WO2016129196A1 - Engine control device for working vehicle - Google Patents

Engine control device for working vehicle Download PDF

Info

Publication number
WO2016129196A1
WO2016129196A1 PCT/JP2015/086490 JP2015086490W WO2016129196A1 WO 2016129196 A1 WO2016129196 A1 WO 2016129196A1 JP 2015086490 W JP2015086490 W JP 2015086490W WO 2016129196 A1 WO2016129196 A1 WO 2016129196A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
engine speed
control
controller
speed
Prior art date
Application number
PCT/JP2015/086490
Other languages
French (fr)
Japanese (ja)
Inventor
田中 剛
講介 鬼束
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Publication of WO2016129196A1 publication Critical patent/WO2016129196A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00

Definitions

  • the present invention relates to an engine control device for a work vehicle.
  • construction machines such as hydraulic excavators have been required to have low noise and low fuel consumption, and work with the minimum required engine output to reduce the rotational noise and fuel consumption of the engine itself and accessories.
  • the maximum engine speed tends to be suppressed to the necessary level so that the machine can perform work.
  • a large hydraulic output may be required as compared to during work.
  • a construction machine including a device that increases or decreases the maximum discharge amount of a hydraulic pump as means for increasing or decreasing the hydraulic output when necessary is known (for example, see Patent Document 1).
  • a variable displacement hydraulic pump driven by an engine and a device for controlling the movable swash plate of the hydraulic pump having a sufficient discharge amount to increase or decrease the discharge flow rate of the hydraulic pump are provided. It is equipped with a rotation speed control device and a work state detection device, and an operator is trying to realize driving of the actuator in accordance with the work state by selecting a combination of the maximum engine speed and the variable displacement hydraulic pump.
  • the present invention provides an engine control device for a work vehicle that can obtain an engine speed necessary for work and can obtain a desired engine output without performing troublesome switching work when the engine is heavily loaded during travel. It is aimed.
  • the present invention An engine, A traveling device driven by the power of the engine; Mounted on a work vehicle comprising a working device driven by the power of the engine, In an engine control device for a work vehicle that controls the engine, Traveling state detecting means for detecting a traveling state of the traveling device; A controller for controlling the rotational speed of the engine; An instruction device for instructing the target engine speed of the engine to the controller, The controller is If it is determined by the running state detecting means that the work vehicle is in a running state, the engine rotational speed of the engine is arbitrarily controlled according to the target engine rotational speed instructed to the controller by the instruction device, On the other hand, when it is determined by the traveling state detection means that the work vehicle is not in the traveling state, if the target engine speed is less than a preset upper limit value of the engine speed, the engine engine according to the target engine speed is set. Control the rotation speed arbitrarily, When the target engine speed is instructed to be greater than or equal to the upper limit value of the engine speed of the engine, control is performed
  • the present invention relates to the engine control device,
  • the controller is When it is determined by the traveling state detection means that the work vehicle is in a traveling state, Control is arbitrarily performed below a preset upper limit value of the engine speed higher than the upper limit value of the engine speed.
  • the pointing device is an accelerator dial.
  • the engine speed at which the necessary engine output can be obtained is provided as the upper limit value, so that it is possible to prevent wasteful fuel consumption with low noise.
  • the engine speed at which the necessary engine output can be obtained is provided as the upper limit value, so that it is possible to prevent wasteful fuel consumption with low noise.
  • the engine is heavily loaded during traveling, a desired engine output can be obtained without troublesome switching work.
  • the performance curve figure of a diesel engine The figure which shows the structure of an engine control apparatus.
  • (b) Performance curve diagram showing control mode when performing droop control from isochronous control The figure which shows the relationship between an engine speed and an accelerator opening sensor value.
  • the engine control device 50 can be mounted not only on the turning work vehicle 100 but also on an agricultural work vehicle or other work vehicles.
  • the turning work vehicle 100 mainly includes a traveling device 1, a working device 2, and a turning device 3.
  • movement in the turning apparatus 3 can be mentioned as an example of a working state as operation
  • the traveling device 1 is driven by the power of the diesel engine 34 and causes the turning work vehicle 100 to travel.
  • the traveling device 1 includes a pair of left and right crawlers 11 and 11, hydraulic motors 12 and 12, and the like.
  • the hydraulic motors 12 and 12 drive the left and right crawlers 11 and 11 so that the turning work vehicle 100 can move forward and backward. It is said. Further, the turning work vehicle 100 can be turned by the hydraulic motors 12 and 12 independently driving the left and right crawlers 11 and 11.
  • the working device 2 is driven by the power of the diesel engine 34 to perform excavation work such as earth and sand.
  • the work device 2 includes a boom 21, an arm 22, a bucket 23, and the like, and enables excavation work by driving them independently.
  • one end of the boom 21 is supported by the front portion of the turning device 3, and is rotated by a boom cylinder 21a that is movable in a telescopic manner.
  • one end of the arm 22 is supported by the other end of the boom 21 and is rotated by an arm cylinder 22a that is movable in a telescopic manner.
  • the bucket 23 is rotated by a bucket cylinder 23a that is supported at one end by the other end of the arm 22 and is movable in a telescopic manner. That is, the work device 2 forms an articulated structure that excavates earth and sand using the bucket 23.
  • this turning work vehicle 100 is set as the specification which attaches the bucket 23 and performs excavation work, for example, the specification which attaches a hydraulic breaker and performs crushing work may be sufficient, and it is not limited to this.
  • the turning device 3 turns the work device 2.
  • the swivel device 3 includes a swivel base 31, a hydraulic motor 32, and the like, and the hydraulic motor 32 drives the swivel base 31 to turn the work device 2.
  • the turning device 3 is also provided with a control unit 33, a diesel engine 34, and an engine control device 50 that controls the diesel engine 34.
  • control unit 33 includes a control seat 331, an operation tool 332, a control panel, and the like.
  • An operator sits on the control seat 331 and operates the operation tool 332, the control panel, and the like.
  • the diesel engine 34 controls the hydraulic motors 12 and 32 by operating the operation tool 332 and the like.
  • the operator sets the engine speed N of the diesel engine 34 by operating an accelerator dial 36 (see FIG. 4) arranged on the control panel.
  • the target engine speed indicated by the accelerator dial 36 (also simply referred to as the accelerator instruction speed) is instructed to the controller 35 as the target engine speed of the diesel engine 34.
  • the operator controls the turning work vehicle 100.
  • the hydraulic motor 12 that drives the crawler 11 is provided with a pressure switch 37 as first traveling state detection means.
  • the pressure switch 37 is disposed in the traveling motor drive oil passage of the hydraulic circuit in the hydraulic motor 12 and can detect that the traveling operation has been performed by the operator.
  • a second traveling state detection means (not shown) configured by a switch or the like is disposed at the rotation base of the operation tool 332 to detect that the traveling operation has been performed.
  • the configuration of the traveling state detection unit and the arrangement position of the traveling state detection unit are not limited, and may be detected by a rotation sensor that detects the rotation of the axle.
  • the configuration using the pressure switch 37 as the traveling state detection unit will be described in detail. However, a configuration using the second traveling state detection unit instead of the pressure switch 37 may be used. .
  • the accelerator dial 36 and the diesel engine 34 are electrically connected via a controller 35.
  • the controller 35 creates a control signal based on the electrical signal from the accelerator dial 36 and outputs the created control signal. Output to the diesel engine 34. That is, the controller 35 is a device that controls the output of the diesel engine 34. That is, the controller 35 controls the engine speed N of the diesel engine 34 based on the operation of the accelerator dial 36 by the operator.
  • the engine speed N of the diesel engine 34 can be arbitrarily changed from a low idle engine speed Nmin to a high idle engine speed Nmax.
  • the diesel engine 34 can be freely operated within a range surrounded by a torque curve Tcurve formed by connecting the maximum torque points set for each engine speed N.
  • the engine torque T of the diesel engine 34 becomes maximum at the maximum torque point at the engine speed Nm (maximum torque point Tm).
  • the torque curve Tcurve is formed so as to have the maximum engine torque Tmax at the maximum torque point Tm at the engine speed Nm.
  • the engine output which is a function of the engine speed N of the diesel engine 34 and the engine torque T, becomes maximum at the maximum torque point (engine torque Te) at the engine speed Ne.
  • the torque curve Tcurve is formed so that the maximum engine output is obtained at the maximum torque point (engine torque Te) at the engine speed Ne.
  • the engine speed N of the diesel engine 34 becomes the high idle engine speed Nmax at the maximum engine speed Nh when the diesel engine 34 is not loaded.
  • the torque curve Tcurve is formed in the diesel engine 34 so that the maximum engine speed Nh when the diesel engine 34 is not loaded becomes the high idle engine speed Nmax.
  • isochronous control is a control pattern in which the engine speed N is constant regardless of the increase or decrease of the load applied to the diesel engine 34.
  • the engine control device 50 determines that the load on the diesel engine 34 has increased.
  • the engine torque T is increased while maintaining the engine speed Nx of the diesel engine 34 constant (see point Xa2 in FIG. 2).
  • the engine control device 50 reduces the engine torque T while keeping the engine speed Nx of the diesel engine 34 constant (see point Xa3 in FIG. 2).
  • the engine speed N can be made constant regardless of the increase or decrease of the load applied to the diesel engine 34, and therefore, the power of the diesel engine 34 can be stably transmitted to the traveling device 1 or the like. Is possible.
  • the droop control is a control pattern in which the engine speed N is changed according to the increase or decrease of the load applied to the diesel engine 34.
  • the controller 35 detects the diesel engine 34 when the load on the diesel engine 34 increases.
  • the engine torque T is increased while gradually decreasing the engine speed N of the engine 34 (see point Xd2 in FIG. 2).
  • the controller 35 decreases the engine torque T while gradually increasing the engine speed N of the diesel engine 34 (see point Xd3 in FIG. 2).
  • the engine speed N changes according to the increase or decrease of the load applied to the diesel engine 34.
  • the engine control device 50 is a switching unit for controlling a controller 35, an accelerator dial 36, a pressure switch 37 that is a traveling state detection unit, and an engine speed N of the diesel engine 34.
  • a switching relay 38 is mainly provided.
  • a battery 39 that is a DC power supply is connected to the controller 35, and power is supplied from the battery 39 to the controller 35, the switching relay 38, and the like via the fuse 40.
  • the controller 35 is for performing control of the engine speed N of the diesel engine 34 and various other controls, and is mainly composed of a central processing unit, a storage device, and the like.
  • the controller 35 is electrically connected to an accelerator dial 36, a pressure switch 37 that is a traveling state detection means, a switching relay 38, and the like, and based on an electrical signal input from the accelerator dial 36, the pressure switch 37, or the like. Create a control signal.
  • the switching relay 38 is electrically connected to an actuator 34 a that is an engine speed control unit of the diesel engine 34.
  • the actuator 34a is an actuator that is turned on and off by the switching relay 38, and the engine speed N is controlled by changing the fuel injection amount and the injection timing of the diesel engine 34 by the actuator. In this way, the controller 35 outputs the created control signal to the diesel engine 34.
  • the controller 35 receives output signals from various sensors such as an accelerator opening sensor (not shown) for performing various controls of the diesel engine 34.
  • the controller 35 stores a plurality of control patterns for isochronous control and control patterns for droop control in order to control the diesel engine 34 in response to an operator request. Then, the controller 35 selects an optimal control pattern from these control patterns according to the situation such as the work content and the running state, creates a control signal based on the selected control pattern, and outputs it to the diesel engine 34. To do.
  • the controller 35 controls the engine speed N of the diesel engine 34 in accordance with a control flow to be described later, and at a predetermined engine speed N, the diesel engine is based on a control pattern for isochronous control or a control pattern for droop control. 34 is controlled. By doing so, the controller 35 realizes the operation of the diesel engine 34 requested by the operator.
  • the accelerator dial 36 is an instruction device for instructing the target engine speed of the diesel engine 34 to the controller 35.
  • the accelerator dial 36 can be set by the operator to manually rotate the dial 36 a to set the target engine speed, and the dial type (for adjusting the target engine speed of the diesel engine 34 ( This is a rotary switch. That is, the accelerator dial 36 is for setting the target value (maximum output magnitude) of the engine speed N of the diesel engine 34 to a magnitude according to the work content and the like.
  • a mechanical rotation angle as shown in FIG. 4 is set in advance in the accelerator dial 36 as an angle range in which the dial can be mechanically rotated manually by an operator.
  • the position of the dial 36a set by the accelerator dial 36 (a predetermined angular position of the mechanical rotation angle) is output to the controller 35 as an electrical signal. Further, the accelerator dial 36 is electrically detected with an engine rotation speed “B” that is narrower than the mechanical rotation angle and smaller than the maximum value of the engine rotation speed N due to the mechanical rotation angle as an upper limit value.
  • the electrical rotation angle to be performed is set in advance. As described above, in the present embodiment, the accelerator dial 36 has a predetermined angular difference between the mechanical rotation angle and the electrical rotation angle. In the electrical rotation angle, an engine speed “A” smaller than the engine speed “B” is also set in advance.
  • the controller 35 can obtain an output according to the traveling state and working state of the turning work vehicle 100.
  • An engine speed N is set.
  • the operation content target engine speed set by the operator
  • the controller 35 performs control based on the control flow according to a predetermined control flow.
  • a signal is transmitted to the diesel engine 34, and the output of the diesel engine 34 is controlled.
  • the accelerator dial 36 is disposed on a control panel provided in the control unit 33 so that an operator can operate the seat while sitting on the control seat 331.
  • the pressure switch 37 serving as a traveling state detection unit is disposed in the hydraulic motor 12 of the traveling device 1 and detects the driving state of the traveling device 1.
  • the pressure switch 37 detects the traveling state of the traveling device 1 by grasping the driving state of the hydraulic motor 12.
  • the travel state detection means may be a position sensor that is configured by a rotary potentiometer or the like instead of the pressure switch 37 and detects the drive state of the travel device 1 by grasping the operation position of the operation tool 332.
  • the present embodiment is not particularly limited.
  • the switching relay 38 is electrically connected to an actuator 34 a that is an engine speed control unit of the diesel engine 34.
  • the switching relay 38 is used to control the maximum engine speed N in accordance with a control signal output from the controller 35.
  • the controller 35 controls the actuator 34a of the diesel engine 34 by the switching relay 38 to control the fuel injection amount and the injection timing of the diesel engine 34, and the engine rotation according to the working state and traveling state of the turning work vehicle 100. Control the maximum number of revolutions N.
  • the switching relay 38 is not an essential component in the engine control device 50, and is appropriately used as necessary.
  • FIG. 6 is a performance curve diagram showing a control mode when performing isochronous control according to the present embodiment.
  • step S101 the controller 35 determines whether the traveling device 1 of the turning work vehicle (this machine) 100 is in a traveling state or in a state other than traveling (for example, a stopped state). That is, the controller 35 determines whether or not the turning work vehicle 100 is traveling by the pressure switch 37 that is the traveling state detecting means.
  • step S101 the controller 35 determines whether the hydraulic pressure of the hydraulic motors 12 and 12 is in a traveling state or a state other than traveling by using the pressure switch 37, and according to each of the states, the controller 35 It is determined how to set the engine speed N of the diesel engine 34.
  • step S105 the traveling device 1 is in a state other than traveling. For example, when it is determined that the traveling device 1 is stopped, the process proceeds to step S102.
  • step S105 the controller 35 controls the engine speed N of the diesel engine 34 in accordance with the target engine speed instructed to the controller 35 by the accelerator dial 36. Specifically, in step S105, the controller 35 drives the diesel engine 34 according to an arbitrary target engine speed instructed to the controller 35 by the accelerator dial 36 when the engine speed N is equal to or lower than the engine speed “B”. Control to do. That is, the controller 35 changes the upper limit value of the engine speed N to the engine speed “B” only in the running state in order to ensure the running speed and driving force necessary for running. The controller 35 creates a control signal in accordance with the target engine speed designated by the accelerator dial 36 within the angle range of the electrical rotation angle (see FIG. 4) where the engine speed “B” is the upper limit value, and the created control. A signal is output to the diesel engine 34.
  • step S105 the controller 35 selects, from the control pattern stored in the controller 35, a second control pattern, which will be described later, for example, isochronous control with the engine speed “B” as an upper limit value.
  • a control signal is generated based on the selected second control pattern. Then, the controller 35 outputs the created control signal to the diesel engine 34.
  • the second control pattern of the diesel engine 34 is selected, and the engine regardless of the increase or decrease of the load applied to the diesel engine 34.
  • the isochronous control is performed so that the rotational speed N is constant, and the upper limit value of the engine rotational speed N of the diesel engine 34 is the engine rotational speed “B”.
  • the second control pattern of the diesel engine 34 in which the engine speed “B” shown in FIG. 6 is the upper limit value is a control pattern used when the traveling device 1 of the turning work vehicle 100 is in the traveling state.
  • the diesel engine 34 has an isochronous line b (a line where the engine speed N becomes the engine speed “B” even if the torque changes) and the maximum set for each engine speed N. Operation can be arbitrarily performed within a range surrounded by a torque curve Tcurve formed by connecting torque points.
  • the engine output becomes maximum at the maximum torque point at the engine speed “B” (maximum torque point on the isochronous line b: second rated output point).
  • the torque curve Tcurve is formed so that the diesel engine 34 has the maximum engine output at the maximum torque point at the engine speed “B”.
  • the controller 35 changes the isochronous line a to the isochronous line b as shown in FIG.
  • the upper limit value of the engine speed N is increased from the engine speed “A” to the engine speed “B”.
  • step S102 when it is determined that the traveling device 1 is not in the traveling state and the process proceeds to step S102, the following control flow is performed.
  • step S102 the controller 35 determines in what state the position of the dial 36a by the accelerator dial 36, which is an instruction device for instructing the target engine speed.
  • the controller 35 grasps the target engine speed indicated by the accelerator dial 36 and determines whether the target engine speed is equal to or higher than the engine speed “A” or lower than the engine speed “A”. To do.
  • the second control pattern is stored in advance in the controller 35, and the controller 35 selects and instructs one of them according to the application conditions.
  • step S104 the controller 35 determines that the target engine speed indicated by the accelerator dial 36 (simply referred to as the accelerator instruction speed) is equal to or higher than the engine speed “A”.
  • the process proceeds to step S103.
  • step S103 the controller 35 arbitrarily controls the engine speed N of the diesel engine 34 according to the target engine speed when the target engine speed is less than the engine speed “A” that is a preset upper limit value of the engine speed. To do. That is, in step S103, the controller 35 controls the diesel engine 34 to be driven at an arbitrary target engine speed that is less than the engine speed “A” and instructed by the accelerator dial 36. That is, the controller 35 normally controls the engine speed N so that the engine speed increases only to a necessary and sufficient engine speed “A” when working on the work device 2. The controller 35 creates a control signal in accordance with the target engine speed designated by the accelerator dial 36 within the angle range of the electrical rotation angle (see FIG.
  • step S103 the controller 35 uses the control pattern stored in the controller 35 to perform the first control with the engine speed “A” as an upper limit, for example, isochronous control, as will be described in detail later.
  • a pattern is selected, and a control signal is created based on the selected first control pattern. Then, the controller 35 outputs the created control signal to the diesel engine 34.
  • the diesel engine The first control pattern 34 is selected, and isochronous control is performed in which the engine speed N is constant regardless of the increase or decrease in the load applied to the diesel engine 34.
  • the upper limit value of the engine speed N of the diesel engine 34 is the engine speed. “A”.
  • the first control pattern of the diesel engine 34 in which the engine speed “A” shown in FIG. 6 is an upper limit value is a state (for example, a stopped state) in which the traveling device 1 of the turning work vehicle 100 is not traveling. It is a control pattern used in the case.
  • the diesel engine 34 has an isochronous line a (a line where the engine speed N becomes the engine speed “A” even if the torque changes) and the maximum set for each engine speed N. Operation can be arbitrarily performed within a range surrounded by a torque curve Tcurve formed by connecting torque points.
  • the engine output becomes maximum at the maximum torque point at the engine speed “A” (maximum torque point on the isochronous line a: first rated output point).
  • the torque curve Tcurve is formed so that the diesel engine 34 has the maximum engine output at the maximum torque point at the engine speed “A”.
  • step S104 when the target engine speed is instructed to be equal to or higher than the engine speed “A” that is the upper limit value of the engine speed N of the diesel engine 34, the controller 35 sets the engine speed “A” to the engine speed “A”.
  • the engine speed N is controlled to be fixed. That is, the controller 35 is necessary when working on the work device 2 when the target engine speed designated by the accelerator dial 36 becomes the engine speed “A” and exceeds the engine speed “A”.
  • the engine speed N is controlled so as to be fixed at a sufficient engine speed “A”.
  • step S ⁇ b> 104 the controller 35 creates a control signal so that the engine speed “A” becomes the target engine speed, and outputs the created control signal to the diesel engine 34. As described above, by controlling to prevent the engine speed “A” from exceeding the engine speed “A” as the upper limit value of the engine speed N that is necessary and sufficient at the time of work, the control is performed to fix the engine speed “A”. Work can be done.
  • step S104 the controller 35 selects and selects, from the control pattern stored in the controller 35, a first control pattern that is, for example, isochronous control and has the engine speed “A” as an upper limit value.
  • a control signal is generated based on the isochronous line a of the first control pattern. Then, the controller 35 outputs the created control signal to the diesel engine 34.
  • the diesel engine The first control pattern 34 is selected, and isochronous control is performed in which the engine speed N is constant regardless of the increase or decrease in the load applied to the diesel engine 34.
  • the engine speed N of the diesel engine 34 is the engine speed “A”.
  • the first control pattern and the second control pattern of the isochronous control shown in FIG. 6 are described as examples of the control pattern, but the control pattern is not particularly limited. For example, instead of isochronous control, droop control is used, and as shown in FIG.
  • a first control pattern with engine speed “A” as the upper limit value
  • second control pattern engine speed “B”.
  • the engine speed N of the diesel engine 34 can be controlled according to the control flow of the engine control device 50 described above. Specifically, for example, when the traveling device 1 of the turning work vehicle 100 shifts from a state other than traveling to a traveling state, the controller 35 changes the droop line a 1 to the droop line b 1 as shown in FIG. The upper limit value of the engine speed N is increased from the engine speed “A” to the engine speed “B” with the droop control.
  • the first control pattern for droop control (engine speed “A” is set as the upper limit value) and the second control pattern for isochronous control (engine speed “B” is set as the upper limit value).
  • engine speed N of the diesel engine 34 it is also possible to control the engine speed N of the diesel engine 34 according to the control flow of the engine control device 50 described above as “B”> “A”).
  • the controller 35 performs droop control to isochronous control (droop control).
  • the line a 2 is changed to the isochronous line b 2 ), and the upper limit value of the engine speed N is increased from the engine speed “A” to the engine speed “B”.
  • the first control pattern of isochronous control (engine speed “A” is the upper limit value) and the second control pattern of droop control (engine speed “B” is the upper limit value). It is also possible to control the engine speed N of the diesel engine 34 according to the control flow of the engine control device 50 described above as “B”> “A”). Specifically, for example, when the traveling device 1 of the turning work vehicle 100 shifts from a state other than traveling to a traveling state, as illustrated in FIG. 8B, the controller 35 performs droop control (isochronous control) from the isochronous control.
  • the line a 3 is changed to the droop line b 3 ), and the upper limit value of the engine speed N is increased from the engine speed “A” to the engine speed “B”.
  • FIG. 9 is a diagram showing the relationship between the engine speed and the accelerator opening sensor value, where the vertical axis is the engine speed (min ⁇ 1 ) and the horizontal axis is the accelerator opening sensor value (V).
  • An accelerator opening sensor (not shown) includes an accelerator dial 36 and an accelerator operation lever that can be manually operated for setting a target engine speed of the engine speed N (that is, a fuel injection amount corresponding to the target engine speed). And the like, and is electrically connected to the controller 35.
  • the accelerator opening sensor is configured to detect an operation amount of the accelerator operating member as an accelerator opening, and to input the detection signal to the controller 35 as an engine load.
  • the engine control device 50 normally sets the upper limit value of the engine speed N to the engine speed “A” described above, but the upper limit value of the engine speed N is set to the engine speed “B” described above when the traveling device 1 is traveling. To improve the running performance.
  • the engine speed “A” is assigned when the engine speed N corresponding to the accelerator opening sensor value a0 (V) is low idle and the accelerator opening sensor value a2 (V) is high idle. Above the voltage (accelerator opening sensor value a1 (V)), the engine speed N increases according to the accelerator opening. Further, this control is not performed when the other mode is valid.
  • the upper limit value of the engine speed N is set to the engine speed “B” during traveling (in the case of YES in step S101). That is, when the accelerator opening sensor value is a1 to a2 (V), the engine speed N can be changed between the engine speed N of “A” to “B” min ⁇ 1 .
  • the traveling device 1 is traveling, the upper limit value of the engine speed N is raised to the engine rotational speed “B”, while when the traveling device 1 is not traveling (NO in step S101), the engine The upper limit value of the rotational speed N is limited to the engine rotational speed “A”.
  • the engine speed is normally increased so that the engine speed only increases to a necessary and sufficient engine speed “A” when working on the work device 2 (a state other than traveling).
  • the upper limit value of the target engine speed is changed to the engine speed “B” higher than the engine speed “A” only in the running state.
  • the engine control device 50 provides a difference between the mechanical rotation angle and the electric rotation angle of the accelerator dial 36, and sets the engine rotation speed “A” set before the maximum mechanical rotation angle during normal operation as an upper limit. Yes. Further, in the engine control device 50, only when the traveling state of the traveling device 1 is detected by the pressure switch 37 which is the traveling state detecting means and the electrical rotation angle of the accelerator dial 36 is larger than the engine rotational speed “A”, the engine rotation speed is increased. The target engine speed is instructed by the accelerator dial 36 with the number “B” as an upper limit. Thus, the engine control device 50 performs control to change the upper limit value of the engine speed N to an appropriate value according to the operation state (running state or working state) of the turning work vehicle 100.
  • the engine control device 50 sets the engine speed N as a preferred value. Can be changed. According to the present embodiment, control is performed so that the engine speed is increased to “B” as the upper limit value of the engine speed N of the diesel engine 34 only when high output is required, such as during travel. It is possible to provide an engine control device 50 that does not require such a large-capacity pump or the like, is inexpensive, can be easily operated by an operator, and can meet high output demands.
  • the engine speed at which the required engine output can be obtained when the work vehicle is working is provided as the upper limit value, it is possible to prevent wasteful fuel consumption with low noise.
  • a desired engine output can be obtained without a troublesome switching operation at a high load during traveling, the vehicle can be driven powerfully, the traveling speed is high, and the operation can be performed without stress.

