい。たとえば、上記の例では、光源122aが載置されたステージ123aを回転させるといった構成にしてもよい。また、このような光照射装置122はマルチコプタータイプやデコイのロボット(飛行型ロボット)に搭載してもよい。 In addition, although the example using the light source 122a and the polygon mirror 122b was shown here as the light irradiation apparatus 122, in the robot 3, the light irradiation apparatus 122 is not limited to this. For example, a plurality of laser pointers may be fixed to the upper end of the rotating tower 112 and the light spot may be scanned by rotating the rotating tower 112. Further, only the light irradiation device 122 may be rotated separately from the rotating tower 112. For example, in the above example, the stage 123a on which the light source 122a is placed may be rotated. Such a light irradiation device 122 may be mounted on a multicopter type or decoy robot (flying robot).
 再び図9を参照して、回転塔112には、カメラ装置130も搭載されている。図9では、カメラ装置130は、光照射装置122より下に搭載したが、上であってもよい。カメラ装置130において、カメラ130aの数は特に限定されない。図9では、回転塔112の前後左右に一対ずつ、計4つのカメラ130aが搭載されている。各カメラ130aの画角は広く、4つのカメラ130aでロボット3の周囲360°がカバーできる。カメラ装置130の画像は、通信装置126(図12参照)に送られ、親制御装置150に送られるようにしてもよい。 Referring to FIG. 9 again, the rotating tower 112 is also equipped with a camera device 130. In FIG. 9, the camera device 130 is mounted below the light irradiation device 122, but may be above. In the camera device 130, the number of cameras 130a is not particularly limited. In FIG. 9, a total of four cameras 130 a are mounted on the front, rear, left and right of the rotating tower 112. Each camera 130a has a wide angle of view, and the four cameras 130a can cover 360 ° around the robot 3. The image of the camera device 130 may be sent to the communication device 126 (see FIG. 12) and sent to the parent control device 150.
 回転塔112は、回動装置112d(図9では見えない。図12参照)によって上部筐体110aに対して回転することができる。したがって、光照射窓112wと、カメラ130aは、上部筐体110aに対して角度を変更することができる。 The rotating tower 112 can be rotated with respect to the upper casing 110a by a rotating device 112d (not visible in FIG. 9, see FIG. 12). Therefore, the light irradiation window 112w and the camera 130a can change an angle with respect to the upper housing 110a.
 図12には、各種装置間の接続関係を示す。制御装置128は、移動装置120と光照射装置122とカメラ装置130と通信装置126およびバッテリー140と接続される。制御装置128は、MPU(Micro Processor Unit)128aおよびメモリ128bで構成される。メモリ128b中には、ロボット3が自走する際の走行ルートや、行動プログラムが記憶されている。なお、メモリ128b中には、走行中に生じた事象の画像を記録してもよい。 FIG. 12 shows the connection relationship between various devices. The control device 128 is connected to the moving device 120, the light irradiation device 122, the camera device 130, the communication device 126, and the battery 140. The control device 128 includes an MPU (Micro Processor Unit) 128a and a memory 128b. In the memory 128b, a travel route and an action program when the robot 3 self-runs are stored. In addition, you may record the image of the event which generate | occur | produced during driving | running | working in the memory 128b.
 通信装置126は、無線通信機である。親制御装置150との間で通信を行う。また、基地170との間で有線による通信を行ってもよい。 The communication device 126 is a wireless communication device. Communication is performed with the parent control device 150. Further, wired communication may be performed with the base 170.
 位置検出装置124は、GPS若しくは鶏舎50内に備えられた無線ビーコンに基づいて現在の位置を確定する。また、加速度計および方位磁石によって、出発点からの位置を算出し、自立で出発点に帰還する所謂慣性走行を行っても良い。制御装置128は位置検出装置124からの位置情報に基づいて鶏舎50内の現在の位置を知る。 The position detection device 124 determines the current position based on GPS or a wireless beacon provided in the poultry house 50. In addition, so-called inertial traveling may be performed in which the position from the starting point is calculated by an accelerometer and a compass and returned to the starting point independently. The control device 128 knows the current position in the poultry house 50 based on the position information from the position detection device 124.
 タッチセンサ132aは、バンパー110s(図9参照)と上部筐体110a(図9参照)(若しくは下部筐体110bでもよい)との間に設けられる。そして、バンパー110sが何かと接触したら制御装置128に通知する。このようなタッチセンサ132aは走行妨害検知装置132を構成する。 The touch sensor 132a is provided between the bumper 110s (see FIG. 9) and the upper housing 110a (see FIG. 9) (or the lower housing 110b). When the bumper 110s comes into contact with something, the control device 128 is notified. Such a touch sensor 132 a constitutes the travel disturbance detection device 132.
 なお、走行妨害検知装置132は、タッチセンサ132aで好適に構成することができるが、何かに衝突し、それ以上進行することができないことで走行妨害検知装置132を構成してもよい。例えば、位置検出装置124から位置情報を数秒毎に取得し、移動装置120を駆動させているにも係らず、位置情報に変化がなければ、何かに衝突しているために走行が妨害されていると判断することで、走行妨害検知装置132を構成することもできる。 The travel disturbance detection device 132 can be preferably configured by the touch sensor 132a. However, the travel interference detection device 132 may be configured by colliding with something and being unable to proceed any further. For example, if the position information is acquired from the position detection device 124 every few seconds and the movement device 120 is driven, but the position information does not change, the vehicle is impeded by something and the traveling is hindered. It is also possible to configure the travel disturbance detection device 132 by determining that it is.
 図13にロボット3と基地170と親制御装置150の関係を詳しく示す。基地170は鶏舎50(図10参照)内に配置されるロボット3の収容場所である。ロボット3が収容された際に、バッテリー140(図12参照)への充電端子および、通信装置126の有線による通信端子がロボット3との間で接続される。したがって、基地170はバッテリー充電器172と親制御装置150との間の基地通信装置174を有している。なお、基地170は、鶏舎50外部から取り出し可能に設けられているのが好ましい。鶏舎50の中に入らなくても、ロボット3を回収できるからである。 FIG. 13 shows the relationship among the robot 3, the base 170, and the parent control device 150 in detail. The base 170 is a storage place for the robot 3 arranged in the poultry house 50 (see FIG. 10). When the robot 3 is accommodated, a charging terminal for the battery 140 (see FIG. 12) and a wired communication terminal of the communication device 126 are connected to the robot 3. Therefore, the base 170 has a base communication device 174 between the battery charger 172 and the parent control device 150. In addition, it is preferable that the base 170 is provided so that it can be taken out from the outside of the poultry house 50. This is because the robot 3 can be recovered without entering the poultry house 50.
 親制御装置150は、少なくとも1台のロボット3を鶏舎50外部から制御することができる。親制御装置150は、親通信装置152を有する。親通信装置152は基地170が有する基地通信装置174と、ロボット3が有する通信装置126(図12参照)との間の通信を行う。また、親制御装置150は、ロボット3を遠隔操作で操縦する。したがって、操縦装置154を有している。操縦装置154は、操縦桿やコマンドの入力が可能な入力装置156および状況を映し出すディスプレイ装置158を含む。また、親制御装置150は、ロボット3からの画像データやその他のデータを記憶する記憶装置160を有する。 The parent control device 150 can control at least one robot 3 from outside the poultry house 50. The parent control device 150 includes a parent communication device 152. The parent communication device 152 performs communication between the base communication device 174 included in the base 170 and the communication device 126 included in the robot 3 (see FIG. 12). The parent control device 150 controls the robot 3 by remote control. Accordingly, the control device 154 is provided. The control device 154 includes an input device 156 capable of inputting control sticks and commands, and a display device 158 that displays the situation. The parent control device 150 also has a storage device 160 that stores image data from the robot 3 and other data.
 親制御装置150は、入力装置156からロボット3に走行コースの変更や動作の変更を指示することができる。また、実時間でロボット3を走行させ、カメラ装置130(図9参照)からの画像を見ながら、光スポットを発生させたり、走査させたりすることができる。 The parent control device 150 can instruct the robot 3 from the input device 156 to change the traveling course or change the operation. In addition, the robot 3 can be run in real time, and a light spot can be generated or scanned while viewing an image from the camera device 130 (see FIG. 9).
 次にロボット3の動作について説明する。
 <自立モード>
 自立モードは、一定の時刻になったら、鶏舎50内の見回りを自動的に行い、また戻ってくるモードである。この間操縦装置154からの指示は受けなくてもよい。ここで見回りとは、光スポットを走査しながら鶏舎50内を走行し、ニワトリの注意を喚起して、ニワトリの運動を促進することをいう。
Next, the operation of the robot 3 will be described.
<Independent mode>
The self-supporting mode is a mode in which the patrol in the poultry house 50 is automatically performed and returned again at a certain time. During this time, it is not necessary to receive an instruction from the control device 154. Here, looking around means running inside the chicken house 50 while scanning a light spot, alerting the chicken, and promoting the chicken's movement.
 ロボット3は、基地170に収納されている。ここでは、バッテリー140の充電や、有線による操縦装置154との通信を行う。ロボット3は、規定時刻になったら、鶏舎50内の見回りに出発する。 The robot 3 is stored in the base 170. Here, the battery 140 is charged and communication with the wired control device 154 is performed. The robot 3 departs for a patrol in the poultry house 50 at the specified time.
 図14は、鶏舎50の平面図を示す。ロボット3は、鶏舎50内の決められたルートを走行する。ルートとしては、鶏舎50の壁沿いに沿って走行するのが好ましい。図14では鎖線で示した。鶏舎50の中央側には、給餌器54が備えられており、元気なニワトリは、そこで餌や水を取得する。一方、調子の悪いニワトリほど、鶏舎50の壁際に押しやられるからである。ロボット3は、このようなニワトリを給餌器54のある鶏舎50の中央側に誘導する。 FIG. 14 shows a plan view of the poultry house 50. The robot 3 travels on a predetermined route in the poultry house 50. As a route, it is preferable to travel along the wall of the poultry house 50. In FIG. 14, it is shown by a chain line. A feeding device 54 is provided on the center side of the poultry house 50, and a healthy chicken obtains food and water there. On the other hand, a chicken with a bad condition is pushed toward the wall of the poultry house 50. The robot 3 guides such a chicken to the center side of the poultry house 50 where the feeder 54 is located.
 ロボット3は、走行しながら、光源122a(図11参照)からの光を前方壁面に照射する。また、ロボット3のおよそ50cm先に向けて照射してもよい。照射された光は、平行光線なので、ロボット3の前方の床面に光スポット144を発生させる。ロボット3は、その光スポット144を走査する。 The robot 3 irradiates the front wall surface with light from the light source 122a (see FIG. 11) while traveling. Moreover, you may irradiate toward about 50 cm ahead of the robot 3. Since the irradiated light is a parallel light beam, a light spot 144 is generated on the floor surface in front of the robot 3. The robot 3 scans the light spot 144.
