WO2016129704A1 - Onboard camera calibration apparatus for identifying mounting orientation - Google Patents

Onboard camera calibration apparatus for identifying mounting orientation Download PDF

Info

Publication number
WO2016129704A1
WO2016129704A1 PCT/JP2016/054319 JP2016054319W WO2016129704A1 WO 2016129704 A1 WO2016129704 A1 WO 2016129704A1 JP 2016054319 W JP2016054319 W JP 2016054319W WO 2016129704 A1 WO2016129704 A1 WO 2016129704A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera
vehicle
posture
attitude
angle
Prior art date
Application number
PCT/JP2016/054319
Other languages
French (fr)
Japanese (ja)
Inventor
ヒクメット チェティン
宗昭 松本
宗作 重村
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2016129704A1 publication Critical patent/WO2016129704A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/04Mounting of cameras operative during drive; Arrangement of controls thereof relative to the vehicle
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast

Definitions

  • This disclosure relates to an in-vehicle camera. More specifically, the present invention relates to a camera calibration device that calibrates data representing the mounting posture of a vehicle-mounted camera on a vehicle.
  • the camera calibration device that calibrates data representing the mounting posture of a vehicle-mounted camera on a vehicle.
  • the three-axis acceleration sensor having a known positional relationship with the in-vehicle camera detects the acceleration detected when the vehicle is stationary and the vehicle goes straight ahead. Based on the detected acceleration, the mounting posture of the in-vehicle camera is calculated. Then, the calculated mounting posture is adopted as data representing the current mounting posture of the in-vehicle camera.
  • the mounting posture of the in-vehicle camera here corresponds to the shooting direction of the in-vehicle camera with respect to the vehicle.
  • the influence of the road gradient on the output value of the acceleration sensor is not considered.
  • the direction in which the gravitational acceleration acts on the acceleration sensor is affected by the slope of the road, so the ratio of the output value for each axis direction of the acceleration sensor is The ratio is different from the case of being on a horizontal road.
  • the inclination of the vehicle body caused by the road gradient is regarded as the inclination of the in-vehicle camera, and there is a possibility that the current mounting posture of the in-vehicle camera is erroneous.
  • the present disclosure has been made based on this situation, and the purpose of the present disclosure is a camera that can prevent the mounting posture of the in-vehicle camera from being specified as an incorrect posture due to the inclination of the vehicle. It is to provide a calibration device.
  • the camera calibration apparatus includes an in-vehicle camera (5, 6, 7, 8), a camera attitude detector (51, 61, 71, 81), and a camera detection result storage unit (M11, M12). , M13, M14) and an attachment posture specifying part (F5).
  • the in-vehicle camera is installed at a predetermined position of the vehicle, and a predetermined area around the vehicle is an imaging range.
  • the camera attitude detector is provided in the in-vehicle camera, and sequentially detects a camera attitude index value that represents the attitude of the in-vehicle camera with respect to a horizontal plane that is a plane perpendicular to the direction in which gravity acts.
  • the camera detection result storage unit stores the camera posture index value detected by the camera posture detector for a predetermined required number of detection times.
  • the mounting posture specifying unit specifies the mounting posture of the in-vehicle camera with respect to the vehicle based on the mode value of the camera posture index value stored in the camera detection result storage unit.
  • the mounting posture specifying unit specifies the mounting posture of the in-vehicle camera using the mode value of the camera posture index value stored in the camera detection result storage unit.
  • the camera posture index value detected by the camera posture detector is a value affected by the road gradient.
  • the slope of the road corresponds to the slope of the vehicle.
  • the detection result output by the camera posture detector is also a value affected by various slopes.
  • the road with the highest travel frequency is likely to be a horizontal road (a road where the gradient can be ignored).
  • the mode value of the camera posture index value stored in the camera detection result storage unit is the state in which a vehicle is present on a horizontal road. It corresponds to the detection result. That is, the mode value of the camera posture index value stored in the camera detection result storage unit corresponds to a detection result in a state where the vehicle is not tilted.
  • the camera calibration device includes an in-vehicle camera (5, 6, 7, 8), a camera attitude detector (51, 61, 71, 81), and a camera detection result storage unit (M11, M12, M13, M14), a vehicle posture specifying unit (F4), and an attachment posture specifying unit (F5).
  • the in-vehicle camera is installed at a predetermined position of the vehicle, and a predetermined area around the vehicle is an imaging range.
  • the camera attitude detector is provided in the in-vehicle camera, and sequentially detects a camera attitude index value that represents the attitude of the in-vehicle camera with respect to a horizontal plane that is a plane perpendicular to the direction in which gravity acts.
  • the camera detection result storage unit stores the camera posture index value detected by the camera posture detector for a predetermined required number of detection times.
  • the vehicle attitude specifying unit specifies the attitude of the vehicle with respect to the horizontal plane.
  • the mounting posture specifying unit determines the mounting posture of the in-vehicle camera with respect to the vehicle based on the mode value of the camera posture index value accumulated in the camera detection result storage unit and the vehicle posture specified by the vehicle posture specifying unit. Identify.
  • the mode value of the camera posture index value stored in the camera detection result storage unit represents the posture of the in-vehicle camera with respect to the horizontal plane.
  • the attitude of the in-vehicle camera with respect to the horizontal plane detected by the camera attitude detector includes the influence of the vehicle inclination caused by the road gradient.
  • the presence / absence or the magnitude of the influence of the inclination of the vehicle is specified by the vehicle posture specifying unit.
  • the mounting posture specifying unit specifies the mounting posture of the in-vehicle camera with respect to the vehicle from the vehicle posture specified by the vehicle posture specifying unit and the posture of the in-vehicle camera with respect to the horizontal plane detected by the camera posture detector.
  • 1 is a block diagram illustrating an example of a schematic configuration of a driving support system 100 according to a first embodiment. It is a conceptual diagram for demonstrating the installation position and detection direction of various inclination sensors.
  • 3 is a block diagram illustrating an example of a schematic configuration of a control unit 1.
  • FIG. It is a flowchart for demonstrating the attitude
  • It is a block diagram which shows an example of schematic structure of the driving assistance system 100A concerning 2nd Embodiment.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of a driving support system 100 to which the camera calibration apparatus according to the present embodiment is applied.
  • the driving support system 100 assists the driver in recognizing the situation around the vehicle by converting a captured image of a camera that captures a predetermined area outside the passenger compartment into, for example, a bird's-eye view image and displaying it on a display. is there.
  • a vehicle equipped with the driving support system 100 is referred to as a host vehicle.
  • a right-handed three-dimensional coordinate system having a predetermined position in the own vehicle as an origin and an X axis, a Y axis, and a Z axis orthogonal to each other will be introduced, and the positional relationship of each part included in the own vehicle will be described. To do.
  • the X-axis is parallel to the vehicle front-rear direction and has a positive direction from the rear to the front of the vehicle.
  • the Y-axis is parallel to the vehicle width direction of the host vehicle and Let the direction from the left to the left be the positive direction.
  • the Z-axis is parallel to the height direction of the vehicle, and the direction from the vehicle floor to the roof is defined as a positive direction.
  • the origin is a point where the distance from the front end of the vehicle to the rear end is equal on the center of the host vehicle, that is, on the center line of the vehicle equidistant from both sides of the host vehicle.
  • the origin may be another position, for example, a position that is the center of the rear wheel shaft in the vehicle width direction.
  • the driving support system 100 includes a control unit 1, a vehicle speed sensor 2, a vehicle body side tilt sensor 3, a display 4, a front camera 5, and a rear camera 6, as shown in FIG.
  • the control unit 1 controls the operation of the driving support system 100, and each of the vehicle speed sensor 2, the vehicle body side tilt sensor 3, the display 4, the front camera 5, and the rear camera 6 is a well-known in-vehicle network. Are configured to be able to communicate with each other. Details of the control unit 1 will be described later.
  • the vehicle speed sensor 2 is a sensor that detects the traveling speed of the host vehicle.
  • the vehicle body side inclination sensor 3 is a sensor (that is, an inclination sensor) that detects the inclination of the vehicle body of the host vehicle with respect to a horizontal plane.
  • the horizontal plane refers to a plane perpendicular to the direction in which gravity acts.
  • the vehicle body side inclination sensor 3 of the present embodiment detects the inclination of the vehicle body with respect to a horizontal plane by resolving the rotation angle with respect to each of two mutually orthogonal axes (X0 axis and Y0 axis). Let it be a sensor.
  • the biaxial tilt sensor may be realized using a triaxial acceleration sensor, or may be realized by combining a pendulum and a magnetic sensor.
  • the vehicle body side inclination sensor 3 has a predetermined position (for example, a floor) on the vehicle body so that the X0 axis and the X axis are in the same direction and the Y0 axis is in the same direction as the Y axis. Part) or the like.
  • the rotation angle around the X0 axis (referred to as roll angle ⁇ r0) detected by the vehicle body side inclination sensor 3 represents the inclination angle in the vehicle width direction of the vehicle body
  • the rotation angle around the Y0 axis (referred to as pitch angle ⁇ p0) is Represents the tilt angle in the vehicle longitudinal direction.
  • the vehicle body side tilt sensor 3 is installed in a portion parallel to the horizontal plane in the host vehicle. Accordingly, the roll angle ⁇ r0 and the pitch angle detected by the vehicle body side inclination sensor 3 are detected when the host vehicle is on a horizontal road, except in special circumstances such as when the air pressure of each tire is unbalanced. Both ⁇ p0 are 0 degrees.
  • the vehicle body side tilt sensor 3 sequentially outputs a signal representing the roll angle ⁇ r0 and a signal representing the pitch angle ⁇ p0 to the control unit 1 sequentially.
  • the rotation angle in the direction of the right screw of the X0 axis from the neutral state is represented by a positive value
  • the rotation angle in the reverse direction is represented by a negative value
  • the pitch angle ⁇ p0 represents a rotation angle in the direction of the right screw of the Y0 axis from a neutral state as a positive value
  • a rotation angle in the reverse direction as a negative value.
  • the pitch angle ⁇ p0 detected by the vehicle body side tilt sensor 3 represents the gradient in the vehicle front-rear direction of the road where the host vehicle exists, and the roll angle ⁇ r0 detected by the vehicle body side tilt sensor 3 exists. This represents the gradient of the road in the vehicle width direction. Therefore, when the vehicle front-rear direction and the road extension direction coincide with each other, the pitch angle ⁇ p0 detected by the vehicle body side inclination sensor 3 represents the longitudinal gradient of the road, and the vehicle body side inclination sensor 3 detects it.
  • the roll angle ⁇ r0 represents the single slope of the road.
  • the vehicle body side tilt sensor 3 corresponds to the vehicle attitude detector described in the claims, and the pitch angle ⁇ p0 and the roll angle ⁇ r0 correspond to an example of the vehicle attitude index value described in the claims. Further, the extending direction of the X0 axis and the extending direction of the Y0 axis correspond to the vehicle side detection direction described in the claims.
  • the display 4 displays text and images based on signals input from the control unit 1.
  • the display 4 is capable of full color display, for example, and can be configured using a liquid crystal display, an organic EL display, or the like.
  • the display 4 is a display arranged near the center in the vehicle width direction of the instrument panel.
  • the display 4 may be a display provided in the meter unit or a known head-up display.
  • the front camera 5 is a camera provided to photograph a predetermined range in front of the host vehicle.
  • the front camera 5 for example, a well-known CMOS camera, CCD camera, or the like whose shooting range is set to a wide angle (for example, an angle of view of 175 °) by a wide angle lens can be used.
  • the front camera 5 may be installed near the center of the front bumper in the vehicle width direction.
  • the installation position of the front camera 5 is not limited to the vicinity of the center portion in the vehicle width direction of the front bumper, but is a position that does not obstruct the driver's field of view in front of the host vehicle, for example, near the rearview mirror in the vehicle interior or the upper end of the windshield. It only has to be attached.
  • the front camera 5 has a vertical direction (vertical direction) and a horizontal direction (horizontal direction) defined in advance.
  • the front camera 5 is mounted so that the orthogonal projection vector onto the horizontal plane of the optical axis, which is the central axis in the photographing direction, is the same direction as the X axis and the horizontal direction is parallel to the Y axis at the predetermined installation location described above.
  • Video signals taken by the front camera 5 are sequentially output to the control unit 1.
  • the front camera 5 includes an inclination sensor (hereinafter referred to as a first inclination sensor) 51 that detects the inclination of the front camera 5 with respect to the horizontal plane.
  • the first inclination sensor 51 detects the inclination angle of the front camera 5 with respect to the horizontal plane by dividing it into rotation angles for each of two axes (X1 axis and Y1 axis), similarly to the vehicle body side inclination sensor 3 described above. This is a biaxial tilt sensor.
  • the first tilt sensor 51 is placed in the housing of the front camera 5 so that the X1 axis of the first tilt sensor 51 coincides with the optical axis of the front camera 5 and the Y1 axis coincides with the lateral direction of the front camera 5.
  • the orthogonal projection vector of the X1 axis to the XY plane is the same direction as the positive direction of the X axis and the orthogonal projection of the Y1 axis to the XY plane.
  • the vector is in the same direction as the positive direction of the Y axis.
  • the first inclination sensor 51 has an inclination angle (pitch angle ⁇ p1) with respect to the horizontal plane of the front camera 5 in the vehicle front-rear direction and an inclination angle with respect to the horizontal plane of the front camera 5 in the vehicle width direction (denoted roll angle ⁇ r1). Is detected.
  • the detection results (pitch angle ⁇ p1 and roll angle ⁇ r1) of the first tilt sensor 51 are sequentially output to the control unit 1.
  • the roll angle ⁇ r1 represents the rotation angle in the direction of the right-handed screw with the X1 axis as the rotation axis from the neutral state as a positive value, and the reverse rotation angle as a negative value. I will do it.
  • the pitch angle ⁇ p1 represents a rotation angle in the direction of the right screw of the Y1 axis from a neutral state as a positive value, and a rotation angle in the reverse direction as a negative value.
  • the first tilt sensor 51 corresponds to the camera posture detector described in the claims, and the pitch angle ⁇ p1 and the roll angle ⁇ r1 correspond to an example of the camera posture index value described in the claims. Further, the extending direction of the X1 axis and the extending direction of the Y1 axis correspond to the camera side detection direction described in the claims.
  • the first inclination sensor 51 is configured to be installed in the casing of the front camera 5, but as another aspect, it may be configured to be integrally attached to the outside of the casing.
  • the rear camera 6 is a camera provided to photograph a predetermined range behind the host vehicle.
  • the rear camera 6 may be a known CMOS camera, CCD camera, or the like whose shooting range is set to a wide angle by a wide angle lens.
  • the rear camera 6 may be installed, for example, near the center of the rear bumper in the vehicle width direction.
  • the installation position of the rear camera 6 is not limited to the vicinity of the center of the rear bumper in the vehicle width direction, and may be attached to a position that does not obstruct the driver's field of view for confirmation behind the rear window, for example, near the upper end of the rear window.
  • the vertical direction (vertical direction) and the horizontal direction (horizontal direction) are defined in advance.
  • the orthogonal projection vector onto the horizontal plane of the optical axis that is the central axis of the imaging direction is the same direction as the negative direction of the X axis, and the left-right direction is parallel to the Y axis at the predetermined installation location described above. It is attached as follows. Video signals captured by the rear camera 6 are sequentially output to the control unit 1.
  • the rear camera 6 includes a tilt sensor (hereinafter referred to as a second tilt sensor) 61 that detects the tilt of the rear camera 6 with respect to the horizontal plane.
  • the second tilt sensor 61 decomposes the tilt angle of the rear camera 6 with respect to the horizontal plane into rotation angles for two orthogonal axes (X2 axis and Y2 axis) in the same manner as the vehicle body side tilt sensor 3 described above. This is a two-axis tilt sensor to detect.
  • the second tilt sensor 61 is built in the rear camera 6 so that the X2 axis of the second tilt sensor 61 coincides with the optical axis direction of the rear camera 6 and the Y2 axis coincides with the lateral direction of the rear camera 6. . That is, when the rear camera 6 is attached to the vehicle body in the above-described posture, the orthogonal projection vector of the X2 axis to the XY plane is the same direction as the negative direction of the X axis, and the orthogonal projection of the Y2 axis to the XY plane. The vector is in the same direction as the negative direction of the Y axis.
  • the second inclination sensor 61 has an inclination angle (pitch angle ⁇ p2) with respect to the horizontal plane of the rear camera 6 in the vehicle front-rear direction and an inclination angle (set to roll angle ⁇ r2) with respect to the horizontal plane of the rear camera 6 in the vehicle width direction. Is detected.
  • the detection results (pitch angle ⁇ p2 and roll angle ⁇ r2) of the second tilt sensor 61 are sequentially output to the control unit 1.
  • the roll angle ⁇ r2 the rotation angle in the direction of the right screw with the X2 axis as the rotation axis from the neutral state is expressed as a positive value, and the rotation angle in the reverse direction is expressed as a negative value.
  • the pitch angle ⁇ p2 represents a rotation angle in the direction of the right screw of the Y2 axis from a neutral state as a positive value, and a rotation angle in the reverse direction as a negative value.
  • the second tilt sensor 61 corresponds to the camera posture detector described in the claims, and the pitch angle ⁇ p2 and the roll angle ⁇ r2 correspond to an example of the camera posture index value described in the claims. Further, the extending direction of the X2 axis and the extending direction of the Y2 axis correspond to the camera side detection direction described in the claims.
  • the second tilt sensor 61 is installed in the housing of the rear camera 6, but as another embodiment, the second tilt sensor 61 may be integrally attached to the outside of the housing.
  • the front camera 5 and the rear camera 6 are not distinguished from each other, they are simply referred to as an in-vehicle camera.
  • the vehicle body side tilt sensor 3 the first tilt sensor 51, and the second tilt sensor 61 are not distinguished, they are referred to as tilt sensors.
  • the first tilt sensor 51 and the second tilt sensor 61 that are tilt sensors attached to the in-vehicle camera are referred to as camera-side tilt sensors.
  • the control unit 1 is configured as a normal computer, and includes a well-known CPU 11, a memory 12, a storage 13, an input / output interface (hereinafter referred to as I / O) 14, and a bus line that connects these configurations. .
  • the CPU 11 is a well-known central processing unit, and executes various arithmetic processes by using the memory 12 as an arithmetic area.
  • the memory 12 may be realized by a temporary storage medium such as a RAM, for example, and functions as a main storage device for the CPU 11.
  • the storage 13 may be realized by a non-volatile storage medium such as a ROM or a flash memory, and functions as an auxiliary storage device for the CPU 11. Although only one CPU 11 is shown here, a plurality of CPUs 11 may be provided.
  • the I / O 14 controls transmission / reception of data performed between the control unit 1 and a device connected to the control unit 1 such as the front camera 5.
  • the I / O 14 converts video signals input from the front camera 5 and the rear camera 6 into image data in a format that can be processed by an image processing unit F7 described later, and stores the image data in the memory 12.
  • the storage 13 stores a program for executing various processes and camera information for each in-vehicle camera.
  • the camera information includes installation position data indicating the installation position of each in-vehicle camera in the own vehicle, installation attitude data indicating the installation attitude of the in-vehicle camera with respect to the vehicle, lens distortion coefficient, focal length, optical axis center, pixel size, pixel Includes internal data indicating ratios and so on.
  • each in-vehicle camera may be represented by, for example, the coordinates of the aforementioned three-dimensional coordinate system.
  • the mounting posture may be represented by a pitch angle, a roll angle, and a yaw angle determined with reference to the X axis, the Y axis, and the Z axis. That is, the storage 13 stores the pitch angle P1, roll angle R1, and yaw angle Y1 of the front camera 5, and the pitch angle P2, roll angle R2, and yaw angle Y2 of the rear camera 6.
  • the pitch angle P1 of the front camera 5 is simply the angle formed by the XY plane and the optical axis of the front camera 5, the roll angle R1 is the angle formed by the XY plane and the lateral direction of the front camera 5, and the yaw angle.
  • Y1 is an angle (0 degree) between the orthogonal projection of the optical axis onto the XY plane and the X axis.
  • the pitch angle P2 of the rear camera 6 is simply an angle formed by the XY plane and the optical axis of the rear camera 6, and the roll angle R2 is an angle formed by the XY plane and the lateral direction of the rear camera 6,
  • the angle Y2 is an angle (180 degrees) between the orthogonal projection of the optical axis onto the XY plane and the X axis.
  • the yaw angle defined above represents the general shooting direction of the in-vehicle camera. In this embodiment, it is assumed that the deviation of the yaw angle of each in-vehicle camera from the initial mounting posture can be ignored.
  • the installation position data and the installation posture data are values measured in advance in a predetermined test environment or design values in the initial state.
  • the values stored in the storage 13 in the initial state represent the current mounting posture for elements that have not been updated by the posture update related processing described later.
  • the value to represent is stored in the storage 13 (or memory 12) as a value representing the current mounting posture. Is done.
  • the storage 13 stores camera parameters as parameters used for image processing (for example, well-known viewpoint conversion processing) on the captured image of the in-vehicle camera as camera information for each in-vehicle camera.
  • the camera parameter is a parameter that is determined according to the installation position and mounting orientation of the in-vehicle camera.
  • the storage 13 stores data indicating the correspondence relationship between the detection directions of the tilt sensors included in each in-vehicle camera.
  • the detection direction of each inclination sensor should just be described as the direction of the detection axis with which each inclination sensor is provided.
  • the control unit 1 includes a stop determination unit F1, a detection result management unit F2, an update necessity determination unit F3, an attachment as functional blocks realized by executing a program stored in the storage 13.
  • a posture specifying unit F5, a parameter adjusting unit F6, an image processing unit F7, and a vehicle posture specifying unit F4 are provided. Note that some or all of the functions of the control unit 1 may be configured by hardware using one or a plurality of ICs.
  • the stop determination unit F1 determines whether the host vehicle is stopped based on the vehicle speed input from the vehicle speed sensor 2. For example, the stop determination unit F1 determines that the host vehicle is stopped when the current vehicle speed is 0 km / h, and the host vehicle when the current vehicle speed is greater than 0 km / h. Is determined not to stop. Of course, as another aspect, when the vehicle speed is less than a predetermined threshold (for example, 5 km / h), it is determined that the vehicle is stopped, and when the vehicle speed is equal to or higher than the threshold, it is determined that the vehicle is not stopped. May be.
  • a predetermined threshold for example, 5 km / h
  • the detection result management unit F2 sequentially acquires the detection results of the vehicle body side tilt sensor 3, the first tilt sensor 51, and the second tilt sensor 61 (for example, every 50 milliseconds), and detects the acquired detection results.
  • Each result output source is distinguished and stored in the memory 12.
  • the detection results for each inclination sensor may be stored in the memory 12 in the order of acquisition, for example.
  • the detection result for each inclination sensor is further stored by distinguishing between the pitch angle and the roll angle.
  • the first detection result storage unit M11 illustrated in FIG. 3 is an area that stores detection results that are sequentially acquired from the first inclination sensor 51 among the storage areas of the memory 12.
  • the second detection result storage unit M ⁇ b> 12 is an area that stores detection results that are sequentially acquired from the second inclination sensor 61 among the storage areas of the memory 12.
  • the vehicle body side detection result storage unit M ⁇ b> 2 is an area that stores detection results sequentially acquired from the vehicle body side inclination sensor 3 among the storage areas of the memory 12.
  • the first detection result storage unit M11 and the second detection result storage unit M12 correspond to the camera detection result storage unit described in the claims
  • the vehicle body side detection result storage unit M2 includes the vehicle detection result storage unit described in the claims. It corresponds to.
  • the detection result management unit F2 acquires the pitch angle ⁇ p1 from the first inclination sensor 51, the pitch angle displacement amount obtained by subtracting the pitch angle P1 employed as the current mounting posture from the acquired pitch angle ⁇ p1. ⁇ p1 is calculated and stored in the first detection result storage unit M11. Similarly, each time the roll angle ⁇ r1 is acquired, the roll angle displacement amount ⁇ r1 obtained by subtracting the roll angle R1 adopted as the current mounting posture from the acquired roll angle ⁇ r1 is calculated for the roll angle ⁇ r1. The result is stored in the detection result storage unit M11.
  • the pitch angle P1 and roll angle R1 adopted as the current mounting posture of the front camera 5 are values measured in a predetermined test environment, or the pitch angle and roll specified by the posture update-related processing performed previously. Point to the corner.
  • the detection result management unit F2 performs the same processing as when the pitch angles ⁇ p1 and ⁇ r1 are acquired from the first tilt sensor 51 even when the pitch angle ⁇ p2 and the roll angle ⁇ r2 are acquired from the second tilt sensor 61. That is, every time the pitch angle ⁇ p2 is acquired from the second tilt sensor 61, the pitch angle displacement amount ⁇ p2 obtained by subtracting the pitch angle P2 employed as the current mounting posture from the acquired pitch angle ⁇ p2 is calculated, and the second Stored in the detection result storage unit M12. Further, every time the roll angle ⁇ r2 is acquired, a roll angle displacement amount ⁇ r2 that is a difference from the roll angle R2 adopted as the current mounting posture is calculated from the acquired roll angle ⁇ r2, and the second detection result storage unit Store in M12.
  • the pitch angle displacement amount ⁇ p1, the roll angle displacement amount ⁇ r1, the pitch angle displacement amount ⁇ p2, and the roll angle displacement amount ⁇ r2 that are sequentially calculated by the detection result management unit F2 are collectively referred to as a displacement amount ⁇ .
  • the displacement amount calculation unit F21 provided in the detection result management unit F2 is a functional block that calculates the displacement amount ⁇ .
  • the displacement amount calculation unit F21 corresponds to the angular displacement amount calculation unit described in the claims.
  • the detection result management unit F2 determines whether or not the detection results for each tilt sensor have been collected in a predetermined amount (a required number of detection times) sufficient to specify the posture of the in-vehicle camera. judge. Note that a period during which a sufficient amount of detection results are collected to identify the posture of the in-vehicle camera is also referred to as a data collection period. The required number of detections may be designed as appropriate.
  • the detection result management unit F2 determines that the detection results for a predetermined number of detection times can be collected, the detection result management unit F2 specifies the mode value of the detection results for each inclination sensor.
  • the mode value here is synonymous with the mode value used in statistics, and is the value that appears most frequently as a result of multiple detections for one state quantity.
  • the detection result management unit F2 uses the plurality of pitch angles ⁇ p1 stored in the first detection result storage unit M11 as a population, and determines the mode value of the pitch angle ⁇ p1 detected by the first tilt sensor 51. Identify. Further, the mode value of the roll angle ⁇ r1 detected by the first tilt sensor 51 is specified using the plurality of roll angles ⁇ r1 stored in the first detection result storage unit M11 as a population. Similarly, the detection result management unit F2 detects the mode value of the pitch angle ⁇ p2 detected by the second tilt sensor 61, the mode value of the roll angle ⁇ r2 within the data collection period, and the pitch angle detected by the vehicle body side tilt sensor 3.
  • the mode value of ⁇ p0 and the mode value of the roll angle ⁇ r0 are specified.
  • the mode value of the pitch angle ⁇ p1, the mode value of the roll angle ⁇ r1, the mode value of the pitch angle ⁇ p2, and the mode value of the roll angle ⁇ r2 correspond to the camera-side mode value described in the claims, and the pitch angle ⁇ p0
  • the mode value and the mode value of the roll angle ⁇ r0 correspond to the vehicle-side mode value recited in the claims.
  • the update necessity determination unit F3 determines whether or not the mounting posture data of the front camera 5 needs to be updated and whether or not the mounting posture data of the rear camera 6 needs to be updated. Details of the update necessity determination unit F3 will be described later.
  • the vehicle attitude specifying unit F4 specifies the attitude of the host vehicle with respect to the horizontal plane based on the detection result of the vehicle body side tilt sensor 3.
  • the attitude of the host vehicle with respect to the horizontal plane here refers to the presence or absence of a tilt, and the size of the tilt when tilted. Furthermore, in this embodiment, the inclination in the vehicle front-rear direction and the inclination in the vehicle width direction are distinguished and handled.
  • the vehicle posture specifying unit F4 is based on the mode value of the pitch angle ⁇ p0 and the mode value of the roll angle ⁇ r0 detected by the vehicle body side tilt sensor 3 specified by the detection result management unit F2. Identify the position of the vehicle relative to the horizontal plane. That is, the mode value of the pitch angle ⁇ p0 is adopted as the vehicle body inclination angle in the vehicle longitudinal direction. Therefore, when the mode value of the pitch angle ⁇ p0 is 0 degrees (or a value that can be regarded as 0 degrees), it is considered that the vehicle body is not inclined in the vehicle front-rear direction. Further, the mode value of the roll angle ⁇ r0 is adopted as the vehicle body inclination angle in the vehicle width direction. Therefore, when the mode value of the roll angle ⁇ r0 is 0 degree, it is determined that the vehicle body is not inclined in the vehicle width direction.
  • the X1 axis provided in the vehicle body side tilt sensor 3 is in the same direction as the X axis
  • the Y1 axis is in the same direction as the Y axis
  • the host vehicle is in a horizontal posture
  • the vehicle body side tilt sensor 3 is installed on the vehicle body so that the pitch angle ⁇ p0 and the roll angle ⁇ r0 are 0 degrees. Therefore, the mode value of the pitch angle ⁇ p0 is used as the vehicle body inclination angle in the vehicle front-rear direction, and the mode value of the roll angle ⁇ r0 is used as the vehicle body inclination angle in the vehicle width direction, but this is not restrictive.
  • the posture of the host vehicle with respect to the horizontal plane may be specified by appropriately correcting according to the mounting posture of the vehicle body side tilt sensor 3 with respect to the vehicle body.
  • the detection result may be corrected and used in view of the degree of deviation.
  • the basic output value is measured in advance even when the vehicle is installed to output a predetermined value (basic output value) that is not 0 as a detection result when the vehicle is in a horizontal posture.
  • the posture of the host vehicle with respect to the horizontal plane may be specified using the basic output value as a reference.
  • the mounting posture specifying unit F5 specifies the pitch angle P1 and the roll angle R1 as the current mounting posture of the front camera 5 with respect to the vehicle body. Further, the pitch angle P2 and the roll angle R2 as the mounting posture of the rear camera 6 with respect to the vehicle body are specified. Details of the mounting posture specifying portion F5 will be described later.
  • the parameter adjustment unit F6 corrects the camera parameter corresponding to the in-vehicle camera based on the identification result of the mounting posture identification unit F5. That is, when the mounting posture specifying unit F5 specifies the current mounting posture of the front camera 5 with respect to the current vehicle body, the camera parameter corresponding to the front camera 5 is corrected based on the specified current mounting posture. When the mounting posture specifying unit F5 specifies the current mounting posture of the rear camera 6 with respect to the current vehicle body, the camera parameter corresponding to the rear camera 6 is corrected based on the specified current mounting posture.
  • the image processing unit F7 performs various known image processing on the image data input from the in-vehicle camera, and generates an image to be displayed on the display 4. For example, the image processing unit F7 performs a process of converting an image captured by the front camera 5 into an overhead image using camera parameters corresponding to the front camera 5. The image processing unit F7 outputs to the display 4 and displays the image input from each in-vehicle camera and the image data generated by performing various image processing on the image input from the in-vehicle camera.
  • Camera posture update related processing in the first embodiment
  • a series of processing referred to as camera posture update related processing
  • the camera posture update related process shown in FIG. 4 may be performed independently for each of the front camera 5 and the rear camera 6.
  • the flowchart shown in FIG. 4 may be started, for example, when the ignition power of the host vehicle is turned on or when a certain time has elapsed since this processing was performed last time.
  • step S101 the stop determination unit F1 determines whether or not the host vehicle is stopped. If the stop determination unit F1 determines that the host vehicle is stopped, step S101 is YES and the process proceeds to step S103. On the other hand, when the stop determination part F1 determines with the own vehicle not stopping, step S101 becomes NO and moves to step S102.
  • step S102 the detection result (for example, pitch angle ⁇ p1) stored in the memory 12 and the data calculated from the detection result (for example, pitch angle displacement amount ⁇ p1) are discarded, and the process returns to step S101.
  • the detection result for example, pitch angle ⁇ p1
  • the data calculated from the detection result for example, pitch angle displacement amount ⁇ p1
  • step S103 the detection result management unit F2 acquires the pitch angle ⁇ p1 detected by the first tilt sensor 51 and stores it in the first detection result storage unit M11, and acquires the pitch angle ⁇ p0 detected by the vehicle body side tilt sensor 3. And stored in the vehicle body side detection result storage unit M2.
  • step S104 the process proceeds to step S104.
  • step S104 the displacement amount calculation unit F21 calculates a pitch angle displacement amount ⁇ p1 that is a difference between the pitch angle ⁇ p1 acquired this time and the pitch angle P1 that is currently employed, and stores it in the first detection result storage unit M11.
  • the process moves to step S105.
  • the pitch angle ⁇ p1 acquired this time means the pitch angle ⁇ p1 newly added to the first detection result storage unit M11 in step S103.
  • step S105 the detection result management unit F2 determines whether or not a predetermined number of detection results are accumulated in the first detection result storage unit M11 and the vehicle body side detection result storage unit M2.
  • the predetermined number here is a sufficient number of times for specifying the current mounting orientation of the front camera 5 (here, the pitch angle P1), and may be, for example, a detection result for 50 times. Since the number of detections per unit time is constant, the time required to collect the detection results for a predetermined number of times is a constant time. That is, the determination content in step S105 may be to determine whether or not a certain time has elapsed since the collection of detection results was started. The process from step S101 to YES until step S105 is determined to be YES corresponds to the data collection period described above.
  • step S105 is YES. Then, the process proceeds to step S106. On the other hand, if the predetermined number of detection results have not yet been accumulated in each of the first detection result storage unit M11 and the vehicle body side detection result storage unit M2, step S105 is NO and the process returns to step S101.
  • step S101 and step S105 are data for specifying the current mounting posture.