Abstract

Provided is an engine control device for a working vehicle, with which the necessary engine speed is achieved during work, and the desired output is achieved without complicated switching operations when the load on the engine is high during travel. An engine control device (50) equipped with a pressure switch (37), a controller (35), and an acceleration dial (36) for indicating the target engine speed of a diesel engine (34) to the controller (35), wherein: the controller (35) controls the engine speed according to the target engine speed when the pressure switch (37) detects that the working vehicle is traveling; and when the working vehicle is not traveling, the controller controls the engine speed according to the target engine speed while the target engine speed is equal to or less than an engine speed upper limit value set in advance, but controls the engine speed to be fixed at the engine speed upper limit value when the target engine speed is indicated to be greater than the engine speed upper limit value.

Description

作業車両のエンジン制御装置Engine control device for work vehicle
 本発明は、作業車両のエンジン制御装置に関する。 The present invention relates to an engine control device for a work vehicle.
 近年、油圧ショベルなどの建設機械(作業機)において低騒音、低燃費が求められており、エンジン自身及び付属品の回転音低減と燃料消費量低減のために、必要最低限のエンジン出力で作業機による作業が行えるように、エンジン最高回転数を必要な程度まで抑制する傾向にある。 In recent years, construction machines (work machines) such as hydraulic excavators have been required to have low noise and low fuel consumption, and work with the minimum required engine output to reduce the rotational noise and fuel consumption of the engine itself and accessories. The maximum engine speed tends to be suppressed to the necessary level so that the machine can perform work.
 一方、作業機の走行時には、走行速度と駆動力を両立するために、作業時に比較して大きな油圧出力が求められる場合がある。例えば、必要時に油圧出力を上下させる手段として油圧ポンプ最大吐出量を増減させる装置を備えた建設機械が公知となっている(例えば、特許文献1参照)。 On the other hand, when the work machine is traveling, in order to achieve both traveling speed and driving force, a large hydraulic output may be required as compared to during work. For example, a construction machine including a device that increases or decreases the maximum discharge amount of a hydraulic pump as means for increasing or decreasing the hydraulic output when necessary is known (for example, see Patent Document 1).
 特許文献1においては、エンジンによって駆動される可変容量油圧ポンプと、十分に吐出量に余裕がある油圧ポンプの可動斜板を制御して油圧ポンプの吐出流量を増減する装置を備えると共に、エンジン最高回転数の制御装置及び、作業状態検出装置を具備し、エンジン最高回転数と可変容量油圧ポンプの組み合わせをオペレータが選択することで作業状態に合わせたアクチュエータの駆動を実現しようとしている。 In Patent Document 1, a variable displacement hydraulic pump driven by an engine and a device for controlling the movable swash plate of the hydraulic pump having a sufficient discharge amount to increase or decrease the discharge flow rate of the hydraulic pump are provided. It is equipped with a rotation speed control device and a work state detection device, and an operator is trying to realize driving of the actuator in accordance with the work state by selecting a combination of the maximum engine speed and the variable displacement hydraulic pump.
特公平05-17387号公報Japanese Patent Publication No. 05-17387
 しかしながら、特許文献1に記載の技術のように、高い油圧出力に対応するためには、油圧システム(ポンプ)の容積を大きくすることや、システムの圧力を上げることで対応可能であるが、このために追加される機器の車両への搭載性の制約を受けたり、製造コスト面の不利があり、容易には対応できない。すなわち、特許文献1に記載の技術では、大容量のポンプ、圧力可変機構、及び検出装置等を搭載することによるコストアップが大きく、加えて、これらの車両への搭載性にも問題がある。また、オペレータは数多くの上記組み合わせの中から最適な組み合わせを自身で選択する必要があり、一連の作業の中で常に最適な組み合わせを選択する事は逆に難しく、低騒音、低燃費な作業が簡単には行えない。また、走行時に負荷が高く、力強い作業がしたい場合に、一々組み合わせを選択しなければならないという課題があった。つまり、作業車両による作業時に必要なエンジン回転数が得られるとともに、走行時のエンジン高負荷時に煩わしい切り替え作業をしなくても所望のエンジン出力が得られる、作業車両のエンジン制御装置が求められている。 However, as in the technique described in Patent Document 1, in order to cope with a high hydraulic output, it is possible to cope by increasing the volume of the hydraulic system (pump) or increasing the pressure of the system. For this reason, there is a restriction on the mountability of equipment to be added to the vehicle, and there is a disadvantage in terms of manufacturing cost, so it cannot be easily handled. That is, with the technique described in Patent Document 1, a large increase in cost is caused by mounting a large-capacity pump, a variable pressure mechanism, a detection device, and the like, and in addition, there is a problem in mounting properties on these vehicles. In addition, the operator needs to select the optimal combination from among the above-mentioned combinations, and it is difficult to always select the optimal combination in a series of operations. It's not easy. In addition, there is a problem that a combination must be selected one by one when the load is high during driving and a powerful work is desired. In other words, there is a need for an engine control device for a work vehicle that can obtain the engine speed required when working with the work vehicle and can obtain a desired engine output without performing a troublesome switching operation when the engine is heavily loaded during traveling. Yes.
 本発明は、作業時に必要なエンジン回転数が得られるとともに、走行時のエンジン高負荷時に煩わしい切り替え作業をしなくても所望のエンジン出力が得られる、作業車両のエンジン制御装置を提供することを目的としている。 The present invention provides an engine control device for a work vehicle that can obtain an engine speed necessary for work and can obtain a desired engine output without performing troublesome switching work when the engine is heavily loaded during travel. It is aimed.
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。 The problems to be solved by the present invention are as described above. Next, means for solving the problems will be described.
 即ち、本発明は、
 エンジンと、
 前記エンジンの動力を受けて駆動する走行装置と、
 前記エンジンの動力を受けて駆動する作業装置と、を備える作業車両に搭載され、
 前記エンジンを制御する作業車両のエンジン制御装置において、
 前記走行装置の走行状態を検出する走行状態検出手段と、
 前記エンジンの回転数を制御するコントローラと、
 前記コントローラへ前記エンジンの目標エンジン回転数を指示する指示装置と、を具備し、
 前記コントローラは、
 前記走行状態検出手段により前記作業車両が走行状態であると判断した場合には、前記指示装置により前記コントローラへ指示された目標エンジン回転数に従い前記エンジンのエンジン回転数を任意に制御し、
 一方、前記走行状態検出手段により前記作業車両が走行状態でないと判断した場合には、前記目標エンジン回転数があらかじめ設定されたエンジン回転数の上限値未満では当該目標エンジン回転数に従い前記エンジンのエンジン回転数を任意に制御し、
 前記目標エンジン回転数が前記エンジンのエンジン回転数の上限値以上に指示されたときには前記エンジン回転数の上限値に前記エンジンのエンジン回転数を固定するように制御する、としたものである。
That is, the present invention
An engine,
A traveling device driven by the power of the engine;
Mounted on a work vehicle comprising a working device driven by the power of the engine,
In an engine control device for a work vehicle that controls the engine,
Traveling state detecting means for detecting a traveling state of the traveling device;
A controller for controlling the rotational speed of the engine;
An instruction device for instructing the target engine speed of the engine to the controller,
The controller is
If it is determined by the running state detecting means that the work vehicle is in a running state, the engine rotational speed of the engine is arbitrarily controlled according to the target engine rotational speed instructed to the controller by the instruction device,
On the other hand, when it is determined by the traveling state detection means that the work vehicle is not in the traveling state, if the target engine speed is less than a preset upper limit value of the engine speed, the engine engine according to the target engine speed is set. Control the rotation speed arbitrarily,
When the target engine speed is instructed to be greater than or equal to the upper limit value of the engine speed of the engine, control is performed so that the engine speed of the engine is fixed to the upper limit value of the engine speed.
 本発明は、前記エンジン制御装置において、
 前記コントローラは、
 前記走行状態検出手段により前記作業車両が走行状態であると判断した場合には、
 前記エンジン回転数の上限値よりも高いあらかじめ設定されたエンジン回転数の上限値以下で任意に制御する、としたものである。
The present invention relates to the engine control device,
The controller is
When it is determined by the traveling state detection means that the work vehicle is in a traveling state,
Control is arbitrarily performed below a preset upper limit value of the engine speed higher than the upper limit value of the engine speed.
 本発明は、前記エンジン制御装置において、前記指示装置は、アクセルダイヤルである、としたものである。 In the engine control device according to the present invention, the pointing device is an accelerator dial.
 本発明の効果として、以下に示すような効果を奏する。 As the effects of the present invention, the following effects are obtained.
 本発明によれば、作業車両の作業時では、必要なエンジン出力が得られるエンジン回転数を上限値として設けるため、低騒音で、無駄な燃料の消費が防止できる。一方、走行時のエンジン高負荷時には、煩わしい切り替え作業をしなくても所望のエンジン出力が得られる。 According to the present invention, when the work vehicle is working, the engine speed at which the necessary engine output can be obtained is provided as the upper limit value, so that it is possible to prevent wasteful fuel consumption with low noise. On the other hand, when the engine is heavily loaded during traveling, a desired engine output can be obtained without troublesome switching work.
本発明の一実施形態に係るエンジン制御装置が搭載された旋回作業車の全体構成を示す図。The figure which shows the whole structure of the turning working vehicle by which the engine control apparatus which concerns on one Embodiment of this invention is mounted. ディーゼルエンジンの性能曲線図。The performance curve figure of a diesel engine. エンジン制御装置の構成を示す図。The figure which shows the structure of an engine control apparatus. アクセルダイヤルを示す図。The figure which shows an accelerator dial. エンジン制御装置の制御フローを示す図。The figure which shows the control flow of an engine control apparatus. 本実施形態に係るアイソクロナス制御を行なう場合の制御態様を示す性能曲線図。The performance curve figure which shows the control aspect in the case of performing the isochronous control which concerns on this embodiment. 本実施形態に係るドループ制御を行なう場合の制御態様を示す性能曲線図。The performance curve figure which shows the control aspect in the case of performing droop control concerning this embodiment. (a)ドループ制御からアイソクロナス制御を行なう場合の制御態様を示す性能曲線図、(b)アイソクロナス制御からドループ制御を行なう場合の制御態様を示す性能曲線図。(A) Performance curve diagram showing control mode when performing isochronous control from droop control, (b) Performance curve diagram showing control mode when performing droop control from isochronous control. エンジン回転数とアクセル開度センサ値との関係を示す図。The figure which shows the relationship between an engine speed and an accelerator opening sensor value.
 まず、図1を用いて、本発明の一実施形態に係るエンジン制御装置50が搭載された作業車両である旋回作業車100の全体構成について説明する。但し、エンジン制御装置50は、旋回作業車100だけでなく、農業作業車やその他の作業車両に搭載することも可能である。 First, the overall configuration of a turning work vehicle 100 that is a work vehicle equipped with an engine control device 50 according to an embodiment of the present invention will be described with reference to FIG. However, the engine control device 50 can be mounted not only on the turning work vehicle 100 but also on an agricultural work vehicle or other work vehicles.
 図1に示すように、旋回作業車100は、主に走行装置1と、作業装置2と、旋回装置3と、から構成される。
 なお、旋回装置3における旋回動作は、例えば、掘削作業に伴う動作として作業状態の一例として挙げることができる。
As shown in FIG. 1, the turning work vehicle 100 mainly includes a traveling device 1, a working device 2, and a turning device 3.
In addition, the turning operation | movement in the turning apparatus 3 can be mentioned as an example of a working state as operation | movement accompanying excavation work, for example.
 走行装置1は、ディーゼルエンジン34の動力を受けて駆動し、旋回作業車100を走行させるものである。走行装置1は、左右一対のクローラ11・11や油圧モータ12・12等から構成され、該油圧モータ12・12が左右のクローラ11・11を駆動することによって旋回作業車100の前後進を可能としている。また、油圧モータ12・12が左右のクローラ11・11を独立して駆動することによって旋回作業車100の旋回を可能としている。 The traveling device 1 is driven by the power of the diesel engine 34 and causes the turning work vehicle 100 to travel. The traveling device 1 includes a pair of left and right crawlers 11 and 11, hydraulic motors 12 and 12, and the like. The hydraulic motors 12 and 12 drive the left and right crawlers 11 and 11 so that the turning work vehicle 100 can move forward and backward. It is said. Further, the turning work vehicle 100 can be turned by the hydraulic motors 12 and 12 independently driving the left and right crawlers 11 and 11.