 走査角度は、特に限定されない。自立モードでは予め決められた角度だけ走査を行う。例えば、ロボット3の正面から左45°から右45°までの90°を走査するなどである。走査の速度は、90°の走査に1~2秒程度であればよい。早すぎても遅すぎても、ニワトリが光スポット144の走査を認識できないからである。 The scanning angle is not particularly limited. In the self-supporting mode, scanning is performed at a predetermined angle. For example, 90 ° from 45 ° to 45 ° from the front of the robot 3 is scanned. The scanning speed may be about 1 to 2 seconds for 90 ° scanning. This is because the chicken cannot recognize the scanning of the light spot 144 either too early or too late.
 走査の方法も特に限定されない。上記の例では、ポリゴンミラー122bを一方向にだけ回転させると、光スポットは右から左、若しくは左から右方向にだけ走査される。しかし、光スポットは、右から左そして再び左から右に走査してもよい。 The scanning method is not particularly limited. In the above example, when the polygon mirror 122b is rotated only in one direction, the light spot is scanned only from right to left or from left to right. However, the light spot may be scanned from right to left and again from left to right.
 光スポットは複数あってもよい。ニワトリが視認しやすいからである。直径1cm以下のスポットが1つ程度では、密飼されている鶏舎50内のニワトリは気がつかない場合が多い。小さな径の光スポットは複数個あるのが望ましい。 There may be multiple light spots. This is because the chicken is easily visible. When there are about one spot having a diameter of 1 cm or less, the chickens in the poultry house 50 are often not noticed. It is desirable that there are a plurality of light spots having a small diameter.
 また、大きすぎると投光機になってしまい、単にまぶしいだけになる。また、密飼されている鶏舎50内で大きな光スポットを床面に発生させるだけの隙間は出来にくい。したがって、光スポットの大きさは、およそ0.5cm程度から10cm程度までが望ましい。また、光スポットの色は、鶏舎内の照明の色でない色がよい。目立つためである。特に、人間にとっての赤色はニワトリの注意を喚起できる。 Also, if it is too large, it becomes a floodlight and it is just dazzling. In addition, it is difficult to create a gap enough to generate a large light spot on the floor surface in the poultry house 50 that is kept in the poultry. Therefore, the size of the light spot is preferably about 0.5 cm to about 10 cm. Moreover, the color of the light spot is preferably a color that is not the color of the lighting in the poultry house. It is to stand out. In particular, red for humans can alert chickens.
 光スポットが走査されると、ニワトリは、走査された領域を避けるように移動する。この原因は、明らかではない。おそらく、ニワトリは、光スポットを忌避し、光スポットから逃げるために移動するものと思われる。なお、このような操作でニワトリ自身がパニックにはならない。 When the light spot is scanned, the chicken moves to avoid the scanned area. The cause of this is not clear. Perhaps the chicken moves to avoid the light spot and escape from the light spot. Note that the chicken itself does not panic with such an operation.
 ロボット3は、何かに衝突しなければ、決められたルートを走行し、再び基地170に戻ってくる。何かに衝突した場合は、衝突した回数と位置を記録する。基地170に戻ったら、バッテリー140の充電と、見回り中に録画した画像データを親制御装置150に送信する。また、衝突回数及び位置も同様に送信する。 If the robot 3 does not collide with anything, it travels on the determined route and returns to the base 170 again. If you collide with something, record the number and location of the collision. When returning to the base 170, the battery 140 is charged and the image data recorded during the tour is transmitted to the parent control device 150. The number of collisions and the position are also transmitted in the same manner.
 見回り中にロボット3が何かに衝突したら、ロボット3は、これを回避する。回避の方法は特に限定されないが、壁から離れる方向に一定の距離を進み、再び壁と平行に進み、再度壁に沿ったコースまで戻ってくるといった方法が考えられる。 If the robot 3 collides with something while looking around, the robot 3 avoids this. The avoidance method is not particularly limited, but a method of traveling a certain distance away from the wall, proceeding in parallel with the wall again, and returning to the course along the wall again is conceivable.
 このように回避行動を行った箇所には、すでに動けなくなったニワトリがいる可能性が高い。ロボット3は、この地点の情報を親制御装置150に通信する。この際に通知する情報は、衝突を検知した位置であってもよいし、回避行動を行った位置でもよい。共にほぼ同じ位置を示すからである。 箇 所 There is a high possibility that there are chickens that have already become unable to move in the places where the avoidance action is performed. The robot 3 communicates information on this point to the parent control device 150. The information notified at this time may be a position where a collision is detected or a position where an avoidance action is performed. This is because both indicate substantially the same position.
 ロボット3は、人間にとって夜中の間、鶏舎50を巡回する。したがって、朝、飼育員は前夜にロボット3が回避行動を行った(若しくは衝突した)際の画像を調べる。そして、回避行動(若しくは衝突)の原因が動きにくくなったニワトリである場合は、人間が見回る際に、ロボット3が回避行動を行った(若しくは衝突した)地点を調べ、異常の兆しのあるニワトリを確認することができる。 Robot 3 patrolls the chicken house 50 during the night for humans. Therefore, in the morning, the keeper examines the image when the robot 3 performs the avoidance action (or collides) the night before. If the cause of the avoidance action (or collision) is a chicken that has become difficult to move, when the human looks around, the point where the robot 3 has performed the avoidance action (or has collided) is examined, and the chicken with a sign of abnormality is found. Can be confirmed.
 <依存モード>
 ロボット3は、親制御装置150からの指示によって、鶏舎50内を走行することができる。この場合、カメラ装置130で撮影した画像は、親制御装置150のディスプレイ装置158上に映し出され、操縦者はロボット3の視線で鶏舎50内を見ることが出来る。
<Depending mode>
The robot 3 can travel in the poultry house 50 according to an instruction from the parent control device 150. In this case, an image photographed by the camera device 130 is displayed on the display device 158 of the parent control device 150, and the operator can see the inside of the chicken house 50 with the line of sight of the robot 3.
 また、操縦者は光照射を行いながら移動することもできるし、光照射は行わない状態でロボット3を移動させることもできる。特に、自立モードにおいて、ロボット3が回避行動を行った(若しくは衝突をした)地点を確認するために、ロボット3をその地点に向かわせ、カメラ装置130で撮影した画像で、その地点の付近を確認するといったことが可能になる。 Also, the operator can move while irradiating light, or can move the robot 3 without irradiating light. In particular, in the self-supporting mode, in order to confirm a point where the robot 3 has performed an avoidance action (or has collided), the robot 3 is pointed to that point, and an image taken by the camera device 130 shows the vicinity of the point. It becomes possible to confirm.
 なお、実施の形態1で説明したロボットと鶏舎の照明の関係は、本実施形態で適応してもよく、詳細な説明は省略する。 Note that the relationship between the robot and the lighting of the chicken house described in the first embodiment may be applied in this embodiment, and a detailed description thereof will be omitted.
 (実施の形態4)
 本実施の形態では、鶏舎50内のニワトリを群れとしてとらえ、発育状態を向上させる。鶏舎50内のニワトリは、自由に動き回れるが、鶏舎50中に密集した群れができると、その中の一部のニワトリは、餌を食べる機会を得ず、発育不良となることが多い。したがって、鶏舎50内に複数のニワトリが特定の場所に密集するような場合は、この密集状態を解消することで、個々のニワトリが餌を取る機会を均等に与える必要がある。
(Embodiment 4)
In the present embodiment, chickens in the poultry house 50 are regarded as a flock and the growth state is improved. The chickens in the poultry house 50 can move around freely. However, if a dense flock is formed in the poultry house 50, some of the chickens in the poultry house 50 often do not have the opportunity to eat food, and often develop poorly. Therefore, when a plurality of chickens are concentrated in a specific place in the poultry house 50, it is necessary to give each chicken an equal opportunity to feed by eliminating this crowded state.
 図15は鶏舎50の平面図を示す。本実施の形態では、鶏舎50の天井に、監視カメラ70を備える。また、図10で示したように、ロボット3、ロボット3の基地170および親制御装置150も備えられている。なお、本実施の形態におけるロボット3は、実施の形態2で説明したロボット3であり、実施の形態3で説明した付加してもよい機能が付加されたロボットであってもよい。もちろん、飛行型ロボットであってもよい。 FIG. 15 shows a plan view of the poultry house 50. In the present embodiment, the surveillance camera 70 is provided on the ceiling of the poultry house 50. Further, as shown in FIG. 10, the robot 3, the base 170 of the robot 3, and the parent control device 150 are also provided. The robot 3 in the present embodiment is the robot 3 described in the second embodiment, and may be a robot to which a function that may be added described in the third embodiment is added. Of course, a flying robot may be used.
 図16には、図13同様に、ロボット3と基地170と親制御装置150と監視カメラ70の接続関係を示す。監視カメラ70は親制御装置150に接続されている。したがって、監視カメラ70の画像は、ディスプレイ装置158で監視することができる。 FIG. 16 shows the connection relationship between the robot 3, the base 170, the parent control device 150, and the monitoring camera 70, as in FIG. The monitoring camera 70 is connected to the parent control device 150. Therefore, the image of the monitoring camera 70 can be monitored by the display device 158.
 本実施の形態監視カメラ70で鶏舎50内のニワトリの群れの状態を監視し、鶏舎全体に渡って見たときに群れに偏りが生じた場合は、ロボット3をニワトリが集中した箇所に送り込み、密集した群れを拡散させる。なお、ロボット3が密集した群れを拡散させるのは、ニワトリの運動を促進することであると言ってよい。 When the state of the flock of chickens in the poultry house 50 is monitored with the surveillance camera 70 of this embodiment and the flock is biased when viewed over the whole poultry house, the robot 3 is sent to the place where the chickens are concentrated, Spread dense crowds. In addition, it may be said that it is promoting the movement of a chicken that the robot 3 spreads a dense flock.
 通常鶏舎内では密飼されているので、ニワトリは床面のどこを見ても平均的な密度(単位面積当たりにいるニワトリの数)はほぼ同じになると考えられる。しかし、実際には、鶏舎50の壁沿いに集まる傾向がある。そして、餌の摂取量が減るニワトリは、このような壁際に集まる群れの中に発生する場合が多い。 Since they are usually housed in poultry houses, the average density of chickens (number of chickens per unit area) is considered to be almost the same no matter where they are on the floor. However, in reality, there is a tendency to gather along the wall of the poultry house 50. And chickens whose food intake is reduced often occur in a flock that gathers near such walls.
 そこで、ロボット3で定期的に運動を促進するのとは別に、偏った状態の群れを拡散することでも、鶏舎全体のニワトリの育成に寄与することができる。 Therefore, apart from regularly exercising with the robot 3, spreading a biased flock can also contribute to chicken development in the entire poultry house.
