WO2016127409A1 - Method for transmitting uplink control information, user equipment and access network device - Google Patents

Method for transmitting uplink control information, user equipment and access network device Download PDF

Info

Publication number
WO2016127409A1
WO2016127409A1 PCT/CN2015/073063 CN2015073063W WO2016127409A1 WO 2016127409 A1 WO2016127409 A1 WO 2016127409A1 CN 2015073063 W CN2015073063 W CN 2015073063W WO 2016127409 A1 WO2016127409 A1 WO 2016127409A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
modulation symbols
control information
uplink control
user equipment
Prior art date
Application number
PCT/CN2015/073063
Other languages
French (fr)
Chinese (zh)
Inventor
官磊
伯根富兰崛克
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/073063 priority Critical patent/WO2016127409A1/en
Priority to CN201580002265.8A priority patent/CN106170940B/en
Publication of WO2016127409A1 publication Critical patent/WO2016127409A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Provided are a method for transmitting uplink control information, a user equipment and an access network device. The method comprises: respectively performing cyclic shift on each group of modulation symbols in L1 groups of modulation symbols, wherein a cyclic shift value used by the ith group of modulation symbols in the L1 groups of modulation symbols during the cyclic shift is Kφi, where 1 ≤ i ≤ L1; respectively performing cyclic shift on each group of modulation symbols in L2 groups of modulation symbols, wherein a cyclic shift value used by the jth group of modulation symbols in the L2 groups of modulation symbols during the cyclic shift is Kφj, where 1 ≤ j ≤ L2, φi and φj both represent a cell-specific basic cyclic shift value of a current cell, and K is a positive integer greater than 1; and transmitting uplink control information borne in the L1 groups of shifted modulation symbols and the L2 groups of shifted modulation symbols to an access network device via K RBs in a first time slot and K RBs in a second time slot of an uplink subframe. In the embodiments of the present invention, by extending an existing PF3 of a single RB to a PF3 of a plurality of RBs, it is possible to support aggregation of more carries and support an ACK/NACK feedback of more bits.

Description

传输上行控制信息的方法、用户设备和接入网设备Method for transmitting uplink control information, user equipment, and access network equipment 技术领域Technical field
本发明实施例涉及无线通信领域,并且更具体地,涉及一种传输上行控制信息的方法、用户设备和接入网设备。The embodiments of the present invention relate to the field of wireless communications, and in particular, to a method for transmitting uplink control information, a user equipment, and an access network device.
背景技术Background technique
长期演进(Long Term Evolution,LTE)系统下行和上行分别基于正交频分复用多址(Orthogonal Frequency Division Multiplexing Access,OFDMA)和单载波频分复用多址(Single Carrier–Frequency Division Multiplexing Access,SC-FDMA),时频资源被划分成时间域维度上的OFDM或SC-FDMA符号(下称时域符号)和频率域维度上的子载波,而最小的资源粒度叫做一个资源元素(Resource Element,RE),即表示时间域上的一个时域符号和频率域上的一个子载波组成的时频格点。LTE系统中业务的传输是基于基站调度的,调度的基本时间单位是一个子帧,一个子帧包括多个时域符号。具体的调度流程是基站发送控制信道,比如物理下行控制信道(Physical Downlink Control Channel,PDCCH)或增强的物理下行控制信道(Enhanced PDCCH,EPDCCH),该控制信道可以承载物理下行共享信道(Physical Downlink Shared Channel,PDSCH)或物理上行控制信道(Physical Uplink Control Channel,PUSCH)的调度信息,该调度信息包括比如资源分配信息,调整编码方式等控制信息。用户设备(User Equipment,UE)在子帧中检测控制信道,并根据检测出的控制信道中承载的调度信息来进行下行数据信道的接收或上行数据信道的发送。The Long Term Evolution (LTE) system downlink and uplink are based on Orthogonal Frequency Division Multiplexing Access (OFDMA) and Single Carrier-Frequency Division Multiplexing Access (Single Carrier-Frequency Division Multiplexing Access, respectively). SC-FDMA), time-frequency resources are divided into OFDM or SC-FDMA symbols (hereinafter referred to as time-domain symbols) in the time domain dimension and sub-carriers in the frequency domain dimension, and the smallest resource granularity is called a resource element (Resource Element , RE), which represents a time domain symbol on the time domain and a time-frequency grid consisting of one subcarrier on the frequency domain. The transmission of services in the LTE system is based on base station scheduling. The basic time unit of scheduling is one subframe, and one subframe includes multiple time domain symbols. The specific scheduling process is that the base station sends a control channel, such as a physical downlink control channel (PDCCH) or an enhanced physical downlink control channel (EPDCCH), and the control channel can carry a physical downlink shared channel (Physical Downlink Shared). Channel, PDSCH) or scheduling information of a physical uplink control channel (PUSCH), the scheduling information includes control information such as resource allocation information, and an adjustment coding manner. The user equipment (User Equipment, UE) detects the control channel in the subframe, and performs downlink data channel reception or uplink data channel transmission according to the detected scheduling information carried in the control channel.
LTE支持频分双工(Frequency Duplexing Division,FDD)和时分双工(Time Duplexing Division,TDD)两种双工方式。对于FDD,下行和上行在不同的载波上传输。对于TDD系统,上行和下行在同一载波的不同时间来传输,具体在一个载波上包括下行子帧,上行子帧和特殊子帧,其中,特殊子帧中包括下行导频时隙(Downlink Pilot Time Slot,DwPTS),保护时间(Guard Period,GP)和上行导频时隙(Uplink Pilot Time Slot,UpPTS)三个部分,其中GP主要用于下行到上行的器件转换时间和传播时延的补偿。此外,DwPTS中可以传输下行数据,但UpPTS中不可以传输PUSCH。LTE 当前支持7种不同的TDD上下行配置,如表1所示,其中D表示下行子帧,S表示特殊子帧,U表示上行子帧。LTE supports two types of duplex modes: Frequency Division Multiplexing (FDD) and Time Duplexing Division (TDD). For FDD, the downlink and uplink are transmitted on different carriers. For the TDD system, the uplink and the downlink are transmitted at different times of the same carrier, and specifically include a downlink subframe, an uplink subframe, and a special subframe on one carrier, wherein the special subframe includes a downlink pilot slot (Downlink Pilot Time). Slot, DwPTS), Guard Period (GP) and Uplink Pilot Time Slot (UpPTS). The GP is mainly used for downlink to uplink device conversion time and propagation delay compensation. In addition, downlink data can be transmitted in the DwPTS, but the PUSCH cannot be transmitted in the UpPTS. LTE Currently, 7 different TDD uplink and downlink configurations are supported, as shown in Table 1, where D represents a downlink subframe, S represents a special subframe, and U represents an uplink subframe.
表1.LTE系统中不同的TDD上下行配置Table 1. Different TDD uplink and downlink configurations in the LTE system
Figure PCTCN2015073063-appb-000001
Figure PCTCN2015073063-appb-000001
LTE采用混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)机制,以下行为例,UE接收到PDSCH之后,如果接收正确,则UE在PUCCH上反馈ACK,如果不正确,则在PUCCH上反馈NACK。对于FDD,UE在子帧n-4接收到PDSCH之后,会在子帧n反馈ACK/NACK;对于TDD,PDSCH接收与其对应的ACK/NACK反馈的时序关系如表2所示,标数字的子帧为用于反馈ACK/NACK的上行子帧n,标识的数字表示在该上行子帧n中需要反馈n-k(k属于K)的下行子帧集合中的PDSCH所对应的ACK/NACK,例如上下行配置1的子帧n=2中的K={7、6}表示上行子帧n=2用来反馈n-7和n-6这两个下行子帧上的PDSCH所对应的ACK/NACK,具体n-7为下行子帧5,n-6为下行子帧6。The LTE adopts the Hybrid Automatic Repeat Request (HARQ) mechanism. In the following example, after receiving the PDSCH, the UE feeds back the ACK on the PUCCH if the reception is correct. If not, the NACK is fed back on the PUCCH. For FDD, after receiving the PDSCH in subframe n-4, the UE will feed back ACK/NACK in subframe n; for TDD, the timing relationship between PDSCH reception and its corresponding ACK/NACK feedback is shown in Table 2, The frame is an uplink subframe n for feeding back ACK/NACK, and the number of the identifier indicates an ACK/NACK corresponding to the PDSCH in the downlink subframe set in which the feedback nk (k belongs to K) in the uplink subframe n, for example, up and down K={7, 6} in the subframe n=2 of the row configuration 1 indicates that the uplink subframe n=2 is used to feed back the ACK/NACK corresponding to the PDSCH on the two downlink subframes n-7 and n-6. The specific n-7 is the downlink subframe 5, and the n-6 is the downlink subframe 6.
表2.TDD系统中PDSCH与其对应的ACK/NACK的时序关系 Table 2. Timing relationship between PDSCH and its corresponding ACK/NACK in TDD system
Figure PCTCN2015073063-appb-000002
Figure PCTCN2015073063-appb-000002
LTE还支持载波聚合(Carrier Aggregation,CA)技术,即基站把多个载波配置给一个UE来提升UE的数据速率。进行CA时,基站发送的多个载波时间上是同步发送的,UE可以分别检测调度每个载波的PDCCH和相应的PDSCH,其中每个载波的具体检测过程与上述单载波情况类似。LTE系统支持FDD CA,TDD CA以及FDD+TDD CA。对于TDD CA,又分为相同上下行配置的TDD CA和不同上下行配置的TDD CA。CA模式下有一个主载波和至少一个辅载波,且承载ACK/NACK的PUCCH只在UE的主载波上发送。CA模式下的PUCCH发送模式包括信道选择模式和PUCCH格式3两种模式。信道选择模式下,采用PUCCH格式1a/1b进行ACK/NACK反馈,但信道选择模式最多支持两个载波的CA,因此在CA模式的应用场景中较为受限;PUCCH格式3模式采用DFT-S-OFDM的发送结构,可以支持20个ACK/NACK比特的传输以及5个载波的TDD CA。例如,以当前网络中主流部署的TDD上下行配置2为例,一个载波的上行子帧2可以支持4个ACK/NACK比特的反馈,5个载波的TDD上下行配置2的CA就是20个ACK/NACK比特。LTE also supports Carrier Aggregation (CA) technology, in which a base station allocates multiple carriers to one UE to increase the data rate of the UE. When the CA is performed, the multiple carriers sent by the base station are synchronously transmitted. The UE can separately detect the PDCCH and the corresponding PDSCH for each carrier. The specific detection process of each carrier is similar to the single carrier case. The LTE system supports FDD CA, TDD CA, and FDD+TDD CA. For the TDD CA, it is further divided into a TDD CA with the same uplink and downlink configuration and a TDD CA with different uplink and downlink configurations. There is one primary carrier and at least one secondary carrier in the CA mode, and the PUCCH carrying the ACK/NACK is only transmitted on the primary carrier of the UE. The PUCCH transmission mode in the CA mode includes two modes: a channel selection mode and a PUCCH format 3. In channel selection mode, PUCCH format 1a/1b is used for ACK/NACK feedback, but the channel selection mode supports CA of two carriers at most, so it is limited in the application mode of CA mode; PUCCH format 3 mode adopts DFT-S- The transmission structure of OFDM can support transmission of 20 ACK/NACK bits and TDD CA of 5 carriers. For example, taking the TDD uplink and downlink configuration 2 of the mainstream deployment in the current network as an example, the uplink subframe 2 of one carrier can support the feedback of 4 ACK/NACK bits, and the CA of the TDD uplink and downlink configuration 2 of the 5 carriers is 20 ACKs. /NACK bit.
随着LTE技术的继续演进,将来有可能需要支持更多比特数的ACK/NACK反馈,比如大于20比特。一个场景是引入了更多载波的CA,比如10载波的CA,这样以10个TDD上下行配置2的载波进行CA为例,就需要反馈40比特的ACK/NACK;另一个场景是,虽然最多还是支持到5载波的CA,但其中多个载波都配置成TDD上下行配置5,例如,主载波是 上下行配置2,4个辅载波都是上下行配置5,那么需要反馈4+9*4=40比特的ACK/NACK。由于当前的PUCCH格式3是无法支持超过22比特的ACK/NACK反馈,那么如何来支持更多比特(比如40比特或更多)的ACK/NACK反馈是亟待解决的问题。As LTE technology continues to evolve, it may be necessary to support more bits of ACK/NACK feedback in the future, such as greater than 20 bits. A scenario is a CA that introduces more carriers, such as a CA of 10 carriers. In this case, taking CA of 10 TDD uplink and downlink configuration 2 as an example, it is necessary to feed back 40-bit ACK/NACK; another scenario is that although most It also supports CA to 5 carriers, but multiple carriers are configured in TDD uplink and downlink configuration 5, for example, the primary carrier is For the uplink and downlink configuration, 2 and 4 secondary carriers are both uplink and downlink configuration 5, so it is necessary to feed back 4+9*4=40 bits of ACK/NACK. Since the current PUCCH format 3 cannot support more than 22 bits of ACK/NACK feedback, how to support more bits (such as 40 bits or more) of ACK/NACK feedback is an urgent problem to be solved.
发明内容Summary of the invention
本发明实施例提供一种传输上行控制信息的方法、用户设备和接入网设备,以支持更多比特的ACK/NACK反馈。The embodiments of the present invention provide a method for transmitting uplink control information, a user equipment, and an access network device to support more bits of ACK/NACK feedback.
第一方面,提供一种传输上行控制信息的方法,包括:用户设备生成承载有上行控制信息的第一组调制符号和第二组调制符号,其中所述第一组调制符号和所述第二组调制符号均包括K×N个调制符号,K为在一个时隙内用于承载所述上行控制信息的资源块RB的个数,K为大于1的正整数,N为1个资源块RB中所包含的子载波的数量;所述用户设备使用码长为L1的扩频码对所述第一组调制符号进行扩频,得到L1组调制符号,并使用码长为L2的扩频码对所述第二组调制符号进行扩频,得到L2组调制符号;所述用户设备分别对所述L1组调制符号中的每一组调制符号进行循环移位,得到移位后的L1组调制符号,其中所述L1组调制符号中的第i组调制符号在循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000003
1≤i≤L1;所述用户设备分别对所述L2组调制符号中的每一组调制符号进行循环移位,得到移位后的L2组调制符号,其中所述L2组调制符号中的第j组调制符号在循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000004
1≤j≤L2,
Figure PCTCN2015073063-appb-000005
Figure PCTCN2015073063-appb-000006
均表示当前小区的小区特定的基本循环移位值;所述用户设备通过上行子帧的第一时隙内的K个RB和第二时隙内的K个RB,向接入网设备传输承载于所述移位后的L1组调制符号和所述移位后的L2组调制符号中的上行控制信息。
A first aspect provides a method for transmitting uplink control information, including: a user equipment generates a first group of modulation symbols and a second group of modulation symbols carrying uplink control information, wherein the first group of modulation symbols and the second The group modulation symbols each include K×N modulation symbols, K is the number of resource blocks RB used to carry the uplink control information in one slot, K is a positive integer greater than 1, and N is one resource block RB. The number of subcarriers included in the user equipment; the user equipment spreads the first group of modulation symbols by using a spreading code with a code length of L1 to obtain an L1 group modulation symbol, and uses a spreading code with a code length of L2 Performing spreading on the second group of modulation symbols to obtain L2 group modulation symbols; and the user equipment cyclically shifting each group of modulation symbols in the L1 group modulation symbols to obtain a shifted L1 group modulation a symbol, wherein a cyclic shift value used by the i-th modulation symbol in the L1 group modulation symbol when cyclically shifting is
Figure PCTCN2015073063-appb-000003
1 ≤ i ≤ L1; the user equipment cyclically shifts each set of modulation symbols in the L2 group modulation symbols to obtain a shifted L2 group modulation symbol, where the L2 group modulation symbol The cyclic shift value used by the j group modulation symbols when cyclically shifting
Figure PCTCN2015073063-appb-000004
1≤j≤L2,
Figure PCTCN2015073063-appb-000005
with
Figure PCTCN2015073063-appb-000006
Each indicates a cell-specific basic cyclic shift value of the current cell; the user equipment transmits the bearer to the access network device by using K RBs in the first time slot of the uplink subframe and K RBs in the second time slot. And the uplink control information in the shifted L1 group modulation symbol and the shifted L2 group modulation symbol.
结合第一方面,在第一方面的一种实现方式中,所述用户设备通过上行子帧的第一时隙内的K个RB和第二时隙内的K个RB,向接入网设备传输承载于所述移位后的L1组调制符号和所述移位后的L2组调制符号中的上行控制信息,包括:所述用户设备分别对所述移位后的L1组调制符号进行离散傅里叶变换DFT,得到DFT后的L1组调制符号;所述用户设备分别对所述移位后的L2组调制符号进行DFT,得到DFT后的L2组调制符号;所述用户设备将所述DFT后的L1组调制符号分别映射至所述第一时隙中的L1 个时域符号上,且映射后的L1组调制符号占所述第一时隙内的K个RB;所述用户设备将所述DFT后的L2组调制符号分别映射至所述第二时隙中的L2个时域符号上,且映射后的L2组调制符号占所述第二时隙内的K个RB;所述用户设备分别对所述映射后的L1组调制符号进行逆快速傅里叶变换IFFT,得到IFFT后的L1组调制符号;所述用户设备分别对所述映射后的L2组调制符号进行IFFT,得到IFFT后的L2组调制符号;所述用户设备分别通过所述第一时隙和所述第二时隙,向所述接入网设备传输所述IFFT后的L1组调制符号和所述IFFT后的L2组调制符号,以便向所述接入网设备传输所述上行控制信息。With reference to the first aspect, in an implementation manner of the first aspect, the user equipment accesses the access network device by using the K RBs in the first time slot of the uplink subframe and the K RBs in the second time slot. Transmitting the uplink control information carried in the shifted L1 group modulation symbol and the shifted L2 group modulation symbol, comprising: the user equipment separately discretizing the shifted L1 group modulation symbol Fourier transform DFT, to obtain L1 group modulation symbols after DFT; the user equipment respectively performs DFT on the shifted L2 group modulation symbols to obtain L2 group modulation symbols after DFT; the user equipment will The L1 group modulation symbols after DFT are respectively mapped to L1 in the first slot On the time domain symbol, and the mapped L1 group modulation symbols occupy K RBs in the first time slot; the user equipment maps the DFT group L2 group modulation symbols to the second time slot respectively L2 groups of time domain symbols in the middle, and the mapped L2 group modulation symbols occupy K RBs in the second time slot; the user equipment respectively performs inverse fast Fourier on the mapped L1 group modulation symbols The leaf transforms the IFFT to obtain the L1 group modulation symbols after the IFFT; the user equipment respectively performs IFFT on the mapped L2 group modulation symbols to obtain the L2 group modulation symbols after the IFFT; the user equipment passes the first And transmitting, by the time slot and the second time slot, the IFFT post-L1 group modulation symbol and the IFFT L2 group modulation symbol to the access network device, to transmit the uplink to the access network device Control information.
结合第一方面或其上述实现方式的任一种,在第一方面的另一种实现方式中,所述用户设备生成承载有上行控制信息的第一组调制符号和第二组调制符号,包括:所述用户设备对所述上行控制信息进行编码,得到编码后的上行控制信息;所述用户设备对所述编码后的上行控制信息进行调制,得到所述第一组调制符号和所述第二组调制符号。In conjunction with the first aspect, or any one of the foregoing implementation manners, in another implementation manner of the first aspect, the user equipment generates a first group of modulation symbols and a second group of modulation symbols that carry uplink control information, including The user equipment encodes the uplink control information to obtain encoded uplink control information, and the user equipment modulates the encoded uplink control information to obtain the first group of modulation symbols and the first Two sets of modulation symbols.
结合第一方面或其上述实现方式的任一种,在第一方面的另一种实现方式中,所述上行控制信息通过第一时频资源传输,所述当前小区下的其它上行控制信息通过第二时频资源传输,所述第一时频资源所包含的RB数大于所述第二时频资源所包含的RB数,且所述第一时频资源与所述第二时频资源部分重叠。With reference to the first aspect, or any one of the foregoing implementation manners, in another implementation manner of the first aspect, the uplink control information is transmitted by using a first time-frequency resource, and other uplink control information of the current cell is passed. And transmitting, by the first time-frequency resource, the number of RBs included in the first time-frequency resource is greater than the number of RBs included in the second time-frequency resource, and the first time-frequency resource and the second time-frequency resource part overlapping.
结合第一方面或其上述实现方式的任一种,在第一方面的另一种实现方式中,所述用户设备被配置了第一下行子帧集合或第二下行子帧集合,所述第一下行子帧集合中包括的子帧数大于所述第二下行子帧集合中包括的子帧数,所述用户设备在所述上行子帧中传输所述第一下行子帧集合所对应的上行控制信息时,每个时隙所占用的RB数大于所述用户设备在所述上行子帧中发送所述第二下行子帧集合所对应的上行控制信息时,每个时隙所占用的RB数。In conjunction with the first aspect, or any one of the foregoing implementation manners, in another implementation manner of the first aspect, the user equipment is configured with a first downlink subframe set or a second downlink subframe set, where The number of subframes included in the first downlink subframe set is greater than the number of subframes included in the second downlink subframe set, and the user equipment transmits the first downlink subframe set in the uplink subframe When the corresponding uplink control information is used, the number of RBs occupied by each time slot is greater than the uplink control information corresponding to the second downlink subframe set sent by the user equipment in the uplink subframe. The number of RBs occupied.
结合第一方面或其上述实现方式的任一种,在第一方面的另一种实现方式中,所述用户设备被配置了第一下行子帧集合,其中所述第一下行子帧集合包括第一子集和第二子集,所述第一子集是所述第二子集的真子集,所述用户设备在所述上行子帧中传输所述第一子集中的下行子帧所对应的上行控制信息时,每个时隙所占用的RB数小于所述用户设备在所述上行子帧中 传输所述第二子集中的下行子帧所对应的上行控制信息时,每个时隙所占用的RB数。In conjunction with the first aspect, or any one of the foregoing implementation manners, in another implementation manner of the first aspect, the user equipment is configured with a first downlink subframe set, where the first downlink subframe The set includes a first subset and a second subset, the first subset is a true subset of the second subset, and the user equipment transmits the downlink subgroup in the first subset in the uplink subframe When the uplink control information corresponding to the frame is used, the number of RBs occupied by each time slot is smaller than that of the user equipment in the uplink subframe. The number of RBs occupied by each time slot when transmitting the uplink control information corresponding to the downlink subframe in the second subset.
结合第一方面或其上述实现方式的任一种,在第一方面的另一种实现方式中,所述方法还包括:所述用户设备在所述上行子帧的至少一个时域符号中向所述接入网设备发送解调参考信号DMRS,其中,每个时域符号中的DMRS序列包括K段基于长度N生成的序列。In conjunction with the first aspect, or any one of the foregoing implementation manners, in another implementation manner of the first aspect, the method further includes: the user equipment is in at least one time domain symbol of the uplink subframe The access network device transmits a demodulation reference signal DMRS, wherein the DMRS sequence in each time domain symbol includes a sequence in which the K segment is generated based on the length N.
结合第一方面或其上述实现方式的任一种,在第一方面的另一种实现方式中,K取值不同时,所述用户设备能够传输的上行控制信息的最大比特数不同。In combination with the first aspect or any of the foregoing implementation manners, in another implementation manner of the first aspect, when the value of K is different, the maximum number of bits of uplink control information that can be transmitted by the user equipment is different.
第二方面,提供一种传输上行控制信息的方法,包括:接入网设备从上行子帧的第一时隙内的K个资源块RB中的L1个时域符号上获取L1组调制符号,其中每组调制符号包括K×N个调制符号,K为在一个时隙内用于承载用户设备的上行控制信息的资源块RB的个数,K为大于1的正整数,N为1个RB中所包含的子载波的数量;所述接入网设备从所述上行子帧的第二时隙内的K个RB中的L2个时域符号上获取L2组调制符号,其中每组调制符号包括K×N个调制符号;所述接入网设备分别对所述L1组调制符号进行逆离散傅里叶变换IDFT,得到IDFT后的L1组调制符号;所述接入网设备分别对所述L2组调制符号进行IDFT,得到IDFT后的L2组调制符号;所述接入网设备分别对所述IDFT后的L1组调制符号中的每一组调制符号进行逆循环移位,得到逆循环移位后的L1组调制符号,其中所述IDFT后的L1组调制符号中的第i组调制符号在逆循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000007
1≤i≤L1;所述接入网设备分别对所述IDFT后的L2组调制符号中的每一组调制符号进行逆循环移位,得到逆循环移位后的L2组调制符号,其中所述IDFT后的L2组调制符号中的第j组调制符号在逆循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000008
1≤j≤L2,
Figure PCTCN2015073063-appb-000009
Figure PCTCN2015073063-appb-000010
均表示当前小区的小区特定的基本循环移位值;所述接入网设备使用码长为L1的扩频码对逆循环移位后的L1组调制符号进行解扩,得到第一组调制符号,所述第一组调制符号包括K×N个调制符号;所述接入网设备使用码长为L2的扩频码对逆循环移位后的L2组调制符号进行解扩,得到第二组调制符号,所述第二组调制符号包括K×N个调制符号;所述接入网设备获取承载于所述第一组调制符号和所述第二组调制符号中的所述上行控制信息。
A second aspect provides a method for transmitting uplink control information, including: an access network device acquiring L1 group modulation symbols from L1 time domain symbols in K resource blocks RB in a first time slot of an uplink subframe, Each group of modulation symbols includes K×N modulation symbols, where K is the number of resource blocks RB used to carry uplink control information of the user equipment in one slot, K is a positive integer greater than 1, and N is 1 RB. The number of subcarriers included in the network device; the access network device acquires L2 group modulation symbols from L2 time domain symbols in the K RBs in the second slot of the uplink subframe, where each group of modulation symbols Include K×N modulation symbols; the access network device respectively performs inverse discrete Fourier transform IDFT on the L1 group modulation symbols to obtain an L1 group modulation symbol after IDFT; L2 group modulation symbols are IDFT, and L2 group modulation symbols after IDFT are obtained; the access network device respectively performs inverse cyclic shift on each group of modulation symbols in the L1 group modulation symbols after the IDFT, to obtain inverse cyclic shift L1 group modulation symbol after the bit, wherein the L1 group after the IDFT Cycle i-th group in the modulation symbols with the cyclic shift is used when the reverse shift value
Figure PCTCN2015073063-appb-000007
1 ≤ i ≤ L1; the access network device respectively performs inverse cyclic shift on each group of modulation symbols in the L2 group modulation symbols after the IDFT, and obtains L2 group modulation symbols after inverse cyclic shift, wherein The cyclic shift value used in the inverse cyclic shift of the j-th modulation symbol in the L2 group modulation symbol after IDFT
Figure PCTCN2015073063-appb-000008
1≤j≤L2,
Figure PCTCN2015073063-appb-000009
with
Figure PCTCN2015073063-appb-000010
Each represents a cell-specific basic cyclic shift value of the current cell; the access network device despreads the L1 group modulation symbols after the inverse cyclic shift using a spreading code having a code length of L1 to obtain a first group of modulation symbols. The first group of modulation symbols includes K×N modulation symbols; the access network device despreads the L2 group modulation symbols after the inverse cyclic shift using a spreading code with a code length of L2 to obtain a second group. a modulation symbol, the second set of modulation symbols comprising K×N modulation symbols; the access network device acquiring the uplink control information carried in the first group of modulation symbols and the second group of modulation symbols.
结合第二方面,在第二方面的一种实现方式中,所述接入网设备获取承载于所述第一组调制符号和所述第二组调制符号中的用户设备的上行控制信息,包括:所述接入网设备分别对所述第一组调制符号和所述第二组调制符号进行解调,得到解调后的编码比特流;所述接入网设备对所述编码比特流进行译码,得到所述上行控制信息。With reference to the second aspect, in an implementation manner of the second aspect, the access network device acquires uplink control information of the user equipment that is carried in the first group of modulation symbols and the second group of modulation symbols, including The access network device demodulates the first group of modulation symbols and the second group of modulation symbols to obtain a demodulated coded bit stream; the access network device performs the coded bit stream Decoding to obtain the uplink control information.
结合第二方面或其上述实现方式的任一种,在第二方面的另一种实现方式中,所述上行控制信息通过第一时频资源传输,所述当前小区下的其它上行控制信息通过第二时频资源传输,所述第一时频资源所包含的RB数大于所述第二时频资源所包含的RB数,且所述第一时频资源与所述第二时频资源部分重叠。In conjunction with the second aspect, or any one of the foregoing implementation manners, in another implementation manner of the second aspect, the uplink control information is transmitted by using a first time-frequency resource, and other uplink control information of the current cell is passed. And transmitting, by the first time-frequency resource, the number of RBs included in the first time-frequency resource is greater than the number of RBs included in the second time-frequency resource, and the first time-frequency resource and the second time-frequency resource part overlapping.
结合第二方面或其上述实现方式的任一种,在第二方面的另一种实现方式中,所述接入网设备为所述用户设备配置了第一下行子帧集合或第二下行子帧集合,所述第一下行子帧集合中包括的子帧数大于所述第二下行子帧集合中包括的子帧数,所述接入网设备在所述上行子帧中接收所述第一下行子帧集合所对应的上行控制信息时,每个时隙所占用的RB数大于所述接入网设备在所述上行子帧中接收所述第二下行子帧集合所对应的上行控制信息时,每个时隙所占用的RB数。With reference to the second aspect, or any one of the foregoing implementation manners, in another implementation manner of the second aspect, the access network device configures, by the user equipment, a first downlink subframe set or a second downlink a subframe set, where the number of subframes included in the first downlink subframe set is greater than the number of subframes included in the second downlink subframe set, where the access network device receives the uplink subframe When the uplink control information corresponding to the first downlink subframe set is used, the number of RBs occupied by each time slot is greater than that of the access network device receiving the second downlink subframe set in the uplink subframe. The number of RBs occupied by each time slot when the uplink control information is received.
结合第二方面或其上述实现方式的任一种,在第二方面的另一种实现方式中,所述接入网设备为所述用户设备配置了第一下行子帧集合,其中所述第一下行子帧集合包括第一子集和第二子集,所述第一子集是所述第二子集的真子集,所述接入网设备在所述上行子帧中接收所述第一子集中的下行子帧所对应的上行控制信息时,每个时隙所占用的RB数小于所述接入网设备在所述上行子帧中传输所述第二子集中的下行子帧所对应的上行控制信息时,每个时隙所占用的RB数。With reference to the second aspect, or any one of the foregoing implementation manners, in another implementation manner of the second aspect, the access network device configures, by the user equipment, a first downlink subframe set, where The first downlink subframe set includes a first subset and a second subset, the first subset is a true subset of the second subset, and the access network device receives the uplink subframe When the uplink control information corresponding to the downlink subframe in the first subset is used, the number of RBs occupied by each slot is smaller than the downlink device in which the access network device transmits the second subset in the uplink subframe. The number of RBs occupied by each time slot when the uplink control information corresponding to the frame.
结合第二方面或其上述实现方式的任一种,在第二方面的另一种实现方式中,所述上行子帧的一个时域符号中的解调参考信号DMRS序列包括K段基于长度N生成的序列。With reference to the second aspect, or any one of the foregoing implementation manners, in another implementation manner of the second aspect, the demodulation reference signal DMRS sequence in a time domain symbol of the uplink subframe includes a K segment based on a length N The generated sequence.