  • the pitch angle P1 is updated using data affected by different gradients.
  • the accuracy may be deteriorated unless the data collection time is very long.
  • step S102 when the host vehicle starts to travel from the state where the host vehicle is stopped (NO in step S101), in step S102, the detection results collected while the vehicle is stopped are discarded. That is, the case where the pitch angle P1 is specified and the mounting posture data is updated in the configuration of the present embodiment is a case where a predetermined number of detection results are accumulated while the vehicle stops at one point. Therefore, according to the configuration of the present embodiment, the detection results used for specifying the current mounting posture are all values affected by the common road gradient, in other words, the own vehicle with respect to the horizontal plane is constant. Since it is the detection result at the time, the mounting posture can be specified with higher accuracy.
  • step S106 the update necessity determination unit F3 determines whether or not it is necessary to update the attachment posture data (the pitch angle P1 here) to be processed.
  • the mode value of the pitch angle displacement amount ⁇ p1 accumulated during the data collection period is a predetermined threshold (for example, 3 degrees). What is necessary is just to be the above.
  • step S106 if the update necessity determination unit F3 determines that the pitch angle P1 needs to be updated, step S106 is YES and the process proceeds to step S107. On the other hand, when the update necessity determination unit F3 determines that the pitch angle P1 does not need to be updated, step S106 is NO and the process proceeds to step S102.
  • step S101 the pitch angle P1 does not need to be updated
  • the process returns to step S101 via step S102 and continues this process. Not limited to.
  • this flow may be terminated. In that case, this process may be started again at a predetermined timing, for example, when the ignition power is turned on next time or when a predetermined time has elapsed since the end of this flow.
  • step S ⁇ b> 107 the mounting posture specifying unit F ⁇ b> 5 sets the amount of influence of the posture of the host vehicle with respect to the detection result of the first inclination sensor 51 (the vehicle posture influence amount) as the mode value of the pitch angle ⁇ p ⁇ b> 1.
  • the value subtracted from is calculated, and the process proceeds to step S108.
  • the vehicle attitude influence amount corresponds to the amount that the road gradient affects the detection result of the first inclination sensor 51.
  • the posture of the host vehicle with respect to the horizontal plane is represented by the mode value of the pitch angle ⁇ p0 and the mode value of the roll angle ⁇ r0 detected by the vehicle body side tilt sensor 3.
  • the vehicle attitude influence amount is determined based on the correspondence between the mode value of the pitch angle ⁇ p0 and the mode value of the roll angle ⁇ r0, and the detection direction of the vehicle body side tilt sensor 3 and the detection direction of the first tilt sensor 51.
  • the mounting posture specifying unit F5 includes the first inclination sensor 51.
  • the mode value of the pitch angle ⁇ p0 is used as it is as the vehicle posture influence amount with respect to the pitch angle ⁇ p1 detected by. That is, the vehicle attitude influence amount is the mode value of the pitch angle ⁇ p0 collected while repeating steps S101 to S105.
  • the vehicle attitude influence amount for the pitch angle ⁇ p2 detected by the second tilt sensor 61 is set to ⁇ 1 as the mode value of the pitch angle ⁇ p0.
  • a value obtained by multiplication may be used. This is because the direction in which the second tilt sensor 61 detects the pitch angle ⁇ p2 and the direction in which the vehicle body side tilt sensor 3 detects the pitch angle ⁇ p0 are opposite directions.
  • the subtraction value calculated in step S102 represents a value obtained by subtracting the influence amount (that is, the vehicle posture influence amount) of the inclination of the host vehicle from the pitch angle ⁇ p1 detected by the first inclination sensor 51. That is, the calculated subtraction value represents the actual pitch angle P1 of the front camera 5 with respect to the vehicle body at the current time. For convenience, the calculated subtraction value is set as the pitch angle P1a.
  • step S108 the mounting posture specifying unit F5 determines whether or not the pitch angle P1a calculated in step S107 matches the pitch angle P1 adopted as the current mounting posture.
  • the coincidence here is not limited to perfect coincidence, but may be regarded as coincidence when the difference is within a predetermined allowable range (for example, within ⁇ 0.5 degrees).
  • a predetermined allowable range for example, within ⁇ 0.5 degrees.
  • step S108 it is determined in step S108 that the pitch angle P1a coincides with the pitch angle P1 even though it is determined in step S106 that the mode value of the pitch angle displacement amount ⁇ p1 is equal to or greater than a predetermined threshold value. This is a case where step S106 is determined as YES due to the influence of the inclination of the vehicle.
  • step S108 If the pitch angle P1a calculated in step S108 matches the pitch angle P1 currently employed, step S108 is YES and this flow is finished. On the other hand, if the pitch angle P1a calculated in step S108 does not coincide with the current pitch angle P1, step S108 is NO and the process proceeds to step S109.
  • step S109 the pitch angle P1a is adopted as the current pitch angle P1, and is registered in the storage 13 as the current pitch angle P1 of the front camera 5. Further, the parameter adjustment unit F6 updates the camera parameter stored in the storage 13 to a value corresponding to the newly adopted pitch angle P1.
  • processing for processing the rear camera 6 may be performed in parallel with the processing for the front camera 5.
  • step S107 the detection result of the vehicle body side inclination sensor 3, the detection direction of the camera side inclination sensor attached to the vehicle-mounted camera to be processed, and the detection direction of the vehicle body side inclination sensor 3 From the corresponding relationship, the vehicle attitude influence amount with respect to the detection result of the camera side tilt sensor is specified. And the attachment attitude
  • step S106 the update necessity determination unit F3 determines that it is not necessary to update the element to be processed (for example, the pitch angle P1) among the various elements representing the mounting posture. Sometimes the value of the element is not updated. In other words, only when it is determined that the element to be processed needs to be updated, the current value of the element can be identified and updated.
  • the degree of inclination of the vehicle body can be specified from the detection result of the vehicle body side inclination sensor 3 provided on the vehicle body. For this reason, in the second embodiment to be described later, three or more in-vehicle cameras with a built-in tilt sensor are required, whereas according to the configuration of the present embodiment, the tilt sensor included in the driving support system 100 is built-in. There may be one in-vehicle camera.
  • the pitch angle and roll angle detected by the tilt sensor are usually affected by vehicle acceleration / deceleration and turning.
  • the mounting posture of the in-vehicle camera is specified based on the detection result detected by the tilt sensor while the vehicle is stopped. Therefore, the influence of the temporary noise resulting from such a vehicle behavior can be suppressed, and the mounting posture of the in-vehicle camera can be specified with higher accuracy.
  • the driving support system 100 is illustrated as an in-vehicle camera including the front camera 5 and the rear camera 6, but is not limited thereto.
  • the driving support system 100 only needs to include at least one in-vehicle camera, and the number and photographing range are not limited.
  • FIG. 5 is a diagram illustrating an example of a schematic configuration of the driving support system 100A according to the present embodiment.
  • the driving support system 100A includes a control unit 1A, a vehicle speed sensor 2, a display 4, a front camera 5, a rear camera 6, a right side camera 7, and a left side camera 8.
  • the control unit 1A corresponds to the control unit 1 described above, and each of the vehicle speed sensor 2, the display 4, the front camera 5, the rear camera 6, the right side camera 7, and the left side camera 8 is a well-known vehicle interior. They are connected to each other via a network.
  • the right side camera 7 is a camera provided so as to photograph a predetermined range on the right side of the host vehicle.
  • the right side camera 7 for example, a well-known CMOS camera or CCD camera whose shooting range is set to a wide angle (for example, an angle of view of 175 °) by a wide angle lens can be used.
  • the right side camera 7 may be installed at a position that is appropriately designed, for example, near the right side mirror or on the right side of the vehicle body. In the present embodiment, for simplification of description, the right side camera 7 is assumed to be installed in the vicinity of the center in the vehicle front-rear direction at the upper end of the right side surface of the vehicle body.
  • the right side camera 7 has a vertical direction (vertical direction) and a horizontal direction (horizontal direction) defined in advance.
  • the orthogonal projection vector onto the XY plane of the optical axis which is the central axis of the photographing direction, is the same direction as the negative direction of the Y axis, and the left-right direction is parallel to the X axis at the predetermined installation location described above. It is attached to become.
  • Video signals captured by the right side camera 7 are sequentially output to the control unit 1.
  • the right side camera 7 includes an inclination sensor (hereinafter, third inclination sensor) 71 that detects the inclination of the right side camera 7 (that is, the inclination with respect to the horizontal plane).
  • the third tilt sensor 71 is a biaxial tilt sensor that detects the tilt of the right side camera 7 with respect to the horizontal plane by decomposing it into rotation angles for each of two axes (X3 axis and Y3 axis) as shown in FIG. It is.
  • the third inclination sensor 71 includes an inclination angle of the right side camera 7 in the vehicle longitudinal direction (inclination angle with respect to the horizontal plane (referred to as roll angle ⁇ r3)) and an inclination angle of the right side camera 7 in the vehicle width direction (inclination angle with respect to the horizontal plane). (Pitch angle ⁇ p3) is incorporated in the right side camera 7 so as to detect.
  • the orthogonal projection vector of the X3 axis to the XY plane is the same direction as the negative direction of the Y axis
  • the orthogonal projection vector of the Y3 axis of the XY plane is the X axis. It is built in the right side camera 7 so as to be in the same direction as the positive direction.
  • the X3 axis of the third tilt sensor 71 coincides with the optical axis of the right side camera 7, and the Y3 axis is fixed in the casing of the right side camera 7 so as to coincide with the lateral direction of the right side camera 7. Yes.
  • the detection results (pitch angle ⁇ p3 and roll angle ⁇ r3) of the third tilt sensor 71 are sequentially output to the control unit 1A.
  • the rotation angle in the direction of the right-handed screw with the Y3 axis as the rotation axis from the neutral state is represented by a positive value
  • the rotation angle in the reverse direction is represented by a negative value
  • the pitch angle ⁇ p3 represents a rotation angle in the direction of the right screw of the Y3 axis from a neutral state as a positive value
  • a rotation angle in the reverse direction as a negative value.
  • the third tilt sensor 71 corresponds to the camera posture detector described in the claims, and the pitch angle ⁇ p3 and the roll angle ⁇ r3 correspond to an example of the camera posture index value described in the claims. Further, the extending direction of the X3 axis and the extending direction of the Y3 axis correspond to the camera side detection direction described in the claims.
  • the third tilt sensor 71 is configured to be installed in the casing of the right side camera 7.
  • the third tilt sensor 71 is integrally attached to the right side camera 7 outside the casing. It is good.
  • the left side camera 8 is a camera provided to photograph a predetermined range on the left side of the host vehicle.
  • the left side camera 8 for example, a well-known CMOS camera or CCD camera whose shooting range is set to a wide angle (for example, an angle of view of 185 °) by a wide angle lens can be used.
  • the left side camera 8 may be installed at a position that is appropriately designed, for example, near the left side mirror or on the left side surface of the vehicle body. In the present embodiment, for the sake of simplification, it is assumed that the left side camera 8 is installed in the vicinity of the center in the vehicle front-rear direction at the upper end of the left side surface of the vehicle body.
  • the left side camera 8 is preliminarily defined in the vertical direction (vertical direction) and the horizontal direction (horizontal direction).
  • the left side camera 8 has an orthogonal projection vector onto the XY plane of the optical axis, which is the central axis in the shooting direction, in the same direction as the positive direction of the Y axis, and the horizontal direction is parallel to the X axis. It is attached to become.
  • Video signals taken by the left side camera 8 are sequentially output to the control unit 1.
  • the left side camera 8 includes an inclination sensor (hereinafter referred to as a fourth inclination sensor) 81 that detects the inclination of the left side camera 8 (inclination with respect to the horizontal plane).
  • the fourth tilt sensor 81 is a two-axis tilt sensor that detects the tilt of the left side camera 8 with respect to the horizontal plane by decomposing the tilt into rotation angles for two axes (X4 axis and Y4 axis).
  • the fourth inclination sensor 81 includes an inclination angle (referred to as roll angle ⁇ r4) of the left side camera 8 in the vehicle longitudinal direction with respect to the horizontal plane and an inclination angle (pitch angle ⁇ p4) of the left side camera 8 in the vehicle width direction with respect to the horizontal plane. It is built in the left side camera 8 so as to detect.
  • roll angle ⁇ r4 inclination angle of the left side camera 8 in the vehicle longitudinal direction with respect to the horizontal plane
  • pitch angle ⁇ p4 inclination angle of the left side camera 8 in the vehicle width direction with respect to the horizontal plane. It is built in the left side camera 8 so as to detect.
  • the orthogonal projection vector of the X4 axis to the XY plane is the same as the positive direction of the Y axis
  • the orthogonal projection vector of the Y4 axis of the XY plane is the X axis.
  • the X4 axis of the fourth tilt sensor 81 is fixed in the housing of the left side camera 8 so as to coincide with the optical axis of the left side camera 8, and the Y4 axis coincides with the lateral direction of the left side camera 8. Yes.
  • the detection results (pitch angle ⁇ p4 and roll angle ⁇ r4) of the fourth tilt sensor 81 are sequentially output to the control unit 1A.
  • the rotation angle in the direction of the right screw with the Y4 axis as the rotation axis from the neutral state is expressed as a positive value
  • the rotation angle in the reverse direction is expressed as a negative value
  • the pitch angle ⁇ p4 represents a rotation angle in the direction of the right screw of the Y4 axis from a neutral state as a positive value
  • a rotation angle in the reverse direction as a negative value.
  • the fourth tilt sensor 81 corresponds to the camera posture detector described in the claims, and the pitch angle ⁇ p4 and the roll angle ⁇ r4 correspond to an example of the camera posture index value described in the claims. Further, the extending direction of the X4 axis and the extending direction of the Y4 axis correspond to the camera side detection direction described in the claims.
  • the fourth tilt sensor 81 is configured to be installed in the housing of the left side camera 8, but as another aspect, the configuration is integrally attached to the left side camera 8 outside the housing. It is good.
  • the front camera 5, the rear camera 6, the right side camera 7, and the left side camera 8 are not distinguished from each other, they are described as an in-vehicle camera. Further, when the first inclination sensor 51, the second inclination sensor 61, the third inclination sensor 71, and the fourth inclination sensor 81 are not distinguished, they are described as inclination sensors.
  • the storage 13 stores the camera information of the right side camera 7 and the left side camera 8 in addition to the camera information of the front camera 5 and the rear camera 6.
  • the storage 13 includes the installation position data, mounting orientation data (pitch angle P3, roll angle R3, yaw angle Y3) of the right side camera 7, camera parameters, installation position data, mounting orientation data of the left side camera 8. (Pitch angle P4, roll angle R4, yaw angle Y4) and camera parameters are stored.
  • the pitch angle P3 of the right side camera 7 is simply the angle formed by the XY plane and the optical axis of the right side camera 7, and the roll angle R3 is the angle formed by the XY plane and the lateral direction of the right side camera 7.
  • the yaw angle Y3 is an angle (180 degrees) between the orthogonal projection of the optical axis onto the XY plane and the Y axis.
  • the pitch angle P4 of the left side camera 8 is simply an angle formed by the XY plane and the optical axis of the left side camera 8, and the roll angle R4 is an angle formed by the XY plane and the lateral direction of the left side camera 8.
  • the yaw angle Y4 is an angle (0 degree) formed by the orthogonal projection of the optical axis onto the XY plane and the Y axis.
  • the mounting posture data includes the pitch angle and roll angle specified as the current mounting posture in addition to the mounting posture at the initial setting.
  • the storage 13 stores data indicating the correspondence relationship between the detection directions of the tilt sensors included in each in-vehicle camera.
  • the detection direction of each inclination sensor may be represented by the direction of the detection axis included in each inclination sensor.
  • the storage 13 has a correspondence relationship between detection directions in which the X1 axis of the first tilt sensor 51 and the Y3 axis of the third tilt sensor 71 are in the same direction, the X2 axis of the second tilt sensor 61, and the fourth tilt sensor 81.
  • the fact that the direction is opposite to the Y4 axis is stored as a correspondence relationship.
  • the Y1 axis of the first inclination sensor 51 and the X4 axis of the fourth inclination sensor 81 are in the same direction
  • the X3 axis of the third inclination sensor 71 and the Y2 axis of the second inclination sensor 61 are opposite to each other. Is stored as a correspondence relationship.
  • the storage 13 stores a combination of angles having a corresponding relationship among various elements representing the mounting posture. There are two types of combinations of angles that have a corresponding relationship.
  • One is a combination of elements that are similarly affected by the inclination of the vehicle body with respect to the horizontal plane among the elements representing various mounting postures. More specifically, the roll angle ⁇ r1, the roll angle ⁇ r2, the pitch angle ⁇ p3, and the pitch angle ⁇ p4 are all affected by the inclination of the vehicle body in the vehicle width direction as shown in FIG. That is, the roll angle ⁇ r1, the roll angle ⁇ r2, the pitch angle ⁇ p3, and the pitch angle ⁇ p4 are combinations of angles that have a corresponding relationship.
  • the pitch angle ⁇ p1, the pitch angle ⁇ p2, the roll angle ⁇ r3, and the roll angle ⁇ r4 are all angles affected by the inclination of the vehicle body in the longitudinal direction of the vehicle. That is, the pitch angle ⁇ p1, the pitch angle ⁇ p2, the roll angle ⁇ r3, and the roll angle ⁇ r4 are combinations of elements that have a corresponding relationship. Hereinafter, other elements having a correspondence relationship with a certain element are referred to as corresponding angles.
  • FIG. 7 is a block diagram illustrating a configuration of the control unit 1A in the present embodiment, and the control unit 1A includes various functional blocks described in the first embodiment.
  • the operation of the vehicle posture specifying unit F4 in the present embodiment is different from the operation of the vehicle posture specifying unit F4 in the first embodiment described above.
  • the operation of the vehicle attitude specifying unit F4 in this embodiment will be described later separately.
  • the detection result management unit F2 of the present embodiment sequentially acquires the detection results of the first tilt sensor 51, the second tilt sensor 61, the third tilt sensor 71, and the fourth tilt sensor 81, and acquires the acquired detection results.
  • the detection results are stored in the memory 12 separately for each output source.
  • the detection results for each inclination sensor may be stored in the memory 12 in the order of acquisition, for example.
  • the displacement amount calculation unit F21 obtains the pitch angle ⁇ p3 and the roll angle ⁇ r3 from the third tilt sensor 71, and the pitch angle displacement that is the difference between the pitch angle P3 and the roll angle R3 that are employed as the current mounting posture.
  • the amount ⁇ p3 and the roll angle displacement amount ⁇ r3 are calculated and stored in the third detection result storage unit M13. Further, every time the pitch angle ⁇ p4 and the roll angle ⁇ r4 are acquired from the fourth inclination sensor 81, the pitch angle displacement amount ⁇ p4 and the roll angle which are the differences from the pitch angle P4 and the roll angle R4 adopted as the current mounting posture.
  • a displacement amount ⁇ r4 is calculated and stored in the fourth detection result storage unit M14.
  • the displacement amount ⁇ the pitch angle displacement amount ⁇ p3, the roll angle displacement amount ⁇ r3, the pitch angle displacement amount ⁇ p4, and the roll angle displacement amount ⁇ r4 are also applicable.
  • the third detection result storage unit M ⁇ b> 13 provided in the memory 12 is an area that stores detection results that are sequentially acquired from the third inclination sensor 71 among the storage areas included in the memory 12.
  • the fourth detection result storage unit M ⁇ b> 14 is an area that stores detection results sequentially acquired from the fourth inclination sensor 81 among the storage areas of the memory 12.
  • step S201 the stop determination unit F1 determines whether or not the host vehicle is stopped. If the stop determination unit F1 determines that the host vehicle is stopped, step S201 is YES and the process proceeds to step S203. On the other hand, when the stop determination part F1 determines with the own vehicle not stopping, step S201 becomes NO and moves to step S202.
  • step S202 the detection result stored in the memory 12 and the data calculated from the detection result (for example, the displacement amount ⁇ ) are discarded, and the process returns to step S201.
  • step S203 the detection result management unit F2 acquires the pitch angles ⁇ p1 to ⁇ p4 and roll angles ⁇ r1 to ⁇ r4 detected by each inclination sensor, and stores them in the storage area of the memory 12 corresponding to each output source. The process proceeds to S204.
  • step S204 the displacement amount calculation unit F21 calculates various displacement amounts ⁇ based on the various detection results acquired in step S203, stores them in the corresponding storage areas, and proceeds to step S205. That is, in step S204, the pitch angle displacement amount ⁇ p1 and the roll angle displacement amount ⁇ r1 are calculated and stored in the first detection result storage unit M11, and the pitch angle displacement amount ⁇ p2 and the roll angle displacement amount ⁇ r2 are calculated and the second detection result. Store in the storage unit M12. Further, the pitch angle displacement amount ⁇ p3 and the roll angle displacement amount ⁇ r3 are calculated and stored in the third detection result storage unit M13, and the pitch angle displacement amount ⁇ p4 and the roll angle displacement amount ⁇ r4 are calculated and the fourth detection result storage unit M14. To store.
  • step S205 the detection result management unit F2 determines whether or not a predetermined number of detection results are accumulated in the memory 12. If the detection results for a predetermined number of times are accumulated in the memory 12 at the time of moving to step S205, step S205 becomes YES and the process moves to step S206. On the other hand, if the predetermined number of detection results have not yet been accumulated in the memory 12, step S205 is NO and the process returns to step S201.
  • step S206 the update necessity determination unit F3 specifies the mode values of the pitch angle displacement amounts ⁇ p1, ⁇ p2, ⁇ p3, ⁇ p4, roll angle displacement amounts ⁇ r1, ⁇ r2, ⁇ r3, and ⁇ r4 in the data collection period, and step S207. Move on. For convenience, when referring to the mode value of each displacement amount, ⁇ p1 (m), ⁇ p2 (m), ⁇ p3 (m), ⁇ p4 (m), roll angle displacement amounts ⁇ r1 (m), ⁇ r2 (m) are sequentially arranged. , ⁇ r3 (m), and ⁇ r4 (m).
  • ⁇ p1 to ⁇ p4 and ⁇ p1 to ⁇ p4 are not distinguished and indicate a displacement amount of a certain element, they are described as ⁇ , and further, ⁇ p1 (m) to ⁇ p4 (m) are not distinguished, and a certain element In this case, ⁇ (m) is used.
  • step S207 the update necessity determination unit F3 determines whether it is necessary to update any one or a plurality of mounting posture data of the plurality of in-vehicle cameras.
  • predetermined threshold values for example, 3 It is determined whether or not it is within (degree).
  • any one of the pitch angle displacement amounts ⁇ p1 (m) to ⁇ p4 (m) and the roll angle displacement amounts ⁇ r1 (m) to ⁇ r4 (m) has an absolute value equal to or greater than a predetermined threshold value. Is determined that it is necessary to update any one or a plurality of mounting posture data of a plurality of in-vehicle cameras, and the process proceeds to step S208.
  • step S208 the vehicle posture specifying unit F4 is set to an angle that is affected by the inclination of the vehicle body in the vehicle longitudinal direction among the various displacement amounts ⁇ p1 (m) to ⁇ p4 (m) and ⁇ r1 (m) to ⁇ r4 (m).
  • the vehicle posture specifying unit F4 is set to an angle that is affected by the inclination of the vehicle body in the vehicle longitudinal direction among the various displacement amounts ⁇ p1 (m) to ⁇ p4 (m) and ⁇ r1 (m) to ⁇ r4 (m).
  • the displacement amounts corresponding to these various elements ⁇ is a value reflecting only the inclination in the front-rear direction of the vehicle.
  • the angle adopted as the current mounting posture matches the actual current angle, and the vehicle has a front-rear inclination. If not, the absolute value of each displacement amount ⁇ (m) is less than a predetermined threshold value.
  • the vehicle has a front-rear direction tilt with respect to an element that does not match the angle currently used as the mounting orientation and the actual current angle.
  • the absolute value of the displacement ⁇ (m) is a value that reflects the deviation between the angle used as the current mounting posture and the actual current angle. That is, the absolute value of the displacement ⁇ (m) of an element whose current mounting posture does not coincide with the actual current angle among the elements affected by the vehicle front-rear inclination. Exceeds a predetermined threshold.
  • the number of elements in which the absolute value of the displacement amount ⁇ (m) is less than a predetermined threshold among the four having a corresponding relationship becomes a majority (three or more). If it is determined that the vehicle body is not tilted in the longitudinal direction of the vehicle.
  • the vehicle attitude specifying unit F4 determines whether or not the vehicle body is tilted in the vehicle longitudinal direction by majority vote. If the vehicle posture specifying unit F4 determines that the vehicle body is not tilted in the vehicle front-rear direction, step S208 is YES and the process proceeds to step S209. On the other hand, when the vehicle posture specifying unit F4 determines that the vehicle body is tilted in the vehicle front-rear direction, step S208 is NO and the process proceeds to step S211.
  • step S209 among the elements affected by the inclination of the vehicle body in the longitudinal direction of the vehicle, the element whose absolute value of the displacement amount ⁇ (m) is equal to or greater than a predetermined threshold value is transferred to step S210 as the update target angle.
  • the pitch angle ⁇ p1 of the front camera 5 corresponding to the pitch angle displacement amount ⁇ p1 (m) is the update target angle.
  • the front camera 5 corresponds to an in-vehicle camera (that is, a camera to be updated) that should update the mounting posture data.
  • the operation of this process will be described with the pitch angle ⁇ p1 of the front camera 5 as the update target angle.
  • step S209 if there is no element whose absolute value of the displacement ⁇ (m) is equal to or greater than a predetermined threshold among the elements affected by the vehicle body inclination in the vehicle longitudinal direction in step S209, the process proceeds to step S211. It ’s fine.
  • step S210 the mode value of the pitch angle ⁇ p1 adopted as the update target angle is adopted as the current pitch angle P1, and is registered in the storage 13 as the current pitch angle P1 of the front camera 5.
  • the camera parameter stored in the storage 13 is updated to a value corresponding to the newly adopted pitch angle P1.
  • step S211 the vehicle posture specifying unit F4 is similar to step S208 from the displacement amount ⁇ (m) of the roll angle ⁇ r1, the roll angle ⁇ r2, the pitch angle ⁇ p3, and the pitch angle ⁇ p4 that is affected by the inclination of the vehicle body in the vehicle width direction. In addition, it is determined whether or not the vehicle body is tilted in the vehicle width direction by majority vote.
  • step S211 if the vehicle attitude specifying unit F4 determines that the vehicle body is not tilted in the vehicle width direction, step S211 is YES and the process proceeds to step S212. On the other hand, when the vehicle posture specifying unit F4 determines that the vehicle body is not inclined in the vehicle width direction, step S211 is NO and this flow is ended.
  • step S212 among the elements affected by the inclination of the vehicle body in the vehicle width direction, the element whose absolute value of the displacement amount ⁇ (m) is equal to or greater than a predetermined threshold value is transferred to step S213 as the update target angle.
  • step S212 if there is no element that is affected by the inclination of the vehicle body in the vehicle width direction and the absolute value of the displacement amount ⁇ (m) is equal to or greater than the predetermined threshold value, this flow ends. do it.
  • the vehicle posture specifying unit F4 specifies whether or not the vehicle body of the host vehicle is in a horizontal posture based on the detection results of a plurality of inclination sensors attached to the in-vehicle camera. More specifically, it is determined whether or not the vehicle body is tilted in the vehicle longitudinal direction and whether or not the vehicle body is tilted in the vehicle width direction.
  • the value of the element affected by the vehicle body tilt in the vehicle front-rear direction is updated. Further, when it is determined that the vehicle body is not tilted in the vehicle width direction, the value of the element that is affected by the vehicle body tilt in the vehicle width direction is updated.
  • step S207 when the update necessity determination unit F3 determines in step S207 that there is no need to update the attachment posture data, the value of the element is not updated.
  • the processing after step S208 can be performed to update the value of a predetermined element among various elements representing the attachment posture.
  • elements that do not need to be updated can be updated only for elements that need to be updated without unnecessary updating.
  • the vehicle body side inclination sensor 3 needs to be installed in the vehicle body, but in the second embodiment, the vehicle body side inclination sensor 3 does not need to be installed.
  • the aspect provided with four vehicle-mounted cameras was illustrated here as an example, it is not restricted to this. It is only necessary that the update target angle can be specified by majority vote among the plurality of corresponding angles. That is, it is sufficient that at least three in-vehicle cameras are provided.
  • the current value of the element affected by the vehicle body tilt in the longitudinal direction of the vehicle is specified and updated (S210), and the current value of the element affected by the vehicle body tilt in the rear direction of the vehicle width is specified and updated.
  • the aspect which performs update (S213) independently was illustrated, it is not restricted to this.
  • the vehicle posture specifying unit F4 determines that the vehicle body does not tilt in the vehicle front-rear direction and determines that the vehicle body tilt does not occur in the vehicle width direction. Or it is good also as an aspect which specifies the mounting attitude
  • DELTA absolute value of displacement amount
  • the host vehicle is in a horizontal posture.
  • FIG. 10 is a diagram illustrating an example of a schematic configuration of the driving support system 100B according to the present embodiment.
  • the driving support system 100B includes a control unit 1B, a vehicle speed sensor 2, a display 4, and a front camera 5.
  • the control unit 1B is connected to the vehicle speed sensor 2, the display 4, and the front camera 5 so as to be able to communicate with each other via a known in-vehicle network.
  • the control unit 1B includes various functional blocks (see FIG. 4) described in the first embodiment. However, it is not necessary to include the second detection result storage unit M12 and the vehicle body side detection result storage unit M2.
  • the detection result management unit F2 accumulates the pitch angle ⁇ p1 and roll angle ⁇ r1 acquired from the first tilt sensor 51 in the first detection result storage unit M11. Further, every time the pitch angle ⁇ p1 and the roll angle ⁇ r1 are acquired from the first tilt sensor 51, the displacement amount calculation unit F21 calculates the pitch angle displacement amounts ⁇ p1 and ⁇ r1 and accumulates them in the first detection result storage unit M11.
  • the detection result management unit F2 stores, in the first detection result storage unit M11, only the detection results acquired while the vehicle determination unit F1 determines that the host vehicle is stopped. It shall be accumulated. However, unlike the first and second embodiments described above, even if the host vehicle starts traveling, the data accumulated in the first detection result storage unit M11 is retained without being discarded.
  • the detection result management unit F2 determines whether or not a sufficient amount (the required number of detection times) of detection results has been accumulated in the first detection result storage unit M11.
  • the required number of detections here is larger than the number of detections assumed in the first and second embodiments, and the mode value is a detection result in a state where a vehicle is present on a horizontal road. Is the number of detections.
  • the pitch angle ⁇ p1 and the roll angle ⁇ r1 detected by the first inclination sensor 51 are values affected by the road gradient (that is, the inclination of the vehicle body). Therefore, the pitch angle ⁇ p1 and the roll angle ⁇ r1 detected by the first inclination sensor 51 do not always represent the mounting posture of the front camera 5 with respect to the vehicle body, but are affected by the vehicle body inclination caused by the road gradient. It is the value. Further, since the host vehicle is assumed to travel on roads with various slopes, the detection result output by the first inclination sensor 51 is also a value affected by various slopes.
  • the road with the highest traveling frequency is a horizontal (including substantially horizontal) road. That is, if the required number of detections is sufficiently increased, the mode values of the pitch angle ⁇ p1 and the roll angle ⁇ r1 accumulated in the first detection result storage unit M11 are in a state where the host vehicle is present on a horizontal road. It can be expected to be a detection result at.
  • the third embodiment it is not sufficient to determine that a sufficient amount of data is accumulated only by the number of detections, but when the detection results are collected at a predetermined number of different points, it is sufficient. It may be determined that the amount detection results are collected. For example, when data is collected at 50 locations, it may be determined that a sufficient amount of data has been collected. Further, an upper limit may be set for the number of detection results collected at one place.
  • the first detection result storage unit M11 may be provided in the storage 13 instead of the memory 12. According to such an aspect, data being collected can be retained even after the ignition power is turned off.
  • the trip refers to movement from turning on the ignition power supply to turning off the ignition power supply.
  • the driving support system 100B exemplifies a mode in which only the front camera 5 is provided as a vehicle-mounted camera, but the present invention is not limited thereto.
  • the driving support system 100B may include the rear camera 6, the right side camera 7, and the left side camera 8 described above.
  • the mounting posture may be specified in the same manner as the processing for the front camera 5 described above.
  • ⁇ Modification 1> In the first and second embodiments, an example of performing the process of specifying the mounting posture of the in-vehicle camera when the detection results for a desired number of times can be collected while stopping at one point is illustrated. However, it is not limited to this. You may perform the process which pinpoints the mounting attitude
  • the mounting posture specifying unit F5 stores the pitch accumulated in the first detection result storage unit M11.
  • the mode value of the angle ⁇ p1 may be adopted as the current pitch angle of the front camera 5 to update the mounting posture data. The same applies to the pitch angle P2 of the rear camera 6.
  • the mounting posture specifying unit F5 sets the maximum roll angle ⁇ r1 stored in the first detection result storage unit M11.
  • the mode value may be adopted as the current roll angle of the front camera 5 to update the mounting posture data. The same applies to the roll angle of the rear camera 6.
  • the camera attitude detector (and vehicle attitude detector) may be a triaxial acceleration sensor or a biaxial acceleration sensor.
  • the posture index value is an acceleration for each axial direction.
  • Each in-vehicle camera is provided with a geomagnetic sensor (for example, a triaxial geomagnetic sensor) in addition to the tilt sensor, and the control unit 1 can specify the azimuth angle of the host vehicle by a gyro sensor or a geomagnetic sensor provided on the vehicle body. It is good also as a structure. According to such an aspect, the yaw angle of each in-vehicle camera may be specified from the azimuth angle detected by the geomagnetic sensor provided in the in-vehicle camera and the azimuth angle of the host vehicle.
  • 100 / 100A / 100B driving support system 1.1A / 1B control unit, 3 vehicle body side tilt sensor (vehicle attitude detector), 5 front camera, 6 rear camera, 7 right side camera, 8 left side camera (5-8) In-vehicle camera), 12 memory, 13 storage, 51 1st tilt sensor, 61 2nd tilt sensor, 71 3rd tilt sensor, 81 4th tilt sensor (51 ⁇ 61 ⁇ 71 ⁇ 81 camera attitude detector), F1 stop determination Unit, F2 detection result management unit, F21 displacement amount calculating unit (angular displacement amount calculating unit), F3 updating necessity determining unit, F4 vehicle posture specifying unit, F5 mounting posture specifying unit, F6 parameter adjusting unit, F7 image processing unit, M11 first detection result storage unit, M12 second detection result storage unit, M13 third detection result storage unit, M14 fourth detection result ⁇ , (M11 ⁇ 14 camera detection result storage unit) M2 vehicle body side detection result storing unit (detection result storage unit for a vehicle)