 監視カメラ70で群れの偏りを検出する方法は特に限定されない。人間が監視カメラ70の画像を見て、偏りの有無を判断してもよい。また、画像処理によって偏りを数値化してもよい。画像処理で群れに偏りがあることを判断できれば、人間が見ていなくても監視カメラ70とロボット3でニワトリの群れを動かすことができるので、人間が睡眠をとる夜中でもニワトリの群れの偏りを解消することができる。 The method for detecting the swarm deviation with the monitoring camera 70 is not particularly limited. A human may look at the image of the surveillance camera 70 to determine whether or not there is a bias. Further, the bias may be digitized by image processing. If it can be judged that there is a bias in the flock by image processing, the flock of chicken can be moved by the surveillance camera 70 and the robot 3 even if the human is not looking at it. Can be resolved.
 具体的な方法について一例を示す。図17には、親制御装置150の処理のフローを示す。処理がスタートしたら(ステップS100)、終了判断を行う(ステップS102)。終了判断は特に限定されず、特定の時刻で停止する、停止指示があったなどが考えられる。処理を終了する場合(ステップS102のY分岐)は停止する(ステップS150)。 An example of a specific method is shown below. FIG. 17 shows a processing flow of the parent control device 150. When the process starts (step S100), an end determination is made (step S102). The end determination is not particularly limited, and it may be possible to stop at a specific time or to give a stop instruction. When the process ends (Y branch in step S102), the process stops (step S150).
 終了しない場合(ステップS102のN分岐)は、監視カメラ70で床面上を撮影し、画像データGを得る(ステップS104)。次に画像データGを決められた区画に分割する。後の画像処理での個数カウントの精度を上げるために、赤外線カメラを用いても良い。 If not finished (N branch in step S102), the surveillance camera 70 takes a picture of the floor surface to obtain image data G (step S104). Next, the image data G is divided into predetermined sections. An infrared camera may be used in order to increase the accuracy of the number counting in the subsequent image processing.
 区画に分割するとは、予め床面を、縦3分割、横3分割の9区画に分割すると決めておき、画像データGをそのように分割することである。分割した区画をg1、g2、・・・gnとする。ただし、「n」は自然数である。9区分に分割するとしたら、nは9である。なお、区画は全て同じ大きさ、同じ形状でなくてもよい。例えば、壁際は、壁際に沿った長い区画であってもよい。 To divide into sections is to divide the floor surface into nine sections of three vertical and three horizontal sections in advance, and to divide the image data G in that way. Let the divided sections be g1, g2,... Gn. However, “n” is a natural number. If it is divided into 9 sections, n is 9. Note that all the sections need not have the same size and the same shape. For example, the wall side may be a long section along the wall side.
 次に、各区画gk中のニワトリの数をカウントする(ステップS106)。それぞれの区画のニワトリの数をC(g1)、C(g2)、・・・、C(gk)、・・・、C(gn)とする。区画中のニワトリは、天井側から見ると、個々が紡錘形をして隣のニワトリと分離しているので、画像処理ソフトで個数をカウントすることができる。なお、ここで「k」は、1≦k≦nを満たす自然数で、分割した区画のうち任意の区画を表す変数である。 Next, the number of chickens in each section gk is counted (step S106). Let C (g1), C (g2), ..., C (gk), ..., C (gn) be the number of chickens in each compartment. When viewed from the ceiling, the chickens in the compartment are individually spindle-shaped and separated from the adjacent chickens, so the number can be counted with image processing software. Here, “k” is a natural number satisfying 1 ≦ k ≦ n and is a variable representing an arbitrary section among the divided sections.
 鶏舎50の床面積は予めわかっているし、鶏舎50内に現在存在するニワトリの数もわかっている。したがって、ニワトリが鶏舎50に均一に分散して存在していれば、1つの区画内にどれだけの数のニワトリがいるか求められる。これを区画平均数Cavとする。なお、区画の中には、給餌器54等も設置してある。また、上記のように区画は同じ広さでない場合もある。したがって、全ての区画において区画平均数Cavが同じでなくてもよい。言い換えると、区画平均数Cavは区画毎に設けられていても良い。 The floor area of the poultry house 50 is known in advance, and the number of chickens currently present in the poultry house 50 is also known. Therefore, if chickens are uniformly distributed in the poultry house 50, it is determined how many chickens are in one section. This is defined as the block average number Cav. In addition, the feeder 54 etc. are also installed in the division. In addition, as described above, the sections may not be the same size. Therefore, the section average number Cav may not be the same in all sections. In other words, the section average number Cav may be provided for each section.
 各区画でカウントされたニワトリの数C(gk)と区画平均数Cavを比較する(ステップS108)。区画内のニワトリの数C(gk)が、区画平均数Cavより多い大きな区画は群れが密集していて偏りがあると判断できる。なお、ステップS108中「m」は重み定数である。たとえば、mを1.1にすると、区画平均数Cavの1.1倍の数のニワトリがいても、群れの偏りがあるとはみなさない。つまり、密集の度合い(群れの偏り)はある程度区画平均数Cavより多くないと判断してもよい。 The number of chickens C (gk) counted in each section is compared with the section average number Cav (step S108). It can be determined that the large sections in which the number of chickens C (gk) in the section is larger than the section average number Cav are densely crowded. In step S108, “m” is a weight constant. For example, if m is 1.1, even if there are 1.1 times as many chickens as the average number of sections Cav, it is not considered that there is a bias in the flock. That is, it may be determined that the degree of crowding (group bias) is not more than a certain degree of the section average number Cav.
 ステップS108で、群れの偏りがあると判断されたら(ステップS108のY分岐)、親制御装置150はロボット3をその区画gkに派遣する(ステップS110)。実施の形態2で説明したロボット3は、光スポットを走査させながら区画gkまで移動し、例えば区画gk内を往復し、群れを分散させる。 If it is determined in step S108 that there is a group bias (Y branch of step S108), the parent control device 150 dispatches the robot 3 to the section gk (step S110). The robot 3 described in the second embodiment moves to the section gk while scanning the light spot, and, for example, reciprocates in the section gk to disperse the swarm.
 群れの偏りがないと判断されたら(ステップS108のN分岐)、処理は終了処理(ステップS102)に戻る。 If it is determined that there is no group bias (N branch in step S108), the process returns to the end process (step S102).
 なお、ここでは、撮影した床面を区画に分割し、区画毎のニワトリの数をカウントしたが、サーモイメージカメラなどで、各区画毎の温度を求めても良い。群れが密集している区画では、温度が高く表示され、群れが希薄な区画は温度が低くなるからである。 In addition, although the image | photographed floor surface was divided | segmented into division here and the number of the chickens for every division was counted, you may obtain | require the temperature for every division with a thermo image camera etc. This is because the temperature is displayed high in the section where the flock is dense, and the temperature is low in the section where the flock is thin.
 以上のように、鶏舎50の天井に監視カメラ70を配置し、そのカメラの画像に基づいてニワトリの群れの偏り有無を判断し、ロボット3で、群れの偏りを解消させることで、個々のニワトリは、餌を食べる機会を得ることができる。言い換えると、餌を食べずに成長不良となる個体数が減少し、生産性を向上させることができる。 As described above, the surveillance camera 70 is arranged on the ceiling of the poultry house 50, the presence or absence of a flock of chickens is determined based on the image of the camera, and the robot 3 eliminates the flock of individual flocks, whereby individual chickens are eliminated. Can get the opportunity to eat food. In other words, the number of individuals with poor growth without eating food can be reduced, and productivity can be improved.
 なお、実施の形態1で説明したロボットと鶏舎の照明の関係は、本実施形態で適応してもよく、詳細な説明は省略する。
 (実施の形態5)
Note that the relationship between the robot and the lighting of the poultry house described in Embodiment 1 may be applied in this embodiment, and detailed description thereof is omitted.
(Embodiment 5)
 以下に実施の形態4の環境計測を行うロボットについて説明する。図18に本発明に係る鶏舎監視ロボットの構成を示す。鶏舎監視ロボット301は、走行部310と、通信装置312と、位置検出手段314と、バッテリー316と、制御部320とセンサユニット330を有する。センサユニット330には、温度センサ331a、331b、湿度センサ332a、332b、二酸化炭素センサ333a、333b、アンモニアセンサ334a、334b等が備えられる。 Hereinafter, the robot for measuring the environment according to the fourth embodiment will be described. FIG. 18 shows a configuration of a poultry house monitoring robot according to the present invention. The poultry house monitoring robot 301 includes a traveling unit 310, a communication device 312, a position detection unit 314, a battery 316, a control unit 320, and a sensor unit 330. The sensor unit 330 includes temperature sensors 331a and 331b, humidity sensors 332a and 332b, carbon dioxide sensors 333a and 333b, ammonia sensors 334a and 334b, and the like.
 なお、センサの種類はこれらに限定されず、上記以外のセンサが搭載されてもよい。また、センサユニット330には、1種類のセンサだけが搭載されていてもよい。ここでは、上記のセンサが搭載されているとして説明を続ける。これらのセンサ類は、上部用および下部用の2セットが用意されている。また、センサユニット330には、カメラ340とサーモセンサ341が搭載されていてもよい。 In addition, the kind of sensor is not limited to these, Sensors other than the above may be mounted. Further, only one type of sensor may be mounted on the sensor unit 330. Here, the description will be continued assuming that the sensor is mounted. These sensors are prepared in two sets for the upper part and the lower part. The sensor unit 330 may be equipped with a camera 340 and a thermosensor 341.
 より具体的には、実施の形態1、2、3で説明したロボット1、ロボット2、ロボット3、デコイ210が有する機能を適宜搭載させることができる。 More specifically, the functions of the robot 1, the robot 2, the robot 3, and the decoy 210 described in the first, second, and third embodiments can be appropriately installed.
 図19には、鶏舎監視ロボット301の外観例を示す。鶏舎監視ロボット301の形状は特に限定されるものではない。しかし、例えばブロイラーの鶏舎の場合、床面にはオガコ等の敷料が敷き詰められている。この敷料は2~5cmの厚さに形成される。したがって、このような敷料の上を走行できるような走行手段を有する必要がある。 FIG. 19 shows an example of the appearance of the poultry house monitoring robot 301. The shape of the poultry house monitoring robot 301 is not particularly limited. However, for example, in the case of a broiler house, bedding such as sawdust is laid on the floor. This bedding is formed to a thickness of 2 to 5 cm. Therefore, it is necessary to have a traveling means that can travel on such a litter.
 例えば、複数足歩行やキャタピラといった形態が好適に利用できる。ここでは、キャタピラ362を用いた戦車型のロボットを例示する。本体360の上面にはセンサユニット330が内蔵される上部センサドーム364が設けられている。カメラ340およびサーモセンサ341は、カメラ塔366内に収納されている。このカメラ塔366は、回転することで360°の視野を有する。本体360の下面には下部センサドーム363が設けられている。敷料の直上の環境を計測できるためである。 For example, forms such as walking with multiple legs and a caterpillar can be suitably used. Here, a tank type robot using the caterpillar 362 is illustrated. An upper sensor dome 364 in which the sensor unit 330 is incorporated is provided on the upper surface of the main body 360. The camera 340 and the thermosensor 341 are housed in a camera tower 366. The camera tower 366 rotates to have a 360 ° field of view. A lower sensor dome 363 is provided on the lower surface of the main body 360. This is because the environment directly above the bedding can be measured.