第三方面,提供一种用户设备,包括:生成单元,用于生成承载有上行控制信息的第一组调制符号和第二组调制符号,其中所述第一组调制符号和所述第二组调制符号均包括K×N个调制符号,K为在一个时隙内用于承载所述上行控制信息的资源块RB的个数,K为大于1的正整数,N为1个资 源块RB中所包含的子载波的数量;扩频单元,用于使用码长为L1的扩频码对所述第一组调制符号进行扩频,得到L1组调制符号,并使用码长为L2的扩频码对所述第二组调制符号进行扩频,得到L2组调制符号;第一循环移位单元,用于分别对所述L1组调制符号中的每一组调制符号进行循环移位,得到移位后的L1组调制符号,其中所述L1组调制符号中的第i组调制符号在循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000011
1≤i≤L1;第二循环移位单元,用于分别对所述L2组调制符号中的每一组调制符号进行循环移位,得到移位后的L2组调制符号,其中所述L2组调制符号中的第j组调制符号在循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000012
1≤j≤L2,
Figure PCTCN2015073063-appb-000013
Figure PCTCN2015073063-appb-000014
均表示当前小区的小区特定的基本循环移位值;传输单元,用于通过上行子帧的第一时隙内的K个RB和第二时隙内的K个RB,向接入网设备传输承载于所述移位后的L1组调制符号和所述移位后的L2组调制符号中的上行控制信息。
A third aspect provides a user equipment, including: a generating unit, configured to generate a first group of modulation symbols and a second group of modulation symbols carrying uplink control information, wherein the first group of modulation symbols and the second group The modulation symbols each include K×N modulation symbols, K is the number of resource blocks RB used to carry the uplink control information in one slot, K is a positive integer greater than 1, and N is one resource block RB. a number of subcarriers included; a spreading unit configured to spread the first set of modulation symbols using a spreading code having a code length L1 to obtain an L1 group modulation symbol, and using a spreading code having a code length of L2 Transmitting, by the code, the second group of modulation symbols to obtain an L2 group modulation symbol; and the first cyclic shifting unit is configured to cyclically shift each group of the modulation symbols in the L1 group modulation symbols respectively to obtain a shift a L1 group modulation symbol after the bit, wherein the cyclic shift value used by the ith group modulation symbol in the L1 group modulation symbol when cyclically shifting
Figure PCTCN2015073063-appb-000011
1 ≤ i ≤ L1; a second cyclic shift unit, configured to cyclically shift each set of modulation symbols in the L2 group modulation symbols to obtain a shifted L2 group modulation symbol, where the L2 group The cyclic shift value used by the j-th modulation symbol in the modulation symbol when cyclically shifting
Figure PCTCN2015073063-appb-000012
1≤j≤L2,
Figure PCTCN2015073063-appb-000013
with
Figure PCTCN2015073063-appb-000014
Each indicates a cell-specific basic cyclic shift value of the current cell; the transmission unit is configured to transmit to the access network device by using K RBs in the first time slot of the uplink subframe and K RBs in the second time slot. And carrying the uplink control information in the shifted L1 group modulation symbol and the shifted L2 group modulation symbol.
结合第三方面,在第三方面的一种实现方式中,所述传输单元具体用于分别对所述移位后的L1组调制符号进行离散傅里叶变换DFT,得到DFT后的L1组调制符号;分别对所述移位后的L2组调制符号进行DFT,得到DFT后的L2组调制符号;将所述DFT后的L1组调制符号分别映射至所述第一时隙中的L1个时域符号上,且映射后的L1组调制符号占所述第一时隙内的K个RB;将所述DFT后的L2组调制符号分别映射至所述第二时隙中的L2个时域符号上,且映射后的L2组调制符号占所述第二时隙内的K个RB;分别对所述映射后的L1组调制符号进行逆快速傅里叶变换IFFT,得到IFFT后的L1组调制符号;分别对所述映射后的L2组调制符号进行IFFT,得到IFFT后的L2组调制符号;分别通过所述第一时隙和所述第二时隙,向所述接入网设备传输所述IFFT后的L1组调制符号和所述IFFT后的L2组调制符号,以便向所述接入网设备传输所述上行控制信息。With reference to the third aspect, in an implementation manner of the third aspect, the transmitting unit is specifically configured to perform a discrete Fourier transform DFT on the shifted L1 group modulation symbols to obtain an L1 group modulation after DFT a symbol; respectively performing DFT on the shifted L2 group modulation symbols to obtain L2 group modulation symbols after DFT; and mapping the L1 group modulation symbols after the DFT to L1 in the first time slot respectively On the domain symbol, and the mapped L1 group modulation symbols occupy K RBs in the first time slot; and the LFT group modulation symbols after the DFT are respectively mapped to L2 time domains in the second time slot Symbolically, and the mapped L2 group modulation symbols occupy K RBs in the second slot; respectively performing inverse fast Fourier transform IFFT on the mapped L1 group modulation symbols to obtain an L1 group after IFFT Modulating symbols; respectively performing IFFT on the mapped L2 group modulation symbols to obtain an L2 group modulation symbol after IFFT; transmitting to the access network device by using the first time slot and the second time slot respectively The L1 group modulation symbol after the IFFT and the L2 group modulation symbol after the IFFT so that The access network apparatus transmitting the uplink control information.
结合第三方面或其上述实现方式的任一种,在第三方面的另一种实现方式中,所述生成单元具体用于对所述上行控制信息进行编码,得到编码后的上行控制信息;对所述编码后的上行控制信息进行调制,得到所述第一组调制符号和所述第二组调制符号。With the third aspect, or any one of the foregoing implementation manners, in another implementation manner of the third aspect, the generating unit is specifically configured to: encode the uplink control information, to obtain coded uplink control information; And modulating the encoded uplink control information to obtain the first group of modulation symbols and the second group of modulation symbols.
结合第三方面或其上述实现方式的任一种,在第三方面的另一种实现方式中,所述上行控制信息通过第一时频资源传输,所述当前小区下的其它上行控制信息通过第二时频资源传输,所述第一时频资源所包含的RB数大于 所述第二时频资源所包含的RB数,且所述第一时频资源与所述第二时频资源部分重叠。With the third aspect, or any one of the foregoing implementation manners, in another implementation manner of the third aspect, the uplink control information is transmitted by using a first time-frequency resource, and other uplink control information of the current cell is passed. Transmitting a second time-frequency resource, where the first time-frequency resource includes a larger number of RBs than The number of RBs included in the second time-frequency resource, and the first time-frequency resource partially overlaps with the second time-frequency resource.
结合第三方面或其上述实现方式的任一种,在第三方面的另一种实现方式中,所述用户设备被配置了第一下行子帧集合或第二下行子帧集合,所述第一下行子帧集合中包括的子帧数大于所述第二下行子帧集合中包括的子帧数,所述用户设备在所述上行子帧中传输所述第一下行子帧集合所对应的上行控制信息时,每个时隙所占用的RB数大于所述用户设备在所述上行子帧中发送所述第二下行子帧集合所对应的上行控制信息时,每个时隙所占用的RB数。With the third aspect, or any one of the foregoing implementation manners, in another implementation manner of the third aspect, the user equipment is configured with a first downlink subframe set or a second downlink subframe set, The number of subframes included in the first downlink subframe set is greater than the number of subframes included in the second downlink subframe set, and the user equipment transmits the first downlink subframe set in the uplink subframe When the corresponding uplink control information is used, the number of RBs occupied by each time slot is greater than the uplink control information corresponding to the second downlink subframe set sent by the user equipment in the uplink subframe. The number of RBs occupied.
结合第三方面或其上述实现方式的任一种,在第三方面的另一种实现方式中,所述用户设备被配置了第一下行子帧集合,其中所述第一下行子帧集合包括第一子集和第二子集,所述第一子集是所述第二子集的真子集,所述用户设备在所述上行子帧中传输所述第一子集中的下行子帧所对应的上行控制信息时,每个时隙所占用的RB数小于所述用户设备在所述上行子帧中传输所述第二子集中的下行子帧所对应的上行控制信息时,每个时隙所占用的RB数。With reference to the third aspect, or any one of the foregoing implementation manners, in another implementation manner of the third aspect, the user equipment is configured with a first downlink subframe set, where the first downlink subframe The set includes a first subset and a second subset, the first subset is a true subset of the second subset, and the user equipment transmits the downlink subgroup in the first subset in the uplink subframe When the uplink control information corresponding to the frame is used, the number of RBs occupied by each time slot is smaller than the uplink control information corresponding to the downlink subframe of the second subset in the uplink subframe. The number of RBs occupied by time slots.
结合第三方面或其上述实现方式的任一种,在第三方面的另一种实现方式中,所述传输单元还用于在所述上行子帧的至少一个时域符号中向所述接入网设备发送解调参考信号DMRS,其中,每个时域符号中的DMRS序列包括K段基于长度N生成的序列。In conjunction with the third aspect, or any one of the foregoing implementation manners, in another implementation manner of the third aspect, the transmitting unit is further configured to: in the at least one time domain symbol of the uplink subframe The network access device transmits a demodulation reference signal DMRS, wherein the DMRS sequence in each time domain symbol includes a sequence in which the K segment is generated based on the length N.
结合第三方面或其上述实现方式的任一种,在第三方面的另一种实现方式中,K取值不同时,所述用户设备能够传输的上行控制信息的最大比特数不同。In conjunction with the third aspect or any of the foregoing implementation manners, in another implementation manner of the third aspect, when the value of K is different, the maximum number of bits of uplink control information that can be transmitted by the user equipment is different.
第四方面,提供一种接入网设备,包括:第一获取单元,用于从上行子帧的第一时隙内的K个资源块RB中的L1个时域符号上获取L1组调制符号,其中每组调制符号包括K×N个调制符号,K为在一个时隙内用于承载用户设备的上行控制信息的资源块RB的个数,K为大于1的正整数,N为1个RB中所包含的子载波的数量;第二获取单元,用于从所述上行子帧的第二时隙内的K个RB中的L2个时域符号上获取L2组调制符号,其中每组调制符号包括K×N个调制符号;第一变换单元,用于分别对所述L1组调制符号进行逆离散傅里叶变换IDFT,得到IDFT后的L1组调制符号;第二变化 单元,用于分别对所述L2组调制符号进行IDFT,得到IDFT后的L2组调制符号;第一逆循环移位单元,用于分别对所述IDFT后的L1组调制符号中的每一组调制符号进行逆循环移位,得到逆循环移位后的L1组调制符号,其中所述IDFT后的L1组调制符号中的第i组调制符号在逆循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000015
1≤i≤L1;第二逆循环移位单元,用于分别对所述IDFT后的L2组调制符号中的每一组调制符号进行逆循环移位,得到逆循环移位后的L2组调制符号,其中所述IDFT后的L2组调制符号中的第j组调制符号在逆循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000016
1≤j≤L2,
Figure PCTCN2015073063-appb-000017
Figure PCTCN2015073063-appb-000018
均表示当前小区的小区特定的基本循环移位值;第一解扩单元,用于使用码长为L1的扩频码对逆循环移位后的L1组调制符号进行解扩,得到第一组调制符号,所述第一组调制符号包括K×N个调制符号;第二解扩单元,用于使用码长为L2的扩频码对逆循环移位后的L2组调制符号进行解扩,得到第二组调制符号,所述第二组调制符号包括K×N个调制符号;第三获取单元,用于获取承载于所述第一组调制符号和所述第二组调制符号中的所述上行控制信息。
A fourth aspect provides an access network device, including: a first acquiring unit, configured to acquire an L1 group modulation symbol from L1 time domain symbols in K resource blocks RB in a first time slot of an uplink subframe Wherein each set of modulation symbols includes K×N modulation symbols, K is the number of resource blocks RB for carrying uplink control information of the user equipment in one slot, K is a positive integer greater than 1, and N is 1 a number of subcarriers included in the RB; a second acquiring unit, configured to acquire L2 group modulation symbols from L2 time domain symbols in the K RBs in the second slot of the uplink subframe, where each group The modulation symbol includes K×N modulation symbols; a first transform unit, configured to perform inverse discrete Fourier transform IDFT on the L1 group modulation symbols respectively to obtain an L1 group modulation symbol after IDFT; and a second change unit, configured to: Performing IDFT on the L2 group modulation symbols respectively to obtain an L2 group modulation symbol after IDFT; and a first inverse cyclic shift unit for respectively inverseting each group of modulation symbols in the L1 group modulation symbols after the IDFT Cyclic shift, obtaining the L1 group modulation symbol after the inverse cyclic shift, The cyclic shift value used in the inverse cyclic shift of the i-th modulation symbol in the L1 group modulation symbol after the IDFT
Figure PCTCN2015073063-appb-000015
1 ≤ i ≤ L1; a second inverse cyclic shift unit, configured to perform inverse cyclic shift on each set of modulation symbols in the L2 group modulation symbols after the IDFT, respectively, to obtain L2 group modulation after inverse cyclic shift a symbol, wherein a cyclic shift value used by the j-th group modulation symbol in the L2 group modulation symbol after the IDFT is inversely cyclically shifted
Figure PCTCN2015073063-appb-000016
1≤j≤L2,
Figure PCTCN2015073063-appb-000017
with
Figure PCTCN2015073063-appb-000018
Each represents a cell-specific basic cyclic shift value of the current cell; the first despreading unit is configured to despread the L1 group modulation symbols after the inverse cyclic shift by using a spreading code with a code length of L1, to obtain a first group. a modulation symbol, the first group of modulation symbols includes K×N modulation symbols, and a second despreading unit, configured to despread the L2 group modulation symbols after the inverse cyclic shift using a spreading code with a code length of L2, Obtaining a second group of modulation symbols, where the second group of modulation symbols includes K×N modulation symbols, and a third acquiring unit, configured to acquire, by using the first group of modulation symbols and the second group of modulation symbols The uplink control information is described.
结合第四方面,在第四方面的一种实现方式中,所述第三获取单元具体用于分别对所述第一组调制符号和所述第二组调制符号进行解调,得到解调后的编码比特流;对所述编码比特流进行译码,得到所述上行控制信息。With reference to the fourth aspect, in an implementation manner of the fourth aspect, the third acquiring unit is specifically configured to perform demodulation on the first group of modulation symbols and the second group of modulation symbols, respectively, to obtain a demodulated Encoded bitstream; decoding the encoded bitstream to obtain the uplink control information.
结合第四方面或其上述实现方式的任一种,在第四方面的另一种实现方式中,所述上行控制信息通过第一时频资源传输,所述当前小区下的其它上行控制信息通过第二时频资源传输,所述第一时频资源所包含的RB数大于所述第二时频资源所包含的RB数,且所述第一时频资源与所述第二时频资源部分重叠。With the fourth aspect, or any one of the foregoing implementation manners, in another implementation manner of the fourth aspect, the uplink control information is transmitted by using a first time-frequency resource, and other uplink control information of the current cell is passed. And transmitting, by the first time-frequency resource, the number of RBs included in the first time-frequency resource is greater than the number of RBs included in the second time-frequency resource, and the first time-frequency resource and the second time-frequency resource part overlapping.
结合第四方面或其上述实现方式的任一种,在第四方面的另一种实现方式中,所述接入网设备为所述用户设备配置了第一下行子帧集合或第二下行子帧集合,所述第一下行子帧集合中包括的子帧数大于所述第二下行子帧集合中包括的子帧数,所述接入网设备在所述上行子帧中接收所述第一下行子帧集合所对应的上行控制信息时,每个时隙所占用的RB数大于所述接入网设备在所述上行子帧中接收所述第二下行子帧集合所对应的上行控制信息时,每个时隙所占用的RB数。With reference to the fourth aspect, or any one of the foregoing implementation manners, in another implementation manner of the fourth aspect, the access network device configures, by the user equipment, a first downlink subframe set or a second downlink a subframe set, where the number of subframes included in the first downlink subframe set is greater than the number of subframes included in the second downlink subframe set, where the access network device receives the uplink subframe When the uplink control information corresponding to the first downlink subframe set is used, the number of RBs occupied by each time slot is greater than that of the access network device receiving the second downlink subframe set in the uplink subframe. The number of RBs occupied by each time slot when the uplink control information is received.
结合第四方面或其上述实现方式的任一种,在第四方面的另一种实现方 式中,所述接入网设备为所述用户设备配置了第一下行子帧集合,其中所述第一下行子帧集合包括第一子集和第二子集,所述第一子集是所述第二子集的真子集,所述接入网设备在所述上行子帧中接收所述第一子集中的下行子帧所对应的上行控制信息时,每个时隙所占用的RB数小于所述接入网设备在所述上行子帧中传输所述第二子集中的下行子帧所对应的上行控制信息时,每个时隙所占用的RB数。In combination with the fourth aspect or any of the above implementations, another implementation in the fourth aspect In the above, the access network device configures a first downlink subframe set for the user equipment, where the first downlink subframe set includes a first subset and a second subset, and the first sub The set is a true subset of the second subset, and when the access network device receives the uplink control information corresponding to the downlink subframe in the first subset in the uplink subframe, the time slot is occupied by each time slot. The number of RBs is smaller than the number of RBs occupied by each time slot when the access network device transmits the uplink control information corresponding to the downlink subframe in the second subset in the uplink subframe.
结合第四方面或其上述实现方式的任一种,在第四方面的另一种实现方式中,所述上行子帧的一个时域符号中的解调参考信号DMRS序列包括K段基于长度N生成的序列。With reference to the fourth aspect, or any one of the foregoing implementation manners, in another implementation manner of the fourth aspect, the demodulation reference signal DMRS sequence in a time domain symbol of the uplink subframe includes a K segment based on a length N The generated sequence.
本发明实施例中,将现有的单RB的PF3扩展到多RB的PF3,能够支持更多数目的载波聚合以及支持更多比特的ACK/NACK反馈。进一步地,本发明实施例在对L1+L2组调制符号进行每组独立的循环移位时所采用的循环移位值为当前小区的小区特定的基本循环移位值的K倍,这样,当单RB和多RB的时频资源重叠使用时,可以保证各类型的PF3之间的正交性,降低相互之间的干扰。In the embodiment of the present invention, the existing PF3 of a single RB is extended to the PF3 of multiple RBs, which can support a larger number of carrier aggregations and support more bits of ACK/NACK feedback. Further, in the embodiment of the present invention, when the L1+L2 group modulation symbols are subjected to each group of independent cyclic shifts, the cyclic shift value used is K times of the cell-specific basic cyclic shift value of the current cell, so that when When the time-frequency resources of the single RB and the multiple RBs are overlapped, the orthogonality between the PFs of each type can be ensured, and the mutual interference is reduced.
附图说明DRAWINGS
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the drawings to be used in the embodiments of the present invention will be briefly described below. It is obvious that the drawings described below are only some embodiments of the present invention, Those skilled in the art can also obtain other drawings based on these drawings without paying any creative work.
图1是载波聚合的场景图。FIG. 1 is a scene diagram of carrier aggregation.
图2是PF3的信道结构图。2 is a channel structure diagram of PF3.
图3是本发明实施例的单RB的PF3和多RB的PF3时频资源重叠的示意图。FIG. 3 is a schematic diagram of overlapping PF3 time-frequency resources of a single RB and multiple RBs according to an embodiment of the present invention.
图4是本发明实施例的传输上行控制信息的方法的示意性流程图。FIG. 4 is a schematic flowchart of a method for transmitting uplink control information according to an embodiment of the present invention.
图5是传输上行控制信息的方式的示意图。FIG. 5 is a schematic diagram of a manner of transmitting uplink control information.
图6是本发明实施例的传输上行控制信息的方法的示意性流程图。FIG. 6 is a schematic flowchart of a method for transmitting uplink control information according to an embodiment of the present invention.
图7是本发明实施例的用户设备的示意性框图。FIG. 7 is a schematic block diagram of a user equipment according to an embodiment of the present invention.
图8是本发明实施例的接入网设备的示意性框图。FIG. 8 is a schematic block diagram of an access network device according to an embodiment of the present invention.
图9是本发明实施例的用户设备的示意性框图。 FIG. 9 is a schematic block diagram of a user equipment according to an embodiment of the present invention.
图10是本发明实施例的接入网设备的示意性框图。FIG. 10 is a schematic block diagram of an access network device according to an embodiment of the present invention.
图11是本发明实施例的传输上行控制信息的方法的示意性流程图。FIG. 11 is a schematic flowchart of a method for transmitting uplink control information according to an embodiment of the present invention.
图12是在一个时隙进行多次扩频操作的示意图。Figure 12 is a diagram showing a plurality of spreading operations performed in one time slot.
图13是本发明实施例的传输上行控制信息的方法的示意性流程图。FIG. 13 is a schematic flowchart of a method for transmitting uplink control information according to an embodiment of the present invention.
图14是本发明实施例的用户设备的示意性框图。FIG. 14 is a schematic block diagram of a user equipment according to an embodiment of the present invention.
图15是本发明实施例的接入网设备的示意性框图。FIG. 15 is a schematic block diagram of an access network device according to an embodiment of the present invention.
图16是本发明实施例的用户设备的示意性框图。FIG. 16 is a schematic block diagram of a user equipment according to an embodiment of the present invention.
图17是本发明实施例的接入网设备的示意性框图。FIG. 17 is a schematic block diagram of an access network device according to an embodiment of the present invention.
具体实施方式detailed description
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。The technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. It is obvious that the described embodiments are a part of the embodiments of the present invention, but not all embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts shall fall within the scope of the present invention.
为了便于理解,先给出本发明实施例的应用场景的一个示例。图1是本发明实施例的应用场景的示例图。图1的载波聚合系统中,用户设备1和用户设备2均为进行CA的用户设备,用户设备1为通过载波组f1(多个载波组成一个载波组)与服务基站进行通信,用户设备2通过载波组f1和载波组f2与服务基站进行通信。For ease of understanding, an example of an application scenario of an embodiment of the present invention is first given. FIG. 1 is a diagram showing an example of an application scenario of an embodiment of the present invention. In the carrier aggregation system of FIG. 1 , both the user equipment 1 and the user equipment 2 are user equipments for performing CA, and the user equipment 1 communicates with the serving base station by using a carrier group f1 (a plurality of carriers form a carrier group), and the user equipment 2 passes The carrier group f1 and the carrier group f2 communicate with the serving base station.
本发明实施例可以看成是在现有的PUCCH格式3(PF3,PUCCH format3)的基础上的扩展,下面先结合图2,简单介绍PUCCH格式3的信道结构和传输方式。PUCCH格式3在一个子帧的两个时隙中各占用一个资源块(Resource Block,RB)的时频资源,采用离散傅里叶变换扩展正交频分复用(Discrete Fourier Transform-Spread-OFDM,DFT-S-OFDM)传输方式。由于PUCCH格式3在一个子帧的两个时隙中各占用一个RB的时频资源,为了便于描述,本发明实施例将现有的PF3称为单RB的PF3。单RB的PF3的信道结构如图2所示。The embodiment of the present invention can be regarded as an extension based on the existing PUCCH format 3 (PF3, PUCCH format 3). The channel structure and transmission mode of the PUCCH format 3 are briefly introduced below with reference to FIG. 2 . PUCCH format 3 occupies a time-frequency resource of one resource block (RB) in two slots of one subframe, and uses discrete Fourier transform to spread OFDM (Discrete Fourier Transform-Spread-OFDM) , DFT-S-OFDM) transmission method. The PUCCH format 3 occupies one RB time-frequency resource in each of the two slots of one subframe. For the convenience of description, the existing PF3 is referred to as a PF3 of a single RB. The channel structure of the PF3 of a single RB is as shown in FIG. 2.
具体地,原始ACK/NACK比特(比如20个比特)进行信道编码和速率匹配后得到48个编码后比特,之后进行加扰,并调制成24个正交相移键控(Quadrature Phase Shift Keying,QPSK)符号,分别放到一个子帧的两个时隙中。这样,每个时隙上有12个QPSK符号,具体放在该时隙的一个时域 符号上的12个连续子载波上,也就是占用一个RB中的一个时域符号上的12个子载波。然后,针对每个时隙,在时域进行正交掩码(Orthogonal Cover Code,OCC)扩频,OCC扩频码长一般为5,扩频后占一个RB内的5个时域符号,不同的UE可以在一个RB上通过不同的OCC扩频码序列进行码分复用,其余两个符号用来承载参考信号RS。对于特殊情况(比如第二个时隙中如果有探测参考信号(Sounding Reference Signal,SRS)的发送的情况下),上述扩频码长也可能为4。扩频后,再对每个时域符号上的12个调制符号在频域上做小区特定的循环移位,该循环移位是对每个时域符号特定的循环移位,即不同时域符号上的循环移位可以相同,也可以不同,但该小区中所有UE对于相同时域符号上的循环移位是相同的。最后,进行DFT预编码和逆快速傅里叶变换(Inverse Fast Fourier Transform,IFFT),继而发送给基站。Specifically, the original ACK/NACK bits (such as 20 bits) are subjected to channel coding and rate matching to obtain 48 coded bits, which are then scrambled and modulated into 24 Quadrature Phase Shift Keying (Quadrature Phase Shift Keying, QPSK) symbols are placed in two slots of one subframe, respectively. Thus, there are 12 QPSK symbols on each time slot, specifically placed in a time domain of the time slot. On 12 consecutive subcarriers on the symbol, that is, occupying 12 subcarriers on one time domain symbol in one RB. Then, for each time slot, Orthogonal Cover Code (OCC) spreading is performed in the time domain, and the OCC spreading code length is generally 5, and the spreading time occupies 5 time domain symbols in one RB, different The UE may perform code division multiplexing on different RBs through different OCC spreading code sequences, and the remaining two symbols are used to carry the reference signal RS. For special cases (such as in the case of the transmission of a Sounding Reference Signal (SRS) in the second time slot), the above-mentioned spreading code length may also be 4. After spreading, the cell-specific cyclic shift is performed on the frequency domain in the 12 modulation symbols on each time domain symbol, and the cyclic shift is a cyclic shift specific to each time domain symbol, that is, different time domains. The cyclic shifts on the symbols may be the same or different, but all UEs in the cell are identical for cyclic shifts on the same time domain symbol. Finally, DFT precoding and Inverse Fast Fourier Transform (IFFT) are performed, which are then transmitted to the base station.
为了支持更多比特(比如40比特或更多)的ACK/NACK反馈,一种直观的方式是扩展当前PF3的容量,比如将一个时隙中占用一个RB,扩展到一个时隙占用多个RB。In order to support ACK/NACK feedback of more bits (such as 40 bits or more), an intuitive way is to extend the capacity of the current PF3, such as occupying one RB in one slot and expanding to one slot to occupy multiple RBs. .
本发明实施例可以看成是在现有的PF3基础上的扩展,上文将现有的PF3称为单RB的PF3,为了区分,可以将本发明实施例的PUCCH的格式称为多RB的PF3,或K个RB的PF3(K为大于1的正整数),用于表示本发明实施例的PUCCH的格式在上行子帧的每个时隙内占用多个RB。需要说明的是,单RB的PF3、多RB(或K个RB)的PF3等命名仅仅是为了描述方便,并与现有技术进行区分,不应视为对本发明实施例的限制。实际上,本发明实施例的在一个时隙占用多个RB的PUCCH的格式也可以命名为PUCCH的其他格式,例如PUCCH的格式4等,或者与现有的单RB的PF3一并称为PF3,本发明实施例对此不作具体限定。The embodiment of the present invention can be regarded as an extension of the existing PF3. The existing PF3 is referred to as a PF3 of a single RB. For distinguishing, the format of the PUCCH in the embodiment of the present invention may be referred to as multiple RBs. PF3, or PF3 of K RBs (K is a positive integer greater than 1), is used to indicate that the format of the PUCCH of the embodiment of the present invention occupies multiple RBs in each slot of the uplink subframe. It should be noted that the PF3 of the single RB, the PF3 of the multiple RBs (or K RBs), and the like are merely for convenience of description, and are distinguished from the prior art, and should not be construed as limiting the embodiments of the present invention. In fact, the format of the PUCCH that occupies multiple RBs in one slot in the embodiment of the present invention may also be named as other formats of the PUCCH, such as the format 4 of the PUCCH, or the PF3 together with the existing single RB PF3. The embodiment of the present invention does not specifically limit this.
以2个RB的PF3为例,只需要把上行子帧在每个时隙占用的12个子载波扩展到24个子载波即可,不需要改动时域OCC扩频,这样就可以成比例的使得该2个RB的PF3支持40个比特的ACK/NACK反馈,进而可以支持更多载波(比如10载波)的CA。扩展到3个RB或更多RB的PF3的方案类似,只需要在频域进行扩展即可。Taking PF3 of 2 RBs as an example, it is only necessary to extend the 12 subcarriers occupied by the uplink subframe in each slot to 24 subcarriers, and it is not necessary to change the time domain OCC spreading, so that the ratio can be proportionally The RB3 of 2 RBs supports 40 bits of ACK/NACK feedback, which in turn can support CA of more carriers (such as 10 carriers). The scheme of PF3 extended to 3 RBs or more RBs is similar, and only needs to be extended in the frequency domain.
但是,单RB的PF3由于复用能力有限,而扩展到多个RB后,因为复用能力较单RB的PUCCH格式3是一样的,但多个RB的PF3的开销会更 大,且占用的资源却随着RB的扩展而成倍增加。However, the PF3 of a single RB is extended to multiple RBs due to limited multiplexing capability. Since the multiplexing capability is the same as that of the PUCCH format 3 of a single RB, the overhead of the PF3 of multiple RBs is more Large, and occupied resources have multiplied with the expansion of RB.
为了降低PF3的资源开销,可以让单RB的PF3和多RB的PF3的信道资源可以在频域上重叠。具体的,如图3所示,时隙0内的RB0和RB1各承载了单RB的PF3,二者之间通过采用频分复用(Frequency Division Multiple,FDM)区分,而RB0和RB1一起承载了2个RB的PF3,该2个RB的PF3和上述单RB的PF3之间通过码分复用(Code Division Multiple,CDM)技术区分(图3中第1时域符号和第5时域符号中承载的是RS)。也就是说,每个时隙中的单RB的PF3和双RB的PF3在两个频域RB上重叠,其中不同的单RB的PF3的信道可以采用不同RB的频分复用,单RB和多RB的PF3的信道通过时域OCC来码分复用。In order to reduce the resource overhead of the PF3, the channel resources of the PF3 of the single RB and the PF3 of the multiple RBs may be overlapped in the frequency domain. Specifically, as shown in FIG. 3, RB0 and RB1 in slot 0 each carry a PF3 of a single RB, and are distinguished by using Frequency Division Multiple (FDM), and RB0 and RB1 are carried together. PF3 of two RBs, the PF3 of the two RBs and the PF3 of the single RB are distinguished by Code Division Multiple (CDM) technology (the first time domain symbol and the fifth time domain symbol in FIG. 3) Hosted in RS). That is, the PF3 of the single RB and the PF3 of the dual RB in each slot overlap on the two frequency domains RB, wherein the channels of the PF3 of different single RBs can adopt frequency division multiplexing of different RBs, single RB and The channels of the RBs of multiple RBs are code division multiplexed by the time domain OCC.