 作業装置2は、ディーゼルエンジン34の動力を受けて駆動し、土砂等の掘削作業を行なうものである。作業装置2は、ブーム21やアーム22、バケット23等から構成され、これらを独立して駆動することによって掘削作業を可能としている。 The working device 2 is driven by the power of the diesel engine 34 to perform excavation work such as earth and sand. The work device 2 includes a boom 21, an arm 22, a bucket 23, and the like, and enables excavation work by driving them independently.
 具体的に説明すると、ブーム21は、その一端部が旋回装置3の前部に支持されて、伸縮自在に可動するブームシリンダ21aによって回動される。また、アーム22は、その一端部がブーム21の他端部に支持されて、伸縮自在に可動するアームシリンダ22aによって回動される。そして、バケット23は、その一端部がアーム22の他端部に支持されて、伸縮自在に可動するバケットシリンダ23aによって回動される。つまり、作業装置2は、バケット23を用いて土砂等の掘削を行なう多関節構造を構成している。 More specifically, one end of the boom 21 is supported by the front portion of the turning device 3, and is rotated by a boom cylinder 21a that is movable in a telescopic manner. Further, one end of the arm 22 is supported by the other end of the boom 21 and is rotated by an arm cylinder 22a that is movable in a telescopic manner. The bucket 23 is rotated by a bucket cylinder 23a that is supported at one end by the other end of the arm 22 and is movable in a telescopic manner. That is, the work device 2 forms an articulated structure that excavates earth and sand using the bucket 23.
 なお、本旋回作業車100は、バケット23を取り付けて掘削作業を行なう仕様としているが、例えば油圧ブレーカーを取り付けて破砕作業を行なう仕様であっても良く、これに限定するものではない。 In addition, although this turning work vehicle 100 is set as the specification which attaches the bucket 23 and performs excavation work, for example, the specification which attaches a hydraulic breaker and performs crushing work may be sufficient, and it is not limited to this.
 旋回装置3は、作業装置2を旋回させるものである。旋回装置3は、旋回台31や油圧モータ32等から構成され、該油圧モータ32が旋回台31を駆動することによって作業装置2を旋回させる。また、旋回装置3には、操縦部33、ディーゼルエンジン34、該ディーゼルエンジン34を制御するエンジン制御装置50が配置されている。 The turning device 3 turns the work device 2. The swivel device 3 includes a swivel base 31, a hydraulic motor 32, and the like, and the hydraulic motor 32 drives the swivel base 31 to turn the work device 2. The turning device 3 is also provided with a control unit 33, a diesel engine 34, and an engine control device 50 that controls the diesel engine 34.
 具体的に説明すると、操縦部33には、操縦席331、操作具332及びコントロールパネル等が備えられており、オペレータは、操縦席331に着座して操作具332やコントロールパネル等を操作することによってディーゼルエンジン34の制御を行なう。更に、オペレータは、操作具332等を操作することによって各油圧モータ12・32の制御を行なう。また、オペレータは、コントロールパネルに配置されたアクセルダイヤル36(図4参照)を操作することによってディーゼルエンジン34のエンジン回転数Nを設定する。このとき、詳細は後述するが、アクセルダイヤル36で指示された目標エンジン回転数(単に、アクセル指示回転数ともいう)がディーゼルエンジン34の目標エンジン回転数としてコントローラ35へ指示される。こうして、オペレータは、旋回作業車100の操縦を行なうのである。クローラ11を駆動する油圧モータ12には、第1走行状態検出手段として、圧力スイッチ37が配置されている。該圧力スイッチ37は、油圧モータ12における油圧回路の走行モータ駆動油路に配置され、オペレータにより走行操作されたことを検出することが可能である。操作具332の回動基部には、走行操作したことを検出するためにスイッチ等により構成した第2走行状態検出手段(図示せず)が配置されている。
 なお、走行状態検出手段の構成、及び走行状態検出手段の配置位置は限定するものではなく、車軸の回転を検出する回転センサで検知してもよい。また、本実施形態では、走行状態検出手段として、圧力スイッチ37を用いた構成について、具体的に説明するが、圧力スイッチ37の代わりに第2走行状態検出手段を用いた構成であってもよい。
More specifically, the control unit 33 includes a control seat 331, an operation tool 332, a control panel, and the like. An operator sits on the control seat 331 and operates the operation tool 332, the control panel, and the like. To control the diesel engine 34. Further, the operator controls the hydraulic motors 12 and 32 by operating the operation tool 332 and the like. Further, the operator sets the engine speed N of the diesel engine 34 by operating an accelerator dial 36 (see FIG. 4) arranged on the control panel. At this time, as will be described in detail later, the target engine speed indicated by the accelerator dial 36 (also simply referred to as the accelerator instruction speed) is instructed to the controller 35 as the target engine speed of the diesel engine 34. Thus, the operator controls the turning work vehicle 100. The hydraulic motor 12 that drives the crawler 11 is provided with a pressure switch 37 as first traveling state detection means. The pressure switch 37 is disposed in the traveling motor drive oil passage of the hydraulic circuit in the hydraulic motor 12 and can detect that the traveling operation has been performed by the operator. A second traveling state detection means (not shown) configured by a switch or the like is disposed at the rotation base of the operation tool 332 to detect that the traveling operation has been performed.
The configuration of the traveling state detection unit and the arrangement position of the traveling state detection unit are not limited, and may be detected by a rotation sensor that detects the rotation of the axle. In the present embodiment, the configuration using the pressure switch 37 as the traveling state detection unit will be described in detail. However, a configuration using the second traveling state detection unit instead of the pressure switch 37 may be used. .
 なお、アクセルダイヤル36とディーゼルエンジン34は、コントローラ35を介して電気的に接続されており、コントローラ35は、アクセルダイヤル36からの電気信号に基づいて制御信号を作成するとともに、作成した制御信号をディーゼルエンジン34に出力する。すなわち、コントローラ35は、ディーゼルエンジン34の出力を制御する装置である。つまり、コントローラ35は、オペレータによるアクセルダイヤル36の操作に基づいてディーゼルエンジン34のエンジン回転数Nの制御を行なうのである。 The accelerator dial 36 and the diesel engine 34 are electrically connected via a controller 35. The controller 35 creates a control signal based on the electrical signal from the accelerator dial 36 and outputs the created control signal. Output to the diesel engine 34. That is, the controller 35 is a device that controls the output of the diesel engine 34. That is, the controller 35 controls the engine speed N of the diesel engine 34 based on the operation of the accelerator dial 36 by the operator.
 以上が旋回作業車100の全体構成であるが、以下にディーゼルエンジン34の制御態様について説明する。 The above is the overall configuration of the turning work vehicle 100, and the control mode of the diesel engine 34 will be described below.
 まず、図2を用いて、ディーゼルエンジン34のエンジン回転数NとエンジントルクTとの関係を示した性能曲線図について説明する。 First, a performance curve diagram showing the relationship between the engine speed N of the diesel engine 34 and the engine torque T will be described with reference to FIG.
 図2に示すように、ディーゼルエンジン34のエンジン回転数Nは、ローアイドルエンジン回転数Nminからハイアイドルエンジン回転数Nmaxまで任意に変更可能とされる。そして、ディーゼルエンジン34は、エンジン回転数N毎に設定された最高トルク点を結んで成るトルクカーブTcurveに囲まれた範囲内で自在に運転可能とされる。 As shown in FIG. 2, the engine speed N of the diesel engine 34 can be arbitrarily changed from a low idle engine speed Nmin to a high idle engine speed Nmax. The diesel engine 34 can be freely operated within a range surrounded by a torque curve Tcurve formed by connecting the maximum torque points set for each engine speed N.
 なお、ディーゼルエンジン34のエンジントルクTは、エンジン回転数Nmにおける最高トルク点で最大となる(最大トルク点Tm)。換言すると、ディーゼルエンジン34は、エンジン回転数Nmにおける最高トルク点Tmで最大エンジントルクTmaxとなるようにトルクカーブTcurveが形成されているのである。 The engine torque T of the diesel engine 34 becomes maximum at the maximum torque point at the engine speed Nm (maximum torque point Tm). In other words, in the diesel engine 34, the torque curve Tcurve is formed so as to have the maximum engine torque Tmax at the maximum torque point Tm at the engine speed Nm.
 また、ディーゼルエンジン34のエンジン回転数NとエンジントルクTとの関数であるエンジン出力は、エンジン回転数Neにおける最高トルク点(エンジントルクTe)で最大となる。換言すると、ディーゼルエンジン34は、エンジン回転数Neにおける最高トルク点(エンジントルクTe)で最大エンジン出力となるようにトルクカーブTcurveが形成されているのである。 Further, the engine output, which is a function of the engine speed N of the diesel engine 34 and the engine torque T, becomes maximum at the maximum torque point (engine torque Te) at the engine speed Ne. In other words, in the diesel engine 34, the torque curve Tcurve is formed so that the maximum engine output is obtained at the maximum torque point (engine torque Te) at the engine speed Ne.
 更に、ディーゼルエンジン34のエンジン回転数Nは、該ディーゼルエンジン34に負荷が掛かっていないときにおける最高エンジン回転数Nhでハイアイドルエンジン回転数Nmaxとなる。換言すると、ディーゼルエンジン34は、該ディーゼルエンジン34に負荷が掛かっていないときにおける最高エンジン回転数Nhがハイアイドルエンジン回転数NmaxとなるようにトルクカーブTcurveが形成されているのである。 Furthermore, the engine speed N of the diesel engine 34 becomes the high idle engine speed Nmax at the maximum engine speed Nh when the diesel engine 34 is not loaded. In other words, the torque curve Tcurve is formed in the diesel engine 34 so that the maximum engine speed Nh when the diesel engine 34 is not loaded becomes the high idle engine speed Nmax.
 次に、図2を用いて、アイソクロナス制御を行なった場合の制御態様ならびにドループ制御を行った場合の制御態様について説明する。 Next, the control mode when isochronous control is performed and the control mode when droop control is performed will be described with reference to FIG.
 図2に示すように、アイソクロナス制御は、ディーゼルエンジン34に掛かる負荷の増減に関わらずエンジン回転数Nを一定とする制御パターンである。ここで、ディーゼルエンジン34がエンジン回転数NxにおけるエンジントルクTxで運転している場合(図2中X1点参照。)を想定すると、エンジン制御装置50は、ディーゼルエンジン34に掛かる負荷が増加したときには該ディーゼルエンジン34のエンジン回転数Nxを一定に維持しつつ、エンジントルクTを増大させる(図2中Xa2点参照。)。 As shown in FIG. 2, isochronous control is a control pattern in which the engine speed N is constant regardless of the increase or decrease of the load applied to the diesel engine 34. Here, assuming that the diesel engine 34 is operating at the engine torque Tx at the engine speed Nx (see the point X1 in FIG. 2), the engine control device 50 determines that the load on the diesel engine 34 has increased. The engine torque T is increased while maintaining the engine speed Nx of the diesel engine 34 constant (see point Xa2 in FIG. 2).
 また、エンジン制御装置50は、ディーゼルエンジン34に掛かる負荷が低減したときには該ディーゼルエンジン34のエンジン回転数Nxを一定に維持しつつ、エンジントルクTを減少させる(図2中Xa3点参照。)。 Further, when the load applied to the diesel engine 34 is reduced, the engine control device 50 reduces the engine torque T while keeping the engine speed Nx of the diesel engine 34 constant (see point Xa3 in FIG. 2).
 このようにアイソクロナス制御においては、ディーゼルエンジン34に掛かる負荷の増減に関わらずエンジン回転数Nを一定とすることができるため、該ディーゼルエンジン34の動力を走行装置1等に安定して伝達することが可能となる。 As described above, in the isochronous control, the engine speed N can be made constant regardless of the increase or decrease of the load applied to the diesel engine 34, and therefore, the power of the diesel engine 34 can be stably transmitted to the traveling device 1 or the like. Is possible.
 一方、ドループ制御は、ディーゼルエンジン34に掛かる負荷の増減に応じてエンジン回転数Nを変化させる制御パターンである。ここで、ディーゼルエンジン34がエンジン回転数NxにおけるエンジントルクTxで運転している場合(図2中X1点参照。)を想定すると、コントローラ35は、ディーゼルエンジン34に掛かる負荷が増加したときには該ディーゼルエンジン34のエンジン回転数Nを漸減させつつ、エンジントルクTを増大させる(図2中Xd2点参照。)。 On the other hand, the droop control is a control pattern in which the engine speed N is changed according to the increase or decrease of the load applied to the diesel engine 34. Here, assuming that the diesel engine 34 is operating at the engine torque Tx at the engine rotational speed Nx (see the point X1 in FIG. 2), the controller 35 detects the diesel engine 34 when the load on the diesel engine 34 increases. The engine torque T is increased while gradually decreasing the engine speed N of the engine 34 (see point Xd2 in FIG. 2).
 また、コントローラ35は、ディーゼルエンジン34に掛かる負荷が低減したときには該ディーゼルエンジン34のエンジン回転数Nを漸増させつつ、エンジントルクTを減少させる(図2中Xd3点参照。)。 Further, when the load applied to the diesel engine 34 is reduced, the controller 35 decreases the engine torque T while gradually increasing the engine speed N of the diesel engine 34 (see point Xd3 in FIG. 2).
 このようにドループ制御においては、ディーゼルエンジン34に掛かる負荷の増減に応じてエンジン回転数Nが変化する。 Thus, in the droop control, the engine speed N changes according to the increase or decrease of the load applied to the diesel engine 34.
 以上がディーゼルエンジン34の制御パターンとして、アイソクロナス制御ならびにドループ制御を行なった場合の制御態様であるが、次に、図3を用いて、ディーゼルエンジン34のエンジン回転数Nを制御するエンジン制御装置50の構成について説明する。 The above is the control mode when isochronous control and droop control are performed as the control pattern of the diesel engine 34. Next, referring to FIG. 3, an engine control device 50 for controlling the engine speed N of the diesel engine 34 is used. The configuration of will be described.
 図3に示すように、エンジン制御装置50は、コントローラ35と、アクセルダイヤル36と、走行状態検出手段である圧力スイッチ37と、ディーゼルエンジン34のエンジン回転数Nを制御するための切替手段である切替リレー38と、を主に具備している。コントローラ35には、直流電源であるバッテリ39が接続され、該バッテリ39からヒューズ40を介してコントローラ35や切替リレー38等に電力が供給される。 As shown in FIG. 3, the engine control device 50 is a switching unit for controlling a controller 35, an accelerator dial 36, a pressure switch 37 that is a traveling state detection unit, and an engine speed N of the diesel engine 34. A switching relay 38 is mainly provided. A battery 39 that is a DC power supply is connected to the controller 35, and power is supplied from the battery 39 to the controller 35, the switching relay 38, and the like via the fuse 40.
