WO2016129837A1 - 정전용량 및 전자기유도 방식에 의한 위치검출이 가능한 디스플레이 모듈 및 이를 구비한 디스플레이 장치 - Google Patents

정전용량 및 전자기유도 방식에 의한 위치검출이 가능한 디스플레이 모듈 및 이를 구비한 디스플레이 장치 Download PDF

Info

Publication number
WO2016129837A1
WO2016129837A1 PCT/KR2016/000977 KR2016000977W WO2016129837A1 WO 2016129837 A1 WO2016129837 A1 WO 2016129837A1 KR 2016000977 W KR2016000977 W KR 2016000977W WO 2016129837 A1 WO2016129837 A1 WO 2016129837A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive patterns
electromagnetic induction
electronic pen
conductive
display module
Prior art date
Application number
PCT/KR2016/000977
Other languages
English (en)
French (fr)
Inventor
김세영
안상섭
Original Assignee
주식회사 더한
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 더한 filed Critical 주식회사 더한
Priority to JP2017541698A priority Critical patent/JP2018509697A/ja
Priority to US15/550,023 priority patent/US20180032173A1/en
Priority to EP16749377.4A priority patent/EP3258353A4/en
Priority to CN201680021566.XA priority patent/CN107438820A/zh
Publication of WO2016129837A1 publication Critical patent/WO2016129837A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/046Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by electromagnetic means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04106Multi-sensing digitiser, i.e. digitiser using at least two different sensing technologies simultaneously or alternatively, e.g. for detecting pen and finger, for saving power or for improving position detection