虽然上述单RB的PF3与多RB的PF3在频域上部分重叠的方式能够降低PUCCH开销,提高PUCCH的复用效率,但是由于PF3中存在每个时域符号级别的循环移位,使得扩展到多个RB的PF3后不能随意进行循环移位,这样可能会导致时频资源重叠的单RB和多RB的PF3彼此不正交,造成相互之间的干扰。比如,假设单RB的PF3在5个时域符号上的循环移位的数值为{a,b,c,d,e},如果2个RB的PF3对于每个RB继续沿用上述单RB的PF3的循环移位的数值,即每个RB都采用{a,b,c,d,e}的循环移位,就会导致两者不正交,原因是由于不同长度的DFT操作使得RB数量不同的PF3之间存在相互干扰。Although the manner in which the PF3 of the single RB and the PF3 of the multiple RB partially overlap in the frequency domain can reduce the PUCCH overhead and improve the multiplexing efficiency of the PUCCH, since there is a cyclic shift of each time domain symbol level in the PF3, the extension is extended to After PF3 of multiple RBs, cyclic shifting cannot be performed arbitrarily. This may cause single-RBs overlapping with time-frequency resources and PF3s of multiple RBs to be non-orthogonal to each other, causing mutual interference. For example, suppose that the value of the cyclic shift of the PF3 of the single RB on the five time-domain symbols is {a, b, c, d, e}, if the PF3 of the two RBs continues to use the PF3 of the single RB for each RB. The value of the cyclic shift, that is, the cyclic shift of {a, b, c, d, e} for each RB, causes the two to be non-orthogonal, because the number of RBs is different due to DFT operations of different lengths. There is mutual interference between PF3.
由此可见,单RB的PF3和多RB的PF3在时频资源重叠时,循环移位值的选择会影响到它们相互之间的正交性,进而影响到彼此的解调性能,那么针对如何设计多RB的PF3的循环移位,以使得正交性得以保证是将单RB的PF3扩展到多RB的PF3所需要解决的问题。It can be seen that when the PF3 of the single RB and the PF3 of the multiple RB overlap when the time-frequency resources overlap, the selection of the cyclic shift value affects the orthogonality between them, thereby affecting the demodulation performance of each other, then how to The cyclic shift of PF3 of multiple RBs is designed such that orthogonality is guaranteed to be a problem to be solved by extending PF3 of a single RB to PF3 of multiple RBs.
图4是本发明实施例的传输上行控制信息的方法的示意性流程图。图4的方法包括:FIG. 4 is a schematic flowchart of a method for transmitting uplink control information according to an embodiment of the present invention. The method of Figure 4 includes:
410、用户设备生成承载有上行控制信息的第一组调制符号和第二组调制符号,其中第一组调制符号和第二组调制符号均包括K×N个调制符号,K为在一个时隙内用于承载该上行控制信息的资源块RB的个数,K为大于1的正整数,N为1个RB中所包含的子载波的数量。410. The user equipment generates a first group of modulation symbols and a second group of modulation symbols that carry uplink control information, where the first group of modulation symbols and the second group of modulation symbols each include K×N modulation symbols, where K is in a time slot. The number of resource blocks RB used to carry the uplink control information, K is a positive integer greater than 1, and N is the number of subcarriers included in one RB.
以N=12,即1个RB包括12个子载波为例,现有的单RB的PF3中,每组调制符号包括的调制符号数为12,两组调制符号共包括24个调制符号。 在N=12的前提下,本发明实施例中的一组调制符号至少包括24个调制符号,甚至更多。K的取值可根据实际情况确定,例如,可以根据用户设备当前准备发送的上行控制信息的比特数确定,也可以根据用户设备被配置的下行子帧的数目确定,或者根据用户设备进行CA时的载波数目确定。Taking N=12, that is, 1 RB includes 12 subcarriers as an example, in the existing single RB PF3, each group of modulation symbols includes 12 modulation symbols, and the two sets of modulation symbols include 24 modulation symbols in total. On the premise of N=12, a set of modulation symbols in the embodiment of the present invention includes at least 24 modulation symbols, or even more. The value of K may be determined according to the actual situation. For example, it may be determined according to the number of bits of the uplink control information that the user equipment is currently preparing to send, or may be determined according to the number of downlink subframes configured by the user equipment, or when the CA is performed according to the user equipment. The number of carriers is determined.
需要说明的是,该上行控制信息是准备在上行子帧中传输的上行控制信息,或者该上行控制信息是准备承载于上行子帧中的上行控制信息。It should be noted that the uplink control information is uplink control information to be transmitted in an uplink subframe, or the uplink control information is uplink control information to be carried in an uplink subframe.
由于上行子帧包括两个时隙,该上行控制信息承载于上行子帧中时,是通过两个时隙共同承载的,因此,需要对承载有上行控制信息的调制符号进行分组,本发明实施例对分组的方式不作具体限定,可参照现有技术。换句话说,第一组调制符号和第二组调制符号分别对应上行子帧的两个时隙,即第一组调制符号对应上行子帧的第一时隙,第二组调制符号对应上行子帧的第二时隙。所谓第一组调制符号对应第一时隙,具体可表示第一组调制符号经过后续的扩频、循环移位、DFT、IFFT等操作后,第一组调制符号中的信息最终会被承载于第一时隙中;所谓第二组调制符号对应第二时隙,具体可表示第二组调制符号经过后续的扩频、循环移位、DFT、IFFT等操作后,第二组调制符号中的信息最终会被承载于第二时隙中。Since the uplink subframe includes two time slots, and the uplink control information is carried in the uplink subframe, it is jointly carried by the two time slots. Therefore, the modulation symbols carrying the uplink control information need to be grouped, and the present invention is implemented. The manner of grouping is not specifically limited, and reference may be made to the prior art. In other words, the first group of modulation symbols and the second group of modulation symbols respectively correspond to two time slots of the uplink subframe, that is, the first group of modulation symbols correspond to the first time slot of the uplink subframe, and the second group of modulation symbols correspond to the uplink subframe. The second time slot of the frame. The first set of modulation symbols corresponds to the first time slot, and specifically, the information of the first group of modulation symbols is finally carried by the first group of modulation symbols after subsequent operations such as spreading, cyclic shift, DFT, and IFFT. The first time slot; the second group of modulation symbols corresponding to the second time slot, specifically indicating that the second group of modulation symbols are subjected to subsequent operations such as spreading, cyclic shift, DFT, IFFT, etc., in the second group of modulation symbols The information will eventually be carried in the second time slot.
420、用户设备使用码长为L1的扩频码对第一组调制符号进行扩频,得到L1组调制符号,并使用码长为L2的扩频码对第二组调制符号进行扩频,得到L2组调制符号。420. The user equipment uses a spreading code with a code length of L1 to spread the first group of modulation symbols to obtain an L1 group modulation symbol, and spreads the second group of modulation symbols by using a spreading code with a code length of L2. L2 group modulation symbol.
需要说明的是,扩频后得到的L1组调制符号中每组调制符号包括K×N个调制符号,扩频后得到的L2组调制符号中每组调制符号包括K×N个调制符号。It should be noted that each group of modulation symbols in the L1 group modulation symbols obtained after spreading includes K×N modulation symbols, and each group of modulation symbols in the L2 group modulation symbols obtained after spreading includes K×N modulation symbols.
430、用户设备分别对L1组调制符号中的每一组调制符号进行循环移位,得到移位后的L1组调制符号,其中L1组调制符号中的第i组调制符号在循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000019
1≤i≤L1。
430. The user equipment cyclically shifts each group of modulation symbols in the L1 group modulation symbols to obtain the shifted L1 group modulation symbols, where the ith group modulation symbols in the L1 group modulation symbols are cyclically shifted. The cyclic shift value used is
Figure PCTCN2015073063-appb-000019
1 ≤ i ≤ L1.
换句话说,用户设备对L1组调制符号进行每组独立的循环移位,得到移位后的L1组调制符号。In other words, the user equipment performs each group of independent cyclic shifts on the L1 group modulation symbols to obtain the shifted L1 group modulation symbols.
440、用户设备分别对L2组调制符号中的每一组调制符号进行循环移位,得到移位后的L2组调制符号,其中L2组调制符号中的第j组调制符号在循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000020
1≤j≤L2,
Figure PCTCN2015073063-appb-000021
Figure PCTCN2015073063-appb-000022
均表示当前小区的小区特定的基本循环移位值。
440. The user equipment cyclically shifts each group of modulation symbols in the L2 group modulation symbols to obtain the shifted L2 group modulation symbols, where the jth group modulation symbols in the L2 group modulation symbols are cyclically shifted. The cyclic shift value used is
Figure PCTCN2015073063-appb-000020
1≤j≤L2,
Figure PCTCN2015073063-appb-000021
with
Figure PCTCN2015073063-appb-000022
Both represent the cell-specific basic cyclic shift values of the current cell.
换句话说,用户设备对L2组调制符号进行每组独立的循环移位,得到移位后的L2组调制符号。In other words, the user equipment performs each group of independent cyclic shifts on the L2 group modulation symbols to obtain the shifted L2 group modulation symbols.
需要说明的是,上述当前小区为上述用户设备所在的小区,上述当前小区的小区特定的基本循环移位值可以指现有的单RB的PF3使用的小区特定的循环移位值。也就是说,
Figure PCTCN2015073063-appb-000023
Figure PCTCN2015073063-appb-000024
均可称为当前小区的小区特定循环移位值,但为了区分单RB的PF3对应的小区特定循环移位值和多RB的PF3对应的小区特定循环移位值,这里将单RB的PF3对应的小区特定循环移位值称为当前小区的小区特定的基本循环移位值。需要说明的是,以上命名仅仅是为了便于区分,并非要限定循环移位值的命名,实际上,
Figure PCTCN2015073063-appb-000025
Figure PCTCN2015073063-appb-000026
就是现有的当前小区的小区特定的循环移位值。
It should be noted that the current cell is a cell in which the user equipment is located, and the cell-specific basic cyclic shift value of the current cell may refer to a cell-specific cyclic shift value used by the existing single-RB PF3. That is,
Figure PCTCN2015073063-appb-000023
with
Figure PCTCN2015073063-appb-000024
The PF3 corresponding to the single RB is corresponding to the cell-specific cyclic shift value of the PF3 of the single RB and the cell-specific cyclic shift value corresponding to the PF3 of the multi-RB. The cell-specific cyclic shift value is referred to as the cell-specific basic cyclic shift value of the current cell. It should be noted that the above naming is only for the purpose of distinguishing, and it is not necessary to limit the naming of the cyclic shift value. In fact,
Figure PCTCN2015073063-appb-000025
with
Figure PCTCN2015073063-appb-000026
It is the cell-specific cyclic shift value of the existing current cell.
需要说明的是,上述L1组调制符号可分别对应第一时隙中的L1个时域符号,也就是说,这里的L1组调制符号的第i组调制符号中承载的信息会由所述第i组调制符号对应的时域符号进行承载,或者会在所述第i组调制符号对应的时域符号进行发送。而L1组调制符号中的第i组调制符号在进行循环移位时所使用的循环移位值可以为该第i组调制符号对应的时域符号上的循环移位值。同理,上述L2组调制符号可分别对应第二时隙中的L2个时域符号,也就是说,这里的L2组调制符号的第j组调制符号中承载的信息会由所述第j组调制符号对应的时域符号进行承载,或者会在所述第j组调制符号对应的时域符号进行发送。而L2组调制符号中的第j组调制符号在进行循环移位时所使用的循环移位值可以为该第j组调制符号对应的时域符号上的循环移位值。It should be noted that the L1 group modulation symbols may respectively correspond to L1 time domain symbols in the first time slot, that is, the information carried in the i-th group modulation symbols of the L1 group modulation symbols herein may be The time domain symbols corresponding to the i group modulation symbols are carried, or are transmitted in the time domain symbols corresponding to the i th group modulation symbols. The cyclic shift value used by the ith group modulation symbol in the L1 group modulation symbol when performing cyclic shift may be a cyclic shift value on the time domain symbol corresponding to the ith group modulation symbol. Similarly, the L2 group modulation symbols may respectively correspond to L2 time domain symbols in the second time slot, that is, the information carried in the jth group modulation symbols of the L2 group modulation symbols herein may be from the jth group The time domain symbols corresponding to the modulation symbols are carried, or are transmitted in the time domain symbols corresponding to the jth group of modulation symbols. The cyclic shift value used by the jth group modulation symbol in the L2 group modulation symbol when performing cyclic shift may be a cyclic shift value on the time domain symbol corresponding to the jth group modulation symbol.
450、用户设备通过上行子帧的第一时隙内的K个RB和第二时隙内的K个RB,向接入网设备传输承载于移位后的L1组调制符号和移位后的L2组调制符号中的上行控制信息。450. The user equipment transmits, by using the K RBs in the first time slot of the uplink subframe and the K RBs in the second time slot, the L1 group modulation symbols carried after the shift and the shifted Uplink control information in the L2 group modulation symbols.
换句话说,用户设备通过上行子帧的第一时隙内的K个RB向接入网设备发送承载于移位后的L1组调制符号中的信息;用户设备通过上行子帧的第二时隙内的K个RB向接入网设备发送承载于移位后的L2组调制符号中的信息。In other words, the user equipment sends the information carried in the shifted L1 group modulation symbols to the access network device through the K RBs in the first time slot of the uplink subframe; the user equipment passes the second time of the uplink subframe. The K RBs in the slot transmit information carried in the shifted L2 group modulation symbols to the access network device.
本发明实施例中,将现有的单RB的PF3扩展到多RB的PF3,能够支持更多数目的载波聚合以及支持更多比特的ACK/NACK反馈。进一步地,本发明实施例在对L1+L2组调制符号进行每组独立的循环移位时所采用的 循环移位值为当前小区的小区特定的基本循环移位值的K倍,这样,当单RB和多RB的时频资源重叠使用时,可以保证各类型的PF3之间的正交性,降低相互之间的干扰。下面给出采用基本循环移位值的K倍进行循环移位时,当前小区下不同RB个数的PF3在时频资源重叠时,彼此之间满足正交性的数学证明。In the embodiment of the present invention, the existing PF3 of a single RB is extended to the PF3 of multiple RBs, which can support a larger number of carrier aggregations and support more bits of ACK/NACK feedback. Further, the embodiment of the present invention uses each group of independent cyclic shifts of the L1+L2 group modulation symbols. The cyclic shift value is K times the cell-specific basic cyclic shift value of the current cell, so that when the time-frequency resources of the single RB and the multiple RBs are overlapped, orthogonality between the PFs of each type can be ensured, and the orthogonality is reduced. Interference between each other. In the following, when the cyclic shift is performed using K times of the basic cyclic shift value, the PF3 of different RB numbers in the current cell satisfies the mathematical proof of orthogonality when the time-frequency resources overlap.
应理解,在上述步骤410之前,可以是UE被基站进行下行数据调度的过程,而步骤110中的上行控制信息可以是对下行数据调度的反馈信息(如ACK/NACK等)。具体而言,UE被基站通过无线资源控制(Radio Resource Control,RRC)信令配置了多个载波,该多个载波可以为FDD载波或TDD载波。以UE被配置了上下行配置2的10个TDD载波为例,根据表1和表2中的TDD上下行子帧配置以及下行数据与上行ACK/NACK的时序关系,主载波的上行子帧2需要反馈该10个载波上的下行子帧4、5、6和8中数据信道所对应的ACK/NACK。这些数据信道分别由独立的控制信道调度,也可以由统一的控制信道调度,也可以是两者的结合,比如多个控制信道,每次调度多于一个下行子帧中的数据信道。本发明实施例以独立的控制信道调度为例。这里提到的下行子帧,包括正常的下行子帧,也包括TDD系统中的特殊子帧。这里的ACK/NACK被看做上行控制信息上行控制信息(Uplink Control Information,UCI)中的一种,此外UCI还可以包括信道状态信息(Channel State Information,CSI)等。本发明实施例以UCI为ACK/NACK为例进行说明。UE被配置了多个载波后,就可以被基站发送控制信道调度这些配置了的载波上的下行子帧中的下行数据信道,进而UE需要反馈这些下行数据信道对应的上行ACK/NACK。It should be understood that, before the foregoing step 410, the UE may perform downlink data scheduling by the base station, and the uplink control information in step 110 may be feedback information (such as ACK/NACK, etc.) for downlink data scheduling. Specifically, the UE is configured by the base station to configure multiple carriers by using Radio Resource Control (RRC) signaling, and the multiple carriers may be FDD carriers or TDD carriers. Taking the 10 TDD carriers in which the UE is configured with the uplink and downlink configuration 2 as an example, according to the TDD uplink and downlink subframe configuration in Table 1 and Table 2 and the timing relationship between the downlink data and the uplink ACK/NACK, the uplink subframe 2 of the primary carrier It is required to feed back the ACK/NACK corresponding to the data channel in the downlink subframes 4, 5, 6, and 8 on the 10 carriers. These data channels are respectively scheduled by independent control channels, or may be scheduled by a unified control channel, or a combination of the two, such as multiple control channels, each time scheduling data channels in more than one downlink subframe. The embodiment of the present invention takes an independent control channel scheduling as an example. The downlink subframes mentioned herein include normal downlink subframes, and also include special subframes in the TDD system. The ACK/NACK is regarded as one of the Uplink Control Information (UCI) of the uplink control information, and the UCI may further include Channel State Information (CSI) and the like. The embodiment of the present invention takes UCI as an ACK/NACK as an example for description. After the UE is configured with multiple carriers, the base station may send a control channel to schedule downlink data channels in the downlink subframes on the configured carriers, and the UE needs to feed back uplink ACK/NACK corresponding to the downlink data channels.
获取了载波配置以及基站在该配置的载波上的下行数据调度之后,基于表2中规定的时序关系,UE确定上行子帧中(比如上述上行子帧2)需要反馈的原始ACK/NACK信息比特,这些原始ACK/NACK信息比特可以是1或0的比特流,其中“1”可以代表下行数据信道被正确接收的ACK,“0”可以代表下行数据信道没有被正确接收的NACK。这里的原始ACK/NACK比特数一般可以由被配置的载波集合来确定,比如基于上述10个被配置载波上的每个载波上的下行子帧4、5、6和8,那么上行子帧2上确定的原始ACK/NACK比特数可以为4*10=40,如果每个子帧被调度两个码字,ACK/NACK比特数可以是4*10*2=80。这里假设每个子帧中是单码字调度。 确定了原始ACK/NACK信息比特数之后,UE把原始ACK/NACK比特按照一定的顺序排列起来。一般的,UE会按照载波标号,把一个载波的多个下行子帧对应的ACK/NACK排列,再到下一个载波的多个下行子帧对应的ACK/NACK排序。没有被调度的下行子帧或UE没有收到下行数据调度的下行子帧所对应的ACK/NACK的位置,UE会进行填“0”,即填充NACK。例如,UE会将载波1的下行子帧4、5、6和8的4份ACK/NACK排列好,比如对应的ACK/NACK为{ACK,NACK,ACK,填充NACK}或{1,0,1,填充的0},前三位为真正对接收到的下行数据进行的ACK/NACK反馈,最后一位是UE没有接收到载波1上的子帧8的下行数据调度,因此填充了0或NACK;接下来,UE再来把载波2上的下行子帧4、5、6和8对应位置的ACK/NACK排列下去,一直排到最后的载波10。当然,其他排列方法也不排除,只要按照UE和基站都清楚的预设规则进行排列即可。After acquiring the carrier configuration and the downlink data scheduling of the base station on the configured carrier, based on the timing relationship specified in Table 2, the UE determines the original ACK/NACK information bits that need to be fed back in the uplink subframe (such as the foregoing uplink subframe 2). These original ACK/NACK information bits may be a bit stream of 1 or 0, where "1" may represent an ACK that the downlink data channel is correctly received, and "0" may represent a NACK that the downlink data channel is not correctly received. The number of original ACK/NACK bits herein may generally be determined by the configured set of carriers, such as based on downlink subframes 4, 5, 6, and 8 on each of the above 10 configured carriers, then uplink subframe 2 The number of original ACK/NACK bits determined above may be 4*10=40. If each subframe is scheduled with two codewords, the number of ACK/NACK bits may be 4*10*2=80. It is assumed here that each sub-frame is a single codeword scheduling. After determining the original ACK/NACK information bit number, the UE arranges the original ACK/NACK bits in a certain order. Generally, the UE sorts the ACK/NACK corresponding to the multiple downlink subframes of one carrier according to the carrier label, and then sorts the ACK/NACK corresponding to the multiple downlink subframes of the next carrier. If there is no scheduled downlink subframe or the location of the ACK/NACK corresponding to the downlink subframe in which the UE does not receive the downlink data scheduling, the UE will fill in “0”, that is, fill the NACK. For example, the UE will arrange 4 ACK/NACKs of the downlink subframes 4, 5, 6, and 8 of the carrier 1, for example, the corresponding ACK/NACK is {ACK, NACK, ACK, padding NACK} or {1, 0, 1, padded 0}, the first three bits are the ACK/NACK feedback for the received downlink data, and the last bit is the downlink data scheduling of the subframe 8 that the UE does not receive on carrier 1, so padded with 0 or NACK; Next, the UE then aligns the ACK/NACK corresponding to the corresponding positions of the downlink subframes 4, 5, 6, and 8 on the carrier 2 to the last carrier 10. Of course, other arrangement methods are not excluded, as long as they are arranged according to preset rules that are clear to both the UE and the base station.
可选地,作为一个实施例,步骤410可包括:用户设备对上行控制信息进行编码,得到编码后的上行控制信息;用户设备对编码后的上行控制信息进行调制,得到第一组调制符号和第二组调制符号。Optionally, in an embodiment, the step 410 may include: the user equipment encodes the uplink control information to obtain the encoded uplink control information; and the user equipment modulates the encoded uplink control information to obtain the first group of modulation symbols and The second set of modulation symbols.
具体地,仍以上行控制信息为原始ACK/NACK为例,UE确定了原始ACK/NACK信息比特数,并对ACK/NACK进行了排序到位后,就会对这些原始ACK/NACK信息比特进行信道编码。本发明实施例对信道编码的类型不作具体限定,可以为线性块编码,卷积码或Turbo码。如果用线性块编码,比如里德穆勒(Reed Muller,RM)码,一般不需要在编码前添加循环冗余校验(Cyclic Redundancy Check,CRC);如果采用卷积码或Turbo,可以在编码前添加CRC,当然也可以不添加,本发明实施例对此不作具体限定。编码后的ACK/NACK,可以称为已编码ACK/NACK比特流。Specifically, the uplink control information is still an example of the original ACK/NACK, and the UE determines the number of original ACK/NACK information bits, and after the ACK/NACK is sorted into bits, the original ACK/NACK information bits are channelized. coding. The embodiment of the present invention does not specifically limit the type of channel coding, and may be a linear block coding, a convolutional code or a Turbo code. If you use linear block coding, such as Reed Muller (RM) code, you do not need to add Cyclic Redundancy Check (CRC) before encoding; if you use convolutional code or Turbo, you can encode The CRC is added before, and may not be added. The embodiment of the present invention does not specifically limit this. The encoded ACK/NACK may be referred to as an encoded ACK/NACK bitstream.
可选的,信道编码后,UE对得到的已编码ACK/NACK比特流进行速率匹配,得到速率匹配后的已编码ACK/NACK比特流。例如,上述提到的单RB的PF3在一个子帧的两个时隙中可以承载48个编码后的ACK/NACK比特,当然如果扩展到K个RB的PF3(K为大于1的正整数),就可以承载K*48个编码后的ACK/NACK比特。以RM编码为例,一个RM编码器假设最多可输入的编码前的比特数为11,且最多输出32个编码后的比特。那么,如果编码前的比特数少于或等于11,就可以使用单RM编码,此时编码器输出32个比特,因此需要将该32个比特扩展到48个比特,以使得用 单RB的PF3来传输,一般的做法是将32个比特循环重复的延长来得到上述48个比特。如果编码前的比特数大于11但小于22,就可以使用双RM编码,此时编码器输出2*32=64个比特,因此需要将该64个比特压缩到48个比特,以使得用单RB的PF3来传输,一般的做法是将该64个比特打掉16个比特来得到上述48个比特。对于本实施例的40个原始ACK/NACK比特,需要4个RM编码器,输出32*4=128个,需要采用双RB的PF3,即要把该128个比特压缩到48*2=96个比特,具体也可以将128个比特中打掉32个比特。当然,也可以采用卷积码或Turbo码,比特扩展和压缩的方式都是类似的。这种将编码器输出的比特数适配成PF3所需要的比特数的过程可称为速率匹配。Optionally, after channel coding, the UE performs rate matching on the obtained encoded ACK/NACK bitstream to obtain a rate matched encoded ACK/NACK bitstream. For example, the PF3 of the single RB mentioned above can carry 48 coded ACK/NACK bits in two slots of one subframe, of course, if it is extended to PF3 of K RBs (K is a positive integer greater than 1) It can carry K*48 encoded ACK/NACK bits. Taking RM encoding as an example, an RM encoder assumes that the maximum number of bits before encoding that can be input is 11, and outputs up to 32 encoded bits. Then, if the number of bits before encoding is less than or equal to 11, a single RM encoding can be used, in which case the encoder outputs 32 bits, so the 32 bits need to be extended to 48 bits to enable The PF3 of a single RB is transmitted. It is common practice to extend the 32-bit cyclic repetition to obtain the above 48 bits. If the number of bits before encoding is greater than 11 but less than 22, dual RM encoding can be used, in which case the encoder outputs 2*32=64 bits, so the 64 bits need to be compressed to 48 bits so that a single RB is used. The PF3 is transmitted. The general practice is to remove 16 bits of the 64 bits to obtain the above 48 bits. For the 40 original ACK/NACK bits of this embodiment, 4 RM encoders are required, and the output is 32*4=128, and the PF3 of the dual RB is required, that is, the 128 bits are compressed to 48*2=96. Bits, specifically, can also remove 32 bits out of 128 bits. Of course, convolutional codes or Turbo codes can also be used, and the manner of bit expansion and compression is similar. This process of adapting the number of bits output by the encoder to the number of bits required by PF3 can be referred to as rate matching.
进行了信道编码和/或速率匹配后,UE会对已编码ACK/NACK比特流进行星座调制。考虑到ACK/NACK的性能要求比数据高,所以一般都会采用比较鲁棒的QPSK调制,即每两个编码后的比特生成一个QPSK调制符号。当然,其他调制方式也不排除,比如16正交幅度调制(Quadrature Amplitude Modulation,QAM)甚至64QAM,可以应用在UE的信道条件很好,信噪比较高的场景下。After channel coding and/or rate matching, the UE performs constellation modulation on the encoded ACK/NACK bitstream. Considering that the performance requirements of ACK/NACK are higher than the data, relatively robust QPSK modulation is generally adopted, that is, one QPSK modulation symbol is generated every two encoded bits. Of course, other modulation methods are not excluded, such as 16 Quadrature Amplitude Modulation (QAM) or even 64QAM, which can be applied in a scenario where the channel condition of the UE is good and the signal to noise ratio is relatively high.
上述实施例中,40个原始ACK/NACK比特需要使用双RB的PF3来传输,那么编码和/或速率匹配后的比特数为96,经过QPSK调制后,得到48个QPSK符号。将这48个QPSK调制符号分成两组,分别在一个子帧的两个时隙中传输,具体分为第一组的24个调制符号,以及第二组的24个调制符号。假设一个RB频域上包括12个子载波,那么对于双RB的PF3,就是K=2,N=12。当然,其他数值也不排除,比如一个RB频域上包括4个子载波,采用其他数值K的PF3等。In the above embodiment, 40 original ACK/NACK bits need to be transmitted using PF3 of dual RB, then the number of bits after encoding and/or rate matching is 96, and after QPSK modulation, 48 QPSK symbols are obtained. The 48 QPSK modulation symbols are divided into two groups and respectively transmitted in two time slots of one subframe, which are specifically divided into 24 modulation symbols of the first group and 24 modulation symbols of the second group. Assuming that 12 subcarriers are included in one RB frequency domain, then for PF3 of dual RBs, K=2 and N=12. Of course, other values are not excluded, for example, one RB frequency domain includes 4 subcarriers, and other values K PF3 are used.
步骤420是中的扩频可以是对星座调制得到的两组调制符号进行扩频。具体地,星座调制得到第一组的K*N个调制符号和第二组的K*N个调制符号之后,UE对每一组K*N个调制符号中的每个调制符号进行扩频操作。具体的,使用第一码长L1的第一正交码对第一组的K*N个调制符号中的每个调制符号进行扩频,一般的L1=5;对于第二组进行类似扩频,使用第二码长L2的第二正交码,L2可以为5或4。第一和第二正交码序列如表3所示,当然也可以是其他类型的正交码,本发明对具体的正交码序列并不做限定。扩频后,得到L1组扩频后的调制符号和L2组扩频后的调制符号。 The spreading in step 420 may be to spread the two sets of modulation symbols obtained by constellation modulation. Specifically, after the constellation modulation obtains the K*N modulation symbols of the first group and the K*N modulation symbols of the second group, the UE performs a spreading operation on each of the modulation symbols of each group of K*N modulation symbols. . Specifically, each of the first group of K*N modulation symbols is spread using a first orthogonal code of the first code length L1, generally L1=5; similar spreading is performed for the second group. Using a second orthogonal code of the second code length L2, L2 may be 5 or 4. The first and second orthogonal code sequences are shown in Table 3. Of course, other types of orthogonal codes may also be used. The present invention does not limit the specific orthogonal code sequence. After spreading, the L1 group spread spectrum modulation symbols and the L2 group spread spectrum modulation symbols are obtained.
表3.不同码长的正交码序列Table 3. Orthogonal code sequences of different code lengths
Figure PCTCN2015073063-appb-000027
Figure PCTCN2015073063-appb-000027
步骤430和步骤440是对扩频后的调制符号进行循环移位。具体地,扩频操作得到L1组扩频后的调制符号和L2组扩频后的调制符号之后,UE对L1组扩频后的调制符号中的每一组进行每组独立的循环移位操作,对于L2组扩频后的调制符号也是类似的每组独立的循环移位操作。其中,对L1组扩频后的调制符号中的每一组进行的循环移位的数值依次可以为
Figure PCTCN2015073063-appb-000028
对L2组扩频后的调制符号中的每一组进行的循环移位的数值依次可以为
Figure PCTCN2015073063-appb-000029
其中
Figure PCTCN2015073063-appb-000030
均为整数,且
Figure PCTCN2015073063-appb-000031
为当前小区的基本循环移位的数值。该基本循环移位的数值
Figure PCTCN2015073063-appb-000032
为所述当前小区中发送单RB的PF3时使用的循环移位的数值。所述当前小区的基本循环移位的数值
Figure PCTCN2015073063-appb-000033
由帧标号,子帧标号,时隙标号和时域符号标号中的至少一种确定。具体的,该基本循环移位可以由公式
Figure PCTCN2015073063-appb-000034
生成,其中,ns为时隙标号,l为时隙中的时域符号的标号,
Figure PCTCN2015073063-appb-000035
为时隙中的时域符号的总数;c(i)为伪随机序列生成函数,该函数的初始值由当前小区的小区标识确定,即该基本循环移位是当前小区特定的,也就是说当前小区内的UE会使用该小区特定的循环移位。可以看到,该小区特定的基本循环移位的数值由时隙标号和时域符号标号确定,当前也可以根据其他参数,如帧标号,子帧标号等确定,本发明实施例对此不作限定。
Step 430 and step 440 are cyclic shifting of the spread modulated symbols. Specifically, after the spreading operation obtains the L1 group of the spread modulated symbol and the L2 group of the spread modulated symbol, the UE performs each group of independent cyclic shift operations on each of the L1 group of the spread modulated symbols. For the L2 group spread spectrum modulation symbols are similar to each set of independent cyclic shift operations. The value of the cyclic shift performed on each of the L1 group spread spectrum modulation symbols may be
Figure PCTCN2015073063-appb-000028
The value of the cyclic shift performed on each of the L2 group spread spectrum modulation symbols may be
Figure PCTCN2015073063-appb-000029
among them
Figure PCTCN2015073063-appb-000030
Are all integers, and
Figure PCTCN2015073063-appb-000031
The value of the basic cyclic shift of the current cell. The value of the basic cyclic shift
Figure PCTCN2015073063-appb-000032
The value of the cyclic shift used when transmitting the PF3 of the single RB in the current cell. The value of the basic cyclic shift of the current cell
Figure PCTCN2015073063-appb-000033
It is determined by at least one of a frame number, a subframe number, a time slot number, and a time domain symbol number. Specifically, the basic cyclic shift can be formulated by a formula
Figure PCTCN2015073063-appb-000034
Generated, where n s is a slot label, and l is a label of a time domain symbol in the slot,
Figure PCTCN2015073063-appb-000035
The total number of time domain symbols in the time slot; c(i) is a pseudo random sequence generation function whose initial value is determined by the cell identity of the current cell, ie, the basic cyclic shift is current cell specific, that is, The UE within the current cell will use the cell-specific cyclic shift. It can be seen that the value of the specific cyclic shift of the cell is determined by the slot label and the time domain symbol label, and can also be determined according to other parameters, such as a frame label, a subframe label, etc., which is not limited in this embodiment of the present invention. .