 コントローラ35は、ディーゼルエンジン34のエンジン回転数Nの制御やその他種々の制御を行うためのものであり、主として中央処理装置や記憶装置等により構成される。コントローラ35は、アクセルダイヤル36、走行状態検出手段である圧力スイッチ37、及び、切替リレー38等と電気的に接続されており、アクセルダイヤル36や圧力スイッチ37等から入力された電気信号に基づいて制御信号を作成する。切替リレー38は、ディーゼルエンジン34が有するエンジン回転数制御部であるアクチュエータ34aに電気的に接続されている。アクチュエータ34aは、前記切替リレー38により入り切りされるアクチュエータであり、該アクチュエータによりディーゼルエンジン34の燃料噴射量や噴射時期が変更されることでエンジン回転数Nが制御される。このようにして、コントローラ35は、作成した制御信号をディーゼルエンジン34に出力する。また、コントローラ35には、ディーゼルエンジン34の種々の制御を行うために図示しないアクセル開度センサ等の各種センサの出力信号が入力される。 The controller 35 is for performing control of the engine speed N of the diesel engine 34 and various other controls, and is mainly composed of a central processing unit, a storage device, and the like. The controller 35 is electrically connected to an accelerator dial 36, a pressure switch 37 that is a traveling state detection means, a switching relay 38, and the like, and based on an electrical signal input from the accelerator dial 36, the pressure switch 37, or the like. Create a control signal. The switching relay 38 is electrically connected to an actuator 34 a that is an engine speed control unit of the diesel engine 34. The actuator 34a is an actuator that is turned on and off by the switching relay 38, and the engine speed N is controlled by changing the fuel injection amount and the injection timing of the diesel engine 34 by the actuator. In this way, the controller 35 outputs the created control signal to the diesel engine 34. The controller 35 receives output signals from various sensors such as an accelerator opening sensor (not shown) for performing various controls of the diesel engine 34.
 コントローラ35には、オペレータの要求に応じてディーゼルエンジン34の制御を行なうべく、アイソクロナス制御の制御パターンやドループ制御の制御パターンが複数記憶されている。そして、コントローラ35は、これらの制御パターンのうちから作業内容や走行状態等の状況に応じて最適な制御パターンを選択し、選択した制御パターンに基づいて制御信号を作成してディーゼルエンジン34に出力する。また、コントローラ35は、後述する制御フローに従って、ディーゼルエンジン34のエンジン回転数Nの制御を行うとともに、所定のエンジン回転数Nにおいて、アイソクロナス制御の制御パターンやドループ制御における制御パターンに基づいてディーゼルエンジン34の制御を行う。こうすることで、コントローラ35は、オペレータが要求するディーゼルエンジン34の運転を実現するのである。 The controller 35 stores a plurality of control patterns for isochronous control and control patterns for droop control in order to control the diesel engine 34 in response to an operator request. Then, the controller 35 selects an optimal control pattern from these control patterns according to the situation such as the work content and the running state, creates a control signal based on the selected control pattern, and outputs it to the diesel engine 34. To do. The controller 35 controls the engine speed N of the diesel engine 34 in accordance with a control flow to be described later, and at a predetermined engine speed N, the diesel engine is based on a control pattern for isochronous control or a control pattern for droop control. 34 is controlled. By doing so, the controller 35 realizes the operation of the diesel engine 34 requested by the operator.
 アクセルダイヤル36は、コントローラ35へディーゼルエンジン34の目標エンジン回転数を指示する指示装置である。図4に示すように、アクセルダイヤル36は、オペレータがダイヤル36aを手で回動して目標エンジン回転数を設定可能であり、ディーゼルエンジン34の目標エンジン回転数を操作調節するためのダイヤル式(回転式)のスイッチである。すなわち、アクセルダイヤル36は、ディーゼルエンジン34のエンジン回転数Nの目標値(最大出力の大きさ)を作業内容等に応じた大きさに設定するためのものである。アクセルダイヤル36には、オペレータの手動によりダイヤルを機械的に回転させることができる角度範囲として、図4に示すような機械的回転角が予め設定されている。アクセルダイヤル36により設定されたダイヤル36aの位置(機械的回転角の所定角度位置)は、コントローラ35へ電気信号として出力される。また、アクセルダイヤル36には、当該機械的回転角よりも狭角であり、機械的回転角によるエンジン回転数Nの最大値よりも小さいエンジン回転数「B」を上限値とする電気的に検知される電気的回転角が予め設定されている。このように、本実施形態では、アクセルダイヤル36において機械的回転角と電気的回転角とに所定の角度差を設けている。電気的回転角においては、エンジン回転数「B」よりも小さいエンジン回転数「A」も予め設定されている。詳細は後述するが、オペレータがアクセルダイヤル36により所望のエンジン回転数Nとなるように操作した場合、コントローラ35により、旋回作業車100の走行状態や作業状態に応じた出力が得られるように、エンジン回転数Nが設定される。例えば、オペレータによってアクセルダイヤル36が操作されると、操作内容(オペレータに設定された目標エンジン回転数)がコントローラ35に伝達され、該コントローラ35が所定の制御フローに従い、該制御フローに基づいた制御信号がディーゼルエンジン34へ伝達され、ディーゼルエンジン34の出力が制御される。 The accelerator dial 36 is an instruction device for instructing the target engine speed of the diesel engine 34 to the controller 35. As shown in FIG. 4, the accelerator dial 36 can be set by the operator to manually rotate the dial 36 a to set the target engine speed, and the dial type (for adjusting the target engine speed of the diesel engine 34 ( This is a rotary switch. That is, the accelerator dial 36 is for setting the target value (maximum output magnitude) of the engine speed N of the diesel engine 34 to a magnitude according to the work content and the like. A mechanical rotation angle as shown in FIG. 4 is set in advance in the accelerator dial 36 as an angle range in which the dial can be mechanically rotated manually by an operator. The position of the dial 36a set by the accelerator dial 36 (a predetermined angular position of the mechanical rotation angle) is output to the controller 35 as an electrical signal. Further, the accelerator dial 36 is electrically detected with an engine rotation speed “B” that is narrower than the mechanical rotation angle and smaller than the maximum value of the engine rotation speed N due to the mechanical rotation angle as an upper limit value. The electrical rotation angle to be performed is set in advance. As described above, in the present embodiment, the accelerator dial 36 has a predetermined angular difference between the mechanical rotation angle and the electrical rotation angle. In the electrical rotation angle, an engine speed “A” smaller than the engine speed “B” is also set in advance. Although details will be described later, when the operator operates the accelerator dial 36 to achieve a desired engine speed N, the controller 35 can obtain an output according to the traveling state and working state of the turning work vehicle 100. An engine speed N is set. For example, when the accelerator dial 36 is operated by the operator, the operation content (target engine speed set by the operator) is transmitted to the controller 35, and the controller 35 performs control based on the control flow according to a predetermined control flow. A signal is transmitted to the diesel engine 34, and the output of the diesel engine 34 is controlled.
 なお、アクセルダイヤル36は、オペレータが操縦席331に着座した状態で操作することができるよう、操縦部33に設けられたコントロールパネルに配置されている。 The accelerator dial 36 is disposed on a control panel provided in the control unit 33 so that an operator can operate the seat while sitting on the control seat 331.
 走行状態検出手段である圧力スイッチ37は、走行装置1の油圧モータ12に配置され、走行装置1の駆動状態を検出するものである。本実施形態において圧力スイッチ37は、油圧モータ12の駆動状態を把握することによって走行装置1の走行状態を検出する。
 なお、走行状態検出手段としては、圧力スイッチ37の代わりに、ロータリーポテンショメータ等で構成され、操作具332の操作位置を把握することによって走行装置1の駆動状態を検出するポジションセンサであってもよく、本実施形態に特に限定するものではない。
The pressure switch 37 serving as a traveling state detection unit is disposed in the hydraulic motor 12 of the traveling device 1 and detects the driving state of the traveling device 1. In the present embodiment, the pressure switch 37 detects the traveling state of the traveling device 1 by grasping the driving state of the hydraulic motor 12.
The travel state detection means may be a position sensor that is configured by a rotary potentiometer or the like instead of the pressure switch 37 and detects the drive state of the travel device 1 by grasping the operation position of the operation tool 332. The present embodiment is not particularly limited.
 切替リレー38は、ディーゼルエンジン34が有するエンジン回転数制御部であるアクチュエータ34aに電気的に接続されている。切替リレー38は、コントローラ35から出力される制御信号に応じて、エンジン回転数Nの最高回転数を制御するために用いられる。コントローラ35は、切替リレー38により、ディーゼルエンジン34が有するアクチュエータ34aを制御して、ディーゼルエンジン34の燃料噴射量や噴射時期を制御し、旋回作業車100の作業状態や走行状態に応じてエンジン回転数Nの最高回転数を制御する。
 なお、切替リレー38は、エンジン制御装置50において必須の構成ではなく、必要に応じて適宜用いられるものである。
The switching relay 38 is electrically connected to an actuator 34 a that is an engine speed control unit of the diesel engine 34. The switching relay 38 is used to control the maximum engine speed N in accordance with a control signal output from the controller 35. The controller 35 controls the actuator 34a of the diesel engine 34 by the switching relay 38 to control the fuel injection amount and the injection timing of the diesel engine 34, and the engine rotation according to the working state and traveling state of the turning work vehicle 100. Control the maximum number of revolutions N.
Note that the switching relay 38 is not an essential component in the engine control device 50, and is appropriately used as necessary.
 以上がディーゼルエンジン34を制御するエンジン制御装置50の構成であるが、次に、図5を用いて、エンジン制御装置50の制御フローについて説明する。また、図6は、本実施形態に係るアイソクロナス制御を行なう場合の制御態様を示す性能曲線図である。 The above is the configuration of the engine control apparatus 50 that controls the diesel engine 34. Next, the control flow of the engine control apparatus 50 will be described with reference to FIG. FIG. 6 is a performance curve diagram showing a control mode when performing isochronous control according to the present embodiment.
 まず、ステップS101においてコントローラ35は、旋回作業車(本機)100の走行装置1が走行状態であるか走行以外の状態(例えば、停止状態)であるかを判断する。つまり、コントローラ35は、走行状態検出手段である圧力スイッチ37により旋回作業車100が走行しているか否かの判断を行なう。 First, in step S101, the controller 35 determines whether the traveling device 1 of the turning work vehicle (this machine) 100 is in a traveling state or in a state other than traveling (for example, a stopped state). That is, the controller 35 determines whether or not the turning work vehicle 100 is traveling by the pressure switch 37 that is the traveling state detecting means.
 具体的には、ステップS101においてコントローラ35は、圧力スイッチ37により油圧モータ12・12の油圧が走行状態であるか走行以外の状態であるかを判断し、当該各状態に応じてコントローラ35は、ディーゼルエンジン34のエンジン回転数Nをどのように設定するかの判断を行なう。 Specifically, in step S101, the controller 35 determines whether the hydraulic pressure of the hydraulic motors 12 and 12 is in a traveling state or a state other than traveling by using the pressure switch 37, and according to each of the states, the controller 35 It is determined how to set the engine speed N of the diesel engine 34.
 そして、コントローラ35は、圧力スイッチ37により走行装置1が走行状態である、即ち、旋回作業車100が走行していると判断した場合はステップS105へ移行し、走行装置1が走行以外の状態である、例えば、走行装置1が停止していると判断した場合はステップS102へ移行する。 When the controller 35 determines that the traveling device 1 is in a traveling state by the pressure switch 37, that is, the turning work vehicle 100 is traveling, the controller 35 proceeds to step S105, and the traveling device 1 is in a state other than traveling. For example, when it is determined that the traveling device 1 is stopped, the process proceeds to step S102.
 ステップS105においてコントローラ35は、アクセルダイヤル36により該コントローラ35へ指示された目標エンジン回転数に従いディーゼルエンジン34のエンジン回転数Nを制御する。具体的には、ステップS105においてコントローラ35は、エンジン回転数Nがエンジン回転数「B」以下で、かつアクセルダイヤル36により該コントローラ35へ指示された任意の目標エンジン回転数に従いディーゼルエンジン34が駆動するように制御する。すなわち、コントローラ35は、走行時に必要な走行スピードと駆動力を確保するために走行状態の時のみ、エンジン回転数Nの上限値をエンジン回転数「B」に変更する。コントローラ35は、エンジン回転数「B」が上限値となる電気的回転角(図4参照)の角度範囲内でアクセルダイヤル36により指示される目標エンジン回転数に従って制御信号を作成し、作成した制御信号をディーゼルエンジン34に出力する。 In step S105, the controller 35 controls the engine speed N of the diesel engine 34 in accordance with the target engine speed instructed to the controller 35 by the accelerator dial 36. Specifically, in step S105, the controller 35 drives the diesel engine 34 according to an arbitrary target engine speed instructed to the controller 35 by the accelerator dial 36 when the engine speed N is equal to or lower than the engine speed “B”. Control to do. That is, the controller 35 changes the upper limit value of the engine speed N to the engine speed “B” only in the running state in order to ensure the running speed and driving force necessary for running. The controller 35 creates a control signal in accordance with the target engine speed designated by the accelerator dial 36 within the angle range of the electrical rotation angle (see FIG. 4) where the engine speed “B” is the upper limit value, and the created control. A signal is output to the diesel engine 34.