Definitions

  • the present invention relates to a display module capable of detecting a position by capacitive and electromagnetic induction and a display device having the same. More specifically, the touch position according to a touch operation and the operation position of the electronic pen according to electromagnetic induction are described.
  • the present invention relates to a display module capable of detecting a position by a detectable capacitance and an electromagnetic induction method, and a display device having the same.
  • Touch panels are widely used as input devices in display devices including mobile communication terminals, PDAs, tablet PCs, and the like.
  • OLED organic light emitting diodes
  • LCD liquid crystal display
  • AMOLED active matrix organic light emitting diodes
  • FED field emission display
  • an input device capable of detecting both a touch of a finger and a touch by an electronic pen, particularly an input using a capacitive method and an electromagnetic induction method for detecting a position of an electronic pen that emits an induced electromagnetic field.
  • Input devices that can detect all are being developed.
  • a transparent electrode pattern is formed of a transparent conductive material such as indium tin oxide (ITO), metal mesh, Ag nano wire, or CNT on a capacitive touch sensor substrate, and is connected to the transparent electrode pattern externally. It is formed by electrically connecting the flexible circuit board.
  • ITO indium tin oxide
  • metal mesh metal mesh
  • Ag nano wire Ag nano wire
  • CNT capacitive touch sensor substrate
  • the input by the electromagnetic induction method may be provided in various ways, such as when a battery is built in the electronic pen or a battery is not built in.
  • the resonance circuit connected with the capacitor and the coil in the electronic pen is resonated by the resonant circuit connected with the capacitor and the coil provided in the input device to transfer energy.
  • the input device detects a position of the electronic pen by sensing energy transmitted from the electronic pen.
  • a conventional display device is combined with a touch panel for detecting a touch position according to a touch operation of a finger separately formed from the display element and a digitizer panel for detecting an operation position of an electronic pen emitting an induced electromagnetic field.
  • the conventional display device has a problem that the thickness thereof is relatively increased, and also, independently of the display element, the touch panel for detecting the touch position according to the touch operation of the finger and the operation position of the electronic pen emitting the induced electromagnetic field are detected. Since the digitizer panels must be manufactured and coupled to each other, there is a problem of reducing work efficiency in manufacturing a display device.
  • a technical problem to be solved by the present invention is a display module capable of detecting a position by a capacitive and electromagnetic induction method incorporating a position detection unit capable of detecting a touch position according to a touch operation and an operation position of an electronic pen. And to provide a display device having the same.
  • a display element a display element; And a position detector provided integrally with the display element, the position detecting unit detecting a position of the electronic pen from a change in capacitance due to a touch operation and a change in an induced electromagnetic field according to electromagnetic induction.
  • a display module capable of position detection may be provided.
  • the position detection unit may include: a base loop surrounding the sensing area; A plurality of first conductive patterns formed in the sensing region in a first direction, the plurality of first conductive patterns being provided side by side in a second direction crossing the first direction; A second formed in the sensing region in a long direction in the second direction to be paired with the first conductive patterns so as to detect the touch position from the capacitance change due to the touch operation; Conductive pattern; And a length formed in the sensing area in the second direction so as to detect the position of the electronic pen from a change in the induced electromagnetic field generated by the approach of the electronic pen which is paired with the first conductive patterns to emit electromagnetic force. It may be connected to the base loop, it may include a third conductive pattern provided in a plurality in parallel in the first direction.
  • the second conductive patterns and the third conductive patterns are formed in parallel to the first direction on one surface of the substrate disposed inside the display element, and the first conductive patterns are formed on the surface of the substrate in the second direction.
  • the first conductive layer formed side by side and crossing the second conductive patterns and the third conductive patterns, and the first conductive patterns, the second conductive patterns, and the third conductive patterns are insulated from each other;
  • the patterns are formed by connecting a plurality of unit conductive patterns formed in a bridge between the second conductive patterns and the third conductive patterns on one surface of the substrate in a first direction, or the second conductive pattern.
  • the third conductive patterns may include a plurality of unit conductive patterns formed along the second direction between first conductive patterns on one surface of the substrate. A may be formed to connect to the bridge.
  • the second conductive patterns and the third conductive patterns are formed on one surface of the substrate disposed in the display element side by side in the first direction, and the first conductive patterns are formed on the other surface of the substrate. It may be formed side by side in two directions.
  • the first conductive patterns, the second conductive patterns, the third conductive patterns, and the base loop may include a backlight unit, a bottom polarizing plate, a TFT glass substrate, a filter glass substrate, and a top forming a liquid crystal display (LCD) device. It may be formed on one or the other surface of at least one of the polarizing plate and the cover glass, or may be formed on one or the other surface of the TFT glass substrate and the polarizing plate and the cover glass forming the OLED (Organic Light Emitting Diodes) device.
  • OLED Organic Light Emitting Diodes
  • one end of the first conductive patterns is connected to the other end or the other end of the first conductive patterns is opened and the first conductive pattern is opened.
  • a capacitive controller configured to apply a signal to at least one of the one end and the other end of the second conductive patterns, detect a signal appearing in the first conductive patterns, and detect a touch position from a change in capacitance according to a touch operation; And detecting the induced electromagnetic field transmission position in the second direction based on a signal output from one end of the first conductive patterns while the first conductive patterns and the third conductive patterns are connected to the base loop.
  • an electromagnetic induction control unit configured to detect an induced electromagnetic field transmission position in the first direction based on a signal output from one end of third conductive patterns, and when detecting the induced electromagnetic field transmission position.
  • One end of the third conductive patterns may be connected to the electromagnetic induction control part, and the other end thereof may be connected to the base loop.
  • the electromagnetic induction control unit detects a position of the electronic pen along the second direction based on a signal output from one end of at least two first conductive patterns and outputs at one end of at least two third conductive patterns.
  • the position of the electronic pen in the first direction may be detected based on the signal.
  • the first conductive patterns and the second conductive patterns are paired to detect a touch position from a capacitance change according to a touch operation, and the first conductive patterns and the second conductive patterns are formed in the base loop.
  • the position of the electronic pen may be detected from a change in the induced electromagnetic field generated when the electronic pen emitting the electromagnetic force by pairing the first conductive patterns and the second conductive patterns in a state connected to the electronic pen.
  • the second conductive patterns may be formed in parallel with the first direction on one surface of the substrate disposed inside the display element, and the first conductive patterns may be formed in the second direction with the second conductive pattern disposed side by side in the second direction.
  • the first conductive patterns may cross the second conductive patterns and may be insulated from each other so that the first conductive patterns and the second conductive patterns are insulated from each other along the first direction between the second conductive patterns on one surface of the substrate.
  • the plurality of unit conductive patterns formed are connected by a bridge, or the second conductive patterns may be formed by bridging a plurality of unit conductive patterns formed along the second direction between the first conductive patterns on one surface of the substrate. It can be formed by connecting.
  • the second conductive patterns may be formed side by side in the first direction on one surface of the substrate forming the upper surface of the display element, and the first conductive patterns may be formed side by side in the second direction on the other surface of the substrate. have.
  • the first conductive patterns, the second conductive patterns, and the base loop may include at least one of a backlight unit, a bottom polarizer, a TFT glass substrate, a filter glass substrate, a top polarizer, and a cover glass, which form a liquid crystal display (LCD) device. It may be formed on one side or the other side, or may be formed on one side or the other side of the TFT glass substrate, the polarizing plate and the cover glass forming the OLED (Organic Light Emitting Diodes) device.
  • OLED Organic Light Emitting Diodes
  • one end of the first conductive patterns is connected to the other end or the other end of the first conductive patterns is opened and the first conductive pattern is opened.
  • a capacitive controller configured to apply a signal to at least one of the one end and the other end of the second conductive patterns, detect a signal appearing in the first conductive patterns, and detect a touch position from a change in capacitance according to a touch operation; And detecting the induced electric field transmission position in the second direction based on a signal output from one end of the first conductive patterns while the first conductive patterns and the second conductive patterns are connected to the base loop.
  • an electromagnetic induction control unit configured to detect an induced electromagnetic field transmission position in the first direction based on a signal output from one end of second conductive patterns, and in case of detecting the induced electromagnetic field transmission position.
  • One end of the second conductive patterns may be connected to the electromagnetic induction control part, and the other end thereof may be connected to the base loop.
  • the electromagnetic induction control unit detects a position of the electronic pen in the second direction based on a signal output from one end of the at least two first conductive patterns and outputs at one end of the at least two second conductive patterns.
  • the position of the electronic pen in the first direction may be detected based on the signal.
  • the electronic device may further include a coil-type energy supply unit configured to be integrally provided with the display element and supply energy to the electronic pen by applying a frequency corresponding to a resonance frequency of the resonance circuit of the electronic pen.
  • a coil-type energy supply unit configured to be integrally provided with the display element and supply energy to the electronic pen by applying a frequency corresponding to a resonance frequency of the resonance circuit of the electronic pen.
  • the base loop may be disposed to surround at least a portion of the sensing area on one edge or the other edge of the substrate disposed inside the display element.
  • the case frame ; And a display module embedded in the case frame and visually displaying an image and detecting a position of the electronic pen from a change in capacitance due to a touch operation and a change in an induced electromagnetic field due to electromagnetic induction.
  • a display module embedded in the case frame and visually displaying an image and detecting a position of the electronic pen from a change in capacitance due to a touch operation and a change in an induced electromagnetic field due to electromagnetic induction.
  • the display module displays an image by integrating the position detection unit for detecting the position of the electronic pen from the change in capacitance and the induced electromagnetic field according to the electromagnetic induction from the capacitance change due to the touch operation to the display element At the same time, the touch position according to the touch operation and the operation position of the electronic pen can be detected and the thickness of the display module can be minimized.
  • FIG. 1 is an exploded perspective view showing a display device according to a first embodiment of the present invention.
  • 2 (a) and 2 (b) are schematic diagrams for explaining touch position detection by a capacitive method.
  • FIG. 3 is a schematic diagram for describing a position detection of an electronic pen by an electromagnetic induction method.
  • 4 (a) and 4 (b) are schematic diagrams for explaining position detection of an electronic pen by an electromagnetic induction method according to an embodiment when a plurality of line antennas are provided.
  • 5 (a) and 5 (b) are schematic diagrams for explaining position detection of an electronic pen by an electromagnetic induction method according to another embodiment when a plurality of line antennas are provided.
  • FIG 6 and 7 are plan views showing the structure of the position detection unit according to the first embodiment of the present invention.
  • FIG. 8 is a cross-sectional view illustrating a display module in which a position detector is integrally provided in an LCD according to a first embodiment of the present invention.
  • FIG. 9 and 10 are cross-sectional views taken along line A-A of FIG. 6, and illustrate a position detection unit formed on a filter glass substrate of an LCD according to a first embodiment of the present invention.
  • FIG. 11 is a cross-sectional view illustrating a display module in which a position detection unit is integrally provided in an OLED according to a first embodiment of the present invention.
  • FIGS. 12 and 13 are plan views illustrating a structure of a position detector according to a second exemplary embodiment of the present invention.
  • 14 and 15 are cross-sectional views taken along line B-B of FIG. 12, showing a position detector formed on a filter glass substrate of an LCD according to a second embodiment of the present invention.
  • FIG. 1 is an exploded perspective view showing a display device according to a first embodiment of the present invention
  • Figures 2 (a) and (b) is a schematic view for explaining the touch position detection by the capacitive method
  • Figure 3 Is a schematic diagram for explaining the position detection of the electronic pen by the electromagnetic induction method
  • Figure 4 (a) and (b) is the electromagnetic induction method according to an embodiment when a plurality of line antenna is provided
  • 5A and 5B are schematic views for explaining the position detection of a pen
  • FIGS. 5A and 5B illustrate the position detection of an electronic pen by an electromagnetic induction method according to another embodiment when a plurality of line antennas are provided.
  • 6 and 7 are plan views illustrating a structure of a position detector according to a first embodiment of the present invention
  • FIG. 8 is provided with an integrated position detector in an LCD according to a first embodiment of the present invention.
  • display 9 and 10 are cross-sectional views of the AA of FIG. 6, showing a position detector formed on the filter glass substrate of the LCD according to the first embodiment of the present invention, and
  • FIG. 11 is a first cross-sectional view of the present invention. According to an embodiment, it is a cross-sectional view showing a display module in which the position detection unit is integrally provided in the OLED.
  • the display apparatus may display an image embedded in the case frame 100 and the case frame 100, and at the same time, the touch position and the electronic pen according to the touch operation may be displayed. And a display module 200 for detecting an operation position and a window glass 300 disposed on the front surface of the case frame 100.
  • the display module 200 and the window glass 300 are sequentially stacked and coupled to the case frame 100.
  • the display module 200 is integrally provided with the display element 210 and the display element 210 to visually display an image, and the induced electromagnetic field according to the touch position and the electromagnetic induction from the capacitance change due to the touch operation.
  • a position detector 250 for detecting the position of the electronic pen from the change of.
  • the position detector 250 is integrally provided on the display element 210 to form one unit module.
  • the display element 210 serves to display an image to a user, and includes organic light emitting diodes (OLEDs), liquid crystal displays (LCDs), active matrix organic light emitting diodes (AMOLEDs), and field emission displays (FEDs). And various display elements.
  • the display element 210 includes both a flat and a curved type.
  • the display module 200 according to the present exemplary embodiment includes a position detector 250 for detecting a touch position using a capacitive type and a position of the electronic pen according to an electromagnetic induction type
  • the display module 200 according to the present exemplary embodiment Before describing the method of detecting the touch position by the capacitive method and the position of the electronic pen according to the electromagnetic induction method will be briefly described.
  • a signal input pattern Tx provided to enable signal input may be arranged in the display module 200, and a signal sensing pattern Rx may be arranged in a direction crossing the signal input pattern Tx.
  • the signal input pattern Tx and the signal sensing pattern Rx are closely disposed and intersect each other, and the signal input pattern Tx and the signal sensing pattern Rx are electrically insulated from each other. do.
  • the amount of charge accumulated in the signal sensing pattern Rx is changed by the finger or the like (see Y in FIG. 2B).
  • the position of the finger can be detected by sensing.
  • a resonant circuit connected to the coil L2 and the capacitor C2 is provided inside the electronic pen 60, and although not shown, a resonant circuit is separately provided outside the closed loop 50 to supply energy to the electronic pen 60.
  • the coil L1 and the capacitor C1 are connected to a power coil (not shown).
  • induced currents i1 and i2 flow along the line antenna 20 by the induced voltage, where the electronic pen 60 is closed when the electronic pen 60 is located at the center of the line antenna 20.
  • the induced current i1 and the induced current i2 flowing through the loop 50 have the same magnitude.
  • the induced current i1 has a larger value than the induced current i2
  • the induction current i1 is induced.
  • the current i2 has a larger value than the induced current i1.
  • FIG. 4 is for explaining the position detection of the electronic pen by the electromagnetic induction method according to an embodiment, when a plurality of line antenna 20 is provided is output from the plurality of line antenna 20 by the electronic pen The magnitude of the voltage and the change of phase are shown.
  • FIG. 4A shows the arrangement of the plurality of line antennas 20, the switch 10, and the differential amplifier 30, and FIG. 4B shows the plurality of line antennas 20. Indicates the magnitude and phase of the voltage output from the
  • the plurality of line antennas 20 are arranged and sequentially scan the plurality of line antennas 20 through the switch 10, the magnitude and phase of the voltage change according to the position of the electronic pen 60.
  • the position of the electronic pen 60 corresponds to a point where the voltage value is 0 [V].
  • FIG. 5 is for explaining the position detection of the electronic pen by the electromagnetic induction method according to another embodiment, in the case where a plurality of line antenna 20 is provided, the adjacent of the plurality of line antenna 20 by the electronic pen The change in magnitude and phase difference of the voltage output from the two line antennas 20 is shown.
  • FIG. 5A illustrates arrangement of a plurality of line antennas 20, first and second switches 11 and 15, and first to third differential amplifiers 31, 33, and 35.
  • 5B illustrates magnitudes and phase differences of voltages output from two adjacent line antennas 20 among the plurality of line antennas 20.
  • (b) of FIG. 5 shows that the second switch 15 is twice in the magnitude and phase of the voltage output from the first differential amplifier 31 when the first switch 11 is in the first position.
  • the value obtained by subtracting the magnitude and phase of the voltage output from the second differential amplifier 33 represents the value output from the third differential amplifier 35.
  • the magnitude and phase of the voltage output from the third differential amplifier 35 have a maximum value at the point 40 at which the electronic pen 60 is located. This can be confirmed from the magnitude and phase of the voltage output from the differential amplifier 30 in the switch 1 position 1 to 4 in Figure 4 (b).
  • the method of obtaining the position of the electronic pen 60 by using the magnitude and phase difference of the voltage output from two adjacent line antennas 20 may be performed by two adjacent line antennas.
  • the noise generated in the (20) can be canceled to have the advantage that the position of the electronic pen 60 can be found more accurately.
  • the position of the electronic pen 60 may be detected by using the magnitude and phase of the voltages output from the two line antennas 20.
  • at least two or more line antennas may be extended.
  • the position of the electronic pen 60 may be detected using the magnitude and phase of the voltage output from the.
  • the display module 200 includes a position detecting unit 250 capable of detecting the touch position of the capacitive type and the position of the electronic pen of the electromagnetic induction type in the display element 210. It is intended to form a unit module by integrally providing.
  • a position detecting unit 250 capable of detecting a touch position by a capacitive method and an electronic pen by an electromagnetic induction method according to the first embodiment of the present invention will be described below. same.
  • the position detector 250 may include a base loop 251, a plurality of first conductive patterns 252 formed in parallel in a second direction extending in a first direction and intersecting the first direction. , A plurality of second conductive patterns 257 formed long in the second direction and arranged in parallel in the first direction, and formed in the second direction and connected to the base loop 251 and arranged in parallel in the first direction.
  • the third conductive pattern 258 is provided.
  • the first direction may be a width direction of the case frame 100 and the second direction may be a length direction of the case frame 100, but may be determined to the contrary.
  • One end of the third conductive patterns 258 (specifically, an upper end of the third conductive pattern 252 illustrated in FIGS. 6 and 7) is maintained or opened (connected to the electromagnetic induction control unit 285 to be described later).
  • the other end of the third conductive pattern 258 (specifically, the lower end of the first conductive pattern 252 shown in FIGS. 6 and 7) may have a base. May be connected to the loop 251.
  • the base loop 251 is disposed to surround at least a portion of the sensing area.
  • the sensing region refers to a region in which a capacitive touch input is possible by a user approaching or touching a finger, and an induction electromagnetic field input is possible by an approach and touch of an electronic pen that emits electromagnetic force.
  • the sensing area may be the entire surface of the display element 210.
  • the sensing area corresponds to the sensing area in order to minimize the bezel width of the case frame 100. do.
  • the first conductive patterns 252, the second conductive patterns 257, and the third conductive patterns 258 are both disposed in the sensing region and in the base loop 251.
  • first conductive patterns 252, the second conductive patterns 257, and the third conductive patterns 258 are insulated from each other.
  • the position detector 250 should detect the position of the electronic pen from the change of the capacitance due to the touch operation and the change of the induced electromagnetic field according to the electromagnetic induction.
  • the first conductive patterns 252 and the second conductive patterns 257 are paired to be used to detect the touch position from the capacitance change according to the touch operation, and the first conductive patterns 252 and the third The conductive patterns 258 are paired and used to detect the position of the electronic pen from the change of the induced electromagnetic field.
  • the first conductive patterns 252 are commonly used to detect the touch position by the capacitive type and the position of the electronic pen by the electromagnetic induction type.
  • a multiplexer 260 which is a switching element, is provided at one side of the position detector 250.
  • the multiplexer 260 may be a 2: 1 MUX 260, with the 2: 1 MUX 260 having two inputs and one output.
  • the 2: 1 MUX 260 is disposed in a number corresponding to the number of the first conductive patterns 252, and one input of the second conductive pattern 252 is connected to one input of the 2: 1 MUX 260.
  • the left end of the first conductive pattern 252 shown in FIGS. 6 and 7 is connected, the base loop 251 is connected to the other input, and the other end of the first conductive pattern 252 (specifically).
  • Right ends of the first conductive patterns 252 shown in FIGS. 6 and 7 are connected.
  • the 2: 1 MUX 260 is controlled by the capacitance controller 281 or the electromagnetic induction controller 285 which will be described later.
  • the 2: 1 MUX 260 connects one end and the other end of the first conductive patterns 252 with each other.
  • the capacitance controller 281 applies a signal (for example, the signal input pattern Tx of FIG. 2) to one end and the other end of the first conductive patterns 252 and displays a signal (for example, the second conductive patterns 257).
  • the signal sensing pattern Rx of FIG. 2 is sensed to detect the touch position from the capacitance change according to the touch operation, or one end of the second conductive patterns 257 (specifically, the second conductivity shown in FIGS. 6 and 7).
  • a signal (for example, the signal input pattern Tx of FIG. 2) is applied to the upper end of the pattern 257 and the other end (specifically, the lower end of the second conductive pattern 257 shown in FIGS. 6 and 7), and 1
  • the touch position is detected from the change in capacitance caused by the popping operation by sensing signals appearing in the conductive patterns 252.
  • the 2: 1 MUX 260 is a signal (for example in FIG. 2 of the one end and the other end of the first conductive pattern 252 in a state in which one end and the other end of the first conductive pattern 252 is disconnected) Applying a signal input pattern Tx and detecting a signal (for example, the signal sensing pattern Rx of FIG. 2) appearing in the second conductive patterns 257 to detect the touch position from the capacitance change according to the touch operation, or A signal (for example, the signal input pattern Tx of FIG. 2) is applied to one of the one end and the other end of the conductive patterns 257 and the signal that appears in the first conductive patterns 252 (for example, the signal sensing pattern of FIG. 2). Rx) may be detected to detect the touch position from the capacitance change due to the touch operation.
  • a signal for example, the signal sensing pattern Rx of FIG. 2
  • Rx may be detected to detect the touch position from the capacitance change due to the touch operation.
  • the multiplex may be N: 1 MUX (not shown), and N: 1 MUX has N inputs and one output.
  • the other end of the first conductive patterns 252 is connected to the N inputs of the N: 1 MUX, and the base loop 251 is connected to the output.
  • the capacitive controller 281 may include one end of the first conductive patterns 252 with the first conductive patterns 252 disconnected from the base loop 251. And applying a signal (eg, the signal input pattern Tx of FIG. 2) to at least one of both ends, and detecting a signal (eg, the signal sensing pattern Rx of FIG. 2) that appears in the second conductive patterns 257.
  • the touch position is detected from the capacitance change according to the operation, or a signal (for example, the signal input pattern Tx of FIG.
  • the touch position may be detected from the change in capacitance due to the touch operation by detecting the signal (for example, the signal sensing pattern Rx of FIG. 2) shown at 252.
  • the first conductive patterns 252 and the second conductive patterns 257 are paired and used to detect the touch position according to the touch operation from the capacitance change as shown in FIG. 3.
  • the 2: 1 MUX 260 performs a base loop on the other end of the first conductive patterns 252. 251).
  • the electromagnetic induction controller 285 compares the voltage of the base loop 251 with the induced voltage output from one end of the first conductive patterns 252 to position the electronic pen in the second direction (the induction electric field transmitted from the resonance circuit). Position of the electronic pen along the second direction based on a signal output from one end of two adjacent first conductive patterns 252 (specifically, the difference in induced voltage). 5 may be detected (see FIG. 5), and the position of the electronic pen along the first direction is detected by comparing the voltage of the base loop 251 with the induced voltage output from one end of the third conductive patterns 258 (FIG. 4). Referring to FIG. 5, the position of the electronic pen along the first direction may be detected based on a signal output from one end of two adjacent third conductive patterns 258 (specifically, a difference between induced voltages) (see FIG. 5). .
  • the N: 1 MUX may be formed in the base loop 251 with the other end of the first conductive patterns 252 connected to the base loop 251.
  • the induced electromagnetic field transmission position in the second direction is detected (see FIG. 4) or output at one end of two adjacent first conductive patterns 252.
  • the position of the electronic pen according to the second direction can be detected based on the signal (specifically comparing the difference between induced voltages) (see FIG. 5), and is connected to the voltage of the base loop 251 and the base loop 251.
  • the induced electromagnetic field transmission position in the first direction is detected (see FIG. 4) or output at one end of two adjacent third conductive patterns 258.
  • Based on the signal being To compare the induced voltage) can be by detecting a position of the electronic pen according to the first direction (see Fig. 5).
  • the first conductive patterns 252 and the third conductive patterns 257 are paired and used to detect the position of the electronic pen from the change of the induced electromagnetic field as shown in FIGS. 3 to 5. do.
  • the display element 210 is an LCD
  • the structure of the display module 200 in which the display element 210 and the position detector 250 are integrated will be described.
  • the LCD includes a bottom polarizer 212, a TFT glass substrate 213 on which a thin film transistor TFT 214 is deposited, a liquid crystal layer 215, and a color filter on the top of the backlight unit 211.
  • Each component such as the filter glass substrate 217, the top polarizer 218, and the cover glass 219 having the 216 deposited thereon is sequentially stacked.
  • the position detector 250 in order to minimize the thickness of the display module 200, the position detector 250 according to the present exemplary embodiment may be integrally formed on the upper surface of the filter glass substrate 217 as shown in FIG. 8.
  • the first conductive patterns 252, the second conductive patterns 257, and the third conductive patterns 259 are sequentially deposited on the top surface of the filter glass substrate 217. Can be formed.
  • the first conductive patterns 252 may include a plurality of unit conductive patterns formed along the first direction between the plurality of second conductive patterns 257 and the third conductive patterns 258 on the upper surface of the filter glass substrate 217.
  • 253 may be formed by connecting bridges 254.
  • the bridge 254 may allow the plurality of unit conductive patterns 253 spaced apart so that the first conductive patterns 252, the second conductive patterns 257, and the third conductive patterns are insulated from each other.
  • the wire 256 is connected, and the outside of the wire 256 is wrapped with an insulator 255.
  • the first conductive patterns 253 are formed by connecting the plurality of unit conductive patterns 253 to the bridge 254.
  • a plurality of first conductive patterns 252 are formed on the upper surface of the filter glass substrate 217 side by side in the second direction, as shown in FIG. 7, the second conductive patterns 257 and the third conductive The patterns 258 may be formed by connecting the plurality of unit conductive patterns 253 formed along the second direction between the plurality of first conductive patterns 252 with the bridge 254.
  • the base loop 251 is formed to be spaced apart from the first conductive patterns 252, the second conductive patterns 257, and the third conductive patterns 258 on the upper edge of the filter glass substrate 217.
  • the first conductive patterns 252, the second conductive patterns 257, and the third conductive patterns 258 are disposed to surround the first conductive patterns 252, the second conductive patterns 257, and the third conductive patterns 258.
  • the base loop 251 is illustrated to be disposed on the upper edge of the filter glass substrate 217 in FIG. 9, the base loop 251 may be disposed on the lower edge of the filter glass substrate 217.
  • first conductive patterns 252, the second conductive patterns 257, and the third conductive patterns 258 may be formed on one surface and the other surface of the filter glass substrate 217.
  • a plurality of second conductive patterns 257 and third conductive patterns 258 are alternately formed in the first direction on the upper surface of the filter glass substrate 217 and are arranged side by side.
  • a plurality of conductive patterns 252 may be formed on the bottom surface of the filter glass substrate 217 side by side in the second direction.
  • the first conductive patterns 252 are formed on the lower surface of the filter glass substrate 217, and the second conductive patterns 257 and the third conductive patterns 258 are formed on the upper surface of the filter glass substrate 217. If formed, it is not necessary to use the bridge 254 as in FIG.
  • the base loop 251 is spaced apart from the first conductive patterns 252, the second conductive patterns 257, and the third conductive patterns 258 on the upper or lower edge of the filter glass substrate 217.