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Studio Devices (AREA)
  • Accessories Of Cameras (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)

Abstract

The camera calibration apparatus is provided with: onboard cameras (5, 6, 7, 8) mounted at predetermined positions in a vehicle; camera orientation detectors (51, 61, 71, 81), provided in the onboard cameras, each of which successively detects a camera orientation index value indicating the orientation of the corresponding onboard camera with respect to the horizontal plane; detection result storage units (M11, M12, M13, M14), for cameras, each of which stores the camera orientation index values obtained by the corresponding camera orientation detector through a predetermined required number of times of detection; and a mounting orientation identification unit (F5) that identifies the mounting orientation of each of the onboard cameras with respect to the vehicle on the basis of the most frequent value among the camera orientation index values accumulated in the corresponding detection result storage unit for the camera.

Description

取り付け姿勢を特定する車載カメラ校正装置In-vehicle camera calibration device that identifies mounting orientation
 本開示は、車載カメラに関する。詳しくは、車載カメラの車両への取付姿勢を表すデータを校正するカメラ校正装置に関する。 This disclosure relates to an in-vehicle camera. More specifically, the present invention relates to a camera calibration device that calibrates data representing the mounting posture of a vehicle-mounted camera on a vehicle.
 従来、車載カメラの車両への取付姿勢を表すデータを校正するカメラ校正装置がある。例えば特許第5606770号公報に開示のカメラ校正装置は、車載カメラに対して既知の位置関係にある3軸加速度センサが、車両が静止しているときに検出した加速度と、車両が直進しているときに検出した加速度とに基づいて、車載カメラの取付姿勢を算出する。そして、その算出した取付姿勢を、現在の車載カメラの取付姿勢を表すデータとして採用する。なお、ここでの車載カメラの取付姿勢とは、車両に対する車載カメラの撮影方向に相当するものである。 Conventionally, there is a camera calibration device that calibrates data representing the mounting posture of a vehicle-mounted camera on a vehicle. For example, in the camera calibration device disclosed in Japanese Patent No. 5606770, the three-axis acceleration sensor having a known positional relationship with the in-vehicle camera detects the acceleration detected when the vehicle is stationary and the vehicle goes straight ahead. Based on the detected acceleration, the mounting posture of the in-vehicle camera is calculated. Then, the calculated mounting posture is adopted as data representing the current mounting posture of the in-vehicle camera. The mounting posture of the in-vehicle camera here corresponds to the shooting direction of the in-vehicle camera with respect to the vehicle.
特許第5606770号公報Japanese Patent No. 5606770
 特許第5606770号公報に開示の方法では、道路の勾配が加速度センサの出力値に及ぼす影響について考慮されていない。車両が坂道などの勾配がある道路に存在している場合、重力加速度が加速度センサに作用する方向は道路の勾配の影響を受けるため、加速度センサの軸方向毎の出力値の比率は、車両が水平な道路上に存在している場合とは異なる比率となる。 In the method disclosed in Japanese Patent No. 5606770, the influence of the road gradient on the output value of the acceleration sensor is not considered. When the vehicle is on a road with a slope such as a slope, the direction in which the gravitational acceleration acts on the acceleration sensor is affected by the slope of the road, so the ratio of the output value for each axis direction of the acceleration sensor is The ratio is different from the case of being on a horizontal road.
 つまり、特許第5606770号公報に開示の方法では、道路の勾配によって生じる車体の傾きを車載カメラの傾きと見なしてしまい、現在の車載カメラの取付姿勢を誤ってしまう恐れがある。 That is, in the method disclosed in Japanese Patent No. 5606770, the inclination of the vehicle body caused by the road gradient is regarded as the inclination of the in-vehicle camera, and there is a possibility that the current mounting posture of the in-vehicle camera is erroneous.
 本開示は、この事情に基づいて成されたものであり、その目的とするところは、車両の傾きに起因して車載カメラの取付姿勢を誤った姿勢に特定してしまうことを抑制可能なカメラ校正装置を提供することにある。 The present disclosure has been made based on this situation, and the purpose of the present disclosure is a camera that can prevent the mounting posture of the in-vehicle camera from being specified as an incorrect posture due to the inclination of the vehicle. It is to provide a calibration device.
 本願の第1の開示によるカメラ校正装置は、車載カメラ(5,6,7,8)と、カメラ姿勢検出器(51,61,71,81)と、カメラ用検出結果記憶部(M11,M12,M13,M14)と、取付姿勢特定部(F5)と、を備える。車載カメラは、車両の所定の位置に設置され、車両周辺の所定領域を撮影範囲とする。カメラ姿勢検出器は、車載カメラに設けられ、重力が働く方向に垂直な面である水平面に対する車載カメラの姿勢を表すカメラ姿勢指標値を逐次検出する。カメラ用検出結果記憶部はカメラ姿勢検出器が検出したカメラ姿勢指標値を、所定の所要検出回数分記憶する。取付姿勢特定部はカメラ用検出結果記憶部に蓄積されているカメラ姿勢指標値の最頻値に基づいて、車載カメラの車両に対する取付姿勢を特定する。 The camera calibration apparatus according to the first disclosure of the present application includes an in-vehicle camera (5, 6, 7, 8), a camera attitude detector (51, 61, 71, 81), and a camera detection result storage unit (M11, M12). , M13, M14) and an attachment posture specifying part (F5). The in-vehicle camera is installed at a predetermined position of the vehicle, and a predetermined area around the vehicle is an imaging range. The camera attitude detector is provided in the in-vehicle camera, and sequentially detects a camera attitude index value that represents the attitude of the in-vehicle camera with respect to a horizontal plane that is a plane perpendicular to the direction in which gravity acts. The camera detection result storage unit stores the camera posture index value detected by the camera posture detector for a predetermined required number of detection times. The mounting posture specifying unit specifies the mounting posture of the in-vehicle camera with respect to the vehicle based on the mode value of the camera posture index value stored in the camera detection result storage unit.
 以上の構成では、取付姿勢特定部は、カメラ用検出結果記憶部に蓄積されているカメラ姿勢指標値の最頻値を用いて車載カメラの取付姿勢を特定する。カメラ姿勢検出器が検出するカメラ姿勢指標値は、道路の勾配の影響を受けた値となっている。道路の勾配は車両の傾きに対応する。一般的に、車両は、様々な勾配の道路を走行することが想定されるため、カメラ姿勢検出器が出力する検出結果もまた、様々な勾配の影響を受けた値となる。しかしながら、最も走行頻度が多い道路とは、水平な道路(勾配が無視できる道路)となる可能性が高い。 In the above configuration, the mounting posture specifying unit specifies the mounting posture of the in-vehicle camera using the mode value of the camera posture index value stored in the camera detection result storage unit. The camera posture index value detected by the camera posture detector is a value affected by the road gradient. The slope of the road corresponds to the slope of the vehicle. In general, since a vehicle is assumed to travel on roads with various slopes, the detection result output by the camera posture detector is also a value affected by various slopes. However, the road with the highest travel frequency is likely to be a horizontal road (a road where the gradient can be ignored).
 つまり、所要検出回数を十分に多い回数とすれば、カメラ用検出結果記憶部に蓄積されているカメラ姿勢指標値の最頻値とは、水平な道路上に車両が存在している状態での検出結果に相当する。つまり、カメラ用検出結果記憶部に蓄積されているカメラ姿勢指標値の最頻値とは、車両が傾いていない状態での検出結果に相当する。 In other words, if the required number of detections is set to a sufficiently large number, the mode value of the camera posture index value stored in the camera detection result storage unit is the state in which a vehicle is present on a horizontal road. It corresponds to the detection result. That is, the mode value of the camera posture index value stored in the camera detection result storage unit corresponds to a detection result in a state where the vehicle is not tilted.
 したがって、以上の構成によれば、車両の傾きに起因して車載カメラの取付姿勢を誤った姿勢に特定してしまうことを抑制することができる。 Therefore, according to the above configuration, it is possible to prevent the mounting posture of the in-vehicle camera from being specified as an incorrect posture due to the inclination of the vehicle.
 また本願の第2の開示によるカメラ校正装置は、車載カメラ(5,6,7,8)と、カメラ姿勢検出器(51,61,71,81)と、カメラ用検出結果記憶部(M11,M12,M13,M14)と、車両姿勢特定部(F4)と取付姿勢特定部(F5)と、を備える。車載カメラは、車両の所定の位置に設置され、車両周辺の所定領域を撮影範囲とする。カメラ姿勢検出器は、車載カメラに設けられ、重力が働く方向に垂直な面である水平面に対する車載カメラの姿勢を表すカメラ姿勢指標値を逐次検出する。カメラ用検出結果記憶部はカメラ姿勢検出器が検出したカメラ姿勢指標値を、所定の所要検出回数分記憶する。車両姿勢特定部は前記水平面に対する車両の姿勢を特定する。取付姿勢特定部は、カメラ用検出結果記憶部に蓄積されているカメラ姿勢指標値の最頻値と、車両姿勢特定部が特定した車両の姿勢とに基づいて、車載カメラの車両に対する取付姿勢を特定する。 The camera calibration device according to the second disclosure of the present application includes an in-vehicle camera (5, 6, 7, 8), a camera attitude detector (51, 61, 71, 81), and a camera detection result storage unit (M11, M12, M13, M14), a vehicle posture specifying unit (F4), and an attachment posture specifying unit (F5). The in-vehicle camera is installed at a predetermined position of the vehicle, and a predetermined area around the vehicle is an imaging range. The camera attitude detector is provided in the in-vehicle camera, and sequentially detects a camera attitude index value that represents the attitude of the in-vehicle camera with respect to a horizontal plane that is a plane perpendicular to the direction in which gravity acts. The camera detection result storage unit stores the camera posture index value detected by the camera posture detector for a predetermined required number of detection times. The vehicle attitude specifying unit specifies the attitude of the vehicle with respect to the horizontal plane. The mounting posture specifying unit determines the mounting posture of the in-vehicle camera with respect to the vehicle based on the mode value of the camera posture index value accumulated in the camera detection result storage unit and the vehicle posture specified by the vehicle posture specifying unit. Identify.
 以上の構成において、カメラ用検出結果記憶部に蓄積されているカメラ姿勢指標値の最頻値は、水平面に対する車載カメラの姿勢を表している。もちろん、カメラ姿勢検出器によって検出される水平面に対する車載カメラの姿勢には、道路の勾配に起因して生じる車両の傾きの影響が含まれている。この車両の傾きの影響の有無、又は大きさは、車両姿勢特定部によって特定される。取付姿勢特定部は、車両姿勢特定部が特定した車両姿勢と、カメラ姿勢検出器によって検出される水平面に対する車載カメラの姿勢とから、車両に対する車載カメラの取付姿勢を特定する。 In the above configuration, the mode value of the camera posture index value stored in the camera detection result storage unit represents the posture of the in-vehicle camera with respect to the horizontal plane. Of course, the attitude of the in-vehicle camera with respect to the horizontal plane detected by the camera attitude detector includes the influence of the vehicle inclination caused by the road gradient. The presence / absence or the magnitude of the influence of the inclination of the vehicle is specified by the vehicle posture specifying unit. The mounting posture specifying unit specifies the mounting posture of the in-vehicle camera with respect to the vehicle from the vehicle posture specified by the vehicle posture specifying unit and the posture of the in-vehicle camera with respect to the horizontal plane detected by the camera posture detector.
 したがって、以上の構成によれば、道路の勾配に起因して車載カメラの取付姿勢を誤った姿勢に特定してしまうことを抑制することができる。 Therefore, according to the above configuration, it is possible to prevent the mounting posture of the in-vehicle camera from being specified as an incorrect posture due to the road gradient.
 なお、特許請求の範囲に記載した括弧内の符号は、一つの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、本開示の技術的範囲を限定するものではない。 In addition, the code | symbol in the parenthesis described in the claim shows the correspondence with the specific means as described in embodiment mentioned later as one aspect, Comprising: The technical scope of this indication is limited is not.
添付図面において:
第1の実施形態にかかる運転支援システム100の概略的な構成の一例を示すブロック図である。 種々の傾斜センサの設置位置及び検出方向を説明するための概念図である。 制御部1の概略的な構成の一例を示すブロック図である。 制御部1が実施する姿勢更新関連処理を説明するためのフローチャートである。 第2の実施形態にかかる運転支援システム100Aの概略的な構成の一例を示すブロック図である。 種々の傾斜センサの設置位置及び検出方向を説明するための概念図である。 制御部1Aの概略的な構成の一例を示すブロック図である。 制御部1Aが実施する姿勢更新関連処理を説明するためのフローチャートである。 車両姿勢特定部F4の作動を説明するための概念図である。 第3の実施形態における運転支援システム100Bの概略的な構成の一例を示すブロック図である。
In the attached drawing:
1 is a block diagram illustrating an example of a schematic configuration of a driving support system 100 according to a first embodiment. It is a conceptual diagram for demonstrating the installation position and detection direction of various inclination sensors. 3 is a block diagram illustrating an example of a schematic configuration of a control unit 1. FIG. It is a flowchart for demonstrating the attitude | position update related process which the control part 1 implements. It is a block diagram which shows an example of schematic structure of the driving assistance system 100A concerning 2nd Embodiment. It is a conceptual diagram for demonstrating the installation position and detection direction of various inclination sensors. It is a block diagram which shows an example of a schematic structure of 1 A of control parts. It is a flowchart for demonstrating the attitude | position update related process which 1A of control parts implement. It is a conceptual diagram for demonstrating the action | operation of the vehicle attitude | position specific part F4. It is a block diagram which shows an example of a schematic structure of the driving assistance system 100B in 3rd Embodiment.
 <第1の実施形態>
 以下、本開示の第1の実施形態について図を用いて説明する。図1は、本実施形態に係るカメラ校正装置を適用した運転支援システム100の概略的な構成の一例を示す図である。この運転支援システム100は、車室外の所定領域を撮影するカメラの撮影画像を、例えば俯瞰画像に変換してディスプレイに表示することで、ドライバが車両周辺の状況を認識することを支援するものである。
<First Embodiment>
Hereinafter, a first embodiment of the present disclosure will be described with reference to the drawings. FIG. 1 is a diagram illustrating an example of a schematic configuration of a driving support system 100 to which the camera calibration apparatus according to the present embodiment is applied. The driving support system 100 assists the driver in recognizing the situation around the vehicle by converting a captured image of a camera that captures a predetermined area outside the passenger compartment into, for example, a bird's-eye view image and displaying it on a display. is there.
 以降では、当該運転支援システム100が搭載された車両を自車両と称する。また、以降では、自車両における所定の位置を原点とし、互いに直交するX軸、Y軸、Z軸を備える右手系の3次元座標系を導入して、自車両が備える各部の位置関係について説明する。 Hereinafter, a vehicle equipped with the driving support system 100 is referred to as a host vehicle. Further, hereinafter, a right-handed three-dimensional coordinate system having a predetermined position in the own vehicle as an origin and an X axis, a Y axis, and a Z axis orthogonal to each other will be introduced, and the positional relationship of each part included in the own vehicle will be described. To do.
 X軸は、車両前後方向に平行であって、車両の後部から前部に向かう方向を正の方向とする軸であり、Y軸は、自車両の車幅方向に平行であって、車両右側から左側に向かう方向を正の方向とする軸とする。Z軸は、車両の高さ方向に平行であって、車両の床部から屋根部に向かう方向を正の方向とする。原点は、一例として自車両の中心、つまり、自車両の両側面から等距離にある車両の中心線上において、車両前端から後端までの距離が等しい点とする。もちろん、原点はその他の位置でもよく、例えば後輪軸の車幅方向中央となる位置としてもよい。 The X-axis is parallel to the vehicle front-rear direction and has a positive direction from the rear to the front of the vehicle. The Y-axis is parallel to the vehicle width direction of the host vehicle and Let the direction from the left to the left be the positive direction. The Z-axis is parallel to the height direction of the vehicle, and the direction from the vehicle floor to the roof is defined as a positive direction. As an example, the origin is a point where the distance from the front end of the vehicle to the rear end is equal on the center of the host vehicle, that is, on the center line of the vehicle equidistant from both sides of the host vehicle. Of course, the origin may be another position, for example, a position that is the center of the rear wheel shaft in the vehicle width direction.
 本実施形態にかかる運転支援システム100は、図1に示すように、制御部1、車速センサ2、車体側傾斜センサ3、ディスプレイ4、フロントカメラ5、及びリアカメラ6を備えている。 The driving support system 100 according to this embodiment includes a control unit 1, a vehicle speed sensor 2, a vehicle body side tilt sensor 3, a display 4, a front camera 5, and a rear camera 6, as shown in FIG.
 制御部1は、運転支援システム100の動作を制御するものであって、車速センサ2、車体側傾斜センサ3、ディスプレイ4、フロントカメラ5、及びリアカメラ6のそれぞれとは、周知の車両内ネットワークを介して相互通信可能に構成されている。この制御部1についての詳細は後述する。 The control unit 1 controls the operation of the driving support system 100, and each of the vehicle speed sensor 2, the vehicle body side tilt sensor 3, the display 4, the front camera 5, and the rear camera 6 is a well-known in-vehicle network. Are configured to be able to communicate with each other. Details of the control unit 1 will be described later.
 車速センサ2は、自車両の走行速度を検出するセンサである。車体側傾斜センサ3は、水平面に対する自車両の車体の傾きを検出するセンサ(つまり傾斜センサ)である。ここでの水平面とは重力が作用する方向に垂直な平面を指す。本実施形態の車体側傾斜センサ3は、水平面に対する車体の傾きを、互いに直交する2つの軸(X0軸、Y0軸とする)のそれぞれに対する回転角度に分解して検出する、周知の2軸傾斜センサとする。2軸傾斜センサは、3軸加速度センサを用いて実現されるものであってもよいし、振り子と磁気センサを組み合わせて実現されるものであってもよい。 The vehicle speed sensor 2 is a sensor that detects the traveling speed of the host vehicle. The vehicle body side inclination sensor 3 is a sensor (that is, an inclination sensor) that detects the inclination of the vehicle body of the host vehicle with respect to a horizontal plane. Here, the horizontal plane refers to a plane perpendicular to the direction in which gravity acts. The vehicle body side inclination sensor 3 of the present embodiment detects the inclination of the vehicle body with respect to a horizontal plane by resolving the rotation angle with respect to each of two mutually orthogonal axes (X0 axis and Y0 axis). Let it be a sensor. The biaxial tilt sensor may be realized using a triaxial acceleration sensor, or may be realized by combining a pendulum and a magnetic sensor.
 この車体側傾斜センサ3は、例えば図2に示すように、X0軸とX軸とが同一方向となって、Y0軸がY軸と同一方向となるように、車体の所定の位置(例えば床部)などに固定されればよい。車体側傾斜センサ3が検出するX0軸周りの回転角(ロール角θr0とする)は、車体の車幅方向の傾斜角を表し、Y0軸周りの回転角(ピッチ角θp0とする)は車体の車両前後方向の傾斜角を表す。 For example, as shown in FIG. 2, the vehicle body side inclination sensor 3 has a predetermined position (for example, a floor) on the vehicle body so that the X0 axis and the X axis are in the same direction and the Y0 axis is in the same direction as the Y axis. Part) or the like. The rotation angle around the X0 axis (referred to as roll angle θr0) detected by the vehicle body side inclination sensor 3 represents the inclination angle in the vehicle width direction of the vehicle body, and the rotation angle around the Y0 axis (referred to as pitch angle θp0) is Represents the tilt angle in the vehicle longitudinal direction.
 本実施形態では一例として、車体側傾斜センサ3は、自車両において水平面に平行な部分に設置されているものとする。したがって、各タイヤの空気圧が不平衡となっている場合などの特殊な状況を除き、自車両が水平な道路上に存在する場合には、車体側傾斜センサ3が検出するロール角θr0、ピッチ角θp0ともに0度となる。 In the present embodiment, as an example, it is assumed that the vehicle body side tilt sensor 3 is installed in a portion parallel to the horizontal plane in the host vehicle. Accordingly, the roll angle θr0 and the pitch angle detected by the vehicle body side inclination sensor 3 are detected when the host vehicle is on a horizontal road, except in special circumstances such as when the air pressure of each tire is unbalanced. Both θp0 are 0 degrees.
 車体側傾斜センサ3は、ロール角θr0を表す信号、及びピッチ角θp0を表す信号のそれぞれを逐次制御部1に出力する。ここでは一例として、ロール角θr0は、中立の状態からX0軸の右ねじの方向の回転角を正の値で表し、逆方向の回転角を負の値で表すこととする。また、ピッチ角θp0は、中立の状態からY0軸の右ねじの方向の回転角を正の値で表し、逆方向の回転角を負の値で表すこととする。 The vehicle body side tilt sensor 3 sequentially outputs a signal representing the roll angle θr0 and a signal representing the pitch angle θp0 to the control unit 1 sequentially. Here, as an example, for the roll angle θr0, the rotation angle in the direction of the right screw of the X0 axis from the neutral state is represented by a positive value, and the rotation angle in the reverse direction is represented by a negative value. In addition, the pitch angle θp0 represents a rotation angle in the direction of the right screw of the Y0 axis from a neutral state as a positive value, and a rotation angle in the reverse direction as a negative value.
 なお、車両は剛体であるため、路面と車体の底部は略平行となる。つまり、車体側傾斜センサ3が検出するピッチ角θp0は、自車両が存在している道路の、車両前後方向における勾配を表し、車体側傾斜センサ3が検出するロール角θr0は、自車両が存在している道路の、車幅方向における勾配を表す。したがって、車両の前後方向と道路の延長方向とが一致している場合には、車体側傾斜センサ3が検出するピッチ角θp0は、当該道路の縦断勾配を表し、車体側傾斜センサ3が検出するロール角θr0は当該道路の片勾配を表す。 Since the vehicle is a rigid body, the road surface and the bottom of the vehicle body are substantially parallel. That is, the pitch angle θp0 detected by the vehicle body side tilt sensor 3 represents the gradient in the vehicle front-rear direction of the road where the host vehicle exists, and the roll angle θr0 detected by the vehicle body side tilt sensor 3 exists. This represents the gradient of the road in the vehicle width direction. Therefore, when the vehicle front-rear direction and the road extension direction coincide with each other, the pitch angle θp0 detected by the vehicle body side inclination sensor 3 represents the longitudinal gradient of the road, and the vehicle body side inclination sensor 3 detects it. The roll angle θr0 represents the single slope of the road.
 この車体側傾斜センサ3が請求項に記載の車両姿勢検出器に相当し、ピッチ角θp0及びロール角θr0が請求項に記載の車両姿勢指標値の一例に相当する。また、X0軸の延長方向、及びY0軸の延長方向が請求項に記載の車両側検出方向に相当する。 The vehicle body side tilt sensor 3 corresponds to the vehicle attitude detector described in the claims, and the pitch angle θp0 and the roll angle θr0 correspond to an example of the vehicle attitude index value described in the claims. Further, the extending direction of the X0 axis and the extending direction of the Y0 axis correspond to the vehicle side detection direction described in the claims.
 ディスプレイ4は、制御部1から入力される信号に基づいてテキストや画像を表示する。ディスプレイ4は、例えばフルカラー表示が可能なものであり、液晶ディスプレイ、有機ELディスプレイ等を用いて構成することができる。ディスプレイ4は、ここでは一例としてインストゥルメントパネルの車幅方向中央付近に配置されたディスプレイとする。なお、他の態様として、ディスプレイ4は、メータユニットに設けられたディスプレイであってもよいし、周知のヘッドアップディスプレイであってもよい。 The display 4 displays text and images based on signals input from the control unit 1. The display 4 is capable of full color display, for example, and can be configured using a liquid crystal display, an organic EL display, or the like. Here, as an example, the display 4 is a display arranged near the center in the vehicle width direction of the instrument panel. As another aspect, the display 4 may be a display provided in the meter unit or a known head-up display.
 フロントカメラ5は、自車両の前方の所定範囲を撮影するように設けられたカメラである。フロントカメラ5は、例えば、広角レンズによって撮影範囲が広角(例えば画角175°)に設定された周知のCMOSカメラやCCDカメラ等を用いることができる。フロントカメラ5は、例えばフロントバンパの車幅方向中央部付近に設置されればよい。 The front camera 5 is a camera provided to photograph a predetermined range in front of the host vehicle. As the front camera 5, for example, a well-known CMOS camera, CCD camera, or the like whose shooting range is set to a wide angle (for example, an angle of view of 175 °) by a wide angle lens can be used. For example, the front camera 5 may be installed near the center of the front bumper in the vehicle width direction.
 もちろん、フロントカメラ5の設置位置は、フロントバンパの車幅方向中央部付近に限らず、例えば車室内のルームミラー付近やフロントガラスの上端などの、自車両前方に対するドライバの視界を遮らない位置に取り付けられればよい。 Of course, the installation position of the front camera 5 is not limited to the vicinity of the center portion in the vehicle width direction of the front bumper, but is a position that does not obstruct the driver's field of view in front of the host vehicle, for example, near the rearview mirror in the vehicle interior or the upper end of the windshield. It only has to be attached.
 フロントカメラ5には、予め上下方向(縦方向)と左右方向(横方向)が規定されている。フロントカメラ5は、上述した所定の設置箇所において、撮影方向の中心軸である光軸の水平面への正射影ベクトルがX軸と同一方向となり、左右方向がY軸と平行となるように取り付けられる。フロントカメラ5が撮影した映像信号は、制御部1に逐次出力される。 The front camera 5 has a vertical direction (vertical direction) and a horizontal direction (horizontal direction) defined in advance. The front camera 5 is mounted so that the orthogonal projection vector onto the horizontal plane of the optical axis, which is the central axis in the photographing direction, is the same direction as the X axis and the horizontal direction is parallel to the Y axis at the predetermined installation location described above. . Video signals taken by the front camera 5 are sequentially output to the control unit 1.
 また、フロントカメラ5は、フロントカメラ5の水平面に対する傾きを検出する傾斜センサ(以降、第1傾斜センサ)51を備える。第1傾斜センサ51は、前述の車体側傾斜センサ3と同様に、水平面に対するフロントカメラ5の傾斜角度を、2つの軸(X1軸、Y1軸とする)毎の回転角度に分解して検出する2軸傾斜センサである。 Further, the front camera 5 includes an inclination sensor (hereinafter referred to as a first inclination sensor) 51 that detects the inclination of the front camera 5 with respect to the horizontal plane. The first inclination sensor 51 detects the inclination angle of the front camera 5 with respect to the horizontal plane by dividing it into rotation angles for each of two axes (X1 axis and Y1 axis), similarly to the vehicle body side inclination sensor 3 described above. This is a biaxial tilt sensor.
 第1傾斜センサ51は、第1傾斜センサ51のX1軸が、フロントカメラ5の光軸と一致し、Y1軸が、フロントカメラ5の横方向と一致するように、フロントカメラ5の筐体内に設けられている。つまり、フロントカメラ5が上述した姿勢で車体に取り付けられている場合、X1軸のXY平面への正射影ベクトルはX軸の正の方向と同じ向きとなり、かつ、Y1軸のXY平面の正射影ベクトルはY軸の正の方向と同じ向きとなっている。 The first tilt sensor 51 is placed in the housing of the front camera 5 so that the X1 axis of the first tilt sensor 51 coincides with the optical axis of the front camera 5 and the Y1 axis coincides with the lateral direction of the front camera 5. Is provided. That is, when the front camera 5 is attached to the vehicle body in the above-described posture, the orthogonal projection vector of the X1 axis to the XY plane is the same direction as the positive direction of the X axis and the orthogonal projection of the Y1 axis to the XY plane. The vector is in the same direction as the positive direction of the Y axis.
 これにより、第1傾斜センサ51は、車両前後方向におけるフロントカメラ5の水平面に対する傾斜角(ピッチ角θp1とする)と、車幅方向におけるフロントカメラ5の水平面に対する傾斜角(ロール角θr1とする)を検出する。 Thereby, the first inclination sensor 51 has an inclination angle (pitch angle θp1) with respect to the horizontal plane of the front camera 5 in the vehicle front-rear direction and an inclination angle with respect to the horizontal plane of the front camera 5 in the vehicle width direction (denoted roll angle θr1). Is detected.
 第1傾斜センサ51の検出結果(ピッチ角θp1及びロール角θr1)は、制御部1に逐次出力される。なお、ロール角θr1は、ピッチ角θp0と同様に、中立の状態からX1軸を回転軸とする右ねじの方向の回転角を正の値で表し、逆方向の回転角を負の値で表すこととする。また、ピッチ角θp1は、中立の状態からY1軸の右ねじの方向の回転角を正の値で表し、逆方向の回転角を負の値で表すこととする。 The detection results (pitch angle θp1 and roll angle θr1) of the first tilt sensor 51 are sequentially output to the control unit 1. As with the pitch angle θp0, the roll angle θr1 represents the rotation angle in the direction of the right-handed screw with the X1 axis as the rotation axis from the neutral state as a positive value, and the reverse rotation angle as a negative value. I will do it. In addition, the pitch angle θp1 represents a rotation angle in the direction of the right screw of the Y1 axis from a neutral state as a positive value, and a rotation angle in the reverse direction as a negative value.
 この第1傾斜センサ51が請求項に記載のカメラ姿勢検出器に相当し、ピッチ角θp1及びロール角θr1が請求項に記載のカメラ姿勢指標値の一例に相当する。また、X1軸の延長方向、及びY1軸の延長方向が請求項に記載のカメラ側検出方向に相当する。 The first tilt sensor 51 corresponds to the camera posture detector described in the claims, and the pitch angle θp1 and the roll angle θr1 correspond to an example of the camera posture index value described in the claims. Further, the extending direction of the X1 axis and the extending direction of the Y1 axis correspond to the camera side detection direction described in the claims.
 本実施形態では第1傾斜センサ51はフロントカメラ5の筐体内に設置されている構成とするが、他の態様として、筐体の外側に一体的に取り付けられている構成としてもよい。 In the present embodiment, the first inclination sensor 51 is configured to be installed in the casing of the front camera 5, but as another aspect, it may be configured to be integrally attached to the outside of the casing.
 リアカメラ6は、自車両の後方の所定範囲を撮影するように設けられたカメラである。例えば、リアカメラ6はフロントカメラ5と同様に、広角レンズによって撮影範囲が広角に設定された周知のCMOSカメラやCCDカメラ等を用いることができる。リアカメラ6は、例えばリアバンパの車幅方向中央部付近に設置されればよい。 The rear camera 6 is a camera provided to photograph a predetermined range behind the host vehicle. For example, similar to the front camera 5, the rear camera 6 may be a known CMOS camera, CCD camera, or the like whose shooting range is set to a wide angle by a wide angle lens. The rear camera 6 may be installed, for example, near the center of the rear bumper in the vehicle width direction.
 もちろん、リアカメラ6の設置位置は、リアバンパの車幅方向中央部付近に限らず、例えばリアウィンドウの上端付近など、ドライバの後方確認のための視界を遮らない位置に取り付けられればよい。 Of course, the installation position of the rear camera 6 is not limited to the vicinity of the center of the rear bumper in the vehicle width direction, and may be attached to a position that does not obstruct the driver's field of view for confirmation behind the rear window, for example, near the upper end of the rear window.
 リアカメラ6にも、予め上下方向(縦方向)と左右方向(横方向)が規定されている。リアカメラ6は、上述した所定の設置箇所において、撮影方向の中心軸である光軸の水平面への正射影ベクトルがX軸の負の方向と同一方向となり、左右方向がY軸と平行となるように取り付けられる。リアカメラ6が撮影した映像信号は、制御部1に逐次出力される。 Also in the rear camera 6, the vertical direction (vertical direction) and the horizontal direction (horizontal direction) are defined in advance. In the rear camera 6, the orthogonal projection vector onto the horizontal plane of the optical axis that is the central axis of the imaging direction is the same direction as the negative direction of the X axis, and the left-right direction is parallel to the Y axis at the predetermined installation location described above. It is attached as follows. Video signals captured by the rear camera 6 are sequentially output to the control unit 1.
 また、リアカメラ6は、リアカメラ6の水平面に対する傾きを検出する傾斜センサ(以降、第2傾斜センサ)61を備える。第2傾斜センサ61は、前述の車体側傾斜センサ3と同様に、水平面に対すリアカメラ6の傾斜角度を、互いに直交する2つの軸(X2軸、Y2軸とする)毎の回転角度に分解して検出する2軸傾斜センサである。 Further, the rear camera 6 includes a tilt sensor (hereinafter referred to as a second tilt sensor) 61 that detects the tilt of the rear camera 6 with respect to the horizontal plane. The second tilt sensor 61 decomposes the tilt angle of the rear camera 6 with respect to the horizontal plane into rotation angles for two orthogonal axes (X2 axis and Y2 axis) in the same manner as the vehicle body side tilt sensor 3 described above. This is a two-axis tilt sensor to detect.
 第2傾斜センサ61は、第2傾斜センサ61のX2軸がリアカメラ6の光軸方向と一致し、Y2軸は、リアカメラ6の横方向と一致するようにリアカメラ6に内蔵されている。つまり、リアカメラ6が上述した姿勢で車体に取り付けられている場合、X2軸のXY平面への正射影ベクトルはX軸の負の方向と同じ向きとなり、かつ、Y2軸のXY平面の正射影ベクトルはY軸の負の方向と同じ向きとなる。 The second tilt sensor 61 is built in the rear camera 6 so that the X2 axis of the second tilt sensor 61 coincides with the optical axis direction of the rear camera 6 and the Y2 axis coincides with the lateral direction of the rear camera 6. . That is, when the rear camera 6 is attached to the vehicle body in the above-described posture, the orthogonal projection vector of the X2 axis to the XY plane is the same direction as the negative direction of the X axis, and the orthogonal projection of the Y2 axis to the XY plane. The vector is in the same direction as the negative direction of the Y axis.
 これにより、第2傾斜センサ61は、車両前後方向におけるリアカメラ6の水平面に対する傾斜角(ピッチ角θp2とする)と、車幅方向におけるリアカメラ6の水平面に対する傾斜角(ロール角θr2とする)を検出する。 Thus, the second inclination sensor 61 has an inclination angle (pitch angle θp2) with respect to the horizontal plane of the rear camera 6 in the vehicle front-rear direction and an inclination angle (set to roll angle θr2) with respect to the horizontal plane of the rear camera 6 in the vehicle width direction. Is detected.
 第2傾斜センサ61の検出結果(ピッチ角θp2及びロール角θr2)は、制御部1に逐次出力される。なお、ロール角θr2は、中立の状態からX2軸を回転軸とする右ねじの方向の回転角を正の値で表し、逆方向の回転角を負の値で表すこととする。また、ピッチ角θp2は、中立の状態からY2軸の右ねじの方向の回転角を正の値で表し、逆方向の回転角を負の値で表すこととする。 The detection results (pitch angle θp2 and roll angle θr2) of the second tilt sensor 61 are sequentially output to the control unit 1. As for the roll angle θr2, the rotation angle in the direction of the right screw with the X2 axis as the rotation axis from the neutral state is expressed as a positive value, and the rotation angle in the reverse direction is expressed as a negative value. In addition, the pitch angle θp2 represents a rotation angle in the direction of the right screw of the Y2 axis from a neutral state as a positive value, and a rotation angle in the reverse direction as a negative value.
 第2傾斜センサ61が請求項に記載のカメラ姿勢検出器に相当し、ピッチ角θp2及びロール角θr2が請求項に記載のカメラ姿勢指標値の一例に相当する。また、X2軸の延長方向、及びY2軸の延長方向が請求項に記載のカメラ側検出方向に相当する。 The second tilt sensor 61 corresponds to the camera posture detector described in the claims, and the pitch angle θp2 and the roll angle θr2 correspond to an example of the camera posture index value described in the claims. Further, the extending direction of the X2 axis and the extending direction of the Y2 axis correspond to the camera side detection direction described in the claims.
 本実施形態では第2傾斜センサ61はリアカメラ6の筐体内に設置されている構成とするが、他の態様として、筐体の外側に一体的に取り付けられている構成としてもよい。 In the present embodiment, the second tilt sensor 61 is installed in the housing of the rear camera 6, but as another embodiment, the second tilt sensor 61 may be integrally attached to the outside of the housing.
 以降において、フロントカメラ5とリアカメラ6とを区別しない場合には単に車載カメラと記載する。また、車体側傾斜センサ3、第1傾斜センサ51、第2傾斜センサ61を区別しない場合には傾斜センサと称する。特に、車載カメラに取り付けられた傾斜センサである第1傾斜センサ51、第2傾斜センサ61は、カメラ側傾斜センサと称する。 Hereinafter, when the front camera 5 and the rear camera 6 are not distinguished from each other, they are simply referred to as an in-vehicle camera. Further, when the vehicle body side tilt sensor 3, the first tilt sensor 51, and the second tilt sensor 61 are not distinguished, they are referred to as tilt sensors. In particular, the first tilt sensor 51 and the second tilt sensor 61 that are tilt sensors attached to the in-vehicle camera are referred to as camera-side tilt sensors.