 図20には、鶏舎監視ロボット1が監視する鶏舎400の平面図を例示する。鶏舎400には、配管411とフィーダー412およびサイロ413を有する給餌・給水装置410が備えられている。また、換気を行うための換気ファン402や、鶏舎400内を暖房するブルーダ403、鶏舎400内に空気を取り入れる際に取り入れ空気を冷却するクーリングパット404、壁に取り付けられた微調節ファン405等の環境制御装置類が備えられている。 FIG. 20 illustrates a plan view of the chicken house 400 monitored by the chicken house monitoring robot 1. The poultry house 400 is provided with a feeding / water supply apparatus 410 having a pipe 411, a feeder 412 and a silo 413. Further, a ventilation fan 402 for performing ventilation, a broder 403 for heating the inside of the poultry house 400, a cooling pad 404 for cooling the intake air when taking air into the poultry house 400, a fine adjustment fan 405 attached to the wall, etc. Environmental control devices are provided.
 また、鶏舎400には、鶏舎監視ロボット301に充電するための充電ステーション406が設けられる。充電ステーション406は、鶏舎監視ロボット301が所定の位置に来れば、鶏舎ロボット301のバッテリー316を充電する。 The poultry house 400 is provided with a charging station 406 for charging the poultry house monitoring robot 301. The charging station 406 charges the battery 316 of the poultry house robot 301 when the poultry house monitoring robot 301 comes to a predetermined position.
 また、鶏舎監視ロボット301が鶏舎400内における自らの位置を認識できるための、基準信号送信器407が備えられていてもよい。基準信号送信器407は、鶏舎400の四隅の天井に設けられており、それぞれ異なる周波数の信号を送信する。 In addition, a reference signal transmitter 407 for allowing the poultry house monitoring robot 301 to recognize its own position in the poultry house 400 may be provided. The reference signal transmitters 407 are provided on the ceilings at the four corners of the poultry house 400 and transmit signals having different frequencies.
 また、鶏舎監視ロボット301から送信される計測データを受信し、記録するコントロールユニット370が備えられていてもよい。 Also, a control unit 370 that receives and records measurement data transmitted from the poultry house monitoring robot 301 may be provided.
 コントロールユニット370は、鶏舎監視ロボット301からの計測データを受信し、記録および集計を行う。また、コントロールユニット370には、表示画面372が設けられており、鶏舎監視ロボット301からの映像信号を受信し、表示させることができる。さらに、コントロールユニット370は、鶏舎監視ロボット301の操縦装置373が設けられていてもよい。コントロールユニット370側から鶏舎監視ロボット301を操縦するためである。 The control unit 370 receives measurement data from the poultry house monitoring robot 301, and records and tabulates it. The control unit 370 is provided with a display screen 372, which can receive and display a video signal from the poultry house monitoring robot 301. Furthermore, the control unit 370 may be provided with a control device 373 for the poultry house monitoring robot 301. This is for operating the poultry house monitoring robot 301 from the control unit 370 side.
 再び図18を参照して、走行部310は左右の駆動輪を駆動するモータ310a、310bおよびキャタピラ362(図22参照)で構成される。これらのモータ310a、310bは制御部320に接続されている。そして制御部320からの指示によって駆動する。鶏舎監視ロボット1は左右のモータ310a、310bを独立して駆動することで、直進、後進、左右への方向転換を行うことが可能である。 Referring to FIG. 18 again, traveling section 310 includes motors 310a and 310b that drive left and right drive wheels, and caterpillar 362 (see FIG. 22). These motors 310 a and 310 b are connected to the control unit 320. And it drives by the instruction | indication from the control part 320. FIG. The poultry house monitoring robot 1 can drive the left and right motors 310a and 310b independently to change the direction straight, backward, and left and right.
 バッテリー316は、図18の各機器に対して電力を供給する。また、外部からの電力の供給によって電力を蓄電する。つまり、バッテリー316は二次電池であるのが望ましい。 The battery 316 supplies power to each device in FIG. Further, electric power is stored by supplying electric power from the outside. In other words, the battery 316 is preferably a secondary battery.
 通信装置312は、無線による通信装置である。通信のプロトコルは特に限定されない。例えば、公衆回線を利用する方式であってもよい。通信装置312は、鶏舎監視ロボット301が取得した計測データを送信する。また、鶏舎400に備えられたコントロールユニット370からの指示を受信してもよい。 The communication device 312 is a wireless communication device. The communication protocol is not particularly limited. For example, a system using a public line may be used. The communication device 312 transmits the measurement data acquired by the poultry house monitoring robot 301. Moreover, you may receive the instruction | indication from the control unit 370 with which the poultry house 400 was equipped.
 位置検出手段314は、鶏舎400に設けられた基準信号送信機407を用いる方法、GPSを用いる方法、通信装置312の無線を利用した三辺測量による方法、および充電ステーション406からの移動方向と移動速度および移動時間から位置を求める方法(所謂慣性航行)などが利用できる。ここでは鶏舎400に設けられた基準信号送信機407を使う例を示す。 The position detection means 314 includes a method using a reference signal transmitter 407 provided in the poultry house 400, a method using GPS, a method by triangulation using the radio of the communication device 312 and a moving direction and movement from the charging station 406. A method (so-called inertial navigation) for obtaining a position from speed and travel time can be used. Here, an example in which the reference signal transmitter 407 provided in the poultry house 400 is used is shown.
 バッテリー316は充放電可能な二次電池が好適に利用できる。バッテリー316は鶏舎監視ロボット301の全ての電気消費部分に電力を供給する。 As the battery 316, a chargeable / dischargeable secondary battery can be suitably used. The battery 316 supplies power to all the electric consumption parts of the poultry house monitoring robot 301.
 センサユニット330は、ニワトリの生活空間の環境指数を計測するセンサの集合である。センサユニット330には少なくとも、温度センサ331a、331b、湿度センサ332a、332b、二酸化炭素センサ333a、333b、アンモニアセンサ334a、334bを備えているのが望ましい。これらのセンサ類は、本体360の上面に設けられた上部センサドーム364内と下部センサドーム363内の2箇所に設けられる。上部センサドーム364に備えられるセンサ類は「a」の拡張子を付け、下部センサドーム363に備えられるセンサ類は「b」の拡張子を付す。 The sensor unit 330 is a set of sensors that measure the environmental index of the chicken's living space. The sensor unit 330 preferably includes at least temperature sensors 331a and 331b, humidity sensors 332a and 332b, carbon dioxide sensors 333a and 333b, and ammonia sensors 334a and 334b. These sensors are provided at two locations in the upper sensor dome 364 and the lower sensor dome 363 provided on the upper surface of the main body 360. Sensors provided in the upper sensor dome 364 have an extension “a”, and sensors provided in the lower sensor dome 363 have an extension “b”.
 ニワトリの高さ程度での温度湿度等の計測データと、敷料直上の温度湿度等の計測データは、ニワトリにとって快適な環境を与えるために非常に有効である。敷料直上の湿度は、敷料の湿気を反映する。したがって、敷料をより乾燥させるように鶏舎400の空調を制御しなければならないという指針を得ることができる。 Measured data such as temperature / humidity at the height of the chicken and measured data such as temperature / humidity directly above the laying are very effective for providing a comfortable environment for the chicken. The humidity directly above the bedding reflects the humidity of the bedding. Therefore, it is possible to obtain a guideline that the air conditioning of the poultry house 400 must be controlled so that the litter is further dried.
 また、ニワトリの高さ程度の空間の二酸化炭素濃度やアンモニア濃度を把握することで、換気が不要と判断できる場合には換気量を減少させ、エネルギーの節約になる。もちろん、ニワトリの生活する空間の二酸化炭素が多ければ、床面付近の換気量が増えるようにしなければならない。 Also, by knowing the carbon dioxide concentration and ammonia concentration in the space about the height of the chicken, if it can be determined that ventilation is not necessary, the ventilation volume is reduced, saving energy. Of course, if there is a lot of carbon dioxide in the space where the chicken lives, the ventilation rate near the floor must be increased.
 また、上部センサドーム364には、照度計335およびマイク装置336が設けられていてもよい。照度計335は鶏舎400内の明るさを測定する。またマイク装置336は特定の周波数帯の音量を測定するようにしてもよい。ニワトリが警戒若しくは恐れを感じた際には比較的高音の鳴き声を発する。その音を計測するためである。 The upper sensor dome 364 may be provided with an illuminance meter 335 and a microphone device 336. The illuminometer 335 measures the brightness in the chicken house 400. The microphone device 336 may measure the volume of a specific frequency band. When the chicken feels alert or afraid, it makes a relatively high-pitched call. This is to measure the sound.
 カメラ340は、通常の可視光を撮影できるカメラが搭載される。鶏舎400内は通常25ルクス程度の明るさにされる。したがって、Fナンバーはできるだけ小さなレンズを装着しているのが望ましい。また、撮影に際して照明を当てる必要がある場合があるので、スポットライト340aが備えられていてもよい。 The camera 340 is equipped with a camera that can capture normal visible light. The interior of the poultry house 400 is usually set to about 25 lux. Therefore, it is desirable that the F number has a lens as small as possible. In addition, since it may be necessary to illuminate when photographing, a spotlight 340a may be provided.
 サーモセンサ341は、二次元の撮像面を有するものが望ましい。撮影対象物を温度分布のイメージで見ることができるからである。また、カメラ340とサーモセンサ341は並設し、レンズの光軸は同じ方向を向けておくと、カメラ340で撮影したものの温度分布を観察することができる。カメラ340とスポットライト340aとサーモセンサ341は、本体360の上面に設けられたカメラ塔66に備えられる。 Desirably, the thermosensor 341 has a two-dimensional imaging surface. This is because the object to be photographed can be seen as an image of temperature distribution. If the camera 340 and the thermosensor 341 are arranged side by side and the optical axis of the lens is directed in the same direction, the temperature distribution of the image taken by the camera 340 can be observed. The camera 340, the spotlight 340a, and the thermo sensor 341 are provided in a camera tower 66 provided on the upper surface of the main body 360.
 制御部320は、センサユニット330のセンサ類、走行部310、通信部312、位置検出手段314と接続されている。そして各部へ指示信号を送信し、各部からの信号を受信する。また、制御部320は内部に時計321とメモ3リ22が設けられる。そして、制御部320の動作はメモリ322内部にインストールされた制御プログラム323で制御される。また、目標地点リスト324がメモリ322に記憶される。目標地点リスト324は例えば鶏舎400内の位置座標であってよい。 The control unit 320 is connected to the sensors of the sensor unit 330, the traveling unit 310, the communication unit 312, and the position detection unit 314. Then, an instruction signal is transmitted to each unit, and a signal from each unit is received. In addition, the control unit 320 is provided with a clock 321 and a memory 3 22 inside. The operation of the control unit 320 is controlled by a control program 323 installed in the memory 322. In addition, the target point list 324 is stored in the memory 322. The target point list 324 may be position coordinates in the chicken house 400, for example.
