WO2016132056A1 - Structure de support et d'ancrage d'eolienne maritime du type tour treillis et procede de remorquage et depose en mer - Google Patents

Structure de support et d'ancrage d'eolienne maritime du type tour treillis et procede de remorquage et depose en mer Download PDF

Info

Publication number
WO2016132056A1
WO2016132056A1 PCT/FR2016/050340 FR2016050340W WO2016132056A1 WO 2016132056 A1 WO2016132056 A1 WO 2016132056A1 FR 2016050340 W FR2016050340 W FR 2016050340W WO 2016132056 A1 WO2016132056 A1 WO 2016132056A1
Authority
WO
WIPO (PCT)
Prior art keywords
tower
box
panels
sea
base
Prior art date
Application number
PCT/FR2016/050340
Other languages
English (en)
Inventor
Christophe Colmard
Original Assignee
Saipem S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saipem S.A. filed Critical Saipem S.A.
Publication of WO2016132056A1 publication Critical patent/WO2016132056A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B17/02Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor placed by lowering the supporting construction to the bottom, e.g. with subsequent fixing thereto
    • E02B17/027Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor placed by lowering the supporting construction to the bottom, e.g. with subsequent fixing thereto steel structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • B63B2035/446Floating structures carrying electric power plants for converting wind energy into electric energy
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B2017/0039Methods for placing the offshore structure
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B2017/0056Platforms with supporting legs
    • E02B2017/0073Details of sea bottom engaging footing
    • E02B2017/0086Large footings connecting several legs or serving as a reservoir for the storage of oil or gas
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B2017/0091Offshore structures for wind turbines
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H2012/006Structures with truss-like sections combined with tubular-like sections