从上述K个RB的PF3的循环移位数值的确定来看,需要保证K个RB的PF3进行的小区特定的循环移位的数值为K倍的基本循环移位的数值,这样可以使得不同K值的PF3在时频资源重叠且采用不同的正交码序列的情况下保持彼此之间的正交码,即保证了彼此的解调性能,进而提高了资源 复用能力,并节省了小区中PUCCH的资源开销。From the determination of the cyclic shift value of the PF3 of the above K RBs, it is necessary to ensure that the value of the cell-specific cyclic shift performed by the PF3 of the K RBs is a value of K times the basic cyclic shift, which can make different K The value of PF3 maintains the orthogonal codes between each other when the time-frequency resources overlap and adopt different orthogonal code sequences, that is, the demodulation performance of each other is ensured, thereby improving the resources. Reuse capability and save resource overhead of PUCCH in the cell.
可选地,步骤450具体可包括:用户设备分别对移位后的L1组调制符号进行DFT,得到DFT后的L1组调制符号;用户设备分别对移位后的L2组调制符号进行DFT,得到DFT后的L2组调制符号;用户设备将DFT后的L1组调制符号分别映射至第一时隙中的L1个时域符号上,且映射后的L1组调制符号占第一时隙内的K个RB;用户设备将DFT后的L2组调制符号分别映射至第二时隙中的L2个时域符号上,且映射后的L2组调制符号占第二时隙内的K个RB;用户设备分别对映射后的L1组调制符号进行IFFT,得到IFFT后的L1组调制符号;用户设备分别对映射后的L2组调制符号进行IFFT,得到IFFT后的L2组调制符号;用户设备分别通过第一时隙和第二时隙,向接入网设备传输IFFT后的L1组调制符号和IFFT后的L2组调制符号,以便向接入网设备传输上行控制信息。Optionally, the step 450 may include: the user equipment separately performs DFT on the shifted L1 group modulation symbols to obtain the L1 group modulation symbols after the DFT; and the user equipment performs DFT on the shifted L2 group modulation symbols respectively. The L2 group modulation symbol after the DFT; the user equipment maps the L1 group modulation symbols after the DFT to the L1 time domain symbols in the first time slot, and the mapped L1 group modulation symbols occupy the K in the first time slot. RB; the user equipment maps the L2 group modulation symbols after the DFT to the L2 time domain symbols in the second time slot, and the mapped L2 group modulation symbols occupy K RBs in the second time slot; the user equipment Performing IFFT on the mapped L1 group modulation symbols respectively, and obtaining the L1 group modulation symbols after the IFFT; the user equipment respectively performs IFFT on the mapped L2 group modulation symbols to obtain the L2 group modulation symbols after the IFFT; the user equipment passes the first The time slot and the second time slot transmit the L1 group modulation symbols after the IFFT and the L2 group modulation symbols after the IFFT to the access network device to transmit the uplink control information to the access network device.
具体地,循环移位后,UE对L1组循环移位后的调制符号中的每一组进行DFT操作,对L2组循环移位后的调制符号中的每一组进行DFT操作。经过了DFT之后,就相当于把信号变换到了频域,接下来就可以将L1组DFT后的调制符号映射到第一时隙中的K个RB中的L1个时域符号上,将L2组DFT后的调制符号映射到第二时隙中的K个RB中的L2个时域符号上。具体的映射结构如图2中PF3的信道结构。之后,再对映射后的L1组调制符号和L2组调制符号中的每一组进行IFFT操作,最后UE在上行子帧中发送IFFT操作后的UCI调制符号给基站。Specifically, after the cyclic shift, the UE performs a DFT operation on each of the L1 group cyclically shifted modulation symbols, and performs a DFT operation on each of the L2 group cyclically shifted modulation symbols. After DFT, it is equivalent to transforming the signal into the frequency domain. Then, the modulation symbols after the L1 group DFT can be mapped to the L1 time domain symbols in the K RBs in the first time slot, and the L2 group is The modulation symbols after the DFT are mapped onto the L2 time domain symbols of the K RBs in the second slot. The specific mapping structure is as shown in the channel structure of PF3 in FIG. Then, the IFFT operation is performed on each of the mapped L1 group modulation symbols and the L2 group modulation symbols, and finally the UE transmits the UWI modulation symbols after the IFFT operation to the base station in the uplink subframe.
可选地,作为一个实施例,上行控制信息通过第一时频资源传输,当前小区下的其它上行控制信息通过第二时频资源传输,第一时频资源所包含的RB数大于第二时频资源所包含的RB数,且第一时频资源与第二时频资源部分重叠。重叠的不同的时频资源可以使用不同的正交码序列进行码分正交。Optionally, as an embodiment, the uplink control information is transmitted by using the first time-frequency resource, and the other uplink control information of the current cell is transmitted by using the second time-frequency resource, where the number of RBs included in the first time-frequency resource is greater than the second time. The number of RBs included in the frequency resource, and the first time-frequency resource partially overlaps with the second time-frequency resource. The overlapping different time-frequency resources can be code-orthogonal using different orthogonal code sequences.
换句话说,将上述第一时频资源称为K个RB的PF3的时频资源,述K个RB的PF3所在的时频资源,与所述当前小区中发送的K-1,K-2,...,2,1个RB中的至少一个的PF3所在的时频资源可以重叠。具体如图3所示,重叠的不同的PF3可以使用不同的正交码序列进行码分正交。In other words, the first time-frequency resource is referred to as a time-frequency resource of PF3 of K RBs, a time-frequency resource in which PF3 of K RBs is located, and K-1, K-2 transmitted in the current cell. The time-frequency resources of the PF3 where at least one of 2, 1 RBs may overlap. As shown in FIG. 3, the different PF3s that are overlapped may be code-orthogonal using different orthogonal code sequences.
需要说明的是,上述当前小区下的其它上行控制信息可以是当前小区中的另一个用户设备,如第二用户设备,向接入网设备发送的上行控制信息。 It should be noted that the other uplink control information in the current cell may be uplink control information sent by another user equipment in the current cell, such as the second user equipment, to the access network device.
本发明实施例中,不但将PF3格式扩展到了多个RB的PF3格式,而且允许当前小区内的不同RB个数的PF3格式之间使用的时频资源重叠,进一步提高了PUCCH的使用率。此外,由于本发明实施例对L1+L2组调制符号进行每组独立的循环移位时所采用的循环移位值为当前小区的小区特定的基本循环移位值的K倍,这样,当单RB和多RB的时频资源重叠使用时,可以保证各类型的PF3之间的正交性,降低相互之间的干扰。In the embodiment of the present invention, the PF3 format is extended to the PF3 format of multiple RBs, and the time-frequency resources used between the PF3 formats of different RBs in the current cell are allowed to overlap, thereby further improving the usage rate of the PUCCH. In addition, since the cyclic shift value used in each group of independent cyclic shifts of the L1+L2 group modulation symbols is K times of the cell-specific basic cyclic shift value of the current cell, the embodiment of the present invention When the time-frequency resources of the RB and the multiple RBs are overlapped, the orthogonality between the PFs of each type can be ensured, and the mutual interference is reduced.
可选地,作为一个实施例,用户设备被配置了第一下行子帧集合或第二下行子帧集合,第一下行子帧集合中包括的子帧数大于第二下行子帧集合中包括的子帧数,所述用户设备在上行子帧中传输第一下行子帧集合所对应的上行控制信息时,每个时隙所占用的RB数大于用户设备在上行子帧中发送第二下行子帧集合所对应的上行控制信息时,每个时隙所占用的RB数。Optionally, as an embodiment, the user equipment is configured with the first downlink subframe set or the second downlink subframe set, where the number of subframes included in the first downlink subframe set is greater than the second downlink subframe set. The number of subframes included, when the user equipment transmits the uplink control information corresponding to the first downlink subframe set in the uplink subframe, the number of RBs occupied by each slot is greater than that of the user equipment in the uplink subframe. The number of RBs occupied by each time slot when the uplink control information corresponding to the second downlink subframe set is used.
需要说明的是,UE被配置的载波数不同会引起UE被配置的下行子帧集合的不同,这二者是相关联的。It should be noted that different numbers of carriers configured by the UE may cause different sets of downlink subframes configured by the UE, and the two are associated.
具体而言,K1个RB的PF3和K2个RB的PF3分别对应于UE被配置了第一下行子帧集合和第二下行子帧集合情况下的UCI发送,其中,K1为大于1的自然数,K2为大于0的自然数,K1大于K2,且第一下行子帧集合中包括的下行子帧数大于所述第二下行子帧集合中包括的下行子帧数。例如,如果UE被配置了载波1到10的10个载波,且每个载波都使用TDD上下行配置2,需要使用K=2的双RB的PF3来承载ACK/NACK;如果UE被配置了载波1到5的5个载波,且每个载波都使用TDD上下行配置2,那么如上述实施例所述,可以使用K=1的单RB的PF3来承载ACK/NACK。Specifically, PF3 of K1 RBs and PF3 of K2 RBs respectively correspond to UCI transmission when the UE is configured with the first downlink subframe set and the second downlink subframe set, where K1 is a natural number greater than 1. K2 is a natural number greater than 0, and K1 is greater than K2, and the number of downlink subframes included in the first downlink subframe set is greater than the number of downlink subframes included in the second downlink subframe set. For example, if the UE is configured with 10 carriers of carriers 1 to 10, and each carrier uses TDD uplink and downlink configuration 2, it is necessary to use PF3 of dual RB with K=2 to carry ACK/NACK; if the UE is configured with carrier For 5 carriers of 1 to 5, and each carrier uses TDD uplink and downlink configuration 2, as described in the above embodiment, PF/NACK can be carried by using PF3 of a single RB with K=1.
本发明实施例中,根据UE被接入网设备配置的下行子帧数和/或载波数来决定UE的PF3所采用的K值,使得PUCCH的传输更加灵活。In the embodiment of the present invention, the K value used by the PF3 of the UE is determined according to the number of downlink subframes and/or the number of carriers configured by the UE by the access network device, so that the transmission of the PUCCH is more flexible.
可选地,作为一个实施例,用户设备被配置了第一下行子帧集合,其中第一下行子帧集合包括第一子集和第二子集,第一子集是第二子集的真子集,所述用户设备在上行子帧中传输第一子集中的下行子帧所对应的上行控制信息时,每个时隙所占用的RB数小于用户设备在上行子帧中传输第二子集中的下行子帧所对应的上行控制信息时,每个时隙所占用的RB数。Optionally, as an embodiment, the user equipment is configured with the first downlink subframe set, where the first downlink subframe set includes the first subset and the second subset, and the first subset is the second subset. When the user equipment transmits the uplink control information corresponding to the downlink subframe in the first subset in the uplink subframe, the number of RBs occupied by each slot is smaller than that of the user equipment in the uplink subframe. The number of RBs occupied by each time slot when the uplink control information corresponding to the downlink subframe in the subset is used.
具体地,上述上行子帧被配置的第一下行子帧集合包括第一子集和第二子集,该第一下行子帧集合为UE被配置的下行子帧集合,该第一子集可包括至少两个下行子帧,该第一子集可以为所述第二子集的真子集。该UE确 定使用K个RB的PF3发送所述第一子集中的下行子帧对应的UCI调制符号;或者,该UE确定使用K2个RB的PF3发送第二子集中的下行子帧对应的UCI调制符号。例如,如果UE被配置了载波1到15的15个载波,且每个载波都使用TDD上下行配置2,但在某个子帧,UE未必一定被调度了该15个载波,考虑到业务的突发性,有的子帧可能调度了该15个载波,但有的子帧可能只调度了5个或更少的载波数。因此,可以考虑PF3的格式回退机制。根据下行数据到上行ACK/NACK的时序关系,该上行子帧2所关联的第一下行子帧集合包括载波1到15的每个载波的下行子帧4、5、6和8,总共60个下行子帧;引入该第一下行子帧集合的第一子集,比如第一子集包括载波1到5的每个载波的下行子帧4、5、6和8,总共20个下行子帧。引入第二子集,该第二子集包括载波1到10的每个载波的下行子帧4、5、6和8,总共40个下行子帧。如果基站只给UE调度了第一子集中的下行子帧,那么UE可以使用单RB的PF3来传输ACK/NACK;如果基站给UE调度了载波1到10的下行子帧,但没有调度载波11到15的下行子帧,那么UE可以使用双RB的PF3来传输ACK/NACK。该第二子集也可以为第三下行子帧集合,这样,如果基站给UE调度了载波1到15的下行子帧,那么UE可以使用三个RB的PF3来传输ACK/NACK。这些单,双和三RB的PF3的信道资源如何确定,可以采用基站显示的指示给UE,或者UE根据自己收到的下行数据调度来隐式确定,本发明实施例对此不作具体限定。Specifically, the first downlink subframe set configured by the foregoing uplink subframe includes a first subset and a second subset, where the first downlink subframe set is a downlink subframe set configured by the UE, and the first subframe The set may include at least two downlink subframes, which may be a true subset of the second subset. The UE is indeed The UC3 using the K RBs is used to transmit the UCI modulation symbols corresponding to the downlink subframes in the first subset; or the UE determines to use the PF3 of the K2 RBs to transmit the UCI modulation symbols corresponding to the downlink subframes in the second subset. For example, if the UE is configured with 15 carriers of carriers 1 to 15, and each carrier uses TDD uplink and downlink configuration 2, but in a certain subframe, the UE does not necessarily have to be scheduled for the 15 carriers, considering the service burst. For example, some subframes may schedule the 15 carriers, but some subframes may only schedule 5 or fewer carriers. Therefore, the format fallback mechanism of PF3 can be considered. According to the timing relationship of the downlink data to the uplink ACK/NACK, the first downlink subframe set associated with the uplink subframe 2 includes downlink subframes 4, 5, 6, and 8 of each carrier of carriers 1 to 15, for a total of 60 a downlink subframe; introducing a first subset of the first downlink subframe set, for example, the first subset includes downlink subframes 4, 5, 6, and 8 of each carrier of carriers 1 to 5, for a total of 20 downlinks Subframe. A second subset is introduced, the second subset comprising downlink subframes 4, 5, 6, and 8 of each carrier of carriers 1 through 10, for a total of 40 downlink subframes. If the base station only schedules the downlink subframes in the first subset for the UE, the UE may use the PF3 of the single RB to transmit the ACK/NACK; if the base station schedules the downlink subframes of the carriers 1 to 10, but does not schedule the carrier 11 To the downlink subframe of 15, the UE can use the PF3 of the dual RB to transmit the ACK/NACK. The second subset may also be a third downlink subframe set, such that if the base station schedules the downlink subframes of the carriers 1 to 15 for the UE, the UE may use the PF3 of the three RBs to transmit the ACK/NACK. The channel resources of the PF3s of the single, the dual, and the three RBs are determined, and the indications displayed by the base station may be used for the UE, or the UE may be implicitly determined according to the downlink data scheduling received by the UE, which is not specifically limited in this embodiment of the present invention.
可选地,作为一个实施例,图4的方法还可包括:用户设备在上行子帧的至少一个时域符号中向接入网设备发送解调参考信号(Demodulation Reference Signal,DMRS),其中,每个时域符号中的DMRS序列包括K段基于长度N生成的序列。Optionally, as an embodiment, the method of FIG. 4 may further include: the user equipment sends a Demodulation Reference Signal (DMRS) to the access network device in the at least one time domain symbol of the uplink subframe, where The DMRS sequence in each time domain symbol includes a sequence of K segments generated based on length N.
具体地,UE可以在上行子帧的第一时隙中除上述L1个时域符号之外的时域符号中,以及在第二时隙中除上述L2个时域符号之外的时域符号中发送DMRS。该DMRS可用于PF3的信道估计,进而用得到的信道估计结果来解调上述PF3的调制符号。具体的,如图2所示,图2中的RS可以为DMRS,且DMRS与UCI的调制符号在每个时隙中是占用不同的时域符号,一般情况下一个时隙有7个符号,序号分别为0,1,...,6,这样,DMRS可以占用每个时隙的时域符号1和5,当然也可以占用其他数量和/或序号的时域符号,本发明实施例对此不作限定。 Specifically, the UE may include, in the first time slot of the uplink subframe, a time domain symbol other than the L1 time domain symbols, and a time domain symbol other than the L2 time domain symbols in the second time slot. Send DMRS in. The DMRS can be used for channel estimation of the PF3, and then the obtained channel estimation result is used to demodulate the modulation symbols of the PF3. Specifically, as shown in FIG. 2, the RS in FIG. 2 may be a DMRS, and the modulation symbols of the DMRS and the UCI occupy different time domain symbols in each time slot. Generally, one time slot has 7 symbols. The sequence numbers are 0, 1, ..., 6, respectively, so that the DMRS can occupy the time domain symbols 1 and 5 of each time slot, and of course, other time and number or time series symbols can be occupied, which is in the embodiment of the present invention. This is not limited.
此外,对于一个时域符号上的DMRS,序列长度为K*N,且序列的生成方式可以是按照长度N来生成。然后,基于长度N的序列,一种方式是重复K倍来形成K*N长的DMRS序列;或者,另一种方法是,将K个上述每段N长的序列,彼此做不同的循环移位,然后接在一起构成K*N长的DMRS序列;或者,其他基于N长的序列来扩展到K*N长的DMRS序列的方式都不排除。这样,可以保证不同K值的PF3的DMRS之间是正交的。可选地,也可以直接用K*N长的序列来生成DMRS序列,但不同K值的DMRS之间不容易正交,导致即使上述采用K倍的UCI调制符号的循环移位达到了UCI在不同K值的PF3是正交的,但DMRS却不正交,可能会导致信道估计后得到不准确的信道估计结果,进而导致UCI的解调性能下降。但如果下降的幅度不大,那么基于K*N的长度来直接生成DMRS的方式得到的DMRS的时域峰均比会比上述独立N长来生成序列再拼接成K*N长的DMRS的方式的峰均比要低,所以也可以采用直接生成K*N的DMRS序列的方式。或者,还可以基于2*N为单位来生成2*N长的序列,再通过重复或彼此循环移位后再拼接的方式生成K*N长的DMRS序列。如果直接生成K*N长的DMRS序列,可以直接用Zad-off Chu序列来生成。表4示出了基于N(N=12)长的序列生成的序列。Furthermore, for a DMRS on a time domain symbol, the sequence length is K*N, and the sequence can be generated in accordance with the length N. Then, based on the sequence of length N, one way is to repeat K times to form a K*N long DMRS sequence; or, another method, to make K sequences of each of the above N lengths different cyclic shifts from each other The bits are then joined together to form a K*N long DMRS sequence; or other N-length based sequences are extended to K*N long DMRS sequences. In this way, it can be ensured that the DMRSs of PF3 with different K values are orthogonal. Alternatively, the DMRS sequence may also be directly generated by a K*N long sequence, but the DMRSs of different K values are not easily orthogonalized, resulting in the UCI being achieved even if the cyclic shift of the UPI modulation symbol using K times is achieved. PF3 with different K values is orthogonal, but DMRS is not orthogonal, which may result in inaccurate channel estimation results after channel estimation, which in turn leads to a decrease in UCI demodulation performance. However, if the magnitude of the decrease is not large, the time-domain peak-to-average ratio of the DMRS obtained by directly generating the DMRS based on the length of the K*N is larger than the above-mentioned independent N length to generate a sequence and then spliced into a K*N long DMRS. The peak-to-average ratio is lower, so it is also possible to directly generate a K*N DMRS sequence. Alternatively, a 2*N long sequence may be generated based on 2*N units, and a K*N long DMRS sequence may be generated by repeating or cyclically shifting and then splicing. If a K*N long DMRS sequence is directly generated, it can be generated directly using the Zad-off Chu sequence. Table 4 shows the sequences generated based on the N (N=12) long sequence.
表4.基于长度N=12来生成的序列 Table 4. Sequences generated based on length N=12
Figure PCTCN2015073063-appb-000036
Figure PCTCN2015073063-appb-000036
可选地,作为一个实施例,K取值不同时,用户设备能够传输的上行控制信息的最大比特数不同。Optionally, as an embodiment, when the value of K is different, the maximum number of bits of uplink control information that can be transmitted by the user equipment is different.
具体地,不同K值的PF3的信道资源上可以最大承载的原始UCI比特数可以是不同的。比如单RB的PF3最多可以承载22个原始ACK/NACK比特,而双RB的PF3就可以承载44个原始ACK/NACK比特。当然,22或44这些具体的数值是由于编码器的选取来确定的,不同的编码器确定的上述数值会有不同,本发明实施例对此不作具体限定。 Specifically, the number of original UCI bits that can be most carried on the channel resources of PF3 with different K values may be different. For example, a single RB PF3 can carry up to 22 original ACK/NACK bits, and a dual RB PF3 can carry 44 original ACK/NACK bits. Of course, the specific values of 22 or 44 are determined by the selection of the encoder, and the above-mentioned values determined by different encoders may be different, which is not specifically limited in the embodiment of the present invention.
可选的,作为一个实施例,映射到的上行子帧各时隙的K个RB的时频资源,以及所述第一正交码序号和第二正交码序列可以构成K个RB的PF3的信道资源。具体的,该信道资源可以由RRC信令配置给UE,或者先由RRC信令配置给UE一个信道资源池,例如,该池中包括4个不同的信道资源,再通过调度数据信道的控制信道中的2个比特来具体指示该4个信道资源中的一个信道资源作为当前发送ACK/NACK所使用的PF3信道资源。Optionally, as an embodiment, the time-frequency resources of the K RBs of each slot of the uplink subframe that are mapped, and the first orthogonal code sequence and the second orthogonal code sequence may form a PF3 of the K RBs. Channel resources. Specifically, the channel resource may be configured by the RRC signaling to the UE, or configured by the RRC signaling to the UE by using one channel resource pool. For example, the pool includes four different channel resources, and then the control channel of the data channel is scheduled. The 2 bits in the port specifically indicate one of the 4 channel resources as the PF3 channel resource used for currently transmitting the ACK/NACK.
可选地,在所述上行子帧中如果没有被配置SRS,则步骤430和步骤440中的L1和L2可以相同,比如都等于5;或者,在上行子帧中如果被配置了SRS,则所述L1可以大于L2,比如L1等于5,L2等于4。当然,其他数值也不排除。Optionally, if the SRS is not configured in the uplink subframe, L1 and L2 in step 430 and step 440 may be the same, for example, all equal to 5; or, if the SRS is configured in the uplink subframe, The L1 may be greater than L2, such as L1 equals 5 and L2 equals 4. Of course, other values are not excluded.
可选地,第一正交码序列和第二正交码序列不同,且所述第一正交码序列和所述第二正交码序列之间可以存在预配置的关联规则。为了实现第一时隙和第二时隙间的随机化处理,来平滑干扰,可以使得第一时隙和第二时隙采用不同的正交码序列,具体可以由预定义的映射规则来确定,当然也可以是基站通过信令通知给UE这种规则。比如,一种方式是{1,2}{2,3}{3,4}{4,5}{5,1}这5种预定义的映射规则,每个括号中的第一个数值为第一时隙中采用的正交码序列,第二个数值为第二时隙中采用的正交码序列。当然,其他的映射规则也不排除。Optionally, the first orthogonal code sequence and the second orthogonal code sequence are different, and a pre-configured association rule may exist between the first orthogonal code sequence and the second orthogonal code sequence. In order to implement randomization processing between the first time slot and the second time slot to smooth the interference, the first time slot and the second time slot may be configured to adopt different orthogonal code sequences, which may be determined by predefined mapping rules. Of course, it may also be a rule that the base station notifies the UE by signaling. For example, one way is {1, 2}{2,3}{3,4}{4,5}{5,1}, which are five predefined mapping rules. The first value in each parenthesis is The orthogonal code sequence used in the first time slot, and the second value is the orthogonal code sequence used in the second time slot. Of course, other mapping rules are not excluded.
可选地,上行子帧的第一时隙中被映射的K个RB与上行子帧的第二时隙中被映射的K个RB在频域上不完全重叠。PUCCH可以在一个子帧的两个时隙间采用时隙间的频域跳频,来获得分集增益,提高PUCCH的解调性能。例如,第一时隙内被占用的K个RB的PF3可以为第一时隙的前K个RB,第二时隙内被占用的K个RB可以为第二时隙的后K个RB。Optionally, the K RBs mapped in the first time slot of the uplink subframe and the K RBs mapped in the second time slot of the uplink subframe do not completely overlap in the frequency domain. The PUCCH can use frequency domain hopping between slots in two slots of one subframe to obtain diversity gain and improve PUCCH demodulation performance. For example, the PF3 of the K RBs occupied in the first time slot may be the first K RBs of the first time slot, and the K RBs occupied in the second time slot may be the last K RBs of the second time slot.
下面给出本发明实施例的传输上行控制信息的方法的其他实施例:Other embodiments of the method for transmitting uplink control information according to an embodiment of the present invention are given below:
可选地,作为一个实施例,该方法可包括:UE对上行子帧中需要发送的原始UCI进行编码,得到已编码UCI;所述UE对于所述已编码UCI进行调制,得到第一组调制符号和第二组调制符号,所述第一组调制符号和第二组调制符号中各包括K*N个调制符号,其中K为大于1的自然数,N为一个RB中包含的子载波数量;所述UE对所述第一组调制符号中的每个调制符号,使用具有第一码长L1的第一正交码序列进行扩频,得到L1组扩频后的调制符号;所述UE对所述第二组调制符号中的每个调制符号,使用具有 第二码长L2的第二正交码序列进行扩频,得到L2组扩频后的调制符号;所述UE对所述L1组扩频后的调制符号中的每一组进行每组独立的循环移位操作,得到L1组循环移位后的调制符号;所述UE对所述L2组扩频后的调制符号中的每一组进行每组独立的循环移位操作,得到L2组循环移位后的调制符号;其中,对所述L1组扩频后的调制符号中的每一组进行的循环移位的数值依次为,对所述L2组扩频后的调制符号中的每一组进行的循环移位的数值依次为,其中均为整数,且为当前小区的基本循环移位的数值;所述UE对所述L1组循环移位后的调制符号中的每一组进行离散傅里叶变换(DFT)操作,得到L1组DFT后的调制符号;所述UE对所述L2组循环移位后的调制符号中的每一组进行DFT操作,得到L2组DFT后的调制符号;所述UE将所述L1组DFT后的调制符号映射到第一时隙中的K个RB中的L1个时域符号上,所述UE将所述L2组DFT后的调制符号映射到第二时隙中的K个RB中的L2个时域符号上;所述UE对所述映射后的L1组调制符号和L2组调制符号中的每一组进行IFFT操作,所述UE在所述上行子帧中发送所述IFFT操作后的UCI调制符号。Optionally, as an embodiment, the method may include: the UE encodes the original UCI that needs to be sent in the uplink subframe to obtain the encoded UCI; and the UE modulates the encoded UCI to obtain the first group of modulation. a symbol and a second set of modulation symbols, each of the first set of modulation symbols and the second set of modulation symbols comprising K*N modulation symbols, where K is a natural number greater than 1, and N is a number of subcarriers included in one RB; Transmitting, by the UE, each of the first group of modulation symbols by using a first orthogonal code sequence having a first code length L1, to obtain an L1 group of spread modulated modulation symbols; Each of the second set of modulation symbols is used The second orthogonal code sequence of the second code length L2 is spread to obtain L2 group spread spectrum modulation symbols; the UE performs each group independent of each of the L1 group spread spectrum modulation symbols. a cyclic shift operation to obtain a modulation symbol after cyclic shift of the L1 group; the UE performs each group of independent cyclic shift operations on each of the L2 group of spread modulated symbols to obtain a L2 group cyclic shift a modulation symbol after the bit; wherein, the value of the cyclic shift performed on each of the L1 group of the spread modulated symbols is, in turn, each of the L2 group spread modulated symbols The values of the cyclic shifts performed are, in order, integers, and are the values of the basic cyclic shift of the current cell; the UE performs discrete Fu on each of the modulation symbols after the cyclic shift of the L1 group. Performing a Fourier Transform (DFT) operation to obtain a modulation symbol after the L1 group DFT; the UE performing a DFT operation on each of the L2 groups of cyclically shifted modulation symbols to obtain a modulation symbol after the L2 group DFT; Transmitting, by the UE, the modulation symbols after the L1 group DFT into K RBs in the first time slot On the L1 time domain symbols, the UE maps the L2 group DFT modulated symbols to L2 time domain symbols in the K slots in the second slot; the UE pairs the mapped L1 Each of the group modulation symbols and the L2 group modulation symbols performs an IFFT operation, and the UE transmits the UCI modulation symbols after the IFFT operation in the uplink subframe.
可选地,作为一个实施例,所述基本循环移位的数值为所述当前小区中发送1个RB的PUCCH格式3时使用的循环移位的数值。Optionally, as an embodiment, the value of the basic cyclic shift is a value of a cyclic shift used when transmitting a PUCCH format 3 of 1 RB in the current cell.
可选地,作为一个实施例,所述当前小区的基本循环移位的数值由帧标号,子帧标号,时隙标号和时域符号标号中的至少一种确定。Optionally, as an embodiment, the value of the basic cyclic shift of the current cell is determined by at least one of a frame label, a subframe label, a slot label, and a time domain symbol label.
可选地,作为一个实施例,所述映射到的K个RB的时频资源,以及所述第一正交码序号和第二正交码序列构成K个RB的上行控制信道PUCCH格式3的信道资源;所述UE发送所述IFFT操作后的UCI调制符号,包括:所述UE在所述信道资源上发送所述IFFT操作后的UCI调制符号。Optionally, as an embodiment, the time-frequency resources of the K RBs mapped, and the first orthogonal code sequence and the second orthogonal code sequence form an uplink control channel of the K RBs of the PUCCH format 3 a channel resource; the UE transmitting the UCI modulation symbol after the IFFT operation, comprising: the UE transmitting the UCI modulation symbol after the IFFT operation on the channel resource.
可选地,作为一个实施例,所述K个RB的PUCCH格式3所在的时频资源,与所述当前小区中发送的K-1,K-2,...,2,1个RB的至少一个PUCCH格式3所在的时频资源可以重叠。Optionally, as an embodiment, the time-frequency resource in which the PUCCH format 3 of the K RBs is located, and the K-1, K-2, . . . , 2, 1 RBs sent in the current cell. The time-frequency resources in which at least one PUCCH format 3 is located may overlap.
可选地,作为一个实施例,不同K值的PUCCH格式3的信道资源上可以最大承载的原始UCI比特数是不同的。Optionally, as an embodiment, the number of original UCI bits that can be most carried on the channel resources of the PUCCH format 3 with different K values is different.