 以上の構成を有する鶏舎監視ロボット301の動作について説明する。図21には、鶏舎監視ロボット301の基本動作のフローを示す。鶏舎監視ロボット301は、自立モードと操縦モードを有する。自立モードは、鶏舎監視ロボッ301が内蔵された制御プログラム323によって鶏舎400内を走行し、予め決められた計測ポイントで環境指数を計測する。 The operation of the poultry house monitoring robot 301 having the above configuration will be described. FIG. 21 shows a flow of basic operations of the poultry house monitoring robot 301. The poultry house monitoring robot 301 has a self-supporting mode and a maneuvering mode. In the independent mode, the chicken house 400 is run by the control program 323 in which the chicken house monitoring robot 301 is built, and the environmental index is measured at a predetermined measurement point.
 図21を参照して、鶏舎監視ロボット301の制御部320が処理を始めると(ステップS400)、初期設定を行う(ステップS402)。初期設定は、時刻合わせ、バッテリー残量確認、最初の目標地点の設定等である。初期設定が終了したら鶏舎監視ロボット301は移動を開始する。 Referring to FIG. 21, when control unit 320 of poultry house monitoring robot 301 starts processing (step S400), initial setting is performed (step S402). The initial setting includes time adjustment, battery remaining amount confirmation, initial target point setting, and the like. When the initial setting is completed, the poultry house monitoring robot 301 starts moving.
 移動を開始したら、帰還条件が満たされたか否かを確認する(ステップS404).帰還条件とは、時刻及びバッテリー残量である。例えば、活動予定時間が決まっている場合には、出発時刻からの経過時間を確認し、活動予定時間を越えていれば帰還条件を満たすことになる。また、活動予定時間内であっても、バッテリーの残量が残り少ない場合は帰還条件を満たすことになる。 When the movement is started, it is confirmed whether or not the feedback condition is satisfied (step S404). The feedback conditions are time and remaining battery capacity. For example, when the scheduled activity time is determined, the elapsed time from the departure time is confirmed, and if the scheduled activity time is exceeded, the feedback condition is satisfied. Even within the scheduled activity time, if the remaining battery level is low, the feedback condition is satisfied.
 帰還条件を満たしたら(ステップS404のY分岐)、目標地点を鶏舎400の充電ステーション406に設定し、移動する。充電ステーション406に到達したら終了する(ステップS420)。 When the return condition is satisfied (Y branch of step S404), the target point is set in the charging station 406 of the poultry house 400 and moved. When the charging station 406 is reached, the process is terminated (step S420).
 帰還条件が満たされていない場合(ステップS404のN分岐)は、目標地点に到達したか否かを判断する(ステップS406)。目標地点とは、鶏舎400内で鶏舎監視ロボット1が移動する移動先の位置である。これは予めメモリ322内に目標地点リスト324として記録されている。初期設定(ステップS402)の際に最初の目標地点が設定されている。したがって、鶏舎監視ロボット301は、この目標地点リスト324の最初の目標地点に向かって移動する。 If the return condition is not satisfied (N branch in step S404), it is determined whether or not the target point has been reached (step S406). The target point is the position of the moving destination where the poultry house monitoring robot 1 moves in the poultry house 400. This is recorded in advance as a target point list 324 in the memory 322. The initial target point is set during the initial setting (step S402). Therefore, the poultry house monitoring robot 301 moves toward the first target point in the target point list 324.
 制御部320は位置検出手段314によって、自分が鶏舎400内のどの位置にいるかを知る。位置検出手段314は、鶏舎400に備えられた基準信号送信器407からの信号によって鶏舎400内の位置を算出する。ここでは鶏舎400にはそれぞれ送信周波数の異なる基準信号送信器407が4つ設けられている。鶏舎監視ロボット301は、これらの信号の受信強度の比から鶏舎400内のいずれの位置にいるかを知ることができる。したがって、自分の位置と目標地点の位置を比較し、その差が小さくなるように走行部310を制御する。 The control unit 320 knows the position in the poultry house 400 by the position detection means 314. The position detection unit 314 calculates the position in the chicken house 400 based on a signal from the reference signal transmitter 407 provided in the chicken house 400. Here, the chicken house 400 is provided with four reference signal transmitters 407 having different transmission frequencies. The poultry house monitoring robot 301 can know the position in the poultry house 400 from the ratio of the received intensity of these signals. Therefore, the own position and the position of the target point are compared, and the traveling unit 310 is controlled so that the difference is reduced.
 図22には、設定された目標地点を例示する。図22を参照して、点線は鶏舎400内を走行する鶏舎監視ロボット301の巡回経路を示す。また、丸で囲んだ数字は、設定された目標地点である。鶏舎監視ロボット301は、巡回経路上に設定された目標地点を数字の順に訪れ、その地点でセンサによる計測を行う。 FIG. 22 illustrates the set target points. Referring to FIG. 22, a dotted line indicates a patrol route of chicken house monitoring robot 301 that travels inside chicken house 400. The numbers in circles are the set target points. The poultry house monitoring robot 301 visits the target points set on the patrol route in numerical order, and performs measurement by the sensors at the points.
 このように、鶏舎400内を巡回することで、鶏舎監視ロボット302は、環境指数を計測するだけでなく、ニワトリの運動を促進する。また、この際に、ニワトリの注意を喚起するため、光スポットの走査、注意喚起ライトの点灯、音の発音を行ってもよい。これらを実施するための装置は、実施の形態1、2、3、4で説明したロボット1、2、3、201が有する構成で実施できる。 As described above, by patrolling the chicken house 400, the chicken house monitoring robot 302 not only measures the environmental index, but also promotes chicken movement. At this time, in order to call attention of the chicken, scanning of a light spot, lighting of a warning light, and sound generation may be performed. An apparatus for implementing these can be implemented by the configuration of the robots 1, 2, 3, and 201 described in the first, second, third, and fourth embodiments.
 再び図21を参照する。目標地点に到達していなければ、再びステップS404から繰り返す。鶏舎監視ロボット301が目標地点に到達したら(ステップS406のY分岐)、停止し、センサ類で環境指数を計測する(ステップ408)。 Refer again to FIG. If the target point has not been reached, the process is repeated from step S404. When the poultry house monitoring robot 301 reaches the target point (Y branch in step S406), it stops and measures the environmental index with sensors (step 408).
 鶏舎監視ロボット301が停止した地点での温度や湿度といった環境指数が本体360の上面側および下面側で計測される。これらの計測データは、測定地点の位置情報および測定時刻と共に通信装置312によって送信される(ステップS410)。 Environmental indices such as temperature and humidity at the point where the poultry house monitoring robot 301 stops are measured on the upper surface side and lower surface side of the main body 360. These measurement data are transmitted by the communication apparatus 312 with the positional information and measurement time of a measurement point (step S410).
 計測データを送信したら、次の目標地点をメモリ322から読み出し、その地点に向かって移動を開始する(ステップ412)。処理のフローはステップS404に戻す。 When the measurement data is transmitted, the next target point is read from the memory 322, and movement toward the point is started (step 412). The process flow returns to step S404.
 このように鶏舎監視ロボット301は基本的に、鶏舎400内を予め決められた目標地点まで移動し、目標地点で環境指数を計測する。そして、計測データを送信するという動作を繰り返す。 Thus, the poultry house monitoring robot 301 basically moves within the poultry house 400 to a predetermined target point, and measures the environmental index at the target point. Then, the operation of transmitting measurement data is repeated.
 鶏舎監視ロボット301は、移動している最中に、カメラ塔366のカメラ340およびサーモセンサ341で周囲を撮影する。また、照度計335およびマイク装置336で周囲の照度や音声を測定する。 The poultry house monitoring robot 301 photographs the surroundings with the camera 340 and the thermo sensor 341 of the camera tower 366 while moving. In addition, the illuminance meter 335 and the microphone device 336 measure ambient illuminance and sound.
 図23に鶏舎監視ロボット301の走行中の動作フローを示す。次の目標地点までの移動が開始されたら(ステップS500)、目標地点に到着したか否かを判断する(ステップS502)。目標地点に到着したら(ステップS502のY分岐)この処理フローは終了する(ステップS520)。環境計測を行うからである。 FIG. 23 shows an operation flow while the poultry house monitoring robot 301 is running. When movement to the next target point is started (step S500), it is determined whether or not the target point has been reached (step S502). When the vehicle arrives at the target point (Y branch of step S502), the process flow ends (step S520). This is because environmental measurement is performed.
 目標地点に到着してなければ(ステップS502のN分岐)、照度が所定の明るさThLより低いか否かを判断する(ステップS504)。鶏舎400内は一定の間25ルクス程度の明るさに維持されているはずであるが、照明装置などに不具合が起こると鶏舎400内で暗い箇所ができる。 If it has not arrived at the target point (N branch in step S502), it is determined whether or not the illuminance is lower than the predetermined brightness ThL (step S504). The inside of the poultry house 400 should be maintained at a brightness of about 25 lux for a certain period of time, but if a malfunction occurs in the lighting device or the like, a dark spot is formed in the poultry house 400.
 また、所定の高周波数帯での音量が閾値Thi以上あるか否かを判断する(ステップS506)。ニワトリは、驚いたり、恐怖を感じたりすると、比較的高音の警戒鳴きを行う。 Further, it is determined whether or not the sound volume in a predetermined high frequency band is equal to or higher than a threshold value Thi (step S506). When the chicken is surprised or frightened, it makes a relatively high-pitched alert.
 また、突発音が生じたか否かを判断する(ステップS508)。ニワトリは比較的継続的な騒音には順応性を示す。しかし、突発音に対しては恐怖を感じるとされる。 Also, it is determined whether or not a sudden sound has occurred (step S508). Chickens are adaptable to relatively continuous noise. However, he is afraid of sudden sounds.
 これらの計測の何れかが観測された場合(ステップS504、S506、S508のY分岐)は、鶏舎監視ロボット1はその場で停止し、現在の位置、時刻および観測結果を送信する(ステップS510)。送信が終了したら、再び移動を開始する(ステップS512)。 If any of these measurements is observed (Y branch of steps S504, S506, S508), the poultry house monitoring robot 1 stops on the spot and transmits the current position, time, and observation result (step S510). . When the transmission is completed, the movement is started again (step S512).
 再び図22を参照して、鶏舎監視ロボット301はコントロールユニット370の操縦装置373で外部から操縦することもできる。監視者は、コントロールユニット370の表示画面372での映像や、鶏舎監視ロボット301からの計測データによって、鶏舎400内に異常を認めた場合などは、操縦装置373で鶏舎監視ロボット301を所望の地点まで移動させる。この際カメラ340の画像によって、ニワトリを間近で観察することができる。 Referring to FIG. 22 again, the poultry house monitoring robot 301 can be operated from the outside by the control device 373 of the control unit 370. If the monitor recognizes an abnormality in the chicken house 400 based on the video on the display screen 372 of the control unit 370 or the measurement data from the chicken house monitoring robot 301, the monitoring device 301 moves the chicken house monitoring robot 301 to a desired location. To move. At this time, the chicken can be observed up close by the image of the camera 340.