Definitions

  • the present invention relates to wind turbines installed offshore, at sea. More particularly, the technical field of the invention is that of the manufacture, transport and installation of support structure and anchoring to the seabed.
  • wind turbines for the production of electrical energy especially offshore wind turbines of very large capacity, intended to be installed at sea, especially offshore and in large numbers to form wind farms.
  • a marine wind turbine generally includes a multi-blade, horizontal axis engine and an electric generator coupled to the engine, which are attached to the upper end of a vertically elongated support such as a mast or pylon supported by a structure.
  • the wind turbines installed at sea are generally assembled on site on a support and anchoring structure forming a base resting and / or anchored to the bottom, support structure whose upper end. comprises a superior device adapted to receive the pylon of the wind turbine, in particular a device provided with a flange on which an identical counter flange, integral with the pylon of the wind turbine is bolted to ensure the installation of the assembly.
  • the invention applies particularly, that is to say without limitation, to wind turbines comprising a generator whose power is in a range from 100kW to 10 MW; the mass of such a generator can reach or exceed 300 or 500 tons; the length of a pylon supporting this generator may be of the order of 50 to 100 meters, and the mass of the tower may be in a range of 100 to 500 tons.
  • the construction, transport and installation of such wind turbine support structures and their installation at sea is difficulties.
  • Various solutions have been proposed for the construction, transport and installation of offshore wind turbines and their supporting and anchoring structure.
  • Marine wind turbines have been described in WO 01/34977 and WO 03/004870 for example. They are mounted on the ground and then transported by boat to their off-shore offshore operation site.
  • a first embodiment consists in placing on the ground a solid gravity base type or solid gravity base but weighted resting on the sea floor and ensuring an anchoring by its own weight, at the top of which is secured a flange on which we come position the pylon of the wind turbine equipped with an identical counter-flange.
  • the support structure and anchoring device of the type called "jacket” comprises a lattice structure forming a tower of truncated polyhedron shape, in particular parallelepipedal shape or preferably truncated pyramidal shape, consisting of an assembly of: a plurality of at least three, preferably at least 4 tubes or beams in elevation arranged to form the edges of said tower, and
  • each tube or beam in elevation being assembled to each of the two adjacent tubes by (a) first tubes or beams of horizontal junctions (perpendicular to the axis of the tower), and (b) second tubes or junction beams arranged in tilt in chevrons or preferably diagonally intersecting between said two tubes or beams in elevation, said second tubes or junction beams extending between said first horizontal junction tubes and connecting them also, and these first and second tubes junction forming the partially open faces of said tower.
  • Such a structure supports a superior support and fixing device for receiving the base of the pylon of said wind turbine, in particular in the form of a tubular cavity, said upper device remaining above the surface of the sea when said structure is installed at the bottom of the sea.
  • said tower is at least partly of truncated pyramid shape, rising over a height (H) of at least 2 times, preferably 3 times the width (L) of its base.
  • H height
  • L width
  • a first solution consists of a transport on a barge and then deposited by a crane of large sizes and therefore expensive given the mass and size of this tubular structure.
  • Another solution is the addition of floats attached to the structure for towing the floating structure and then deposited at the bottom of the sea ballast floats. But, this solution is also expensive because it requires local reinforcements on the structure so as to pass the efforts at the fixations of the floats on the structure.
  • the present invention aims to facilitate the installation of a support structure and anchor wind turbine type tubular structure or "jacket" on a submerged site far from the coast, proposing support structure and wind turbine anchor simpler to build and to install.
  • the object of the present invention is to provide a new method of transport and removal of base type improved tubular structure, including both easier and less expensive to implement than the methods of the prior art .
  • the problem to be solved according to the present invention is to provide a new wind turbine base tubular structure whose transport and installation is improved.
  • the present invention provides a method of transport and deposits at the bottom of the sea an underwater structure for supporting and anchoring a marine equipment, preferably a wind turbine, said support underwater structure. and anchoring comprising an open structure consisting of beams and / or tubes assembled lattice forming a tower, preferably a tubular structure, in which the following steps are performed: a) the tower is towed at sea, then b) we go down said tower at the bottom of the sea, characterized in that:
  • step b) panels are applied at least on a lower portion of said tower, side panels thus closing the openings of said outer faces of said tower so as to form the walls lateral of at least one first buoyancy chamber and ballasting closed by at least one lower panel applied beneath said lateral panels, said first box being preferably equipped with at least one valve opening on the outside, and
  • step b) at least partially said first chamber is filled with seawater to lower said tower to the bottom of the sea, preferably said first chamber remaining partially filled with seawater.
  • the tower and said first caisson have a height greater than the depth of the sea floor or they must be installed so that an upper panel closing the first caisson is not necessary.
  • said first box is fully immersed during the descent, is applied before at least one upper panel applied to said side panels to achieve a first closed floating box and sealed ballast.
  • said tower is fixed at its lower end on a base adapted to rest at the bottom of the sea, preferably a concrete slab, the upper surface of said base forming said lower panel of a said first box. This embodiment is advantageous because it does not require the mounting of the lower panel.
  • Said base may be solid solid or preferably hollow capable of being filled with ballasting means, in particular aggregates of high density materials such as iron granules, or preferably water.
  • a hollow base facilitates the flotation of the tower for the application of said panels and then the towing of the tower, said second floating caisson with the tower completely out of water, before the filling of said base and the filling of said first caisson for the descent from the tower and said base to the sea floor.
  • said base is hollow and forms a second box, preferably made of concrete, which is filled with ballasting means, preferably water, in step b).
  • ballasting means preferably water
  • step a) of towing the internal volume of said first box can remain entirely or partially empty; and the tower can float wholly or partially out of water.
  • step a) if the first box is partially filled with water.
  • step b) said first well is further filled with seawater (as well as, if appropriate, said hollow base to which it is attached) to lower said tower to the bottom of the sea.
  • said first caisson is progressively filled with seawater to lower said tower to the bottom of the sea.
  • the tower by its own weight has no buoyancy in the absence of flotation element provided by said first box to less partially empty and / or said hollow base on which it is fixed.
  • the dimensioning of said first box depends on the weight and the size of the tower and said base on the one hand and the depth of installation of the base at the bottom of the sea.
  • the present invention essentially consists in adding panels around the tubular structure to arrange by the same a floatation and ballast casing used to immerse the structure partially for its towing at sea and completely for its removal at the bottom of the sea.
  • the structure itself becomes a float and the interior empty space thus developed becomes a simple ballast compartment to be used to carry out the immersion.
  • the method according to the present invention involves the implementation of several panels that are easy to build in concrete or steel, and easy to install that does not require gigantic handling means.
  • the method according to the invention amounts to using the tubular structure as a frame on which is fixed temporarily panels that will plug the holes of the structure to make it floating for transport and installation.
  • the panels form a shell around the structure and it becomes possible to use the volume inside this shell by filling more or less water to change the immersion of the structure.
  • the sizing and positioning of said first box and the possible partial filling rate can be determined as a function of the weight and volume of said tubular structure so that the metacentric height (GM) of said tubular structure remains positive and the structure tubular of the base once equipped with said panels according to the invention remains stable during its towing at sea, preferably with a shallow draft.
  • the term "metacentric height" (GM) here refers to the distance between the center of gravity of said tower (G) and its metacentre (M).
  • the metacentre is defined as the intersection between the axis of the resultant buoyancy thrust applied to the center of buoyancy or center of hull and the vertical axis passing through the center of gravity.
  • the stability of the structure given by the invention is sufficiently important so that it is possible to achieve the installation by ballasting only one large compartment of said first caisson thus defined by the invention, which simplifies the installation sequence.
  • Said first box is equipped with a valve opening on the outside, preferably a plurality of valves of different diameters opening them on the outside to allow for those of smaller diameter slow and controlled ballasting during the immersion phase and for the others of larger diameter rapid ballasting once the base is placed.