 制御部1は、通常のコンピュータとして構成されており、周知のCPU11、メモリ12、ストレージ13、入出力インターフェース(以降、I/O)14、及びこれらの構成を接続するバスラインなどを備えている。 The control unit 1 is configured as a normal computer, and includes a well-known CPU 11, a memory 12, a storage 13, an input / output interface (hereinafter referred to as I / O) 14, and a bus line that connects these configurations. .
 CPU11は、周知の中央処理装置であり、メモリ12を演算領域として用いることで、種々の演算処理を実行する。メモリ12は、例えばRAMなどの一時記憶媒体によって実現されればよく、CPU11にとっての主記憶装置として機能する。ストレージ13は、ROMやフラッシュメモリなどの不揮発性の記憶媒体によって実現されればよく、CPU11にとっての補助記憶装置として機能する。なお、ここではCPU11は1つしか図示していないが複数備えていてもよい。 The CPU 11 is a well-known central processing unit, and executes various arithmetic processes by using the memory 12 as an arithmetic area. The memory 12 may be realized by a temporary storage medium such as a RAM, for example, and functions as a main storage device for the CPU 11. The storage 13 may be realized by a non-volatile storage medium such as a ROM or a flash memory, and functions as an auxiliary storage device for the CPU 11. Although only one CPU 11 is shown here, a plurality of CPUs 11 may be provided.
 I/O14は、例えばフロントカメラ5等の、制御部1に接続する機器と、制御部1との間で行われるデータの送受信を制御する。例えばI/O14は、フロントカメラ5やリアカメラ6から入力された映像信号を、後述する画像処理部F7による画像処理が可能な形式の画像データに変換して、メモリ12に蓄積する。 The I / O 14 controls transmission / reception of data performed between the control unit 1 and a device connected to the control unit 1 such as the front camera 5. For example, the I / O 14 converts video signals input from the front camera 5 and the rear camera 6 into image data in a format that can be processed by an image processing unit F7 described later, and stores the image data in the memory 12.
 ストレージ13には、種々の処理を実行するためのプログラムや、車載カメラ毎のカメラ情報が格納されている。カメラ情報は、自車両における各車載カメラの設置位置を示す設置位置データや、車載カメラの車両に対する取付姿勢を示す取付姿勢データ、レンズの歪み係数や、焦点距離、光軸中心、画素サイズ、画素比などを示す内部データを含む。 The storage 13 stores a program for executing various processes and camera information for each in-vehicle camera. The camera information includes installation position data indicating the installation position of each in-vehicle camera in the own vehicle, installation attitude data indicating the installation attitude of the in-vehicle camera with respect to the vehicle, lens distortion coefficient, focal length, optical axis center, pixel size, pixel Includes internal data indicating ratios and so on.
 各車載カメラの設置位置は、例えば、前述の3次元座標系の座標によって表されれば良い。また、取付姿勢は、X軸、Y軸、Z軸を基準として定まるピッチ角、ロール角、ヨー角によって表されればよい。つまり、ストレージ13には、フロントカメラ5のピッチ角P1、ロール角R1、ヨー角Y1と、リアカメラ6のピッチ角P2、ロール角R2、ヨー角Y2を記憶している。 The installation position of each in-vehicle camera may be represented by, for example, the coordinates of the aforementioned three-dimensional coordinate system. Further, the mounting posture may be represented by a pitch angle, a roll angle, and a yaw angle determined with reference to the X axis, the Y axis, and the Z axis. That is, the storage 13 stores the pitch angle P1, roll angle R1, and yaw angle Y1 of the front camera 5, and the pitch angle P2, roll angle R2, and yaw angle Y2 of the rear camera 6.
 フロントカメラ5のピッチ角P1は、簡略的に、XY平面とフロントカメラ5の光軸とが為す角度とし、ロール角R1は、XY平面とフロントカメラ5の横方向とが為す角度とし、ヨー角Y1は、光軸のXY平面への正射影とX軸とが為す角度(0度)とする。リアカメラ6のピッチ角P2は、簡略的に、XY平面とリアカメラ6の光軸とが為す角度であり、ロール角R2は、XY平面とリアカメラ6の横方向とが為す角度とし、ヨー角Y2は、光軸のXY平面への正射影とX軸とが為す角度(180度)とする。 The pitch angle P1 of the front camera 5 is simply the angle formed by the XY plane and the optical axis of the front camera 5, the roll angle R1 is the angle formed by the XY plane and the lateral direction of the front camera 5, and the yaw angle. Y1 is an angle (0 degree) between the orthogonal projection of the optical axis onto the XY plane and the X axis. The pitch angle P2 of the rear camera 6 is simply an angle formed by the XY plane and the optical axis of the rear camera 6, and the roll angle R2 is an angle formed by the XY plane and the lateral direction of the rear camera 6, The angle Y2 is an angle (180 degrees) between the orthogonal projection of the optical axis onto the XY plane and the X axis.
 以上で定義されたヨー角は、車載カメラの概略的な撮影方向を表す。本実施形態においては、各車載カメラのヨー角の初期の取付姿勢からのずれは無視できるものとする。 The yaw angle defined above represents the general shooting direction of the in-vehicle camera. In this embodiment, it is assumed that the deviation of the yaw angle of each in-vehicle camera from the initial mounting posture can be ignored.
 設置位置データや取付姿勢データは、初期状態においては、所定の試験環境で予め測定された値や、設計上の値となっている。取付姿勢を示す種々の要素(ロール角やピッチ角)のうち、後述する姿勢更新関連処理によって更新されていない要素については、初期状態においてストレージ13に格納されている値が、現在の取付姿勢を表す値である。また、取付姿勢を示す種々の要素のうち、後述する姿勢更新関連処理によって更新された要素については、その更新後の値が、現在の取付姿勢を表す値としてストレージ13(又はメモリ12)に保持される。 The installation position data and the installation posture data are values measured in advance in a predetermined test environment or design values in the initial state. Of the various elements (roll angle and pitch angle) indicating the mounting posture, the values stored in the storage 13 in the initial state represent the current mounting posture for elements that have not been updated by the posture update related processing described later. The value to represent. Of the various elements indicating the mounting posture, for the elements updated by the posture update related processing described later, the updated value is stored in the storage 13 (or memory 12) as a value representing the current mounting posture. Is done.
 また、ストレージ13は、車載カメラ毎のカメラ情報として、その車載カメラの撮影画像に対する画像処理(例えば周知の視点変換処理など)に用いるパラメータとしてのカメラパラメータを記憶している。カメラパラメータは、車載カメラの設置位置や取付姿勢に応じて定まるパラメータである。 In addition, the storage 13 stores camera parameters as parameters used for image processing (for example, well-known viewpoint conversion processing) on the captured image of the in-vehicle camera as camera information for each in-vehicle camera. The camera parameter is a parameter that is determined according to the installation position and mounting orientation of the in-vehicle camera.
 さらに、ストレージ13は、各車載カメラが備える傾斜センサの検出方向の対応関係を示すデータを記憶している。各傾斜センサの検出方向は、各傾斜センサが備える検出軸の方向として記述されていればよい。 Furthermore, the storage 13 stores data indicating the correspondence relationship between the detection directions of the tilt sensors included in each in-vehicle camera. The detection direction of each inclination sensor should just be described as the direction of the detection axis with which each inclination sensor is provided.
 制御部1は、ストレージ13に格納されているプログラムを実行することによって実現する機能ブロックとして、図3に示すように、停車判定部F1、検出結果管理部F2、更新要否判定部F3、取付姿勢特定部F5、パラメータ調整部F6、画像処理部F7、及び車両姿勢特定部F4を備える。なお、制御部1が備える機能の一部又は全部は、一つあるいは複数のIC等によりハードウェア的に構成してもよい。 As shown in FIG. 3, the control unit 1 includes a stop determination unit F1, a detection result management unit F2, an update necessity determination unit F3, an attachment as functional blocks realized by executing a program stored in the storage 13. A posture specifying unit F5, a parameter adjusting unit F6, an image processing unit F7, and a vehicle posture specifying unit F4 are provided. Note that some or all of the functions of the control unit 1 may be configured by hardware using one or a plurality of ICs.
 停車判定部F1は、車速センサ2から入力される車速に基づいて、自車両が停車しているか否かを判定する。例えば停車判定部F1は、現在の車速が0km/hとなっている場合に自車両が停止していると判定し、現在の車速が0km/hよりも大きい値となっている場合に自車両が停止していないと判定する。もちろん、他の態様として車速が所定の閾値(例えば5km/h)未満となっている場合に停車していると判定し、車速がその閾値以上となっている場合に停車していないと判定してもよい。 The stop determination unit F1 determines whether the host vehicle is stopped based on the vehicle speed input from the vehicle speed sensor 2. For example, the stop determination unit F1 determines that the host vehicle is stopped when the current vehicle speed is 0 km / h, and the host vehicle when the current vehicle speed is greater than 0 km / h. Is determined not to stop. Of course, as another aspect, when the vehicle speed is less than a predetermined threshold (for example, 5 km / h), it is determined that the vehicle is stopped, and when the vehicle speed is equal to or higher than the threshold, it is determined that the vehicle is not stopped. May be.
 また、ここでは一例として車速に基づいて自車両が停車しているか否かを判定する態様を例示したが、その他、周知の種々の方法によって自車両が停車している否かを判定すれば良い。例えばシフトポジションセンサが検出するシフトポジションに基づいて自車両が停車しているか否かを判定してもよい。 Moreover, although the aspect which determines whether the own vehicle has stopped based on the vehicle speed was illustrated here as an example, what is necessary is just to determine whether the own vehicle has stopped by the well-known various methods. . For example, you may determine whether the own vehicle has stopped based on the shift position which a shift position sensor detects.
 検出結果管理部F2は、車体側傾斜センサ3、第1傾斜センサ51、第2傾斜センサ61のそれぞれの検出結果を逐次(例えば50ミリ秒毎に)取得し、取得した検出結果を、その検出結果の出力元毎に区別してメモリ12に格納する。傾斜センサ毎の検出結果は例えば取得順に並べてメモリ12に格納していけばよい。また、傾斜センサ毎の検出結果は、さらに、ピッチ角とロール角とで区別して保存される。 The detection result management unit F2 sequentially acquires the detection results of the vehicle body side tilt sensor 3, the first tilt sensor 51, and the second tilt sensor 61 (for example, every 50 milliseconds), and detects the acquired detection results. Each result output source is distinguished and stored in the memory 12. The detection results for each inclination sensor may be stored in the memory 12 in the order of acquisition, for example. In addition, the detection result for each inclination sensor is further stored by distinguishing between the pitch angle and the roll angle.
 図3に示す第1検出結果記憶部M11は、メモリ12が備える記憶領域のうち、第1傾斜センサ51から逐次取得する検出結果を記憶している領域である。また、第2検出結果記憶部M12は、メモリ12が備える記憶領域のうち、第2傾斜センサ61から逐次取得する検出結果を記憶している領域である。車体側検出結果記憶部M2は、メモリ12が備える記憶領域のうち、車体側傾斜センサ3から逐次取得する検出結果を記憶している領域である。第1検出結果記憶部M11、第2検出結果記憶部M12が請求項に記載のカメラ用検出結果記憶部に相当し、車体側検出結果記憶部M2が請求項に記載の車両用検出結果記憶部に相当する。 The first detection result storage unit M11 illustrated in FIG. 3 is an area that stores detection results that are sequentially acquired from the first inclination sensor 51 among the storage areas of the memory 12. The second detection result storage unit M <b> 12 is an area that stores detection results that are sequentially acquired from the second inclination sensor 61 among the storage areas of the memory 12. The vehicle body side detection result storage unit M <b> 2 is an area that stores detection results sequentially acquired from the vehicle body side inclination sensor 3 among the storage areas of the memory 12. The first detection result storage unit M11 and the second detection result storage unit M12 correspond to the camera detection result storage unit described in the claims, and the vehicle body side detection result storage unit M2 includes the vehicle detection result storage unit described in the claims. It corresponds to.
 また、検出結果管理部F2は、第1傾斜センサ51からピッチ角θp1を取得する度に、その取得したピッチ角θp1から現在の取付姿勢として採用されているピッチ角P1を減算したピッチ角変位量Δθp1を算出し、第1検出結果記憶部M11に格納する。ロール角θr1についても同様に、ロール角θr1を取得する毎に、その取得したロール角θr1から現在の取付姿勢として採用されているロール角R1を減算したロール角変位量Δθr1を算出し、第1検出結果記憶部M11に格納する。 Further, each time the detection result management unit F2 acquires the pitch angle θp1 from the first inclination sensor 51, the pitch angle displacement amount obtained by subtracting the pitch angle P1 employed as the current mounting posture from the acquired pitch angle θp1. Δθp1 is calculated and stored in the first detection result storage unit M11. Similarly, each time the roll angle θr1 is acquired, the roll angle displacement amount Δθr1 obtained by subtracting the roll angle R1 adopted as the current mounting posture from the acquired roll angle θr1 is calculated for the roll angle θr1. The result is stored in the detection result storage unit M11.
 フロントカメラ5の現在の取付姿勢として採用されているピッチ角P1やロール角R1とは、所定の試験環境で測定された値、又は、前回実施した姿勢更新関連処理によって特定されたピッチ角、ロール角を指す。 The pitch angle P1 and roll angle R1 adopted as the current mounting posture of the front camera 5 are values measured in a predetermined test environment, or the pitch angle and roll specified by the posture update-related processing performed previously. Point to the corner.
 また、検出結果管理部F2は、第2傾斜センサ61からピッチ角θp2、ロール角θr2を取得した時も、第1傾斜センサ51からピッチ角θp1、θr1を取得した時と同様の処理を行う。つまり、第2傾斜センサ61からピッチ角θp2を取得する度に、その取得したピッチ角θp2から現在の取付姿勢として採用されているピッチ角P2を減算したピッチ角変位量Δθp2を算出し、第2検出結果記憶部M12に格納する。また、ロール角θr2を取得する毎に、その取得したロール角θr2から現在の取付姿勢として採用されているロール角R2との差分であるロール角変位量Δθr2を算出し、第2検出結果記憶部M12に格納する。 The detection result management unit F2 performs the same processing as when the pitch angles θp1 and θr1 are acquired from the first tilt sensor 51 even when the pitch angle θp2 and the roll angle θr2 are acquired from the second tilt sensor 61. That is, every time the pitch angle θp2 is acquired from the second tilt sensor 61, the pitch angle displacement amount Δθp2 obtained by subtracting the pitch angle P2 employed as the current mounting posture from the acquired pitch angle θp2 is calculated, and the second Stored in the detection result storage unit M12. Further, every time the roll angle θr2 is acquired, a roll angle displacement amount Δθr2 that is a difference from the roll angle R2 adopted as the current mounting posture is calculated from the acquired roll angle θr2, and the second detection result storage unit Store in M12.
 検出結果管理部F2が逐次算出するピッチ角変位量Δθp1、ロール角変位量Δθr1、ピッチ角変位量Δθp2、ロール角変位量Δθr2を、変位量Δθと総称する。検出結果管理部F2が備える変位量算出部F21は、これらの変位量Δθを算出する機能ブロックである。この変位量算出部F21が請求項に記載の角度変位量算出部に相当する。 The pitch angle displacement amount Δθp1, the roll angle displacement amount Δθr1, the pitch angle displacement amount Δθp2, and the roll angle displacement amount Δθr2 that are sequentially calculated by the detection result management unit F2 are collectively referred to as a displacement amount Δθ. The displacement amount calculation unit F21 provided in the detection result management unit F2 is a functional block that calculates the displacement amount Δθ. The displacement amount calculation unit F21 corresponds to the angular displacement amount calculation unit described in the claims.
 さらに、検出結果管理部F2は、傾斜センサ毎の検出結果が、予め定められた、車載カメラの姿勢を特定するために十分な量(所要検出回数分)の検出結果が収集されたか否かを判定する。なお、車載カメラの姿勢を特定するために十分な量の検出結果を収集している期間をデータ収集期間とも称する。所要検出回数は適宜設計されれば良い。 Furthermore, the detection result management unit F2 determines whether or not the detection results for each tilt sensor have been collected in a predetermined amount (a required number of detection times) sufficient to specify the posture of the in-vehicle camera. judge. Note that a period during which a sufficient amount of detection results are collected to identify the posture of the in-vehicle camera is also referred to as a data collection period. The required number of detections may be designed as appropriate.
 検出結果管理部F2は、予め定められた所定検出回数分の検出結果を収集できたと判定した場合、傾斜センサ毎の検出結果の最頻値を特定する。ここでの最頻値とは統計学で用いられる最頻値と同義のものであり、1つの状態量に対する複数回の検出の結果、最も頻繁に出現した値である。 When the detection result management unit F2 determines that the detection results for a predetermined number of detection times can be collected, the detection result management unit F2 specifies the mode value of the detection results for each inclination sensor. The mode value here is synonymous with the mode value used in statistics, and is the value that appears most frequently as a result of multiple detections for one state quantity.
 より具体的に、検出結果管理部F2は、第1検出結果記憶部M11に格納されている複数のピッチ角θp1を母集団として、第1傾斜センサ51が検出したピッチ角θp1の最頻値を特定する。また、第1検出結果記憶部M11に格納されている複数のロール角θr1を母集団として、第1傾斜センサ51が検出したロール角θr1の最頻値を特定する。同様にして、検出結果管理部F2は、データ収集期間内において第2傾斜センサ61が検出したピッチ角θp2の最頻値、ロール角θr2の最頻値、車体側傾斜センサ3が検出したピッチ角θp0の最頻値、及びロール角θr0の最頻値を特定する。ピッチ角θp1の最頻値、ロール角θr1の最頻値、ピッチ角θp2の最頻値、ロール角θr2の最頻値が請求項に記載のカメラ側最頻値に相当し、ピッチ角θp0の最頻値、ロール角θr0の最頻値が請求項に記載の車両側最頻値に相当する。 More specifically, the detection result management unit F2 uses the plurality of pitch angles θp1 stored in the first detection result storage unit M11 as a population, and determines the mode value of the pitch angle θp1 detected by the first tilt sensor 51. Identify. Further, the mode value of the roll angle θr1 detected by the first tilt sensor 51 is specified using the plurality of roll angles θr1 stored in the first detection result storage unit M11 as a population. Similarly, the detection result management unit F2 detects the mode value of the pitch angle θp2 detected by the second tilt sensor 61, the mode value of the roll angle θr2 within the data collection period, and the pitch angle detected by the vehicle body side tilt sensor 3. The mode value of θp0 and the mode value of the roll angle θr0 are specified. The mode value of the pitch angle θp1, the mode value of the roll angle θr1, the mode value of the pitch angle θp2, and the mode value of the roll angle θr2 correspond to the camera-side mode value described in the claims, and the pitch angle θp0 The mode value and the mode value of the roll angle θr0 correspond to the vehicle-side mode value recited in the claims.
 更新要否判定部F3は、フロントカメラ5の取付姿勢データを更新する必要があるか否か、及び、リアカメラ6の取付姿勢データを更新する必要があるか否かを判定する。この更新要否判定部F3についての詳細は別途後述する。 The update necessity determination unit F3 determines whether or not the mounting posture data of the front camera 5 needs to be updated and whether or not the mounting posture data of the rear camera 6 needs to be updated. Details of the update necessity determination unit F3 will be described later.
 車両姿勢特定部F4は、車体側傾斜センサ3の検出結果に基づいて、水平面に対する自車両の姿勢を特定する。ここでの水平面に対する自車両の姿勢とは、傾きの有無、及び、傾きが生じている場合にはその大きさを指す。さらに、本実施形態では、車両前後方向における傾きと車幅方向における傾きを区別して取り扱う。 The vehicle attitude specifying unit F4 specifies the attitude of the host vehicle with respect to the horizontal plane based on the detection result of the vehicle body side tilt sensor 3. The attitude of the host vehicle with respect to the horizontal plane here refers to the presence or absence of a tilt, and the size of the tilt when tilted. Furthermore, in this embodiment, the inclination in the vehicle front-rear direction and the inclination in the vehicle width direction are distinguished and handled.
 より具体的には、車両姿勢特定部F4は、検出結果管理部F2が特定する、車体側傾斜センサ3が検出したピッチ角θp0の最頻値、及びロール角θr0の最頻値に基づいて、水平面に対する自車両の姿勢を特定する。つまり、ピッチ角θp0の最頻値を車両前後方向における車体の傾斜角として採用する。したがって、ピッチ角θp0の最頻値が0度(或いは0度と見なすことができる値)である場合には、車両前後方向において車体は傾いていないと見なす。また、ロール角θr0の最頻値を車幅方向における車体の傾斜角として採用する。したがって、ロール角θr0の最頻値が0度である場合には、車幅方向において車体は傾いていないと判定する。 More specifically, the vehicle posture specifying unit F4 is based on the mode value of the pitch angle θp0 and the mode value of the roll angle θr0 detected by the vehicle body side tilt sensor 3 specified by the detection result management unit F2. Identify the position of the vehicle relative to the horizontal plane. That is, the mode value of the pitch angle θp0 is adopted as the vehicle body inclination angle in the vehicle longitudinal direction. Therefore, when the mode value of the pitch angle θp0 is 0 degrees (or a value that can be regarded as 0 degrees), it is considered that the vehicle body is not inclined in the vehicle front-rear direction. Further, the mode value of the roll angle θr0 is adopted as the vehicle body inclination angle in the vehicle width direction. Therefore, when the mode value of the roll angle θr0 is 0 degree, it is determined that the vehicle body is not inclined in the vehicle width direction.
 なお、本実施形態では、車体側傾斜センサ3が備えるX1軸がX軸と同一方向となり、Y1軸がY軸と同一方向となり、さらに、自車両が水平な姿勢となっている場合には、ピッチ角θp0及びロール角θr0が0度となるように、車体側傾斜センサ3を車体に設置した態様とした。そのため、ピッチ角θp0の最頻値を車両前後方向における車体の傾斜角とし、ロール角θr0の最頻値を車幅方向における車体の傾斜角として採用するものとしたが、これに限らない。水平面に対する自車両の姿勢は、車体に対する車体側傾斜センサ3の取付姿勢に応じて、適宜補正して特定されれば良い。 In the present embodiment, when the X1 axis provided in the vehicle body side tilt sensor 3 is in the same direction as the X axis, the Y1 axis is in the same direction as the Y axis, and the host vehicle is in a horizontal posture, The vehicle body side tilt sensor 3 is installed on the vehicle body so that the pitch angle θp0 and the roll angle θr0 are 0 degrees. Therefore, the mode value of the pitch angle θp0 is used as the vehicle body inclination angle in the vehicle front-rear direction, and the mode value of the roll angle θr0 is used as the vehicle body inclination angle in the vehicle width direction, but this is not restrictive. The posture of the host vehicle with respect to the horizontal plane may be specified by appropriately correcting according to the mounting posture of the vehicle body side tilt sensor 3 with respect to the vehicle body.
 例えば、車体側傾斜センサ3のX1軸とX軸、Y1軸とY軸がずれている場合には、そのずれ度合いを鑑みて、検出結果を補正して用いれば良い。また、自車両が水平な姿勢となっている場合の検出結果として0ではない所定の値(基本出力値とする)を出力するように設置されている場合にも、予め基本出力値を計測しておき、その基本出力値を基準として、水平面に対する自車両の姿勢を特定すればよい。 For example, when the X1 axis and the X axis of the vehicle body side tilt sensor 3 and the Y1 axis and the Y axis are deviated, the detection result may be corrected and used in view of the degree of deviation. In addition, the basic output value is measured in advance even when the vehicle is installed to output a predetermined value (basic output value) that is not 0 as a detection result when the vehicle is in a horizontal posture. The posture of the host vehicle with respect to the horizontal plane may be specified using the basic output value as a reference.
 取付姿勢特定部F5は、現在のフロントカメラ5の車体に対する取付姿勢としてのピッチ角P1、ロール角R1を特定する。また、現在のリアカメラ6の車体に対する取付姿勢としてのピッチ角P2、ロール角R2を特定する。この取付姿勢特定部F5についての詳細は別途後述する。 The mounting posture specifying unit F5 specifies the pitch angle P1 and the roll angle R1 as the current mounting posture of the front camera 5 with respect to the vehicle body. Further, the pitch angle P2 and the roll angle R2 as the mounting posture of the rear camera 6 with respect to the vehicle body are specified. Details of the mounting posture specifying portion F5 will be described later.
 パラメータ調整部F6は、取付姿勢特定部F5の特定結果に基づいて、車載カメラに対応するカメラパラメータを補正する。つまり、取付姿勢特定部F5が現在のフロントカメラ5の現在の車体に対する取付姿勢を特定した場合には、その特定された現在の取付姿勢に基づいてフロントカメラ5に対応するカメラパラメータを補正する。また、取付姿勢特定部F5が現在のリアカメラ6の現在の車体に対する取付姿勢を特定した場合には、その特定された現在の取付姿勢に基づいてリアカメラ6に対応するカメラパラメータを補正する。 The parameter adjustment unit F6 corrects the camera parameter corresponding to the in-vehicle camera based on the identification result of the mounting posture identification unit F5. That is, when the mounting posture specifying unit F5 specifies the current mounting posture of the front camera 5 with respect to the current vehicle body, the camera parameter corresponding to the front camera 5 is corrected based on the specified current mounting posture. When the mounting posture specifying unit F5 specifies the current mounting posture of the rear camera 6 with respect to the current vehicle body, the camera parameter corresponding to the rear camera 6 is corrected based on the specified current mounting posture.
 画像処理部F7は、車載カメラから入力される画像データに対して種々の周知の画像処理を実施して、ディスプレイ4に表示するための画像を生成する。例えば、画像処理部F7は、フロントカメラ5が撮影した画像を、フロントカメラ5に対応するカメラパラメータを用いて俯瞰画像に変換する処理を行う。また、画像処理部F7は、各車載カメラから入力された画像や、車載カメラから入力された画像に対して種々の画像処理を施して生成した画像のデータをディスプレイ4に出力し、表示させる。 The image processing unit F7 performs various known image processing on the image data input from the in-vehicle camera, and generates an image to be displayed on the display 4. For example, the image processing unit F7 performs a process of converting an image captured by the front camera 5 into an overhead image using camera parameters corresponding to the front camera 5. The image processing unit F7 outputs to the display 4 and displays the image input from each in-vehicle camera and the image data generated by performing various image processing on the image input from the in-vehicle camera.
 (第1の実施形態におけるカメラ姿勢更新関連処理)
 次に、各車載カメラの姿勢データを更新するために制御部1が実施する一連の処理(カメラ姿勢更新関連処理とする)について、図4に示すフローチャートを用いて説明する。図4に示すカメラ姿勢更新関連処理は、フロントカメラ5及びリアカメラ6のそれぞれを対象として、独立して実施されればよい。
(Camera posture update related processing in the first embodiment)
Next, a series of processing (referred to as camera posture update related processing) performed by the control unit 1 in order to update the posture data of each in-vehicle camera will be described using the flowchart shown in FIG. The camera posture update related process shown in FIG. 4 may be performed independently for each of the front camera 5 and the rear camera 6.
 ここでは、一例として、フロントカメラ5を処理の対象とし、さらに、フロントカメラ5のピッチ角P1を特定及び更新する場合について説明する。もちろん、フロントカメラ5のロール角R1を更新する場合も同様に実施すれば良い。また、処理対象とする車載カメラをリアカメラ6とした場合も同様の処理手順で実施すればよい。 Here, as an example, a case will be described in which the front camera 5 is a processing target and the pitch angle P1 of the front camera 5 is specified and updated. Of course, the same operation may be performed when the roll angle R1 of the front camera 5 is updated. Moreover, what is necessary is just to implement in the same process sequence, when the vehicle-mounted camera made into a process target is made into the rear camera 6. FIG.
 この図4に示すフローチャートは、例えば、自車両のイグニッション電源がオンとなった場合や、前回この処理を実施してから一定時間経過した時に開始されれば良い。 The flowchart shown in FIG. 4 may be started, for example, when the ignition power of the host vehicle is turned on or when a certain time has elapsed since this processing was performed last time.
 まずステップS101では停車判定部F1が、自車両が停車しているか否かを判定する。ここで停車判定部F1が、自車両が停車していると判定している場合にはステップS101がYESとなってステップS103に移る。一方、停車判定部F1が、自車両が停車していないと判定している場合にはステップS101がNOとなってステップS102に移る。 First, in step S101, the stop determination unit F1 determines whether or not the host vehicle is stopped. If the stop determination unit F1 determines that the host vehicle is stopped, step S101 is YES and the process proceeds to step S103. On the other hand, when the stop determination part F1 determines with the own vehicle not stopping, step S101 becomes NO and moves to step S102.
 ステップS102では、メモリ12に格納されている検出結果(例えばピッチ角θp1)、及びその検出結果から算出されるデータ(例えばピッチ角変位量Δθp1)を破棄してステップS101に戻る。 In step S102, the detection result (for example, pitch angle θp1) stored in the memory 12 and the data calculated from the detection result (for example, pitch angle displacement amount Δθp1) are discarded, and the process returns to step S101.
 ステップS103では検出結果管理部F2が、第1傾斜センサ51が検出したピッチ角θp1を取得して第1検出結果記憶部M11に格納するとともに、車体側傾斜センサ3が検出したピッチ角θp0を取得して車体側検出結果記憶部M2に格納する。このステップS103の処理が完了すると、ステップS104に移る。 In step S103, the detection result management unit F2 acquires the pitch angle θp1 detected by the first tilt sensor 51 and stores it in the first detection result storage unit M11, and acquires the pitch angle θp0 detected by the vehicle body side tilt sensor 3. And stored in the vehicle body side detection result storage unit M2. When the process of step S103 is completed, the process proceeds to step S104.
 ステップS104では変位量算出部F21が、今回取得したピッチ角θp1と現在採用されているピッチ角P1との差分であるピッチ角変位量Δθp1を算出し、第1検出結果記憶部M11に格納し、ステップS105に移る。今回取得したピッチ角θp1とは、ステップS103で第1検出結果記憶部M11に新たに追加されたピッチ角θp1を意味する。 In step S104, the displacement amount calculation unit F21 calculates a pitch angle displacement amount Δθp1 that is a difference between the pitch angle θp1 acquired this time and the pitch angle P1 that is currently employed, and stores it in the first detection result storage unit M11. The process moves to step S105. The pitch angle θp1 acquired this time means the pitch angle θp1 newly added to the first detection result storage unit M11 in step S103.
 ステップS105では、検出結果管理部F2は、所定の回数分の検出結果が、第1検出結果記憶部M11及び車体側検出結果記憶部M2に蓄積されているか否かを判定する。ここでの所定回数とは、現在のフロントカメラ5の取付姿勢(ここではピッチ角P1)を特定するために十分な回数であり、例えば、50回分の検出結果などとすればよい。なお、単位時間当りの検出回数は一定であるため、所定回数分の検出結果を収集するために要する時間は、一定の時間となる。つまり、ステップS105の判定内容は、検出結果の収集を開始して一定時間経過したか否かを判定するものであってもよい。ステップS101がYESとなってからステップS105がYESと判定されるまでが前述のデータ収集期間に相当する。 In step S105, the detection result management unit F2 determines whether or not a predetermined number of detection results are accumulated in the first detection result storage unit M11 and the vehicle body side detection result storage unit M2. The predetermined number here is a sufficient number of times for specifying the current mounting orientation of the front camera 5 (here, the pitch angle P1), and may be, for example, a detection result for 50 times. Since the number of detections per unit time is constant, the time required to collect the detection results for a predetermined number of times is a constant time. That is, the determination content in step S105 may be to determine whether or not a certain time has elapsed since the collection of detection results was started. The process from step S101 to YES until step S105 is determined to be YES corresponds to the data collection period described above.
 このステップS105に移った時点において、第1検出結果記憶部M11及び車体側検出結果記憶部M2のそれぞれに、所定の回数分の検出結果が蓄積されている場合には、ステップS105がYESとなってステップS106に移る。一方、第1検出結果記憶部M11及び車体側検出結果記憶部M2のそれぞれに、所定の回数分の検出結果が未だ蓄積されていない場合には、ステップS105がNOとなってステップS101に戻る。 If the detection results for a predetermined number of times are accumulated in the first detection result storage unit M11 and the vehicle body side detection result storage unit M2 at the time of moving to step S105, step S105 is YES. Then, the process proceeds to step S106. On the other hand, if the predetermined number of detection results have not yet been accumulated in each of the first detection result storage unit M11 and the vehicle body side detection result storage unit M2, step S105 is NO and the process returns to step S101.
 なお、ステップS101からステップS105の間に収集されたデータは、現在の取付姿勢を特定するためのデータである。ところで、現在の取付姿勢を特定するためのデータに、複数の地点で取得したデータが混在していると、異なる勾配の影響を受けたデータを用いてピッチ角P1を更新することになり、第3の実施形態で述べるようにデータ収集時間を非常に長い時間とした場合を除いて、精度が劣化する恐れがある。 Note that the data collected between step S101 and step S105 is data for specifying the current mounting posture. By the way, when data acquired at a plurality of points is mixed with data for specifying the current mounting posture, the pitch angle P1 is updated using data affected by different gradients. As described in the third embodiment, the accuracy may be deteriorated unless the data collection time is very long.
 本実施形態では、自車両が停車している状態から自車両が走行し始めると(ステップS101 NO)となると、ステップS102において、停車中に収集した検出結果などを破棄する。つまり、本実施形態の構成においてピッチ角P1の特定し、取付姿勢データを更新する場合とは、1つの地点で停車している間に所定回数分の検出結果が蓄積された場合である。したがって、本実施形態の構成によれば、現在の取付姿勢を特定するために用いる検出結果は、何れも共通の道路勾配の影響を受けた値、言い換えれば水平面に対する自車両が一定となっているときの検出結果となっているため、より精度良く取付姿勢を特定できる。 In the present embodiment, when the host vehicle starts to travel from the state where the host vehicle is stopped (NO in step S101), in step S102, the detection results collected while the vehicle is stopped are discarded. That is, the case where the pitch angle P1 is specified and the mounting posture data is updated in the configuration of the present embodiment is a case where a predetermined number of detection results are accumulated while the vehicle stops at one point. Therefore, according to the configuration of the present embodiment, the detection results used for specifying the current mounting posture are all values affected by the common road gradient, in other words, the own vehicle with respect to the horizontal plane is constant. Since it is the detection result at the time, the mounting posture can be specified with higher accuracy.
 ステップS106では更新要否判定部F3が、処理の対象としている取付姿勢データ(ここではピッチ角P1)を更新する必要が有るか否かを判定する。更新要否判定部F3がピッチ角P1を更新する必要があると判定する場合とは、データ収集期間中に蓄積されたピッチ角変位量Δθp1の最頻値が、所定の閾値(例えば3度)以上となっている場合とすればよい。複数のピッチ角変位量Δθp1を母集団として定まる最頻値を用いることによって、一時的な外乱によって、ピッチ角P1を更新する必要があると判定してしまうことを抑制することができる。 In step S106, the update necessity determination unit F3 determines whether or not it is necessary to update the attachment posture data (the pitch angle P1 here) to be processed. When the update necessity determination unit F3 determines that the pitch angle P1 needs to be updated, the mode value of the pitch angle displacement amount Δθp1 accumulated during the data collection period is a predetermined threshold (for example, 3 degrees). What is necessary is just to be the above. By using the most frequent value determined by the plurality of pitch angle displacement amounts Δθp1 as a population, it is possible to suppress the determination that the pitch angle P1 needs to be updated due to a temporary disturbance.
 ステップS106において更新要否判定部F3が、ピッチ角P1を更新する必要が有ると判定した場合にはステップS106がYESとなってステップS107に移る。一方、更新要否判定部F3が、ピッチ角P1を更新する必要はないと判定した場合にはステップS106がNOとなってステップS102に移る。 In step S106, if the update necessity determination unit F3 determines that the pitch angle P1 needs to be updated, step S106 is YES and the process proceeds to step S107. On the other hand, when the update necessity determination unit F3 determines that the pitch angle P1 does not need to be updated, step S106 is NO and the process proceeds to step S102.
 なお、本実施形態では、更新要否判定部F3がピッチ角P1を更新する必要がないと判定した場合でも、ステップS102を介してステップS101に戻り、本処理を継続する態様とするが、これに限らない。他の態様として、更新要否判定部F3がピッチ角P1を更新する必要がないと判定した場合には、本フローを終了してもよい。その場合、次回イグニッション電源が投入された時や、本フローを終了してから一定時間経過した場合など、所定のタイミングで再び本処理を開始すれば良い。 In the present embodiment, even if the update necessity determination unit F3 determines that the pitch angle P1 does not need to be updated, the process returns to step S101 via step S102 and continues this process. Not limited to. As another aspect, when the update necessity determination unit F3 determines that it is not necessary to update the pitch angle P1, this flow may be terminated. In that case, this process may be started again at a predetermined timing, for example, when the ignition power is turned on next time or when a predetermined time has elapsed since the end of this flow.