 例えば、接触性皮膚炎の有無や羽毛の汚れなどは容易に発見することができる。また、人が見回る場合、趾蹠(シセキ)や膝節といったニワトリの脚部は、逐一抱き上げて観察しなければならなかった。しかし、ニワトリと同じ程度の高さからのカメラ340であれば、歩行するニワトリの足元を観察することで、趾蹠や膝節の感染症を早期に発見することもできる。 For example, the presence or absence of contact dermatitis and feather dirt can be easily detected. In addition, when people looked around, they had to pick up and observe chicken legs such as the heels and knee joints. However, with the camera 340 from the same height as the chicken, it is possible to detect infections of the heels and knee joints at an early stage by observing the feet of the walking chicken.
 また、サーモセンサ341での画像を観察することで、体温が上がっている個体の発見や、逆に体温が低下している個体の発見も可能になる。 In addition, by observing the image with the thermosensor 341, it is possible to discover an individual whose body temperature has risen, and conversely, an individual whose body temperature has decreased.
 コントロールユニット370は、鶏舎監視ロボット301からの計測データを記録する。そしてこれらの計測データを集計するようにしてもよい。記録されたデータは、鶏舎3100内の位置データと観測時刻データが一緒になっている。したがって、鶏舎400内の温度分布や湿度分布とともに、床面の温度湿度についても表示することができる。 The control unit 370 records measurement data from the poultry house monitoring robot 301. And these measurement data may be totaled. In the recorded data, the position data in the poultry house 3100 and the observation time data are combined. Therefore, the temperature and humidity of the floor can be displayed together with the temperature distribution and humidity distribution in the poultry house 400.
 なお、実施の形態1で説明したロボットと鶏舎の照明の関係は、本実施形態で適応してもよく、詳細な説明は省略する。 Note that the relationship between the robot and the lighting of the chicken house described in the first embodiment may be applied in this embodiment, and a detailed description thereof will be omitted.
 実施の形態3、4で説明したロボット3を実際に稼動させた場合のブロイラーの育成状況について試験を行った。ロボット3は、回転可能な回転塔112の上部に3本のレーザーポインターを搭載し、走行中は90°を2秒で走査した。レーザーポインターは赤色(波長635nm)で0.2mWのものを用いた。光スポットはロボット3の前方左手壁床上約50cmのところに発生させた。つまり、ロボット3の手前(走行方向)50cmのところに、3つの光スポットが発生し、90°を約2秒の角速度で走査されている。 A test was conducted on the broiler breeding situation when the robot 3 described in the third and fourth embodiments was actually operated. The robot 3 was equipped with three laser pointers on the upper part of the rotatable rotating tower 112, and scanned 90 ° in 2 seconds while traveling. The laser pointer used was red (wavelength 635 nm) and 0.2 mW. The light spot was generated about 50 cm above the floor of the left hand wall in front of the robot 3. That is, three light spots are generated at a position 50 cm in front of the robot 3 (running direction), and 90 ° is scanned at an angular velocity of about 2 seconds.
 試験は、試験区(ロボット1を走行させた鶏舎50)として6300羽の鶏舎50を使い、対照区として6600羽の鶏舎50を使った。鶏種はチャンキーである。入雛後3日齢の夜から7日齢の朝まで行った。 In the test, 6300 chicken houses 50 were used as test areas (chick houses 50 where the robot 1 was run), and 6600 chicken houses 50 were used as control areas. The chicken species is chunky. After entering the chicks, they went from 3 days old to 7 days old morning.
 日中は8時から9時まで、13時から14時まで、16時から17時までの3回にわたり、人間が鶏舎50内を見回る。そして夜は19時から20時、22時から23時、1時から2時、4時から5時の4回にわたりロボット3が鶏舎50の壁に沿って見回りを行った。 During the day, humans look around the poultry house 3 times from 8 to 9 o'clock, from 13:00 to 14:00, and from 16:00 to 17:00. In the evening, the robot 3 went around the wall of the poultry house 50 four times from 19:00 to 20:00, 22:00 to 23:00, 1 to 2 o'clock, 4 to 5 o'clock.
 ロボット3は3日齢の夜、4日齢の夜、5日齢の夜、6日齢の夜の計16回の見回りを行った。対照区では、夜間のロボット3の走行は行っていない。したがって、試験区のブロイラーは、計16回分だけ対照区のブロイラーより多く運動を行っている。 Robot 3 made a total of 16 tours, 3 days old night, 4 days old night, 5 days old night, and 6 days old night. In the control zone, the robot 3 is not running at night. Therefore, the broilers in the test group exercise more than the broilers in the control group for a total of 16 times.
 7日齢の昼13時から14時の間にそれぞれ450羽の雛の体重を測定した。なお、試験の間、光スポットの走査によって、移動しない個体はなく、したがって、ロボット3が決められたコース上に衝突を発生させることはなかった。 750 weights of 450 chicks were measured between 13:00 and 14:00 at 7 days of age. During the test, there was no individual that did not move due to the scanning of the light spot. Therefore, the robot 3 did not cause a collision on the determined course.
 その結果、入雛時の平均体重は、試験区では46.56g、対照区で48.03gと、試験区の方が対照区より軽かった。これに対して7日齢での体重は試験区では165.00g、対照区では160.90gと、試験区の方が対照区より重くなった。増体倍率も試験区では3.54倍、対照区では3.35倍と、試験区の方が対照区よりも重くなった。 As a result, the average body weight at the time of entering the chick was 46.56 g in the test group and 48.03 g in the control group, and the test group was lighter than the control group. In contrast, the body weight at 7 days of age was 165.00 g in the test group and 160.90 g in the control group, and the test group was heavier than the control group. The multiplication factor was 3.54 times in the test group and 3.35 times in the control group, and the test group was heavier than the control group.
 したがって、ロボット3を鶏舎50内で走行させることで、ニワトリの運動を促進し、ニワトリの食欲が増進し、体重も重くなったと考えられる。これ以後の試験はまだ行っていないが、ロボット3を走行させることで、体重増加に足腰が追従せず、動けなくなる個体の数の減少が、期待できると考えられる。 Therefore, it is considered that by running the robot 3 in the poultry house 50, the chicken's exercise was promoted, the appetite of the chicken was increased, and the weight was also increased. Although the tests after this have not been performed yet, it is considered that by running the robot 3, a decrease in the number of individuals who cannot move because their legs do not follow the increase in body weight can be expected.
 本発明に係るブロイラーの飼育方法は、密飼いされるブロイラーに対して好適に適用することができる。 The broiler breeding method according to the present invention can be suitably applied to broilers kept in close proximity.
1 ロボット
2 ロボット
3 ロボット
10 本体
12 カメラ
14 注意喚起ライト
16 スピーカー
18 回転体
20 ガイドバー
22 マーキング装置
30 キャタピラ
40 本体
41a~41d ローター
43a~43d ローター支柱
45 ガイドフレーム
46 フレームバー
50 鶏舎
52 給餌装置
54 給餌器
56 供給ライン
58 サイロ
60 ライン
62 ライン 
70 監視カメラ
110b 下部筐体
110a 上部筐体
112 回転塔
112w 光照射窓
112d 回転塔112の回動装置
110s バンパー
132a タッチセンサ
120 移動装置
122 光照射装置
122a 光源
122b ポリゴンミラー
122c ポリゴンミラー122bの駆動モータ
123 照射角変更装置
123a ステージ
123b 照射俯角変更モータ
123c 支柱
122d 光源制御装置
140 バッテリー
124 位置検出装置
126 通信装置
128 制御装置
128a MPU
128b メモリ
130 カメラ装置
130a カメラ
132 走行妨害検知装置
144 光スポット
150 親制御装置
152 親通信装置
154 操縦装置
156 入力装置
158 ディスプレイ装置
160 記憶装置
170 基地
172 バッテリー充電器
174 基地通信装置
210 デコイ
212 本体
212s ワイヤー留め
212t ワイヤー留め
213 リフター
213a リフター
213b リフター
214 翼
214a 翼
214b 翼
215 モータ
215a モータ
215b モータ
216 カメラ
216s カメラ
216t カメラ
217 カメラ
218 取付部
222 ワイヤー
222s ワイヤー
222t ワイヤー
250 制御装置
260 ルート
260a ルート
260b ルート
280 ウインチ
280a ウインチ
280b ウインチ
282 支柱
282a 支柱
282b 支柱
283 滑車
283a 滑車
283b 滑車
290 鶏舎
290f 床面
292 給餌装置
294 給餌器
296 供給ライン
298 サイロ
301 鶏舎監視ロボット
310 走行部
310a、310b モータ
312 通信装置
314 位置検出手段
316 バッテリー
320 制御部
321 時計
322 メモリ
323 制御プログラム
324 目標地点リスト
330 センサユニット
331a、331b 温度センサ
332a、332b 湿度センサ
333a、333b 二酸化炭素センサ
334a、334b アンモニアセンサ
335 照度計
336 マイク装置
340 カメラ
340a スポットライト
341 サーモセンサ
360 本体
362 キャタピラ
364 上部センサドーム
363 下部センサドーム
366 カメラ塔
370 コントロールユニット
372 表示画面
373 操縦装置
400 鶏舎
402 換気ファン
403 ブルーダ
404 クーリングパット
405 微調節ファン
406 充電ステーション
407 基準信号送信器
410 給水装置
411 配管
412 フィーダー
413 サイロ
DESCRIPTION OF SYMBOLS 1 Robot 2 Robot 3 Robot 10 Main body 12 Camera 14 Attention light 16 Speaker 18 Rotating body 20 Guide bar 22 Marking device 30 Caterpillar 40 Main body 41a-41d Rotor 43a-43d Rotor support | pillar 45 Guide frame 46 Frame bar 50 Chicken house 52 Feeding device 54 Feeder 56 Supply line 58 Silo 60 Line 62 line
70 surveillance camera 110b lower casing 110a upper casing 112 rotating tower 112w light irradiation window 112d rotating device 110s for rotating tower 112 bumper 132a touch sensor 120 moving device 122 light irradiation apparatus 122a light source 122b polygon mirror 122c driving motor for polygon mirror 122b 123 Irradiation angle changing device 123a Stage 123b Irradiation depression angle changing motor 123c Post 122d Light source control device 140 Battery 124 Position detection device 126 Communication device 128 Control device 128a MPU
128b Memory 130 Camera device 130a Camera 132 Travel disturbance detection device 144 Light spot 150 Parent control device 152 Parent communication device 154 Control device 156 Input device 158 Display device 160 Storage device 170 Base 172 Battery charger 174 Base communication device 210 Decoy 212 Main body 212s Wire clamp 212t Wire clamp 213 Lifter 213a Lifter 213b Lifter 214 Wing 214a Wing 214b Wing 215 Motor 215a Motor 215b Motor 216 Camera 216s Camera 216t Camera 217 Camera 218 Mounting part 222 Wire 222s Wire 222t Wire 250 Controller 260 Route 260a Route 260b Route 280 Winch 280a winch 280b winch 282 support 282a support 82b Post 283 Pulley 283a Pulley 283b Pulley 290 Chicken house 290f Floor 292 Feeder 294 Feeder 296 Supply line 298 Silo 301 Chicken house monitoring robot 310 Traveling part 310a, 310b Motor 312 Communication device 314 Position detection means 316 Battery 320 Control part 321 Clock 322 Memory 323 Control program 324 Target point list 330 Sensor unit 331a, 331b Temperature sensor 332a, 332b Humidity sensor 333a, 333b Carbon dioxide sensor 334a, 334b Ammonia sensor 335 Illuminance meter 336 Microphone device 340 Camera 340a Spotlight 341 Thermo sensor 360 Main body 362 Caterpillar 364 Upper sensor dome 363 Lower sensor dome 366 Camera tower 370 Control unit 372示画 surface 373 pilot controls 400 houses 402 ventilation fan 403 Buruda 404 cooling pad 405 fine adjustment fan 406 charging station 407 reference signal transmitter 410 water supply device 411 pipe 412 feeder 413 silo