  • These valves can also be connected to flexible hoses connected to an assistance boat with pumps in order to debal laster said first box as needed.
  • the compartment of said first box can be from 10000 to 15000 m 3 , to install it at 10 to 100m deep with a base of 2500 to 15000 T .
  • the panels are mainly maintained by the difference in water pressure and the fixing and sealing system is therefore very simplified.
  • the panels do not need to be fixed very securely because it is the pressure of the external water which ensures predominantly their maintenance on the structure.
  • said panels are equipped with seals which seal said first box under the force of the external pressure of the water in step b).
  • At least said side panels consist of hollow walls constituting third flat boxes providing additional buoyancy.
  • This embodiment facilitates handling and improve the flotation panels.
  • flat box means a box whose thickness is less than 1/5 of the width.
  • said third boxes are equipped with valves opening on the outside, preferably valves of different diameters according to the second chambers to allow for those of smaller diameter slow and controlled ballasting during the immersion phase and for others larger diameter rapid ballasting once the base is installed.
  • These valves can also be connected to flexible hoses connected to an assistance boat with pumps in order to deballaster said third box as needed.
  • step b the said first box is completely filled before dismounting and raising said panels.
  • the panels are then recovered.
  • the filling of the central compartment allows the pressure to be equalized on both sides of the panels and thus to be able to disassemble them without forcing.
  • the lower panel can be left in place without being disassembled because it can participate in the stability of the tubular structure, particularly with respect to the lower panel in the case where the seabed is loose.
  • said first box extends over a height H1 protruding above the level of the sea surface when said support and anchoring structure rests at the bottom of the sea. More particularly, said first box extends over a height (H1) at least equal to half the height (H) of said tower from its lower end.
  • said first box defines a single large central compartment not partitioned.
  • said tower comprises an upper platform supporting a higher device, in particular a tubular cavity, supporting or adapted to receive the base of the pylon of a wind turbine, which is implemented preferably after step b).
  • the present invention also relates to an underwater support and anchoring structure comprising an open structure consisting of beams and / or tubes assembled in lattice forming a tower, preferably a tubular structure, equipped with panels forming at least a first box of at least a first box useful in a method according to the invention and as defined above, said panels being removably applied at least on a lower portion of said tower, side panels thus closing the openings of the faces external of said tower so as to form the side walls of at least a first box closed by at least one lower panel applied below said side panels.
  • FIG. 1 shows a view of a support structure and anchor lattice tower type (1) according to the invention during assembly of the panels for the manufacture of said first box;
  • FIG. 2 represents a view of a support and anchoring structure of lattice tower type (1) equipped with a massive gravity base 4 at its base
  • FIG. 3 shows the fixing of panels 2 on a lattice tower 1 by means of a crane 13 on a platform 12
  • FIG. 4 represents a view of a lattice tower type support and anchor structure (1) equipped with a said first buoyancy and ballast caisson (3) during surface ballasting,
  • FIG. 5 is a diagrammatic view of the partial filling of said first box of a lattice tower according to the invention during its immersion at sea;
  • FIG. 6 shows a support structure with its float chamber 3 completely immersed at the bottom of the sea
  • FIG. 7 shows the detail of the fixing with seals 5 of the hollow panels forming a second box 6 on the tubular structure
  • FIG. 8 shows a tower at the bottom of the sea after removal of the panels, the support structure in place supporting a wind turbine.
  • FIG. 1 there is described a first embodiment of a lattice tower 1 according to the invention of truncated pyramid shape, comprising the assembly of following tubular elements.
  • Each face of the truncated pyramid forming said tower is constituted by, on the one hand, two adjacent tubes in elevation and, on the other hand, by junction tubes lb, ensuring the connection between adjacent elevation tubes.
  • the junction tubes between two tubes in elevation include the first horizontal junction tubes as well as pairs of second connecting tubes arranged diagonally lb and intersecting in their middle. On all four sides, the different junction tubes arrive at the same height levels between the four faces.
  • an upper platform 1d closing the truncated pyramid and supporting a tubular cavity 1c, intended to receive a tower 5a of a wind turbine 5 (as shown in FIG. 4).
  • the tubular cavity is itself supported by inclined junction tubes lk ensuring its holding on the platform ld.
  • external gussets 1h provide the junction with guide tubes 1f in which anchoring piles 1g are introduced to anchor the lattice tower 1 in the soil at the bottom of the sea 11.
  • FIG 1 there is shown side panels 2a applied against two faces in elevation of the pyramidal structure 1, the panels 2a being applied against said tubes in elevation la and said junction tubes 1a, 1b.
  • At the base of the tower 1 is applied a lower panel 2c for closing the box 3 formed by the side panels 2a, said box 3 may also be closed in the upper part by an upper panel 2b.
  • At least side panels 2a and / or upper 2b may comprise at least one valve 2al, 2bl, for evacuating and / or introducing water inside the buoyancy chamber 3 formed by the assembly of panels 2a, 2b and 2c.
  • FIG. 2 shows an alternative embodiment of a lattice tower 1 according to the invention, comprising a parallelepiped-shaped lower portion 1-1 extending through a truncated pyramid-shaped top portion 1-2 which includes its top an upper platform ld supporting a tubular cavity the fixing of the mat.
  • the lattice tower is fixed at its base to a solid or hollow concrete slab 4 constituting a gravity base capable of ensuring the anchoring of the lattice tower 1 at the bottom of the sea.
  • the panels 2a forming the buoyancy chamber 3 arrive just at the upper face 4a of the gravity base 4, said upper face 4a thus forming the lower panel 2c of said buoyancy chamber 3.
  • FIG 3 there is shown the attachment of panels 2 on a lattice tower 1 with a crane 13 on a dock 12 port.
  • the lattice tower is held on the surface in the absence of ballasting of the first box 3 and the base 4 which is itself a second hollow box as shown in Figures 3 and 4.
  • the ballast of the hollow base 4 is made with water before ballasting the first box 3 which is filled with water using a pipe 8 connected to the valve 2al and a pump 9a aboard a service ship 9 to perform the descent from the tower to the bottom of the sea.
  • the base 4 is solid and massive, it is possible, before towing at sea, immerse said base with a device type elevator and apply the panels once the tower and its base deposited in the bottom of the sea then déballaster said first box to return the tower in water before towing at sea to the installation site at the bottom of the sea.
  • FIG. 5 shows the lattice tower 1 in partial immersion because of the partial filling over a height h 1 of the buoyancy chamber 3, allowing the lattice tower 1 to be lowered to its installation site at the bottom of the Due to the fact that the height h 1 of water inside the buoyancy chamber 3 remains always less than the height of water h 2 on the one hand and that the side panels 2 a are always partially immersed, the hydrostatic pressure differential between the outside and the inside of the casing ensures a fastening ensuring the waterproofness of the buoyancy chamber 3.
  • the panels 2a and 2b are applied to the tubular structure with seals 5 interposed between the lateral sides of the panels and the tubes 1a and 1c respectively, as shown in FIG. not shown may be interposed between the horizontal tubes and the lower side of a first panel and between the upper side of a second panel juxtaposed below said first panel, the size of the panels being such that there is always a tube of the tubular structure at the juxtaposition and joining two panels.
  • the panels can nest into each other at their adjacent edges of complementary shapes forming rails and grooves by crushing a seal in a said groove.
  • the volume of water 3b is increased inside the box 3 and the empty volume 3a of the box 3 is reduced.
  • first buoyancy chamber 3 progressively as shown in FIG. 5. Once the support structure 21 resting at the bottom of the sea 11, the buoyancy chamber 3 is completely filled with water to eliminate the hydrostatic pressure differential and to facilitate disassembly and removal. surface recovery of side panels 2a.
  • the lateral panels 2a can be replaced by third boxes as shown in FIG. 7.
  • the third caissons 6 are gradually filled with water for the descent of the structure to the bottom of the sea and they are emptied via the valves 6a and 6a.
  • pipe 8 by pumping 9a from the ship 9 on the surface to go back to the surface after disassembly.
  • the tower 5a of the wind turbine 5 is adapted to the tubular cavity 1 at the top of the tower 1, once the panels 2 have been dismounted and raised to the surface by means of crane means 9b aboard the ship 9 on the surface 10.
  • the wind turbine according to the invention comprises a pylon with a height of 5 to 150 m, preferably at least 100 m in height, whose tubular wall has a diameter of more than 2 to 10 m, more particularly from 6 to 7 m.
  • the tower comprises a parallelepipedal and / or pyramidal structure of square section at its base of at least 10 m, preferably at least 20 m side and rises to a height H of 60 m.
  • the first water box 3 rises on a height Hl representing approximately between Vi and 1 of the height H.
  • the offshore wind turbine consists of a 300 to 500 T generator and a pylon of about 6 m in diameter and about 90 to 120 m in height, weighing about 300 to 400 T.