可选地,作为一个实施例,K1个RB的PUCCH格式3和K2个RB的PUCCH格式3分别对应于所述UE被配置了第一下行子帧集合和第二下行子帧集合情况下的UCI发送,其中,K1为大于1的自然数,K2为大于0的 自然数,K1大于K2,且所述第一下行子帧集合中包括的下行子帧数大于所述第二下行子帧集合中包括的下行子帧数。Optionally, as an embodiment, the PUCCH format 3 of the K1 RBs and the PUCCH format 3 of the K2 RBs respectively correspond to the case where the UE is configured with the first downlink subframe set and the second downlink subframe set. UCI is sent, where K1 is a natural number greater than 1, and K2 is greater than 0. The natural number, K1 is greater than K2, and the number of downlink subframes included in the first downlink subframe set is greater than the number of downlink subframes included in the second downlink subframe set.
可选地,作为一个实施例,所述上行子帧关联的第三下行子帧集合包括第一子集和第二子集,所述第三下行子帧集合为所述UE被配置的下行子帧集合,所述第一子集包括至少两个下行子帧,所述第一子集为所述第二子集的真子集;所述UE确定使用K3个RB的PUCCH格式3发送所述第一子集中的下行子帧对应的UCI调制符号;或者,所述UE确定使用K4个RB的PUCCH格式3发送所述第二子集中的下行子帧对应的UCI调制符号。Optionally, as an embodiment, the third downlink subframe set associated with the uplink subframe includes a first subset and a second subset, where the third downlink subframe set is a downlink configured by the UE. a frame set, the first subset includes at least two downlink subframes, the first subset is a true subset of the second subset; and the UE determines to transmit the first number using a PUCCH format 3 of K3 RBs The UCI modulation symbol corresponding to the downlink subframe in a subset; or the UE determines to transmit the UCI modulation symbol corresponding to the downlink subframe in the second subset by using the PUCCH format 3 of the K4 RBs.
可选地,作为一个实施例,在所述上行子帧中如果没有被配置SRS,则所述L1和L2相同;或者在所述上行子帧中如果被配置了SRS,则所述L1大于L2。Optionally, as an embodiment, if the SRS is not configured in the uplink subframe, the L1 and L2 are the same; or if the SRS is configured in the uplink subframe, the L1 is greater than L2. .
可选地,作为一个实施例,第一正交码序列和第二正交码序列不同,且所述第一正交码序列和所述第二正交码序列之间存在预配置的关联规则。Optionally, as an embodiment, the first orthogonal code sequence and the second orthogonal code sequence are different, and a pre-configured association rule exists between the first orthogonal code sequence and the second orthogonal code sequence. .
可选地,作为一个实施例,所述第一时隙中被映射的K个RB与所述第二时隙中被映射的K个RB在频域上不完全重叠。Optionally, as an embodiment, the K RBs mapped in the first time slot and the K RBs mapped in the second time slot do not completely overlap in the frequency domain.
可选地,作为一个实施例,上述方法还可包括:所述UE在所述第一时隙中除所述L1个时域符号之外的时域符号中,以及在所述第二时隙中除所述L2个时域符号之外的时域符号中发送DMRS。Optionally, as an embodiment, the foregoing method may further include: the UE is in a time domain symbol other than the L1 time domain symbols in the first time slot, and in the second time slot. The DMRS is transmitted in a time domain symbol other than the L2 time domain symbols.
可选地,作为一个实施例,所述K个RB中的每个RB中的每个时域符号中的DMRS是独立生成的长度为N的序列,所述K个RB中的每个RB中的每个时域符号中的DMRS的总长度是K*N。Optionally, as an embodiment, the DMRS in each time domain symbol in each of the K RBs is an independently generated sequence of length N, and each of the K RBs is in the RB. The total length of the DMRS in each time domain symbol is K*N.
下面结合具体例子,更加详细地描述本发明实施例。应注意,图5的例子仅仅是为了帮助本领域技术人员理解本发明实施例,而非要将本发明实施例限于所例示的具体数值或具体场景。本领域技术人员根据所给出的图5的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本发明实施例的范围内。Embodiments of the present invention are described in more detail below with reference to specific examples. It should be noted that the example of FIG. 5 is only intended to assist those skilled in the art to understand the embodiments of the present invention, and is not intended to limit the embodiments of the present invention to the specific numerical values or specific examples illustrated. A person skilled in the art will be able to make various modifications or changes in the embodiments according to the example of FIG. 5, and such modifications or variations are also within the scope of the embodiments of the present invention.
图5中,假设N=4,K=2,L1=L2=4,且只选取一个时隙中的PF3的信号生成方式进行说明,另一个时隙的PF3信号生成方式是类似的。假设UE1使用的是图5中的单RB的PF3,UE2使用的是图5中的双RB的PF3,具体过程为:UE1经过信道编码,速率匹配之后得到的原始调制符号为{a1,a2,a3,a4},然后经过正交码{1,1,1,1}的扩频,再经过每时域符号的循 环移位{0,1,2,3};UE2经过信道编码,速率匹配之后得到的原始调制符号为{b1,b2,b3,b4,b5,b6,b7,b8},然后经过正交码{1,-1,1,-1}的扩频,再经过每时域符号的循环移位{0,2,4,6}。之后,UE1和UE2分别进行长度4和8的DFT。再然后,进行IFFT并发送。基站端根据上述逆过程来接收UE1和UE2的UCI。In FIG. 5, it is assumed that N=4, K=2, L1=L2=4, and only the signal generation mode of PF3 in one slot is selected, and the PF3 signal generation manner of the other slot is similar. It is assumed that UE1 uses the PF3 of the single RB in FIG. 5, and UE2 uses the PF3 of the dual RB in FIG. 5, the specific process is: UE1 is subjected to channel coding, and the original modulation symbols obtained after rate matching are {a1, a2, A3, a4}, then the spread code of the orthogonal code {1,1,1,1}, and then the cycle of each time domain symbol Ring shift {0, 1, 2, 3}; UE2 is channel coded, and the original modulation symbols obtained after rate matching are {b1, b2, b3, b4, b5, b6, b7, b8}, and then pass through orthogonal codes. The spreading of {1,-1,1,-1} is followed by a cyclic shift of {0, 2, 4, 6} per time domain symbol. Thereafter, UE1 and UE2 perform DFTs of lengths 4 and 8, respectively. Then, IFFT is performed and sent. The base station receives the UCI of UE1 and UE2 according to the inverse process described above.
下面给出K个RB的PF3使用小区特定的基本循环移位值的K倍进行循环移位后,不同K值的PF3在时频资源重叠时彼此之间仍然正交的证明。The following is a proof that the PF3 of the K RBs are cyclically shifted using K times the cell-specific basic cyclic shift value, and the PF3s of different K values are still orthogonal to each other when the time-frequency resources overlap.
首先假设,L1=L2=2,且UE1和UE2分别采用的时域正交码为oc1=[1,1]和oc2=[1,-1];UE1和UE2采用循环移位数值分别为
Figure PCTCN2015073063-appb-000037
Figure PCTCN2015073063-appb-000038
First assume that L1=L2=2, and the time domain orthogonal codes used by UE1 and UE2 are oc 1 =[1,1] and oc 2 =[1,-1] respectively; UE1 and UE2 use cyclic shift values respectively. for
Figure PCTCN2015073063-appb-000037
with
Figure PCTCN2015073063-appb-000038
UE1和UE2分别经过编码,速率匹配后得到的时域调制符号分别为:UE1 and UE2 are respectively coded, and the time domain modulation symbols obtained after rate matching are respectively:
x1(m),m=0,1,...,N-1x 1 (m), m=0,1,...,N-1
x2(n),n=0,1,...,K*N-1x 2 (n), n=0,1,...,K*N-1
再分别经过扩频得到扩频后的时域调制符号为:The time-domain modulation symbols obtained by spreading after being spread-spectrum respectively are:
Figure PCTCN2015073063-appb-000039
Figure PCTCN2015073063-appb-000039
Figure PCTCN2015073063-appb-000040
Figure PCTCN2015073063-appb-000040
再经过循环移位后,分别得到的时域调制符号为:After cyclic shifting, the time domain modulation symbols obtained are:
Figure PCTCN2015073063-appb-000041
Figure PCTCN2015073063-appb-000041
Figure PCTCN2015073063-appb-000042
Figure PCTCN2015073063-appb-000042
接着,经过DFT操作,变换到频域,得到的频域调制符号为: Then, after DFT operation, transform to the frequency domain, and the obtained frequency domain modulation symbols are:
Figure PCTCN2015073063-appb-000043
Figure PCTCN2015073063-appb-000043
Figure PCTCN2015073063-appb-000044
Figure PCTCN2015073063-appb-000044
经过IFFT和接收端进行FFT的过程就省略了,因为是直接的逆过程。这里提供接收端经过FFT后的频域调制符号为下式,即两个UE的信号部分叠加在一起。具体的,频域上,UE1的前N个调制符号与UE2的前N个调制符号重叠,而UE1从N+1开始到K*N-1就没有信号了,因为UE1发送的是单RB的PF3;而UE2的频域信号长度为K*N,因为UE2发送的是K个RB的PF3。The process of performing FFT through the IFFT and the receiving end is omitted because it is a direct inverse process. Here, the frequency domain modulation symbols after the FFT of the receiving end are provided as follows, that is, the signal portions of the two UEs are superimposed. Specifically, in the frequency domain, the first N modulation symbols of UE1 overlap with the first N modulation symbols of UE2, and UE1 has no signal from N+1 to K*N-1, because UE1 sends a single RB. PF3; and the frequency domain signal length of UE2 is K*N, because UE2 transmits PF3 of K RBs.
Figure PCTCN2015073063-appb-000045
Figure PCTCN2015073063-appb-000045
接下来,UE1进行IDFT操作,由于上述公式中的K因子被消掉了,因此UE2的前N个调制符号经过IDFT之后,进行的循环移位与UE1是相同的。因此,UE1得到的IDFT之后的时域调制符号为:Next, UE1 performs an IDFT operation. Since the K factor in the above formula is eliminated, the cyclic shift performed by the first N modulation symbols of UE2 after IDFT is the same as that of UE1. Therefore, the time domain modulation symbols after the IDFT obtained by UE1 are:
Figure PCTCN2015073063-appb-000046
Figure PCTCN2015073063-appb-000046
Figure PCTCN2015073063-appb-000047
Figure PCTCN2015073063-appb-000047
UE1再进行逆循环移位:UE1 performs reverse cyclic shift again:
Figure PCTCN2015073063-appb-000048
Figure PCTCN2015073063-appb-000048
UE1进行解扩操作,并合并,可以恢复出自己原始的时域调制符号,不会受到UE2信号的干扰。UE1 performs despreading operations and combines to recover its original time domain modulation symbols without being interfered by the UE2 signal.
Figure PCTCN2015073063-appb-000049
Figure PCTCN2015073063-appb-000049
接下来,UE2进行IDFT操作,可以看到UE2进行IDFT时,会与UE1的K倍过采样的信号叠加在一起,但可以看到每两个UE1的原始时域调制符号之间会存在K-1个过采样符号
Figure PCTCN2015073063-appb-000050
正好相当于K倍循环移位。
Next, the UE2 performs an IDFT operation, and it can be seen that when the UE2 performs IDFT, it is superimposed with the K-time oversampled signal of the UE1, but it can be seen that there is a K- between the original time domain modulation symbols of each two UE1s. 1 oversampling symbol
Figure PCTCN2015073063-appb-000050
It is exactly equivalent to K times cyclic shift.
Figure PCTCN2015073063-appb-000051
Figure PCTCN2015073063-appb-000051
Figure PCTCN2015073063-appb-000052
Figure PCTCN2015073063-appb-000052
UE2再进行逆循环移位,可以看到,UE1的两列调制符号是相同的。UE2 performs reverse cyclic shift again. It can be seen that the two columns of modulation symbols of UE1 are the same.
Figure PCTCN2015073063-appb-000053
Figure PCTCN2015073063-appb-000053
UE2进行解扩操作,并合并,可以恢复出自己原始的时域调制符号,不会受到UE1信号的干扰,因为UE1的两列调制符号是相同的,这样乘以解扩正交码{1,-1}就可以将UE1的影响消掉了。 UE2 performs despreading operations and combines to recover its original time domain modulation symbols without interference from the UE1 signal, because the two columns of modulation symbols of UE1 are the same, so multiplied by the despread orthogonal code {1, -1} can eliminate the effect of UE1.
Figure PCTCN2015073063-appb-000054
Figure PCTCN2015073063-appb-000054
上文中结合图1-图5,从用户设备的角度详细描述了根据本发明实施例的传输上行控制信息的方法,下面将结合图6,从接入网设备的角度描述根据本发明实施例的传输上行控制信息的方法。应理解,接入网设备侧描述的用户设备与接入网设备的交互及相关特性、功能等与用户设备侧的描述相应,为了简洁,适当省略重复的描述。With reference to FIG. 1 to FIG. 5, a method for transmitting uplink control information according to an embodiment of the present invention is described in detail from the perspective of a user equipment, and a method according to an embodiment of the present invention will be described from the perspective of an access network device. A method of transmitting uplink control information. It should be understood that the interaction between the user equipment and the access network device described in the access network device side and related features, functions, and the like correspond to the description on the user equipment side. For the sake of brevity, duplicate descriptions are omitted as appropriate.
图6是本发明实施例的传输上行控制信息的方法的示意性流程图。图6的方法包括:FIG. 6 is a schematic flowchart of a method for transmitting uplink control information according to an embodiment of the present invention. The method of Figure 6 includes:
610、接入网设备从上行子帧的第一时隙内的K个资源块RB中的L1个时域符号上获取L1组调制符号,其中每组调制符号包括K×N个调制符号,K为在一个时隙内用于承载用户设备的上行控制信息的资源块RB的个数,K为大于1的正整数,N为1个RB中所包含的子载波的数量;610. The access network device acquires L1 group modulation symbols from L1 time domain symbols in the K resource blocks RB in the first time slot of the uplink subframe, where each group of modulation symbols includes K×N modulation symbols, K For the number of resource blocks RB used to carry the uplink control information of the user equipment in one time slot, K is a positive integer greater than 1, and N is the number of subcarriers included in one RB;
620、接入网设备从上行子帧的第二时隙内的K个RB中的L2个时域符号上获取L2组调制符号,其中每组调制符号包括K×N个调制符号;620. The access network device acquires L2 group modulation symbols from L2 time domain symbols in the K RBs in the second time slot of the uplink subframe, where each group of modulation symbols includes K×N modulation symbols.
630、接入网设备分别对L1组调制符号进行逆离散傅里叶变换IDFT,得到IDFT后的L1组调制符号;630. The access network device performs an inverse discrete Fourier transform IDFT on the L1 group modulation symbols to obtain an L1 group modulation symbol after the IDFT.
640、接入网设备分别对L2组调制符号进行IDFT,得到IDFT后的L2组调制符号;640. The access network device performs IDFT on the L2 group modulation symbols respectively, and obtains the L2 group modulation symbols after the IDFT.
650、接入网设备分别对IDFT后的L1组调制符号中的每一组调制符号进行逆循环移位,得到逆循环移位后的L1组调制符号,其中IDFT后的L1组调制符号中的第i组调制符号在逆循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000055
1≤i≤L1;
650. The access network device performs inverse cyclic shift on each group of modulation symbols in the L1 group modulation symbols after the IDFT, to obtain an L1 group modulation symbol after the inverse cyclic shift, where the L1 group modulation symbols in the IDFT are The cyclic shift value used by the i-th modulation symbol in the inverse cyclic shift
Figure PCTCN2015073063-appb-000055
1≤i≤L1;
660、接入网设备分别对IDFT后的L2组调制符号中的每一组调制符号进行逆循环移位,得到逆循环移位后的L2组调制符号,其中IDFT后的L2组调制符号中的第j组调制符号在逆循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000056
1≤j≤L2,
Figure PCTCN2015073063-appb-000057
Figure PCTCN2015073063-appb-000058
均表示当前小区的小区特定的基本循环移位值;
660. The access network device performs inverse cyclic shift on each group of modulation symbols in the L2 group modulation symbols after the IDFT, to obtain an L2 group modulation symbol after the inverse cyclic shift, where the L2 group modulation symbols after the IDFT The cyclic shift value used by the j-th modulation symbol in the inverse cyclic shift
Figure PCTCN2015073063-appb-000056
1≤j≤L2,
Figure PCTCN2015073063-appb-000057
with
Figure PCTCN2015073063-appb-000058
Each represents a cell-specific basic cyclic shift value of the current cell;
670、接入网设备使用码长为L1的扩频码对逆循环移位后的L1组调制符号进行解扩,得到第一组调制符号,第一组调制符号包括K×N个调制符号;670. The access network device despreads the inverse cyclically shifted L1 group modulation symbols by using a spreading code with a code length of L1 to obtain a first group of modulation symbols, where the first group of modulation symbols includes K×N modulation symbols.
680、接入网设备使用码长为L2的扩频码对逆循环移位后的L2组调制 符号进行解扩,得到第二组调制符号,第二组调制符号包括K×N个调制符号;680. The access network device uses the L2 group modulation after the inverse cyclic shift using the spreading code with the code length L2 The symbol is despread to obtain a second set of modulation symbols, and the second set of modulation symbols includes K×N modulation symbols;
690、接入网设备获取承载于第一组调制符号和第二组调制符号中的上行控制信息。690. The access network device acquires uplink control information that is carried in the first group of modulation symbols and the second group of modulation symbols.
本发明实施例中,将现有的单RB的PF3扩展到多RB的PF3,能够支持更多数目的载波聚合以及支持更多比特的ACK/NACK反馈。进一步地,本发明实施例在对IDFT后的L1+L2组调制符号进行每组独立的逆循环移位时所采用的循环移位值为当前小区的小区特定的基本循环移位值的K倍,这样,当单RB和多RB的时频资源重叠使用时,可以保证各类型的PF3之间的正交性,降低相互之间的干扰。In the embodiment of the present invention, the existing PF3 of a single RB is extended to the PF3 of multiple RBs, which can support a larger number of carrier aggregations and support more bits of ACK/NACK feedback. Further, in the embodiment of the present invention, the cyclic shift value used when performing each set of independent inverse cyclic shift on the L1+L2 group modulation symbols after the IDFT is K times the cell-specific basic cyclic shift value of the current cell. In this way, when time-frequency resources of a single RB and multiple RBs are used in an overlapping manner, orthogonality between the PFs of each type can be ensured, and interference between each other can be reduced.
可选地,作为一个实施例,步骤610可包括:接入网设备对上行子帧中接收到的信号进行FFT操作,得到上行子帧的第一时隙中的K个RB中的L1时域符号上的L1组调制符号,和所述上行子帧的第二时隙中的K个RB中的L2个时域符号上的L2组调制符号。Optionally, as an embodiment, step 610 may include: the access network device performs an FFT operation on the received signal in the uplink subframe to obtain an L1 time domain of the K RBs in the first time slot of the uplink subframe. An L1 group modulation symbol on the symbol, and an L2 group modulation symbol on L2 time domain symbols among the K RBs in the second slot of the uplink subframe.
可选地,作为一个实施例,接入网设备获取承载于第一组调制符号和第二组调制符号中的用户设备的上行控制信息,包括:接入网设备分别对第一组调制符号和第二组调制符号进行解调,得到解调后的编码比特流;接入网设备对编码比特流进行译码,得到上行控制信息。Optionally, as an embodiment, the access network device acquires uplink control information of the user equipment that is carried in the first group of modulation symbols and the second group of modulation symbols, and includes: the access network device separately processes the first group of modulation symbols and The second group of modulation symbols are demodulated to obtain a demodulated coded bit stream; the access network device decodes the coded bit stream to obtain uplink control information.
可选地,作为一个实施例,上行控制信息通过第一时频资源传输,当前小区下的其它上行控制信息通过第二时频资源传输,第一时频资源所包含的RB数大于第二时频资源所包含的RB数,且第一时频资源与第二时频资源部分重叠。Optionally, as an embodiment, the uplink control information is transmitted by using the first time-frequency resource, and the other uplink control information of the current cell is transmitted by using the second time-frequency resource, where the number of RBs included in the first time-frequency resource is greater than the second time. The number of RBs included in the frequency resource, and the first time-frequency resource partially overlaps with the second time-frequency resource.
可选地,作为一个实施例,接入网设备为用户设备配置了第一下行子帧集合或第二下行子帧集合,第一下行子帧集合中包括的子帧数大于第二下行子帧集合中包括的子帧数,接入网设备在上行子帧中接收第一下行子帧集合所对应的上行控制信息时,每个时隙所占用的RB数大于接入网设备在上行子帧中接收第二下行子帧集合所对应的上行控制信息时,每个时隙所占用的RB数。Optionally, as an embodiment, the access network device configures the first downlink subframe set or the second downlink subframe set for the user equipment, where the number of subframes included in the first downlink subframe set is greater than the second downlink. The number of subframes included in the subframe set. When the access network device receives the uplink control information corresponding to the first downlink subframe set in the uplink subframe, the number of RBs occupied by each slot is greater than that of the access network device. The number of RBs occupied by each time slot when receiving the uplink control information corresponding to the second downlink subframe set in the uplink subframe.
可选地,作为一个实施例,接入网设备为用户设备配置了第一下行子帧集合,其中第一下行子帧集合包括第一子集和第二子集,第一子集是第二子集的真子集,接入网设备在上行子帧中接收第一子集中的下行子帧所对应的 上行控制信息时,每个时隙所占用的RB数小于接入网设备在上行子帧中传输第二子集中的下行子帧所对应的上行控制信息时,每个时隙所占用的RB数。Optionally, as an embodiment, the access network device configures, by the user equipment, a first downlink subframe set, where the first downlink subframe set includes a first subset and a second subset, where the first subset is a true subset of the second subset, the access network device receiving, in the uplink subframe, a downlink subframe corresponding to the first subset When the uplink control information is used, the number of RBs occupied by each time slot is smaller than the number of RBs occupied by the time slot when the access network device transmits the uplink control information corresponding to the downlink subframe in the second subset. .
可选地,作为一个实施例,上行子帧的一个时域符号中的DMRS序列包括K段基于长度N生成的序列。Optionally, as an embodiment, the DMRS sequence in one time domain symbol of the uplink subframe includes a sequence in which the K segment is generated based on the length N.
下面提供本发明实施例的另一种传输上行控制信息的方法,该方法包括:接入网设备对上行子帧中接收到的信号进行FFT操作,得到所述上行子帧中的第一时隙中的K个RB中的L1个时域符号上的FFT后的L1组调制符号,和所述上行子帧中的第二时隙中的K个RB中的L2个时域符号上的FFT后的L2组调制符号;Another method for transmitting uplink control information according to an embodiment of the present invention is provided. The method includes: performing, by an access network device, an FFT operation on a signal received in an uplink subframe to obtain a first time slot in the uplink subframe. FFT-after L1 group modulation symbols on L1 time-domain symbols in the K RBs in the middle, and FFT on L2 time-domain symbols in the K RBs in the second slot in the uplink subframe L2 group modulation symbol;
所述接入网设备对所述L1个时域符号上的FFT后的L1组调制符号中的每一组进行IDFT操作,得到L1组IDFT后的调制符号;所述接入网设备对所述L2个时域符号上的FFT后的L2组调制符号中的每一组进行IDFT操作,得到L2组IDFT后的调制符号;The access network device performs an IDFT operation on each of the FFT L1 group modulation symbols on the L1 time domain symbols to obtain a modulation symbol after the L1 group IDFT; the access network device pairs the Each group of the L2 group modulation symbols after the FFT on the L2 time domain symbols performs an IDFT operation to obtain a modulation symbol after the L2 group IDFT;
所述接入网设备对所述L1组IDFT后的调制符号的每一组进行每组独立的逆循环移位操作,得到L1组逆循环移位后的调制符号;所述接入网设备对所述L2组IDFT后的调制符号的每一组进行每组独立的逆循环移位操作,得到L2组逆循环移位后的调制符号;其中,对所述L1组扩频后的调制符号中的每一组进行的逆循环移位的数值依次为
Figure PCTCN2015073063-appb-000059
对所述L2组扩频后的调制符号中的每一组进行的逆循环移位的数值依次为
Figure PCTCN2015073063-appb-000060
其中
Figure PCTCN2015073063-appb-000061
均为整数,且
Figure PCTCN2015073063-appb-000062
为当前小区的基本循环移位的数值;所述接入网设备对所述L1组逆循环移位后的调制符号,使用具有第一码长L1的第一正交码序列进行解扩操作,得到第一组调制符号;所述接入网设备对所述L2组逆循环移位后的调制符号,使用具有第二码长L2的第二正交码序列进行解扩操作,得到第二组调制符号;所述第一组调制符号和第二组调制符号中各包括K*N个调制符号,其中K为大于1的自然数,N为一个RB中包含的子载波数量;所述接入网设备对所述第一组调制符号和所述第二组调制符号进行解调,得到解调后的编码比特流;所述接入网设备对所述解调后的编码比特流进行译码操作,得到所述上行子帧中承载的原始UCI。
The access network device performs each group of independent reverse cyclic shift operations on each group of the modulation symbols after the L1 group IDFT, to obtain a modulation symbol after the reverse cyclic shift of the L1 group; Each group of the modulation symbols after the L2 group IDFT performs each set of independent inverse cyclic shift operations to obtain a modulation symbol of the L2 group after the inverse cyclic shift; wherein, the modulation symbols of the L1 group are spread. The value of the inverse cyclic shift performed by each group is
Figure PCTCN2015073063-appb-000059
The values of the inverse cyclic shifts performed on each of the L2 group of spread modulated symbols are
Figure PCTCN2015073063-appb-000060
among them
Figure PCTCN2015073063-appb-000061
Are all integers, and
Figure PCTCN2015073063-appb-000062
a value of a basic cyclic shift of the current cell; the access network device performs despreading operation on the modulation symbol after the inverse cyclic shift of the L1 group by using a first orthogonal code sequence having a first code length L1, Obtaining a first group of modulation symbols; the access network device performing despreading operation on the modulation symbols after the inverse cyclic shift of the L2 group by using a second orthogonal code sequence having a second code length L2, to obtain a second group a modulation symbol; each of the first group of modulation symbols and the second group of modulation symbols includes K*N modulation symbols, where K is a natural number greater than 1, and N is a number of subcarriers included in one RB; The device demodulates the first group of modulation symbols and the second group of modulation symbols to obtain a demodulated coded bit stream; and the access network device performs a decoding operation on the demodulated coded bit stream Obtaining the original UCI carried in the uplink subframe.
下文结合图7至图10,详细描述本发明实施例的用户设备和基站。应理 解,图7和图9中的用户设备能够实现图4中由用户设备执行的各个步骤,为避免重复,不再详细叙述;图8和图10能够实现图6中由接入网设备执行的各个步骤,为避免重复,不再详细叙述。The user equipment and the base station of the embodiment of the present invention are described in detail below with reference to FIG. 7 to FIG. Reasonable The user equipment in FIG. 7 and FIG. 9 can implement the steps performed by the user equipment in FIG. 4, and is not described in detail to avoid repetition; FIG. 8 and FIG. 10 can implement the implementation performed by the access network device in FIG. The various steps are not described in detail to avoid repetition.
图7是本发明实施例的用户设备的示意性框图。图7的用户设备700包括:FIG. 7 is a schematic block diagram of a user equipment according to an embodiment of the present invention. The user equipment 700 of FIG. 7 includes:
生成单元710,用于生成承载有上行控制信息的第一组调制符号和第二组调制符号,其中所述第一组调制符号和所述第二组调制符号均包括K×N个调制符号,K为在一个时隙内用于承载该上行控制信息的资源块RB的个数,K为大于1的正整数,N为1个资源块RB中所包含的子载波的数量;a generating unit 710, configured to generate a first group of modulation symbols and a second group of modulation symbols that carry uplink control information, where the first group of modulation symbols and the second group of modulation symbols each include K×N modulation symbols, K is the number of resource blocks RB used to carry the uplink control information in one slot, K is a positive integer greater than 1, and N is the number of subcarriers included in one resource block RB;
扩频单元720,用于使用码长为L1的扩频码对所述第一组调制符号进行扩频,得到L1组调制符号,并使用码长为L2的扩频码对所述第二组调制符号进行扩频,得到L2组调制符号;The spreading unit 720 is configured to spread the first group of modulation symbols by using a spreading code with a code length of L1 to obtain an L1 group modulation symbol, and use the spreading code with a code length of L2 to the second group. Modulating symbols for spreading, to obtain L2 group modulation symbols;
第一循环移位单元730,用于分别对所述L1组调制符号中的每一组调制符号进行循环移位,得到移位后的L1组调制符号,其中所述L1组调制符号中的第i组调制符号在循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000063
1≤i≤L1;
a first cyclic shift unit 730, configured to cyclically shift each set of modulation symbols in the L1 group modulation symbols to obtain a shifted L1 group modulation symbol, where the L1 group modulation symbol is The cyclic shift value used by the i-group modulation symbols when cyclically shifting
Figure PCTCN2015073063-appb-000063
1≤i≤L1;
第二循环移位单元740,用于分别对所述L2组调制符号中的每一组调制符号进行循环移位,得到移位后的L2组调制符号,其中所述L2组调制符号中的第j组调制符号在循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000064
1≤j≤L2,
Figure PCTCN2015073063-appb-000065
Figure PCTCN2015073063-appb-000066
均表示当前小区的小区特定的基本循环移位值;
a second cyclic shifting unit 740, configured to cyclically shift each set of modulation symbols in the L2 group modulation symbols to obtain a shifted L2 group modulation symbol, where the L2 group modulation symbol is the first The cyclic shift value used by the j group modulation symbols when cyclically shifting
Figure PCTCN2015073063-appb-000064
1≤j≤L2,
Figure PCTCN2015073063-appb-000065
with
Figure PCTCN2015073063-appb-000066
Each represents a cell-specific basic cyclic shift value of the current cell;
传输单元750,用于通过上行子帧的第一时隙内的K个RB和第二时隙内的K个RB,向接入网设备传输承载于所述移位后的L1组调制符号和所述移位后的L2组调制符号中的上行控制信息。The transmitting unit 750 is configured to transmit, by using the K RBs in the first time slot of the uplink subframe and the K RBs in the second time slot, the L1 group modulation symbols carried by the shift to the access network device. Uplink control information in the shifted L2 group modulation symbols.
本发明实施例中,将现有的单RB的PF3扩展到多RB的PF3,能够支持更多数目的载波聚合以及支持更多比特的ACK/NACK反馈。进一步地,本发明实施例在对L1+L2组调制符号进行每组独立的循环移位时所采用的循环移位值为当前小区的小区特定的基本循环移位值的K倍,这样,当单RB和多RB的时频资源重叠使用时,可以保证各类型的PF3之间的正交性,降低相互之间的干扰。In the embodiment of the present invention, the existing PF3 of a single RB is extended to the PF3 of multiple RBs, which can support a larger number of carrier aggregations and support more bits of ACK/NACK feedback. Further, in the embodiment of the present invention, when the L1+L2 group modulation symbols are subjected to each group of independent cyclic shifts, the cyclic shift value used is K times of the cell-specific basic cyclic shift value of the current cell, so that when When the time-frequency resources of the single RB and the multiple RBs are overlapped, the orthogonality between the PFs of each type can be ensured, and the mutual interference is reduced.