  • the first conductive patterns 252, the second conductive patterns 257, and the third conductive patterns 258 are disposed to surround the first conductive patterns 252, the second conductive patterns 257, and the third conductive patterns 258.
  • the base loop 251 is illustrated to be formed on the top or bottom surface of the filter glass substrate 217 in FIG. 9 and FIG. 10, the base loop 251 is not limited thereto. It may be disposed in any one of the components constituting the and may be formed on the back of the backlight unit 211 in particular.
  • the first conductive patterns 252, the second conductive patterns 257, the third conductive patterns 258, and the base loop 251 are formed on the top surface of the filter glass substrate 217, or As described above, the first and second conductive patterns 252, the second conductive patterns 257, the third conductive patterns 258, and the base loop 251 are not limited thereto.
  • first conductive patterns 252, the second conductive patterns 257, the third conductive patterns 258, and the base loop 251 are disposed on the bottom surface of the display module 200 according to the present embodiment. May be
  • the base loop 251 is formed to be spaced apart from at least one of the first conductive patterns 252, the second conductive patterns 257, and the third conductive patterns 258.
  • the display device is an OLED as illustrated in FIG. 11, the structure of the display module 200 in which the display device 210 and the position detector 250 are integrated will be described below.
  • OLEDs each include a TFT glass substrate 213a on which thin film transistors TFT and 214a are deposited, an organic EL layer 215a, a polarizer 218a, a cover glass 219a, and the like. The components are formed by stacking sequentially.
  • the position detector 250 in order to minimize the thickness of the display module 200, the position detector 250 according to the present exemplary embodiment may be integrally formed by being stacked between the organic EL layer 251a and the polarizer 218a.
  • the glass substrate 217a is stacked between the organic EL layer 251a and the polarizer 218a, and the first conductive patterns 252 and the second conductive patterns 257 are formed.
  • the third conductive patterns 259 may be sequentially formed on the upper surface of the glass substrate 217a.
  • a plurality of second conductive patterns 257 and third conductive patterns 258 are alternately formed on the upper surface of the glass substrate 217a in the first direction, and the first conductive patterns 252 are formed of the glass substrate (
  • a bridge 254 connects the plurality of unit conductive patterns 253 formed along the first direction between the plurality of second conductive patterns 257 and the third conductive patterns 258 on the upper surface of the 217. Can be formed.
  • the bridge 254 may include a plurality of unit conductive patterns 253 spaced apart from each other so that the first conductive patterns 252, the second conductive patterns 257, and the third conductive patterns 258 are insulated from each other. It is electrically connected to the wire 256, and wraps the outside of the wire 256 with an insulator 255. As such, the first conductive patterns 253 are formed by connecting the plurality of unit conductive patterns 253 to the bridge 254.
  • a plurality of first conductive patterns 252 are formed on the upper surface of the filter glass substrate 217 side by side in the second direction, as shown in FIG. 7, the second conductive patterns 257 and the third conductive The patterns 258 may be formed by connecting the plurality of unit conductive patterns 253 formed along the second direction between the plurality of first conductive patterns 252 with the bridge 254.
  • the base loop 251 is formed to be spaced apart from the first conductive patterns 252, the second conductive patterns 257, and the third conductive patterns 258 on the upper edge of the glass substrate 217a.
  • the first conductive patterns 252, the second conductive patterns 257, and the third conductive patterns 258 are disposed to surround the first conductive patterns 252, the second conductive patterns 257, and the third conductive patterns 258.
  • the base loop 251 is disposed on the upper edge of the glass substrate 217a, but the base loop 251 is not limited thereto and may be disposed on the lower edge of the glass substrate 217a.
  • first conductive patterns 252, the second conductive patterns 257, and the third conductive patterns 258 may be formed on one surface and the other surface of the glass substrate 217a.
  • a plurality of second conductive patterns 257 and third conductive patterns 258 are alternately formed in the first direction on the upper surface of the glass substrate 217a in parallel to each other, and the first conductive A plurality of patterns 252 may be formed on the bottom surface of the glass substrate 217a side by side in the second direction.
  • the first conductive patterns 252 are formed on the lower surface of the glass substrate 217 and the second conductive patterns 257 and the third conductive patterns 258 are formed on the upper surface of the glass substrate 217a. In this case, it is not necessary to use the bridge 254 as in FIG.
  • the base loop 251 is formed to be spaced apart from the first conductive patterns 252, the second conductive patterns 257, and the third conductive patterns 258 on the top or bottom edge of the glass substrate 217a.
  • the first conductive patterns 252, the second conductive patterns 257, and the third conductive patterns 258 are disposed to surround the first conductive patterns 252, the second conductive patterns 257, and the third conductive patterns 258.
  • the base loop 251 is illustrated to be formed on the upper or lower surface of the glass substrate 217a in FIGS. 9 and 10, the present invention is not limited thereto, and the base loop 251 may include the OLED having the stacked structure shown in FIG. 11. It can be placed in any one of the respective components that make up.
  • the first conductive patterns 252, the second conductive patterns 257, the third conductive patterns 258, and the base loop 251 are formed on the top or bottom surface of the glass substrate 217a.
  • the present invention is not limited thereto, and the first conductive patterns 252, the second conductive patterns 257, the third conductive patterns 258, and the base loop 251 are not limited thereto.
  • 11 may be formed on one surface or the other surface of each component of the TFT glass substrate 213a, the polarizing plate 218a, the cover glass 219a, and the like, which form the OLED device having the stacked structure shown in FIG.
  • the first conductive patterns 252, the second conductive patterns 257, the third conductive patterns 258, and the base loop 251 are disposed on the bottom surface of the display module 200 according to the present embodiment. May be
  • the position detector 250 may detect the position of the electronic pen according to the electromagnetic induction method.
  • the electronic pen position detection by the electromagnetic induction method should be configured to allow the electronic pen to emit electromagnetic force.
  • the electronic pen may be configured to emit an electromagnetic force by having a battery in itself, but in the present embodiment, the electronic pen may emit an electromagnetic force even when the electronic pen does not have a battery. It is configured to supply energy.
  • the display module 200 is integrally provided with the display element, and the energy supply unit 270 for supplying energy to the electronic pen by applying a frequency corresponding to the resonance frequency of the resonance circuit of the electronic pen is provided. It includes more.
  • the energy supply to the electronic pen is preferably supplied to the electronic pen before detecting the position of the electronic pen by the electromagnetic induction method.
  • the energy supply unit 270 includes a coil shaped power coil 270 and a coil driver (not shown) for supplying an AC voltage and a current to the power coil 270 to drive the power coil 270.
  • the power coil 270 serves to supply energy to the electronic pen including the resonant circuit by using an induction electromagnetic field.
  • the AC coil / 270 having a frequency corresponding to the resonant frequency of the resonant circuit of the electronic pen is applied to the power coil 270.
  • the power coil 270 may be disposed outside the sensing area, inside the sensing area, or outside and inside the sensing area.
  • the power coil 270 may be configured as a single pattern printed in a coil form on a substrate, or may be configured by overlapping a plurality of substrates on which a coil pattern is formed and interconnecting them.
  • the power coil 270 may be disposed at a position spaced a predetermined distance outward from the base loop 251 corresponding to the sensing area.
  • the power coil 270 may be stacked on the back of the backlight unit 211 as shown in FIG. 8, and may be stacked on the back of the TFT glass substrate 213a as shown in FIG. 11.
  • the power coil 270 may be integrally provided at the side of the display element 210, and may be stacked on the rear surface of the backlight unit 211 or the TFT glass substrate 213a together with the base loop 251. Can be.
  • the electronic pen emits electromagnetic force by causing resonance by an induced current by the electromagnetic force generated by the power coil 270, and emits an electromagnetic force that gradually attenuates itself even when the electromagnetic force is removed from the power coil 270.
  • first conductive patterns 252 and the second conductive patterns 257 are paired and used to detect the touch position from the capacitance change according to the touch operation, and the first conductive patterns 252 and the third conductive pattern are used.
  • Patterns 258 are paired and used to detect the position of the electronic pen from changes in the induced electromagnetic field.
  • the display module 200 further includes a capacitive controller 281 and an electromagnetic induction controller 285 to control the touch position and the position detection of the electronic pen.
  • the capacitive control unit 281 serves to detect the touch position from the capacitance change caused by the touch operation of the finger or the like.
  • the capacitance controller 281 controls the 2: 1 MUX 260 so that one end of the first conductive patterns 252 is connected to the other end of the first conductive patterns 252. Connect or open the other ends of the first conductive patterns 252.
  • the capacitance controller 281 may apply a signal (eg, the signal input pattern Tx of FIG. 2) to at least one of one end and the other end of the first conductive patterns 252, and then apply the signal to the second conductive patterns 257.
  • the touch signal is detected from the capacitance change according to the touch operation by detecting the signal (for example, the signal sensing pattern Rx of FIG. 2).
  • the capacitance controller 281 may apply a signal to at least one of the one end and the other end of the second conductive patterns 257 (for example, the signal input pattern Tx of FIG. 2) to form the first conductive patterns 252.
  • the touch position may be detected from the change in capacitance due to the touch operation by sensing the signal (for example, the signal sensing pattern Rx of FIG. 2).
  • the capacitive control unit 281 identifies a position at which a characteristic (eg, amplitude or frequency) of the RX signal changes, so that the capacitance of the first conductive pattern 252 and the second conductive pattern 257 corresponding to the position is changed.
  • the intersection point is determined as the touch position.
  • the electromagnetic induction control unit 285 controls the 2: 1 MUX 260 to connect the other ends of the first conductive patterns 252 to the base loop 251, and to control the voltage of the base loop 251.
  • the induced electromagnetic field transmission position in the second direction is detected based on the induced voltage output from one end of the first conductive patterns 252.
  • one end of the first conductive pattern 252 is connected to the electromagnetic induction control unit 285.
  • the electromagnetic induction control unit 285 connects the other ends of the plurality of first conductive patterns 252 to the base loop 251, the voltage of the base loop 251 and one end of the selected first conductive patterns 252. Compare the induced voltages from each other to detect the position of the electronic pen (the position of the induced electric field transmitted from the resonance circuit) in the second direction (see FIG. 4) or at one end of two adjacent first conductive patterns 252. The position of the electronic pen along the second direction is detected by comparing the difference of the induced induced voltages (see FIG. 5).
  • the electromagnetic induction controller 285 induces the output of the voltage of the base loop 251 and one end of the selected third conductive patterns 258 while the other ends of the third conductive patterns 258 are connected to the base loop 251.
  • the position of the electronic pen in the first direction is detected by comparing the voltages with each other (see FIG. 4), or the difference in induced voltages output from one end of two adjacent third conductive patterns 258 is compared.
  • the position of the pen is detected (see FIG. 5).
  • one end of the third conductive patterns 258 is connected to the electromagnetic induction control unit 285.
  • the position of the electronic pen is detected by comparing the difference between induced voltages output from one end of two adjacent first conductive patterns 252 and one end of two adjacent third conductive patterns 258.
  • the present invention is not limited thereto, and the position of the electronic pen may be detected by comparing a difference between induced voltages output from one end of the at least two first conductive patterns 252 and one end of the third conductive patterns 258.
  • the display module 200 further includes a main controller 280 to independently control the capacitance controller 281 and the electromagnetic induction controller 285.
  • the capacitive controller 281 and the electromagnetic induction controller 285 are selectively connected to the main controller 280.
  • the main controller 280 activates the capacitive controller 281 when the touch position is to be detected, and activates the electromagnetic induction controller 285 when the position of the electronic pen is to be detected.
  • the capacitive control unit 281 and the electromagnetic induction control unit 285 are connected to the main control unit 280 to mutually transmit the occupancy and occupancy points for the first conductive patterns 252.
  • the unused base loop 251 may be set to an open state, or a specific voltage may be applied or grounded. In this embodiment the base loop 251 is open.
  • the unused third conductive patterns 258 remain connected to the electromagnetic induction control unit 285, are set to an open state, or a specific voltage is applied. Or grounded.
  • both the capacitive touch and the induced electromagnetic field input may be detected using the first conductive patterns 252, and the first direction is the width direction of the case frame 100.
  • the connecting line formed by forming the second conductive patterns 257 and the third conductive pattern 258 is increased in the bezel width direction, which is a side of the case frame 100.
  • the case frame 100 may be disposed in the longitudinal direction of the upper part, so that the bezel width for arranging the connection line may be minimized.
  • FIGS. 12 and 13 are plan views illustrating a structure of a position detector according to a second exemplary embodiment of the present invention
  • FIGS. 14 and 15 are cross-sectional views taken along line BB of FIG. 12, and a filter glass of the LCD according to the second exemplary embodiment of the present invention. It is sectional drawing which shows the position detection part formed in the board
  • the display device includes a case frame (not shown), and a display module (not shown) that displays an image embedded in the case frame and detects a touch position and an electronic pen position according to a touch operation. And a window glass (not shown) disposed in front of the case frame.
  • case frame and the window glass according to the second embodiment of the present invention are the same as the case frame 100 and the window glass 300 according to the first embodiment of the present invention, a detailed description thereof will be omitted.
  • the display module according to the second embodiment of the present invention is provided with a display element for visually displaying an image, and is provided integrally with the display element to change the capacitance from the touch operation and the change of the induced electromagnetic field according to the touch position and the electromagnetic induction. And a position detector 250a for detecting the position of the pen.
  • the position detector 250a is integrally formed on the display element to form one unit module.
  • the display element serves to display an image to a user, and includes various types of organic light emitting diodes (OLEDs), liquid crystal displays (LCDs), active matrix organic light emitting diodes (AMOLEDs), field emission displays (FEDs), and the like. It may be a display element. In the present embodiment, the display element includes both a flat and a curved type.
  • the position detector 250a detects the position of the electronic pen from the change of the induced electromagnetic field generated as the electronic pen emitting the touch position and the electromagnetic force approaches from the capacitance change due to the touch operation.
  • the position detector 250a may include a base loop 251a, a plurality of first conductive patterns 252a formed in parallel in a second direction that is elongated in a first direction and crosses the first direction.
  • the second conductive pattern 257a may be formed to be elongated in the second direction and provided in plurality in parallel to the first direction.
  • the first direction may be a width direction of the case frame and the second direction may be a length direction of the case frame, but may be determined to the contrary.
  • the base loop 251a is disposed to surround the sensing area.
  • the sensing area refers to an area in which a capacitive touch input is possible by a user approaching or touching a finger, and an induction electromagnetic field input is possible by an approach and touch of an electronic pen that emits electromagnetic force.
  • the sensing area may be the entire surface of the display element.
  • the sensing area corresponds to the sensing area in order to minimize the bezel width of the case frame.
  • the first conductive pattern 252a and the second conductive pattern 257a are both disposed in the sensing region and in the base loop 251a.
  • first conductive pattern 252a and the second conductive pattern 257a are insulated from each other.
  • the position detection unit 250a should detect the position of the electronic pen from the change of the capacitance due to the touch operation and the change of the induced electromagnetic field according to the electromagnetic induction.
  • the first conductive pattern 252a and the second conductive pattern 257a are paired and used to detect the touch position from the capacitance change according to the touch operation and the position of the electronic pen from the change of the induced electromagnetic field.
  • a multiplexer 260a as a switching element is provided on one side of the position detector 250a.
  • Multiplexer 260a may be N: 1 MUX 260a, which has N inputs and one output.
  • N inputs of the N: 1 MUX 260a include the other end of the first conductive patterns 252a (specifically, the right end of the first conductive pattern 252a shown in FIGS. 12 and 13) and the second conductive pattern 257a. ) Is connected to the other end (specifically, the lower end of the second conductive pattern 257a shown in FIGS. 12 and 13) and the base loop 251a is connected to the output.
  • the N: 1 MUX 260a is controlled by the capacitance control unit 281a or the electromagnetic induction control unit 285a which will be described later.
  • the N: 1 MUX 260a may include the plurality of first conductive patterns 252a and the second conductive pattern 257a. The other end of the field is disconnected from the base loop 251a.
  • the capacitive control unit 281a may include at least one of one end and the other end of the first conductive patterns 252a with the first conductive patterns 252a and the second conductive patterns 257a disconnected from the base loop 251a.
  • a signal for example, the signal input pattern Tx of FIG. 2 is applied to one of the signals, and a signal (for example, the signal sensing pattern Rx of FIG. 2) appearing on the second conductive pattern 257a is sensed to generate capacitance according to a touch operation.
  • the touch position is detected from the change, or a signal (eg, at least one of one end of the second conductive pattern 257a (specifically, an upper end of the second conductive pattern 257a shown in FIGS. 12 and 13) and the other end thereof is detected.
  • the signal input pattern Tx of FIG. 2 is applied, and a signal (for example, the signal sensing pattern Rx of FIG. 2) shown in the first conductive pattern 257a is sensed to detect the touch position from the capacitance change due to the touch operation. .
  • the multiplex can be a 2: 1 MUX, and the 2: 1 MUX has two inputs and one output.
  • the 2: 1 MUX is disposed in a number corresponding to the number of the first conductive patterns 252a and the second conductive patterns 257a, and the first conductive pattern 252a or the second is input to one input of the 2: 1 MUX.
  • One end of the conductive pattern 257a is connected, the other end is connected to the base loop 251a, and the other end of the first conductive patterns 252a or the second conductive patterns 257a is connected to the output.
  • the capacitive control unit 281a is in a state in which the first conductive patterns 252a and the second conductive patterns 257a are disconnected from the base loop 251a.
  • a signal (for example, the signal input pattern Tx of FIG. 2) is applied to at least one of one end and the other end of the first conductive patterns 252a and the signal that appears in the second conductive patterns 257a (for example, FIG. 2). Detects a signal sensing pattern Rx and detects a touch position from a change in capacitance according to a touch operation, or a signal (for example, the signal input pattern of FIG.
  • the first conductive patterns 252a and the second conductive patterns 257a are paired and used to detect the touch position according to the touch operation from the capacitance change as shown in FIG. 3.
  • the electromagnetic induction control unit 285a controls the N: 1 MUX 260a to control the first conductive pattern.
  • the voltage of the base loop 251a is compared with the induced voltage output from one end of the first conductive pattern 252a. Detects the position of the electronic pen in two directions (induction field origination position) (see FIG.
  • the position of the electronic pen according to the second direction can be detected (see FIG. 5), and the voltage of the base loop 251a and the induced voltage output from one end of the second conductive patterns 257a are compared in the first direction.
  • Position of the electronic pen The position of the electronic pen according to the first direction may be detected by detecting (see FIG. 4) or based on a signal output from the other ends of two adjacent second conductive patterns 257a (specifically comparing the difference in induced voltages). (See Figure 5).
  • the electromagnetic induction controller 285a is connected to the other end of the first conductive patterns 252a and the second conductive patterns 257a to the base loop 251a. Detect the induced electromagnetic field originating position along the second direction based on the voltage of the base loop 251a and the voltage output from one end of the selected first conductive pattern 252a (see FIG. 4) or two adjacent first conductive The position of the electronic pen in the second direction can be detected based on a signal output from one end of the patterns 252a (specifically comparing the difference in induced voltages) (see FIG. 5), and the voltage of the base loop 251a can be detected.
  • Second conductive patterns 257a Based on the voltage output at one end of the selected second conductive patterns 257a connected to the base loop 251a and detecting the induced electromagnetic field transmission position in the first direction (see FIG. 4) or two adjacent second conductive patterns. (257a) can detect the position of the electronic pen according to one based on the signal output from of (the difference between the induced voltages in detail comparison) to the first direction (see Fig. 5).
  • the first conductive patterns 252a and the second conductive patterns 257a are paired and used to detect the position of the electronic pen from the change of the induced electromagnetic field as shown in FIGS. 3 to 5. do.
  • the structure of the display module in which the display element and the position detection unit 250a are integrated is as follows.
  • the position detector 250a may be integrally formed on the upper surface of the filter glass substrate 217.
  • the first conductive patterns 252a and the second conductive patterns 257a may be sequentially formed on the top surface of the filter glass substrate 217.
  • a plurality of second conductive patterns 257a are formed on the upper surface of the filter glass substrate 217 and are spaced apart from each other in the first direction and side by side, and the first conductive patterns 252a are illustrated in FIGS. 12 and 14. They may be formed by connecting a plurality of unit conductive patterns 253a formed in a first direction between the plurality of second conductive patterns 257a on the upper surface of the filter glass substrate 217 with a bridge 254a.
  • the bridge 254a connects the plurality of unit conductive patterns 253a spaced apart from each other to keep the first conductive patterns 252a and the second conductive patterns 257a insulated with the wires 256a.
  • the outside of the wire 256a is wrapped with an insulator 255a.
  • the first conductive patterns 253a are formed by connecting the plurality of unit conductive patterns 253a with the bridge 254a.
  • first conductive patterns 252a are formed on the upper surface of the filter glass substrate 217a in parallel with each other in the second direction, and as shown in FIG. 11B, the second conductive patterns 257a are formed of a plurality of first conductive patterns 252a.
  • the first conductive patterns 252a may be formed by connecting the plurality of unit conductive patterns 253a formed along the second direction with the bridge 254a.
  • the base loop 251a is formed on the upper edge of the filter glass substrate 217 so as to be spaced apart from the first conductive patterns 252a and the second conductive patterns 257a and the first conductive patterns 252a.
  • the second conductive pattern 257a is disposed to surround the second conductive pattern 257a.
  • the base loop 251a is disposed on the upper edge of the filter glass substrate 217, but the base loop 251a is not limited thereto and may be disposed on the lower edge of the filter glass substrate 217.
  • first conductive patterns 252a and the second conductive patterns 257a may be formed on one surface and the other surface of the filter glass substrate 217.
  • a plurality of second conductive patterns 257a are formed on the upper surface of the filter glass substrate 217 in the first direction, and the first conductive patterns 252a are the filter glass substrates.
  • a plurality of bottom surfaces of the 217 may be formed side by side in the second direction.
  • first conductive patterns 252a are formed on the lower surface of the filter glass substrate 217 and the second conductive patterns 257a are formed on the upper surface of the filter glass substrate 217, as shown in FIG. It is not necessary to use the same bridge 254.
  • the base loop 251a is formed on the upper or lower edge of the filter glass substrate 217 so as to be spaced apart from the first conductive patterns 252a and the second conductive patterns 257a, and the first conductive pattern 252a. And surround the second conductive pattern 257a.
  • base loop 251a is formed on the top or bottom surface of the filter glass substrate 217 in FIG. 14 and FIG. 15, the base loop 251a is not limited thereto, and the base loop 251a is shown in FIG. 8. It may be formed on the back of the.
  • the first conductive patterns 252a, the second conductive patterns 257a, and the base loop 251 are formed on the top or bottom surface of the filter glass substrate 217.
  • the present invention is not limited thereto, and the first conductive patterns 252a, the second conductive patterns 257a, the conductive patterns 258, and the base loop 251 are illustrated in FIG. 8.
  • Each of the backlight unit 211, the bottom polarizing plate 212, the TFT glass substrate 213, the filter glass substrate 217, the top polarizer 218, the cover glass 219, and the like, which form an LCD device having It may be formed on one side or the other side of any one of the components.
  • the first conductive patterns 252a, the second conductive patterns 257a, and the base loop 251 may be disposed on the bottom surface of the display module 200 according to the present embodiment.
  • the base loop 251a is formed to be spaced apart from at least one of the first conductive patterns 252a and the second conductive patterns 257a.
  • the display element is an OLED
  • the structure of the display module in which the display element and the position detector 250a are integrated will be described.
  • the first conductive patterns 252a and the second conductive pattern are illustrated.
  • the first and second conductive patterns 252a and the base loop 251a may be formed on the upper or lower surface of the glass substrate 217a, but the present disclosure is not limited thereto.
  • the first conductive patterns 252a, the second conductive patterns 257a, and the base loop 251a may be disposed on the bottom surface of the display module according to the present embodiment.
  • the structure of the display module in which the display element and the position detector 250a are integrated refers to the structure of the display module according to the first embodiment of the present invention, and a detailed description thereof will be omitted.
  • the display module according to the present embodiment is provided integrally with the display element and supplies an energy to the electronic pen by applying a frequency corresponding to the resonance frequency of the resonance circuit of the electronic pen.
  • 270a is further included.
  • the energy supply unit 270a includes a coil shaped power coil 270a and a coil driver (not shown) for supplying an AC voltage and a current to the power coil 270a to drive the power coil 270.
  • the power coil 270a according to the present embodiment is the same as the power coil 270 according to the first embodiment of the present invention, a detailed description thereof will be omitted.
  • the position detection unit 250a detects the position of the electronic pen from the change in capacitance due to the touch operation and the change in the induced electromagnetic field according to the electromagnetic induction.
  • the first conductive patterns 252a and the other end of the second conductive patterns 257a are disconnected from the base loop 251a, the first conductive patterns 252a and the second conductive patterns 257a are separated. They are paired to detect the touch position from the capacitance change due to the touch operation.
  • first conductive patterns 252a and the second conductive patterns 257a are paired while the other ends of the first conductive patterns 252a and the second conductive patterns 257a are connected to the base loop 251a.
  • the position of the electronic pen is detected from the change of the induced electric field generated by the approach of the electronic pen emitting electromagnetic force.
  • the display module according to the second embodiment of the present invention further includes a capacitive controller 281a and an electromagnetic induction controller 285a to control the touch position and the position detection of the electronic pen.
  • the capacitance controller 281a controls the N: 1 MUX 260a so that the other ends of the first conductive patterns 252a and the second conductive patterns 257a are connected to the base loop 251a.
  • a signal for example, the signal input pattern Tx of FIG. 2 is applied to at least one of the first and the other ends of the first conductive patterns 252a and the signal appears in the second conductive patterns 257a.
  • the signal sensing pattern Rx of FIG. 2 is sensed to detect the touch position from the capacitance change due to the touch operation.
  • the capacitive controller 281a applies a signal to at least one of one end and the other end of the second conductive patterns 257a (eg, the signal input pattern Tx of FIG. 2) to form the first conductive patterns 252a.
  • the touch position may be detected from the change in capacitance due to the touch operation by sensing the signal (for example, the signal sensing pattern Rx of FIG. 2).
  • the capacitive control unit 281a identifies a location where the characteristics (eg, amplitude or frequency) of the RX signal change, so that the capacitance of the first conductive pattern 252a and the second conductive pattern 257a corresponding to the location is changed.
  • the intersection point is determined as the touch position.
  • the electromagnetic induction control unit 285a controls the N: 1 MUX 260a so that the other end of the first conductive patterns 252a and the second conductive pattern 257a is connected to the base loop 251a. Based on the voltage of the loop 251a and the induced voltage output from one end of the selected first conductive patterns 252a, the induced electromagnetic field originating position in the second direction is detected (see FIG. 4), or two adjacent first conductive patterns ( The position of the electronic pen along the second direction is detected by comparing the difference between the induced voltages output from one end of each of the second lines 252a (see FIG. 5).
  • one end of the first conductive pattern 252a and the second conductive pattern 257a is connected to the electromagnetic induction control unit 285a.
  • the electromagnetic induction controller 285a detects the induced electromagnetic field transmission position in the first direction based on the voltage of the base loop 251a and the induced voltage output from one end of the selected second conductive pattern 257a (FIG. 4). The position of the electronic pen along the first direction is detected by comparing the difference between induced voltages output from one end of two adjacent second conductive patterns 257a (see FIG. 5).
  • the position of the electronic pen is detected by comparing the difference between induced voltages output from one end of two adjacent first conductive patterns 252a and one end of two adjacent second conductive patterns 257a.
  • the present invention is not limited thereto, and the position of the electronic pen may be detected by comparing a difference between induced voltages output from one end of the at least two first conductive patterns 252a and one end of the second conductive patterns 257a.
  • the display module according to the second embodiment of the present invention further includes a main controller 280a to independently control the capacitance controller 281a and the electromagnetic induction controller 285a.
  • the capacitive controller 281a and the electromagnetic induction controller 285a are selectively connected to the main controller 280a.
  • the main controller 280a activates the capacitive controller 281a when the touch position is to be detected, and activates the electromagnetic induction controller 285a when the position of the electronic pen is to be detected.
  • the present invention can be applied to the information technology (IT) industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Electromagnetism (AREA)
  • Position Input By Displaying (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