 ステップS107では取付姿勢特定部F5が、第1傾斜センサ51の検出結果に対して水平面に対する自車両の姿勢が影響している量(車両姿勢影響量とする)を、ピッチ角θp1の最頻値から減算した値を算出し、ステップS108に移る。なお、車両姿勢影響量とは、第1傾斜センサ51の検出結果に対して道路の勾配が影響している量に相当する。 In step S <b> 107, the mounting posture specifying unit F <b> 5 sets the amount of influence of the posture of the host vehicle with respect to the detection result of the first inclination sensor 51 (the vehicle posture influence amount) as the mode value of the pitch angle θp <b> 1. The value subtracted from is calculated, and the process proceeds to step S108. The vehicle attitude influence amount corresponds to the amount that the road gradient affects the detection result of the first inclination sensor 51.
 水平面に対する自車両の姿勢は、前述の通り、ここでは車体側傾斜センサ3が検出するピッチ角θp0の最頻値、及びロール角θr0の最頻値によって表されている。車両姿勢影響量は、これらピッチ角θp0の最頻値、及びロール角θr0の最頻値と、車体側傾斜センサ3の検出方向と第1傾斜センサ51の検出方向の対応関係に基づいて定まる。ここでは第1傾斜センサ51がピッチ角θp1を検出する方向と、車体側傾斜センサ3がピッチ角θp0を検出する方向が、同一方向であるため、取付姿勢特定部F5は、第1傾斜センサ51が検出するピッチ角θp1に対する車両姿勢影響量として、ピッチ角θp0の最頻値をそのまま採用する。つまり、車両姿勢影響量は、ステップS101~S105を繰り返す間に収集されたピッチ角θp0の最頻値である。 As described above, the posture of the host vehicle with respect to the horizontal plane is represented by the mode value of the pitch angle θp0 and the mode value of the roll angle θr0 detected by the vehicle body side tilt sensor 3. The vehicle attitude influence amount is determined based on the correspondence between the mode value of the pitch angle θp0 and the mode value of the roll angle θr0, and the detection direction of the vehicle body side tilt sensor 3 and the detection direction of the first tilt sensor 51. Here, since the direction in which the first inclination sensor 51 detects the pitch angle θp1 and the direction in which the vehicle body side inclination sensor 3 detects the pitch angle θp0 are the same direction, the mounting posture specifying unit F5 includes the first inclination sensor 51. The mode value of the pitch angle θp0 is used as it is as the vehicle posture influence amount with respect to the pitch angle θp1 detected by. That is, the vehicle attitude influence amount is the mode value of the pitch angle θp0 collected while repeating steps S101 to S105.
 なお、仮に第2傾斜センサ61のピッチ角P2を処理対象とする場合には、第2傾斜センサ61が検出するピッチ角θp2に対する車両姿勢影響量は、ピッチ角θp0の最頻値に-1を乗算した値とすればよい。これは、第2傾斜センサ61がピッチ角θp2を検出する方向と、車体側傾斜センサ3がピッチ角θp0を検出する方向が、逆方向であるためである。 If the pitch angle P2 of the second tilt sensor 61 is to be processed, the vehicle attitude influence amount for the pitch angle θp2 detected by the second tilt sensor 61 is set to −1 as the mode value of the pitch angle θp0. A value obtained by multiplication may be used. This is because the direction in which the second tilt sensor 61 detects the pitch angle θp2 and the direction in which the vehicle body side tilt sensor 3 detects the pitch angle θp0 are opposite directions.
 ステップS102において算出される減算値は、第1傾斜センサ51が検出するピッチ角θp1から、自車両の傾きの影響量(すなわち車両姿勢影響量)を差し引いた値を表している。つまり、算出された減算値は、現時点における車体に対するフロントカメラ5の実際のピッチ角P1を表している。便宜上、算出された減算値を、ピッチ角P1aとする。 The subtraction value calculated in step S102 represents a value obtained by subtracting the influence amount (that is, the vehicle posture influence amount) of the inclination of the host vehicle from the pitch angle θp1 detected by the first inclination sensor 51. That is, the calculated subtraction value represents the actual pitch angle P1 of the front camera 5 with respect to the vehicle body at the current time. For convenience, the calculated subtraction value is set as the pitch angle P1a.
 ステップS108では取付姿勢特定部F5が、ステップS107で算出されたピッチ角P1aが、現在の取付姿勢として採用されているピッチ角P1と一致するか否かを判定する。ここでの一致とは完全な一致に限らず、その差が所定の許容範囲内(例えば±0.5度以内)となっている場合に、一致していると見なしてもよい。なお、ステップS106においてピッチ角変位量Δθp1の最頻値が所定の閾値以上であると判定されたにも関わらず、このステップS108においてピッチ角P1aがピッチ角P1と一致すると判定される場合とは、車両の傾きの影響によってステップS106がYESと判定された場合である。 In step S108, the mounting posture specifying unit F5 determines whether or not the pitch angle P1a calculated in step S107 matches the pitch angle P1 adopted as the current mounting posture. The coincidence here is not limited to perfect coincidence, but may be regarded as coincidence when the difference is within a predetermined allowable range (for example, within ± 0.5 degrees). The case where it is determined in step S108 that the pitch angle P1a coincides with the pitch angle P1 even though it is determined in step S106 that the mode value of the pitch angle displacement amount Δθp1 is equal to or greater than a predetermined threshold value. This is a case where step S106 is determined as YES due to the influence of the inclination of the vehicle.
 ステップS108で算出されたピッチ角P1aが、現在採用されているピッチ角P1と一致している場合にはステップS108がYESとなって本フローを終了する。一方、ステップS108で算出されたピッチ角P1aが、現在のピッチ角P1と一致していない場合にはステップS108がNOとなってステップS109に移る。 If the pitch angle P1a calculated in step S108 matches the pitch angle P1 currently employed, step S108 is YES and this flow is finished. On the other hand, if the pitch angle P1a calculated in step S108 does not coincide with the current pitch angle P1, step S108 is NO and the process proceeds to step S109.
 ステップS109では、ピッチ角P1aを現在のピッチ角P1として採用し、ストレージ13に現在のフロントカメラ5のピッチ角P1として登録する。また、パラメータ調整部F6が、ストレージ13に格納されているカメラパラメータを、新たに採用されたピッチ角P1に対応する値に更新する。 In step S109, the pitch angle P1a is adopted as the current pitch angle P1, and is registered in the storage 13 as the current pitch angle P1 of the front camera 5. Further, the parameter adjustment unit F6 updates the camera parameter stored in the storage 13 to a value corresponding to the newly adopted pitch angle P1.
 なお、以上では、本処理についての説明の冒頭でも述べたように、フロントカメラ5のピッチ角P1を更新する場合について例示した。フロントカメラ5のロール角R1を更新する処理も、上述したフロントカメラ5のピッチ角P1と並列して、実施されればよい。 In the above, as described at the beginning of the description of this processing, the case where the pitch angle P1 of the front camera 5 is updated has been exemplified. The process of updating the roll angle R1 of the front camera 5 may be performed in parallel with the pitch angle P1 of the front camera 5 described above.
 また、リアカメラ6を処理対象とする処理も、フロントカメラ5に対する処理と並列して実施されればよい。 Further, the processing for processing the rear camera 6 may be performed in parallel with the processing for the front camera 5.
 (第1の実施形態のまとめ)
 以上の構成によれば、ステップS107において、車体側傾斜センサ3の検出結果と、処理の対象とする車載カメラに取り付けられたカメラ側傾斜センサの検出方向と、車体側傾斜センサ3の検出方向との対応関係から、カメラ側傾斜センサの検出結果に対する車両姿勢影響量を特定する。そして、カメラ側傾斜センサの検出結果から車両姿勢影響量を減算することで、車体に対する車載カメラの取付姿勢を特定する。
(Summary of the first embodiment)
According to the above configuration, in step S107, the detection result of the vehicle body side inclination sensor 3, the detection direction of the camera side inclination sensor attached to the vehicle-mounted camera to be processed, and the detection direction of the vehicle body side inclination sensor 3 From the corresponding relationship, the vehicle attitude influence amount with respect to the detection result of the camera side tilt sensor is specified. And the attachment attitude | position of the vehicle-mounted camera with respect to a vehicle body is specified by subtracting the vehicle attitude | position influence amount from the detection result of a camera side inclination sensor.
 したがって、以上の構成によれば、車両の傾きに起因して車載カメラの取付姿勢を誤った姿勢に特定してしまうことを抑制することができる。 Therefore, according to the above configuration, it is possible to prevent the mounting posture of the in-vehicle camera from being specified as an incorrect posture due to the inclination of the vehicle.
 また、以上の構成では、ステップS106において、更新要否判定部F3が、取付姿勢を表す種々の要素のうち、処理の対象とした要素(例えばピッチ角P1)を更新する必要がないと判定したときには、当該要素の値を更新しない。言い換えれば、処理の対象とした要素を更新する必要があると判定した場合のみ、その要素の現在の値を特定し、更新を実施することができる。 In the above configuration, in step S106, the update necessity determination unit F3 determines that it is not necessary to update the element to be processed (for example, the pitch angle P1) among the various elements representing the mounting posture. Sometimes the value of the element is not updated. In other words, only when it is determined that the element to be processed needs to be updated, the current value of the element can be identified and updated.
 また、以上の構成によれば、車体に設けられた車体側傾斜センサ3の検出結果から、車体の傾き度合いを特定することができる。このため、後述する第2の実施形態では、傾斜センサを内蔵した車載カメラが3つ以上必要となるのに対し、本実施形態の構成によれば、運転支援システム100が備える傾斜センサを内蔵した車載カメラは1つであってもよい。 Further, according to the above configuration, the degree of inclination of the vehicle body can be specified from the detection result of the vehicle body side inclination sensor 3 provided on the vehicle body. For this reason, in the second embodiment to be described later, three or more in-vehicle cameras with a built-in tilt sensor are required, whereas according to the configuration of the present embodiment, the tilt sensor included in the driving support system 100 is built-in. There may be one in-vehicle camera.
 また、通常、傾斜センサが検出するピッチ角やロール角は、車両の加減速や旋回走行などの影響を受けてしまう。しかし、本実施形態では、車両が停車中に傾斜センサが検出した検出結果に基づいて、車載カメラの取付姿勢を特定する。したがって、そのような車両挙動に起因する一時的なノイズの影響を抑制でき、より精度よく車載カメラの取付姿勢を特定できる。 Also, the pitch angle and roll angle detected by the tilt sensor are usually affected by vehicle acceleration / deceleration and turning. However, in this embodiment, the mounting posture of the in-vehicle camera is specified based on the detection result detected by the tilt sensor while the vehicle is stopped. Therefore, the influence of the temporary noise resulting from such a vehicle behavior can be suppressed, and the mounting posture of the in-vehicle camera can be specified with higher accuracy.
 なお、本実施形態では運転支援システム100は車載カメラとして、フロントカメラ5とリアカメラ6を備える態様を例示したがこれに限らない。運転支援システム100は少なくとも1つの車載カメラを備えていれば良く、その数や撮影範囲は問わない。 In the present embodiment, the driving support system 100 is illustrated as an in-vehicle camera including the front camera 5 and the rear camera 6, but is not limited thereto. The driving support system 100 only needs to include at least one in-vehicle camera, and the number and photographing range are not limited.
 <第2の実施形態>
 次に、図5~図9を用いて、本開示の第2の実施形態について説明する。なお、以降において、前述の第1の実施形態の説明に用いた図に示した部材と、同一の機能を有する部材については、同一の符号を付し、その説明を省略する。また、構成の一部のみに言及している場合、他の部分については先に説明した第1の実施形態を適用することができる。
<Second Embodiment>
Next, a second embodiment of the present disclosure will be described with reference to FIGS. In the following, members having the same functions as those shown in the drawings used in the description of the first embodiment are denoted by the same reference numerals, and description thereof is omitted. Further, when only a part of the configuration is mentioned, the first embodiment described above can be applied to the other parts.
 図5は、本実施形態に係る運転支援システム100Aの概略的な構成の一例を示す図である。この運転支援システム100Aは、制御部1A、車速センサ2、ディスプレイ4、フロントカメラ5、リアカメラ6、右サイドカメラ7、及び左サイドカメラ8を備える。 FIG. 5 is a diagram illustrating an example of a schematic configuration of the driving support system 100A according to the present embodiment. The driving support system 100A includes a control unit 1A, a vehicle speed sensor 2, a display 4, a front camera 5, a rear camera 6, a right side camera 7, and a left side camera 8.
 制御部1Aは、前述の制御部1に相当するものであり、車速センサ2、ディスプレイ4、フロントカメラ5、リアカメラ6、右サイドカメラ7、及び左サイドカメラ8のそれぞれとは周知の車両内ネットワークによって相互通信可能に接続されている。 The control unit 1A corresponds to the control unit 1 described above, and each of the vehicle speed sensor 2, the display 4, the front camera 5, the rear camera 6, the right side camera 7, and the left side camera 8 is a well-known vehicle interior. They are connected to each other via a network.
 右サイドカメラ7は、自車両の右側方の所定範囲を撮影するように設けられたカメラである。右サイドカメラ7は、例えば、広角レンズによって撮影範囲が広角(例えば画角175°)に設定された周知のCMOSカメラやCCDカメラ等を用いることができる。右サイドカメラ7は、例えば右サイドミラー付近や、車体の右側面において適宜設計される位置に設置されればよい。本実施形態では説明簡略化のため、右サイドカメラ7は車体の右側面の上端部の、車両前後方向の中央部付近に設置されているものとする。 The right side camera 7 is a camera provided so as to photograph a predetermined range on the right side of the host vehicle. As the right side camera 7, for example, a well-known CMOS camera or CCD camera whose shooting range is set to a wide angle (for example, an angle of view of 175 °) by a wide angle lens can be used. The right side camera 7 may be installed at a position that is appropriately designed, for example, near the right side mirror or on the right side of the vehicle body. In the present embodiment, for simplification of description, the right side camera 7 is assumed to be installed in the vicinity of the center in the vehicle front-rear direction at the upper end of the right side surface of the vehicle body.
 また、右サイドカメラ7には、予め上下方向(縦方向)と左右方向(横方向)が規定されている。右サイドカメラ7は、上述した所定の設置箇所において、撮影方向の中心軸である光軸のXY平面への正射影ベクトルがY軸の負方向と同一方向となり、左右方向がX軸と平行となるように取り付けられる。右サイドカメラ7が撮影した映像信号は、制御部1に逐次出力される。 Further, the right side camera 7 has a vertical direction (vertical direction) and a horizontal direction (horizontal direction) defined in advance. In the right side camera 7, the orthogonal projection vector onto the XY plane of the optical axis, which is the central axis of the photographing direction, is the same direction as the negative direction of the Y axis, and the left-right direction is parallel to the X axis at the predetermined installation location described above. It is attached to become. Video signals captured by the right side camera 7 are sequentially output to the control unit 1.
 また、右サイドカメラ7は、右サイドカメラ7の傾き(即ち、水平面に対する傾き)を検出する傾斜センサ(以降、第3傾斜センサ)71を備える。第3傾斜センサ71は、水平面に対する右サイドカメラ7の傾きを、図6に示すように、2つの軸(X3軸、Y3軸とする)毎の回転角度に分解して検出する2軸傾斜センサである。 Also, the right side camera 7 includes an inclination sensor (hereinafter, third inclination sensor) 71 that detects the inclination of the right side camera 7 (that is, the inclination with respect to the horizontal plane). The third tilt sensor 71 is a biaxial tilt sensor that detects the tilt of the right side camera 7 with respect to the horizontal plane by decomposing it into rotation angles for each of two axes (X3 axis and Y3 axis) as shown in FIG. It is.
 この第3傾斜センサ71は、車両前後方向における右サイドカメラ7の傾斜角(水平面に対する傾斜角(ロール角θr3とする))と、車幅方向における右サイドカメラ7の傾斜角(水平面に対する傾斜角(ピッチ角θp3とする))を検出するように右サイドカメラ7に内蔵されている。 The third inclination sensor 71 includes an inclination angle of the right side camera 7 in the vehicle longitudinal direction (inclination angle with respect to the horizontal plane (referred to as roll angle θr3)) and an inclination angle of the right side camera 7 in the vehicle width direction (inclination angle with respect to the horizontal plane). (Pitch angle θp3) is incorporated in the right side camera 7 so as to detect.
 より具体的には、第3傾斜センサ71は、X3軸のXY平面への正射影ベクトルが、Y軸の負と方向と同一方向となり、かつ、Y3軸のXY平面の正射影ベクトルがX軸の正方向と同一方向となるように右サイドカメラ7に内蔵されている。なお、第3傾斜センサ71のX3軸は、右サイドカメラ7の光軸と一致し、Y3軸は、右サイドカメラ7の横方向と一致するように右サイドカメラ7の筐体内に固定されている。 More specifically, in the third inclination sensor 71, the orthogonal projection vector of the X3 axis to the XY plane is the same direction as the negative direction of the Y axis, and the orthogonal projection vector of the Y3 axis of the XY plane is the X axis. It is built in the right side camera 7 so as to be in the same direction as the positive direction. The X3 axis of the third tilt sensor 71 coincides with the optical axis of the right side camera 7, and the Y3 axis is fixed in the casing of the right side camera 7 so as to coincide with the lateral direction of the right side camera 7. Yes.
 第3傾斜センサ71の検出結果(ピッチ角θp3及びロール角θr3)は、制御部1Aに逐次出力される。なお、ピッチ角θp3は、中立の状態からY3軸を回転軸とする右ねじの方向の回転角を正の値で表し、逆方向の回転角を負の値で表すこととする。また、ピッチ角θp3は、中立の状態からY3軸の右ねじの方向の回転角を正の値で表し、逆方向の回転角を負の値で表すこととする。 The detection results (pitch angle θp3 and roll angle θr3) of the third tilt sensor 71 are sequentially output to the control unit 1A. In the pitch angle θp3, the rotation angle in the direction of the right-handed screw with the Y3 axis as the rotation axis from the neutral state is represented by a positive value, and the rotation angle in the reverse direction is represented by a negative value. In addition, the pitch angle θp3 represents a rotation angle in the direction of the right screw of the Y3 axis from a neutral state as a positive value, and a rotation angle in the reverse direction as a negative value.
 第3傾斜センサ71が請求項に記載のカメラ姿勢検出器に相当し、ピッチ角θp3及びロール角θr3が請求項に記載のカメラ姿勢指標値の一例に相当する。また、X3軸の延長方向、及びY3軸の延長方向が請求項に記載のカメラ側検出方向に相当する。 The third tilt sensor 71 corresponds to the camera posture detector described in the claims, and the pitch angle θp3 and the roll angle θr3 correspond to an example of the camera posture index value described in the claims. Further, the extending direction of the X3 axis and the extending direction of the Y3 axis correspond to the camera side detection direction described in the claims.
 本実施形態では第3傾斜センサ71は右サイドカメラ7の筐体内に設置されている構成とするが、他の態様として、筐体の外側において右サイドカメラ7と一体的に取り付けられている構成としてもよい。 In the present embodiment, the third tilt sensor 71 is configured to be installed in the casing of the right side camera 7. However, as another aspect, the third tilt sensor 71 is integrally attached to the right side camera 7 outside the casing. It is good.
 左サイドカメラ8は、自車両の左側方の所定範囲を撮影するように設けられたカメラである。左サイドカメラ8は、例えば、広角レンズによって撮影範囲が広角(例えば画角185°)に設定された周知のCMOSカメラやCCDカメラ等を用いることができる。左サイドカメラ8は、例えば左サイドミラー付近や、車体の左側面において適宜設計される位置に設置されればよい。本実施形態では説明簡略化のため、左サイドカメラ8は車体の左側面の上端部の、車両前後方向の中央部付近に設置されているものとする。 The left side camera 8 is a camera provided to photograph a predetermined range on the left side of the host vehicle. As the left side camera 8, for example, a well-known CMOS camera or CCD camera whose shooting range is set to a wide angle (for example, an angle of view of 185 °) by a wide angle lens can be used. The left side camera 8 may be installed at a position that is appropriately designed, for example, near the left side mirror or on the left side surface of the vehicle body. In the present embodiment, for the sake of simplification, it is assumed that the left side camera 8 is installed in the vicinity of the center in the vehicle front-rear direction at the upper end of the left side surface of the vehicle body.
 また、左サイドカメラ8には、予め上下方向(縦方向)と左右方向(横方向)が規定されている。左サイドカメラ8は、上述した所定の設置箇所において、撮影方向の中心軸である光軸のXY平面への正射影ベクトルがY軸の正方向と同一方向となり、左右方向がX軸と平行となるように取り付けられる。左サイドカメラ8が撮影した映像信号は、制御部1に逐次出力される。 Further, the left side camera 8 is preliminarily defined in the vertical direction (vertical direction) and the horizontal direction (horizontal direction). In the above-described predetermined installation location, the left side camera 8 has an orthogonal projection vector onto the XY plane of the optical axis, which is the central axis in the shooting direction, in the same direction as the positive direction of the Y axis, and the horizontal direction is parallel to the X axis. It is attached to become. Video signals taken by the left side camera 8 are sequentially output to the control unit 1.
 また、左サイドカメラ8は、左サイドカメラ8の傾き(水平面に対する傾き)を検出する傾斜センサ(以降、第4傾斜センサ)81を備える。第4傾斜センサ81は、水平面に対する左サイドカメラ8の傾きを、2つの軸(X4軸、Y4軸とする)毎の回転角度に分解して検出する2軸傾斜センサである。 Also, the left side camera 8 includes an inclination sensor (hereinafter referred to as a fourth inclination sensor) 81 that detects the inclination of the left side camera 8 (inclination with respect to the horizontal plane). The fourth tilt sensor 81 is a two-axis tilt sensor that detects the tilt of the left side camera 8 with respect to the horizontal plane by decomposing the tilt into rotation angles for two axes (X4 axis and Y4 axis).
 この第4傾斜センサ81は、車両前後方向における左サイドカメラ8の、水平面に対する傾斜角(ロール角θr4とする)と、車幅方向における左サイドカメラ8の、水平面に対する傾斜角(ピッチ角θp4とする)を検出するように左サイドカメラ8に内蔵されている。 The fourth inclination sensor 81 includes an inclination angle (referred to as roll angle θr4) of the left side camera 8 in the vehicle longitudinal direction with respect to the horizontal plane and an inclination angle (pitch angle θp4) of the left side camera 8 in the vehicle width direction with respect to the horizontal plane. It is built in the left side camera 8 so as to detect.
 より具体的には、第4傾斜センサ81は、X4軸のXY平面への正射影ベクトルが、Y軸の正と方向と同一方向となり、かつ、Y4軸のXY平面の正射影ベクトルがX軸の負の方向と同一方向となるように左サイドカメラ8に内蔵されている。なお、第4傾斜センサ81のX4軸は、左サイドカメラ8の光軸と一致し、Y4軸は、左サイドカメラ8の横方向と一致するように左サイドカメラ8の筐体内に固定されている。 More specifically, in the fourth tilt sensor 81, the orthogonal projection vector of the X4 axis to the XY plane is the same as the positive direction of the Y axis, and the orthogonal projection vector of the Y4 axis of the XY plane is the X axis. Built in the left side camera 8 so as to be in the same direction as the negative direction. Note that the X4 axis of the fourth tilt sensor 81 is fixed in the housing of the left side camera 8 so as to coincide with the optical axis of the left side camera 8, and the Y4 axis coincides with the lateral direction of the left side camera 8. Yes.
 第4傾斜センサ81の検出結果(ピッチ角θp4及びロール角θr4)は、制御部1Aに逐次出力される。なお、ピッチ角θp4は、中立の状態からY4軸を回転軸とする右ねじの方向の回転角を正の値で表し、逆方向の回転角を負の値で表すこととする。また、ピッチ角θp4は、中立の状態からY4軸の右ねじの方向の回転角を正の値で表し、逆方向の回転角を負の値で表すこととする。 The detection results (pitch angle θp4 and roll angle θr4) of the fourth tilt sensor 81 are sequentially output to the control unit 1A. In the pitch angle θp4, the rotation angle in the direction of the right screw with the Y4 axis as the rotation axis from the neutral state is expressed as a positive value, and the rotation angle in the reverse direction is expressed as a negative value. In addition, the pitch angle θp4 represents a rotation angle in the direction of the right screw of the Y4 axis from a neutral state as a positive value, and a rotation angle in the reverse direction as a negative value.
 第4傾斜センサ81が請求項に記載のカメラ姿勢検出器に相当し、ピッチ角θp4及びロール角θr4が請求項に記載のカメラ姿勢指標値の一例に相当する。また、X4軸の延長方向、及びY4軸の延長方向が請求項に記載のカメラ側検出方向に相当する。 The fourth tilt sensor 81 corresponds to the camera posture detector described in the claims, and the pitch angle θp4 and the roll angle θr4 correspond to an example of the camera posture index value described in the claims. Further, the extending direction of the X4 axis and the extending direction of the Y4 axis correspond to the camera side detection direction described in the claims.
 本実施形態では第4傾斜センサ81は左サイドカメラ8の筐体内に設置されている構成とするが、他の態様として、筐体の外側において左サイドカメラ8と一体的に取り付けられている構成としてもよい。 In the present embodiment, the fourth tilt sensor 81 is configured to be installed in the housing of the left side camera 8, but as another aspect, the configuration is integrally attached to the left side camera 8 outside the housing. It is good.
 以降において、フロントカメラ5、リアカメラ6、右サイドカメラ7、左サイドカメラ8を区別しない場合には車載カメラと記載する。また、第1傾斜センサ51、第2傾斜センサ61、第3傾斜センサ71、第4傾斜センサ81を区別しない場合には傾斜センサと記載する。 Hereinafter, when the front camera 5, the rear camera 6, the right side camera 7, and the left side camera 8 are not distinguished from each other, they are described as an in-vehicle camera. Further, when the first inclination sensor 51, the second inclination sensor 61, the third inclination sensor 71, and the fourth inclination sensor 81 are not distinguished, they are described as inclination sensors.
 ストレージ13には、フロントカメラ5及びリアカメラ6のカメラ情報に加えて、右サイドカメラ7、左サイドカメラ8のカメラ情報を記憶している。つまり、ストレージ13には、右サイドカメラ7の設置位置データ、取付姿勢データ(ピッチ角P3、ロール角R3、ヨー角Y3)、及びカメラパラメータと、左サイドカメラ8の設置位置データ、取付姿勢データ(ピッチ角P4、ロール角R4、ヨー角Y4)、及びカメラパラメータを記憶している。 The storage 13 stores the camera information of the right side camera 7 and the left side camera 8 in addition to the camera information of the front camera 5 and the rear camera 6. In other words, the storage 13 includes the installation position data, mounting orientation data (pitch angle P3, roll angle R3, yaw angle Y3) of the right side camera 7, camera parameters, installation position data, mounting orientation data of the left side camera 8. (Pitch angle P4, roll angle R4, yaw angle Y4) and camera parameters are stored.
 右サイドカメラ7のピッチ角P3は、簡略的に、XY平面と右サイドカメラ7の光軸とが為す角度とし、ロール角R3は、XY平面と右サイドカメラ7の横方向とが為す角度とし、ヨー角Y3は、光軸のXY平面への正射影とY軸とが為す角度(180度)とする。左サイドカメラ8のピッチ角P4は、簡略的に、XY平面と左サイドカメラ8の光軸とが為す角度であり、ロール角R4は、XY平面と左サイドカメラ8の横方向とが為す角度とし、ヨー角Y4は、光軸のXY平面への正射影とY軸とが為す角度(0度)とする。第1の実施形態と同様、本実施形態においても、各車載カメラのヨー角の初期の取付姿勢からのずれは無視できるものとする。また、取付姿勢データは、初期設定時の取付姿勢の他に、現在の取付姿勢として特定されたピッチ角やロール角を含むものである。 The pitch angle P3 of the right side camera 7 is simply the angle formed by the XY plane and the optical axis of the right side camera 7, and the roll angle R3 is the angle formed by the XY plane and the lateral direction of the right side camera 7. The yaw angle Y3 is an angle (180 degrees) between the orthogonal projection of the optical axis onto the XY plane and the Y axis. The pitch angle P4 of the left side camera 8 is simply an angle formed by the XY plane and the optical axis of the left side camera 8, and the roll angle R4 is an angle formed by the XY plane and the lateral direction of the left side camera 8. The yaw angle Y4 is an angle (0 degree) formed by the orthogonal projection of the optical axis onto the XY plane and the Y axis. As in the first embodiment, also in this embodiment, the deviation of the yaw angle of each in-vehicle camera from the initial mounting posture can be ignored. The mounting posture data includes the pitch angle and roll angle specified as the current mounting posture in addition to the mounting posture at the initial setting.
 また、ストレージ13は、各車載カメラが備える傾斜センサの検出方向の対応関係を示すデータを記憶している。各傾斜センサの検出方向は、各傾斜センサが備える検出軸の方向によって表されればよい。 In addition, the storage 13 stores data indicating the correspondence relationship between the detection directions of the tilt sensors included in each in-vehicle camera. The detection direction of each inclination sensor may be represented by the direction of the detection axis included in each inclination sensor.
 例えばストレージ13は、検出方向の対応関係として、第1傾斜センサ51のX1軸と第3傾斜センサ71のY3軸が同じ方向であって、第2傾斜センサ61のX2軸、第4傾斜センサ81のY4軸とは逆方向となっていることを、対応関係として記憶する。また、第1傾斜センサ51のY1軸と第4傾斜センサ81のX4軸が同じ方向であって、第3傾斜センサ71のX3軸、第2傾斜センサ61のY2軸とは逆方向となっていることを、対応関係として記憶する。 For example, the storage 13 has a correspondence relationship between detection directions in which the X1 axis of the first tilt sensor 51 and the Y3 axis of the third tilt sensor 71 are in the same direction, the X2 axis of the second tilt sensor 61, and the fourth tilt sensor 81. The fact that the direction is opposite to the Y4 axis is stored as a correspondence relationship. Further, the Y1 axis of the first inclination sensor 51 and the X4 axis of the fourth inclination sensor 81 are in the same direction, and the X3 axis of the third inclination sensor 71 and the Y2 axis of the second inclination sensor 61 are opposite to each other. Is stored as a correspondence relationship.
 また、ストレージ13は、取付姿勢を表す種々の要素のうち、互いに対応関係を有する角度の組み合わせを記憶する。互いに対応関係を有する角度の組み合わせとしては2種類存在する。 Further, the storage 13 stores a combination of angles having a corresponding relationship among various elements representing the mounting posture. There are two types of combinations of angles that have a corresponding relationship.
 1つは、種々の取付姿勢を表す要素のうち、水平面に対する車体の傾きの影響を同様に受ける要素の組み合わせである。より具体的に、ロール角θr1、ロール角θr2、ピッチ角θp3、ピッチ角θp4は、図6に示すように、何れも車体の車幅方向の傾きの影響を受ける要素である。つまり、ロール角θr1、ロール角θr2、ピッチ角θp3、及びピッチ角θp4は、互いに対応関係を有する角度の組み合わせである。 One is a combination of elements that are similarly affected by the inclination of the vehicle body with respect to the horizontal plane among the elements representing various mounting postures. More specifically, the roll angle θr1, the roll angle θr2, the pitch angle θp3, and the pitch angle θp4 are all affected by the inclination of the vehicle body in the vehicle width direction as shown in FIG. That is, the roll angle θr1, the roll angle θr2, the pitch angle θp3, and the pitch angle θp4 are combinations of angles that have a corresponding relationship.
 また、ピッチ角θp1、ピッチ角θp2、ロール角θr3、ロール角θr4は、何れも車体の車両前後方向の傾きの影響を受ける角度である。つまり、ピッチ角θp1、ピッチ角θp2、ロール角θr3、及びロール角θr4は、互いに対応関係を有する要素の組み合わせである。以降では、或る要素に対して、対応関係がある他の要素を対応角と称する。 Further, the pitch angle θp1, the pitch angle θp2, the roll angle θr3, and the roll angle θr4 are all angles affected by the inclination of the vehicle body in the longitudinal direction of the vehicle. That is, the pitch angle θp1, the pitch angle θp2, the roll angle θr3, and the roll angle θr4 are combinations of elements that have a corresponding relationship. Hereinafter, other elements having a correspondence relationship with a certain element are referred to as corresponding angles.
 図7は、本実施形態における制御部1Aの構成を示すブロック図であり、制御部1Aは、前述の第1の実施形態で述べた種々の機能ブロックを備える。ただし、本実施形態における車両姿勢特定部F4の作動は、前述の第1の実施形態における車両姿勢特定部F4の作動と相違する。本実施形態における車両姿勢特定部F4の作動については、別途後述する。 FIG. 7 is a block diagram illustrating a configuration of the control unit 1A in the present embodiment, and the control unit 1A includes various functional blocks described in the first embodiment. However, the operation of the vehicle posture specifying unit F4 in the present embodiment is different from the operation of the vehicle posture specifying unit F4 in the first embodiment described above. The operation of the vehicle attitude specifying unit F4 in this embodiment will be described later separately.
 本実施形態の検出結果管理部F2は、第1傾斜センサ51、第2傾斜センサ61、第3傾斜センサ71、第4傾斜センサ81のそれぞれの検出結果を逐次取得し、取得した検出結果を、その検出結果の出力元毎に区別してメモリ12に格納する。傾斜センサ毎の検出結果は例えば取得順に並べてメモリ12に格納していけばよい。 The detection result management unit F2 of the present embodiment sequentially acquires the detection results of the first tilt sensor 51, the second tilt sensor 61, the third tilt sensor 71, and the fourth tilt sensor 81, and acquires the acquired detection results. The detection results are stored in the memory 12 separately for each output source. The detection results for each inclination sensor may be stored in the memory 12 in the order of acquisition, for example.
 変位量算出部F21は、第3傾斜センサ71からピッチ角θp3、ロール角θr3を取得する度に、現在の取付姿勢として採用されているピッチ角P3、ロール角R3との差分であるピッチ角変位量Δθp3、ロール角変位量Δθr3を算出し、第3検出結果記憶部M13に格納する。また、第4傾斜センサ81からピッチ角θp4、ロール角θr4を取得する度に、現在の取付姿勢として採用されているピッチ角P4、ロール角R4との差分であるピッチ角変位量Δθp4、ロール角変位量Δθr4を算出し、第4検出結果記憶部M14に格納する。 The displacement amount calculation unit F21 obtains the pitch angle θp3 and the roll angle θr3 from the third tilt sensor 71, and the pitch angle displacement that is the difference between the pitch angle P3 and the roll angle R3 that are employed as the current mounting posture. The amount Δθp3 and the roll angle displacement amount Δθr3 are calculated and stored in the third detection result storage unit M13. Further, every time the pitch angle θp4 and the roll angle θr4 are acquired from the fourth inclination sensor 81, the pitch angle displacement amount Δθp4 and the roll angle which are the differences from the pitch angle P4 and the roll angle R4 adopted as the current mounting posture. A displacement amount Δθr4 is calculated and stored in the fourth detection result storage unit M14.
 つまり、前述の変位量Δθとして、ピッチ角変位量Δθp3、ロール角変位量Δθr3、ピッチ角変位量Δθp4、ロール角変位量Δθr4も該当する。 That is, as the displacement amount Δθ, the pitch angle displacement amount Δθp3, the roll angle displacement amount Δθr3, the pitch angle displacement amount Δθp4, and the roll angle displacement amount Δθr4 are also applicable.
 メモリ12に設けられる第3検出結果記憶部M13は、メモリ12が備える記憶領域のうち、第3傾斜センサ71から逐次取得する検出結果を記憶している領域である。また、第4検出結果記憶部M14は、メモリ12が備える記憶領域のうち、第4傾斜センサ81から逐次取得する検出結果を記憶している領域である。 The third detection result storage unit M <b> 13 provided in the memory 12 is an area that stores detection results that are sequentially acquired from the third inclination sensor 71 among the storage areas included in the memory 12. The fourth detection result storage unit M <b> 14 is an area that stores detection results sequentially acquired from the fourth inclination sensor 81 among the storage areas of the memory 12.
 (第2の実施形態におけるカメラ姿勢更新関連処理)
 次に、各車載カメラの姿勢データを更新するために制御部1Aが実施する一連の処理(カメラ姿勢更新関連処理とする)について、図8に示すフローチャートを用いて説明する。この図8に示すフローチャートは、例えば、自車両のイグニッション電源がオンとなった場合や、前回この処理を実施してから一定時間経過した時に開始されれば良い。
(Camera posture update related processing in the second embodiment)
Next, a series of processing (camera posture update related processing) performed by the control unit 1A in order to update the posture data of each in-vehicle camera will be described with reference to the flowchart shown in FIG. The flowchart shown in FIG. 8 may be started, for example, when the ignition power supply of the host vehicle is turned on or when a certain time has elapsed since this processing was performed last time.
 まずステップS201では停車判定部F1が、自車両が停車しているか否かを判定する。ここで停車判定部F1が、自車両が停車していると判定している場合にはステップS201がYESとなってステップS203に移る。一方、停車判定部F1が、自車両が停車していないと判定している場合にはステップS201がNOとなってステップS202に移る。 First, in step S201, the stop determination unit F1 determines whether or not the host vehicle is stopped. If the stop determination unit F1 determines that the host vehicle is stopped, step S201 is YES and the process proceeds to step S203. On the other hand, when the stop determination part F1 determines with the own vehicle not stopping, step S201 becomes NO and moves to step S202.