可选地,作为一个实施例,所述传输单元750具体用于分别对所述移位后的L1组调制符号进行离散傅里叶变换DFT,得到DFT后的L1组调制符号;分别对所述移位后的L2组调制符号进行DFT,得到DFT后的L2组调 制符号;将所述DFT后的L1组调制符号分别映射至所述第一时隙中的L1个时域符号上,且映射后的L1组调制符号占所述第一时隙内的K个RB;将所述DFT后的L2组调制符号分别映射至所述第二时隙中的L2个时域符号上,且映射后的L2组调制符号占所述第二时隙内的K个RB;分别对所述映射后的L1组调制符号进行逆快速傅里叶变换IFFT,得到IFFT后的L1组调制符号;分别对所述映射后的L2组调制符号进行IFFT,得到IFFT后的L2组调制符号;分别通过所述第一时隙和所述第二时隙,向所述接入网设备传输所述IFFT后的L1组调制符号和所述IFFT后的L2组调制符号,以便向所述接入网设备传输所述上行控制信息。Optionally, as an embodiment, the transmitting unit 750 is specifically configured to perform a discrete Fourier transform DFT on the shifted L1 group modulation symbols to obtain an L1 group modulation symbol after DFT; The shifted L2 group modulation symbol is DFT, and the L2 group tone after DFT is obtained. Generating a symbol; mapping the L1 group modulation symbols after the DFT to L1 time domain symbols in the first slot, and mapping the L1 group modulation symbols to K in the first slot RB; mapping the L2 group modulation symbols after the DFT to L2 time domain symbols in the second slot, and the mapped L2 group modulation symbols occupy K RBs in the second slot Performing inverse fast Fourier transform IFFT on the mapped L1 group modulation symbols to obtain L1 group modulation symbols after IFFT; respectively performing IFFT on the mapped L2 group modulation symbols to obtain an L2 group after IFFT Transmitting a symbol; transmitting, by the first time slot and the second time slot, the L1 group modulation symbol after the IFFT and the L2 group modulation symbol after the IFFT to the access network device, respectively The access network device transmits the uplink control information.
可选地,作为一个实施例,所述生成单元710具体用于对所述上行控制信息进行编码,得到编码后的上行控制信息;对所述编码后的上行控制信息进行调制,得到所述第一组调制符号和所述第二组调制符号。Optionally, in an embodiment, the generating unit 710 is specifically configured to: encode the uplink control information to obtain encoded uplink control information, and perform modulation on the encoded uplink control information to obtain the A set of modulation symbols and the second set of modulation symbols.
可选地,作为一个实施例,所述上行控制信息通过第一时频资源传输,所述当前小区下的其它上行控制信息通过第二时频资源传输,所述第一时频资源所包含的RB数大于所述第二时频资源所包含的RB数,且所述第一时频资源与所述第二时频资源部分重叠。Optionally, as an embodiment, the uplink control information is transmitted by using a first time-frequency resource, and other uplink control information of the current cell is transmitted by using a second time-frequency resource, where the first time-frequency resource is included. The number of RBs is greater than the number of RBs included in the second time-frequency resource, and the first time-frequency resource partially overlaps with the second time-frequency resource.
可选地,作为一个实施例,所述用户设备700被配置了第一下行子帧集合或第二下行子帧集合,所述第一下行子帧集合中包括的子帧数大于所述第二下行子帧集合中包括的子帧数,所述用户设备700在所述上行子帧中传输所述第一下行子帧集合所对应的上行控制信息时,每个时隙所占用的RB数大于所述用户设备在所述上行子帧中发送所述第二下行子帧集合所对应的上行控制信息时,每个时隙所占用的RB数。Optionally, as an embodiment, the user equipment 700 is configured with a first downlink subframe set or a second downlink subframe set, where the number of subframes included in the first downlink subframe set is greater than the The number of subframes included in the second downlink subframe set, where the user equipment 700 transmits the uplink control information corresponding to the first downlink subframe set in the uplink subframe, occupied by each time slot The number of RBs is greater than the number of RBs occupied by each time slot when the user equipment sends the uplink control information corresponding to the second downlink subframe set in the uplink subframe.
可选地,作为一个实施例,所述用户设备700被配置了第一下行子帧集合,其中所述第一下行子帧集合包括第一子集和第二子集,所述第一子集是所述第二子集的真子集,所述用户设备700在所述上行子帧中传输所述第一子集中的下行子帧所对应的上行控制信息时,每个时隙所占用的RB数小于所述用户设备在所述上行子帧中传输所述第二子集中的下行子帧所对应的上行控制信息时,每个时隙所占用的RB数。Optionally, as an embodiment, the user equipment 700 is configured with a first downlink subframe set, where the first downlink subframe set includes a first subset and a second subset, where the first The subset is a true subset of the second subset, and the user equipment 700 uses the uplink control information corresponding to the downlink subframe in the first subset in the uplink subframe, and is occupied by each time slot. The RB number is smaller than the number of RBs occupied by each time slot when the user equipment transmits the uplink control information corresponding to the downlink subframe in the second subset in the uplink subframe.
可选地,作为一个实施例,所述传输单元750还用于在所述上行子帧的至少一个时域符号中向所述接入网设备发送解调参考信号DMRS,其中,每个时域符号中的DMRS序列包括K段基于长度N生成的序列。 Optionally, as an embodiment, the transmitting unit 750 is further configured to send, in the at least one time domain symbol of the uplink subframe, a demodulation reference signal DMRS to the access network device, where each time domain The DMRS sequence in the symbol includes a sequence in which the K segment is generated based on the length N.
可选地,作为一个实施例,K取值不同时,所述用户设备700能够传输的上行控制信息的最大比特数不同。Optionally, as an embodiment, when the value of K is different, the maximum number of bits of the uplink control information that the user equipment 700 can transmit is different.
图8是本发明实施例的接入网设备的示意性框图。图8的接入网设备800包括:FIG. 8 is a schematic block diagram of an access network device according to an embodiment of the present invention. The access network device 800 of Figure 8 includes:
第一获取单元810,用于从上行子帧的第一时隙内的K个资源块RB中的L1个时域符号上获取L1组调制符号,其中每组调制符号包括K×N个调制符号,K为在一个时隙内用于承载用户设备的上行控制信息的资源块RB的个数,K为大于1的正整数,N为1个RB中所包含的子载波的数量;The first obtaining unit 810 is configured to obtain L1 group modulation symbols from L1 time domain symbols in the K resource blocks RB in the first time slot of the uplink subframe, where each group of modulation symbols includes K×N modulation symbols. , K is the number of resource blocks RB used to carry uplink control information of the user equipment in one slot, K is a positive integer greater than 1, and N is the number of subcarriers included in one RB;
第二获取单元820,用于从所述上行子帧的第二时隙内的K个RB中的L2个时域符号上获取L2组调制符号,其中每组调制符号包括K×N个调制符号;a second acquiring unit 820, configured to acquire L2 group modulation symbols from L2 time-domain symbols in the K RBs in the second slot of the uplink subframe, where each group of modulation symbols includes K×N modulation symbols ;
第一变换单元830,用于分别对所述L1组调制符号进行逆离散傅里叶变换IDFT,得到IDFT后的L1组调制符号;a first transform unit 830, configured to perform inverse discrete Fourier transform IDFT on the L1 group modulation symbols respectively, to obtain an L1 group modulation symbol after the IDFT;
第二变化单元840,用于分别对所述L2组调制符号进行IDFT,得到IDFT后的L2组调制符号;a second changing unit 840, configured to perform IDFT on the L2 group modulation symbols respectively, to obtain an L2 group modulation symbol after the IDFT;
第一逆循环移位单元850,用于分别对所述IDFT后的L1组调制符号中的每一组调制符号进行逆循环移位,得到逆循环移位后的L1组调制符号,其中所述IDFT后的L1组调制符号中的第i组调制符号在逆循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000067
1≤i≤L1;
a first inverse cyclic shifting unit 850, configured to respectively perform inverse cyclic shift on each set of modulation symbols in the L1 group modulation symbols after the IDFT, to obtain an L1 group modulation symbol after inverse cyclic shift, where The cyclic shift value used by the i-th modulation symbol in the L1 group modulation symbol after IDFT in the inverse cyclic shift
Figure PCTCN2015073063-appb-000067
1≤i≤L1;
第二逆循环移位单元860,用于分别对所述IDFT后的L2组调制符号中的每一组调制符号进行逆循环移位,得到逆循环移位后的L2组调制符号,其中所述IDFT后的L2组调制符号中的第j组调制符号在逆循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000068
1≤j≤L2,
Figure PCTCN2015073063-appb-000069
Figure PCTCN2015073063-appb-000070
均表示当前小区的小区特定的基本循环移位值;
a second inverse cyclic shifting unit 860, configured to respectively perform inverse cyclic shift on each set of modulation symbols in the L2 group modulation symbols after the IDFT, to obtain an L2 group modulation symbol after inverse cyclic shift, where The cyclic shift value used by the j-th modulation symbol in the L2 group modulation symbol after the IDFT in the inverse cyclic shift
Figure PCTCN2015073063-appb-000068
1≤j≤L2,
Figure PCTCN2015073063-appb-000069
with
Figure PCTCN2015073063-appb-000070
Each represents a cell-specific basic cyclic shift value of the current cell;
第一解扩单元870,用于使用码长为L1的扩频码对逆循环移位后的L1组调制符号进行解扩,得到第一组调制符号,所述第一组调制符号包括K×N个调制符号;The first despreading unit 870 is configured to despread the inverse cyclically shifted L1 group modulation symbols by using a spreading code with a code length of L1 to obtain a first group of modulation symbols, where the first group of modulation symbols includes K× N modulation symbols;
第二解扩单元880,用于使用码长为L2的扩频码对逆循环移位后的L2组调制符号进行解扩,得到第二组调制符号,所述第二组调制符号包括K×N个调制符号;The second despreading unit 880 is configured to despread the inverse cyclically shifted L2 group modulation symbols by using a spreading code with a code length of L2 to obtain a second group of modulation symbols, where the second group of modulation symbols includes K× N modulation symbols;
第三获取单元890,用于获取承载于所述第一组调制符号和所述第二组 调制符号中的该上行控制信息。a third acquiring unit 890, configured to acquire, by using the first group of modulation symbols and the second group The uplink control information in the modulation symbol.
本发明实施例中,将现有的单RB的PF3扩展到多RB的PF3,能够支持更多数目的载波聚合以及支持更多比特的ACK/NACK反馈。进一步地,本发明实施例在对IDFT后的L1+L2组调制符号进行每组独立的逆循环移位时所采用的循环移位值为当前小区的小区特定的基本循环移位值的K倍,这样,当单RB和多RB的时频资源重叠使用时,可以保证各类型的PF3之间的正交性,降低相互之间的干扰。In the embodiment of the present invention, the existing PF3 of a single RB is extended to the PF3 of multiple RBs, which can support a larger number of carrier aggregations and support more bits of ACK/NACK feedback. Further, in the embodiment of the present invention, the cyclic shift value used when performing each set of independent inverse cyclic shift on the L1+L2 group modulation symbols after the IDFT is K times the cell-specific basic cyclic shift value of the current cell. In this way, when time-frequency resources of a single RB and multiple RBs are used in an overlapping manner, orthogonality between the PFs of each type can be ensured, and interference between each other can be reduced.
可选地,作为一个实施例,所述第三获取单元890具体用于分别对所述第一组调制符号和所述第二组调制符号进行解调,得到解调后的编码比特流;对所述编码比特流进行译码,得到所述上行控制信息。Optionally, as an embodiment, the third obtaining unit 890 is specifically configured to separately demodulate the first group of modulation symbols and the second group of modulation symbols to obtain a demodulated encoded bit stream; The encoded bit stream is decoded to obtain the uplink control information.
可选地,作为一个实施例,所述上行控制信息通过第一时频资源传输,所述当前小区下的其它上行控制信息通过第二时频资源传输,所述第一时频资源所包含的RB数大于所述第二时频资源所包含的RB数,且所述第一时频资源与所述第二时频资源部分重叠。Optionally, as an embodiment, the uplink control information is transmitted by using a first time-frequency resource, and other uplink control information of the current cell is transmitted by using a second time-frequency resource, where the first time-frequency resource is included. The number of RBs is greater than the number of RBs included in the second time-frequency resource, and the first time-frequency resource partially overlaps with the second time-frequency resource.
可选地,作为一个实施例,所述接入网设备800为所述用户设备配置了第一下行子帧集合或第二下行子帧集合,所述第一下行子帧集合中包括的子帧数大于所述第二下行子帧集合中包括的子帧数,所述接入网设备800在所述上行子帧中接收所述第一下行子帧集合所对应的上行控制信息时,每个时隙所占用的RB数大于所述接入网设备800在所述上行子帧中接收所述第二下行子帧集合所对应的上行控制信息时,每个时隙所占用的RB数。Optionally, as an embodiment, the access network device 800 configures, for the user equipment, a first downlink subframe set or a second downlink subframe set, where the first downlink subframe set is included. The number of subframes is greater than the number of subframes included in the second downlink subframe set, and the access network device 800 receives the uplink control information corresponding to the first downlink subframe set in the uplink subframe. The number of RBs occupied by each time slot is greater than the number of RBs occupied by each time slot when the access network device 800 receives the uplink control information corresponding to the second downlink subframe set in the uplink subframe. number.
可选地,作为一个实施例,所述接入网设备800为所述用户设备配置了第一下行子帧集合,其中所述第一下行子帧集合包括第一子集和第二子集,所述第一子集是所述第二子集的真子集,所述接入网设备800在所述上行子帧中接收所述第一子集中的下行子帧所对应的上行控制信息时,每个时隙所占用的RB数小于所述接入网设备在所述上行子帧中传输所述第二子集中的下行子帧所对应的上行控制信息时,每个时隙所占用的RB数。Optionally, as an embodiment, the access network device 800 configures, for the user equipment, a first downlink subframe set, where the first downlink subframe set includes a first subset and a second sub The first subset is the true subset of the second subset, and the access network device 800 receives the uplink control information corresponding to the downlink subframe in the first subset in the uplink subframe. When the number of RBs occupied by each time slot is smaller than the uplink control information corresponding to the downlink subframe in the second subset of the access network device, the time slot is occupied by each time slot. The number of RBs.
可选地,作为一个实施例,所述上行子帧的一个时域符号中的解调参考信号DMRS序列包括K段基于长度N生成的序列。Optionally, as an embodiment, the demodulation reference signal DMRS sequence in one time domain symbol of the uplink subframe includes a sequence in which the K segment is generated based on the length N.
图9是本发明实施例的用户设备的示意性框图。图9的用户设备900包括:FIG. 9 is a schematic block diagram of a user equipment according to an embodiment of the present invention. The user equipment 900 of FIG. 9 includes:
处理器910,用于生成承载有上行控制信息的第一组调制符号和第二组 调制符号,其中所述第一组调制符号和所述第二组调制符号均包括K×N个调制符号,K为在一个时隙内用于承载该上行控制信息的资源块RB的个数,K为大于1的正整数,N为1个资源块RB中所包含的子载波的数量;使用码长为L1的扩频码对所述第一组调制符号进行扩频,得到L1组调制符号,并使用码长为L2的扩频码对所述第二组调制符号进行扩频,得到L2组调制符号;分别对所述L1组调制符号中的每一组调制符号进行循环移位,得到移位后的L1组调制符号,其中所述L1组调制符号中的第i组调制符号在循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000071
1≤i≤L1;分别对所述L2组调制符号中的每一组调制符号进行循环移位,得到移位后的L2组调制符号,其中所述L2组调制符号中的第j组调制符号在循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000072
1≤j≤L2,
Figure PCTCN2015073063-appb-000073
Figure PCTCN2015073063-appb-000074
均表示当前小区的小区特定的基本循环移位值;
The processor 910 is configured to generate a first group of modulation symbols and a second group of modulation symbols that carry uplink control information, where the first group of modulation symbols and the second group of modulation symbols each include K×N modulation symbols. K is the number of resource blocks RB used to carry the uplink control information in one slot, K is a positive integer greater than 1, and N is the number of subcarriers included in one resource block RB; the code length is The spreading code of L1 spreads the first group of modulation symbols to obtain L1 group modulation symbols, and spreads the second group of modulation symbols by using a spreading code with a code length of L2 to obtain L2 group modulation symbols. And cyclically shifting each set of modulation symbols in the L1 group modulation symbols to obtain a shifted L1 group modulation symbol, wherein the ith group modulation symbols in the L1 group modulation symbols are cyclically shifted The cyclic shift value used is
Figure PCTCN2015073063-appb-000071
1≤i≤L1; cyclically shifting each set of modulation symbols in the L2 group modulation symbols to obtain a shifted L2 group modulation symbol, wherein the jth group modulation symbol in the L2 group modulation symbol The cyclic shift value used when cyclically shifting
Figure PCTCN2015073063-appb-000072
1≤j≤L2,
Figure PCTCN2015073063-appb-000073
with
Figure PCTCN2015073063-appb-000074
Each represents a cell-specific basic cyclic shift value of the current cell;
发送器920,用于通过上行子帧的第一时隙内的K个RB和第二时隙内的K个RB,向接入网设备传输承载于所述移位后的L1组调制符号和所述移位后的L2组调制符号中的上行控制信息。The transmitter 920 is configured to transmit, by using the K RBs in the first time slot of the uplink subframe and the K RBs in the second time slot, the L1 group modulation symbols carried by the shift to the access network device. Uplink control information in the shifted L2 group modulation symbols.
本发明实施例中,将现有的单RB的PF3扩展到多RB的PF3,能够支持更多数目的载波聚合以及支持更多比特的ACK/NACK反馈。进一步地,本发明实施例在对L1+L2组调制符号进行每组独立的循环移位时所采用的循环移位值为当前小区的小区特定的基本循环移位值的K倍,这样,当单RB和多RB的时频资源重叠使用时,可以保证各类型的PF3之间的正交性,降低相互之间的干扰。In the embodiment of the present invention, the existing PF3 of a single RB is extended to the PF3 of multiple RBs, which can support a larger number of carrier aggregations and support more bits of ACK/NACK feedback. Further, in the embodiment of the present invention, when the L1+L2 group modulation symbols are subjected to each group of independent cyclic shifts, the cyclic shift value used is K times of the cell-specific basic cyclic shift value of the current cell, so that when When the time-frequency resources of the single RB and the multiple RBs are overlapped, the orthogonality between the PFs of each type can be ensured, and the mutual interference is reduced.
可选地,作为一个实施例,所述处理器910具体用于分别对所述移位后的L1组调制符号进行离散傅里叶变换DFT,得到DFT后的L1组调制符号;分别对所述移位后的L2组调制符号进行DFT,得到DFT后的L2组调制符号;将所述DFT后的L1组调制符号分别映射至所述第一时隙中的L1个时域符号上,且映射后的L1组调制符号占所述第一时隙内的K个RB;将所述DFT后的L2组调制符号分别映射至所述第二时隙中的L2个时域符号上,且映射后的L2组调制符号占所述第二时隙内的K个RB;分别对所述映射后的L1组调制符号进行逆快速傅里叶变换IFFT,得到IFFT后的L1组调制符号;分别对所述映射后的L2组调制符号进行IFFT,得到IFFT后的L2组调制符号;分别通过所述第一时隙和所述第二时隙,向所述接入网设备传输所述IFFT后的L1组调制符号和所述IFFT后的L2组调制符号,以便向所 述接入网设备传输所述上行控制信息。Optionally, as an embodiment, the processor 910 is specifically configured to perform a discrete Fourier transform DFT on the shifted L1 group modulation symbols to obtain L1 group modulation symbols after DFT; Performing DFT on the shifted L2 group modulation symbols to obtain L2 group modulation symbols after DFT; mapping the L1 group modulation symbols after the DFT to L1 time domain symbols in the first time slot, and mapping The L1 group modulation symbols occupy the K RBs in the first time slot; the L2 group modulation symbols after the DFT are respectively mapped to the L2 time domain symbols in the second time slot, and after mapping The L2 group modulation symbols occupy K RBs in the second time slot; respectively perform inverse fast Fourier transform IFFT on the mapped L1 group modulation symbols to obtain L1 group modulation symbols after IFFT; Performing IFFT on the mapped L2 group modulation symbols to obtain an L2 group modulation symbol after IFFT; transmitting the L1 after the IFFT to the access network device by using the first time slot and the second time slot, respectively Group modulation symbols and L2 group modulation symbols after the IFFT, so as to The access network device transmits the uplink control information.
可选地,作为一个实施例,所述处理器910具体用于对所述上行控制信息进行编码,得到编码后的上行控制信息;对所述编码后的上行控制信息进行调制,得到所述第一组调制符号和所述第二组调制符号。Optionally, as an embodiment, the processor 910 is specifically configured to: encode the uplink control information to obtain encoded uplink control information, and perform modulation on the encoded uplink control information to obtain the A set of modulation symbols and the second set of modulation symbols.
可选地,作为一个实施例,所述上行控制信息通过第一时频资源传输,所述当前小区下的其它上行控制信息通过第二时频资源传输,所述第一时频资源所包含的RB数大于所述第二时频资源所包含的RB数,且所述第一时频资源与所述第二时频资源部分重叠。Optionally, as an embodiment, the uplink control information is transmitted by using a first time-frequency resource, and other uplink control information of the current cell is transmitted by using a second time-frequency resource, where the first time-frequency resource is included. The number of RBs is greater than the number of RBs included in the second time-frequency resource, and the first time-frequency resource partially overlaps with the second time-frequency resource.
可选地,作为一个实施例,所述用户设备900被配置了第一下行子帧集合或第二下行子帧集合,所述第一下行子帧集合中包括的子帧数大于所述第二下行子帧集合中包括的子帧数,所述用户设备900在所述上行子帧中传输所述第一下行子帧集合所对应的上行控制信息时,每个时隙所占用的RB数大于所述用户设备在所述上行子帧中发送所述第二下行子帧集合所对应的上行控制信息时,每个时隙所占用的RB数。Optionally, as an embodiment, the user equipment 900 is configured with a first downlink subframe set or a second downlink subframe set, where the number of subframes included in the first downlink subframe set is greater than the The number of subframes included in the second downlink subframe set, where the user equipment 900 transmits the uplink control information corresponding to the first downlink subframe set in the uplink subframe, occupied by each time slot The number of RBs is greater than the number of RBs occupied by each time slot when the user equipment sends the uplink control information corresponding to the second downlink subframe set in the uplink subframe.
可选地,作为一个实施例,所述用户设备900被配置了第一下行子帧集合,其中所述第一下行子帧集合包括第一子集和第二子集,所述第一子集是所述第二子集的真子集,所述用户设备900在所述上行子帧中传输所述第一子集中的下行子帧所对应的上行控制信息时,每个时隙所占用的RB数小于所述用户设备在所述上行子帧中传输所述第二子集中的下行子帧所对应的上行控制信息时,每个时隙所占用的RB数。Optionally, as an embodiment, the user equipment 900 is configured with a first downlink subframe set, where the first downlink subframe set includes a first subset and a second subset, where the first The sub-set is a true subset of the second subset, and when the user equipment 900 transmits the uplink control information corresponding to the downlink subframe in the first subset in the uplink subframe, each time slot is occupied. The RB number is smaller than the number of RBs occupied by each time slot when the user equipment transmits the uplink control information corresponding to the downlink subframe in the second subset in the uplink subframe.
可选地,作为一个实施例,所述发送器920还用于在所述上行子帧的至少一个时域符号中向所述接入网设备发送解调参考信号DMRS,其中,每个时域符号中的DMRS序列包括K段基于长度N生成的序列。Optionally, as an embodiment, the transmitter 920 is further configured to send, in the at least one time domain symbol of the uplink subframe, a demodulation reference signal DMRS to the access network device, where each time domain The DMRS sequence in the symbol includes a sequence in which the K segment is generated based on the length N.
可选地,作为一个实施例,K取值不同时,所述用户设备900能够传输的上行控制信息的最大比特数不同。Optionally, as an embodiment, when the value of K is different, the maximum number of bits of the uplink control information that the user equipment 900 can transmit is different.
图10是本发明实施例的接入网设备的示意性框图。图10的接入网设备1000包括:FIG. 10 is a schematic block diagram of an access network device according to an embodiment of the present invention. The access network device 1000 of Figure 10 includes:
接收器1010,用于接收上行子帧中的信号;The receiver 1010 is configured to receive a signal in an uplink subframe.
处理器1020,用于从上行子帧的第一时隙内的K个资源块RB中的L1个时域符号上获取L1组调制符号,其中每组调制符号包括K×N个调制符号,K为在一个时隙内用于承载用户设备的上行控制信息的资源块RB的个 数,K为大于1的正整数,N为1个RB中所包含的子载波的数量;从所述上行子帧的第二时隙内的K个RB中的L2个时域符号上获取L2组调制符号,其中每组调制符号包括K×N个调制符号;分别对所述L1组调制符号进行逆离散傅里叶变换IDFT,得到IDFT后的L1组调制符号;分别对所述L2组调制符号进行IDFT,得到IDFT后的L2组调制符号;分别对所述IDFT后的L1组调制符号中的每一组调制符号进行逆循环移位,得到逆循环移位后的L1组调制符号,其中所述IDFT后的L1组调制符号中的第i组调制符号在逆循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000075
1≤i≤L1;分别对所述IDFT后的L2组调制符号中的每一组调制符号进行逆循环移位,得到逆循环移位后的L2组调制符号,其中所述IDFT后的L2组调制符号中的第j组调制符号在逆循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000076
1≤j≤L2,
Figure PCTCN2015073063-appb-000077
Figure PCTCN2015073063-appb-000078
均表示当前小区的小区特定的基本循环移位值;使用码长为L1的扩频码对逆循环移位后的L1组调制符号进行解扩,得到第一组调制符号,所述第一组调制符号包括K×N个调制符号;使用码长为L2的扩频码对逆循环移位后的L2组调制符号进行解扩,得到第二组调制符号,所述第二组调制符号包括K×N个调制符号;获取承载于所述第一组调制符号和所述第二组调制符号中的该上行控制信息。
The processor 1020 is configured to obtain L1 group modulation symbols from L1 time domain symbols in the K resource blocks RB in the first time slot of the uplink subframe, where each group of modulation symbols includes K×N modulation symbols, K For the number of resource blocks RB used to carry the uplink control information of the user equipment in one slot, K is a positive integer greater than 1, and N is the number of subcarriers included in one RB; Obtaining L2 group modulation symbols on L2 time domain symbols in the K RBs in the second slot of the frame, where each group of modulation symbols includes K×N modulation symbols; respectively performing inverse discrete Fu on the L1 group modulation symbols Transforming the IDFT to obtain the L1 group modulation symbols after the IDFT; respectively performing IDFT on the L2 group modulation symbols to obtain the L2 group modulation symbols after the IDFT; respectively, each group of the L1 group modulation symbols after the IDFT The modulation symbol is inversely cyclically shifted to obtain an L1 group modulation symbol after the inverse cyclic shift, wherein the cyclic shift value used by the i-th modulation symbol in the L1 group modulation symbol after the IDFT is reversed cyclically shifted for
Figure PCTCN2015073063-appb-000075
1≤i≤L1; respectively performing inverse cyclic shift on each group of modulation symbols in the L2 group modulation symbols after the IDFT, to obtain an L2 group modulation symbol after inverse cyclic shift, wherein the L2 group after the IDFT The cyclic shift value used by the j-th modulation symbol in the modulation symbol in the inverse cyclic shift
Figure PCTCN2015073063-appb-000076
1≤j≤L2,
Figure PCTCN2015073063-appb-000077
with
Figure PCTCN2015073063-appb-000078
Each represents a cell-specific basic cyclic shift value of the current cell; the L1 group of modulation symbols after the inverse cyclic shift is despread using a spreading code having a code length of L1, to obtain a first group of modulation symbols, the first group The modulation symbol includes K×N modulation symbols; the inverse cyclically shifted L2 group modulation symbols are despread using a spreading code having a code length of L2 to obtain a second group of modulation symbols, and the second group of modulation symbols includes K × N modulation symbols; acquiring the uplink control information carried in the first group of modulation symbols and the second group of modulation symbols.
本发明实施例中,将现有的单RB的PF3扩展到多RB的PF3,能够支持更多数目的载波聚合以及支持更多比特的ACK/NACK反馈。进一步地,本发明实施例在对IDFT后的L1+L2组调制符号进行每组独立的逆循环移位时所采用的循环移位值为当前小区的小区特定的基本循环移位值的K倍,这样,当单RB和多RB的时频资源重叠使用时,可以保证各类型的PF3之间的正交性,降低相互之间的干扰。In the embodiment of the present invention, the existing PF3 of a single RB is extended to the PF3 of multiple RBs, which can support a larger number of carrier aggregations and support more bits of ACK/NACK feedback. Further, in the embodiment of the present invention, the cyclic shift value used when performing each set of independent inverse cyclic shift on the L1+L2 group modulation symbols after the IDFT is K times the cell-specific basic cyclic shift value of the current cell. In this way, when time-frequency resources of a single RB and multiple RBs are used in an overlapping manner, orthogonality between the PFs of each type can be ensured, and interference between each other can be reduced.
可选地,作为一个实施例,所述处理器1020具体用于分别对所述第一组调制符号和所述第二组调制符号进行解调,得到解调后的编码比特流;对所述编码比特流进行译码,得到所述上行控制信息。Optionally, as an embodiment, the processor 1020 is specifically configured to separately demodulate the first group of modulation symbols and the second group of modulation symbols to obtain a demodulated coded bit stream; The encoded bit stream is decoded to obtain the uplink control information.
可选地,作为一个实施例,所述上行控制信息通过第一时频资源传输,所述当前小区下的其它上行控制信息通过第二时频资源传输,所述第一时频资源所包含的RB数大于所述第二时频资源所包含的RB数,且所述第一时频资源与所述第二时频资源部分重叠。Optionally, as an embodiment, the uplink control information is transmitted by using a first time-frequency resource, and other uplink control information of the current cell is transmitted by using a second time-frequency resource, where the first time-frequency resource is included. The number of RBs is greater than the number of RBs included in the second time-frequency resource, and the first time-frequency resource partially overlaps with the second time-frequency resource.
可选地,作为一个实施例,所述接入网设备1000为所述用户设备配置 了第一下行子帧集合或第二下行子帧集合,所述第一下行子帧集合中包括的子帧数大于所述第二下行子帧集合中包括的子帧数,所述接入网设备800在所述上行子帧中接收所述第一下行子帧集合所对应的上行控制信息时,每个时隙所占用的RB数大于所述接入网设备1000在所述上行子帧中接收所述第二下行子帧集合所对应的上行控制信息时,每个时隙所占用的RB数。Optionally, as an embodiment, the access network device 1000 configures the user equipment. The first downlink subframe set or the second downlink subframe set, where the number of subframes included in the first downlink subframe set is greater than the number of subframes included in the second downlink subframe set, and the When the network access device 800 receives the uplink control information corresponding to the first downlink subframe set in the uplink subframe, the number of RBs occupied by each time slot is greater than the uplink of the access network device 1000. The number of RBs occupied by each time slot when receiving the uplink control information corresponding to the second downlink subframe set in the subframe.
可选地,作为一个实施例,所述接入网设备1000为所述用户设备配置了第一下行子帧集合,其中所述第一下行子帧集合包括第一子集和第二子集,所述第一子集是所述第二子集的真子集,所述接入网设备1000在所述上行子帧中接收所述第一子集中的下行子帧所对应的上行控制信息时,每个时隙所占用的RB数小于所述接入网设备在所述上行子帧中传输所述第二子集中的下行子帧所对应的上行控制信息时,每个时隙所占用的RB数。Optionally, as an embodiment, the access network device 1000 configures, for the user equipment, a first downlink subframe set, where the first downlink subframe set includes a first subset and a second sub The first subset is the true subset of the second subset, and the access network device 1000 receives the uplink control information corresponding to the downlink subframe in the first subset in the uplink subframe. When the number of RBs occupied by each time slot is smaller than the uplink control information corresponding to the downlink subframe in the second subset of the access network device, the time slot is occupied by each time slot. The number of RBs.