Claims (14)

  1.  鶏舎内でニワトリを飼育する方法であって、
     前記鶏舎内で前記ニワトリに給餌する工程と、
     前記鶏舎内でロボットを移動させながら前記ニワトリの運動を促進する工程を有することを特徴とするニワトリの飼育方法。
    A method of raising chickens in a poultry house,
    Feeding the chicken in the poultry house;
    A chicken breeding method comprising a step of accelerating movement of the chicken while moving a robot in the poultry house.
  2.  前記ニワトリの運動を促進する工程では、
     前記鶏舎内の照明が点灯している間に行うことを特徴とする請求項1に記載されたニワトリの飼育方法。
    In the step of promoting the chicken's movement,
    The chicken breeding method according to claim 1, wherein the chicken breeding method is performed while lighting in the poultry house is on.
  3.  前記ニワトリの運動を促進する工程では、
    前記ニワトリに給餌する場所を周囲より明るく照らすことを特徴とする請求項1に記載されたニワトリの飼育方法。
    In the step of promoting the chicken's movement,
    The chicken breeding method according to claim 1, wherein a place where the chicken is fed is brightly illuminated from the surroundings.
  4.  前記ロボットと、
     前記ニワトリに給餌する場所を周囲より明るく照らす照明を連動させ、
    前記ロボットの移動場所に応じて、前記ニワトリに給餌する場所を順次、周囲より明るく照らすこと特徴とする請求項3に記載されたニワトリの飼育方法。
    The robot;
    The lighting that illuminates the place where the chicken is fed brighter than the surroundings is linked,
    The chicken breeding method according to claim 3, wherein the place where the chicken is fed is sequentially illuminated brighter than the surroundings according to the moving place of the robot.
  5.  前記ニワトリの運動を促進する工程では、
     前記ロボットは、光スポットを走査することを特徴とする請求項1に記載されたニワトリの飼育方法。
    In the step of promoting the chicken's movement,
    The chicken breeding method according to claim 1, wherein the robot scans a light spot.
  6.  前記ニワトリの運動を促進する工程では、
     前記ロボットは注意喚起ライトを点灯することを特徴とする請求項1に記載されたニワトリの飼育方法。
    In the step of promoting the chicken's movement,
    2. The chicken breeding method according to claim 1, wherein the robot turns on a warning light.
  7.  前記ニワトリの運動を促進する工程では、
     前記ロボットは音を発することを特徴とする請求項1に記載されたニワトリの飼育方法。
    In the step of promoting the chicken's movement,
    The chicken breeding method according to claim 1, wherein the robot emits a sound.
  8.  前記ロボットは、前記鶏舎内の床面を走行するロボットであることを特徴とする請求項1に記載されたニワトリの飼育方法。 2. The chicken breeding method according to claim 1, wherein the robot is a robot that travels on a floor surface in the poultry house.
  9.  前記ロボットは、前記鶏舎内を飛行するロボットであることを特徴とする請求項1に記載されたニワトリの飼育方法。 2. The chicken breeding method according to claim 1, wherein the robot is a robot that flies in the poultry house.
  10.  前記鶏舎内で前記ニワトリの群れの偏りの有無を検出する工程をさらに有し、
     前記ニワトリの運動を促進する工程は、前記群れに偏りがあるとされた場所で前記ロボットを移動させながら前記ニワトリの運動を促進する工程であることを特徴とする請求項1に記載のニワトリの飼育方法。
    And further detecting the presence or absence of bias of the flock of chickens in the poultry house,
    The chicken of claim 1, wherein the step of promoting the chicken movement is a step of promoting the chicken movement while moving the robot in a place where the flock is biased. Breeding method.
  11.  前記ロボットは、
     走行部と、
     センサユニットと
     通信装置と、
     位置検出手段と
     制御部を有し、
     鶏舎内を走行し、特定の位置で前記センサユニットによる環境計測を行い、計測データを送信することを特徴とする請求項1に記載のニワトリの飼育方法。
    The robot is
    A traveling section;
    A sensor unit, a communication device,
    A position detection means and a control unit;
    The chicken breeding method according to claim 1, wherein the chicken breeding method travels inside a poultry house, performs environmental measurement by the sensor unit at a specific position, and transmits measurement data.
  12.  前記センサユニットは、前記鶏舎の床面直上と前記床面直上点より高い位置に配置されたセンサを有することを特徴とする請求項11に記載のニワトリの飼育方法。 12. The chicken breeding method according to claim 11, wherein the sensor unit includes a sensor disposed at a position directly above the floor surface of the poultry house and a point directly above the floor surface.
  13.  前記計測データは、計測された位置データと共に送信されることを特徴とする請求項11に記載のニワトリの飼育方法。 The chicken breeding method according to claim 11, wherein the measurement data is transmitted together with the measured position data.
  14.  前記センサユニットは、カメラを含むことを特徴とする請求項11に記載のニワトリの飼育方法。 12. The chicken breeding method according to claim 11, wherein the sensor unit includes a camera.
PCT/JP2015/006477 2015-02-20 2015-12-25 Method for raising chickens WO2016132415A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016515169A JP5963068B1 (en) 2015-02-20 2015-12-25 Chicken breeding method