정전용량 및 전자기유도 방식에 의한 위치검출이 가능한 디스플레이 모듈 및 이를 구비한 디스플레이 장치가 개시된다. 본 발명의 일 실시예에 따른 정전용량 및 전자기유도 방식에 의한 위치검출이 가능한 디스플레이 모듈은, 디스플레이 소자; 및 디스플레이 소자에 일체로 마련되며, 터치동작에 따른 정전용량 변화로부터 터치위치와 전자기유도에 따른 유도전자기장의 변화로부터 전자펜의 위치를 검출하는 위치 검출부를 포함한다.

Description

정전용량 및 전자기유도 방식에 의한 위치검출이 가능한 디스플레이 모듈 및 이를 구비한 디스플레이 장치
본 발명은, 정전용량 및 전자기유도 방식에 의한 위치검출이 가능한 디스플레이 모듈 및 이를 구비한 디스플레이 장치에 관한 것으로서, 보다 상세하게는, 터치동작에 따른 터치위치와 전자기유도에 따른 전자펜의 조작위치를 검출할 수 있는 정전용량 및 전자기유도 방식에 의한 위치검출이 가능한 디스플레이 모듈 및 이를 구비한 디스플레이 장치에 관한 것이다.
이동통신 단말기, PDA, 태블릿PC 등을 포함하는 디스플레이 장치에는 입력장치로써 터치 패널(Touch Panel)이 널리 사용되고 있다.
종전의 디스플레이 장치에는 터치 패널이 OLED(Organic Light Emitting Diodes), LCD(Liquid Crystal Display), AMOLED(Active Matrix Organic Light Emitting Diodes), FED(Field Emission Display) 등을 포함하는 디스플레이 소자의 상부 또는 하부에 별개로 구성되어 사용되었다.
한편, 최근에는 손가락의 터치와 전자펜에 의한 터치를 모두 감지할 수 있는 입력장치, 특히 정전용량 방식에 의한 입력과, 유도전자기장을 방출하는 전자펜의 위치를 검출하는 전자기유도 방식에 의한 입력을 모두 감지할 수 있는 입력장치가 개발되고 있다.
정전용량 방식은 정전용량 터치 센서 기판에 인듐주석산화물(ITO, indume tin oxide), Metal Mesh, Ag nano wire, CNT 와 같은 투명 도전성 물질로 투명전극 패턴을 형성하고, 이 투명전극 패턴에 외부로 연결되는 연성회로기판을 전기적으로 연결하여 형성하게 된다.
그리고 전자기유도 방식에 의한 입력은 전자펜에 배터리가 내장되거나, 배터리가 내장되지 않는 경우와 같이 다양하게 마련될 수 있다.
전자펜에 배터리가 내장되어 있지 않은 경우에는 입력장치에 구비된 커패시터(Capacitor)와 코일(Coil)이 연결된 공진회로에 의해 전자펜에 구비된 커패시터와 코일이 연결된 공진회로가 공진되어 에너지가 전달된다.
그리고, 입력장치는 전자펜으로부터 전달되는 에너지를 감지하여 전자펜의 위치를 검출한다.
그러나, 종래의 디스플레이 장치에는 디스플레이 소자와 별개로 구성된 손가락의 터치동작에 따른 터치위치를 검출하는 터치패널과 유도전자기장을 방출하는 전자펜의 조작위치를 검출하는 디지타이저 패널이 결합된다.
따라서, 종래의 디스플레이 장치는 두께가 상대적으로 증가되는 문제점이 있으며, 또한, 디스플레이 소자와 별개로 손가락의 터치동작에 따른 터치위치를 검출하는 터치패널과 유도전자기장을 방출하는 전자펜의 조작위치를 검출하는 디지타이저 패널을 각각 제작하고 상호 간에 결합하여야 하므로 디스플레이 장치를 제작함에 있어 작업 효율성을 저하시키는 문제점이 있다.
따라서, 디스플레이 소자에 터치동작에 따른 터치위치와 함께 전자펜의 조작위치를 동시에 검출할 수 있는 좌표입력 센서를 일체화하는 연구가 필요하다.
따라서 본 발명이 해결하고자 하는 기술적 과제는, 디스플레이 소자에 터치동작에 따른 터치위치와 전자펜의 조작위치를 검출할 수 있는 위치 검출부를 일체화시킨 정전용량 및 전자기유도 방식에 의한 위치검출이 가능한 디스플레이 모듈 및 이를 구비한 디스플레이 장치를 제공하는 것이다.
본 발명의 일 측면에 따르면, 디스플레이 소자; 및 상기 디스플레이 소자에 일체로 마련되며, 터치동작에 따른 정전용량 변화로부터 터치위치와 전자기유도에 따른 유도전자기장의 변화로부터 전자펜의 위치를 검출하는 위치 검출부를 포함하는 정전용량 및 전자기유도 방식에 의한 위치검출이 가능한 디스플레이 모듈이 제공될 수 있다.
상기 위치 검출부는, 감지영역을 둘러싸는 베이스 루프; 상기 감지영역 내에 제1 방향으로 길게 형성되되, 상기 제1 방향에 교차되는 제2 방향으로 나란하게 복수 개 마련되는 제1 전도성 패턴; 상기 제1 전도성 패턴들과 쌍을 이루어 터치동작에 따른 정전용량 변화로부터 터치위치를 검출하도록, 상기 감지영역 내에 상기 제2 방향으로 길게 형성되되, 상기 제1 방향으로 나란하게 복수 개 마련되는 제2 전도성 패턴; 및 상기 제1 전도성 패턴들과 쌍을 이루어 전자기력을 방출하는 전자펜이 접근함에 따라 발생하는 유도전자기장의 변화로부터 상기 전자펜의 위치를 검출하도록, 상기 감지영역 내에 상기 제2 방향으로 길게 형성되고 상기 베이스 루프에 연결되되, 상기 제1 방향으로 나란하게 복수 개 마련되는 제3 전도성 패턴을 포함할 수 있다.
상기 제2 전도성 패턴들과 상기 제3 전도성 패턴들은 상기 디스플레이 소자의 내부에 배치되는 기판의 일면에 상기 제1 방향으로 나란하게 형성되고, 상기 제1 전도성 패턴들은 상기 기판의 일면에 상기 제2 방향으로 나란하게 형성되고 상기 제2 전도성 패턴들과 상기 제3 전도성 패턴들에 교차되며, 상기 제1 전도성 패턴들과 상기 제2 전도성 패턴들 및 상기 제3 전도성 패턴들이 상호 절연되도록, 상기 제1 전도성 패턴들은 상기 기판의 일면에 상기 제2 전도성 패턴들과 상기 제3 전도성 패턴들 사이에 상기 제1 방향을 따라 형성된 복수의 단위 전도성 패턴들을 브리지(bridge)로 연결하여 형성되거나, 상기 제2 전도성 패턴들과 상기 제3 전도성 패턴들은 상기 기판의 일면에 제1 전도성 패턴들 사이에 상기 제2 방향을 따라 형성된 복수의 단위 전도성 패턴들을 브리지로 연결하여 형성될 수 있다.
상기 제2 전도성 패턴들과 상기 제3 전도성 패턴들은, 상기 디스플레이 소자의 내부에 배치되는 기판의 일면에 상기 제1 방향으로 나란하게 형성되고, 상기 제1 전도성 패턴들은, 상기 기판의 타면에 상기 제2 방향으로 나란하게 형성될 수 있다.
상기 제1 전도성 패턴들과 상기 제2 전도성 패턴들과 상기 제3 전도성 패턴들 및 상기 베이스 루프는, LCD(Liquid Crystal Display) 소자를 이루는 백라이트 유닛과 바텀 편광판과 TFT 글라스 기판과 필터 글라스 기판과 탑 편광판 및 커버 글라스 중 적어도 어느 하나의 일면 또는 타면에 형성되거나, OLED(Organic Light Emitting Diodes) 소자를 이루는 TFT 글라스 기판과 편광판 및 커버 글라스 중 적어도 어느 하나의 일면 또는 타면에 형성될 수 있다.
상기 제1 전도성 패턴들과 상기 제2 전도성 패턴들이 상기 베이스 루프와 연결 해제된 상태에서, 상기 제1 전도성 패턴들의 일단을 타단에 연결하거나 상기 제1 전도성 패턴들의 타단을 개방하고 상기 제1 전도성 패턴들의 일단 및 타단 중 적어도 어느 하나에 신호를 인가하여 상기 제2 전도성 패턴들에서 나타나는 신호를 감지하거나, 상기 제2 전도성 패턴들의 일단을 타단에 연결하거나 상기 제2 전도성 패턴들의 타단을 개방하고 상기 제2 전도성 패턴들의 일단 및 타단 중 적어도 어느 하나에 신호를 인가하여 상기 제1 전도성 패턴들에서 나타나는 신호를 감지하여 터치동작에 따른 정전용량 변화로부터 터치위치를 검출하는 정전용량 제어부; 및 상기 제1 전도성 패턴들과 상기 제3 전도성 패턴들이 상기 베이스 루프와 연결된 상태에서, 상기 제1 전도성 패턴들의 일단에서 출력되는 신호에 기초하여 상기 제2 방향에 따른 유도전자기장 발신 위치를 검출하고 상기 제3 전도성 패턴들의 일단에서 출력되는 신호에 기초하여 상기 제1 방향에 따른 유도전자기장 발신 위치를 검출하는 전자기유도 제어부를 더 포함하며, 유도전기장 발신 위치를 검출하는 경우에 상기 제1 전도성 패턴들과 상기 제3 전도성 패턴들은 일단이 상기 전자기유도 제어부에 연결되고 타단이 상기 베이스 루프에 연결될 수 있다.
상기 전자기유도 제어부는, 적어도 두 개 이상의 상기 제1 전도성 패턴들의 일단에서 출력되는 신호에 기초하여 상기 제2 방향에 따른 전자펜의 위치를 검출하고 적어도 두 개 이상의 상기 제3 전도성 패턴들의 일단에서 출력되는 신호에 기초하여 상기 제1 방향에 따른 전자펜의 위치를 검출할 수 있다.
감지영역을 둘러싸는 베이스 루프; 상기 감지영역 내에 제1 방향으로 길게 형성되되, 상기 제1 방향에 교차되는 제2 방향으로 나란하게 복수 개 마련되는 제1 전도성 패턴; 및 상기 감지영역 내에 제2 방향으로 길게 형성되되, 상기 제1 방향으로 나란하게 복수 개 마련되는 제2 전도성 패턴을 포함하며, 상기 제1 전도성 패턴들과 상기 제2 전도성 패턴들이 상기 베이스 루프와 연결 해제된 상태에서 상기 제1 전도성 패턴들 및 상기 제2 전도성 패턴들이 쌍을 이루어 터치동작에 따른 정전용량 변화로부터 터치위치를 검출하고, 상기 제1 전도성 패턴들과 상기 제2 전도성 패턴들이 상기 베이스 루프와 연결된 상태에서 상기 제1 전도성 패턴들과 상기 제2 전도성 패턴들이 쌍을 이루어 전자기력을 방출하는 전자펜이 접근함에 따라 발생하는 유도전자기장의 변화로부터 상기 전자펜의 위치를 검출할 수 있다.
상기 제2 전도성 패턴들은 상기 디스플레이 소자의 내부에 배치되는 기판의 일면에 상기 제1 방향으로 나란하게 형성되고, 상기 제1 전도성 패턴들은 상기 기판의 일면에 상기 제2 방향으로 나란하게 형성되고 상기 제2 전도성 패턴들과 교차되며, 상기 제1 전도성 패턴들과 상기 제2 전도성 패턴들이 상호 절연되도록, 상기 제1 전도성 패턴들은 상기 기판의 일면에 상기 제2 전도성 패턴들 사이에 상기 제1 방향을 따라 형성된 복수의 단위 전도성 패턴들을 브리지(bridge)로 연결하여 형성되거나, 상기 제2 전도성 패턴들은 상기 기판의 일면에 상기 제1 전도성 패턴들 사이에 상기 제2 방향을 따라 형성된 복수의 단위 전도성 패턴들을 브리지로 연결하여 형성될 수 있다.
상기 제2 전도성 패턴들은, 상기 디스플레이 소자의 상면을 이루는 기판의 일면에 상기 제1 방향으로 나란하게 형성되고, 상기 제1 전도성 패턴들은, 상기 기판의 타면에 상기 제2 방향으로 나란하게 형성될 수 있다.
상기 제1 전도성 패턴들과 상기 제2 전도성 패턴들 및 상기 베이스 루프는, LCD(Liquid Crystal Display) 소자를 이루는 백라이트 유닛과 바텀 편광판과 TFT 글라스 기판과 필터 글라스 기판과 탑 편광판 및 커버 글라스 중 적어도 어느 하나의 일면 또는 타면에 형성되거나, OLED(Organic Light Emitting Diodes) 소자를 이루는 TFT 글라스 기판과 편광판 및 커버 글라스 중 적어도 어느 하나의 일면 또는 타면에 형성될 수 있다.
상기 제1 전도성 패턴들과 상기 제2 전도성 패턴들이 상기 베이스 루프와 연결 해제된 상태에서, 상기 제1 전도성 패턴들의 일단을 타단에 연결하거나 상기 제1 전도성 패턴들의 타단을 개방하고 상기 제1 전도성 패턴들의 일단 및 타단 중 적어도 어느 하나에 신호를 인가하여 상기 제2 전도성 패턴들에서 나타나는 신호를 감지하거나, 상기 제2 전도성 패턴들의 일단을 타단에 연결하거나 상기 제2 전도성 패턴들의 타단을 개방하고 상기 제2 전도성 패턴들의 일단 및 타단 중 적어도 어느 하나에 신호를 인가하여 상기 제1 전도성 패턴들에서 나타나는 신호를 감지하여 터치동작에 따른 정전용량 변화로부터 터치위치를 검출하는 정전용량 제어부; 및 상기 제1 전도성 패턴들과 상기 제2 전도성 패턴들이 상기 베이스 루프와 연결된 상태에서, 상기 제1 전도성 패턴들의 일단에서 출력되는 신호에 기초하여 상기 제2 방향에 따른 유도전기장 발신 위치를 검출하고 상기 제2 전도성 패턴들의 일단에서 출력되는 신호에 기초하여 상기 제1 방향에 따른 유도전자기장 발신 위치를 검출하는 전자기유도 제어부를 더 포함하며, 유도전기장 발신 위치를 검출하는 경우에 상기 제1 전도성 패턴들과 상기 제2 전도성 패턴들은 일단이 상기 전자기유도 제어부에 연결되고 타단이 상기 베이스 루프에 연결될 수 있다.
상기 전자기유도 제어부는, 적어도 두 개 이상의 상기 제1 전도성 패턴들의 일단에서 출력되는 신호에 기초하여 상기 제2 방향에 따른 전자펜의 위치를 검출하고 적어도 두 개 이상의 상기 제2 전도성 패턴들의 일단에서 출력되는 신호에 기초하여 상기 제1 방향에 따른 전자펜의 위치를 검출할 수 있다.
상기 디스플레이 소자에 일체로 마련되며, 상기 전자펜의 공진회로가 갖는 공진 주파수에 대응되는 주파수를 인가하여 상기 전자펜에 에너지를 공급하는 코일 형태의 에너지 공급부를 더 포함할 수 있다.
상기 베이스 루프는, 상기 디스플레이 소자의 내부에 배치되는 기판의 일면 테두리 또는 타면 테두리에 상기 감지영역의 적어도 일부분을 둘러싸도록 배치될 수 있다.
본 발명의 다른 측면에 따르면, 케이스 프레임; 및 상기 케이스 프레임에 내재되되, 시각적으로 화상을 표시하며 터치동작에 따른 정전용량 변화로부터 터치위치와 전자기유도에 따른 유도전자기장의 변화로부터 전자펜의 위치를 검출하는 디스플레이 모듈을 포함하는 디스플레이 장치가 제공될 수 있다.
본 발명의 실시예들은, 디스플레이 소자에 터치동작에 따른 정전용량 변화로부터 터치위치와 전자기유도에 따른 유도전자기장의 변화로부터 전자펜의 위치를 검출하는 위치 검출부를 일체화시킴으로써, 디스플레이 모듈이 화상을 표시함과 동시에 터치동작에 따른 터치위치와 전자펜의 조작위치를 검출할 수 있으며 또한 디스플레이 모듈의 두께를 최소화할 수 있다.
도 1은 본 발명의 제1 실시예에 따른 디스플레이 장치를 나타내는 분해사시도이다.
도 2의 (a) 및 (b)는 정전용량 방식에 의한 터치위치 검출을 설명하기 위한 개략적인 도면이다.
도 3은 전자기유도 방식에 의한 전자펜의 위치 검출을 설명하기 위한 개략적인 도면이다.
도 4의 (a) 및 (b)는 복수의 라인 안테나 마련된 경우에 일 실시예에 따른 전자기유도 방식에 의한 전자펜의 위치 검출을 설명하기 위한 개략적인 도면이다.
도 5의 (a) 및 (b)는 복수의 라인 안테나가 마련된 경우에 다른 실시예에 따른 전자기유도 방식에 의한 전자펜의 위치 검출을 설명하기 위한 개략적인 도면이다.
도 6 및 도 7은 본 발명의 제1 실시예에 따른 위치 검출부의 구조를 나타내는 평면도이다.
도 8은 본 발명의 제1 실시예에 따라 LCD에 위치 검출부가 일체로 마련된 디스플레이 모듈을 나타내는 단면도이다.
도 9 및 도 10은 도 6의 A-A 단면도로서, 본 발명의 제1 실시예에 따라 LCD의 필터 글라스 기판에 형성된 위치 검출부를 나타내는 단면도이다.
도 11은 본 발명의 제1 실시예에 따라 OLED에 위치 검출부가 일체로 마련된 디스플레이 모듈을 나타내는 단면도이다.
도 12 및 도 13은 본 발명의 제2 실시예에 따른 위치 검출부의 구조를 나타내는 평면도이다.
도 14 및 도 15는 도 12의 B-B 단면도로서, 본 발명의 제2 실시예에 따라 LCD의 필터 글라스 기판에 형성된 위치 검출부를 나타내는 단면도이다.
본 발명과 본 발명의 동작상의 이점 및 본 발명의 실시에 의하여 달성되는 목적을 충분히 이해하기 위해서는 본 발명의 바람직한 실시 예를 예시하는 첨부 도면 및 첨부 도면에 기재된 내용을 참조하여야만 한다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예를 설명함으로써, 본 발명을 상세히 설명한다. 각 도면에 제시된 동일한 참조부호는 동일한 부재를 나타낸다.
먼저, 본 발명의 제1 실시예에 따른 디스플레이 장치를 설명하면 다음과 같다.
도 1은 본 발명의 제1 실시예에 따른 디스플레이 장치를 나타내는 분해사시도이고, 도 2의 (a) 및 (b)는 정전용량 방식에 의한 터치위치 검출을 설명하기 위한 개략적인 도면이고, 도 3은 전자기유도 방식에 의한 전자펜의 위치 검출을 설명하기 위한 개략적인 도면이고, 도 4의 (a) 및 (b)는 복수의 라인 안테나가 마련된 경우에 일 실시예에 따른 전자기유도 방식에 의한 전자펜의 위치 검출을 설명하기 위한 개략적인 도면이고, 도 5의 (a) 및 (b)는 복수의 라인 안테나가 마련된 경우에 다른 실시예에 따른 전자기유도 방식에 의한 전자펜의 위치 검출을 설명하기 위한 개략적인 도면이고, 도 6 및 도 7는 본 발명의 제1 실시예에 따른 위치 검출부의 구조를 나타내는 평면도이고, 도 8은 본 발명의 제1 실시예에 따라 LCD에 위치 검출부가 일체로 마련된 디스플레이 모듈을 나타내는 단면도이고, 도 9 및 도 10은 도 6의 A-A 단면도로서, 본 발명의 제1 실시예에 따라 LCD의 필터 글라스 기판에 형성된 위치 검출부를 나타내는 단면도이고, 도 11은 본 발명의 제1 실시예에 따라 OLED에 위치 검출부가 일체로 마련된 디스플레이 모듈을 나타내는 단면도이다.
도 1을 참조하면, 본 발명의 제1 실시예에 따른 디스플레이 장치는, 케이스 프레임(100)과, 케이스 프레임(100)에 내재되어 화상을 표시함과 동시에 터치동작에 따른 터치위치와 전자펜의 조작위치를 검출하는 디스플레이 모듈(200)과, 케이스 프레임(100)의 전면에 배치되는 윈도우 글라스(300)를 포함한다.
그리고, 디스플레이 모듈(200)와 윈도우 글라스(300)는 케이스 프레임(100)에 순차로 적층되어 결합된다.
본 실시예에 따른 디스플레이 모듈(200)은 시각적으로 화상을 표시하는 디스플레이 소자(210)와, 디스플레이 소자(210)에 일체로 마련되어 터치동작에 따른 정전용량 변화로부터 터치위치와 전자기유도에 따른 유도전자기장의 변화로부터 전자펜의 위치를 검출하는 위치 검출부(250)를 포함한다.
즉, 본 실시예에 따른 디스플레이 모듈(200)은, 디스플레이 소자(210)에 위치 검출부(250)가 일체로 마련되어 하나의 단위모듈을 형성한다.
본 실시예에서 디스플레이 소자(210)는 사용자에게 화상을 표시하는 역할을 하며, OLED(Organic Light Emitting Diodes), LCD(Liquid Crystal Display), AMOLED(Active Matrix Organic Light Emitting Diodes), FED(Field Emission Display) 등 다양한 디스플레이 소자일 수 있다. 그리고, 본 실시예에서 디스플레이 소자(210)는 평면(flat) 및 곡면(curved) 타입을 모두 포함한다.
본 실시예에 따른 디스플레이 모듈(200)은 정전용량 방식에 의한 터치위치와 전자기유도 방식에 따른 전자펜의 위치를 검출하는 위치 검출부(250)를 포함하므로, 본 실시예에 따른 디스플레이 모듈(200)을 설명하기에 앞서 정전용량 방식에 의한 터치위치와 전자기유도 방식에 따른 전자펜의 위치를 검출하는 방법에 대해 간략히 설명하기로 한다.
우선, 도 2의 (a) 및 (b)를 참조하여 정전용량 방식의 터치위치를 검출하는 방법에 대하여 설명하면 다음과 같다.
디스플레이 모듈(200)에 신호 입력이 가능하도록 마련되는 신호 입력패턴(Tx)이 배열되고 이러한 신호 입력패턴(Tx)에 교차하는 방향으로 신호 센싱패턴(Rx)이 배열될 수 있다.
도 2의 (a)를 참조하면, 신호 입력패턴(Tx)과 신호 센싱패턴(Rx)은 근접하게 배치되고 상호 교차되며, 신호 입력패턴(Tx)과 신호 센싱패턴(Rx) 사이는 전기적으로 절연된다.
그리고, 교류전압에 의한 펄스 신호(50)를 신호 입력패턴(Tx)에 입력하면, 신호 입력패턴(Tx)에 근접하게 배치되어 있는 신호 센싱패턴(Rx)에 소정 범위의 전하가 축적된다(도 2의 (b)의 X 참조).
이때, 손가락 등이 신호 센싱패턴(Rx)에 접근하게 되면, 손가락 등에 의해 신호 센싱패턴(Rx)에 축적되어 있는 전하량이 변하게 되며(도 2의 (b)의 Y 참조), 이러한 전하량의 변화를 감지하여 손가락의 위치를 검출할 수 있다.
그리고, 도 3 내지 도 5를 참조하여 전자기유도 방식에 따른 전자펜의 위치를 검출하는 방법에 대하여 설명하면 다음과 같다.
도 3을 참조하면, 폐루프(50)에 라인 안테나(20)가 연결되고, 라인 안테나(20) 측으로 전자펜(60)이 접근하는 경우 전자펜(60)에 의해 라인 안테나(20)에는 유도전압이 발생하게 된다.
이때, 전자펜(60)의 내부에는 코일(L2)과 커패시터(C2)가 연결된 공진회로가 구비되고, 도시되지는 않았으나 폐루프(50)의 외측에 별도로 마련되어 전자펜(60)에 에너지를 공급하는 파워코일(미도시)에 코일(L1)과 커패시터(C1)이 연결된다.
따라서, 전자펜(60)이 라인 안테나(20)에 근접한 위치로 접근하게 되면 LC 공진(L1*C1=L2*C2)이 발생되고, 전자펜(60)으로부터 라인 안테나(20)로 에너지가 전달되어 유도전압이 발생한다.
그리고, 도 3에서 도시한 바와 같이 유도전압에 의해 유도전류(i1, i2)가 라인 안테나(20)를 따라 흐르게 되는데, 여기서 전자펜(60)이 라인 안테나(20)의 중심에 위치하는 경우 폐루프(50)를 흐르게 되는 유도전류 i1과 유도전류 i2는 크기가 동일하다.
그리고, 전자펜(60)이 라인 안테나(20)의 왼쪽에 위치하는 경우 유도전류 i1이 유도전류 i2 보다 큰 값을 가지며, 전자펜(60)이 라인 안테나(20)의 오른쪽에 위치하는 경우 유도전류 i2가 유도전류 i1 보다 큰 값을 가지게 된다.
도 4는 일 실시예에 따른 전자기유도 방식에 의한 전자펜의 위치 검출을 설명하기 위한 것으로써, 라인 안테나(20)가 복수 개 마련되는 경우 전자펜에 의해 복수의 라인 안테나(20)들에서 출력되는 전압의 크기와 위상의 변화를 나타낸다.
여기에서, 도 4의 (a)는 복수의 라인 안테나(20)들과, 스위치(10)와, 차동 증폭기(30)의 배치를 나타내고, 도 4의 (b)는 복수의 라인 안테나(20)들에서 출력되는 전압의 크기와 위상을 나타낸다.
도 4의 (a)를 참조하여 전자펜(60)이 중심에서 상대적으로 오른쪽에 위치할 때를 가정하면, 스위치(10)가 1번 위치에 있는 경우에 도 4의 (b)에서와 같이 상대적으로 낮은 전압 값을 가지지만 스위치(10)가 오른쪽으로 이동할수록, 즉 스위치(10)가 1번의 위치로부터 4번의 위치로 이동할수록 전압값은 (+) 방향으로 증가하다가 다시 감소하며 전자펜(60)이 위치하는 지점(40)에서 0[V]의 값을 가지게 되고, 전자펜(60)이 위치하는 지점(40)으로부터 오른쪽에 있는 4번 위치의 스위치(10)에서는 (-) 방향으로 증가하게 된다.
즉, 복수의 라인 안테나(20)들이 배치되고 스위치(10)를 통해 복수의 라인 안테나(20)들을 순차적으로 스캐닝하게 되면 전자펜(60)의 위치에 따라 전압의 크기와 위상이 변하게 된다. 이때, 전자펜(60)의 위치는 전압 값이 0[V]인 지점에 해당한다.
도 5는 다른 실시예에 따른 전자기유도 방식에 의한 전자펜의 위치 검출을 설명하기 위한 것으로써, 라인 안테나(20)가 복수 개 마련되는 경우 전자펜에 의해 복수의 라인 안테나(20)들 중 인접하는 두 개의 라인 안테나(20)에서 출력되는 접압의 크기와 위상 차이의 변화를 나타낸다.
여기에서, 도 5의 (a)는 복수의 라인 안테나(20)들과, 제1 및 제2 스위치(11,15)들과, 제1 내지 제3 차동 증폭기(31,33,35)들의 배치를 나타내고, 도 5의 (b)는 복수의 라인 안테나(20)들 중 인접하는 두 개의 라인 안테나(20)들에서 출력되는 전압의 크기와 위상 차이를 나타낸다.
예를 들어, 도 5의 (b)는 제1 스위치(11)가 1번 위치에 있는 경우에 제1 차동 증폭기(31)에서 출력되는 전압의 크기와 위상에서 제2 스위치(15)가 2번 위치에 있는 경우에 제2 차동 증폭기(33)에서 출력되는 전압의 크기와 위상을 뺀 값을 제3 차동 증폭기(35)에서 출력한 값을 나타낸다.
도 5의 (b)를 참조하면, 제3 차동 증폭기(35)에서 출력되는 전압의 크기와 위상은 전자펜(60)이 위치한 지점(40)에서 최대값을 가지게 된다. 이는 도 4의 (b)에서 스위치(10)가 1 내지 4번 위치에서 차동 증폭기(30)에서 출력되는 전압의 크기와 위상으로부터 확인할 수 있다.
또한, 도 5의 (a)에서와 같이 인접하는 두 개의 라인 안테나(20)들에서 출력되는 전압의 크기와 위상 차이를 이용하여 전자펜(60)의 위치를 얻는 방법은 인접하는 두 개의 라인 안테나(20)들에 생기는 노이즈를 상쇄시킬 수 있어 전자펜(60)의 위치를 보다 정확히 찾을 수 있는 이점이 있다.
한편, 본 실시예에서는 두 개의 라인 안테나(20)들에서 출력되는 전압의 크기와 위상을 이용하여 전자펜(60)의 위치를 검출할 수 있도록 설명하였으나, 이를 확장하여 적어도 두 개 이상의 라인 안테나들에서 출력되는 전압의 크기와 위상을 이용하여 전자펜(60)의 위치를 검출할 수도 있다.
전술한 바와 같이, 본 실시예에 따른 디스플레이 모듈(200)은, 디스플레이 소자(210)에 정전용량 방식에 의한 터치위치와 전자기유도 방식에 의한 전자펜의 위치를 검출할 수 있는 위치 검출부(250)를 일체로 마련하여 하나의 단위모듈을 형성하고자 한다.
도 6 및 도 7를 참조하여, 본 발명의 제1 실시예에 따른 정전용량 방식에 의한 터치위치와 전자기유도 방식에 의한 전자펜의 위치를 검출할 수 있는 위치 검출부(250)을 설명하면 다음과 같다.