可选地,作为一个实施例,所述上行子帧的一个时域符号中的解调参考信号DMRS序列包括K段基于长度N生成的序列。Optionally, as an embodiment, the demodulation reference signal DMRS sequence in one time domain symbol of the uplink subframe includes a sequence in which the K segment is generated based on the length N.
上文描述的传输上行控制信息的方法、用户设备和接入网设备将单RB的PF3扩展到多RB的PF3,从而增大了PF3支持的比特容量,但本发明实施例并不仅限于此,还可以调整扩频码的码长,以增加一个时隙中进行扩频操作的调制符号的组数,从而达到增大PF3支持的比特容量的目的,具体论述如下。The method for transmitting uplink control information, the user equipment, and the access network device described above extend the PF3 of the single RB to the PF3 of the multiple RBs, thereby increasing the bit capacity supported by the PF3, but the embodiment of the present invention is not limited thereto. The code length of the spreading code can also be adjusted to increase the number of modulation symbols in the spreading operation in one slot, thereby achieving the purpose of increasing the bit capacity supported by the PF3, which is specifically discussed below.
现有技术中,在上行子帧的一个时隙中,扩频操作前得到的是一组调制符号,这样在一个时隙中的扩频操作只针对这一组调制符号进行,比如用扩频码长为5的正交码序列进行扩频(采用其他大于1的整数码长的正交码序列进行扩频也不排除),将上述一组调制符号生成5组扩频后的调制符号。本发明实施例的循环移位值的设计方法还可以扩展支持一个时隙中对多组调制符号分别扩频的操作,这样可以进一步增加单RB或多RB的PF3的比特容量,且类似的循环移位值的确定方法仍然可以支持不同K值的PF3之间的时频资源重叠但通过时域扩频码来保持正交性。下面结合图11进行详细的描述。In the prior art, in one slot of an uplink subframe, a set of modulation symbols is obtained before the spreading operation, so that the spreading operation in one slot is performed only for the group of modulation symbols, for example, using spread spectrum. The orthogonal code sequence having a code length of 5 is spread (not spread by using other orthogonal code sequences of an integer length greater than 1), and the set of modulation symbols is generated into five sets of spread modulated symbols. The design method of the cyclic shift value in the embodiment of the present invention may further extend the operation of separately spreading the multiple sets of modulation symbols in one slot, so that the bit capacity of the PF3 of the single RB or the multiple RBs may be further increased, and the similar loop The method of determining the shift value can still support time-frequency resource overlap between PF3s of different K values but maintain orthogonality by time domain spreading codes. A detailed description will be made below with reference to FIG.
图11是本发明实施例的传输上行控制信息的方法的示意性流程图。图11的方法包括:FIG. 11 is a schematic flowchart of a method for transmitting uplink control information according to an embodiment of the present invention. The method of Figure 11 includes:
1110、用户设备生成承载有上行控制信息的调制符号组Y11,Y12,Y21和Y22,其中所述调制符号组Y11,Y12,Y21和Y22均包括K×N个调制符号,K为在一 个时隙内用于承载该上行控制信息的RB的个数,K为大于1的正整数,N为1个资源块RB中所包含的子载波的数量;1110. The user equipment generates modulation symbol groups Y 11 , Y 12 , Y 21 , and Y 22 carrying uplink control information, where the modulation symbol groups Y 11 , Y 12 , Y 21 , and Y 22 each include K×N modulations. a symbol, K is the number of RBs used to carry the uplink control information in one slot, K is a positive integer greater than 1, and N is the number of subcarriers included in one resource block RB;
1120、所述用户设备使用码长为L11,L12,L21和L22的扩频码分别对所述调制符号组Y11,Y12,Y21和Y22进行扩频,得到L11,L12,L21和L22组调制符号;1120. The user equipment performs spreading on the modulation symbol groups Y 11 , Y 12 , Y 21 , and Y 22 by using spreading codes of code lengths L 11 , L 12 , L 21 , and L 22 respectively to obtain L 11 . , L 12 , L 21 and L 22 sets of modulation symbols;
1130、所述用户设备分别对所述L11组调制符号中的每一组调制符号进行循环移位,得到移位后的L11组调制符号,分别对所述L12组调制符号中的每一组调制符号进行循环移位,得到移位后的L12调制符号,分别对所述L21组调制符号中的每一组调制符号进行循环移位,得到移位后的L21组调制符号,分别对所述L22组调制符号中的每一组调制符号进行循环移位,得到移位后的L22组调制符号,其中所述L11组调制符号中的第i组调制符号在循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000079
所述L12组调制符号中的第j组调制符号在循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000080
所述L21组调制符号中的第s组调制符号在循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000081
所述L22组调制符号中的第t组调制符号在循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000082
1≤i≤L11,1≤j≤L12,1≤s≤L21,1≤t≤L22
Figure PCTCN2015073063-appb-000083
Figure PCTCN2015073063-appb-000084
均表示当前小区的小区特定的基本循环移位值;
1130, respectively, the user equipment the set of modulation symbols for each set of modulation symbols L 11 performs cyclic shift set of modulation symbols to obtain L 11 after the shifting, respectively, each pair of L 12 in the set of modulation symbols A set of modulation symbols are cyclically shifted to obtain a shifted L 12 modulation symbol, and each of the L 21 sets of modulation symbols is cyclically shifted to obtain a shifted L 21 set of modulation symbols. And cyclically shifting each of the L 22 sets of modulation symbols to obtain a shifted L 22 set of modulation symbols, wherein the ith set of modulation symbols in the L 11 sets of modulation symbols are in a loop The cyclic shift value used when shifting
Figure PCTCN2015073063-appb-000079
The cyclic shift value used by the jth group modulation symbol in the L 12 group modulation symbols when cyclically shifting
Figure PCTCN2015073063-appb-000080
The cyclic shift value used when the s group modulation symbol of the L 21 group modulation symbols is cyclically shifted
Figure PCTCN2015073063-appb-000081
The cyclic shift value used by the t-th modulation symbol in the L 22 group modulation symbols when cyclically shifting
Figure PCTCN2015073063-appb-000082
1 ≤ i ≤ L 11 , 1 ≤ j ≤ L 12 , 1 ≤ s ≤ L 21 , 1 ≤ t ≤ L 22 ;
Figure PCTCN2015073063-appb-000083
with
Figure PCTCN2015073063-appb-000084
Each represents a cell-specific basic cyclic shift value of the current cell;
1140、所述用户设备通过上行子帧的第一时隙内的K个RB和第二时隙内的K个RB,向接入网设备传输承载于所述移位后的L11和L12组调制符号,以及L21和L22组调制符号中的上行控制信息。1140. The user equipment transmits the shifted L 11 and L 12 to the access network device by using the K RBs in the first time slot of the uplink subframe and the K RBs in the second time slot. The set of modulation symbols, and the uplink control information in the L 21 and L 22 sets of modulation symbols.
本发明实施例中,通过在上行子帧的一个时隙中进行多次扩频操作,扩充了现有的PF3所能支持的最大比特容量,提高了时频资源的利用率。In the embodiment of the present invention, by performing a plurality of spreading operations in one time slot of the uplink subframe, the maximum bit capacity that the existing PF3 can support is expanded, and the utilization of the time-frequency resource is improved.
可选地,步骤1140可包括:所述用户设备分别对所述移位后的L11,L12,L21和L22组调制符号中的每一组调制符号进行DFT,得到DFT后的L11,L12,L21和L22组调制符号;所述用户设备将所述DFT后的L11和L12组调制符号中的每一组调制符号分别映射至所述第一时隙中的L11+L12个时域符号上,且映射后的L11+L12组调制符号占所述第一时隙内的K个RB;所述用户设备将所述DFT后的L21和L22组调制符号中的每一组调制符号分别映射至所述第二时隙中的L21+L22个时域符号上,且映射后的L21+L22组调制符号占所述第二时隙内的K个RB;所述用户设备分别对所述映射后的L11,L12,L21和L22组调制符号进行IFFT,得到IFFT后的L11,L12,L21和L22组调制符号;所述用户设备分别通过所述第一时隙和所述第二时隙,向所述接入网设备传输所述IFFT 后的L11和L12组调制符号,以及L21和L22组调制符号,以便向所述接入网设备传输所述上行控制信息。Optionally, the step 1140 may include: the user equipment performs DFT on each of the shifted L 11 , L 12 , L 21 , and L 22 sets of modulation symbols to obtain an L after the DFT. 11 , L 12 , L 21 and L 22 sets of modulation symbols; the user equipment maps each of the L 11 and L 12 sets of modulation symbols after the DFT to the first time slot respectively L 11 + L 12 time domain symbols, and the mapped L 11 + L 12 sets of modulation symbols occupy K RBs in the first time slot; the user equipment will L 21 and L after the DFT Each of the 22 sets of modulation symbols is mapped to L 21 + L 22 time domain symbols in the second time slot, respectively, and the mapped L 21 + L 22 sets of modulation symbols occupy the second K RBs in a time slot; the user equipment performs IFFT on the mapped L 11 , L 12 , L 21 and L 22 modulation symbols respectively, and obtains L 11 , L 12 , L 21 and L after IFFT 22 set of modulation symbols; the user equipment through respectively said first slot and said second slot, then L 11 and L 12 set of modulation symbols for transmitting the IFFT to the network device, L 21 and L 22 and a set of modulation symbols for the uplink transmission control information to the access network device.
此外,得到调制符号之前的编码和速率匹配等方法,以及不同K值的PF3的时频资源重叠,DMRS生成,基于第一子集的PF3回退等方法,均与前述实施例类似,在此不再赘述。In addition, methods such as encoding and rate matching before obtaining modulation symbols, and time-frequency resource overlap of PF3 with different K values, DMRS generation, and PF3 back-off based on the first subset are similar to the foregoing embodiments. No longer.
下面结合图12对一个时隙进行多组扩频的方式进行举例说明,应理解,图12的例子仅仅是为了帮助本领域技术人员理解本发明实施例,而非要将本发明实施例限于所例示的具体数值或具体场景。本领域技术人员根据所给出的图12的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本发明实施例的范围内。The following is a description of the manner in which a plurality of sets of frequency-spreading are performed on a time slot in conjunction with FIG. 12, and it should be understood that the example of FIG. 12 is merely for helping those skilled in the art to understand the embodiment of the present invention, and is not intended to limit the embodiments of the present invention. The specific numerical values or specific scenarios illustrated. A person skilled in the art will be able to make various modifications and changes in accordance with the example of FIG. 12, and such modifications or variations are also within the scope of the embodiments of the present invention.
图12中,假设N=4,K=2,L11=L12=2,且只选取一个时隙中的PF3的信号生成方式进行说明,另一个时隙的PF3信号生成方式是类似的。假设UE1使用的是图12中的单RB的PF3,UE2使用的是图7中的双RB的PF3,PF3的生成过程可以为:UE1经过信道编码,速率匹配之后得到的将要映射到一个时隙中的两组原始调制符号为{a11,a21,a31,a41}和{a12,a22,a32,a42},然后对这两组原始调制符号经过两组正交码{1,1}和{1,-1}的扩频,再经过每时域符号的循环移位{0,1,2,3};UE2经过信道编码,速率匹配之后得到的将要映射到一个时隙中的两组原始调制符号为{b11,b21,b31,b41,b51,b61,b71,b81}和{b12,b22,b32,b42,b52,b62,b72,b82},然后经过两组正交码{1,-1}和{1,1}的扩频,再经过每时域符号的循环移位{0,2,4,6}。之后,UE1和UE2分别进行长度4和8的DFT。再然后,进行IFFT并发送。基站端根据上述逆过程来接收UE1和UE2的UCI。In Fig. 12, it is assumed that N=4, K=2, L11=L12=2, and only the signal generation mode of PF3 in one slot is selected, and the PF3 signal generation manner of the other slot is similar. It is assumed that the UE1 uses the PF3 of the single RB in FIG. 12, and the UE2 uses the PF3 of the dual RB in FIG. 7. The PF3 generation process may be: UE1 is subjected to channel coding, and the rate matching is obtained after mapping to a time slot. The two sets of original modulation symbols are {a11, a21, a31, a41} and {a12, a22, a32, a42}, and then the two sets of original modulation symbols pass through two sets of orthogonal codes {1, 1} and {1 , -1} spread spectrum, then cyclic shift per time domain symbol {0,1,2,3}; UE2 is channel coded, the two sets of original modulation obtained after rate matching will be mapped into one time slot The symbols are {b11, b21, b31, b41, b51, b61, b71, b81} and {b12, b22, b32, b42, b52, b62, b72, b82}, and then pass through two sets of orthogonal codes {1, -1 The spreading of } and {1,1} is followed by a cyclic shift of {0, 2, 4, 6} per time domain symbol. Thereafter, UE1 and UE2 perform DFTs of lengths 4 and 8, respectively. Then, IFFT is performed and sent. The base station receives the UCI of UE1 and UE2 according to the inverse process described above.
可以看到,上述每个时隙中可以传送两组原始的调制符号,因此相比于每个时隙只传输一组原始调制符号的情况,进一步提高了PF3的比特容量,且通过与上述实施例类似的循环移位值的设计可以实现单RB和多RB的PF3在时频资源重叠的情况下依然可以保证两者的正交性。It can be seen that two sets of original modulation symbols can be transmitted in each of the above time slots, so that only one original modulation symbol is transmitted compared to each time slot, the bit capacity of PF3 is further improved, and the implementation is implemented by the above. For example, the design of the cyclic shift value can realize that the single-RB and multi-RB PF3 can still guarantee the orthogonality of the two in the case of overlapping time-frequency resources.
上文中结合图11,从用户设备的角度详细描述了根据本发明实施例的传输上行控制信息的方法,下面将结合图13,从接入网设备的角度描述根据本发明实施例的传输上行控制信息的方法。With reference to FIG. 11, a method for transmitting uplink control information according to an embodiment of the present invention is described in detail from the perspective of a user equipment. Referring to FIG. 13, a transmission uplink control according to an embodiment of the present invention will be described from the perspective of an access network device. The method of information.
应理解,接入网设备侧描述的UE与接入网设备的交互及相关特性、功能等与UE侧的描述相应,为了简洁,适当省略重复的描述。 It should be understood that the interaction between the UE and the access network device described in the access network device side and related features, functions, and the like correspond to the descriptions on the UE side. For the sake of brevity, duplicate descriptions are omitted as appropriate.
图13是本发明实施例的传输上行控制信息的方法的示意性流程图。图13的方法包括:FIG. 13 is a schematic flowchart of a method for transmitting uplink control information according to an embodiment of the present invention. The method of Figure 13 includes:
1310、接入网设备从上行子帧的第一时隙内的K个资源块RB中的L11和L12个时域符号上分别获取L11组调制符号和L12组调制符号,其中每组调制符号包括K×N个调制符号,K为在一个时隙内用于承载用户设备的上行控制信息的资源块RB的个数,K为大于1的正整数,N为1个RB中所包含的子载波的数量;接入网设备从上行子帧的第二时隙内的K个RB中的L21和L22个时域符号上分别获取L21组调制符号和L22组调制符号,其中每组调制符号包括K×N个调制符号;1310. The access network device acquires L 11 sets of modulation symbols and L 12 sets of modulation symbols from L 11 and L 12 time domain symbols in K resource blocks RB in the first time slot of the uplink subframe, where each The group modulation symbol includes K×N modulation symbols, K is the number of resource blocks RB for carrying uplink control information of the user equipment in one slot, K is a positive integer greater than 1, and N is one RB. the number of subcarriers comprising; obtaining a set of modulation symbols L 21 and L 22 is the set of modulation symbols L 21 and L 22 symbols of the K time-domain RB in the second time slot access network device from the uplink sub-frame, respectively, in Where each set of modulation symbols comprises K x N modulation symbols;
1320、所述接入网设备分别对所述L11组调制符号中的每一组调制符号进行IDFT,得到IDFT后的L11组调制符号,并分别对L12组调制符号中的每一组调制符号进行IDFT,得到IDFT后的L12组调制符号;所述接入网设备分别对所述L21组调制符号中的每一组调制符号进行IDFT,得到IDFT后的L21组调制符号,并分别对所述L22组调制符号中的每一组调制符号进行IDFT,得到IDFT后的L22组调制符号;1320, respectively, the access network device of the set of modulation symbols for each set of modulation symbols L 11 performs the IDFT, L 11 obtained after the IDFT set of modulation symbols, respectively, and each group of L 12 in the set of modulation symbols The modulation symbols are IDFT, and the L 12 sets of modulation symbols after IDFT are obtained; the access network device respectively performs IDFT on each of the L 21 sets of modulation symbols to obtain L 21 sets of modulation symbols after IDFT, And performing IDFT on each of the L 22 sets of modulation symbols, to obtain L 22 sets of modulation symbols after IDFT;
1330、所述接入网设备分别对所述IDFT后的L11组调制符号中的每一组调制符号进行逆循环移位,得到逆循环移位后的L11组调制符号,分别对所述IDFT后的L12组调制符号中的每一组调制符号进行逆循环移位,得到逆循环移位后的L12组调制符号,分别对所述IDFT后的L21组调制符号中的每一组调制符号进行逆循环移位,得到逆循环移位后的L21组调制符号,分别对所述IDFT后的L22组调制符号中的每一组调制符号进行逆循环移位,得到逆循环移位后的L22组调制符号,其中所述IDFT后的L11组调制符号中的第i组调制符号在逆循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000085
所述IDFT后的L12组调制符号中的第j组调制符号在逆循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000086
所述IDFT后的L21组调制符号中的第j组调制符号在逆循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000087
所述IDFT后的L22组调制符号中的第j组调制符号在逆循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000088
1≤i≤L11,1≤j≤L12,1≤s≤L21,1≤t≤L22
Figure PCTCN2015073063-appb-000089
Figure PCTCN2015073063-appb-000090
均表示当前小区的小区特定的基本循环移位值;
1330, respectively, the access network device for each set of modulation symbols L 11 set of modulation symbols after the IDFT in the inverse cyclic shift set of modulation symbols to obtain L 11 after the reverse cyclic shift, on each of the Each group of modulation symbols in the L 12 group modulation symbols after IDFT is inversely cyclically shifted to obtain L 12 sets of modulation symbols after inverse cyclic shift, respectively, for each of the L 21 sets of modulation symbols after the IDFT The group modulation symbols are inversely cyclically shifted, and the L 21 sets of modulation symbols after the inverse cyclic shift are obtained, and each set of modulation symbols in the L 22 sets of modulation symbols after the IDFT are respectively inversely cyclically shifted to obtain a reverse cycle. a shifted L 22 set of modulation symbols, wherein a cyclic shift value used by the i-th set of modulation symbols in the L 11 set of modulation symbols after the IDFT is reversed cyclically shifted
Figure PCTCN2015073063-appb-000085
The cyclic shift value used by the jth group modulation symbol in the L 12 group modulation symbols after the IDFT in the inverse cyclic shift
Figure PCTCN2015073063-appb-000086
The cyclic shift value used by the jth group modulation symbol in the L 21 group modulation symbols after the IDFT in the inverse cyclic shift
Figure PCTCN2015073063-appb-000087
The cyclic shift value used in the inverse cyclic shift of the j-th modulation symbol in the L 22 group modulation symbols after the IDFT
Figure PCTCN2015073063-appb-000088
1 ≤ i ≤ L 11 , 1 ≤ j ≤ L 12 , 1 ≤ s ≤ L 21 , 1 ≤ t ≤ L 22 ;
Figure PCTCN2015073063-appb-000089
with
Figure PCTCN2015073063-appb-000090
Each represents a cell-specific basic cyclic shift value of the current cell;
1340、所述接入网设备使用码长为L11,L12,L21和L22的扩频码分别对逆循环移位后的L11,L12,L21和L22组调制符号进行解扩,得到调制符号组Y11,Y12,Y21和Y22,其中所述调制符号组Y11,Y12,Y21和Y22均包括K×N个调制符 号;1340. The access network device uses the spreading codes of L 11 , L 12 , L 21 , and L 22 respectively to perform L 11 , L 12 , L 21 , and L 22 modulation symbols after inverse cyclic shifting, respectively. Despreading, obtaining modulation symbol groups Y 11 , Y 12 , Y 21 and Y 22 , wherein the modulation symbol groups Y 11 , Y 12 , Y 21 and Y 22 each comprise K×N modulation symbols;
1350、所述接入网设备获取承载于所述调制符号组Y11,Y12,Y21和Y22中的该上行控制信息。1350. The access network device acquires the uplink control information carried in the modulation symbol groups Y 11 , Y 12 , Y 21 , and Y 22 .
可选地,在步骤1310之前,图13的方法还可包括:所述接入网设备对上行子帧中接收到的信号进行FFT操作,得到上行子帧中的第一时隙中的K个RB中的L11和L12个时域符号上的L11和L12组调制符号;所述接入网设备对上行子帧中接收到的信号进行FFT操作,得到上行子帧中的第二时隙中的K个RB中的L21和L22个时域符号上的L21和L22组调制符号。Optionally, before the step 1310, the method of FIG. 13 may further include: the access network device performs an FFT operation on the received signal in the uplink subframe, to obtain K in the first time slot in the uplink subframe. L 11 and L 12 L 11 and L 12 th set of modulation symbols in the time domain symbols in RB; access network apparatus of the uplink sub-frame of the received signal subjected to FFT operation, to obtain a second uplink subframe L 21 and L L 21 and L 22 set of modulation symbols on a symbol of the slot 22 in the time-domain RB in the K.
可选地,步骤1350可包括:所述接入网设备分别对所述调制符号组Y11,Y12,Y21和Y22进行解调,得到解调后的编码比特流;所述接入网设备对所述编码比特流进行译码,得到所述上行控制信息。Optionally, the step 1350 may include: the access network device demodulating the modulation symbol groups Y 11 , Y 12 , Y 21 and Y 22 respectively to obtain a demodulated encoded bit stream; The network device decodes the encoded bit stream to obtain the uplink control information.
此外,不同K值的PF3的时频资源重叠,使用DMRS进行信道估计和解调,基于第一子集的PF3回退等方法,均与前述实施例类似,在此不再赘述。In addition, the time-frequency resources of the PFs of different K values are overlapped, the channel estimation and demodulation are performed using the DMRS, and the PF3 back-off based on the first subset is similar to the foregoing embodiment, and details are not described herein again.
可以看到,上述每个时隙中可以传送两组原始的调制符号,因此相比于每个时隙只传输一组原始调制符号的情况,进一步提高了PF3的比特容量,且通过与上述实施例类似的循环移位值的设计可以实现单RB和多RB的PF3在时频资源重叠的情况下依然可以保证两者的正交性。It can be seen that two sets of original modulation symbols can be transmitted in each of the above time slots, so that only one original modulation symbol is transmitted compared to each time slot, the bit capacity of PF3 is further improved, and the implementation is implemented by the above. For example, the design of the cyclic shift value can realize that the single-RB and multi-RB PF3 can still guarantee the orthogonality of the two in the case of overlapping time-frequency resources.
上文结合图11和图13,详细描述了根据本发明实施例的传输上行控制信息的方法,下文结合图14至17,详细描述根据本发明实施例的用户设备和接入网设备。应理解,图14和图16中的用户设备能够实现图11中由用户设备执行的各个步骤,图15和图17能够实现图13中由接入网设备执行的各个步骤,为避免重复,不再详述。A method for transmitting uplink control information according to an embodiment of the present invention is described in detail above with reference to FIG. 11 and FIG. 13, and a user equipment and an access network device according to an embodiment of the present invention are described in detail below with reference to FIGS. 14 through 17. It should be understood that the user equipments in FIG. 14 and FIG. 16 can implement the various steps performed by the user equipment in FIG. 11, and FIG. 15 and FIG. 17 can implement the steps performed by the access network device in FIG. More details.
图14是本发明实施例的用户设备的示意性框图。图14的用户设备1400包括:FIG. 14 is a schematic block diagram of a user equipment according to an embodiment of the present invention. The user equipment 1400 of Figure 14 includes:
生成单元1410,用于生成承载有上行控制信息的调制符号组Y11,Y12,Y21和Y22,其中所述调制符号组Y11,Y12,Y21和Y22均包括K×N个调制符号,K为在一个时隙内用于承载该上行控制信息的RB的个数,K为大于1的正整数,N为1个资源块RB中所包含的子载波的数量;The generating unit 1410 is configured to generate modulation symbol groups Y 11 , Y 12 , Y 21 and Y 22 carrying uplink control information, where the modulation symbol groups Y 11 , Y 12 , Y 21 and Y 22 each include K×N a modulation symbol, K is the number of RBs used to carry the uplink control information in one slot, K is a positive integer greater than 1, and N is the number of subcarriers included in one resource block RB;
扩频单元1420,用于使用码长为L11,L12,L21和L22的扩频码分别对所述调制符号组Y11,Y12,Y21和Y22分别进行扩频,得到L11,L12,L21和L22组调制符 号;The spreading unit 1420 is configured to separately spread the modulation symbol groups Y 11 , Y 12 , Y 21 and Y 22 by using spreading codes of code lengths L 11 , L 12 , L 21 and L 22 respectively L 11 , L 12 , L 21 and L 22 group modulation symbols;
循环移位单元1430,用于分别对所述L11组调制符号中的每一组调制符号进行循环移位,得到移位后的L11组调制符号,分别对所述L12组调制符号中的每一组调制符号进行循环移位,得到移位后的L12调制符号,分别对所述L21组调制符号中的每一组调制符号进行循环移位,得到移位后的L21组调制符号,分别对所述L22组调制符号中的每一组调制符号进行循环移位,得到移位后的L22组调制符号,其中所述L11组调制符号中的第i组调制符号在循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000091
所述L12组调制符号中的第j组调制符号在循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000092
所述L21组调制符号中的第s组调制符号在循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000093
所述L22组调制符号中的第t组调制符号在循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000094
1≤i≤L11,1≤j≤L12,1≤s≤L21,1≤t≤L22
Figure PCTCN2015073063-appb-000095
Figure PCTCN2015073063-appb-000096
均表示当前小区的小区特定的基本循环移位值;
The cyclic shift unit 1430 is configured to cyclically shift each of the L 11 sets of modulation symbols to obtain the shifted L 11 sets of modulation symbols, respectively, for the L 12 sets of modulation symbols Each set of modulation symbols is cyclically shifted to obtain a shifted L 12 modulation symbol, and each of the L 21 sets of modulation symbols is cyclically shifted to obtain a shifted L 21 group. a modulation symbol, wherein each of the L 22 sets of modulation symbols is cyclically shifted to obtain a shifted L 22 set of modulation symbols, wherein the ith set of modulation symbols in the L 11 sets of modulation symbols The cyclic shift value used when cyclically shifting
Figure PCTCN2015073063-appb-000091
The cyclic shift value used by the jth group modulation symbol in the L 12 group modulation symbols when cyclically shifting
Figure PCTCN2015073063-appb-000092
The cyclic shift value used when the s group modulation symbol of the L 21 group modulation symbols is cyclically shifted
Figure PCTCN2015073063-appb-000093
The cyclic shift value used by the t-th modulation symbol in the L 22 group modulation symbols when cyclically shifting
Figure PCTCN2015073063-appb-000094
1 ≤ i ≤ L 11 , 1 ≤ j ≤ L 12 , 1 ≤ s ≤ L 21 , 1 ≤ t ≤ L 22 ;
Figure PCTCN2015073063-appb-000095
with
Figure PCTCN2015073063-appb-000096
Each represents a cell-specific basic cyclic shift value of the current cell;
发送单元1440,用于通过上行子帧的第一时隙内的K个RB和第二时隙内的K个RB,向接入网设备传输承载于所述移位后的L11和L12组调制符号,以及L21和L22组调制符号中的上行控制信息。The sending unit 1440 is configured to transmit, by the K RBs in the first time slot of the uplink subframe and the K RBs in the second time slot, to the access network device by using the shifted L 11 and L 12 The set of modulation symbols, and the uplink control information in the L 21 and L 22 sets of modulation symbols.
本发明实施例中,通过在上行子帧的一个时隙中进行多次扩频操作,扩充了现有的PF3所能支持的最大比特容量,提高了时频资源的利用率。In the embodiment of the present invention, by performing a plurality of spreading operations in one time slot of the uplink subframe, the maximum bit capacity that the existing PF3 can support is expanded, and the utilization of the time-frequency resource is improved.
可选地,所述发送单元1440具体用于分别对所述移位后的L11,L12,L21和L22组调制符号中的每一组调制符号进行DFT,得到DFT后的L11,L12,L21和L22组调制符号;将所述DFT后的L11和L12组调制符号中的每一组调制符号分别映射至所述第一时隙中的L11+L12个时域符号上,且映射后的L11+L12组调制符号占所述第一时隙内的K个RB;将所述DFT后的L21和L22组调制符号中的每一组调制符号分别映射至所述第二时隙中的L21+L22个时域符号上,且映射后的L21+L22组调制符号占所述第二时隙内的K个RB;分别对所述映射后的L11,L12,L21和L22组调制符号进行IFFT,得到IFFT后的L11,L12,L21和L22组调制符号;分别通过所述第一时隙和所述第二时隙,向所述接入网设备传输所述IFFT后的L11和L12组调制符号,以及L21和L22组调制符号,以便向所述接入网设备传输所述上行控制信息。Optionally, the sending unit 1440 is specifically configured to perform DFT on each of the grouped modulation symbols in the shifted L 11 , L 12 , L 21 , and L 22 sets to obtain L 11 after DFT. , L 12 , L 21 and L 22 sets of modulation symbols; respectively mapping each of the L 11 and L 12 sets of modulation symbols after the DFT to L 11 +L 12 in the first time slot On the time domain symbols, and the mapped L 11 + L 12 sets of modulation symbols occupy K RBs in the first time slot; each of the L 21 and L 22 sets of modulation symbols after the DFT The modulation symbols are respectively mapped to L 21 + L 22 time domain symbols in the second time slot, and the mapped L 21 + L 22 group modulation symbols occupy K RBs in the second time slot; respectively of L 11 after the mapping, L 12, L 21 and L 22 set of modulation symbols IFFT, L 11, L 12, L 21 and L 22 to obtain the set of modulation symbols after the IFFT; respectively said first slot and said second slot, L 11 and L 12 to the set of modulation symbols after the transmission of the access network device the IFFT, L 21 and L 22 and the set of modulation symbols, in order to access the network device to transmit the Said Line control information.