Abstract

La présent e invention concerne un procédé de transport et dépose au fond de la mer d'une structure sous-marine de support et d'ancrage d'un équipement marin, ladite structure sous-marine de support et d'ancrage comprenant une structure ouvert e constituée de poutres et/ou tubes assemblés en treillis formant une tour (1), dans lequel on réalise les étapes suivantes: a) on remorque ladite tour en mer, puis b) on descend ladite tour au fond de la mer, caractérisé en ce que : - avant l'étape b), de préférence avant l'étape a), on applique des panneaux (2, 2a, 2b, 2c) au moins sur une partie inférieure (1-1) de ladite tour, de manière à former au moins un premier caisson de flottaison et ballast age (3) étanche, ledit premier caisson étant de préférence équipé d'au moins une vanne ouvrant sur l'extérieur, et - à l'étape b), on remplit ledit premier caisson en eau de mer pour descendre ladite tour jusqu'au fond de la mer, de préférence ledit premier caisson restant partiellement seulement rempli d'eau de mer.

Description

Structure de support et d'ancrage d'éolienne maritime du type tour treillis et procédé de remorquage et dépose en mer
La présente invention est relative aux éoliennes installées au large des côtes, en mer. Plus particulièrement, le domaine technique de l'invention est celui de la fabrication, du transport et de l'installation de structure de support et d'ancrage au sol marin d'éolienne de production d'énergie électrique, plus particulièrement d'éoliennes offshore de très grande capacité, destinées à être installées en mer, plus particulièrement au large des côtes et en grand nombre pour former des champs d'éoliennes.
Une éolienne marine comporte généralement un moteur à plusieurs pales et à axe horizontal, ainsi qu'un générateur électrique accouplé au moteur, qui sont fixés à l'extrémité supérieure d'un support allongé verticalement tel qu'un mât ou pylône supporté par une structure de support et d'ancrage au fond de la mer. Les éoliennes installées en mer sont en général assemblées sur site sur une structure de support et d'ancrage formant une embase reposant et/ou ancrée au fond, structure support dont l'extrémité supérieure comprend un dispositif supérieur apte à recevoir le pylône de l'éolienne, notamment un dispositif muni d'une bride sur laquelle une contre-bride identique, solidaire du pylône de l'éolienne est boulonnée pour assurer l'encastrement de l'ensemble.
L'invention s'applique particulièrement, c'est-à-dire non limitativement, aux éoliennes comportant un générateur dont la puissance est située dans une plage allant de lOOkW à 10 MW ; la masse d'un tel générateur peut atteindre ou dépasser 300 ou 500 tonnes ; la longueur d'un pylône supportant ce générateur peut être de l'ordre de 50 à 100 mètres, et la masse du pylône peut être située dans une plage allant de 100 à 500 tonnes. La construction, le transport et l'installation de telles structure support d'éoliennes et leur installation en mer présente de grandes difficultés. On a proposé différentes solutions pour la construction, le transport et l'installation des éoliennes offshore et de leur structure de support et d'ancrage.
Les solutions proposées impliquent la mise en œuvre en général de moyens de levage par traction conventionnelle avec des engins de levage du type grue. Toutefois, les structures support et éoliennes une fois construites représentent de grandes dimensions et des charges importantes, et leur installation à l'aide de grues agissant par traction requiert des grues de grandes dimensions, et notamment d'une hauteur supérieure à celle de la structure et de l'éolienne. Pour des éoliennes des dimensions mentionnées ci-dessus, il est nécessaire de mettre en œuvre des grues d'au moins 350 tonnes munies de flèche de levage d'au moins 50m, généralement de près de 100 m de long, de telles grues étant difficiles à monter et à déplacer, notamment à transporter et à opérer en mer. On peut difficilement envisager de transporter de tels moyens de levage du type grue sur des barges flottantes, comme cela peut être le cas dans certaines opérations des champs pétroliers offshore, compte tenu des coûts importants occasionnés.
Des éoliennes maritimes ont été décrites dans WO 01/34977 et WO 03/004870 par exemple. Elles sont montées à terre puis transportées par bateau sur leur site d'opération en mer au large des côtes.
Plusieurs types de structure de support et d'ancrage d'éolienne sont connus. Un premier mode de réalisation consiste à poser sur le sol une structure de type embase gravitaire massive pleine ou creuse mais lestée reposant sur le sol marin et assurant un ancrage de par son propre poids, au sommet de laquelle est solidaire une bride sur laquelle on vient positionner le pylône de l'éolienne équipée d'une contre-bride identique.
Selon un autre mode de réalisation, la structure de support et d'ancrage du type dénommé « Jacket » comprend une structure en treillis formant une tour de forme de polyèdre tronqué, notamment forme parallélépipédique ou de préférence de forme pyramidale tronquée, constituée d'un assemblage de: - une pluralité d'au moins trois, de préférence au moins 4 tubes ou poutres en élévation disposés de manière à formant les arêtes de ladite tour, et
- chaque tube ou poutre en élévation étant assemblé à chacun des deux tubes adjacents par (a) des premiers tubes ou poutres de jonctions horizontaux (perpendiculaires à l'axe de la tour), et (b) des deuxièmes tubes ou poutres de jonction disposés en inclinaison en chevrons ou de préférence en diagonal en s'entrecroisant entre deux dits tubes ou poutres en élévation, lesdits deuxièmes tubes ou poutres de jonction s'étendant entre lesdits premiers tubes de jonction horizontaux et les reliant également, et ces premiers et deuxièmes tubes de jonction formant les faces en partie ouverte de ladite tour.
Une telle structure supporte un dispositif supérieur de support et fixation destiné à recevoir la base du pylône de ladite éolienne, notamment sous forme d'une cavité tubulaire, ledit dispositif supérieur restant émergé au-dessus de la surface de la mer lorsque la dire structure est installée au fond de la mer.
Typiquement, ladite tour est de forme au moins en partie de pyramide tronquée, s'élevant sur une hauteur (H) d'au moins 2 fois, de préférence 3 fois la largeur (L) de sa base. Ce type d'embase à structure tubulaire ouverte est très avantageux du fait de sa faible prise à la houle une fois installée au fond de la mer. Toutefois le transport et la dépose de cet embase à structure tubulaire soulève des difficultés du fait de sa grande dimension. II existe plusieurs façons de transporter et d'installer des structures tubulaires perméables de grandes dimensions de ce type.
Une première solution consiste en un transport sur une barge puis dépose par une grue de tailles importantes et donc coûteuses compte tenu de la masse et encombrement de cette structure tubulaire. Une autre solution consiste dans l'ajout de flotteurs fixés à la structure pour transporter par remorquage la structure en flottaison puis dépose au fond de la mer par ballastage des flotteurs. Mais, cette solution est aussi onéreuse car elle nécessite des renforts locaux sur la structure de manière à faire passer les efforts au niveau des fixations des flotteurs sur la structure.
Dans WO 03/0666426 et WO2011/007066 au nom de la demanderesse on a décrit des moyens de transport et dépose au fond de la mer d'éolienne et de leur structure de support et d'ancrage à l'aide d'un navire du type catamaran. Du fait du nombre important d'embases à poser par champ, il est nécessaire de développer une embase impliquant des moyens de transport et de pose moins coûteux à mettre en œuvre.
La présente invention vise à faciliter l'installation d'une structure de support et ancrage d'éolienne du type à structure tubulaire ou « jacket » sur un site immergé loin des côtes, proposant structure de support et ancrage d'éolienne plus simple à construire et à installer.
Plus particulièrement, le but de la présente invention est de fournir un nouveau procédé de transport et dépose d'embase du type à structure tubulaire amélioré, notamment à la fois plus facile et moins coûteux à mettre en œuvre que les procédés de l'art antérieur.
Aussi, le problème à résoudre selon la présente invention est de réaliser une nouvelle embase d'éolienne à structure tubulaire dont le transport et l'installation est améliorée. Pour ce faire, la présente invention fournit un procédé de transport et dépose au fond de la mer d'une structure sous-marine de support et d'ancrage d'un équipement marin, de préférence une éolienne, ladite structure sous-marine de support et d'ancrage comprenant une structure ouverte constituée de poutres et/ou tubes assemblés en treillis formant une tour, de préférence une structure tubulaire, dans lequel on réalise les étapes suivantes: a) on remorque ladite tour en mer, puis b) on descend ladite tour au fond de la mer, caractérisé en ce que :
- avant l'étape b), de préférence avant l'étape a), on applique des panneaux au moins sur une partie inférieure de ladite tour, des panneaux latéraux obturant ainsi les ouvertures desdites faces externes de ladite tour de manière à former les parois latérales d'au moins un premier caisson de flottaison et ballastage fermé par au moins un panneau inférieur appliqué dessous lesdits panneaux latéraux, ledit premier caisson étant de préférence équipé d'au moins une vanne ouvrant sur l'extérieur, et