본 실시예에 따른 위치 검출부(250)는, 베이스 루프(251)와, 제1 방향으로 길게 형성되고 제1 방향에 교차되는 제2 방향으로 나란하게 복수 개 마련되는 제1 전도성 패턴(252)과, 제2 방향으로 길게 형성되고 제1 방향으로 나란하게 복수 개 마련되는 제2 전도성 패턴(257)과, 제2 방향으로 길게 형성되고 베이스 루프(251)에 연결되며 제1 방향으로 나란하게 복수 개 마련되는 제3 전도성 패턴(258)을 포함한다.
여기서, 제1 방향은 케이스 프레임(100)의 폭방향이고 제2 방향은 케이스 프레임(100)의 길이방향일 수 있으나, 이와 반대로 정해질 수 있다. 그리고, 제3 전도성 패턴(258)들의 일단(구체적으로 도 6 및 도 7에 도시된 제3 전도성 패턴(252)의 상측 단부)은 후술할 전자기유도 제어부(285)에 연결된 상태로 유지되거나 개방(open) 상태로 설정되거나 특정의 전압이 인가되거나 접지될 수 있으며, 제3 전도성 패턴(258)의 타단(구체적으로 도 6 및 도 7에 도시된 제1 전도성 패턴(252)의 하측 단부)은 베이스 루프(251)에 연결될 수 있다.
베이스 루프(251)는 감지영역의 적어도 일부분을 둘러싸도록 배치된다. 여기서, 감지영역은 사용자가 손가락을 접근시키거나 터치함으로써 정전용량 방식의 터치 입력이 가능하고, 또한 전자기력을 방출하는 전자펜이 접근 및 터치함으로써 유도전자기장 입력이 가능한 영역을 가리킨다.
이러한, 감지영역은 디스플레이 소자(210)의 표면 전체일 수 있으며, 본 실시예에서 감지영역은 케이스 프레임(100)의 베젤폭을 최소화하기 위해 베이스 루프(251)가 둘러싸는 영역은 감지영역과 일치한다.
그리고, 제1 전도성 패턴(252)들과 제2 전도성 패턴(257)들 및 제3 전도성 패턴(258)들은 모두 감지영역의 내부 및 베이스 루프(251)의 내부에 배치된다.
또한, 제1 전도성 패턴(252)들과 제2 전도성 패턴(257)들 및 제3 전도성 패턴(258)들은 상호 절연된 상태이다.
한편, 본 실시예에 따른 위치 검출부(250)는 터치동작에 따른 정전용량 변화로부터 터치위치와 전자기유도에 따른 유도전자기장의 변화로부터 전자펜의 위치를 검출하여야 한다.
이를 위해, 제1 전도성 패턴(252)들과 제2 전도성 패턴(257)들은 쌍을 이루어 터치동작에 따른 정전용량 변화로부터 터치위치를 검출하는데 이용되고, 제1 전도성 패턴(252)들과 제3 전도성 패턴(258)들은 쌍을 이루어 유도전자기장의 변화로부터 전자펜의 위치를 검출하는데 이용된다.
특히, 본 실시예에서는 제1 전도성 패턴(252)들은 정전용량 방식에 의한 터치위치와 전자기유도 방식에 의한 전자펜의 위치를 검출하는데 공통으로 사용된다.
이를 위해, 도 6 및 도 7에서 도시한 바와 같이, 위치 검출부(250)의 일측에는 스위칭 소자인 멀티플렉서(260)가 마련된다.
멀티플렉서(260)는 2:1 MUX(260)일 수 있으며, 2:1 MUX(260)는 2개의 입력과 하나의 출력을 갖는다.
2:1 MUX(260)는 제1 전도성 패턴(252)들의 개수에 대응되는 개수로 배치되며, 2:1 MUX(260)의 하나의 입력에는 제1 전도성 패턴(252)의 일단(구체적으로 도 6 및 도 7에 도시된 제1 전도성 패턴(252)의 좌측 단부)이 연결되고, 다른 하나의 입력에는 베이스 루프(251)가 연결되며, 출력에는 제1 전도성 패턴(252)의 타단(구체적으로 도 6 및 도 7에 도시된 제1 전도성 패턴(252)의 우측 단부)이 연결된다.
그리고, 2:1 MUX(260)는 후술할 정전용량 제어부(281) 또는 전자기유도 제어부(285)에 의해 제어된다.
터치동작에 따른 터치위치를 검출하는 정전용량 감지모드에서 정전용량 제어부(281)가 활성화되는 경우 2:1 MUX(260)는 제1 전도성 패턴(252)들의 일단과 타단을 서로 연결한다.
그리고, 정전용량 제어부(281)는 제1 전도성 패턴(252)들의 일단 및 타단에 신호(예를 들어 도 2의 신호 입력패턴 Tx)를 인가하고 제2 전도성 패턴(257)들에서 나타나는 신호(예를 들어 도 2의 신호 센싱패턴 Rx)를 감지하여 터치동작에 따른 정전용량 변화로부터 터치위치를 검출하거나, 제2 전도성 패턴(257)들의 일단(구체적으로 도 6 및 도 7에 도시된 제2 전도성 패턴(257)의 상측 단부) 및 타단(구체적으로 도 6 및 도 7에 도시된 제2 전도성 패턴(257)의 하측 단부)에 신호(예를 들어 도 2의 신호 입력패턴 Tx)를 인가하고 제1 전도성 패턴(252)들에서 나타나는 신호를 감지하여 터지동작에 따른 정전용량 변화로부터 터치위치를 검출한다.
한편, 2:1 MUX(260)는 제1 전도성 패턴(252)들의 일단과 타단을 연결 해제한 상태에서 제1 전도성 패턴(252)들의 일단 및 타단 중 어느 하나에 신호(예를 들어 도 2의 신호 입력패턴 Tx)를 인가하고 제2 전도성 패턴(257)들에서 나타나는 신호(예를 들어 도 2의 신호 센싱패턴 Rx)를 감지하여 터치동작에 따른 정전용량 변화로부터 터치위치를 검출하거나, 제2 전도성 패턴(257)들의 일단 및 타단 중 어느 하나에 신호(예를 들어 도 2의 신호 입력패턴 Tx)를 인가하고 제1 전도성 패턴(252)들에서 나타나는 신호(예를 들어 도 2의 신호 센싱패턴 Rx)를 감지하여 터치동작에 따른 정전용량 변화로부터 터치위치를 검출할 수도 있다.
한편, 도시되지는 않았으나 멀티플렉스는 N:1 MUX(미도시) 일 수 있으며, N:1 MUX는 N개의 입력과 하나의 출력을 가진다. N:1 MUX의 N개의 입력에는 제1 전도성 패턴(252)들의 타단이 연결되고, 출력에는 베이스 루프(251)가 연결된다.
이처럼, 멀티플렉스가 N:1 MUX로 구성되는 경우에 정전용량 제어부(281)는 제1 전도성 패턴(252)들이 베이스 루프(251)와 연결 해제된 상태에서, 제1 전도성 패턴(252)들의 일단 및 양단 중 적어도 어느 하나에 신호(예를 들어 도 2의 신호 입력패턴 Tx)를 인가하고 제2 전도성 패턴(257)들에서 나타나는 신호(예를 들어 도 2의 신호 센싱패턴 Rx)를 감지하여 터치동작에 따른 정전용량 변화로부터 터치위치를 검출하거나, 제2 전도성 패턴(257)들의 일단 및 양단 중 적어도 어느 하나에 신호(예를 들어 도 2의 신호 입력패턴 Tx)를 인가하고 제1 전도성 패턴들(252)에서 나타나는 신호(예를 들어 도 2의 신호 센싱패턴 Rx)를 감지하여 터치동작에 따른 정전용량 변화로부터 터치위치를 검출할 수 있다.
상기와 같이, 제1 전도성 패턴(252)들와 제2 전도성 패턴(257)들은 쌍을 이루어 전술한 도 3에서 도시한 바와 같이 정전용량 변화로부터 터치동작에 따른 터치위치를 검출하는 데 사용된다.
그리고, 유도전자기장의 변화로부터 전자펜의 위치를 검출하는 전자기유도 모드에서 전자기유도 제어부(285)가 활성화되는 경우, 2:1 MUX(260)는 제1 전도성 패턴(252)들의 타단을 베이스 루프(251)와 연결한다.
그리고 전자기유도 제어부(285)는 베이스 루프(251)의 전압과 제1 전도성 패턴(252)들의 일단에서 출력되는 유도전압을 비교하여 제2 방향에 따른 전자펜의 위치(공진회로에서 발신하는 유도전기장의 위치)를 검출하거나(도 4 참조) 인접한 두 개의 제1 전도성 패턴(252)들의 일단에서 출력되는 신호에 기초(구체적으로 유도전압의 차이를 비교)하여 제2 방향에 따른 전자펜의 위치를 검출할 수 있으며(도 5 참조), 베이스 루프(251)의 전압과 제3 전도성 패턴(258)들의 일단에서 출력되는 유도전압을 비교하여 제1 방향에 따른 전자펜의 위치를 검출하거나(도 4 참조) 인접한 두 개의 제3 전도성 패턴(258)들의 일단에서 출력되는 신호에 기초(구체적으로 유도전압의 차이를 비교)하여 제1 방향에 따른 전자펜의 위치를 검출할 수 있다(도 5 참조).
한편, 도시되지는 않았으나 멀티플렉스가 N:1 MUX(미도시)인 경우에 N:1 MUX는 제1 전도성 패턴(252)들의 타단이 베이스 루프(251)와 연결된 상태에서 베이스 루프(251)의 전압과 선택된 제1 전도성 패턴(252)의 일단에서 출력되는 전압에 기초하여 제2 방향에 따른 유도전자기장 발신 위치를 검출하거나(도 4 참조) 인접한 두 개의 제1 전도성 패턴(252)들의 일단에서 출력되는 신호에 기초(구체적으로 유도전압의 차이를 비교)하여 제2 방향에 따른 전자펜의 위치를 검출할 수 있으며(도 5 참조), 베이스 루프(251)의 전압과 베이스 루프(251)에 연결된 선택된 제3 전도성 패턴들(258)의 일단에서 출력되는 유도전압에 기초하여 제1 방향에 따른 유도전자기장 발신 위치를 검출하거나(도 4 참조) 인접한 두 개의 제3 전도성 패턴(258)들의 일단에서 출력되는 신호에 기초(구체적으로 유도전압의 차이를 비교)하여 제1 방향에 따른 전자펜의 위치를 검출할 수 있다(도 5 참조).
상기와 같이, 제1 전도성 패턴(252)들과 제3 전도성 패턴(257)들은 쌍을 이루어 전술한 도 3 내지 도 5에서 도시한 바와 같이 유도전자기장의 변화로부터 전자펜의 위치를 검출하는 데 사용된다.
한편, 본 실시예에 따른 위치 검출부(250)가 디스플레이 소자(210)에 일체로 마련되는 구조를 설명하면 다음과 같다.
예를 들어, 도 8에서 도시한 바와 같이 디스플레이 소자(210)가 LCD인 경우 디스플레이 소자(210)와 위치 검출부(250)가 일체화된 디스플레이 모듈(200)의 구조를 설명하면 다음과 같다.
LCD는 백라이트 유닛(211)의 상부에 바텀 편광판(bottom polarizer,212), 박막 트랜지스터(TFT,214)가 증착된 TFT 글라스 기판(213), 리퀴드 크리스탈 층(liquid crystal layer,215), 칼라 필터(216)가 배면에 증착된 필터 글라스 기판(217), 탑 편광판(top polarizer,218) 및 커버 글라스(219) 등의 각각의 구성요소가 순차로 적층되어 형성된다.
이때, 디스플레이 모듈(200)의 두께를 최소화하기 위해 본 실시예에 따른 위치 검출부(250)는 도 8에서 도시한 바와 같이 필터 글라스 기판(217)의 상면에 일체로 형성될 수 있다.
구체적으로, 도 9에서 도시한 바와 같이, 제1 전도성 패턴(252)들과 제2 전도성 패턴(257)들 및 제3 전도성 패턴(259)들은 순차로 필터 글라스 기판(217)의 상면에 증착되어 형성될 수 있다.
즉, 제2 전도성 패턴(257)들과 제3 전도성 패턴(258)들은 필터 글라스 기판(217)의 상면에 제1 방향으로 번갈아 나란하게 복수 개 형성되고, 도 6 및 도 9에서 도시한 바와 같이 제1 전도성 패턴(252)들은 필터 글라스 기판(217)의 상면에 복수의 제2 전도성 패턴(257)들과 제3 전도성 패턴(258)들 사이에 제1 방향을 따라 형성된 복수의 단위 전도성 패턴(253)들을 브리지(bridge,254)로 연결하여 형성될 수 있다.
여기서, 브리지(254)는 제1 전도성 패턴(252)들과 제2 전도성 패턴(257)들 및 제3 전도성 패턴들이 상호 절연된 상태를 유지하도록 이격된 복수의 단위 전도성 패턴(253)들이 도통하게 와이어(256)로 연결하고, 와이어(256)의 외부를 절연체(255)로 감싼다. 이와 같이, 복수의 단위 전도성 패턴(253)들을 브리지(254)로 연결하여 제1 전도성 패턴(253)들을 형성한다.
한편, 제1 전도성 패턴(252)은 필터 글라스 기판(217)의 상면에 제2 방향으로 나란하게 복수 개 형성되고, 도 7에서 도시한 바와 같이, 제2 전도성 패턴(257)들과 제3 전도성 패턴(258)들은 복수의 제1 전도성 패턴(252)들 사이에 제2 방향을 따라 형성된 복수의 단위 전도성 패턴(253)들을 브리지(254)로 연결하여 형성될 수 있다.
그리고, 베이스 루프(251)는 필터 글라스 기판(217)의 상면 테두리에 제1 전도성 패턴(252)들과 제2 전도성 패턴(257)들 및 제3 전도성 패턴(258)들로부터 이격되게 형성되며, 제1 전도성 패턴(252)들과 제2 전도성 패턴(257)들 및 제3 전도성 패턴(258)들을 감싸도록 배치된다.
또한, 도 9에서는 베이스 루프(251)가 필터 글라스 기판(217)의 상면 테두리에 배치되게 도시되었으나 이에 한정되지 않으며 필터 글라스 기판(217)의 하면 테두리에 배치될 수 있다.
또한, 제1 전도성 패턴(252)들과 제2 전도성 패턴(257)들 및 제3 전도성 패턴(258)들은 필터 글라스 기판(217)의 일면 및 타면에 형성될 수 있다.
구체적으로, 도 10에서 도시한 바와 같이, 제2 전도성 패턴(257)과 제3 전도성 패턴(258)은 필터 글라스 기판(217)의 상면에 제1 방향으로 번갈아 나란하게 복수 개 형성되고, 제1 전도성 패턴(252)은 필터 글라스 기판(217)의 하면에 제2 방향으로 나란하게 복수 개 형성될 수 있다.
상기한 바와 같이, 제1 전도성 패턴(252)들이 필터 글라스 기판(217)의 하면에 형성되고 제2 전도성 패턴(257)들 및 제3 전도성 패턴(258)들이 필터 글라스 기판(217)의 상면에 형성되는 경우에, 도 9에서와 같은 브리지(254)를 사용하지 않아도 된다.
그리고, 베이스 루프(251)는 필터 글라스 기판(217)의 상면 또는 하면 테두리에 제1 전도성 패턴(252)들과 제2 전도성 패턴(257)들 및 제3 전도성 패턴(258)들로부터 이격되게 형성되며, 제1 전도성 패턴(252)들과 제2 전도성 패턴(257)들 및 제3 전도성 패턴(258)들을 감싸도록 배치된다.
또한, 도 9 및 도 10에서는 베이스 루프(251)가 필터 글라스 기판(217)의 상면 또는 하면에 형성되게 도시되었으나, 이에 한정되지 않고 베이스 루프(251)는 도 8에 도시된 적층구조를 갖는 LCD를 이루는 각각의 구성요소 중 어느 한 곳에 배치될 수 있으며 특히 백라이트 유닛(211)의 배면에 형성될 수도 있다.
한편, 도 8 내지 도 10에서는 제1 전도성 패턴(252)들과 제2 전도성 패턴(257)들과 제3 전도성 패턴(258)들 및 베이스 루프(251)가 필터 글라스 기판(217)의 상면 또는 하면에 형성되는 것을 예를 들어 설명한 것이며, 본 실시예에는 이에 한정되지 않으며 제1 전도성 패턴(252)들과 제2 전도성 패턴(257)들과 제3 전도성 패턴(258)들 및 베이스 루프(251)가 도 8에서 도시된 적층구조를 갖는 LCD 소자를 이루는 백라이트 유닛(211)과 바텀 편광판(212)과 TFT 글라스 기판(213)과 필터 글라스 기판(217)과 탑 편광판(top polarizer,218) 및 커버 글라스(219) 등의 각각의 구성요소 중 어느 하나의 일면 또는 타면에 형성될 수 있다.
또한, 제1 전도성 패턴(252)들과 제2 전도성 패턴(257)들과 제3 전도성 패턴(258)들 및 베이스 루프(251)는 본 실시예에 따른 디스플레이 모듈(200)의 바닥면에 배치될 수도 있다.
그리고, 베이스 루프(251)는 제1 전도성 패턴(252)들과 제2 전도성 패턴(257)들 및 제3 전도성 패턴(258)들 중 적어도 어느 하나의 패턴들로부터 이격되게 형성된다.
또한, 예를 들어, 도 11에서 도시한 바와 같이 디스플레이 소자가 OLED인 경우 디스플레이 소자(210)와 위치 검출부(250)가 일체화된 디스플레이 모듈(200)의 구조를 설명하면 다음과 같다.
도 11에서 도시한 바와 같이, OLED는 박막 트랜지스터(TFT,214a)가 증착된 TFT 글라스 기판(213a), 유기 EL층(215a), 편광판(polarizer,218a) 및 커버 글라스(219a) 등의 각각의 구성요소가 순차로 적층되어 형성된다.
이때, 디스플레이 모듈(200)의 두께를 최소화하기 위해 본 실시예에 따른 위치 검출부(250)는 유기 EL층(251a)과 편광판(218a) 사이에 적층되어 일체로 형성될 수 있다.
구체적으로, 도 9에서 도시한 바와 같이, 유기 EL층(251a)과 편광판(218a) 사이에 글라스 기판(217a)을 적층하고, 제1 전도성 패턴(252)들과 제2 전도성 패턴(257)들 및 제3 전도성 패턴(259)들은 순차로 글라스 기판(217a)의 상면에 증착되어 형성될 수 있다.
즉, 제2 전도성 패턴(257)들과 제3 전도성 패턴(258)들은 글라스 기판(217a)의 상면에 제1 방향으로 번갈아 나란하게 복수 개 형성되고, 제1 전도성 패턴(252)들은 글라스 기판(217)의 상면에 복수의 제2 전도성 패턴(257)들과 제3 전도성 패턴(258)들 사이에 제1 방향을 따라 형성된 복수의 단위 전도성 패턴(253)들을 브리지(bridge,254)로 연결하여 형성될 수 있다.
여기서, 브리지(254)는 제1 전도성 패턴(252)들과 제2 전도성 패턴(257)들 및 제3 전도성 패턴(258)들이 절연된 상태를 유지하도록 이격된 복수의 단위 전도성 패턴(253)들을 도통하게 와이어(256)로 연결하고, 와이어(256)의 외부를 절연체(255)로 감싼다. 이와 같이, 복수의 단위 전도성 패턴(253)들을 브리지(254)로 연결하여 제1 전도성 패턴(253)들을 형성한다.
한편, 제1 전도성 패턴(252)은 필터 글라스 기판(217)의 상면에 제2 방향으로 나란하게 복수 개 형성되고, 도 7에서 도시한 바와 같이, 제2 전도성 패턴(257)들과 제3 전도성 패턴(258)들은 복수의 제1 전도성 패턴(252)들 사이에 제2 방향을 따라 형성된 복수의 단위 전도성 패턴(253)들을 브리지(254)로 연결하여 형성될 수 있다.
그리고, 베이스 루프(251)는 글라스 기판(217a)의 상면 테두리에 제1 전도성 패턴(252)들과 제2 전도성 패턴(257)들 및 제3 전도성 패턴(258)들로부터 이격되게 형성되며, 제1 전도성 패턴(252)들과 제2 전도성 패턴(257)들 및 제3 전도성 패턴(258)들을 감싸도록 배치된다.
한편, 도 9에서는 베이스 루프(251)가 글라스 기판(217a)의 상면 테두리에 배치되게 도시되었으나 이에 한정되지 않고 글라스 기판(217a)의 하면 테두리에 배치될 수도 있다.
또한, 제1 전도성 패턴(252)들과 제2 전도성 패턴(257)들 및 제3 전도성 패턴(258)들은 글라스 기판(217a)의 일면 및 타면에 형성될 수 있다.
구체적으로, 도 10에서 도시한 바와 같이, 제2 전도성 패턴(257)과 제3 전도성 패턴(258)은 글라스 기판(217a)의 상면에 제1 방향으로 번갈아 나란하게 복수 개 형성되고, 제1 전도성 패턴(252)은 글라스 기판(217a)의 하면에 제2 방향으로 나란하게 복수 개 형성될 수 있다.
상기한 바와 같이, 제1 전도성 패턴(252)들이 글라스 기판(217)의 하면에 형성되고 제2 전도성 패턴(257)들 및 제3 전도성 패턴(258)들이 글라스 기판(217a)의 상면에 형성되는 경우에, 도 9에서와 같은 브리지(254)를 사용하지 않아도 된다.
그리고, 베이스 루프(251)는 글라스 기판(217a)의 상면 또는 하면 테두리에 제1 전도성 패턴(252)들과 제2 전도성 패턴(257)들 및 제3 전도성 패턴(258)들로부터 이격되게 형성되며, 제1 전도성 패턴(252)들과 제2 전도성 패턴(257)들 및 제3 전도성 패턴(258)들을 감싸도록 배치된다.
또한, 도 9 및 도 10에서는 베이스 루프(251)가 글라스 기판(217a)의 상면 또는 하면에 형성되게 도시되었으나, 이에 한정되지 않고 베이스 루프(251)는 도 11에 도시된 적층구조를 갖는 OLED를 이루는 각각의 구성요소 중 어느 한 곳에 배치될 수 있다.
한편, 도 9 및 도 10에서는 제1 전도성 패턴(252)들과 제2 전도성 패턴(257)들과 제3 전도성 패턴(258)들 및 베이스 루프(251)가 글라스 기판(217a)의 상면 또는 하면에 형성되는 것을 예를 들어 설명한 것이며, 본 실시예에는 이에 한정되지 않으며 제1 전도성 패턴(252)들과 제2 전도성 패턴(257)들과 제3 전도성 패턴(258)들 및 베이스 루프(251)가 도 11에서 도시된 적층구조를 갖는 OLED 소자를 이루는 TFT 글라스 기판(213a)과 편광판(218a) 및 커버 글라스(219a) 등의 각각의 구성요소 중 어느 하나의 일면 또는 타면에 형성될 수 있다. 또한, 제1 전도성 패턴(252)들과 제2 전도성 패턴(257)들과 제3 전도성 패턴(258)들 및 베이스 루프(251)는 본 실시예에 따른 디스플레이 모듈(200)의 바닥면에 배치될 수도 있다.
또한, 본 실시예에 따른 위치 검출부(250)는 전자기유도 방식에 따른 전자펜의 위치를 검출할 수 있다.
전자기유도 방식에 의한 전자펜 위치 검출은, 전자펜이 전자기력을 방출할 수 있도록 구성되어야 한다.
따라서, 전자펜은 배터리를 자체적으로 배터리를 구비하여 전자기력을 방출하도록 구성될 수 있으나, 본 실시예에서는 전자펜에 자체적으로 배터리가 구비되지 않은 경우에도 전자펜이 전자기력을 방출할 수 있도록 전자펜에 에너지를 공급할 수 있도록 구성된다.
이에, 본 실시예에 따른 디스플레이 모듈(200)은 디스플레이 소자에 일체로 마련되며, 전자펜의 공진회로가 갖는 공진 주파수에 대응되는 주파수를 인가하여 전자펜에 에너지를 공급하는 에너지 공급부(270)를 더 포함한다.
전자펜에 대한 에너지 공급은 전자기유도 방식에 의해 전자펜의 위치를 검출하기 전에 전자펜에 대하여 에너지를 공급하는 것이 바람직하다.
에너지 공급부(270)는 코일 형태의 파워코일(270)과, 파워코일(270)에 교류 전압 및 전류를 공급하여 파워코일(270)을 구동하기 위한 코일 구동부(미도시)를 포함한다.
파워코일(270)은 공진회로를 포함하는 전자펜에 유도전자기장을 이용하여 에너지를 공급하는 역할을 한다.
파워코일(270)에는 전자펜의 공진회로가 갖는 공진 주파수에 대응하는 주파수의 교류 전압/전류가 인가된다. 그리고, 파워코일(270)은 감지영역의 외부 또는 감지영역의 내부 또는 감지영역의 외부 및 내부에 걸쳐 배치될 수 있다.
그리고, 파워코일(270)은 기판에 코일형태로 인쇄된 하나의 패턴으로 구성될 수 있으며, 코일형태의 패턴이 형성된 기판을 복수 개 중첩하고 이를 상호 연결하여 구성할 수도 있다.
파워코일(270)은 도 6 및 도 7에서 도시한 바와 같이 감지영역과 일치하는 베이스 루프(251)로부터 외측으로 소정간격 이격된 위치에 배치될 수 있다.
또한, 파워코일(270)는 도 8에서 도시한 바와 같이 백라이트 유닛(211)의 배면에 적층될 수 있으며 도 11에서 도시한 바와 같이 TFT 글라스 기판(213a)의 배면에 적층될 수 있다.
또한, 도시되지는 않았으나 파워코일(270)은 디스플레이 소자(210)의 측부에 일체로 마련될 수 있으며, 베이스 루프(251)와 함께 백라이트 유닛(211) 또는 TFT 글라스 기판(213a)의 배면에 적층될 수 있다.
전자펜은 파워코일(270)에서 발생되는 전자기력에 의하여 유도전류에 의한 공진을 일으키면서 전자기력을 방출하며, 파워코일(270)으로부터 전자기력이 제거되더라도 스스로 점점 감쇄하는 전자기력을 방출한다.
한편, 제1 전도성 패턴(252)들과 제2 전도성 패턴(257)들은 쌍을 이루어 터치동작에 따른 정전용량 변화로부터 터치위치를 검출하는데 이용되며, 제1 전도성 패턴(252)들과 제3 전도성 패턴(258)들은 쌍을 이루어 유도전자기장의 변화로부터 전자펜의 위치를 검출하는데 이용된다.
따라서, 본 발명의 제1 실시예에 따른 디스플레이 모듈(200)은, 터치위치와 전자펜의 위치 검출을 제어하도록 정전용량 제어부(281)와, 전자기유도 제어부(285)를 더 포함한다.
정전용량 제어부(281)는, 손가락 등의 터치동작에 따른 정전용량 변화로부터 터치위치를 검출하는 역할을 한다.
도 6 및 도 7를 참조하면, 전술한 바와 같이 정전용량 제어부(281)는 2:1 MUX(260)를 제어하여 제1 전도성 패턴(252)들의 일단을 제1 전도성 패턴(252)들의 타단에 연결하거나 제1 전도성 패턴(252)들의 타단을 개방한다.
그리고, 정전용량 제어부(281)는 제1 전도성 패턴(252)들의 일단 및 타단 중 적어도 어느 하나에 신호(예를 들어 도 2의 신호 입력패턴 Tx)를 인가하고 제2 전도성 패턴(257)들에서 나타나는 신호(예를 들어 도 2의 신호 센싱패턴 Rx)를 감지하여 터치동작에 따른 정전용량 변화로부터 터치위치를 검출한다.
또한, 정전용량 제어부(281)는 제2 전도성 패턴(257)들의 일단 및 타단 중 적어도 어느 하나에 신호를 인가(예를 들어 도 2의 신호 입력패턴 Tx)하여 제1 전도성 패턴(252)들에서 나타나는 신호(예를 들어 도 2의 신호 센싱패턴 Rx)를 감지하여 터치동작에 따른 정전용량 변화로부터 터치위치를 검출할 수 있다.
즉, 정전용량 제어부(281)는 RX 신호의 특성(예를 들어, 진폭 또는 주파수)이 변화하는 위치를 식별하여 해당 위치에 대응되는 제1 전도성 패턴(252)과 제2 전도성 패턴(257)의 교차점을 터치위치로 판정한다.
또한, 전술한 바와 같이 전자기유도 제어부(285)는 2:1 MUX(260)를 제어하여 제1 전도성 패턴(252)들의 타단을 베이스 루프(251)에 연결하고 베이스 루프(251)의 전압과 제1 전도성 패턴(252)들의 일단에서 출력되는 유도전압에 기초하여 제2 방향에 따른 유도전자기장 발신 위치를 검출한다. 여기서, 제1 전도성 패턴(252)들은 일단이 전자기유도 제어부(285)에 연결된다.