 ステップS202では、メモリ12に格納されている検出結果、及びその検出結果から算出されるデータ(例えば変位量Δθ)を破棄してステップS201に戻る。 In step S202, the detection result stored in the memory 12 and the data calculated from the detection result (for example, the displacement amount Δθ) are discarded, and the process returns to step S201.
 ステップS203では検出結果管理部F2が、各傾斜センサが検出したピッチ角θp1~θp4、及び、ロール角θr1~θr4を取得し、それぞれの出力元に対応するメモリ12の記憶領域に格納してステップS204に移る。 In step S203, the detection result management unit F2 acquires the pitch angles θp1 to θp4 and roll angles θr1 to θr4 detected by each inclination sensor, and stores them in the storage area of the memory 12 corresponding to each output source. The process proceeds to S204.
 ステップS204では変位量算出部F21が、ステップS203で取得した種々の検出結果に基づいて、種々の変位量Δθを算出し、それぞれに対応する記憶領域に格納し、ステップS205に移る。つまり、ステップS204ではピッチ角変位量Δθp1、ロール角変位量Δθr1を算出して第1検出結果記憶部M11に格納し、ピッチ角変位量Δθp2、ロール角変位量Δθr2を算出して第2検出結果記憶部M12に格納する。また、ピッチ角変位量Δθp3、ロール角変位量Δθr3を算出して第3検出結果記憶部M13に格納し、ピッチ角変位量Δθp4、ロール角変位量Δθr4を算出して第4検出結果記憶部M14に格納する。 In step S204, the displacement amount calculation unit F21 calculates various displacement amounts Δθ based on the various detection results acquired in step S203, stores them in the corresponding storage areas, and proceeds to step S205. That is, in step S204, the pitch angle displacement amount Δθp1 and the roll angle displacement amount Δθr1 are calculated and stored in the first detection result storage unit M11, and the pitch angle displacement amount Δθp2 and the roll angle displacement amount Δθr2 are calculated and the second detection result. Store in the storage unit M12. Further, the pitch angle displacement amount Δθp3 and the roll angle displacement amount Δθr3 are calculated and stored in the third detection result storage unit M13, and the pitch angle displacement amount Δθp4 and the roll angle displacement amount Δθr4 are calculated and the fourth detection result storage unit M14. To store.
 ステップS205では、検出結果管理部F2は、所定の回数分の検出結果がメモリ12に蓄積されているか否かを判定する。このステップS205に移った時点において、メモリ12に所定の回数分の検出結果が蓄積されている場合には、ステップS205がYESとなってステップS206に移る。一方、メモリ12に、所定の回数分の検出結果が未だ蓄積されていない場合には、ステップS205がNOとなってステップS201に戻る。 In step S205, the detection result management unit F2 determines whether or not a predetermined number of detection results are accumulated in the memory 12. If the detection results for a predetermined number of times are accumulated in the memory 12 at the time of moving to step S205, step S205 becomes YES and the process moves to step S206. On the other hand, if the predetermined number of detection results have not yet been accumulated in the memory 12, step S205 is NO and the process returns to step S201.
 ステップS206では更新要否判定部F3が、データ収集期間におけるピッチ角変位量Δθp1、Δθp2、Δθp3、Δθp4、ロール角変位量Δθr1、Δθr2、Δθr3、Δθr4のそれぞれの最頻値を特定し、ステップS207に移る。便宜上、各変位量の最頻値を指す場合には、順に、Δθp1(m)、Δθp2(m)、Δθp3(m)、Δθp4(m)、ロール角変位量Δθr1(m)、Δθr2(m)、Δθr3(m)、Δθr4(m)として区別して記載する。 In step S206, the update necessity determination unit F3 specifies the mode values of the pitch angle displacement amounts Δθp1, Δθp2, Δθp3, Δθp4, roll angle displacement amounts Δθr1, Δθr2, Δθr3, and Δθr4 in the data collection period, and step S207. Move on. For convenience, when referring to the mode value of each displacement amount, Δθp1 (m), Δθp2 (m), Δθp3 (m), Δθp4 (m), roll angle displacement amounts Δθr1 (m), Δθr2 (m) are sequentially arranged. , Δθr3 (m), and Δθr4 (m).
 また、Δθp1~θp4及びΔθp1~Δθp4を区別せず、或る要素の変位量を指す場合には、Δθとして記載し、さらに、Δθp1(m)~Δθp4(m)を区別せず、或る要素の変位量の最頻値を指す場合には、Δθ(m)と記載する。 In addition, when Δθp1 to θp4 and Δθp1 to Δθp4 are not distinguished and indicate a displacement amount of a certain element, they are described as Δθ, and further, Δθp1 (m) to Δθp4 (m) are not distinguished, and a certain element In this case, Δθ (m) is used.
 ステップS207では更新要否判定部F3が、複数の車載カメラの何れか1つ又は複数の取付姿勢データを更新する必要があるか否かを判定する。ここでは、まず、ステップS206で取得したピッチ角変位量Δθp1(m)~Δθp4(m)、ロール角変位量Δθr1(m)~Δθr4(m)の絶対値の全てが、所定の閾値(例えば3度)以内となっているか否かを判定する。 In step S207, the update necessity determination unit F3 determines whether it is necessary to update any one or a plurality of mounting posture data of the plurality of in-vehicle cameras. Here, first, all of the absolute values of the pitch angle displacement amounts Δθp1 (m) to Δθp4 (m) and roll angle displacement amounts Δθr1 (m) to Δθr4 (m) acquired in step S206 are set to predetermined threshold values (for example, 3 It is determined whether or not it is within (degree).
 ピッチ角変位量Δθp1(m)~Δθp4(m)、ロール角変位量Δθr1(m)~Δθr4(m)のそれぞれの絶対値が、全て所定の閾値以下となっている場合には、車載カメラの取付姿勢データを更新する必要はないと判定し、ステップS202に移る。 When the absolute values of the pitch angle displacement amounts Δθp1 (m) to Δθp4 (m) and the roll angle displacement amounts Δθr1 (m) to Δθr4 (m) are all equal to or less than a predetermined threshold, It is determined that there is no need to update the mounting posture data, and the process proceeds to step S202.
 一方、ピッチ角変位量Δθp1(m)~Δθp4(m)、ロール角変位量Δθr1(m)~Δθr4(m)のうち、何れか1つでもその絶対値が所定の閾値以上となっている場合には、複数の車載カメラの何れか1つ又は複数の取付姿勢データを更新する必要があると判定してステップS208に移る。 On the other hand, when any one of the pitch angle displacement amounts Δθp1 (m) to Δθp4 (m) and the roll angle displacement amounts Δθr1 (m) to Δθr4 (m) has an absolute value equal to or greater than a predetermined threshold value. Is determined that it is necessary to update any one or a plurality of mounting posture data of a plurality of in-vehicle cameras, and the process proceeds to step S208.
 ステップS208では、車両姿勢特定部F4が、種々の変位量Δθp1(m)~Δθp4(m)、Δθr1(m)~Δθr4(m)のうち、車両前後方向における車体の傾きの影響をうける角度に由来する変位量Δθ(m)同士を比較することで、車体に前後方向の傾きが生じているか否かを判定する。つまり、ピッチ角θp1、ピッチ角θp2、ロール角θr3、及びロール角θr4の変位量Δθ(m)を比較することで、車両前後方向における車体の傾きが生じているか否かを判定する。 In step S208, the vehicle posture specifying unit F4 is set to an angle that is affected by the inclination of the vehicle body in the vehicle longitudinal direction among the various displacement amounts Δθp1 (m) to Δθp4 (m) and Δθr1 (m) to Δθr4 (m). By comparing the derived displacement amounts Δθ (m) with each other, it is determined whether the vehicle body is tilted in the front-rear direction. That is, it is determined whether or not the vehicle body is tilted in the longitudinal direction of the vehicle by comparing the displacement amounts Δθ (m) of the pitch angle θp1, the pitch angle θp2, the roll angle θr3, and the roll angle θr4.
 より具体的には次の通りである。まず、車両の前後方向の傾きの影響を受ける要素において、現在の取付姿勢として採用されている角度と、実際の現在の角度とが一致している場合、それらの種々の要素に対応する変位量Δθは、車両の前後方向の傾きのみが反映された値となる。 More specifically, it is as follows. First, when the angle adopted as the current mounting posture matches the actual current angle in the elements that are affected by the tilt in the longitudinal direction of the vehicle, the displacement amounts corresponding to these various elements Δθ is a value reflecting only the inclination in the front-rear direction of the vehicle.
 したがって、車両の前後方向の傾きの影響を受ける要素において、現在の取付姿勢として採用されている角度と、実際の現在の角度とが一致している場合であって、車両に前後方向の傾きが生じていない場合には、各変位量Δθ(m)の絶対値は何れも所定の閾値未満となる。 Therefore, in the element that is affected by the inclination of the vehicle in the front-rear direction, the angle adopted as the current mounting posture matches the actual current angle, and the vehicle has a front-rear inclination. If not, the absolute value of each displacement amount Δθ (m) is less than a predetermined threshold value.
 一方、車両の前後方向の傾きの影響を受ける要素のうち、現在の取付姿勢として採用されている角度と、実際の現在の角度とが一致していない要素については、車両に前後方向の傾きが生じていない場合であっても、その変位量Δθ(m)の絶対値は、現在の取付姿勢として採用されている角度と実際の現在の角度とのずれが反映された値となる。すなわち、車両の前後方向の傾きの影響を受ける要素のうち、現在の取付姿勢として採用されている角度と、実際の現在の角度とが一致していない要素の変位量Δθ(m)の絶対値は所定の閾値以上となる。 On the other hand, among the elements that are affected by the vehicle's front-rear direction tilt, the vehicle has a front-rear direction tilt with respect to an element that does not match the angle currently used as the mounting orientation and the actual current angle. Even if it does not occur, the absolute value of the displacement Δθ (m) is a value that reflects the deviation between the angle used as the current mounting posture and the actual current angle. That is, the absolute value of the displacement Δθ (m) of an element whose current mounting posture does not coincide with the actual current angle among the elements affected by the vehicle front-rear inclination. Exceeds a predetermined threshold.
 また、互いに対応関係を有する4つの要素のうち、取付姿勢がずれている要素が過半数となっている可能性は相対的に低い。このため、図9に示すように、互いに対応関係を有する4つのうち、その変位量Δθ(m)の絶対値が所定の閾値未満となっている要素の数が過半数(3つ以上)となっている場合には、車両前後方向における車体の傾きは生じていないと判定する。 Also, it is relatively unlikely that the majority of the four elements that have a corresponding relationship with each other are out of mounting orientation. For this reason, as shown in FIG. 9, the number of elements in which the absolute value of the displacement amount Δθ (m) is less than a predetermined threshold among the four having a corresponding relationship becomes a majority (three or more). If it is determined that the vehicle body is not tilted in the longitudinal direction of the vehicle.
 一方、互いに対応関係を有する4つのうち、その変位量Δθ(m)の絶対値が所定の閾値以上となっている要素の数が過半数以上となっている場合には、車両前後方向における車体の傾きが生じていると判定する。 On the other hand, when the number of elements whose absolute value of the displacement amount Δθ (m) is equal to or greater than a predetermined threshold among the four corresponding to each other is greater than a majority, It is determined that an inclination has occurred.
 つまり、車両姿勢特定部F4は、多数決によって車両前後方向における車体の傾きが生じているか否かを判定する。そして、車両姿勢特定部F4が、車両前後方向における車体の傾きが生じていないと判定した場合には、ステップS208がYESとなってステップS209に移る。また、車両姿勢特定部F4が、車両前後方向における車体の傾きが生じていると判定した場合には、ステップS208がNOとなってステップS211に移る。 That is, the vehicle attitude specifying unit F4 determines whether or not the vehicle body is tilted in the vehicle longitudinal direction by majority vote. If the vehicle posture specifying unit F4 determines that the vehicle body is not tilted in the vehicle front-rear direction, step S208 is YES and the process proceeds to step S209. On the other hand, when the vehicle posture specifying unit F4 determines that the vehicle body is tilted in the vehicle front-rear direction, step S208 is NO and the process proceeds to step S211.
 ステップS209では、車両前後方向の車体の傾きの影響を受ける要素のうち、その変位量Δθ(m)の絶対値が所定の閾値以上となっている要素を、更新対象角としてステップS210に移る。例えば図9の例では、ピッチ角変位量Δθp1(m)に対応するフロントカメラ5のピッチ角θp1が更新対象角となる。また、そのとき、フロントカメラ5が取付姿勢データを更新すべき車載カメラ(つまり更新対象カメラ)に相当する。以降では一例として、フロントカメラ5のピッチ角θp1を更新対象角として、本処理の作動を説明する。なお、ステップS209において車両前後方向の車体の傾きの影響を受ける要素のうち、その変位量Δθ(m)の絶対値が所定の閾値以上となっている要素が無かった場合にはステップS211に移れば良い。 In step S209, among the elements affected by the inclination of the vehicle body in the longitudinal direction of the vehicle, the element whose absolute value of the displacement amount Δθ (m) is equal to or greater than a predetermined threshold value is transferred to step S210 as the update target angle. For example, in the example of FIG. 9, the pitch angle θp1 of the front camera 5 corresponding to the pitch angle displacement amount Δθp1 (m) is the update target angle. At this time, the front camera 5 corresponds to an in-vehicle camera (that is, a camera to be updated) that should update the mounting posture data. Hereinafter, as an example, the operation of this process will be described with the pitch angle θp1 of the front camera 5 as the update target angle. Note that if there is no element whose absolute value of the displacement Δθ (m) is equal to or greater than a predetermined threshold among the elements affected by the vehicle body inclination in the vehicle longitudinal direction in step S209, the process proceeds to step S211. It ’s fine.
 ステップS210では、更新対象角として採用されたピッチ角θp1の最頻値を現在のピッチ角P1として採用し、ストレージ13に現在のフロントカメラ5のピッチ角P1として登録する。また、ストレージ13に格納されているカメラパラメータを、新たに採用されたピッチ角P1に対応する値に更新する。このステップS210での処理が完了するとステップS211に移る。 In step S210, the mode value of the pitch angle θp1 adopted as the update target angle is adopted as the current pitch angle P1, and is registered in the storage 13 as the current pitch angle P1 of the front camera 5. In addition, the camera parameter stored in the storage 13 is updated to a value corresponding to the newly adopted pitch angle P1. When the process in step S210 is completed, the process proceeds to step S211.
 ステップS211では車両姿勢特定部F4が、車幅方向における車体の傾きの影響をうけるロール角θr1、ロール角θr2、ピッチ角θp3、及びピッチ角θp4の変位量Δθ(m)から、ステップS208と同様に、多数決によって車幅方向における車体の傾きが生じているか否かを判定する。 In step S211, the vehicle posture specifying unit F4 is similar to step S208 from the displacement amount Δθ (m) of the roll angle θr1, the roll angle θr2, the pitch angle θp3, and the pitch angle θp4 that is affected by the inclination of the vehicle body in the vehicle width direction. In addition, it is determined whether or not the vehicle body is tilted in the vehicle width direction by majority vote.
 このステップS211において、車両姿勢特定部F4が、車幅方向における車体の傾きが生じていないと判定した場合には、ステップS211がYESとなってステップS212に移る。また、車両姿勢特定部F4が、車幅方向における車体の傾きが生じていないと判定した場合には、ステップS211がNOとなって本フローを終了する。 In this step S211, if the vehicle attitude specifying unit F4 determines that the vehicle body is not tilted in the vehicle width direction, step S211 is YES and the process proceeds to step S212. On the other hand, when the vehicle posture specifying unit F4 determines that the vehicle body is not inclined in the vehicle width direction, step S211 is NO and this flow is ended.
 ステップS212では、車幅方向の車体の傾きの影響を受ける要素のうち、その変位量Δθ(m)の絶対値が所定の閾値以上となっている要素を、更新対象角としてステップS213に移る。なお、ステップS212において車幅方向の車体の傾きの影響を受ける要素のうち、その変位量Δθ(m)の絶対値が所定の閾値以上となっている要素が無かった場合には本フローを終了すればよい。 In step S212, among the elements affected by the inclination of the vehicle body in the vehicle width direction, the element whose absolute value of the displacement amount Δθ (m) is equal to or greater than a predetermined threshold value is transferred to step S213 as the update target angle. In step S212, if there is no element that is affected by the inclination of the vehicle body in the vehicle width direction and the absolute value of the displacement amount Δθ (m) is equal to or greater than the predetermined threshold value, this flow ends. do it.
 (第2の実施形態のまとめ)
 以上の構成では、車両姿勢特定部F4が、車載カメラに取り付けられた複数の傾斜センサの検出結果に基づいて、自車両の車体が水平な姿勢となっているか否かを特定する。より細かくは、車両前後方向における車体の傾きが生じているか否か、及び、車幅方向における車体の傾きが生じているか否か、を判定する。
(Summary of the second embodiment)
In the above configuration, the vehicle posture specifying unit F4 specifies whether or not the vehicle body of the host vehicle is in a horizontal posture based on the detection results of a plurality of inclination sensors attached to the in-vehicle camera. More specifically, it is determined whether or not the vehicle body is tilted in the vehicle longitudinal direction and whether or not the vehicle body is tilted in the vehicle width direction.
 そして、車両前後方向における車体の傾きが生じていないと判定した場合に、車両前後方向における車体の傾きの影響を受ける要素の値を更新する。また、車幅方向における車体の傾きが生じていないと判定した場合に、車幅方向における車体の傾きの影響を受ける要素の値を更新する。 Then, when it is determined that the vehicle body tilt in the vehicle front-rear direction has not occurred, the value of the element affected by the vehicle body tilt in the vehicle front-rear direction is updated. Further, when it is determined that the vehicle body is not tilted in the vehicle width direction, the value of the element that is affected by the vehicle body tilt in the vehicle width direction is updated.
 したがって、以上の構成によれば前述の第1の実施形態と同様に、車両の傾きに起因して車載カメラの取付姿勢を誤った姿勢に特定してしまうことを抑制することができる。 Therefore, according to the above configuration, it is possible to prevent the mounting posture of the in-vehicle camera from being specified as a wrong posture due to the inclination of the vehicle, as in the first embodiment.
 また、以上の構成では、ステップS207において、更新要否判定部F3が、取付姿勢データを更新する必要がないと判定したときには、当該要素の値を更新しない。言い換えれば、取付姿勢データを更新する必要があると判定した場合のみ、ステップS208以降の処理を実施し、取付姿勢を表す種々の要素のうち、所定の要素の値を更新できる。また、上述した実施形態では、値を更新する必要がない要素については、不要に更新を実施せず、更新が必要な要素のみ更新を実施することができる。 In the above configuration, when the update necessity determination unit F3 determines in step S207 that there is no need to update the attachment posture data, the value of the element is not updated. In other words, only when it is determined that the attachment posture data needs to be updated, the processing after step S208 can be performed to update the value of a predetermined element among various elements representing the attachment posture. In the above-described embodiment, elements that do not need to be updated can be updated only for elements that need to be updated without unnecessary updating.
 さらに、前述の第1の実施形態では車体に車体側傾斜センサ3を設置しておく必要があるが、第2の実施形態では、車体側傾斜センサ3を設置しておく必要はない。 Furthermore, in the first embodiment described above, the vehicle body side inclination sensor 3 needs to be installed in the vehicle body, but in the second embodiment, the vehicle body side inclination sensor 3 does not need to be installed.
 なお、ここでは、一例として車載カメラを4つ備えている態様を例示したが、これに限らない。複数の対応角のうち、多数決によって更新対象角が特定できればよい。つまり、車載カメラは少なくとも3つ備えていれば良い。 In addition, although the aspect provided with four vehicle-mounted cameras was illustrated here as an example, it is not restricted to this. It is only necessary that the update target angle can be specified by majority vote among the plurality of corresponding angles. That is, it is sufficient that at least three in-vehicle cameras are provided.
 また、ここでは、車両前後方向における車体の傾きの影響を受ける要素の現在の値の特定及び更新(S210)と、車幅後方向における車体の傾きの影響を受ける要素の現在の値の特定及び更新(S213)とを独立して行う態様を例示したがこれに限らない。 Here, the current value of the element affected by the vehicle body tilt in the longitudinal direction of the vehicle is specified and updated (S210), and the current value of the element affected by the vehicle body tilt in the rear direction of the vehicle width is specified and updated. Although the aspect which performs update (S213) independently was illustrated, it is not restricted to this.
 他の態様として、車両姿勢特定部F4が、車両前後方向における車体の傾きが生じていないと判定し、かつ、車幅方向における車体の傾きが生じていないと判定した場合に、各車載カメラ、又は、変位量Δθ(m)の絶対値が所定の閾値以上となっている要素を備える車載カメラの取付姿勢を特定し、取付姿勢データを更新する態様としてもよい。 As another aspect, when the vehicle posture specifying unit F4 determines that the vehicle body does not tilt in the vehicle front-rear direction and determines that the vehicle body tilt does not occur in the vehicle width direction, Or it is good also as an aspect which specifies the mounting attitude | position of a vehicle-mounted camera provided with the element whose absolute value of displacement amount (DELTA) (theta) is more than a predetermined threshold value, and updates mounting attitude data.
 車両姿勢特定部F4が、車両前後方向における車体の傾きが生じていないと判定し、かつ、車幅方向における車体の傾きが生じていないと判定した場合とは、自車両が水平な姿勢となっていることを意味する。 When the vehicle posture specifying unit F4 determines that the vehicle body is not inclined in the vehicle front-rear direction and it is determined that the vehicle body is not inclined in the vehicle width direction, the host vehicle is in a horizontal posture. Means that
 <第3の実施形態>
 次に、図10を用いて、本開示の第3の実施形態について説明する。なお、以降において、前述の第1、第2の実施形態の説明に用いた図に示した部材と、同一の機能を有する部材については、同一の符号を付し、その説明を省略する。また、構成の一部のみに言及している場合、他の部分については先に説明した第1、第2の実施形態を適用することができる。
<Third Embodiment>
Next, a third embodiment of the present disclosure will be described with reference to FIG. In the following, members having the same functions as those shown in the drawings used in the description of the first and second embodiments described above are denoted by the same reference numerals and description thereof is omitted. When only a part of the configuration is mentioned, the first and second embodiments described above can be applied to the other parts.
 図10は、本実施形態に係る運転支援システム100Bの概略的な構成の一例を示す図である。この運転支援システム100Bは、制御部1B、車速センサ2、ディスプレイ4、及びフロントカメラ5を備える。制御部1Bは、車速センサ2、ディスプレイ4、及びフロントカメラ5のそれぞれとは周知の車両内ネットワークによって相互通信可能に接続されている。 FIG. 10 is a diagram illustrating an example of a schematic configuration of the driving support system 100B according to the present embodiment. The driving support system 100B includes a control unit 1B, a vehicle speed sensor 2, a display 4, and a front camera 5. The control unit 1B is connected to the vehicle speed sensor 2, the display 4, and the front camera 5 so as to be able to communicate with each other via a known in-vehicle network.
 制御部1Bは、前述の第1の実施形態で述べた種々の機能ブロック(図4参照)を備える。ただし、第2検出結果記憶部M12、及び車体側検出結果記憶部M2を備える必要はない。検出結果管理部F2は、第1傾斜センサ51から取得したピッチ角θp1、ロール角θr1を第1検出結果記憶部M11に蓄積する。また、変位量算出部F21は、第1傾斜センサ51からピッチ角θp1、ロール角θr1を取得する度に、ピッチ角変位量Δθp1、Δθr1を算出して第1検出結果記憶部M11に蓄積する。 The control unit 1B includes various functional blocks (see FIG. 4) described in the first embodiment. However, it is not necessary to include the second detection result storage unit M12 and the vehicle body side detection result storage unit M2. The detection result management unit F2 accumulates the pitch angle θp1 and roll angle θr1 acquired from the first tilt sensor 51 in the first detection result storage unit M11. Further, every time the pitch angle θp1 and the roll angle θr1 are acquired from the first tilt sensor 51, the displacement amount calculation unit F21 calculates the pitch angle displacement amounts Δθp1 and Δθr1 and accumulates them in the first detection result storage unit M11.
 本実施形態の検出結果管理部F2は、より好ましい態様として、停車判定部F1によって自車両が停車していると判定されている間に取得した検出結果のみを、第1検出結果記憶部M11に蓄積するものとする。ただし、前述の第1、第2の実施形態と異なり、自車両が走行を開始しても、第1検出結果記憶部M11に蓄積されているデータは破棄せずに保持する。 As a more preferable aspect, the detection result management unit F2 according to the present embodiment stores, in the first detection result storage unit M11, only the detection results acquired while the vehicle determination unit F1 determines that the host vehicle is stopped. It shall be accumulated. However, unlike the first and second embodiments described above, even if the host vehicle starts traveling, the data accumulated in the first detection result storage unit M11 is retained without being discarded.
 さらに、検出結果管理部F2は、第1検出結果記憶部M11に、十分な量(所要検出回数分)の検出結果が蓄積されたか否かを判定する。ここでの所要検出回数とは、第1、第2の実施形態で想定する検出回数よりもさらに大きく、その最頻値が、水平な道路上に車両が存在している状態での検出結果となる検出回数である。 Furthermore, the detection result management unit F2 determines whether or not a sufficient amount (the required number of detection times) of detection results has been accumulated in the first detection result storage unit M11. The required number of detections here is larger than the number of detections assumed in the first and second embodiments, and the mode value is a detection result in a state where a vehicle is present on a horizontal road. Is the number of detections.
 これまでに述べてきたように、第1傾斜センサ51が検出するピッチ角θp1やロール角θr1は、道路の勾配(つまり車体の傾き)の影響を受けた値となる。したがって、第1傾斜センサ51が検出するピッチ角θp1やロール角θr1は、常に、車体に対するフロントカメラ5の取付姿勢を表しているものではなく、道路の勾配に起因する車体の傾きの影響を受けた値となっている。また、自車両はさまざまな勾配の道路を走行することが想定されるため、第1傾斜センサ51が出力する検出結果もまた様々な勾配の影響を受けた値となる。 As described above, the pitch angle θp1 and the roll angle θr1 detected by the first inclination sensor 51 are values affected by the road gradient (that is, the inclination of the vehicle body). Therefore, the pitch angle θp1 and the roll angle θr1 detected by the first inclination sensor 51 do not always represent the mounting posture of the front camera 5 with respect to the vehicle body, but are affected by the vehicle body inclination caused by the road gradient. It is the value. Further, since the host vehicle is assumed to travel on roads with various slopes, the detection result output by the first inclination sensor 51 is also a value affected by various slopes.
 しかしながら、所要検出回数分を十分に多い検出回数とした場合、最も走行頻度が多くなる道路とは、水平(略水平を含む)な道路となる。つまり、所要検出回数を十分に多くすれば、第1検出結果記憶部M11に蓄積されているピッチ角θp1とロール角θr1の最頻値は、水平な道路上に自車両が存在している状態での検出結果となることが期待できる。 However, when the required number of detections is set to a sufficiently large number of detections, the road with the highest traveling frequency is a horizontal (including substantially horizontal) road. That is, if the required number of detections is sufficiently increased, the mode values of the pitch angle θp1 and the roll angle θr1 accumulated in the first detection result storage unit M11 are in a state where the host vehicle is present on a horizontal road. It can be expected to be a detection result at.
 したがって、十分に長い時間をかけて蓄積されたピッチ角θp1の最頻値、ロール角θr1をフロントカメラ5のピッチ角P1,ロール角R1として採用することで、自車両の傾きに起因する車載カメラの取付姿勢の誤判定を抑制することができる。 Therefore, by adopting the mode value of the pitch angle θp1 and the roll angle θr1 accumulated over a sufficiently long time as the pitch angle P1 and roll angle R1 of the front camera 5, the in-vehicle camera caused by the inclination of the own vehicle. It is possible to suppress erroneous determination of the mounting posture.
 また、第3の実施形態のより好ましい態様としては、検出回数だけで十分な量のデータが蓄積された判定するのではなく、所定数の異なる地点で、検出結果を収集した場合に、十分な量の検出結果が集まったと判定してもよい。例えば、50箇所でデータを収集した場合に十分な量のデータが集まったと判定してもよい。また、一箇所において収集する検出結果の数に上限を設けてもよい。 Further, as a more preferable aspect of the third embodiment, it is not sufficient to determine that a sufficient amount of data is accumulated only by the number of detections, but when the detection results are collected at a predetermined number of different points, it is sufficient. It may be determined that the amount detection results are collected. For example, when data is collected at 50 locations, it may be determined that a sufficient amount of data has been collected. Further, an upper limit may be set for the number of detection results collected at one place.
 なお、ここでは一例として、自車両が停車している時の検出結果を蓄積する態様を例示したがこれに限らない。自車両が走行している間の検出結果も蓄積してもよい。 In addition, although the aspect which accumulate | stores the detection result when the own vehicle has stopped as an example here was illustrated, it is not restricted to this. Detection results while the host vehicle is traveling may also be accumulated.
 また、フロントカメラ5の取付姿勢を特定するために要する検出結果の数を多くすると、一回のトリップで十分な量のデータを収集することが難しいことも想定される。したがって、第1検出結果記憶部M11は、メモリ12ではなく、ストレージ13に設ける態様としてもよい。そのような態様によればイグニッション電源がオフとなった後も収集途中のデータを保持できる。なお、ここでのトリップとは、イグニッション電源をオンとしてからイグニッション電源をオフとするまでの移動を指す。 Also, if the number of detection results required for specifying the mounting posture of the front camera 5 is increased, it may be difficult to collect a sufficient amount of data in a single trip. Therefore, the first detection result storage unit M11 may be provided in the storage 13 instead of the memory 12. According to such an aspect, data being collected can be retained even after the ignition power is turned off. Here, the trip refers to movement from turning on the ignition power supply to turning off the ignition power supply.
 また、ここでは一例として、運転支援システム100Bが、車載カメラとしてフロントカメラ5だけを備える態様を例示したが、これに限らない。運転支援システム100Bは、前述のリアカメラ6や右サイドカメラ7、左サイドカメラ8を備えていても良い。それぞれの車載カメラに対して、上述したフロントカメラ5に対する処理と同様にして、取付姿勢を特定すればよい。 In addition, here, as an example, the driving support system 100B exemplifies a mode in which only the front camera 5 is provided as a vehicle-mounted camera, but the present invention is not limited thereto. The driving support system 100B may include the rear camera 6, the right side camera 7, and the left side camera 8 described above. For each in-vehicle camera, the mounting posture may be specified in the same manner as the processing for the front camera 5 described above.
 以上、本開示の実施形態として第1、第2、第3の実施形態を説明したが、本開示は上述の実施形態に限定されるものではなく、次の変形例も本開示の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。 As described above, the first, second, and third embodiments have been described as embodiments of the present disclosure. However, the present disclosure is not limited to the above-described embodiments, and the following modifications are also included in the technical scope of the present disclosure. In addition, the present invention can be implemented with various modifications other than those described below without departing from the scope of the invention.
 <変形例1>
 第1、第2の実施形態では、1つの地点で停車している間に所望の回数分の検出結果を収集できた場合に、車載カメラの取付姿勢を特定する処理を実施する態様を例示したがこれに限らない。複数の地点で停車しているときに収集した検出結果に基づいて車載カメラの取付姿勢を特定する処理を行っても良い。また、自車両が停車している時にデータを収集する態様を例示したが、他の態様として走行中に実施してもよい。
<Modification 1>
In the first and second embodiments, an example of performing the process of specifying the mounting posture of the in-vehicle camera when the detection results for a desired number of times can be collected while stopping at one point is illustrated. However, it is not limited to this. You may perform the process which pinpoints the mounting attitude | position of a vehicle-mounted camera based on the detection result collected when stopping at several points. Moreover, although the aspect which collects data when the own vehicle has stopped was illustrated, you may implement during driving | running | working as another aspect.
 <変形例2>
 第1の実施形態において車両姿勢特定部F4が車両前後方向における車体の傾きが生じていないと判定している場合、取付姿勢特定部F5は、第1検出結果記憶部M11に蓄積されているピッチ角θp1の最頻値を、現在のフロントカメラ5のピッチ角として採用し、取付姿勢データを更新してもよい。リアカメラ6のピッチ角P2についても同様である。
<Modification 2>
In the first embodiment, when the vehicle posture specifying unit F4 determines that the vehicle body is not tilted in the longitudinal direction of the vehicle, the mounting posture specifying unit F5 stores the pitch accumulated in the first detection result storage unit M11. The mode value of the angle θp1 may be adopted as the current pitch angle of the front camera 5 to update the mounting posture data. The same applies to the pitch angle P2 of the rear camera 6.
 また、車両姿勢特定部F4が車幅方向における車体の傾きが生じていないと判定している場合、取付姿勢特定部F5は、第1検出結果記憶部M11に蓄積されているロール角θr1の最頻値を、現在のフロントカメラ5のロール角として採用し、取付姿勢データを更新してもよい。リアカメラ6のロール角についても同様である。 Further, when the vehicle posture specifying unit F4 determines that the vehicle body is not tilted in the vehicle width direction, the mounting posture specifying unit F5 sets the maximum roll angle θr1 stored in the first detection result storage unit M11. The mode value may be adopted as the current roll angle of the front camera 5 to update the mounting posture data. The same applies to the roll angle of the rear camera 6.
 <変形例3>
 以上では、請求項に記載のカメラ姿勢検出器として2軸傾斜センサを採用する態様を例示したが、これに限らない。車載カメラのピッチ角、又はロール角を検出するための1軸傾斜センサであってもよい。車両姿勢検出器としての車体側傾斜センサ3も同様である。
<Modification 3>
In the above, although the aspect which employ | adopts a 2 axis inclination sensor as a camera attitude | position detector as described in a claim was illustrated, it is not restricted to this. It may be a uniaxial tilt sensor for detecting the pitch angle or roll angle of the in-vehicle camera. The same applies to the vehicle body side inclination sensor 3 as a vehicle attitude detector.
 また、姿勢指標値として、ピッチ角やロール角といった角度を出力するセンサを採用する構成を例示したがこれに限らない。カメラ姿勢検出器(及び車両姿勢検出器)は、3軸加速度センサであってもよいし、2軸加速度センサであってもよい。その場合の姿勢指標値とは軸方向毎の加速度となる。 Further, although a configuration in which a sensor that outputs an angle such as a pitch angle or a roll angle is employed as the posture index value is exemplified, the present invention is not limited thereto. The camera attitude detector (and vehicle attitude detector) may be a triaxial acceleration sensor or a biaxial acceleration sensor. In this case, the posture index value is an acceleration for each axial direction.
 <変形例4>
 各車載カメラは、傾斜センサに加えて、地磁気センサ(例えば3軸地磁気センサ)を備え、また、制御部1は、車体に設けられたジャイロセンサや地磁気センサによって、自車両の方位角を特定できる構成としてもよい。そのような態様によれば、車載カメラに備えられた地磁気センサが検出する方位角と、自車両の方位角とから、各車載カメラのヨー角を特定してもよい。
<Modification 4>
Each in-vehicle camera is provided with a geomagnetic sensor (for example, a triaxial geomagnetic sensor) in addition to the tilt sensor, and the control unit 1 can specify the azimuth angle of the host vehicle by a gyro sensor or a geomagnetic sensor provided on the vehicle body. It is good also as a structure. According to such an aspect, the yaw angle of each in-vehicle camera may be specified from the azimuth angle detected by the geomagnetic sensor provided in the in-vehicle camera and the azimuth angle of the host vehicle.
100・100A・100B 運転支援システム、1・1A・1B 制御部、3 車体側傾斜センサ(車両姿勢検出器)、5 フロントカメラ、6 リアカメラ、7 右サイドカメラ、8 左サイドカメラ(5~8 車載カメラ)、12 メモリ、13 ストレージ、51 第1傾斜センサ、61 第2傾斜センサ、71 第3傾斜センサ、81 第4傾斜センサ(51・61・71・81 カメラ姿勢検出器)、F1 停車判定部、F2 検出結果管理部、F21 変位量算出部(角度変位量算出部)、F3 更新要否判定部、F4 車両姿勢特定部、F5 取付姿勢特定部、F6 パラメータ調整部、F7 画像処理部、M11 第1検出結果記憶部、M12 第2検出結果記憶部、M13 第3検出結果記憶部、M14 第4検出結果記憶部、(M11~14 カメラ用検出結果記憶部)M2 車体側検出結果記憶部(車両用検出結果記憶部) 100 / 100A / 100B driving support system, 1.1A / 1B control unit, 3 vehicle body side tilt sensor (vehicle attitude detector), 5 front camera, 6 rear camera, 7 right side camera, 8 left side camera (5-8) In-vehicle camera), 12 memory, 13 storage, 51 1st tilt sensor, 61 2nd tilt sensor, 71 3rd tilt sensor, 81 4th tilt sensor (51 · 61 · 71 · 81 camera attitude detector), F1 stop determination Unit, F2 detection result management unit, F21 displacement amount calculating unit (angular displacement amount calculating unit), F3 updating necessity determining unit, F4 vehicle posture specifying unit, F5 mounting posture specifying unit, F6 parameter adjusting unit, F7 image processing unit, M11 first detection result storage unit, M12 second detection result storage unit, M13 third detection result storage unit, M14 fourth detection result憶部, (M11 ~ 14 camera detection result storage unit) M2 vehicle body side detection result storing unit (detection result storage unit for a vehicle)