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2015032293 2015-02-20
JP2015-032293 2015-02-20
JP2015044105 2015-03-05
JP2015-044105 2015-03-05
JP2015-067510 2015-03-27
JP2015067510 2015-03-27
JP2015109344 2015-05-29
JP2015-109344 2015-05-29

Publications (1)

Publication Number Publication Date
WO2016132415A1 true WO2016132415A1 (en) 2016-08-25

Family

ID=56692021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/006477 WO2016132415A1 (en) 2015-02-20 2015-12-25 Method for raising chickens

Country Status (2)

Country Link
JP (1) JP6292526B2 (en)
WO (1) WO2016132415A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109754041A (en) * 2017-11-01 2019-05-14 杭州沃朴物联科技有限公司 One breeder board system
CN109766972A (en) * 2017-11-01 2019-05-17 杭州沃朴物联科技有限公司 One breeder board system
WO2020012103A1 (en) * 2018-07-10 2020-01-16 Octopus Robots Autonomous mobile assembly for treating animal bedding/litter in an enclosure comprising a device for keeping animals away
FR3095923A1 (en) * 2019-05-15 2020-11-20 Octopus Robots Self-contained mobile unit for treating litter from an enclosure including an animal removal device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102065717B1 (en) * 2016-12-26 2020-01-13 주식회사 엘지화학 Polarizer protecting film, polarizer plate comprising the same, liquid crystal display comprising the polarizer plate, and coating composition for polarizer protecting film
JP6912055B2 (en) * 2017-03-30 2021-07-28 スズキ株式会社 Weed treatment equipment
JP6855060B2 (en) * 2017-04-28 2021-04-07 株式会社 フュー・テクノロジー Poultry system
US11250960B2 (en) 2017-12-14 2022-02-15 Sony Corporation Sensor device, method of processing sensor device, and sensor network system
WO2019146416A1 (en) * 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 Poultry raising system, poultry raising method, and program
US20220044063A1 (en) * 2018-11-29 2022-02-10 Panasonic Intellectual Property Management Co., Ltd. Poultry raising system, poultry raising method, and recording medium
TWI674841B (en) * 2018-12-17 2019-10-21 國立屏東科技大學 Poultry capturing apparatus
JP7376078B2 (en) 2019-11-20 2023-11-08 国立大学法人 鹿児島大学 Free-range chicken house management system
JP7440323B2 (en) 2020-03-31 2024-02-28 三機工業株式会社 Air terminal inspection device, inspection method, and inspection system
KR20220045675A (en) * 2020-10-06 2022-04-13 삼성전자주식회사 A station for the pet care robot
GB202104534D0 (en) 2021-03-30 2021-05-12 Izario Poultry Robotics Ltd Autonomous Poultry Robot
JP7479065B2 (en) 2022-04-21 2024-05-08 株式会社中嶋製作所 Livestock barn cleaning equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002233673A (en) * 2001-02-08 2002-08-20 Khaos Omocha Kobo:Kk Irregularly moving body
JP2008282073A (en) * 2007-05-08 2008-11-20 Matsushita Electric Ind Co Ltd Pet guiding robot and pet guiding method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07102057B2 (en) * 1993-06-25 1995-11-08 全国農業協同組合連合会 Livestock feeding management system
JP2004016182A (en) * 2002-06-20 2004-01-22 Sharp Corp Cultivation robot system
JP2012191903A (en) * 2011-03-17 2012-10-11 Nikon Corp Plant sorting device, robot, plant cultivation system, plant sorting method, and program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002233673A (en) * 2001-02-08 2002-08-20 Khaos Omocha Kobo:Kk Irregularly moving body
JP2008282073A (en) * 2007-05-08 2008-11-20 Matsushita Electric Ind Co Ltd Pet guiding robot and pet guiding method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109754041A (en) * 2017-11-01 2019-05-14 杭州沃朴物联科技有限公司 One breeder board system
CN109766972A (en) * 2017-11-01 2019-05-17 杭州沃朴物联科技有限公司 One breeder board system
WO2020012103A1 (en) * 2018-07-10 2020-01-16 Octopus Robots Autonomous mobile assembly for treating animal bedding/litter in an enclosure comprising a device for keeping animals away
FR3083665A1 (en) * 2018-07-10 2020-01-17 Octopus Robots AUTONOMOUS MOBILE ASSEMBLY FOR TREATING LITTER OF AN ENCLOSURE COMPRISING AN ANIMAL REMOVAL DEVICE
FR3095923A1 (en) * 2019-05-15 2020-11-20 Octopus Robots Self-contained mobile unit for treating litter from an enclosure including an animal removal device

Also Published As

Publication number Publication date
JP2016202184A (en) 2016-12-08
JP6292526B2 (en) 2018-03-14

Similar Documents

Publication Publication Date Title
JP6292526B2 (en) Environmental measurement robot
US11019805B2 (en) Robot assisted surveillance of livestock
RU2615470C2 (en) System to avoid collision with animals
US7434541B2 (en) Training guidance system for canines, felines, or other animals
US9907294B2 (en) Control feeding pan and feeding system for poultry keeping
US10426140B2 (en) Data-acquiring and reporting animal collar
FR3044868A1 (en) MOBILE EDUCATIONAL ROBOT FOR ANIMAL HUSBANDRY AND ANIMAL FARMING USING ONE OR MORE ROBOTS
CN101014240A (en) Training guidance system for canines, felines, or other animals
JP5963068B1 (en) Chicken breeding method
CN109963465A (en) For the system and method via unmanned vehicle identity comprising the harmful organism in the region of crops
US10076111B2 (en) Game alert system
KR101698315B1 (en) Bird&#39;s nest
US9072288B1 (en) Solar powered owl systems
ES2967263T3 (en) Surveillance and intervention set for breeding premises
JP3187091U (en) Pest repelling device
US20230129369A1 (en) Method and System for Remote Monitoring, Care and Maintenance of Animals
CA2573755A1 (en) Training guidance system for canines, felines, or other animals
US20200352134A1 (en) Method and device for raising juvenile farm animals
US20230037568A1 (en) Method and system for remote monitoring, care and maintenance of an animal
US11557142B1 (en) Home wildlife deterrence
JP2022104060A (en) Flight type robot, control program of flight type robot, and control method of flight type robot
JP2023098220A (en) Flight type robot, control program of flight type robot and control method of flight type robot
KR102231599B1 (en) Fastening device for drone used in livestock management and livestock management system including the same
JPH018134Y2 (en)
CN210519787U (en) Ecological poultry house colony house of breeding

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016515169

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15882520

Country of ref document: EP

Kind code of ref document: A1