구체적으로, 전자기유도 제어부(285)는, 복수의 제1 전도성 패턴(252)들의 타단을 베이스 루프(251)에 연결하고, 베이스 루프(251)의 전압과 선택된 제1 전도성 패턴(252)들의 일단에서 출력되는 유도전압을 서로 비교하여 제2 방향에 따른 전자펜의 위치(공진회로에서 발신하는 유도전기장의 위치)를 검출하거나(도 4 참조) 인접한 두 개의 제1 전도성 패턴(252)들의 일단에서 출력되는 유도전압의 차이를 비교하여 제2 방향에 따른 전자펜의 위치를 검출한다(도 5 참조).
그리고, 전자기유도 제어부(285)는 제3 전도성 패턴(258)들의 타단이 베이스 루프(251)에 연결된 상태에서 베이스 루프(251)의 전압과 선택된 제3 전도성 패턴(258)들의 일단에서 출력되는 유도전압을 서로 비교하여 제1 방향에 따른 전자펜의 위치를 검출하거나(도 4 참조) 인접한 두 개의 제3 전도성 패턴(258)들의 일단에서 출력되는 유도전압의 차이를 비교하여 제1 방향에 따른 전자펜의 위치를 검출한다(도 5 참조). 여기서, 제3 전도성 패턴(258)들은 일단이 전자기유도 제어부(285)에 연결된다.
한편, 본 실시예에서는 인접한 두 개의 제1 전도성 패턴(252)들의 일단 및 인접한 두 개의 제3 전도성 패턴(258)들의 일단에서 출력되는 유도전압의 차이를 비교하여 전자펜의 위치를 검출하도록 설명하였으나, 이에 한정되지 않고 확장하여 적어도 두 개 이상의 제1 전도성 패턴(252)들의 일단 및 제3 전도성 패턴(258)들의 일단에서 출력되는 유도전압의 차이를 비교하여 전자펜의 위치를 검출할 수도 있다.
그리고, 본 발명의 제1 실시예에 따른 디스플레이 모듈(200)은, 정전용량 제어부(281)와 전자기유도 제어부(285)를 상호 독립적으로 제어하도록 메인 제어부(280)를 더 포함한다. 정전용량 제어부(281)와 전자기유도 제어부(285)는 메인 제어부(280)에 연결되어 선택적으로 동작된다.
즉, 메인 제어부(280)는 터치위치를 검출하고자 하는 경우에 정전용량 제어부(281)를 활성화하며 반대로 전자펜의 위치를 검출하고자 하는 경우에 전자기유도 제어부(285)를 활성화한다.
이는 정전용량 제어부(281)와 전자기유도 제어부(285)는 제1 전도성 패턴(252)들을 공통으로 사용하므로, 각 동작은 중첩되지 않고 선택적으로 동작된다.
따라서, 정전용량 제어부(281)와 전자기유도 제어부(285)는 메인 제어부(280)에 연결되어 제1 전도성 패턴(252)들에 대한 점유율 및 점유시점을 상호 전송한다.
한편, 정전용량 제어부(281)가 동작하는 동안, 사용되지 않는 베이스 루프(251)는 개방(open) 상태로 설정되거나 특정의 전압이 인가되거나 접지될 수 있다. 본 실시예에서 베이스 루프(251)는 개방된다.
또한, 정전용량 제어부(281)가 동작하는 동안, 사용되지 않는 제3 전도성 패턴(258)들은 전자기유도 제어부(285)에 연결된 상태로 유지되거나, 개방(open) 상태로 설정되거나 특정의 전압이 인가되거나 접지될 수 있다.
전술한 바와 같이, 도 6 및 도 7를 참조하면 제1 전도성 패턴(252)들을 이용하여 정전용량 터치와 유도전자기장 입력을 모두 감지할 수 있으며, 제1 방향이 케이스 프레임(100)의 폭방향이고 제2 방향은 케이스 프레임(100)의 길이방향인 경우에 제2 전도성 패턴(257)들과 제3 전도성 패턴(258)들을 구성함에 따른 연결선을 케이스 프레임(100)의 측부인 베젤 폭방향으로 증가됨이 없이 케이스 프레임(100)의 길이방향 상부로 배치할 수 있어 연결선을 배치하기 위한 베젤폭을 크기를 최소화할 수 있는 이점이 있다.
다음으로, 본 발명의 제2 실시예에 따른 디스플레이 장치를 설명하면 다음과 같다.
도 12 및 도 13는 본 발명의 제2 실시예에 따른 위치 검출부의 구조를 나타내는 평면도이고, 도 14 및 도 15는 도 12의 B-B 단면도로서, 본 발명의 제2 실시예에 따라 LCD의 필터 글라스 기판에 형성된 위치 검출부를 나타내는 단면도이다.
본 발명의 제2 실시예에 따른 디스플레이 장치는, 케이스 프레임(미도시)과, 케이스 프레임에 내재되어 화상을 표시함과 동시에 터치동작에 따른 터치위치와 전자펜의 위치를 검출하는 디스플레이 모듈(미도시)과, 케이스 프레임의 전면에 배치되는 윈도우 글라스(미도시)를 포함한다.
본 발명의 제2 실시예에 따른 케이스 프레임과 윈도우 글라스는, 본 발명의 제1 실시예에 따른 케이스 프레임(100)과 윈도우 글라스(300)와 동일하므로 이에 대한 상세한 설명은 생략하기로 한다.
이하에서는, 본 발명의 제1 실시예와 차이점인 디스플레이 모듈에 대하여 설명하기로 한다.
본 발명의 제2 실시예에 따른 디스플레이 모듈은, 시각적으로 화상을 표시하는 디스플레이 소자와, 디스플레이 소자에 일체로 마련되어 터치동작에 따른 정전용량 변화로부터 터치위치와 전자기유도에 따른 유도전자기장의 변화로부터 전자펜의 위치를 검출하는 위치 검출부(250a)를 포함한다.
본 실시예에 따른 디스플레이 모듈은 디스플레이 소자에 위치 검출부(250a)가 일체로 마련되어 하나의 단위모듈을 형성한다.
본 실시예에서 디스플레이 소자는 사용자에게 화상을 표시하는 역할을 하며, OLED(Organic Light Emitting Diodes), LCD(Liquid Crystal Display), AMOLED(Active Matrix Organic Light Emitting Diodes), FED(Field Emission Display) 등 다양한 디스플레이 소자일 수 있다. 그리고, 본 실시예에서 디스플레이 소자는 평면(flat) 및 곡면(curved) 타입을 모두 포함한다.
본 실시예에서 위치 검출부(250a)는 터치동작에 따른 정전용량 변화로부터 터치위치와 전자기력을 방출하는 전자펜이 접근함에 따라 발생하는 유도전자기장의 변화로부터 전자펜의 위치를 검출하는 역할을 한다.
본 실시예에 따른 위치 검출부(250a)는, 베이스 루프(251a)와, 제1 방향으로 길게 형성되고 제1 방향에 교차되는 제2 방향으로 나란하게 복수 개 마련되는 제1 전도성 패턴(252a)과, 제2 방향으로 길게 형성되고 제1 방향으로 나란하게 복수 개 마련되는 제2 전도성 패턴(257a)을 포함한다.
여기서, 제1 방향은 케이스 프레임의 폭방향이고 제2 방향은 케이스 프레임의 길이방향일 수 있으나, 이와 반대로 정해질 수 있다.
베이스 루프(251a)는 감지영역을 둘러싸도록 배치된다. 감지영역은 사용자가 손가락을 접근시키거나 터치함으로써 정전용량 방식의 터치 입력이 가능하고, 또한 전자기력을 방출하는 전자펜이 접근 및 터치함으로써 유도전자기장 입력이 가능한 영역을 가리킨다.
이러한, 감지영역은 디스플레이 소자의 표면 전체일 수 있으며, 본 실시예에서 감지영역은 케이스 프레임의 베젤폭을 최소화하기 위해 베이스 루프(251a)가 둘러싸는 영역은 감지영역과 일치한다.
그리고, 제1 전도성 패턴(252a)과 제2 전도성 패턴(257a)은 모두 감지영역의 내부 및 베이스 루프(251a)의 내부에 배치된다.
또한, 제1 전도성 패턴(252a)과 제2 전도성 패턴(257a)은 상호 절연된 상태이다.
한편, 본 실시예에 따른 위치 검출부(250a)는 터치동작에 따른 정전용량 변화로부터 터치위치와 전자기유도에 따른 유도전자기장의 변화로부터 전자펜의 위치를 검출하여야 한다.
이를 위해, 제1 전도성 패턴(252a)과 제2 전도성 패턴(257a)은 쌍을 이루어 터치동작에 따른 정전용량 변화로부터 터치위치를 검출하고 유도전자기장의 변화로부터 전자펜의 위치를 검출하는데 이용된다.
도 12 및 도 13에서 도시한 바와 같이, 위치 검출부(250a)의 일측에는 스위칭 소자인 멀티플렉서(260a)가 마련된다.
멀티플렉서(260a)는 N:1 MUX(260a)일 수 있으며, N:1 MUX(260a)는 N개의 입력과 하나의 출력을 가진다.
N:1 MUX(260a)의 N개의 입력에는 제1 전도성 패턴(252a)들의 타단(구체적으로 도 12 및 도 13에 도시된 제1 전도성 패턴(252a)의 우측 단부) 및 제2 전도성 패턴(257a)들의 타단(구체적으로 도 12 및 도 13에 도시된 제2 전도성 패턴(257a)의 하측 단부)이 연결되고, 출력에는 베이스 루프(251a)가 연결된다.
N:1 MUX(260a)는 후술할 정전용량 제어부(281a) 또는 전자기유도 제어부(285a)에 의해 제어된다.
터치동작에 따른 터치위치를 검출하는 정전용량 감지모드에서 정전용량 제어부(281a)가 활성화되는 경우 N:1 MUX(260a)는 복수의 제1 전도성 패턴(252a)들 및 제2 전도성 패턴(257a)들의 타단을 베이스 루프(251a)와 연결 해제한다.
그리고, 정전용량 제어부(281a)는 제1 전도성 패턴(252a)들과 제2 전도성 패턴(257a)들이 베이스 루프(251a)와 연결 해제된 상태에서 제1 전도성 패턴(252a)들의 일단 및 타단 중 적어도 어느 하나에 신호(예를 들어 도 2의 신호 입력패턴 Tx)를 인가하고 제2 전도성 패턴(257a)에서 나타나는 신호(예를 들어 도 2의 신호 센싱패턴 Rx)를 감지하여 터치동작에 따른 정전용량 변화로부터 터치위치를 검출하거나, 제2 전도성 패턴(257a)들의 일단(구체적으로 도 12 및 도 13에 도시된 제2 전도성 패턴(257a)의 상측 단부) 및 타단 중 적어도 어느 하나에 신호(예를 들어 도 2의 신호 입력패턴 Tx)를 인가하고 제1 전도성 패턴(257a)에서 나타나는 신호(예를 들어 도 2의 신호 센싱패턴 Rx)를 감지하여 터치동작에 따른 정전용량 변화로부터 터치위치를 검출한다.
또한, 도시되지는 않았으나 멀티플렉스는 2:1 MUX일 수 있으며, 2:1 MUX는 2개의 입력과 하나의 출력을 가진다.
2:1 MUX는 제1 전도성 패턴(252a)들 및 제2 전도성 패턴(257a)들의 개수에 대응되는 개수로 배치되며, 2:1 MUX의 하나의 입력에는 제1 전도성 패턴(252a) 또는 제2 전도성 패턴(257a)의 일단이 연결되고, 다른 하나의 입력에는 베이스 루프(251a)가 연결되며, 출력에는 제1 전도성 패턴(252a)들 또는 제2 전도성 패턴(257a)들의 타단이 연결된다.
이처럼, 멀티플렉스가 2:1 MUX로 구성되는 경우에, 정전용량 제어부(281a)는 제1 전도성 패턴들(252a)과 상기 제2 전도성 패턴(257a)들이 베이스 루프(251a)와 연결 해제된 상태에서 제1 전도성 패턴(252a)들의 일단 및 타단 중 적어도 어느 하나에 신호(예를 들어 도 2의 신호 입력패턴 Tx)를 인가하고 제2 전도성 패턴(257a)들에서 나타나는 신호(예를 들어 도 2의 신호 센싱패턴 Rx)를 감지하여 터치동작에 따른 정전용량 변화로부터 터치위치를 검출하거나, 제2 전도성 패턴(257a)들의 일단 및 타단 중 적어도 어느 하나에 신호(예를 들어 도 2의 신호 입력패턴 Tx)를 인가하고 제1 전도성 패턴(252a)들에서 나타나는 신호(예를 들어 도 2의 신호 센싱패턴 Rx)를 감지하여 터치동작에 따른 정전용량 변화로부터 터치위치를 검출한다.
상기와 같이, 제1 전도성 패턴(252a)들과 제2 전도성 패턴(257a)들은 쌍을 이루어 전술한 도 3에서 도시한 바와 같이 정전용량 변화로부터 터치동작에 따른 터치위치를 검출하는 데 사용된다.
또한, 유도전자기장의 변화로부터 전자펜의 위치를 검출하는 전자기유도 모드에서 전자기유도 제어부(285a)가 활성화되는 경우, 전자기유도 제어부(285a)는 N:1 MUX(260a)를 제어하여 제1 전도성 패턴(252a)들 및 제2 전도성 패턴(257a)들의 타단이 베이스 루프(251a)와 연결된 상태에서 베이스 루프(251a)의 전압과 제1 전도성 패턴(252a)의 일단에서 출력되는 유도전압을 비교하여 제2 방향에 따른 전자펜의 위치(유도전자기장 발신 위치)를 검출하거나(도 4 참조) 인접한 두 개의 제1 전도성 패턴(252a)들의 일단에서 출력되는 신호에 기초(구체적으로 유도전압의 차이를 비교)하여 제2 방향에 따른 전자펜의 위치를 검출할 수 있으며(도 5 참조), 베이스 루프(251a)의 전압과 제2 전도성 패턴(257a)들의 일단에서 출력되는 유도전압을 비교하여 제1 방향에 따른 전자펜의 위치를 검출하거나(도 4 참조) 인접한 두 개의 제2 전도성 패턴(257a)들의 타단에서 출력되는 신호에 기초(구체적으로 유도전압의 차이를 비교)하여 제1 방향에 따른 전자펜의 위치를 검출할 수 있다(도 5 참조).
한편, 도시되지는 않았으나 멀티플렉스가 2:1 MUX로 구성되는 경우에 전자기유도 제어부(285a)는 제1 전도성 패턴(252a)들의 타단과 제2 전도성 패턴(257a)들이 베이스 루프(251a)와 연결된 상태에서 베이스 루프(251a)의 전압과 선택된 제1 전도성 패턴(252a)들의 일단에서 출력되는 전압에 기초하여 제2 방향에 따른 유도전자기장 발신 위치를 검출하거나(도 4 참조) 인접한 두 개의 제1 전도성 패턴(252a)들의 일단에서 출력되는 신호에 기초(구체적으로 유도전압의 차이를 비교)하여 제2 방향에 따른 전자펜의 위치를 검출할 수 있으며(도 5 참조), 베이스 루프(251a)의 전압과 베이스 루프(251a)와 연결된 선택된 제2 전도성 패턴(257a)들의 일단에서 출력되는 전압에 기초하여 제1 방향에 따른 유도전자기장 발신 위치를 검출하거나(도 4 참조) 인접한 두 개의 제2 전도성 패턴(257a)들의 일단에서 출력되는 신호에 기초(구체적으로 유도전압의 차이를 비교)하여 제1 방향에 따른 전자펜의 위치를 검출할 수 있다(도 5 참조).
상기와 같이, 제1 전도성 패턴(252a)들과 제2 전도성 패턴(257a)들은 쌍을 이루어 전술한 도 3 내지 도 5에서 도시한 바와 같이 유도전자기장의 변화로부터 전자펜의 위치를 검출하는 데 사용된다.
한편, 본 실시예에 따른 위치 검출부(250a)가 디스플레이 소자에 일체로 마련되는 구조를 설명하면 다음과 같다.
예를 들어, 도 8에서 도시한 바와 같이 디스플레이 소자가 LCD인 경우 디스플레이 소자와 위치 검출부(250a)가 일체화된 디스플레이 모듈의 구조를 설명하면 다음과 같다.
디스플레이 모듈의 두께를 최소화하기 위해 본 실시예에 따른 위치 검출부(250a)는 필터 글라스 기판(217)의 상면에 일체로 형성될 수 있다.
구체적으로, 도 14에서 도시한 바와 같이, 제1 전도성 패턴(252a)들과 제2 전도성 패턴(257a)들을 순차로 필터 글라스 기판(217)의 상면에 증착하여 형성할 수 있다.
즉, 제2 전도성 패턴(257a)들은 필터 글라스 기판(217)의 상면에 제1 방향으로 상호 이격되고 나란하게 복수 개 형성되고, 도 12 및 도 14에서 도시한 바와 같이 제1 전도성 패턴(252a)들은 필터 글라스 기판(217)의 상면에 복수의 제2 전도성 패턴(257a) 사이에 제1 방향을 따라 형성된 복수의 단위 전도성 패턴(253a)을 브리지(bridge,254a)로 연결하여 형성될 수 있다.
여기서, 브리지(254a)는 제1 전도성 패턴(252a)들과 제2 전도성 패턴(257a)들이 절연된 상태를 유지하도록 이격된 복수의 단위 전도성 패턴(253a)들을 도통하게 와이어(256a)로 연결하고, 와이어(256a)의 외부를 절연체(255a)로 감싼다. 이와 같이, 복수의 단위 전도성 패턴(253a)들을 브리지(254a)로 연결하여 제1 전도성 패턴(253a)을 형성한다.
한편, 제1 전도성 패턴(252a)은 필터 글라스 기판(217a)의 상면에 제2 방향으로 상호 나란하게 복수 개 형성되고, 도 11b에서 도시한 바와 같이, 제2 전도성 패턴(257a)들은 복수의 제1 전도성 패턴(252a)들 사이에 제2 방향을 따라 형성된 복수의 단위 전도성 패턴(253a)을 브리지(254a)로 연결하여 형성될 수 있다.
그리고, 베이스 루프(251a)는 필터 글라스 기판(217)의 상면 테두리에 제1 전도성 패턴(252a)들과 제2 전도성 패턴(257a)들로부터 이격되게 형성되며, 제1 전도성 패턴(252a)들과 제2 전도성 패턴(257a)들을 감싸도록 배치된다.
한편, 도 11에서는 베이스 루프(251a)가 필터 글라스 기판(217)의 상면 테두리에 배치되게 도시되었으나 이에 한정되지 않고 필터 글라스 기판(217)의 하면 테두리에 배치될 수도 있다.
또한, 제1 전도성 패턴(252a)들과 제2 전도성 패턴(257a)들은 필터 글라스 기판(217)의 일면 및 타면에 형성될 수 있다.
구체적으로, 도 15에서 도시한 바와 같이, 제2 전도성 패턴(257a)은 필터 글라스 기판(217)의 상면에 제1 방향으로 나란하게 복수 개 형성되고, 제1 전도성 패턴(252a)은 필터 글라스 기판(217)의 하면에 제2 방향으로 나란하게 복수 개 형성될 수 있다.
상기한 바와 같이, 제1 전도성 패턴(252a)들이 필터 글라스 기판(217)의 하면에 형성되고 제2 전도성 패턴(257a)들이 필터 글라스 기판(217)의 상면에 형성되는 경우에, 도 14에서와 같은 브리지(254)를 사용하지 않아도 된다.
그리고, 베이스 루프(251a)는 필터 글라스 기판(217)의 상면 또는 하면 테두리에 제1 전도성 패턴(252a)들과 제2 전도성 패턴(257a)들로부터 이격되게 형성되며, 제1 전도성 패턴(252a)과 제2 전도성 패턴(257a)을 감싸도록 배치된다.
또한, 도 14 및 도 15에서는 베이스 루프(251a)가 필터 글라스 기판(217)의 상면 또는 하면에 형성되게 도시되었으나, 이에 한정되지 않고 베이스 루프(251a)는 도 8에 도시된 백라이트 유닛(211)의 배면에 형성될 수도 있다.
한편, 도 8, 도 14 및 도 15에서는 제1 전도성 패턴(252a)들과 제2 전도성 패턴(257a)들 및 베이스 루프(251)가 필터 글라스 기판(217)의 상면 또는 하면에 형성되는 것을 예를 들어 설명한 것이며, 본 실시예에는 이에 한정되지 않으며 제1 전도성 패턴(252a)들과 제2 전도성 패턴(257a)들 전도성 패턴(258)들 및 베이스 루프(251)가 도 8에서 도시된 적층구조를 갖는 LCD 소자를 이루는 백라이트 유닛(211)과 바텀 편광판(212)과 TFT 글라스 기판(213)과 필터 글라스 기판(217)과 탑 편광판(top polarizer,218) 및 커버 글라스(219) 등의 각각의 구성요소 중 어느 하나의 일면 또는 타면에 형성될 수 있다. 또한, 제1 전도성 패턴(252a)들과 제2 전도성 패턴(257a)들 및 베이스 루프(251)는 본 실시예에 따른 디스플레이 모듈(200)의 바닥면에 배치될 수도 있다.
그리고, 베이스 루프(251a)는 제1 전도성 패턴(252a)들과 제2 전도성 패턴(257a)들 중 적어도 어느 하나의 패턴들로부터 이격되게 형성된다.
또한, 디스플레이 소자가 OLED인 경우 디스플레이 소자와 위치 검출부(250a)가 일체화된 디스플레이 모듈의 구조에 대해 살펴보면, 도 14 및 도 15에서 도시한 바와 같이 제1 전도성 패턴(252a)들과 제2 전도성 패턴(257a)들 및 베이스 루프(251a)가 글라스 기판(217a)의 상면 또는 하면에 형성되는 것을 예를 들어 설명한 것이며, 본 실시예에는 이에 한정되지 않으며 제1 전도성 패턴(252a)들과 제2 전도성 패턴(257a)들 및 베이스 루프(251a)가 도 11에서 도시된 적층구조를 갖는 OLED 소자를 이루는 TFT 글라스 기판(213a)과 편광판(218a) 및 커버 글라스(219a) 등의 각각의 구성요소 중 어느 하나의 일면 또는 타면에 형성될 수 있다. 또한, 제1 전도성 패턴(252a)들과 제2 전도성 패턴(257a)들 및 베이스 루프(251a)는 본 실시예에 따른 디스플레이 모듈의 바닥면에 배치될 수도 있다.
이하 디스플레이 소자가 OLED인 경우 디스플레이 소자와 위치 검출부(250a)가 일체화된 디스플레이 모듈의 구조는 본 발명의 제1 실시예에 따른 디스플레이 모듈의 구조를 참조하며 이에 대한 상세한 설명은 생략하기로 한다.
도 12 및 도 13를 참조하면 본 실시예에 따른 디스플레이 모듈은, 디스플레이 소자에 일체로 마련되며, 전자펜의 공진회로가 갖는 공진 주파수에 대응되는 주파수를 인가하여 전자펜에 에너지를 공급하는 에너지 공급부(270a)를 더 포함한다.
그리고, 에너지 공급부(270a)는 코일 형태의 파워코일(270a)과, 파워코일(270a)에 교류 전압 및 전류를 공급하여 파워코일(270)을 구동하기 위한 코일 구동부(미도시)를 포함한다.
본 실시예에 따른 파워코일(270a)은 본 발명의 제1 실시예에 따른 파워코일(270)과 동일하므로 이에 대한 상세한 설명은 생략하기로 한다.
한편, 본 실시예에 따른 위치 검출부(250a)는 터치동작에 따른 정전용량 변화로부터 터치위치와 전자기유도에 따른 유도전자기장의 변화로부터 전자펜의 위치를 검출한다.
이때, 제1 전도성 패턴(252a)들의 타단 및 제2 전도성 패턴(257a)들의 타단이 베이스 루프(251a)와 연결 해제된 상태에서, 제1 전도성 패턴(252a)들과 제2 전도성 패턴(257a)들이 쌍을 이루어 터치동작에 따른 정전용량 변화로부터 터치위치를 검출한다.
또한, 제1 전도성 패턴(252a)들 및 제2 전도성 패턴(257a)들의 타단이 베이스 루프(251a)와 연결된 상태에서 제1 전도성 패턴(252a)들과 제2 전도성 패턴(257a)들이 쌍을 이루어 전자기력을 방출하는 전자펜이 접근함에 따라 발생하는 유도전기장의 변화로부터 전자펜의 위치를 검출한다.
따라서, 본 발명의 제2 실시예에 따른 디스플레이 모듈은, 터치위치와 전자펜의 위치 검출을 제어하도록 정전용량 제어부(281a)와, 전자기유도 제어부(285a)를 더 포함한다.
도 12 및 도 13를 참조하면, 정전용량 제어부(281a)는 N:1 MUX(260a)를 제어하여 제1 전도성 패턴(252a)들 및 제2 전도성 패턴(257a)들의 타단이 베이스 루프(251a)와 연결 해제된 상태에서, 제1 전도성 패턴(252a)들의 일단 및 타단 중 적어도 어느 하나에 신호(예를 들어 도 2의 신호 입력패턴 Tx)를 인가하고 제2 전도성 패턴(257a)들에서 나타나는 신호(예를 들어 도 2의 신호 센싱패턴 Rx)를 감지하여 터치동작에 따른 정전용량 변화로부터 터치위치를 검출한다.
또한, 정전용량 제어부(281a)는 제2 전도성 패턴(257a)들의 일단 및 타단 중 적어도 어느 하나에 신호를 인가(예를 들어 도 2의 신호 입력패턴 Tx)하여 제1 전도성 패턴(252a)들에서 나타나는 신호(예를 들어 도 2의 신호 센싱패턴 Rx)를 감지하여 터치동작에 따른 정전용량 변화로부터 터치위치를 검출할 수 있다.
즉, 정전용량 제어부(281a)는 RX 신호의 특성(예를 들어, 진폭 또는 주파수)이 변화하는 위치를 식별하여 해당 위치에 대응되는 제1 전도성 패턴(252a)과 제2 전도성 패턴(257a)의 교차점을 터치위치로 판정한다.
또한, 전자기유도 제어부(285a)는, N:1 MUX(260a)를 제어하여 제1 전도성 패턴(252a)들 및 제2 전도성 패턴(257a)의 타단이 베이스 루프(251a)와 연결된 상태에서, 베이스 루프(251a)의 전압과 선택된 제1 전도성 패턴(252a)들의 일단에서 출력되는 유도전압에 기초하여 제2 방향에 따른 유도전자기장 발신 위치를 검출하거나(도 4 참조) 인접한 두 개의 제1 전도성 패턴(252a)들의 일단에서 출력되는 유도전압의 차이를 비교하여 제2 방향에 따른 전자펜의 위치를 검출한다(도 5 참조). 여기서, 제1 전도성 패턴(252a)과 제2 전도성 패턴(257a)은 일단이 전자기유도 제어부(285a)에 연결된다.
그리고, 전자기유도 제어부(285a)는 베이스 루프(251a)의 전압과 선택된 제2 전도성 패턴(257a)들의 일단에서 출력되는 유도전압에 기초하여 제1 방향에 따른 유도전자기장 발신 위치를 검출하거나(도 4 참조) 인접한 두 개의 제2 전도성 패턴(257a)들의 일단에서 출력되는 유도전압의 차이를 비교하여 제1 방향에 따른 전자펜의 위치를 검출한다(도 5 참조).
한편, 본 실시예에서는 인접한 두 개의 제1 전도성 패턴(252a)들의 일단 및 인접한 두 개의 제2 전도성 패턴(257a)들의 일단에서 출력되는 유도전압의 차이를 비교하여 전자펜의 위치를 검출하도록 설명하였으나, 이에 한정되지 않고 확장하여 적어도 두 개 이상의 제1 전도성 패턴(252a)들의 일단 및 제2 전도성 패턴(257a)들의 일단에서 출력되는 유도전압의 차이를 비교하여 전자펜의 위치를 검출할 수도 있다.
또한, 본 발명의 제2 실시예에 따른 디스플레이 모듈은, 정전용량 제어부(281a)와 전자기유도 제어부(285a)를 상호 독립적으로 제어하도록 메인 제어부(280a)를 더 포함한다. 정전용량 제어부(281a)와 전자기유도 제어부(285a)는 메인 제어부(280a)에 연결되어 선택적으로 동작된다.
즉, 메인 제어부(280a)는 터치위치를 검출하고자 하는 경우에 정전용량 제어부(281a)를 활성화하며 반대로 전자펜의 위치를 검출하고자 하는 경우에 전자기유도 제어부(285a)를 활성화한다.
이와 같이 본 발명은 기재된 실시 예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명하다. 따라서 그러한 수정 예 또는 변형 예들은 본 발명의 특허청구범위에 속한다 하여야 할 것이다.
본 발명은 정보기술(IT, Information Technology) 산업 분야에 적용될 수 있다.