Claims (9)

  1.  車両の所定の位置に設置され、前記車両周辺の所定領域を撮影範囲とする車載カメラ(5,6,7,8)と、
     前記車載カメラに設けられ、重力が働く方向に垂直な面である水平面に対する前記車載カメラの姿勢を表すカメラ姿勢指標値を逐次検出するカメラ姿勢検出器(51,61,71,81)と、
     前記カメラ姿勢検出器が所定の所要検出回数、前記カメラ姿勢指標値を検出した結果を記憶するカメラ用検出結果記憶部(M11,M12,M13,M14)と、
     前記カメラ用検出結果記憶部に蓄積されている前記カメラ姿勢指標値の最頻値に基づいて、前記車載カメラの前記車両に対する取付姿勢を特定する取付姿勢特定部(F5)と、を備えることを特徴とするカメラ校正装置。
    An in-vehicle camera (5, 6, 7, 8) installed at a predetermined position of the vehicle and having a predetermined area around the vehicle as a shooting range;
    A camera attitude detector (51, 61, 71, 81) that sequentially detects a camera attitude index value that represents the attitude of the in-vehicle camera with respect to a horizontal plane that is a plane perpendicular to the direction in which gravity acts, provided in the in-vehicle camera;
    A camera detection result storage unit (M11, M12, M13, M14) for storing a result of detecting the camera posture index value by the camera posture detector a predetermined required number of times;
    A mounting posture specifying unit (F5) for specifying a mounting posture of the in-vehicle camera with respect to the vehicle based on a mode value of the camera posture index value accumulated in the camera detection result storage unit. A camera calibration device.
  2.  車両の所定の位置に設置され、前記車両周辺の所定領域を撮影範囲とする車載カメラ(5,6,7,8)と、
     前記車載カメラに設けられ、重力が働く方向に垂直な面である水平面に対する前記車載カメラの姿勢を表すカメラ姿勢指標値を逐次検出するカメラ姿勢検出器(51,61,71,81)と、
     前記カメラ姿勢検出器が検出した前記カメラ姿勢指標値を所定の所要検出回数分、記憶するカメラ用検出結果記憶部(M11,M12,M13,M14)と、
     前記水平面に対する前記車両の姿勢を特定する車両姿勢特定部(F4)と、
     前記カメラ用検出結果記憶部に蓄積されている前記カメラ姿勢指標値の最頻値と、前記車両姿勢特定部が特定した前記車両の姿勢とに基づいて、前記車載カメラの前記車両に対する取付姿勢を特定する取付姿勢特定部(F5)と、を備えることを特徴とするカメラ校正装置。
    An in-vehicle camera (5, 6, 7, 8) installed at a predetermined position of the vehicle and having a predetermined area around the vehicle as a shooting range;
    A camera attitude detector (51, 61, 71, 81) that sequentially detects a camera attitude index value that represents the attitude of the in-vehicle camera with respect to a horizontal plane that is a plane perpendicular to the direction in which gravity acts, provided in the in-vehicle camera;
    A camera detection result storage unit (M11, M12, M13, M14) for storing the camera posture index value detected by the camera posture detector for a predetermined required number of detection times;
    A vehicle attitude specifying unit (F4) for specifying the attitude of the vehicle with respect to the horizontal plane;
    Based on the mode value of the camera posture index value stored in the camera detection result storage unit and the posture of the vehicle specified by the vehicle posture specifying unit, the mounting posture of the in-vehicle camera with respect to the vehicle is determined. A camera calibration device comprising: a mounting orientation specifying unit (F5) for specifying.
  3.  請求項2において、
     前記車両の車体に設置され、重力が働く方向に垂直な面である水平面に対する前記車体の姿勢を表す車両姿勢指標値を逐次検出する車両姿勢検出器(3)と、
     前記車両姿勢検出器が検出した前記車両姿勢指標値を前記所要検出回数分、記憶する車両用検出結果記憶部(M2)と、を備え、
     前記車両姿勢特定部は、前記車両用検出結果記憶部に記憶されている前記車両姿勢指標値の最頻値である車両側最頻値に基づいて、前記水平面に対する前記車両の姿勢である車両姿勢を特定し、
     前記取付姿勢特定部は、前記カメラ用検出結果記憶部に蓄積されている前記カメラ姿勢指標値の最頻値であるカメラ側最頻値と、前記車両姿勢特定部が特定した前記車両姿勢とに基づいて、前記車載カメラの取付姿勢を特定することを特徴とするカメラ校正装置。
    In claim 2,
    A vehicle attitude detector (3), which is installed in the vehicle body of the vehicle and sequentially detects a vehicle attitude index value representing the attitude of the vehicle body with respect to a horizontal plane that is a plane perpendicular to the direction in which gravity acts;
    A vehicle detection result storage unit (M2) for storing the vehicle posture index value detected by the vehicle posture detector for the required number of detection times,
    The vehicle attitude specifying unit is a vehicle attitude that is an attitude of the vehicle with respect to the horizontal plane based on a vehicle-side mode value that is a mode value of the vehicle attitude index value stored in the vehicle detection result storage unit. Identify
    The mounting posture specifying unit includes a camera-side mode value that is a mode value of the camera posture index value accumulated in the camera detection result storage unit, and the vehicle posture specified by the vehicle posture specifying unit. A camera calibration device characterized in that the mounting posture of the in-vehicle camera is specified based on the camera orientation.
  4.  請求項3において、
     前記カメラ姿勢検出器は、所定の検出方向であるカメラ側検出方向における重力が働く方向に垂直な面である水平面に対する前記車載カメラの傾斜角を、前記カメラ姿勢指標値として検出し、
     前記車両姿勢検出器は、所定の検出方向である車両側検出方向における前記水平面に対する前記車両の傾斜角を、前記車両姿勢指標値として検出し、
     前記車載カメラの取付姿勢は、前記車両が水平な姿勢となっている場合の、前記カメラ側検出方向における前記水平面に対する前記車載カメラの傾斜角によって表され、
     前記車両側検出方向と、前記カメラ側検出方向と、を記憶する不揮発性の記憶媒体であるストレージ(13)を備え、
     前記取付姿勢特定部は、
     前記車両姿勢特定部が特定した前記車両姿勢と、前記車両側検出方向と前記カメラ側検出方向との対応関係とから、前記カメラ姿勢検出器の検出結果に対して前記車両姿勢が影響を及ぼしている量である車両姿勢影響量を特定し、
     前記カメラ側最頻値から前記車両姿勢影響量を減算することで、前記車載カメラの取付姿勢を特定することを特徴とするカメラ校正装置。
    In claim 3,
    The camera posture detector detects an inclination angle of the in-vehicle camera with respect to a horizontal plane that is a plane perpendicular to a direction in which gravity acts in a camera side detection direction that is a predetermined detection direction, as the camera posture index value.
    The vehicle attitude detector detects an inclination angle of the vehicle with respect to the horizontal plane in a vehicle-side detection direction which is a predetermined detection direction as the vehicle attitude index value;
    The mounting posture of the in-vehicle camera is represented by an inclination angle of the in-vehicle camera with respect to the horizontal plane in the camera-side detection direction when the vehicle is in a horizontal posture,
    A storage (13) that is a nonvolatile storage medium that stores the vehicle-side detection direction and the camera-side detection direction;
    The mounting posture specifying part is
    The vehicle attitude affects the detection result of the camera attitude detector from the vehicle attitude specified by the vehicle attitude specifying unit and the correspondence between the vehicle-side detection direction and the camera-side detection direction. The amount of vehicle attitude influence that is
    A camera calibration apparatus characterized by specifying the mounting posture of the in-vehicle camera by subtracting the vehicle posture influence amount from the camera-side mode value.
  5.  請求項4において、
     前記ストレージは、前記車載カメラの取付姿勢を表す取付姿勢データを記憶しており、
     前記カメラ姿勢検出器が検出した前記カメラ姿勢指標値としての傾斜角が前記カメラ用検出結果記憶部に追加される毎に、その追加された傾斜角から、前記ストレージに格納されている前記取付姿勢データに示される角度を減算した値である角度変位量を算出する角度変位量算出部(F2)と、
     前記車載カメラの前記取付姿勢データを更新する必要があるか否かを判定する更新要否判定部(F3)と、を備え、
     前記カメラ用検出結果記憶部は、前記角度変位量算出部が算出した前記角度変位量を記憶し、
     前記更新要否判定部は、前記カメラ用検出結果記憶部に記憶されている前記角度変位量の最頻値が、所定の閾値以上となっている場合に、前記車載カメラの前記取付姿勢データを更新する必要があると判定し、
     前記更新要否判定部によって、前記車載カメラの前記取付姿勢データを更新する必要があると判定された場合に、前記取付姿勢特定部は、前記車両姿勢影響量を特定するとともに、前記カメラ側最頻値から前記車両姿勢影響量を減算することで、前記車載カメラの取付姿勢を特定し、前記ストレージに格納されている前記取付姿勢データを更新することを特徴とするカメラ校正装置。
    In claim 4,
    The storage stores mounting posture data representing the mounting posture of the in-vehicle camera,
    Each time the tilt angle as the camera posture index value detected by the camera posture detector is added to the camera detection result storage unit, the mounting posture stored in the storage is added from the added tilt angle. An angular displacement amount calculation unit (F2) that calculates an angular displacement amount that is a value obtained by subtracting the angle indicated in the data;
    An update necessity determination unit (F3) for determining whether or not the mounting posture data of the in-vehicle camera needs to be updated,
    The camera detection result storage unit stores the angular displacement amount calculated by the angular displacement amount calculation unit,
    The update necessity determination unit obtains the mounting posture data of the in-vehicle camera when the mode value of the angular displacement amount stored in the camera detection result storage unit is equal to or greater than a predetermined threshold. Determine that it needs to be updated,
    When it is determined by the update necessity determination unit that it is necessary to update the mounting posture data of the in-vehicle camera, the mounting posture specifying unit specifies the vehicle posture influence amount and the camera side maximum amount. A camera calibration apparatus characterized by subtracting the vehicle posture influence amount from a frequent value to identify the mounting posture of the in-vehicle camera and update the mounting posture data stored in the storage.
  6.  請求項2において、
     少なくとも3つの前記車載カメラを備え、
     複数の前記車載カメラのそれぞれは、その車載カメラに対応する前記カメラ姿勢検出器を備え、
     複数の前記カメラ姿勢検出器のそれぞれは、所定の検出方向であるカメラ側検出方向における前記水平面に対する、そのカメラ姿勢検出器に対応する前記車載カメラの傾斜角を、前記カメラ姿勢指標値として検出し、
     前記カメラ用検出結果記憶部は、複数の前記カメラ姿勢検出器のそれぞれの検出結果を、前記カメラ姿勢検出器毎に区別して記憶し、
     前記車載カメラの取付姿勢は、前記車両が水平な姿勢となっている場合の、前記カメラ側検出方向における前記水平面に対する前記車載カメラの傾斜角によって表され、
     複数の前記カメラ姿勢検出器毎の前記カメラ側検出方向と、複数の前記車載カメラ毎の取付姿勢を表す取付姿勢データを記憶する不揮発性の記憶媒体であるストレージ(13)と、
     前記カメラ姿勢検出器が検出した傾斜角が前記カメラ用検出結果記憶部に追加される毎に、その追加された傾斜角から、前記ストレージに格納されている前記取付姿勢データに示される角度を減算した値である角度変位量を算出して、前記カメラ用検出結果記憶部に格納する角度変位量算出部(F2)と、を備え、
     前記車両姿勢特定部は、前記車載カメラ毎の前記角度変位量の最頻値のうち、所定の閾値未満となっている最頻値の数が過半数を占めている場合に、前記車両が水平な姿勢となっていると判定し、
     前記取付姿勢特定部は、
     前記車両姿勢特定部によって前記車両が水平な姿勢となっている判定された場合に、前記車載カメラ毎の前記角度変位量の最頻値のうち、その値が前記閾値以上となっている最頻値に対応する前記車載カメラを、その取付姿勢データを更新するべき前記車載カメラである更新対象カメラとして、
     前記カメラ用検出結果記憶部に蓄積されている、前記更新対象カメラに対応する前記カメラ姿勢検出器が出力した前記カメラ姿勢指標値の最頻値を、前記車載カメラの取付姿勢として採用することを特徴とするカメラ校正装置。
    In claim 2,
    Comprising at least three in-vehicle cameras,
    Each of the plurality of in-vehicle cameras includes the camera posture detector corresponding to the in-vehicle camera,
    Each of the plurality of camera posture detectors detects, as the camera posture index value, an inclination angle of the in-vehicle camera corresponding to the camera posture detector with respect to the horizontal plane in the camera side detection direction which is a predetermined detection direction. ,
    The camera detection result storage unit stores the detection results of the plurality of camera posture detectors separately for each camera posture detector,
    The mounting posture of the in-vehicle camera is represented by an inclination angle of the in-vehicle camera with respect to the horizontal plane in the camera-side detection direction when the vehicle is in a horizontal posture,
    A storage (13) that is a non-volatile storage medium that stores the camera-side detection direction for each of the plurality of camera attitude detectors and the installation attitude data representing the installation attitude for each of the plurality of in-vehicle cameras;
    Each time an inclination angle detected by the camera attitude detector is added to the camera detection result storage unit, an angle indicated in the mounting attitude data stored in the storage is subtracted from the added inclination angle. An angular displacement amount calculation unit (F2) that calculates an angular displacement amount that is a calculated value and stores the calculated angular displacement amount in the camera detection result storage unit,
    The vehicle posture specifying unit is configured such that the vehicle is horizontal when a majority of the mode values of the angular displacement amount for each in-vehicle camera are less than a predetermined threshold value. It is determined that it is in posture,
    The mounting posture specifying part is
    When the vehicle posture specifying unit determines that the vehicle is in a horizontal posture, among the most frequent values of the angular displacement amount for each of the in-vehicle cameras, the most frequent value is the threshold value or more. The in-vehicle camera corresponding to the value is an update target camera that is the in-vehicle camera whose attachment posture data should be updated.
    Adopting the mode value of the camera posture index value output from the camera posture detector corresponding to the update target camera, stored in the camera detection result storage unit, as the mounting posture of the in-vehicle camera. A camera calibration device.
  7.  請求項1において、
     前記所要検出回数は、前記カメラ用検出結果記憶部に蓄積されている前記カメラ姿勢指標値の最頻値が、前記車両が水平な道路上を走行しているときに検出された値となるほど十分に多い回数とすることを特徴とするカメラ校正装置。
    In claim 1,
    The required number of detections is sufficient so that the mode value of the camera posture index value accumulated in the camera detection result storage unit is a value detected when the vehicle is traveling on a horizontal road. The camera calibration device is characterized in that the number of times is high.
  8.  請求項1から7の何れか1項において、
     前記車載カメラの取付姿勢は、前記車両の前後方向、車幅方向、高さ方向を基準として定まるピッチ角、ロール角、ヨー角として表され、
     前記カメラ姿勢検出器は、前記ピッチ角、前記ロール角、前記ヨー角に対応の少なくとも1つに対応する角度を前記カメラ姿勢指標値として検出することを特徴とするカメラ校正装置。
    In any one of Claims 1-7,
    The mounting posture of the in-vehicle camera is represented as a pitch angle, a roll angle, and a yaw angle that are determined based on the vehicle front-rear direction, the vehicle width direction, and the height direction
    The camera orientation detector detects an angle corresponding to at least one of the pitch angle, the roll angle, and the yaw angle as the camera orientation index value.
  9.  請求項8において、
     前記カメラ姿勢検出器は、2軸傾斜センサによって実現されることを特徴とするカメラ校正装置。
    In claim 8,
    The camera posture detector is realized by a biaxial tilt sensor.
PCT/JP2016/054319 2015-02-13 2016-02-15 Onboard camera calibration apparatus for identifying mounting orientation WO2016129704A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-026726 2015-02-13
JP2015026726A JP6488749B2 (en) 2015-02-13 2015-02-13 Camera calibration device