 具体的には、ステップS105においてコントローラ35は、該コントローラ35が記憶している制御パターンから、例えばアイソクロナス制御であってエンジン回転数「B」を上限値とした後述する第2制御パターンを選択し、選択した第2制御パターンに基づいて制御信号を作成する。そして、コントローラ35は、作成した制御信号をディーゼルエンジン34に出力する。 Specifically, in step S105, the controller 35 selects, from the control pattern stored in the controller 35, a second control pattern, which will be described later, for example, isochronous control with the engine speed “B” as an upper limit value. A control signal is generated based on the selected second control pattern. Then, the controller 35 outputs the created control signal to the diesel engine 34.
 これにより、図6に示すように、走行装置1の走行状態(ステップS101のYES)においては、ディーゼルエンジン34の第2制御パターンが選択され、該ディーゼルエンジン34に掛かる負荷の増減に関わらずエンジン回転数Nを一定とするアイソクロナス制御となり、ディーゼルエンジン34のエンジン回転数Nの上限値は、エンジン回転数「B」となる。 As a result, as shown in FIG. 6, in the traveling state of the traveling device 1 (YES in step S101), the second control pattern of the diesel engine 34 is selected, and the engine regardless of the increase or decrease of the load applied to the diesel engine 34. The isochronous control is performed so that the rotational speed N is constant, and the upper limit value of the engine rotational speed N of the diesel engine 34 is the engine rotational speed “B”.
 ここで、図6に示すエンジン回転数「B」が上限値となる、ディーゼルエンジン34の第2制御パターンは、旋回作業車100の走行装置1が走行状態である場合に用いられる制御パターンである。この第2制御パターンの場合、ディーゼルエンジン34は、アイソクロナス線b(トルクが変化してもエンジン回転数Nがエンジン回転数「B」となる線)と、エンジン回転数N毎に設定された最高トルク点を結んで成るトルクカーブTcurveに囲まれた範囲内で任意に運転可能とされる。また、この第2制御パターンの場合、エンジン出力は、エンジン回転数「B」における最高トルク点(アイソクロナス線bにおける最高トルク点:第2定格出力点)で最大となる。換言すると、この第2制御パターンの場合、ディーゼルエンジン34は、エンジン回転数「B」における最高トルク点で最大エンジン出力となるようにトルクカーブTcurveが形成されているのである。また、例えば、旋回作業車100の走行装置1が走行以外の状態から走行状態に移行した場合は、図6に示すように、コントローラ35により、アイソクロナス線aからアイソクロナス線bに変更され、アイソクロナス制御のままエンジン回転数Nの上限値がエンジン回転数「A」からエンジン回転数「B」にアップされる。 Here, the second control pattern of the diesel engine 34 in which the engine speed “B” shown in FIG. 6 is the upper limit value is a control pattern used when the traveling device 1 of the turning work vehicle 100 is in the traveling state. . In the case of this second control pattern, the diesel engine 34 has an isochronous line b (a line where the engine speed N becomes the engine speed “B” even if the torque changes) and the maximum set for each engine speed N. Operation can be arbitrarily performed within a range surrounded by a torque curve Tcurve formed by connecting torque points. In the case of this second control pattern, the engine output becomes maximum at the maximum torque point at the engine speed “B” (maximum torque point on the isochronous line b: second rated output point). In other words, in the case of this second control pattern, the torque curve Tcurve is formed so that the diesel engine 34 has the maximum engine output at the maximum torque point at the engine speed “B”. For example, when the traveling device 1 of the turning work vehicle 100 shifts from a state other than traveling to a traveling state, the controller 35 changes the isochronous line a to the isochronous line b as shown in FIG. The upper limit value of the engine speed N is increased from the engine speed “A” to the engine speed “B”.
 一方、走行装置1が走行状態でないと判断してステップS102へ移行した場合は以下の制御フローとなる。 On the other hand, when it is determined that the traveling device 1 is not in the traveling state and the process proceeds to step S102, the following control flow is performed.
 ステップS102においてコントローラ35は、目標エンジン回転数を指示する指示装置であるアクセルダイヤル36によるダイヤル36aの位置がどのような状態にあるかを判断する。すなわち、コントローラ35は、アクセルダイヤル36が指示している目標エンジン回転数を把握し、該目標エンジン回転数がエンジン回転数「A」以上であるかエンジン回転数「A」未満であるかの判断を行なう。
 なお、本実施形態においては、エンジン回転数「A」を上限値とするアイソクロナス制御の第1制御パターンと、エンジン回転数「A」よりも高いエンジン回転数「B」を上限値とするアイソクロナス制御の第2制御パターンとがコントローラ35に予め記憶されており、コントローラ35は、適用条件に応じて、いずれかを選択、指示するものとされる。
In step S102, the controller 35 determines in what state the position of the dial 36a by the accelerator dial 36, which is an instruction device for instructing the target engine speed. In other words, the controller 35 grasps the target engine speed indicated by the accelerator dial 36 and determines whether the target engine speed is equal to or higher than the engine speed “A” or lower than the engine speed “A”. To do.
In the present embodiment, the first control pattern of isochronous control with the engine speed “A” as the upper limit value and the isochronous control with the engine speed “B” higher than the engine speed “A” as the upper limit value. The second control pattern is stored in advance in the controller 35, and the controller 35 selects and instructs one of them according to the application conditions.
 そして、コントローラ35は、アクセルダイヤル36が指示している目標エンジン回転数(単に、アクセル指示回転数ともいう)がエンジン回転数「A」以上であると判断した場合はステップS104へ移行し、目標エンジン回転数がエンジン回転数「A」未満であると判断した場合はステップS103へ移行する。 If the controller 35 determines that the target engine speed indicated by the accelerator dial 36 (simply referred to as the accelerator instruction speed) is equal to or higher than the engine speed “A”, the controller 35 proceeds to step S104. When it is determined that the engine speed is less than the engine speed “A”, the process proceeds to step S103.
 ステップS103においてコントローラ35は、目標エンジン回転数があらかじめ設定されたエンジン回転数の上限値であるエンジン回転数「A」未満では当該目標エンジン回転数に従いディーゼルエンジン34のエンジン回転数Nを任意に制御する。すなわち、ステップS103においてコントローラ35は、エンジン回転数「A」未満で、かつアクセルダイヤル36により指示された任意の目標エンジン回転数でディーゼルエンジン34が駆動するように制御する。つまり、コントローラ35は、通常、作業装置2での作業時には必要十分なエンジン回転数「A」までしか上昇しないようにエンジン回転数Nを制御する。コントローラ35は、エンジン回転数「A」が上限値となる電気的回転角(図4参照)の角度範囲内でアクセルダイヤル36により指示される目標エンジン回転数に従って制御信号を作成し、作成した制御信号をディーゼルエンジン34に出力する。このように、作業時に必要十分なエンジン回転数Nの上限値としてエンジン回転数「A」を設けることで、低騒音、低燃費作業を行うことができる。 In step S103, the controller 35 arbitrarily controls the engine speed N of the diesel engine 34 according to the target engine speed when the target engine speed is less than the engine speed “A” that is a preset upper limit value of the engine speed. To do. That is, in step S103, the controller 35 controls the diesel engine 34 to be driven at an arbitrary target engine speed that is less than the engine speed “A” and instructed by the accelerator dial 36. That is, the controller 35 normally controls the engine speed N so that the engine speed increases only to a necessary and sufficient engine speed “A” when working on the work device 2. The controller 35 creates a control signal in accordance with the target engine speed designated by the accelerator dial 36 within the angle range of the electrical rotation angle (see FIG. 4) where the engine speed “A” is the upper limit value, and the created control. A signal is output to the diesel engine 34. Thus, by providing the engine speed “A” as the upper limit value of the engine speed N that is necessary and sufficient at the time of work, low-noise and fuel-efficient work can be performed.
 具体的には、ステップS103においてコントローラ35は、該コントローラ35が記憶している制御パターンから、詳細は後述するが、例えばアイソクロナス制御であってエンジン回転数「A」を上限値とした第1制御パターンを選択し、選択した第1制御パターンに基づいて制御信号を作成する。そして、コントローラ35は、作成した制御信号をディーゼルエンジン34に出力する。 Specifically, in step S103, the controller 35 uses the control pattern stored in the controller 35 to perform the first control with the engine speed “A” as an upper limit, for example, isochronous control, as will be described in detail later. A pattern is selected, and a control signal is created based on the selected first control pattern. Then, the controller 35 outputs the created control signal to the diesel engine 34.
 これにより、図6に示すように、走行装置1の走行以外の状態(ステップS101のNO)かつ目標エンジン回転数がエンジン回転数「A」未満の場合(ステップS102のNO)においては、ディーゼルエンジン34の第1制御パターンが選択され、該ディーゼルエンジン34に掛かる負荷の増減に関わらずエンジン回転数Nを一定とするアイソクロナス制御となり、ディーゼルエンジン34のエンジン回転数Nの上限値は、エンジン回転数「A」となる。 As a result, as shown in FIG. 6, when the traveling device 1 is in a state other than traveling (NO in step S101) and the target engine speed is less than the engine speed “A” (NO in step S102), the diesel engine The first control pattern 34 is selected, and isochronous control is performed in which the engine speed N is constant regardless of the increase or decrease in the load applied to the diesel engine 34. The upper limit value of the engine speed N of the diesel engine 34 is the engine speed. “A”.
 ここで、図6に示すエンジン回転数「A」が上限値となる、ディーゼルエンジン34の第1制御パターンは、旋回作業車100の走行装置1が走行以外の状態(例えば、停止状態)である場合に用いられる制御パターンである。この第1制御パターンの場合、ディーゼルエンジン34は、アイソクロナス線a(トルクが変化してもエンジン回転数Nがエンジン回転数「A」となる線)と、エンジン回転数N毎に設定された最高トルク点を結んで成るトルクカーブTcurveに囲まれた範囲内で任意に運転可能とされる。また、この第1制御パターンの場合、エンジン出力は、エンジン回転数「A」における最高トルク点(アイソクロナス線aにおける最高トルク点:第1定格出力点)で最大となる。換言すると、この第1制御パターンの場合、ディーゼルエンジン34は、エンジン回転数「A」における最高トルク点で最大エンジン出力となるようにトルクカーブTcurveが形成されているのである。 Here, the first control pattern of the diesel engine 34 in which the engine speed “A” shown in FIG. 6 is an upper limit value is a state (for example, a stopped state) in which the traveling device 1 of the turning work vehicle 100 is not traveling. It is a control pattern used in the case. In the case of this first control pattern, the diesel engine 34 has an isochronous line a (a line where the engine speed N becomes the engine speed “A” even if the torque changes) and the maximum set for each engine speed N. Operation can be arbitrarily performed within a range surrounded by a torque curve Tcurve formed by connecting torque points. In the case of this first control pattern, the engine output becomes maximum at the maximum torque point at the engine speed “A” (maximum torque point on the isochronous line a: first rated output point). In other words, in the case of this first control pattern, the torque curve Tcurve is formed so that the diesel engine 34 has the maximum engine output at the maximum torque point at the engine speed “A”.
 また、ステップS104においてコントローラ35は、目標エンジン回転数がディーゼルエンジン34のエンジン回転数Nの上限値であるエンジン回転数「A」以上に指示されたときにはエンジン回転数「A」にディーゼルエンジン34のエンジン回転数Nを固定するように制御する。すなわち、コントローラ35は、アクセルダイヤル36により指示された目標エンジン回転数がエンジン回転数「A」となる場合、及び該エンジン回転数「A」を超えた場合に、作業装置2での作業時には必要十分なエンジン回転数「A」に固定するようにエンジン回転数Nを制御する。ステップS104においてコントローラ35は、エンジン回転数「A」が目標エンジン回転数となるように制御信号を作成し、作成した制御信号をディーゼルエンジン34に出力する。このように、作業時に必要十分なエンジン回転数Nの上限値としてエンジン回転数「A」を超えないようにするとともにエンジン回転数「A」に固定する制御を行うことで、低騒音、低燃費作業を行うことができる。 In step S104, when the target engine speed is instructed to be equal to or higher than the engine speed “A” that is the upper limit value of the engine speed N of the diesel engine 34, the controller 35 sets the engine speed “A” to the engine speed “A”. The engine speed N is controlled to be fixed. That is, the controller 35 is necessary when working on the work device 2 when the target engine speed designated by the accelerator dial 36 becomes the engine speed “A” and exceeds the engine speed “A”. The engine speed N is controlled so as to be fixed at a sufficient engine speed “A”. In step S <b> 104, the controller 35 creates a control signal so that the engine speed “A” becomes the target engine speed, and outputs the created control signal to the diesel engine 34. As described above, by controlling to prevent the engine speed “A” from exceeding the engine speed “A” as the upper limit value of the engine speed N that is necessary and sufficient at the time of work, the control is performed to fix the engine speed “A”. Work can be done.
 具体的には、ステップS104においてコントローラ35は、該コントローラ35が記憶している制御パターンから、例えばアイソクロナス制御であってエンジン回転数「A」を上限値とした第1制御パターンを選択し、選択した第1制御パターンのアイソクロナス線aに基づいて制御信号を作成する。そして、コントローラ35は、作成した制御信号をディーゼルエンジン34に出力する。 Specifically, in step S104, the controller 35 selects and selects, from the control pattern stored in the controller 35, a first control pattern that is, for example, isochronous control and has the engine speed “A” as an upper limit value. A control signal is generated based on the isochronous line a of the first control pattern. Then, the controller 35 outputs the created control signal to the diesel engine 34.
 これにより、図6に示すように、走行装置1の走行以外の状態(ステップS101のNO)かつ目標エンジン回転数がエンジン回転数「A」以上の場合(ステップS102のYES)においては、ディーゼルエンジン34の第1制御パターンが選択され、該ディーゼルエンジン34に掛かる負荷の増減に関わらずエンジン回転数Nを一定とするアイソクロナス制御となり、ディーゼルエンジン34のエンジン回転数Nは、エンジン回転数「A」に固定される。
 なお、本実施形態では、制御パターンとして、図6に示すアイソクロナス制御の第1制御パターン及び第2制御パターンを例として挙げて説明しているが、特に限定するものではない。例えば、アイソクロナス制御の代わりにドループ制御とし、図7に示すように、該ドループ制御の第1制御パターン(エンジン回転数「A」を上限値とする)及び第2制御パターン(エンジン回転数「B」を上限値とする。「B」>「A」)として、上述したエンジン制御装置50の制御フローに従ってディーゼルエンジン34のエンジン回転数Nを制御することも可能である。具体的には、例えば、旋回作業車100の走行装置1が走行以外の状態から走行状態に移行した場合は、図7に示すように、コントローラ35により、ドループ線aからドループ線bに変更され、ドループ制御のままエンジン回転数Nの上限値がエンジン回転数「A」からエンジン回転数「B」にアップされる。