Claims (16)

  1. 디스플레이 소자; 및
    상기 디스플레이 소자에 일체로 마련되며, 터치동작에 따른 정전용량 변화로부터 터치위치와 전자기유도에 따른 유도전자기장의 변화로부터 전자펜의 위치를 검출하는 위치 검출부를 포함하는 정전용량 및 전자기유도 방식에 의한 위치검출이 가능한 디스플레이 모듈.
  2. 제1항에 있어서,
    상기 위치 검출부는,
    감지영역의 적어도 일부분을 둘러싸는 베이스 루프;
    상기 감지영역 내에 제1 방향으로 길게 형성되되, 상기 제1 방향에 교차되는 제2 방향으로 나란하게 복수 개 마련되는 제1 전도성 패턴;
    상기 제1 전도성 패턴들과 쌍을 이루어 터치동작에 따른 정전용량 변화로부터 터치위치를 검출하도록, 상기 감지영역 내에 상기 제2 방향으로 길게 형성되되, 상기 제1 방향으로 나란하게 복수 개 마련되는 제2 전도성 패턴; 및
    상기 제1 전도성 패턴들과 쌍을 이루어 전자기력을 방출하는 전자펜이 접근함에 따라 발생하는 유도전자기장의 변화로부터 상기 전자펜의 위치를 검출하도록, 상기 감지영역 내에 상기 제2 방향으로 길게 형성되고 상기 베이스 루프에 연결되되, 상기 제1 방향으로 나란하게 복수 개 마련되는 제3 전도성 패턴을 포함하는 정전용량 및 전자기유도 방식에 의한 위치검출이 가능한 디스플레이 모듈.
  3. 제2항에 있어서,
    상기 제2 전도성 패턴들과 상기 제3 전도성 패턴들은 상기 디스플레이 소자의 내부에 배치되는 기판의 일면에 상기 제1 방향으로 나란하게 형성되고,
    상기 제1 전도성 패턴들은 상기 기판의 일면에 상기 제2 방향으로 나란하게 형성되고 상기 제2 전도성 패턴들과 상기 제3 전도성 패턴들에 교차되며,
    상기 제1 전도성 패턴들과 상기 제2 전도성 패턴들 및 상기 제3 전도성 패턴들이 상호 절연되도록, 상기 제1 전도성 패턴들은 상기 기판의 일면에 상기 제2 전도성 패턴들과 상기 제3 전도성 패턴들 사이에 상기 제1 방향을 따라 형성된 복수의 단위 전도성 패턴들을 브리지(bridge)로 연결하여 형성되거나, 상기 제2 전도성 패턴들과 상기 제3 전도성 패턴들은 상기 기판의 일면에 제1 전도성 패턴들 사이에 상기 제2 방향을 따라 형성된 복수의 단위 전도성 패턴들을 브리지로 연결하여 형성되는 것을 특징으로 하는 정전용량 및 전자기유도 방식에 의한 위치검출이 가능한 디스플레이 모듈.
  4. 제2항에 있어서,
    상기 제2 전도성 패턴들과 상기 제3 전도성 패턴들은,
    상기 디스플레이 소자의 내부에 배치되는 기판의 일면에 상기 제1 방향으로 나란하게 형성되고,
    상기 제1 전도성 패턴들은,
    상기 기판의 타면에 상기 제2 방향으로 나란하게 형성되는 것을 특징으로 하는 정전용량 및 전자기유도 방식에 의한 위치검출이 가능한 디스플레이 모듈.
  5. 제2항에 있어서,
    상기 제1 전도성 패턴들과 상기 제2 전도성 패턴들과 상기 제3 전도성 패턴들 및 상기 베이스 루프는,
    LCD(Liquid Crystal Display) 소자를 이루는 백라이트 유닛과 바텀 편광판과 TFT 글라스 기판과 필터 글라스 기판과 탑 편광판 및 커버 글라스 중 적어도 어느 하나의 일면 또는 타면에 형성되거나,
    OLED(Organic Light Emitting Diodes) 소자를 이루는 TFT 글라스 기판과 편광판 및 커버 글라스 중 적어도 어느 하나의 일면 또는 타면에 형성되는 것을 특징으로 하는 정전용량 및 전자기유도 방식에 의한 위치검출이 가능한 디스플레이 모듈.
  6. 제2항에 있어서,
    상기 제1 전도성 패턴들과 상기 제2 전도성 패턴들이 상기 베이스 루프와 연결 해제된 상태에서, 상기 제1 전도성 패턴들의 일단을 타단에 연결하거나 상기 제1 전도성 패턴들의 타단을 개방하고 상기 제1 전도성 패턴들의 일단 및 타단 중 적어도 어느 하나에 신호를 인가하여 상기 제2 전도성 패턴들에서 나타나는 신호를 감지하거나, 상기 제2 전도성 패턴들의 일단을 타단에 연결하거나 상기 제2 전도성 패턴들의 타단을 개방하고 상기 제2 전도성 패턴들의 일단 및 타단 중 적어도 어느 하나에 신호를 인가하여 상기 제1 전도성 패턴들에서 나타나는 신호를 감지하여 터치동작에 따른 정전용량 변화로부터 터치위치를 검출하는 정전용량 제어부; 및
    상기 제1 전도성 패턴들과 상기 제3 전도성 패턴들이 상기 베이스 루프와 연결된 상태에서, 상기 제1 전도성 패턴들의 일단에서 출력되는 신호에 기초하여 상기 제2 방향에 따른 유도전자기장 발신 위치를 검출하고 상기 제3 전도성 패턴들의 일단에서 출력되는 신호에 기초하여 상기 제1 방향에 따른 유도전자기장 발신 위치를 검출하는 전자기유도 제어부를 더 포함하며,
    유도전기장 발신 위치를 검출하는 경우에 상기 제1 전도성 패턴들과 상기 제3 전도성 패턴들은 일단이 상기 전자기유도 제어부에 연결되고 타단이 상기 베이스 루프에 연결되는 것을 특징으로 하는 정전용량 및 전자기유도 방식에 의한 위치검출이 가능한 디스플레이 모듈.
  7. 제6항에 있어서,
    상기 전자기유도 제어부는,
    적어도 두 개 이상의 상기 제1 전도성 패턴들의 일단에서 출력되는 신호에 기초하여 상기 제2 방향에 따른 전자펜의 위치를 검출하고 적어도 두 개 이상의 상기 제3 전도성 패턴들의 일단에서 출력되는 신호에 기초하여 상기 제1 방향에 따른 전자펜의 위치를 검출하는 것을 특징으로 하는 정전용량 및 전자기유도 방식에 의한 위치검출이 가능한 디스플레이 모듈.
  8. 제1항에 있어서,
    상기 위치 검출부는,
    감지영역의 적어도 일부분을 둘러싸는 베이스 루프;
    상기 감지영역 내에 제1 방향으로 길게 형성되되, 상기 제1 방향에 교차되는 제2 방향으로 나란하게 복수 개 마련되는 제1 전도성 패턴; 및
    상기 감지영역 내에 제2 방향으로 길게 형성되되, 상기 제1 방향으로 나란하게 복수 개 마련되는 제2 전도성 패턴을 포함하며,
    상기 제1 전도성 패턴들과 상기 제2 전도성 패턴들이 상기 베이스 루프와 연결 해제된 상태에서 상기 제1 전도성 패턴들 및 상기 제2 전도성 패턴들이 쌍을 이루어 터치동작에 따른 정전용량 변화로부터 터치위치를 검출하고,
    상기 제1 전도성 패턴들과 상기 제2 전도성 패턴들이 상기 베이스 루프와 연결된 상태에서 상기 제1 전도성 패턴들과 상기 제2 전도성 패턴들이 쌍을 이루어 전자기력을 방출하는 전자펜이 접근함에 따라 발생하는 유도전자기장의 변화로부터 상기 전자펜의 위치를 검출하는 것을 특징으로 하는 정전용량 및 전자기유도 방식에 의한 위치검출이 가능한 디스플레이 모듈.
  9. 제8항에 있어서,
    상기 제2 전도성 패턴들은 상기 디스플레이 소자의 내부에 배치되는 기판의 일면에 상기 제1 방향으로 나란하게 형성되고,
    상기 제1 전도성 패턴들은 상기 기판의 일면에 상기 제2 방향으로 나란하게 형성되고 상기 제2 전도성 패턴들과 교차되며,
    상기 제1 전도성 패턴들과 상기 제2 전도성 패턴들이 상호 절연되도록, 상기 제1 전도성 패턴들은 상기 기판의 일면에 상기 제2 전도성 패턴들 사이에 상기 제1 방향을 따라 형성된 복수의 단위 전도성 패턴들을 브리지(bridge)로 연결하여 형성되거나, 상기 제2 전도성 패턴들은 상기 기판의 일면에 상기 제1 전도성 패턴들 사이에 상기 제2 방향을 따라 형성된 복수의 단위 전도성 패턴들을 브리지로 연결하여 형성되는 것을 특징으로 하는 정전용량 및 전자기유도 방식에 의한 위치검출이 가능한 디스플레이 모듈.
  10. 제8항에 있어서,
    상기 제2 전도성 패턴들은,
    상기 디스플레이 소자의 상면을 이루는 기판의 일면에 상기 제1 방향으로 나란하게 형성되고,
    상기 제1 전도성 패턴들은,
    상기 기판의 타면에 상기 제2 방향으로 나란하게 형성되는 것을 특징으로 하는 정전용량 및 전자기유도 방식에 의한 위치검출이 가능한 디스플레이 모듈.
  11. 제8항에 있어서,
    상기 제1 전도성 패턴들과 상기 제2 전도성 패턴들 및 상기 베이스 루프는,
    LCD(Liquid Crystal Display) 소자를 이루는 백라이트 유닛과 바텀 편광판과 TFT 글라스 기판과 필터 글라스 기판과 탑 편광판 및 커버 글라스 중 적어도 어느 하나의 일면 또는 타면에 형성되거나,
    OLED(Organic Light Emitting Diodes) 소자를 이루는 TFT 글라스 기판과 편광판 및 커버 글라스 중 적어도 어느 하나의 일면 또는 타면에 형성되는 것을 특징으로 하는 정전용량 및 전자기유도 방식에 의한 위치검출이 가능한 디스플레이 모듈.
  12. 제8항에 있어서,
    상기 제1 전도성 패턴들과 상기 제2 전도성 패턴들이 상기 베이스 루프와 연결 해제된 상태에서, 상기 제1 전도성 패턴들의 일단을 타단에 연결하거나 상기 제1 전도성 패턴들의 타단을 개방하고 상기 제1 전도성 패턴들의 일단 및 타단 중 적어도 어느 하나에 신호를 인가하여 상기 제2 전도성 패턴들에서 나타나는 신호를 감지하거나, 상기 제2 전도성 패턴들의 일단을 타단에 연결하거나 상기 제2 전도성 패턴들의 타단을 개방하고 상기 제2 전도성 패턴들의 일단 및 타단 중 적어도 어느 하나에 신호를 인가하여 상기 제1 전도성 패턴들에서 나타나는 신호를 감지하여 터치동작에 따른 정전용량 변화로부터 터치위치를 검출하는 정전용량 제어부; 및
    상기 제1 전도성 패턴들과 상기 제2 전도성 패턴들이 상기 베이스 루프와 연결된 상태에서, 상기 제1 전도성 패턴들의 일단에서 출력되는 신호에 기초하여 상기 제2 방향에 따른 유도전기장 발신 위치를 검출하고 상기 제2 전도성 패턴들의 일단에서 출력되는 신호에 기초하여 상기 제1 방향에 따른 유도전자기장 발신 위치를 검출하는 전자기유도 제어부를 더 포함하며,
    유도전자기장 발신 위치를 검출하는 경우에 상기 제1 전도성 패턴들과 상기 제2 전도성 패턴들은 일단이 상기 전자기유도 제어부에 연결되고 타단이 상기 베이스 루프에 연결되는 것을 특징으로 하는 정전용량 및 전자기유도 방식에 의한 위치검출이 가능한 디스플레이 모듈.
  13. 제12항에 있어서,
    상기 전자기유도 제어부는,
    적어도 두 개 이상의 상기 제1 전도성 패턴들의 일단에서 출력되는 신호에 기초하여 상기 제2 방향에 따른 전자펜의 위치를 검출하고 적어도 두 개 이상의 상기 제2 전도성 패턴들의 일단에서 출력되는 신호에 기초하여 상기 제1 방향에 따른 전자펜의 위치를 검출하는 것을 특징으로 하는 정전용량 및 전자기유도 방식에 의한 위치검출이 가능한 디스플레이 모듈.
  14. 제1항에 있어서,
    상기 디스플레이 소자에 일체로 마련되며, 상기 전자펜의 공진회로가 갖는 공진 주파수에 대응되는 주파수를 인가하여 상기 전자펜에 에너지를 공급하는 코일 형태의 에너지 공급부를 더 포함하는 정전용량 및 전자기유도 방식에 의한 위치검출이 가능한 디스플레이 모듈.
  15. 제2항 또는 제8항에 있어서,
    상기 베이스 루프는,
    상기 디스플레이 소자의 내부에 배치되는 기판의 일면 테두리 또는 타면 테두리에 상기 감지영역의 적어도 일부분을 둘러싸도록 배치되는 것을 특징으로 하는 정전용량 및 전자기유도 방식에 의한 위치검출이 가능한 디스플레이 모듈.
  16. 케이스 프레임; 및
    상기 케이스 프레임에 내재되되, 시각적으로 화상을 표시하며 터치동작에 따른 정전용량 변화로부터 터치위치와 전자기유도에 따른 유도전자기장의 변화로부터 전자펜의 위치를 검출하는 제1항에 따른 디스플레이 모듈을 포함하는 디스플레이 장치.
PCT/KR2016/000977 2015-02-12 2016-01-29 정전용량 및 전자기유도 방식에 의한 위치검출이 가능한 디스플레이 모듈 및 이를 구비한 디스플레이 장치 WO2016129837A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017541698A JP2018509697A (ja) 2015-02-12 2016-01-29 静電容量及び電磁誘導方式による位置検出が可能なディスプレイモジュール及びそれを備えたディスプレイ装置
US15/550,023 US20180032173A1 (en) 2015-02-12 2016-01-29 Display module capable of detecting location using electromagnetic induction and capacitance methods, and display device having same
EP16749377.4A EP3258353A4 (en) 2015-02-12 2016-01-29 Display module capable of detecting location using electromagnetic induction and capacitance methods, and display device having same
CN201680021566.XA CN107438820A (zh) 2015-02-12 2016-01-29 能够使用电磁感应和电容方法检测位置的显示模块及具有其的显示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0021360 2015-02-12
KR1020150021360A KR101618286B1 (ko) 2015-02-12 2015-02-12 정전용량 및 전자기유도 방식에 의한 위치검출이 가능한 디스플레이 모듈 및 이를 구비한 디스플레이 장치