- à l'étape b), on remplit au moins partiellement ledit premier caisson en eau de mer pour descendre ladite tour jusqu'au fond de la mer, de préférence ledit premier caisson restant partiellement seulement rempli d'eau de mer.
En général la tour et ledit premier caisson ont une hauteur supérieure à la profondeur du sol marin ou ils doivent être installés de sorte qu'un panneau supérieur fermant le premier caisson n'est pas nécessaire. Toutefois, si ledit premier caisson est entièrement immergé lors de la descente, on applique préalablement au moins un panneau supérieur appliqué dessus lesdits panneaux latéraux pour réaliser un premier caisson de flottaison et ballastage étanche fermé. De préférence, ladite tour est fixée à son extrémité inférieure sur une embase apte à reposer au fond de la mer, de préférence une galette en béton, la surface supérieure de ladite embase formant ledit panneau inférieur d'un dit premier caisson. Ce mode de réalisation est avantageux car il ne nécessite pas le montage du panneau inférieur.
Ladite embase peut être massive pleine ou de préférence creuse apte à être remplie de moyens de lestage, notamment des granulats de matériaux de haute densité tels que des granulats de fer, ou de préférence de l'eau. Une embase creuse facilite la flottaison de la tour pour l'application desdits panneaux puis le remorquage de la tour, ledit deuxième caisson flottant avec la tour entièrement hors d'eau, avant le remplissage de ladite embase puis le remplissage dudit premier caisson pour la descente de la tour et de ladite embase jusqu'au sol marin.
De préférence, ladite embase est creuse et forme un deuxième caisson, de préférence en béton, que l'on remplit de moyens de lestage, de préférence de l'eau, à l'étape b).
A l'étape a) de remorquage, le volume interne dudit premier caisson peut rester entièrement ou partiellement vide ; et la tour peut flotter en étant entièrement ou partiellement hors d'eau. Toutefois, à l'étape a), si le premier caisson est rempli partiellement d'eau. Dans ce cas, à l'étape b), on remplit davantage ledit premier caisson en eau de mer (ainsi que le cas échéant ladite embase creuse sur laquelle elle est fixée) pour descendre ladite tour jusqu'au fond de la mer. De préférence, à l'étape b), on remplit progressivement ledit premier caisson en eau de mer pour descendre ladite tour jusqu'au fond de la mer.
La tour de par son poids propre ne présente aucune flottabilité en l'absence d'élément de flottaison apporté par ledit premier caisson au moins partiellement vide et/ou ladite embase creuse sur laquelle elle est fixée.
On comprend que le dimensionnement dudit premier caisson dépend du poids et de la dimension de la tour et de ladite embase d'une part et de la profondeur d'installation de l'embase au fond de la mer.
La présente invention consiste essentiellement à ajouter des panneaux autour de la structure tubulaire pour aménager par la même un caisson de flottaison et ballastage utilisé pour immerger la structure partiellement pour son remorquage en mer et complètement pour sa dépose au fond de la mer. C'est la structure elle-même qui devient flotteur et l'espace vide intérieur ainsi aménagé devient un compartiment de ballastage simple à utiliser pour réaliser l'immersion.
Le procédé selon la présente invention implique la mise en œuvre de plusieurs panneaux qui sont faciles à construire en béton ou en acier, et facile à installer ne nécessitant pas de moyens de manutention gigantesque.
Le procédé selon l'invention revient à utiliser la structure tubulaire comme un châssis sur lequel on vient fixer temporairement des panneaux qui vont boucher les trous de la structure pour la rendre flottante pour son transport et de l'installation. Les panneaux forment une coque autour de la structure et il devient possible d'utiliser le volume à l'intérieur de cette coque en le remplissant plus ou moins d'eau pour modifier l'immersion de la structure.
Avantageusement, le dimensionnement et positionnement dudit premier caisson et le taux de remplissage partiel éventuel peuvent être déterminés en fonction du poids et volume de ladite structure tubulaire de manière à ce que la hauteur métacentrique (GM) de ladite structure tubulaire reste positif et que la structure tubulaire de l'embase une fois équipée desdits panneaux selon l'invention reste stable pendant son remorquage en mer, de préférence avec un faible tirant d'eau. De façon connue, on entend ici par « hauteur métacentrique » (GM) la distance entre le centre de gravité de ladite tour (G) et son métacentre (M). Le métacentre se définit comme l'intersection entre l'axe de la résultante de la poussée d'Archimède appliquée au centre de flottabilité ou centre de carène et l'axe vertical passant par le centre de gravité.
Lors de l'immersion de la structure de support et d'ancrage, la stabilité de la structure donnée par l'invention est suffisamment importante pour qu'il soit possible de réaliser l'installation en ne ballastant qu'un seul grand compartiment dudit premier caisson ainsi défini par l'invention, ce qui simplifie la séquence d'installation.
Ledit premier caisson est équipé de vanne ouvrant sur l'extérieur, de préférence une pluralité de vannes de différents diamètres les ouvrant sur l'extérieur pour permettre pour celles de plus petit diamètre un ballastage lent et contrôlé durant la phase d'immersion et pour les autres de plus grand diamètre un ballastage rapide une fois l'embase posée. Ces vannes peuvent aussi être connectées à des tuyaux souples reliés à un bateau d'assistance disposant de pompes dans le but de débal laster ledit premier caisson en tant que de besoin. A titre illustratif, pour une tour de 50-100m et 500-1000T à vide, le compartiment dudit premier caisson peut être de 10000 à 15000 m3, pour l'installer à 10 à 100m de profondeur avec une embase de 2500 à 15000 T.
Durant l'installation, de préférence, il y a toujours plus de hauteur d'eau à l'extérieur qu'à l'intérieur dudit premier caisson défini par les panneaux. Ainsi les panneaux sont principalement maintenus par la différence de pression d'eau et le système de fixation et d'étanchéité en est du coup très simplifié. Les panneaux n'ont pas besoins d'être fixés très solidement car c'est la pression de l'eau extérieure qui assure de façon prédominante leur maintien sur la structure. Pour ce faire, plus particulièrement, lesdits panneaux sont équipés de joints d'étanchéité qui assurent l'étanchéité dudit premier caisson sous la force de la pression extérieure de l'eau à l'étape b).
Avantageusement, au moins lesdits panneaux latéraux sont constitués de parois creuses constituant des troisièmes caissons plats apportant une flottabilité additionnelle. Ce mode de réalisation permet de faciliter la manutention et améliorer la flottaison, les panneaux. On entend ici par « caisson plat », un caisson dont l'épaisseur est inférieure à 1/5 de la largeur.
De préférence lesdits troisièmes caissons sont équipés de vannes ouvrant sur l'extérieur, de préférence des vannes de différents diamètres selon les dis deuxièmes caissons pour permettre pour celles de plus petit diamètre un ballastage lent et contrôlé durant la phase d'immersion et pour les autres de plus grand diamètre un ballastage rapide une fois l'embase posée. Ces vannes peuvent aussi être connectées à des tuyaux souples reliés à un bateau d'assistance disposant de pompes dans le but de déballaster ledit troisième caisson en tant que de besoin.
Plus particulièrement, après l'étape b), on remplit entièrement ledit premier caisson avant de démonter et remonter en surface lesdits panneaux. Les panneaux sont ensuite récupérés. Le remplissage du compartiment central permet que la pression s'égalise des deux côtés des panneaux et ainsi pouvoir les démonter sans forcer.
Dans tous les cas, le panneau inférieur peut être laissé en place sans être démonté car il peut participer à la stabilité de la structure tubulaire, en particulier s'agissant du panneau inférieur dans le cas où le fond marin serait meuble.
Plus particulièrement, ledit premier caisson s'étend sur une hauteur Hl dépassant au-dessus du niveau de la surface de la mer lorsque ladite structure de support et d'ancrage repose au fond de la mer. Plus particulièrement, ledit premier caisson s'étend sur une hauteur (Hl) au moins égale à la moitié de la hauteur (H) de ladite tour depuis son extrémité inférieure.
Avantageusement, ledit premier caisson définit un unique grand compartiment central non cloisonné.
Avantageusement encore, ladite tour comprend une plateforme supérieure supportant un dispositif supérieur, notamment une cavité tubulaire, supportant ou apte à recevoir la base du pylône d'une éolienne, que l'on met en place de préférence après l'étape b). La présente invention a également pour objet une structure sous- marine de support et d'ancrage comprenant une structure ouverte constituée de poutres et/ou tubes assemblés en treillis formant une tour, de préférence une structure tubulaire, équipée de panneaux formant au moins un premier caisson d'au moins un premier caisson utile dans un procédé selon l'invention et tel que définie ci-dessus, desdits panneaux étant appliqués de manière amovible au moins sur une partie inférieure de ladite tour, des panneaux latéraux obturant ainsi les ouvertures des faces externes de ladite tour de manière à former les parois latérales d'au moins un premier caisson fermé par au moins un panneau inférieur appliqué dessous lesdits panneaux latéraux.