As a result, as shown in FIG. 6, in a state other than traveling of the traveling device 1 (NO in step S101) and the target engine speed is equal to or higher than the engine speed “A” (YES in step S102), the diesel engine The first control pattern 34 is selected, and isochronous control is performed in which the engine speed N is constant regardless of the increase or decrease in the load applied to the diesel engine 34. The engine speed N of the diesel engine 34 is the engine speed “A”. Fixed to.
In the present embodiment, the first control pattern and the second control pattern of the isochronous control shown in FIG. 6 are described as examples of the control pattern, but the control pattern is not particularly limited. For example, instead of isochronous control, droop control is used, and as shown in FIG. 7, a first control pattern (with engine speed “A” as the upper limit value) and second control pattern (engine speed “B”). "B">"A"), the engine speed N of the diesel engine 34 can be controlled according to the control flow of the engine control device 50 described above. Specifically, for example, when the traveling device 1 of the turning work vehicle 100 shifts from a state other than traveling to a traveling state, the controller 35 changes the droop line a 1 to the droop line b 1 as shown in FIG. The upper limit value of the engine speed N is increased from the engine speed “A” to the engine speed “B” with the droop control.
 また、図8(a)に示すように、ドループ制御の第1制御パターン(エンジン回転数「A」を上限値とする)及びアイソクロナス制御の第2制御パターン(エンジン回転数「B」を上限値とする。「B」>「A」)として、上述したエンジン制御装置50の制御フローに従ってディーゼルエンジン34のエンジン回転数Nを制御することも可能である。具体的には、例えば、旋回作業車100の走行装置1が走行以外の状態から走行状態に移行した場合は、図8(a)に示すように、コントローラ35により、ドループ制御からアイソクロナス制御(ドループ線aからアイソクロナス線b)に変更され、エンジン回転数Nの上限値がエンジン回転数「A」からエンジン回転数「B」にアップされる。このように制御することで、走行速度の増速度が大きく取れる。 Further, as shown in FIG. 8A, the first control pattern for droop control (engine speed “A” is set as the upper limit value) and the second control pattern for isochronous control (engine speed “B” is set as the upper limit value). It is also possible to control the engine speed N of the diesel engine 34 according to the control flow of the engine control device 50 described above as “B”> “A”). Specifically, for example, when the traveling device 1 of the turning work vehicle 100 shifts from a state other than traveling to a traveling state, as illustrated in FIG. 8A, the controller 35 performs droop control to isochronous control (droop control). The line a 2 is changed to the isochronous line b 2 ), and the upper limit value of the engine speed N is increased from the engine speed “A” to the engine speed “B”. By controlling in this way, it is possible to greatly increase the traveling speed.
 また、図8(b)に示すように、アイソクロナス制御の第1制御パターン(エンジン回転数「A」を上限値とする)及びドループ制御の第2制御パターン(エンジン回転数「B」を上限値とする。「B」>「A」)として、上述したエンジン制御装置50の制御フローに従ってディーゼルエンジン34のエンジン回転数Nを制御することも可能である。具体的には、例えば、旋回作業車100の走行装置1が走行以外の状態から走行状態に移行した場合は、図8(b)に示すように、コントローラ35により、アイソクロナス制御からドループ制御(アイソクロナス線aからドループ線b)に変更され、エンジン回転数Nの上限値がエンジン回転数「A」からエンジン回転数「B」にアップされる。このような制御形態にすることで、オペレータが、走行負荷の負荷検出が容易なドループ制御を選択した場合でもエンジン回転数をアップすることで走行速度の低下が少なくなる。 Further, as shown in FIG. 8B, the first control pattern of isochronous control (engine speed “A” is the upper limit value) and the second control pattern of droop control (engine speed “B” is the upper limit value). It is also possible to control the engine speed N of the diesel engine 34 according to the control flow of the engine control device 50 described above as “B”> “A”). Specifically, for example, when the traveling device 1 of the turning work vehicle 100 shifts from a state other than traveling to a traveling state, as illustrated in FIG. 8B, the controller 35 performs droop control (isochronous control) from the isochronous control. The line a 3 is changed to the droop line b 3 ), and the upper limit value of the engine speed N is increased from the engine speed “A” to the engine speed “B”. By adopting such a control mode, even when the operator selects the droop control in which the load detection of the travel load is easy, the decrease in travel speed is reduced by increasing the engine speed.
 次に、上述したエンジン制御装置50により、走行時におけるディーゼルエンジン34のアイソクロナス制御(ハイアイドル制御)の具体的な制御例について図9を用いて説明する。図9は、エンジン回転数とアクセル開度センサ値との関係を示す図であり、縦軸がエンジン回転数(min-1)であり、横軸がアクセル開度センサ値(V)である。
 なお、図示しないアクセル開度センサは、エンジン回転数Nの目標エンジン回転数(即ち、当該目標エンジン回転数に応じた燃料噴射量)を設定するための人為操作可能なアクセルダイヤル36やアクセル操作レバー等のアクセル操作部材に設けられており、コントローラ35に電気的に接続されている。アクセル開度センサは、前記アクセル操作部材の操作量をアクセル開度として検出し、その検出信号をエンジン負荷としてコントローラ35に入力し得るように構成されている。
Next, a specific control example of isochronous control (high idle control) of the diesel engine 34 during traveling by the engine control device 50 described above will be described with reference to FIG. FIG. 9 is a diagram showing the relationship between the engine speed and the accelerator opening sensor value, where the vertical axis is the engine speed (min −1 ) and the horizontal axis is the accelerator opening sensor value (V).
An accelerator opening sensor (not shown) includes an accelerator dial 36 and an accelerator operation lever that can be manually operated for setting a target engine speed of the engine speed N (that is, a fuel injection amount corresponding to the target engine speed). And the like, and is electrically connected to the controller 35. The accelerator opening sensor is configured to detect an operation amount of the accelerator operating member as an accelerator opening, and to input the detection signal to the controller 35 as an engine load.
 エンジン制御装置50は、通常時には、エンジン回転数Nの上限値を上述したエンジン回転数「A」とするが、走行装置1の走行時にはエンジン回転数Nの上限値を上述したエンジン回転数「B」になるように制御し、走行性能を向上させる。走行時には、アクセル開度センサ値がa0(V)に対応するエンジン回転数Nをローアイドル、アクセル開度センサ値がa2(V)をハイアイドルとした場合に、エンジン回転数「A」の割付電圧(アクセル開度センサ値a1(V))以上では、アクセル開度に従ったエンジン回転数Nまで上昇する。また、他モード有効中の場合は、本制御を行わないものとする。この制御例を、上述した制御態様に対応させると、走行時においては(ステップS101のYESの場合)エンジン回転数Nの上限値をエンジン回転数「B」と設定している。すなわち、アクセル開度センサ値がa1~a2(V)となる場合は、エンジン回転数Nが「A」~「B」min-1の間でエンジン回転数Nの変更が可能となる。また、走行装置1の走行時においては、エンジン回転数Nの上限値をエンジン回転数「B」まで引き上げ、一方、走行装置1の走行以外の時においては(ステップS101のNOの場合)、エンジン回転数Nの上限値をエンジン回転数「A」に制限している。 The engine control device 50 normally sets the upper limit value of the engine speed N to the engine speed “A” described above, but the upper limit value of the engine speed N is set to the engine speed “B” described above when the traveling device 1 is traveling. To improve the running performance. When traveling, the engine speed “A” is assigned when the engine speed N corresponding to the accelerator opening sensor value a0 (V) is low idle and the accelerator opening sensor value a2 (V) is high idle. Above the voltage (accelerator opening sensor value a1 (V)), the engine speed N increases according to the accelerator opening. Further, this control is not performed when the other mode is valid. If this control example is made to correspond to the control mode described above, the upper limit value of the engine speed N is set to the engine speed “B” during traveling (in the case of YES in step S101). That is, when the accelerator opening sensor value is a1 to a2 (V), the engine speed N can be changed between the engine speed N of “A” to “B” min− 1 . When the traveling device 1 is traveling, the upper limit value of the engine speed N is raised to the engine rotational speed “B”, while when the traveling device 1 is not traveling (NO in step S101), the engine The upper limit value of the rotational speed N is limited to the engine rotational speed “A”.
 以上のようなエンジン制御装置50の制御構成とすることで、通常、作業装置2での作業時(走行以外の状態)には必要十分なエンジン回転数「A」までしか上昇しないようにエンジン回転数Nに上限を設けることで、低騒音、低燃費作業を行うことができる。また、走行状態の時のみ、目標エンジン回転数の上限値をエンジン回転数「A」よりも高い、エンジン回転数「B」に変更する。これにより、旋回作業車100は、走行時に必要な走行スピードと駆動力を確保することができる。 By adopting the control configuration of the engine control device 50 as described above, the engine speed is normally increased so that the engine speed only increases to a necessary and sufficient engine speed “A” when working on the work device 2 (a state other than traveling). By providing an upper limit to the number N, low noise and low fuel consumption work can be performed. Further, the upper limit value of the target engine speed is changed to the engine speed “B” higher than the engine speed “A” only in the running state. Thereby, the turning work vehicle 100 can ensure the traveling speed and driving force required for traveling.
 また、エンジン制御装置50では、アクセルダイヤル36の機械的回転角と電気的回転角に差を設け、通常作業時には機械的回転角度最大値よりも手前に設定したエンジン回転数「A」を上限としている。また、エンジン制御装置50では、走行状態検出手段である圧力スイッチ37により走行装置1の走行状態が検出され、アクセルダイヤル36の電気的回転角がエンジン回転数「A」より大きい場合のみ、エンジン回転数「B」を上限とした、アクセルダイヤル36による目標エンジン回転数の指示に従う。こうして、エンジン制御装置50は、旋回作業車100の動作状態(走行状態か作業状態)に応じてエンジン回転数Nの上限値が適切な値となるように変更する制御を行う。 Further, the engine control device 50 provides a difference between the mechanical rotation angle and the electric rotation angle of the accelerator dial 36, and sets the engine rotation speed “A” set before the maximum mechanical rotation angle during normal operation as an upper limit. Yes. Further, in the engine control device 50, only when the traveling state of the traveling device 1 is detected by the pressure switch 37 which is the traveling state detecting means and the electrical rotation angle of the accelerator dial 36 is larger than the engine rotational speed “A”, the engine rotation speed is increased. The target engine speed is instructed by the accelerator dial 36 with the number “B” as an upper limit. Thus, the engine control device 50 performs control to change the upper limit value of the engine speed N to an appropriate value according to the operation state (running state or working state) of the turning work vehicle 100.
 具体的には、オペレータが、旋回作業車100の走行速度や走行の駆動力が欲しい時、アクセルダイヤル36を適宜操作した際に、エンジン制御装置50は、エンジン回転数Nを上昇値として好ましい値に変更することができる。本実施形態によれば、走行時等の高出力が必要な時のみディーゼルエンジン34のエンジン回転数Nの上限値としてエンジン回転数「B」まで上昇させるように制御することで、特許文献1のような大容量のポンプ等の装置を必要とせず安価に、且つ、オペレータにとって操作が容易で高出力要求に対応できるエンジン制御装置50を提供することができる。 Specifically, when the operator wants the traveling speed or driving force of the turning work vehicle 100 and appropriately operates the accelerator dial 36, the engine control device 50 sets the engine speed N as a preferred value. Can be changed. According to the present embodiment, control is performed so that the engine speed is increased to “B” as the upper limit value of the engine speed N of the diesel engine 34 only when high output is required, such as during travel. It is possible to provide an engine control device 50 that does not require such a large-capacity pump or the like, is inexpensive, can be easily operated by an operator, and can meet high output demands.
 上述したように本発明によれば、作業車両の作業時では必要なエンジン出力が得られるエンジン回転数を上限値として設けるため、低騒音で、無駄な燃料の消費が防止できる。一方、走行時の高負荷時には煩わしい切り替え作業をしなくても所望のエンジン出力が得られ、力強く走行可能で、走行速度も速く、かつストレスなく作業が行える。 As described above, according to the present invention, since the engine speed at which the required engine output can be obtained when the work vehicle is working is provided as the upper limit value, it is possible to prevent wasteful fuel consumption with low noise. On the other hand, a desired engine output can be obtained without a troublesome switching operation at a high load during traveling, the vehicle can be driven powerfully, the traveling speed is high, and the operation can be performed without stress.
 1    走行装置
 2    作業装置
 34   ディーゼルエンジン
 35   コントローラ
 36   アクセルダイヤル(目標エンジン回転数指示装置)
 37   圧力スイッチ(走行状態検出手段)
 50   エンジン制御装置
 100  旋回作業車
1 traveling device 2 working device 34 diesel engine 35 controller 36 accelerator dial (target engine speed indicating device)
37 Pressure switch (traveling state detection means)
50 Engine control device 100 Turning work vehicle