Publications (1)

Publication Number Publication Date
WO2016129704A1 true WO2016129704A1 (en) 2016-08-18

Family

ID=56614836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054319 WO2016129704A1 (en) 2015-02-13 2016-02-15 Onboard camera calibration apparatus for identifying mounting orientation

Country Status (2)

Country Link
JP (1) JP6488749B2 (en)
WO (1) WO2016129704A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020235670A1 (en) * 2019-05-22 2020-11-26 株式会社Jvcケンウッド Camera position detecting device, camera unit, camera position detecting method, and program

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018059783A (en) 2016-10-04 2018-04-12 株式会社デンソー Method for determining axial misalignment of object detection sensor
JP2018164146A (en) 2017-03-24 2018-10-18 カシオ計算機株式会社 Image-processing device, image processing method, and program
DE102017206295B3 (en) * 2017-04-12 2018-01-25 Robert Bosch Gmbh Method, apparatus and computer program for calibrating a vehicle camera of a vehicle
JPWO2019182082A1 (en) * 2018-03-23 2021-03-11 パイオニア株式会社 Estimator, control method, program and storage medium
WO2022185579A1 (en) 2021-03-01 2022-09-09 日立Astemo株式会社 Image processing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011130262A (en) * 2009-12-18 2011-06-30 Honda Motor Co Ltd Apparatus for monitoring surroundings of vehicle
JP2013020308A (en) * 2011-07-07 2013-01-31 Clarion Co Ltd Vehicle surrounding image pickup system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011130262A (en) * 2009-12-18 2011-06-30 Honda Motor Co Ltd Apparatus for monitoring surroundings of vehicle
JP2013020308A (en) * 2011-07-07 2013-01-31 Clarion Co Ltd Vehicle surrounding image pickup system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020235670A1 (en) * 2019-05-22 2020-11-26 株式会社Jvcケンウッド Camera position detecting device, camera unit, camera position detecting method, and program
JP2020191549A (en) * 2019-05-22 2020-11-26 株式会社Jvcケンウッド Camera position detector, camera unit, camera position detection method, and program
JP7251310B2 (en) 2019-05-22 2023-04-04 株式会社Jvcケンウッド CAMERA POSITION DETECTION DEVICE, CAMERA UNIT, CAMERA POSITION DETECTION METHOD, AND PROGRAM

Also Published As

Publication number Publication date
JP2016149711A (en) 2016-08-18
JP6488749B2 (en) 2019-03-27

Similar Documents

Publication Publication Date Title
WO2016129704A1 (en) Onboard camera calibration apparatus for identifying mounting orientation
EP3416368B1 (en) Calibration system
CN107084743B (en) Offset and misalignment compensation for six degree of freedom inertial measurement units using GNSS/INS data
JP7073052B2 (en) Systems and methods for measuring the angular position of a vehicle
EP2933790B1 (en) Moving object location/attitude angle estimation device and moving object location/attitude angle estimation method
JP4751939B2 (en) Car camera calibration system
CN108886606B (en) Mounting angle detection device, mounting angle calibration device, and mounting angle detection method for in-vehicle camera
KR102001659B1 (en) Method and apparatus for providing camera calibration for vehicles
JP5452708B2 (en) Vehicle state detection device and vehicle state detection system
US20070124030A1 (en) Systems for determining movement amount
JP5133783B2 (en) In-vehicle device
WO2015029443A1 (en) Turning angle correction method, turning angle correction device, image-capturing device, and turning angle correction system
JP5081313B2 (en) Car camera calibration system
JP2016030554A (en) In-vehicle camera mounting attitude detection method and in-vehicle camera mounting attitude detection apparatus
WO2018051862A1 (en) Posture estimation device
JP2002259995A (en) Position detector
JP5175230B2 (en) Automatic camera calibration apparatus and automatic calibration method
US10871380B2 (en) Vehicle control device
JP5366264B2 (en) Stereo camera system and vehicle equipped with the system
JP5561469B2 (en) Yaw rate correction apparatus and method
US9562772B2 (en) Method for determining initial data for determining position data of a vehicle
CN110132280B (en) Vehicle positioning method and device in indoor scene and vehicle
KR101367759B1 (en) Method for Controlling Black Box System for Vehicle
JP6037351B2 (en) Vehicle image processing apparatus and vehicle image processing method
JP2018125706A (en) Imaging apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16749344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16749344

Country of ref document: EP

Kind code of ref document: A1