Publications (1)

Publication Number Publication Date
WO2016129837A1 true WO2016129837A1 (ko) 2016-08-18

Family

ID=56022280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/000977 WO2016129837A1 (ko) 2015-02-12 2016-01-29 정전용량 및 전자기유도 방식에 의한 위치검출이 가능한 디스플레이 모듈 및 이를 구비한 디스플레이 장치

Country Status (6)

Country Link
US (1) US20180032173A1 (ko)
EP (1) EP3258353A4 (ko)
JP (1) JP2018509697A (ko)
KR (1) KR101618286B1 (ko)
CN (1) CN107438820A (ko)
WO (1) WO2016129837A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110050350A (zh) * 2016-12-08 2019-07-23 夏普株式会社 Tft基板、具备tft基板的扫描天线以及tft基板的制造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6605292B2 (ja) * 2015-10-16 2019-11-13 株式会社ジャパンディスプレイ 表示装置
KR20190054832A (ko) 2017-11-14 2019-05-22 주식회사 더한 전자펜
KR20190054833A (ko) 2017-11-14 2019-05-22 주식회사 더한 필기구 겸용 전자펜
KR20190130248A (ko) 2018-05-14 2019-11-22 주식회사 더한 전자펜
KR102260916B1 (ko) 2018-07-17 2021-06-04 주식회사 아하정보통신 동 메쉬를 이용한 정전용량방식 및 전자기유도 방식을 사용하는 터치 센서
JP7073230B2 (ja) * 2018-08-24 2022-05-23 株式会社ジャパンディスプレイ 表示装置
CN112912831A (zh) * 2018-12-28 2021-06-04 深圳市柔宇科技股份有限公司 弯折检测装置与柔性显示装置
CN110083280A (zh) * 2019-04-26 2019-08-02 业成科技(成都)有限公司 具电磁感应功能之触控面板
KR20210008269A (ko) * 2019-07-12 2021-01-21 삼성디스플레이 주식회사 입력 감지 유닛 및 이를 포함하는 표시모듈
KR20210025745A (ko) * 2019-08-27 2021-03-10 삼성디스플레이 주식회사 지문 감지 화소 및 전자펜 감지 화소를 포함하는 감지 패널 및 그것을 포함하는 표시 장치
EP4040272A4 (en) 2020-01-22 2024-02-21 Hideep Inc PIN, ANTENNA MODULE, TOUCH SENSOR AND ELECTRONIC DEVICE
CN113358012B (zh) * 2020-03-06 2022-12-02 深圳普赢创新科技股份有限公司 电磁感应式坐标定位装置
CN112148138B (zh) * 2020-09-15 2021-06-11 苏州新标检测技术有限公司 一种基于电磁感应原理的智能电子检测笔设备
KR20220060243A (ko) 2020-11-04 2022-05-11 현대자동차주식회사 연료전지 스택의 셀 피치 측정장치 및 측정방법
TW202403524A (zh) * 2021-01-29 2024-01-16 南韓商希迪普公司 觸控裝置、其之驅動方法及觸控系統

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080048961A (ko) * 2006-11-29 2008-06-03 가부시키가이샤 히타치 디스프레이즈 터치 패널 부착 액정 표시 장치
KR101027672B1 (ko) * 2009-11-24 2011-04-12 유영기 손가락과 공진회로를 구비한 포인터의 위치를 동시에 검출할 수 있는 타블렛
KR101033154B1 (ko) * 2010-03-11 2011-05-11 주식회사 디오시스템즈 터치 패널
KR20110136953A (ko) * 2010-06-16 2011-12-22 주식회사 윈터치 모바일 기기용 타블렛 케이스
KR20120015365A (ko) * 2009-06-19 2012-02-21 태균과기(심천)유한공사 액정 패널 및 액정 디스플레이 디바이스

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101685366A (zh) * 2008-09-26 2010-03-31 汉王科技股份有限公司 具有多点触摸功能的电磁感应装置
TWI437474B (zh) * 2010-12-16 2014-05-11 Hongda Liu 雙模式觸控感應元件暨其觸控顯示器相關裝置及其觸控驅動方法
TWI576746B (zh) * 2010-12-31 2017-04-01 劉鴻達 雙模式觸控感應的顯示器
CN102375612B (zh) * 2011-10-18 2014-07-09 台均科技(深圳)有限公司 触控阵列、触控传感器、触控显示屏及触控设备
TWI467453B (zh) 2012-01-18 2015-01-01 Chunghwa Picture Tubes Ltd 雙模式觸控感應裝置
KR101303875B1 (ko) * 2012-02-20 2013-09-04 주식회사 윈터치 디스플레이 패널 또는 백라이트 유닛에 일체화된 안테나 패턴을 갖는 터치 스크린 장치
KR101441396B1 (ko) * 2012-08-13 2014-09-17 엘지디스플레이 주식회사 입력 시스템 및 이를 이용한 터치 검출 방법
CN102819374B (zh) * 2012-08-24 2015-07-29 北京壹人壹本信息科技有限公司 电容和电磁双模触摸屏的触控方法及手持式电子设备
KR102061569B1 (ko) * 2013-05-16 2020-01-03 삼성디스플레이 주식회사 표시장치 및 표시장치의 구동방법
CN103809821A (zh) * 2012-11-15 2014-05-21 昆盈企业股份有限公司 具有电容感应与电磁感应的输入装置与信号侦测切换方法
KR101487463B1 (ko) * 2013-07-03 2015-01-28 주식회사 더한 전자기 유도 방식의 위치감지와 정전용량 방식의 위치감지를 수행할 수 있는 타블렛
KR102209910B1 (ko) * 2013-07-04 2021-02-01 삼성전자주식회사 위치 표시 장치의 입력 위치를 측정하는 위치 측정 장치 및 그 제어 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080048961A (ko) * 2006-11-29 2008-06-03 가부시키가이샤 히타치 디스프레이즈 터치 패널 부착 액정 표시 장치
KR20120015365A (ko) * 2009-06-19 2012-02-21 태균과기(심천)유한공사 액정 패널 및 액정 디스플레이 디바이스
KR101027672B1 (ko) * 2009-11-24 2011-04-12 유영기 손가락과 공진회로를 구비한 포인터의 위치를 동시에 검출할 수 있는 타블렛
KR101033154B1 (ko) * 2010-03-11 2011-05-11 주식회사 디오시스템즈 터치 패널
KR20110136953A (ko) * 2010-06-16 2011-12-22 주식회사 윈터치 모바일 기기용 타블렛 케이스

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110050350A (zh) * 2016-12-08 2019-07-23 夏普株式会社 Tft基板、具备tft基板的扫描天线以及tft基板的制造方法
CN110050350B (zh) * 2016-12-08 2021-12-07 夏普株式会社 Tft基板、具备tft基板的扫描天线以及tft基板的制造方法

Also Published As

Publication number Publication date
KR101618286B1 (ko) 2016-05-04
CN107438820A (zh) 2017-12-05
EP3258353A1 (en) 2017-12-20
US20180032173A1 (en) 2018-02-01
EP3258353A4 (en) 2018-01-17
JP2018509697A (ja) 2018-04-05

Similar Documents

Publication Publication Date Title
WO2016129837A1 (ko) 정전용량 및 전자기유도 방식에 의한 위치검출이 가능한 디스플레이 모듈 및 이를 구비한 디스플레이 장치
WO2016195388A1 (ko) 패널을 구동하는 기술
WO2015190753A1 (ko) 정전용량형 터치와 유도전자기장 입력을 동시에 감지하는 다중 입력 패드 및 입력 시스템
WO2015072685A1 (en) Display apparatus using semiconductor light emitting device
WO2015129964A1 (ko) 촉각 제공 장치 및 방법
WO2020251212A1 (ko) 터치 장치 및 그 구동 방법
WO2017135774A1 (ko) 터치 입력 장치
WO2017160105A1 (ko) 터치 입력 장치
WO2013129846A1 (en) Display device
WO2012030183A2 (ko) 레벨시프트를 이용한 정전식 터치 검출 장치, 검출 방법 및 이를 내장한 표시 장치
WO2017034289A1 (ko) 패널구동장치 및 패널구동방법
WO2016006923A1 (en) Touch window
WO2021029568A1 (ko) 디스플레이용 기판
WO2018164415A1 (ko) 터치 입력 장치
WO2020204345A1 (ko) 터치 입력 장치
WO2018097460A1 (ko) 사용자 인터페이스 제공을 위한 터치 입력 방법 및 장치
WO2020022589A1 (ko) 압력 센서를 포함하는 표시 장치
WO2016093523A1 (ko) 터치 신호 검출 장치 및 터치 신호 검출 방법
WO2016024760A1 (ko) 터치윈도우
WO2020209639A1 (ko) 터치 장치 및 이의 터치 검출 방법
WO2013129742A1 (en) Position sensing method of touch panel and integrated circuit
WO2018048105A1 (ko) 터치 입력 장치
WO2010107271A2 (ko) 복합 입력 방식의 터치패널
WO2018004122A1 (ko) 터치 입력 장치
WO2017164582A1 (ko) 화면 캡처가 용이한 모바일 단말 및 화면 캡처 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16749377

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017541698

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016749377

Country of ref document: EP