Claims (3)

  1.  エンジンと、
     前記エンジンの動力を受けて駆動する走行装置と、
     前記エンジンの動力を受けて駆動する作業装置と、を備える作業車両に搭載され、
     前記エンジンを制御する作業車両のエンジン制御装置において、
     前記走行装置の走行状態を検出する走行状態検出手段と、
     前記エンジンの回転数を制御するコントローラと、
     前記コントローラへ前記エンジンの目標エンジン回転数を指示する指示装置と、を具備し、
     前記コントローラは、
     前記走行状態検出手段により前記作業車両が走行状態であると判断した場合には、前記指示装置により前記コントローラへ指示された目標エンジン回転数に従い前記エンジンのエンジン回転数を任意に制御し、
     一方、前記走行状態検出手段により前記作業車両が走行状態でないと判断した場合には、前記目標エンジン回転数があらかじめ設定されたエンジン回転数の上限値未満では当該目標エンジン回転数に従い前記エンジンのエンジン回転数を任意に制御し、
     前記目標エンジン回転数が前記エンジンのエンジン回転数の上限値以上に指示されたときには前記エンジン回転数の上限値に前記エンジンのエンジン回転数を固定するように制御することを特徴とする、作業車両のエンジン制御装置。
    An engine,
    A traveling device driven by the power of the engine;
    Mounted on a work vehicle comprising a working device driven by the power of the engine,
    In an engine control device for a work vehicle that controls the engine,
    Traveling state detecting means for detecting a traveling state of the traveling device;
    A controller for controlling the rotational speed of the engine;
    An instruction device for instructing the target engine speed of the engine to the controller,
    The controller is
    If it is determined by the running state detecting means that the work vehicle is in a running state, the engine rotational speed of the engine is arbitrarily controlled according to the target engine rotational speed instructed to the controller by the instruction device,
    On the other hand, when it is determined by the traveling state detection means that the work vehicle is not in the traveling state, if the target engine speed is less than a preset upper limit value of the engine speed, the engine engine according to the target engine speed is set. Control the rotation speed arbitrarily,
    The work vehicle is controlled to fix the engine speed of the engine to the upper limit value of the engine speed when the target engine speed is instructed to be equal to or higher than the upper limit value of the engine speed of the engine. Engine control device.
  2.  前記コントローラは、
     前記走行状態検出手段により前記作業車両が走行状態であると判断した場合には、
     前記エンジン回転数の上限値よりも高いあらかじめ設定されたエンジン回転数の上限値以下で任意に制御することを特徴とする請求項1に記載の作業車両のエンジン制御装置。
    The controller is
    When it is determined by the traveling state detection means that the work vehicle is in a traveling state,
    2. The engine control device for a work vehicle according to claim 1, wherein the control is arbitrarily performed below a preset upper limit value of the engine speed higher than the upper limit value of the engine speed.
  3.  前記指示装置は、アクセルダイヤルであることを特徴とする、請求項1または請求項2に記載の作業車両のエンジン制御装置。 3. The engine control device for a work vehicle according to claim 1, wherein the instruction device is an accelerator dial.
PCT/JP2015/086490 2015-02-09 2015-12-28 Engine control device for working vehicle WO2016129196A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015023725A JP2016145566A (en) 2015-02-09 2015-02-09 Work vehicle engine control device
JP2015-023725 2015-02-09