D'autres caractéristiques et avantages de la présente invention apparaîtront à la lumière de la description qui va suivre, qui se réfère aux dessins annexés et qui illustre sans aucun caractère limitatif des modes préférentiels de réalisation de l'invention :
- la figure 1 représente une vue d'une structure de support et d'ancrage du type tour treillis (1) selon l'invention en cours de montage des panneaux pour la fabrication dudit premier caisson ;
- la figure 2 représente une vue d'une structure de support et d'ancrage du type tour treillis (1) équipée d'une embase gravitaire massive 4 à sa base, - la figure 3 représente la fixation de panneaux 2 sur une tour treillis 1 à l'aide d'une grue 13 sur un quai 12,
- la figure 4 représente une vue d'une structure de support et d'ancrage du type tour treillis (1) équipée d'un dit premier caisson de flottabilité et ballastage (3) en cours de ballastage en surface,
- la figure 5 représente une vue schématique du remplissage seulement partiel dudit premier caisson d'une tour treillis selon l'invention lors de son immersion en mer ;
- la figure 6 représente une structure support avec son caisson de flottaison 3 totalement immergé au fond de la mer ;
- la figure 7 représente le détail de la fixation avec joints d'étanchéité 5 des panneaux creux formant un deuxième caisson 6 sur la structure tubulaire, et
- la figure 8 représente une tour au fond de la mer après enlèvement des panneaux, la structure support en place supportant une éolienne.
Sur la figure 1, on décrit un premier mode de réalisation d'une tour treillis 1 selon l'invention de forme de pyramide tronquée, comprenant l'assemblage d'éléments tubulaires suivants.
Quatre assemblages tubulaires rectilignes inclinés la disposés symétriquement par rapport à un axe central vertical ZZ' formant ainsi les 4 arêtes de la pyramide. Chaque face de la pyramide tronquée formant ladite tour est constituée par, d'une part, deux tubes en élévation la adjacents et, d'autre part, par des tubes de jonctions lb, le assurant la liaison entre les tubes en élévation la adjacents. Les tubes de jonction entre deux tubes en élévation la comprennent des premiers tubes de jonction horizontaux le ainsi que des couples de deuxièmes tubes de jonction disposés en diagonale lb et s'entrecroisant en leur milieu. Sur les quatre faces, les différents tubes de jonction arrivent aux mêmes niveaux en hauteur entre les quatre faces.
Au sommet des quatre tubes en élévation la se trouve une plateforme supérieure ld fermant la pyramide tronquée et supportant une cavité tubulaire le, destinée à recevoir un pylône 5a d'une éolienne 5 (comme représenté figure 4). La cavité tubulaire le est elle-même supportée par des tubes de jonction inclinés lk assurant sa tenue sur la plateforme ld.
A la base des tubes en élévation la, des goussets externes lh assurent la jonction avec des tubes de guidage lf au sein desquels des pieux d'ancrage lg sont introduits pour ancrer la tour treillis 1 dans le sol au fond de la mer 11.
Sur la figure 1, on a représenté des panneaux latéraux 2a appliqués contre deux faces en élévation de la structure pyramidale 1, les panneaux 2a étant appliqués contre desdits tubes en élévation la et desdits tubes de jonction le, lb.
A la base de la tour 1 est appliqué un panneau inférieur 2c destiné à fermer le caisson 3 formé par les panneaux latéraux 2a, ledit caisson 3 peut être également fermé en partie supérieure par un panneau supérieur 2b. Au moins des panneaux latéraux 2a et/ou supérieur 2b peuvent comprendre au moins une vanne 2al, 2bl, permettant d'évacuer et/ou d'introduire de l'eau à l'intérieur du caisson de flottaison 3 formé par l'assemblage des panneaux 2a, 2b et 2c.
Sur la figure 2, on a représenté une variante de réalisation d'une tour treillis 1 selon l'invention, comprenant une partie inférieure 1-1 de forme parallélépipédique se prolongeant par une partie supérieure 1-2 de forme de pyramide tronquée qui comporte à son sommet une plateforme supérieure ld supportant une cavité tubulaire le de fixation du mat.
Dans le mode de réalisation de la figure 2, la tour treillis est fixée à sa base à une galette en béton pleine ou évidée 4 constituant une embase gravitaire apte à assurer l'ancrage de la tour treillis 1 au fond de la mer. Les panneaux 2a formant le caisson de flottaison 3 arrivent juste au niveau de la face supérieure 4a de la base gravitaire 4, ladite face supérieure 4a formant ainsi le panneau inférieur 2c dudit caisson de flottaison 3.
Sur la figure 3, on a représenté la fixation de panneaux 2 sur une tour treillis 1 à l'aide d'une grue 13 sur un quai 12 de port. La tour treillis est maintenue en surface en l'absence de ballastage du premier caisson 3 et de l'embase 4 qui est elle-même un deuxième caisson creux comme représenté sur les figures 3 et 4.
Sur la figure 4, après le remorquage de la tour reposant sur ledit deuxième caisson flottant de l'embase creuse jusqu'à l'aplomb de son site d'installation au fond de lamer, on réalise le ballastage de l'embase 4 creuse avec de l'eau avant le ballastage du premier caisson 3 que l'on remplit d'eau à l'aide d'un tuyau 8 relié à la vanne 2al et une pompe 9a à bord d'un navire d'assistance 9 pour effectuer la descente de la tour au fond de la mer.
Si l'embase 4 est pleine et massive, on peut, avant son remorquage en mer, immerger ladite embase à l'aide d'un dispositif de type ascenseur et d'appliquer les panneaux une fois la tour et son embase déposées au fond de la mer pour ensuite déballaster ledit premier caisson pour remettre la tour en flottaison avant son remorquage en mer jusqu'au site d'installation au fond de la mer.
Sur la figure 5, on a représenté la tour treillis 1 en immersion partielle du fait du remplissage partiel sur une hauteur hl du caisson de flottaison 3, permettant la descente de la tour treillis 1 jusqu'à son site d'installation au fond de la mer. Du fait que la hauteur hl d'eau à l'intérieur du caisson de flottaison 3 reste toujours inférieur à la hauteur d'eau h2 à l'extérieur d'une part et que les panneaux latéraux 2a sont toujours partiellement immergés, le différentiel de pression hydrostatique entre l'extérieur et l'intérieur du caisson assure une fixation assurant l'étanchéité du caisson de flottaison 3.
Pour ce faire, les panneaux 2a et 2b sont appliqués sur la structure tubulaire avec des joints d'étanchéité 5 intercalés entre les côtés latéraux des panneaux et les tubes la et respectivement tubes le comme représenté figure 7. D'autre part, des joints 5 non représentés peuvent être intercalés entre les tubes horizontaux le et le côté inférieur d'un premier panneau et entre le côté supérieur d'un deuxième panneau juxtaposé dessous ledit premier panneau, la taille des panneaux étant telle qu'il y ait toujours un tube de la structure tubulaire au niveau de la juxtaposition et jonction de deux panneaux. Alternativement. Alternativement, les panneaux peuvent s'emboiter les uns dans les autres aux niveaux de leurs bords adjacents de formes complémentaires formant rails et rainures en écrasant un joint dans une dite rainure. Pour descendre la tour treillis 1 jusqu'à ce que son embase 4 repose au fond de la mer comme représenté sur la figure 6, on augmente le volume d'eau 3b à l'intérieur du caisson 3 et on diminue le volume vide 3a du premier caisson de flottaison 3 progressivement comme montré figure 5. Une fois, la structure support 21 reposant au fond de la mer 11, on remplit entièrement d'eau le caisson de flottaison 3 pour supprimer le différentiel de pression hydrostatique et faciliter le démontage et la récupération en surface des panneaux latéraux 2a.
Les panneaux latéraux 2a peuvent être remplacés par des troisièmes caissons comme montré figure 7. Dans ce cas, on remplit progressivement les troisièmes caissons 6 d'eau pour la descente de la structure au fond de la mer et on les vides via les vannes 6a et tuyau 8 par pompage 9a depuis le navire 9 en surface pour les remonter en surface après leur démontage.
Sur la figure 8, le pylône 5a de l'éolienne 5 est adapté à la cavité tubulaire le au sommet de la tour 1, une fois les panneaux 2 démontés et remontés en surface à l'aide de moyens de grutage 9b à bord du navire 9 en surface 10.
A titre illustratif, l'éolienne selon l'invention comprend un pylône d'une hauteur de 5 à 150 m, de préférence au moins 100 m de hauteur, dont la paroi tubulaire présente un diamètre de plus de 2 à 10 m, plus particulièrement de 6 à 7 m. La tour comporte une structure parallélépipédique et/ou pyramidale à section carrée à sa base d'au moins 10 m, de préférence d'au moins 20 m de côté et s'élève à une hauteur H de 60 m. Le premier caisson de flottaison 3 s'élève sur une hauteur Hl représentant environ entre Vi et 1 de la hauteur H. A titre illustratif, pour un premier caisson s'étendant sensiblement sur toute la hauteur de la tour sur une hauteur Hl de 60m et une tour de 800T et une embase de 5000T une fois remplie d'eau, on remplit le premier caisson un compartiment de premier caisson de 12000m3 à 50% pour installer la tour à 20m de profondeur. A titre d'exemple, l'éolienne offshore est constituée d'un moteur générateur de 300 à 500 T et d'un pylône d'environ 6 m de diamètre et environ 90 à 120 m de hauteur, pesant environ 300 à 400 T.