Publications (1)

Publication Number Publication Date
WO2016129196A1 true WO2016129196A1 (en) 2016-08-18

Family

ID=56615141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/086490 WO2016129196A1 (en) 2015-02-09 2015-12-28 Engine control device for working vehicle

Country Status (2)

Country Link
JP (1) JP2016145566A (en)
WO (1) WO2016129196A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016145566A (en) * 2015-02-09 2016-08-12 ヤンマー株式会社 Work vehicle engine control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754682A (en) * 1993-07-14 1995-02-28 Komatsu Ltd Electronic control device for engine
JP2002130003A (en) * 2000-10-20 2002-05-09 Hitachi Constr Mach Co Ltd Hydraulic traveling vehicle
JP2010163970A (en) * 2009-01-15 2010-07-29 Caterpillar Japan Ltd Engine accelerator control method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4437771B2 (en) * 2005-06-17 2010-03-24 日立建機株式会社 Engine control device for traveling work machine
JP2008185009A (en) * 2007-01-31 2008-08-14 Iseki & Co Ltd Rotation controller of work vehicle engine
JP2016145566A (en) * 2015-02-09 2016-08-12 ヤンマー株式会社 Work vehicle engine control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754682A (en) * 1993-07-14 1995-02-28 Komatsu Ltd Electronic control device for engine
JP2002130003A (en) * 2000-10-20 2002-05-09 Hitachi Constr Mach Co Ltd Hydraulic traveling vehicle
JP2010163970A (en) * 2009-01-15 2010-07-29 Caterpillar Japan Ltd Engine accelerator control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016145566A (en) * 2015-02-09 2016-08-12 ヤンマー株式会社 Work vehicle engine control device

Also Published As

Publication number Publication date
JP2016145566A (en) 2016-08-12

Similar Documents

Publication Publication Date Title
JP5121405B2 (en) Engine control device for construction machinery
KR101652661B1 (en) Construction machine
JP4082935B2 (en) Hybrid construction machine
JP4754969B2 (en) Engine control device for work vehicle
JP4199276B2 (en) Engine control device for hydraulic excavator
JP5192367B2 (en) Work vehicle and control method of work vehicle
JP5228132B1 (en) Wheel loader
JP4173489B2 (en) Hybrid drive wheel work vehicle
JP2013538310A (en) Control system with load adjustable economy mode
EP2823202B1 (en) Power management for a drive system
KR101549117B1 (en) Hybrid work machine and method for controlling same
WO2015033852A1 (en) Construction machine
JP2004340259A (en) Drive system for travelling of construction machinery
WO2016129196A1 (en) Engine control device for working vehicle
JP6046857B2 (en) Work vehicle control system, control method, and work vehicle
JP2011196066A (en) Hydraulic circuit for working vehicle
JP4546914B2 (en) Electric work machine
JP5946594B2 (en) Work vehicle and control method thereof
JP6163397B2 (en) Construction machinery
WO2016121287A1 (en) Engine control device for work vehicle
JP5808726B2 (en) Hydraulic drive
JP2011117316A (en) Control device of construction machine
JP5437125B2 (en) Swivel work vehicle
JP5371210B2 (en) Hydraulic construction machine
KR20230044286A (en) work machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15882069

Country of ref document: EP

Kind code of ref document: A1