Claims

REVENDICATIONS
1. Procédé de transport et dépose au fond de la mer d'une structure sous-marine de support et d'ancrage d'un équipement marin, de préférence une éolienne, ladite structure sous-marine de support et d'ancrage comprenant une structure ouverte constituée de poutres et/ou tubes assemblés en treillis formant une tour (1), de préférence une structure tubulaire, dans lequel on réalise les étapes suivantes:
a) on remorque ladite tour en mer, puis
b) on descend ladite tour au fond de la mer, caractérisé en ce que :
- avant l'étape b), de préférence avant l'étape a), on applique des panneaux (2, 2a, 2b, 2c) au moins sur une partie inférieure (Hl) de ladite tour, des panneaux latéraux (2a) obturant ainsi les ouvertures desdites faces externes de ladite tour de manière à former les parois latérales d'au moins un premier caisson de flottaison et ballastage (3) fermé par au moins un panneau inférieur (2c, 4a) appliqués dessous lesdits panneaux latéraux (2a), ledit premier caisson étant de préférence équipé d'au moins une vanne (2al) ouvrant sur l'extérieur, et
- à l'étape b), on remplit au moins partiellement ledit premier caisson en eau de mer pour descendre ladite tour jusqu'au fond de la mer, de préférence ledit premier caisson restant partiellement seulement rempli d'eau de mer.
2. Procédé selon la revendication 1, caractérisé en ce que ladite tour est fixée à son extrémité inférieure sur une embase (4) apte à reposer au fond de la mer, de préférence une galette en béton, la surface supérieure (4a) de ladite embase formant ledit panneau inférieur d'un dit premier caisson.
3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que ladite embase (4) est creuse et forme un deuxième caisson que l'on remplit de moyens de lestage, de préférence de l'eau, à l'étape b).
4. Procédé selon l'une des revendications 1, 2 ou 3, caractérisé en ce que lesdits panneaux sont équipés de joints d'étanchéité (5) qui assurent l'étanchéité dudit premier caisson sous la force de la pression extérieure de l'eau à l'étape b).
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce qu'au moins lesdits panneaux latéraux (2a) et/ou panneau supérieur (2b) sont constitués de parois creuses constituant des troisièmes caissons plats (6) apportant une flottabilité additionnelle.
6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce qu'après l'étape b), on remplit entièrement ledit premier caisson (3) avant de démonter et remonter en surface lesdits panneaux.
7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que ledit premier caisson s'étend sur une hauteur (Hl) dépassant au- dessus du niveau de la surface de la mer (10) lorsque ladite structure de support et d'ancrage (1) repose au fond de la mer.
8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que ledit premier caisson définit un unique grand compartiment central non cloisonné.
9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que ladite tour (1) comprend une plateforme supérieure (ld) supportant un dispositif supérieur (le) supportant ou apte à recevoir la base du pylône (5a) d'une éolienne (5), que l'on met en place de préférence après l'étape b).
10. Structure sous-marine de support et d'ancrage comprenant une structure ouverte constituée de poutres et/ou tubes assemblés en treillis formant une tour (1), de préférence une structure tubulaire, équipée de panneaux (2, 2a, 2b, 2c) formant au moins un dit premier caisson (3) utile dans un procédé selon l'une des revendications 1 à 8, desdits panneaux (2, 2a-2c) étant appliqués de manière amovible au moins sur une partie inférieure (la) de ladite tour, des panneaux latéraux (2a) obturant ainsi les ouvertures des faces externes de ladite tour de manière à former les parois latérales d'au moins un premier caisson fermé par au moins un panneau inférieur (2c, 4a) appliqués dessous lesdits panneaux latéraux.
11. Structure sous-marine de support et d'ancrage selon la revendication 10, caractérisée en ce que ladite tour est fixée à son extrémité inférieure sur une embase (4) apte à reposer au fond de la mer, de préférence une galette en béton, la surface supérieure (4a) de ladite embase formant ledit panneau inférieur d'un dit premier caisson.
12. Structure sous-marine de support et d'ancrage selon l'une des revendications 10 ou 11, caractérisée en ce que lesdits panneaux sont équipés de joints d'étanchéité (5) qui assurent l'étanchéité dudit premier caisson sous la force de la pression extérieure de l'eau.
13. Structure sous-marine de support et d'ancrage selon l'une des revendications 10 à 12, caractérisée en ce qu'au moins lesdits panneaux latéraux (2a) et le panneau supérieur (2b) sont constitués de parois creuses constituant des troisièmes caissons plats (6) apportant une flottabilité additionnelle.
14. Structure sous-marine de support et d'ancrage selon l'une des revendications 10 à 13, caractérisée en ce que ledit premier caisson s'étend sur une hauteur (Hl) au moins égale à la moitié de la hauteur (H) de ladite tour depuis son extrémité inférieure, ledit premier caisson définissant un unique grand compartiment central non cloisonné.
15. Structure sous-marine de support et d'ancrage selon l'une des revendications 10 à 14, caractérisée en ce que ladite tour comprend une plateforme supérieure (ld) supportant une cavité tubulaire supportant ou apte à recevoir la base du pylône (5a) d'une éolienne (5).
PCT/FR2016/050340 2015-02-18 2016-02-15 Structure de support et d'ancrage d'eolienne maritime du type tour treillis et procede de remorquage et depose en mer WO2016132056A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1551372A FR3032681B1 (fr) 2015-02-18 2015-02-18 Structure de support et d'ancrage d'eolienne maritime du type tour treillis et procede de remorquage et depose en mer
FR1551372 2015-02-18

Publications (1)

Publication Number Publication Date
WO2016132056A1 true WO2016132056A1 (fr) 2016-08-25

Family

ID=52829169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/050340 WO2016132056A1 (fr) 2015-02-18 2016-02-15 Structure de support et d'ancrage d'eolienne maritime du type tour treillis et procede de remorquage et depose en mer

Country Status (2)

Country Link
FR (1) FR3032681B1 (fr)
WO (1) WO2016132056A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3467236A1 (fr) * 2017-10-05 2019-04-10 Notus Energy Plan GmbH & Co. KG Tour d'éolienne, en particulier pour une éolienne

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3937027A (en) * 1975-01-22 1976-02-10 Brown And Root, Inc. Method and apparatus for transporting and launching an offshore tower
FR2472631A2 (fr) * 1979-12-27 1981-07-03 Doris Dev Richesse Sous Marine Ouvrage oscillant a installer dans une nappe d'eau et procede pour sa construction
US4606674A (en) * 1984-04-23 1986-08-19 Capron Mark E Structural wheel element
WO2001034977A1 (fr) 1999-11-11 2001-05-17 Rinta Jouppi Yrjoe Procede et appareil permettant d'installer et de transporter une station d'energie eolienne en mer
WO2003004870A1 (fr) 2001-07-06 2003-01-16 Saipem Sa Eolienne offshore et son procede de construction
WO2003066426A1 (fr) 2001-11-21 2003-08-14 Mpu Enterprise As Ponton-grue ballastable et procede de levage, de transport, de positionnement et d'installation d'une structure marine, notamment d'au moins un aerogenerateur
DE202008001606U1 (de) * 2007-02-06 2008-04-10 Prass, Gregor Windkraftanlage
WO2011007066A1 (fr) 2009-07-15 2011-01-20 Saipem S.A. Bateau de type catamaran utile pour l'assemblage, le transport et la dépose au fond de la mer d'éolienne maritime

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3937027A (en) * 1975-01-22 1976-02-10 Brown And Root, Inc. Method and apparatus for transporting and launching an offshore tower
FR2472631A2 (fr) * 1979-12-27 1981-07-03 Doris Dev Richesse Sous Marine Ouvrage oscillant a installer dans une nappe d'eau et procede pour sa construction
US4606674A (en) * 1984-04-23 1986-08-19 Capron Mark E Structural wheel element
WO2001034977A1 (fr) 1999-11-11 2001-05-17 Rinta Jouppi Yrjoe Procede et appareil permettant d'installer et de transporter une station d'energie eolienne en mer
WO2003004870A1 (fr) 2001-07-06 2003-01-16 Saipem Sa Eolienne offshore et son procede de construction
WO2003066426A1 (fr) 2001-11-21 2003-08-14 Mpu Enterprise As Ponton-grue ballastable et procede de levage, de transport, de positionnement et d'installation d'une structure marine, notamment d'au moins un aerogenerateur
DE202008001606U1 (de) * 2007-02-06 2008-04-10 Prass, Gregor Windkraftanlage
WO2011007066A1 (fr) 2009-07-15 2011-01-20 Saipem S.A. Bateau de type catamaran utile pour l'assemblage, le transport et la dépose au fond de la mer d'éolienne maritime

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3467236A1 (fr) * 2017-10-05 2019-04-10 Notus Energy Plan GmbH & Co. KG Tour d'éolienne, en particulier pour une éolienne
WO2019068736A1 (fr) * 2017-10-05 2019-04-11 Notus Energy Plan Gmbh & Co. Kg Tour, notamment pour une éolienne

Also Published As

Publication number Publication date
FR3032681B1 (fr) 2017-03-03
FR3032681A1 (fr) 2016-08-19

Similar Documents

Publication Publication Date Title
EP2454149B1 (fr) Bateau de type catamaran utile pour l'assemblage, le transport et la dépose au fond de la mer d'éolienne maritime
EP3472458B1 (fr) Dispositif flottant support d'eolienne offshore et ensemble eolien flottant correspondant
EP3717343B1 (fr) Structure de support flottant pour éolienne offshore et procédé d'installation d'une éolienne munie d'une telle structure de support
EP2441893B1 (fr) Dispositif de support d'une éolienne de production d'énergie électrique en mer, installation de production d'énergie électrique en mer correspondante.
EP1581703B1 (fr) Procede d'installation en mer d'un eolienne
CA1305370C (fr) Systeme modulaire de production, de stockage et de chargement d'hydrocarbures au large des cotes
EP2495162B1 (fr) Navire de transport sur un site "offshore" d'une éolienne et procédé pour sa mise en place
JP2017521296A (ja) 浮体式構造物及び浮体式構造物の設置方法
JP2017521296A5 (fr)
FR2852917A1 (fr) Receptacle a compartiments etanches et procede de mise en place pour recuperer des effluents polluants d'une epave
WO2017207937A1 (fr) Flotteur a pilonnement reduit, notamment pour une eolienne flottante
FR3049567A1 (fr)
FR2887900A1 (fr) Procede de construction et de mise en place d'une installation de production d'electricite en mer
FR3080357A1 (fr) Procede et dispositif d'entretien d'une plateforme flottante
EP3259404B1 (fr) Structure de support et d'ancrage d'éolienne maritime du type embase gravitaire et procédé de remorquage et dépose en mer
EP1606160B1 (fr) Dispositif et procede de stabilisation et de controle de la descente ou remontee d'une structure lourde entre la surface et le fond de la mer
TWI807197B (zh) 用於組裝離岸風力渦輪機的方法、用於離岸風力渦輪機的塔基及離岸風力渦輪機
FR2894646A1 (fr) Terminal pour gaz naturel liquefie ou gaz de petrole liquefie,et procede de construction d'un tel terminal
WO2016132056A1 (fr) Structure de support et d'ancrage d'eolienne maritime du type tour treillis et procede de remorquage et depose en mer
EP0015352B1 (fr) Structure de support d'équipements industriels, pouvant servir de barge flottante et de fondation, et son procédé de mise en oeuvre
FR2544761A1 (fr) Installation de production en mer et son procede de construction et de mise en place
FR2581362A1 (fr) Plate-forme semi-submersible, notamment pour la recherche et/ou l'exploitation de gisements sous-marins en mers froides
FR3073258A1 (fr) Centrale hydroelectrique flottante pour rivieres peu profondes
WO2021260415A1 (fr) Structure porteuse de transport et d'installation in situ de modules de captage d'energie marine
FR3119367A1 (fr) Plateforme flottante, procédés de désassemblage et d’assemblage associés

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16714468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16714468

Country of ref document: EP

Kind code of ref document: A1