图15是本发明实施例的接入网设备的示意性框图。图15的接入网设备1500包括: FIG. 15 is a schematic block diagram of an access network device according to an embodiment of the present invention. The access network device 1500 of Figure 15 includes:
第一获取单元1510,用于从上行子帧的第一时隙内的K个资源块RB中的L11和L12个时域符号上分别获取L11组调制符号和L12组调制符号,其中每组调制符号包括K×N个调制符号,K为在一个时隙内用于承载用户设备的上行控制信息的资源块RB的个数,K为大于1的正整数,N为1个RB中所包含的子载波的数量,并从上行子帧的第二时隙内的K个RB中的L21和L22个时域符号上分别获取L21组调制符号和L22组调制符号,其中每组调制符号包括K×N个调制符号;The first obtaining unit 1510 is configured to obtain L 11 sets of modulation symbols and L 12 sets of modulation symbols from L 11 and L 12 time domain symbols in the K resource blocks RB in the first time slot of the uplink subframe, respectively. Each group of modulation symbols includes K×N modulation symbols, where K is the number of resource blocks RB used to carry uplink control information of the user equipment in one slot, K is a positive integer greater than 1, and N is 1 RB. the number of subcarriers contained in and obtained from the L 21 and L 22 symbols of the K time-domain RB in the second time slot in the uplink subframe set of modulation symbols, respectively, L 21 and L 22 set of modulation symbols, Wherein each group of modulation symbols comprises K×N modulation symbols;
变换单元1520,用于分别对所述L11组调制符号中的每一组调制符号进行IDFT,得到IDFT后的L11组调制符号,并分别对L12组调制符号中的每一组调制符号进行IDFT,得到IDFT后的L12组调制符号;并分别对所述L21组调制符号中的每一组调制符号进行IDFT,得到IDFT后的L21组调制符号,并分别对所述L22组调制符号中的每一组调制符号进行IDFT,得到IDFT后的L22组调制符号;The transform unit 1520 is configured to perform IDFT on each of the L 11 sets of modulation symbols, to obtain L 11 sets of modulation symbols after the IDFT, and respectively perform modulation signals for each of the L 12 sets of modulation symbols. perform IDFT, obtain a set of modulation symbols L 12 of the IDFT; and each set of modulation symbols for each of the set of modulation symbols L 21 performs IDFT, obtain a set of modulation symbols L 21 after IDFT, and each of said L 22 Each group of modulation symbols in the group modulation symbol is IDFT, and the L 22 group modulation symbols after IDFT are obtained;
逆循环移位单元1530,用于分别对所述IDFT后的L11组调制符号中的每一组调制符号进行逆循环移位,得到逆循环移位后的L11组调制符号,分别对所述IDFT后的L12组调制符号中的每一组调制符号进行逆循环移位,得到逆循环移位后的L12组调制符号,分别对所述IDFT后的L21组调制符号中的每一组调制符号进行逆循环移位,得到逆循环移位后的L21组调制符号,分别对所述IDFT后的L22组调制符号中的每一组调制符号进行逆循环移位,得到逆循环移位后的L22组调制符号,其中所述IDFT后的L11组调制符号中的第i组调制符号在逆循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000097
所述IDFT后的L12组调制符号中的第j组调制符号在逆循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000098
所述IDFT后的L21组调制符号中的第j组调制符号在逆循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000099
所述IDFT后的L22组调制符号中的第j组调制符号在逆循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000100
1≤i≤L11,1≤j≤L12,1≤s≤L21,1≤t≤L22
Figure PCTCN2015073063-appb-000101
Figure PCTCN2015073063-appb-000102
均表示当前小区的小区特定的基本循环移位值;
The inverse cyclic shifting unit 1530 is configured to perform inverse cyclic shift on each of the L 11 sets of modulation symbols after the IDFT, to obtain L 11 sets of modulation symbols after inverse cyclic shift, respectively Each set of modulation symbols in the L 12 sets of modulation symbols after the IDFT is subjected to inverse cyclic shift, and the L 12 sets of modulation symbols after the inverse cyclic shift are obtained, and each of the L 21 sets of modulation symbols after the IDFT is respectively A set of modulation symbols are inversely cyclically shifted, and L 21 sets of modulation symbols after inverse cyclic shift are obtained, and each set of modulation symbols in the L 22 sets of modulation symbols after the IDFT are respectively inversely cyclically shifted to obtain an inverse a cyclically shifted L 22 set of modulation symbols, wherein the cyclic shift value used by the i-th set of modulation symbols in the L 11 sets of modulation symbols after the IDFT is inversely cyclically shifted
Figure PCTCN2015073063-appb-000097
The cyclic shift value used by the jth group modulation symbol in the L 12 group modulation symbols after the IDFT in the inverse cyclic shift
Figure PCTCN2015073063-appb-000098
The cyclic shift value used by the jth group modulation symbol in the L 21 group modulation symbols after the IDFT in the inverse cyclic shift
Figure PCTCN2015073063-appb-000099
The cyclic shift value used in the inverse cyclic shift of the j-th modulation symbol in the L 22 group modulation symbols after the IDFT
Figure PCTCN2015073063-appb-000100
1 ≤ i ≤ L 11 , 1 ≤ j ≤ L 12 , 1 ≤ s ≤ L 21 , 1 ≤ t ≤ L 22 ;
Figure PCTCN2015073063-appb-000101
with
Figure PCTCN2015073063-appb-000102
Each represents a cell-specific basic cyclic shift value of the current cell;
解扩单元1540,用于使用码长为L11,L12,L21和L22的扩频码分别对逆循环移位后的L11,L12,L21和L22组调制符号进行解扩,得到调制符号组Y11,Y12,Y21和Y22,其中所述调制符号组Y11,Y12,Y21和Y22均包括K×N个调制符号;Despreading unit 1540, configured to solve the L 11 , L 12 , L 21 , and L 22 sets of modulation symbols after inverse cyclic shift, respectively, using spreading codes having code lengths of L 11 , L 12 , L 21 , and L 22 Dividing, obtaining modulation symbol groups Y 11 , Y 12 , Y 21 and Y 22 , wherein the modulation symbol groups Y 11 , Y 12 , Y 21 and Y 22 each comprise K×N modulation symbols;
第二获取单元1550,用于获取承载于所述调制符号组Y11,Y12,Y21和Y22中的该上行控制信息。 The second obtaining unit 1550 is configured to acquire the uplink control information that is carried in the modulation symbol groups Y 11 , Y 12 , Y 21 , and Y 22 .
可选地,所述变换单元1520还用于对上行子帧中接收到的信号进行FFT操作,得到上行子帧中的第一时隙中的K个RB中的L11和L12个时域符号上的L11和L12组调制符号;所述接入网设备对上行子帧中接收到的信号进行FFT操作,得到上行子帧中的第二时隙中的K个RB中的L21和L22个时域符号上的L21和L22组调制符号。Optionally, the transforming unit 1520 is further configured to perform an FFT operation on the received signal in the uplink subframe to obtain L 11 and L 12 time domains in the K RBs in the first time slot in the uplink subframe. L 11 and L 12 sets of modulation symbols on the symbol; the access network device performs an FFT operation on the received signal in the uplink subframe to obtain L 21 of the K RBs in the second slot in the uplink subframe And L 21 and L 22 sets of modulation symbols on the 22 time domain symbols.
可选地,所述第二获取单元1550具体用于分别对所述调制符号组Y11,Y12,Y21和Y22进行解调,得到解调后的编码比特流;对所述编码比特流进行译码,得到所述上行控制信息。Optionally, the second obtaining unit 1550 is specifically configured to separately demodulate the modulation symbol groups Y 11 , Y 12 , Y 21 , and Y 22 to obtain a demodulated encoded bit stream; The stream is decoded to obtain the uplink control information.
图16是本发明实施例的用户设备的示意性框图。图16的用户设备1600包括:FIG. 16 is a schematic block diagram of a user equipment according to an embodiment of the present invention. The user equipment 1600 of Figure 16 includes:
处理器1610,用于生成承载有上行控制信息的调制符号组Y11,Y12,Y21和Y22,其中所述调制符号组Y11,Y12,Y21和Y22均包括K×N个调制符号,K为在一个时隙内用于承载该上行控制信息的RB的个数,K为大于1的正整数,N为1个资源块RB中所包含的子载波的数量;使用码长为L11,L12,L21和L22的扩频码分别对所述调制符号组Y11,Y12,Y21和Y22分别进行扩频,得到L11,L12,L21和L22组调制符号;分别对所述L11组调制符号中的每一组调制符号进行循环移位,得到移位后的L11组调制符号,分别对所述L12组调制符号中的每一组调制符号进行循环移位,得到移位后的L12调制符号,分别对所述L21组调制符号中的每一组调制符号进行循环移位,得到移位后的L21组调制符号,分别对所述L22组调制符号中的每一组调制符号进行循环移位,得到移位后的L22组调制符号,其中所述L11组调制符号中的第i组调制符号在循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000103
所述L12组调制符号中的第j组调制符号在循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000104
所述L21组调制符号中的第s组调制符号在循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000105
所述L22组调制符号中的第t组调制符号在循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000106
1≤i≤L11,1≤j≤L12,1≤s≤L21,1≤t≤L22
Figure PCTCN2015073063-appb-000107
Figure PCTCN2015073063-appb-000108
均表示当前小区的小区特定的基本循环移位值;
The processor 1610 is configured to generate modulation symbol groups Y 11 , Y 12 , Y 21 and Y 22 carrying uplink control information, where the modulation symbol groups Y 11 , Y 12 , Y 21 and Y 22 each include K×N Modulation symbol, K is the number of RBs used to carry the uplink control information in one slot, K is a positive integer greater than 1, and N is the number of subcarriers included in one resource block RB; Spreading codes of lengths L 11 , L 12 , L 21 and L 22 respectively spread the modulation symbol groups Y 11 , Y 12 , Y 21 and Y 22 to obtain L 11 , L 12 , L 21 and L 22 set of modulation symbols; each set of modulation symbols for each of the set of modulation symbols L 11 performs cyclic shift set of modulation symbols to obtain L 11 after the shifting, respectively, each pair of L 12 in the set of modulation symbols A set of modulation symbols are cyclically shifted to obtain a shifted L 12 modulation symbol, and each of the L 21 sets of modulation symbols is cyclically shifted to obtain a shifted L 21 set of modulation symbols. , respectively, for each set of modulation symbols for the set of modulation symbols L 22 is cyclically shifted, L 22 obtained after shifting ganged Symbol, where i-th cycle the set of modulation symbols L 11 in the set of modulation symbols used when the cyclic shift offset value
Figure PCTCN2015073063-appb-000103
The cyclic shift value used by the jth group modulation symbol in the L 12 group modulation symbols when cyclically shifting
Figure PCTCN2015073063-appb-000104
The cyclic shift value used when the s group modulation symbol of the L 21 group modulation symbols is cyclically shifted
Figure PCTCN2015073063-appb-000105
The cyclic shift value used by the t-th modulation symbol in the L 22 group modulation symbols when cyclically shifting
Figure PCTCN2015073063-appb-000106
1 ≤ i ≤ L 11 , 1 ≤ j ≤ L 12 , 1 ≤ s ≤ L 21 , 1 ≤ t ≤ L 22 ;
Figure PCTCN2015073063-appb-000107
with
Figure PCTCN2015073063-appb-000108
Each represents a cell-specific basic cyclic shift value of the current cell;
发送器1620,用于通过上行子帧的第一时隙内的K个RB和第二时隙内的K个RB,向接入网设备传输承载于所述移位后的L11和L12组调制符号,以及L21和L22组调制符号中的上行控制信息。The transmitter 1620 is configured to transmit, by the K RBs in the first time slot of the uplink subframe and the K RBs in the second time slot, the L 11 and the L 12 that are carried by the access network device. The set of modulation symbols, and the uplink control information in the L 21 and L 22 sets of modulation symbols.
本发明实施例中,通过在上行子帧的一个时隙中进行多次扩频操作,扩 充了现有的PF3所能支持的最大比特容量,提高了时频资源的利用率。In the embodiment of the present invention, by performing a plurality of spreading operations in one slot of the uplink subframe, the expansion It fills the maximum bit capacity that the existing PF3 can support, and improves the utilization of time-frequency resources.
可选地,所述处理器1610具体用于分别对所述移位后的L11,L12,L21和L22组调制符号中的每一组调制符号进行DFT,得到DFT后的L11,L12,L21和L22组调制符号;将所述DFT后的L11和L12组调制符号中的每一组调制符号分别映射至所述第一时隙中的L11+L12个时域符号上,且映射后的L11+L12组调制符号占所述第一时隙内的K个RB;将所述DFT后的L21和L22组调制符号中的每一组调制符号分别映射至所述第二时隙中的L21+L22个时域符号上,且映射后的L21+L22组调制符号占所述第二时隙内的K个RB;分别对所述映射后的L11,L12,L21和L22组调制符号进行IFFT,得到IFFT后的L11,L12,L21和L22组调制符号;分别通过所述第一时隙和所述第二时隙,向所述接入网设备传输所述IFFT后的L11和L12组调制符号,以及L21和L22组调制符号,以便向所述接入网设备传输所述上行控制信息。Optionally, the processor 1610 is specifically configured to perform DFT on each of the shifted L 11 , L 12 , L 21 , and L 22 modulation symbols to obtain L 11 after DFT. , L 12 , L 21 and L 22 sets of modulation symbols; respectively mapping each of the L 11 and L 12 sets of modulation symbols after the DFT to L 11 +L 12 in the first time slot On the time domain symbols, and the mapped L 11 + L 12 sets of modulation symbols occupy K RBs in the first time slot; each of the L 21 and L 22 sets of modulation symbols after the DFT The modulation symbols are respectively mapped to L 21 + L 22 time domain symbols in the second time slot, and the mapped L 21 + L 22 group modulation symbols occupy K RBs in the second time slot; respectively of L 11 after the mapping, L 12, L 21 and L 22 set of modulation symbols IFFT, L 11, L 12, L 21 and L 22 to obtain the set of modulation symbols after the IFFT; respectively said first slot and said second slot, L 11 and L 12 to the set of modulation symbols after the transmission of the access network device the IFFT, L 21 and L 22 and the set of modulation symbols, in order to access the network device to transmit the Upward Control information.
图17是本发明实施例的接入网设备的示意性框图。图17的接入网设备1700包括:FIG. 17 is a schematic block diagram of an access network device according to an embodiment of the present invention. The access network device 1700 of Figure 17 includes:
接收器1710,用于接收上行子帧中的信号;The receiver 1710 is configured to receive a signal in an uplink subframe.
处理器1720,用于从上行子帧的第一时隙内的K个资源块RB中的L11和L12个时域符号上分别获取L11组调制符号和L12组调制符号,其中每组调制符号包括K×N个调制符号,K为在一个时隙内用于承载用户设备的上行控制信息的资源块RB的个数,K为大于1的正整数,N为1个RB中所包含的子载波的数量,并从上行子帧的第二时隙内的K个RB中的L21和L22个时域符号上分别获取L21组调制符号和L22组调制符号,其中每组调制符号包括K×N个调制符号;分别对所述L11组调制符号中的每一组调制符号进行IDFT,得到IDFT后的L11组调制符号,并分别对L12组调制符号中的每一组调制符号进行IDFT,得到IDFT后的L12组调制符号;并分别对所述L21组调制符号中的每一组调制符号进行IDFT,得到IDFT后的L21组调制符号,并分别对所述L22组调制符号中的每一组调制符号进行IDFT,得到IDFT后的L22组调制符号;分别对所述IDFT后的L11组调制符号中的每一组调制符号进行逆循环移位,得到逆循环移位后的L11组调制符号,分别对所述IDFT后的L12组调制符号中的每一组调制符号进行逆循环移位,得到逆循环移位后的L12组调制符号,分别对所述IDFT后的L21组调制符号中的每一组调制符号进行逆循环移位,得到逆循环移位后的L21组调制符号,分别对所述IDFT后的L22组调制符 号中的每一组调制符号进行逆循环移位,得到逆循环移位后的L22组调制符号,其中所述IDFT后的L11组调制符号中的第i组调制符号在逆循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000109
所述IDFT后的L12组调制符号中的第j组调制符号在逆循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000110
所述IDFT后的L21组调制符号中的第j组调制符号在逆循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000111
所述IDFT后的L22组调制符号中的第j组调制符号在逆循环移位时所使用的循环移位值为
Figure PCTCN2015073063-appb-000112
1≤i≤L11,1≤j≤L12,1≤s≤L21,1≤t≤L22
Figure PCTCN2015073063-appb-000113
Figure PCTCN2015073063-appb-000114
均表示当前小区的小区特定的基本循环移位值;使用码长为L11,L12,L21和L22的扩频码分别对逆循环移位后的L11,L12,L21和L22组调制符号进行解扩,得到调制符号组Y11,Y12,Y21和Y22,其中所述调制符号组Y11,Y12,Y21和Y22均包括K×N个调制符号;获取承载于所述调制符号组Y11,Y12,Y21和Y22中的该上行控制信息。
The processor 1720 is configured to separately acquire L 11 sets of modulation symbols and L 12 sets of modulation symbols from L 11 and L 12 time domain symbols in the K resource block RBs in the first time slot of the uplink subframe, where each The group modulation symbol includes K×N modulation symbols, K is the number of resource blocks RB for carrying uplink control information of the user equipment in one slot, K is a positive integer greater than 1, and N is one RB. The number of subcarriers included, and respectively acquires L 21 sets of modulation symbols and L 22 sets of modulation symbols from L 21 and L 22 time domain symbols in K RBs in the second slot of the uplink subframe, where each comprises a set of modulation symbols K × N modulation symbols respectively; the set of modulation symbols for each set of modulation symbols L 11 performs IDFT, obtain a set of modulation symbols L 11 after IDFT, and each of L 12 in the set of modulation symbols each set of modulation symbols IDFT, obtain a set of modulation symbols L 12 of the IDFT; and each set of modulation symbols for each of the set of modulation symbols L 21 performs IDFT, L 21 to obtain the set of modulation symbols IDFT, respectively, and Performing IDFT on each of the L 22 sets of modulation symbols to obtain L after IDFT 22 set of modulation symbols; each set of modulation symbols for each set of modulation symbols L 11 after IDFT in the inverse cyclic shift set of modulation symbols to obtain L 11 after the reverse cyclic shift, respectively, after the IDFT Each group of modulation symbols of the L 12 sets of modulation symbols is inversely cyclically shifted to obtain L 12 sets of modulation symbols after inverse cyclic shift, and respectively for each set of modulation symbols of the L 21 sets of modulation symbols after the IDFT Performing an inverse cyclic shift to obtain L 21 sets of modulation symbols after inverse cyclic shift, respectively performing inverse cyclic shift on each set of modulation symbols in the L 22 sets of modulation symbols after the IDFT, to obtain a reverse cyclic shift L 22 sets of modulation symbols, wherein the cyclic shift value used in the inverse cyclic shift of the i-th modulation symbol in the L 11 sets of modulation symbols after the IDFT
Figure PCTCN2015073063-appb-000109
The cyclic shift value used by the jth group modulation symbol in the L 12 group modulation symbols after the IDFT in the inverse cyclic shift
Figure PCTCN2015073063-appb-000110
The cyclic shift value used by the jth group modulation symbol in the L 21 group modulation symbols after the IDFT in the inverse cyclic shift
Figure PCTCN2015073063-appb-000111
The cyclic shift value used in the inverse cyclic shift of the j-th modulation symbol in the L 22 group modulation symbols after the IDFT
Figure PCTCN2015073063-appb-000112
1 ≤ i ≤ L 11 , 1 ≤ j ≤ L 12 , 1 ≤ s ≤ L 21 , 1 ≤ t ≤ L 22 ;
Figure PCTCN2015073063-appb-000113
with
Figure PCTCN2015073063-appb-000114
Both represent the cell-specific basic cyclic shift values of the current cell; the spreading codes using the code lengths of L 11 , L 12 , L 21 and L 22 are respectively L 11 , L 12 , L 21 and after the inverse cyclic shift L 22 sets of modulation symbols are despread to obtain modulation symbol groups Y 11 , Y 12 , Y 21 and Y 22 , wherein the modulation symbol groups Y 11 , Y 12 , Y 21 and Y 22 each comprise K×N modulation symbols Obtaining the uplink control information carried in the modulation symbol groups Y 11 , Y 12 , Y 21 and Y 22 .
可选地,所述处理器1720还用于对上行子帧中接收到的信号进行FFT操作,得到上行子帧中的第一时隙中的K个RB中的L11和L12个时域符号上的L11和L12组调制符号;所述接入网设备对上行子帧中接收到的信号进行FFT操作,得到上行子帧中的第二时隙中的K个RB中的L21和L22个时域符号上的L21和L22组调制符号。Optionally, the processor 1720 is further configured to perform an FFT operation on the received signal in the uplink subframe to obtain L 11 and L 12 time domains in the K RBs in the first time slot in the uplink subframe. L 11 and L 12 sets of modulation symbols on the symbol; the access network device performs an FFT operation on the received signal in the uplink subframe to obtain L 21 of the K RBs in the second slot in the uplink subframe And L 21 and L 22 sets of modulation symbols on the 22 time domain symbols.
可选地,所述处理器1720具体用于分别对所述调制符号组Y11,Y12,Y21和Y22进行解调,得到解调后的编码比特流;对所述编码比特流进行译码,得到所述上行控制信息。Optionally, the processor 1720 is specifically configured to separately demodulate the modulation symbol groups Y 11 , Y 12 , Y 21 , and Y 22 to obtain a demodulated encoded bit stream; perform the encoded bit stream. Decoding to obtain the uplink control information.
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。Those of ordinary skill in the art will appreciate that the elements and algorithm steps of the various examples described in connection with the embodiments disclosed herein can be implemented in electronic hardware or a combination of computer software and electronic hardware. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。A person skilled in the art can clearly understand that for the convenience and brevity of the description, the specific working process of the system, the device and the unit described above can refer to the corresponding process in the foregoing method embodiment, and details are not described herein again.
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可 以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。In the several embodiments provided by the present application, it should be understood that the disclosed systems, devices, and methods may be implemented in other manners. For example, the device embodiments described above are merely illustrative. For example, the division of the unit is only a logical function division, and may be implemented in actual implementation. In a different manner, for example, multiple units or components may be combined or integrated into another system, or some features may be omitted or not performed. In addition, the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。The units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。In addition, each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。The functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the technical solution of the present invention, which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including The instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention. The foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。 The above is only a specific embodiment of the present invention, but the scope of the present invention is not limited thereto, and any person skilled in the art can easily think of changes or substitutions within the technical scope of the present invention. It should be covered by the scope of the present invention. Therefore, the scope of the invention should be determined by the scope of the claims.

Claims (28)

  1. 一种传输上行控制信息的方法,其特征在于,包括:A method for transmitting uplink control information, comprising:
    用户设备生成承载有上行控制信息的第一组调制符号和第二组调制符号,其中所述第一组调制符号和所述第二组调制符号均包括K×N个调制符号,其中,K为在一个时隙内用于承载所述上行控制信息的资源块RB的个数,K为大于1的正整数,N为1个RB中所包含的子载波的数量;The user equipment generates a first group of modulation symbols and a second group of modulation symbols that carry uplink control information, where the first group of modulation symbols and the second group of modulation symbols each include K×N modulation symbols, where K is The number of resource blocks RB used to carry the uplink control information in one slot, K is a positive integer greater than 1, and N is the number of subcarriers included in one RB;
    所述用户设备使用码长为L1的扩频码对所述第一组调制符号进行扩频,得到L1组调制符号,并使用码长为L2的扩频码对所述第二组调制符号进行扩频,得到L2组调制符号;The user equipment spreads the first group of modulation symbols by using a spreading code with a code length of L1 to obtain an L1 group modulation symbol, and performs the second group modulation symbol by using a spreading code with a code length of L2. Spread spectrum to obtain L2 group modulation symbols;
    所述用户设备分别对所述L1组调制符号中的每一组调制符号进行循环移位,得到移位后的L1组调制符号,其中所述L1组调制符号中的第i组调制符号在循环移位时所使用的循环移位值为
    Figure PCTCN2015073063-appb-100001
    1≤i≤L1;
    The user equipment cyclically shifts each set of modulation symbols in the L1 group modulation symbols to obtain a shifted L1 group modulation symbol, where an ith group modulation symbol in the L1 group modulation symbol is in a loop The cyclic shift value used when shifting
    Figure PCTCN2015073063-appb-100001
    1≤i≤L1;
    所述用户设备分别对所述L2组调制符号中的每一租调制符号进行循环移位,得到移位后的L2组调制符号,其中所述L2组调制符号中的第j组调制符号在循环移位时所使用的循环移位值为
    Figure PCTCN2015073063-appb-100002
    1≤j≤L2,
    Figure PCTCN2015073063-appb-100003
    Figure PCTCN2015073063-appb-100004
    均表示当前小区的小区特定的基本循环移位值;
    The user equipment cyclically shifts each lease modulation symbol in the L2 group modulation symbol to obtain a shifted L2 group modulation symbol, where the jth group modulation symbol in the L2 group modulation symbol is in a loop The cyclic shift value used when shifting
    Figure PCTCN2015073063-appb-100002
    1≤j≤L2,
    Figure PCTCN2015073063-appb-100003
    with
    Figure PCTCN2015073063-appb-100004
    Each represents a cell-specific basic cyclic shift value of the current cell;
    所述用户设备通过上行子帧的第一时隙内的K个RB和第二时隙内的K个RB,向接入网设备传输承载于所述移位后的L1组调制符号和所述移位后的L2组调制符号中的上行控制信息。Transmitting, by the user equipment, the shifted L1 group modulation symbols and the K to the access network device by using the K RBs in the first time slot of the uplink subframe and the K RBs in the second time slot Uplink control information in the shifted L2 group modulation symbols.
  2. 如权利要求1所述的方法,其特征在于,所述用户设备通过上行子帧的第一时隙内的K个RB和第二时隙内的K个RB,向接入网设备传输承载于所述移位后的L1组调制符号和所述移位后的L2组调制符号中的上行控制信息,包括:The method according to claim 1, wherein the user equipment transmits the bearer to the access network device by using the K RBs in the first time slot of the uplink subframe and the K RBs in the second time slot. The uplink control information in the shifted L1 group modulation symbol and the shifted L2 group modulation symbol includes:
    所述用户设备分别对所述移位后的L1组调制符号进行离散傅里叶变换DFT,得到DFT后的L1组调制符号;Performing, by the user equipment, discrete Fourier transform DFT on the shifted L1 group modulation symbols to obtain L1 group modulation symbols after DFT;
    所述用户设备分别对所述移位后的L2组调制符号进行DFT,得到DFT后的L2组调制符号;The user equipment respectively performs DFT on the shifted L2 group modulation symbols to obtain an L2 group modulation symbol after DFT;
    所述用户设备将所述DFT后的L1组调制符号分别映射至所述第一时隙中的L1个时域符号上,且映射后的L1组调制符号占所述第一时隙内的K个RB;The user equipment maps the L1 group modulation symbols after the DFT to L1 time domain symbols in the first time slot, and the mapped L1 group modulation symbols occupy K in the first time slot. RB;
    所述用户设备将所述DFT后的L2组调制符号分别映射至所述第二时隙 中的L2个时域符号上,且映射后的L2组调制符号占所述第二时隙内的K个RB;The user equipment maps the L2 group modulation symbols after the DFT to the second time slot respectively L2 time domain symbols in the middle, and the mapped L2 group modulation symbols occupy K RBs in the second time slot;
    所述用户设备分别对所述映射后的L1组调制符号进行逆快速傅里叶变换IFFT,得到IFFT后的L1组调制符号;Performing inverse fast Fourier transform IFFT on the mapped L1 group modulation symbols to obtain an L1 group modulation symbol after IFFT;
    所述用户设备分别对所述映射后的L2组调制符号进行IFFT,得到IFFT后的L2组调制符号;The user equipment performs IFFT on the mapped L2 group modulation symbols to obtain an L2 group modulation symbol after the IFFT;
    所述用户设备分别通过所述第一时隙和所述第二时隙,向所述接入网设备传输所述IFFT后的L1组调制符号和所述IFFT后的L2组调制符号,以便向所述接入网设备传输所述上行控制信息。Transmitting, by the user equipment, the L1 group modulation symbol after the IFFT and the L2 group modulation symbol after the IFFT to the access network device by using the first time slot and the second time slot, respectively, The access network device transmits the uplink control information.
  3. 如权利要求1或2所述的方法,其特征在于,所述用户设备生成承载有上行控制信息的第一组调制符号和第二组调制符号,包括:The method according to claim 1 or 2, wherein the user equipment generates a first group of modulation symbols and a second group of modulation symbols that carry uplink control information, including:
    所述用户设备对所述上行控制信息进行编码,得到编码后的上行控制信息;The user equipment encodes the uplink control information to obtain coded uplink control information;
    所述用户设备对所述编码后的上行控制信息进行调制,得到所述第一组调制符号和所述第二组调制符号。The user equipment modulates the encoded uplink control information to obtain the first group of modulation symbols and the second group of modulation symbols.
  4. 如权利要求1-3中任一项所述的方法,其特征在于,所述上行控制信息通过第一时频资源传输,所述当前小区下的其它上行控制信息通过第二时频资源传输,所述第一时频资源所包含的RB数大于所述第二时频资源所包含的RB数,且所述第一时频资源与所述第二时频资源部分重叠。The method according to any one of claims 1-3, wherein the uplink control information is transmitted by using a first time-frequency resource, and other uplink control information of the current cell is transmitted by using a second time-frequency resource. The number of RBs included in the first time-frequency resource is greater than the number of RBs included in the second time-frequency resource, and the first time-frequency resource and the second time-frequency resource partially overlap.
  5. 如权利要求1-4中任一项所述的方法,其特征在于,所述用户设备被配置了第一下行子帧集合或第二下行子帧集合,所述第一下行子帧集合中包括的子帧数大于所述第二下行子帧集合中包括的子帧数,所述用户设备在所述上行子帧中传输所述第一下行子帧集合所对应的上行控制信息时,每个时隙所占用的RB数大于所述用户设备在所述上行子帧中发送所述第二下行子帧集合所对应的上行控制信息时,每个时隙所占用的RB数。The method according to any one of claims 1-4, wherein the user equipment is configured with a first downlink subframe set or a second downlink subframe set, the first downlink subframe set The number of subframes included in the second downlink subframe set is greater than the number of subframes included in the second downlink subframe set, and the user equipment transmits the uplink control information corresponding to the first downlink subframe set in the uplink subframe. The number of RBs occupied by each time slot is greater than the number of RBs occupied by each time slot when the user equipment sends the uplink control information corresponding to the second downlink subframe set in the uplink subframe.
  6. 如权利要求1-5中任一项所述的方法,其特征在于,所述用户设备被配置了第一下行子帧集合,其中所述第一下行子帧集合包括第一子集和第二子集,所述第一子集是所述第二子集的真子集,所述用户设备在所述上行子帧中传输所述第一子集中的下行子帧所对应的上行控制信息时,每个时隙所占用的RB数小于所述用户设备在所述上行子帧中传输所述第二子集中的下行子帧所对应的上行控制信息时,每个时隙所占用的RB数。 The method according to any one of claims 1 to 5, wherein the user equipment is configured with a first downlink subframe set, wherein the first downlink subframe set includes a first subset and a second subset, the first subset is a true subset of the second subset, and the user equipment transmits uplink control information corresponding to the downlink subframe in the first subset in the uplink subframe The RB occupied by each time slot when the number of RBs occupied by each time slot is smaller than the uplink control information corresponding to the downlink subframe in the second subset of the user equipment in the uplink subframe. number.
  7. 如权利要求1-6中任一项所述的方法,其特征在于,所述方法还包括:The method of any of claims 1-6, wherein the method further comprises:
    所述用户设备在所述上行子帧的至少一个时域符号中向所述接入网设备发送解调参考信号DMRS,其中,每个时域符号中的DMRS序列包括K段基于长度N生成的序列。The user equipment sends a demodulation reference signal DMRS to the access network device in at least one time domain symbol of the uplink subframe, where the DMRS sequence in each time domain symbol includes a K segment generated based on the length N sequence.
  8. 如权利要求1-7中任一项所述的方法,其特征在于,K取值不同时,所述用户设备能够传输的上行控制信息的最大比特数不同。The method according to any one of claims 1 to 7, wherein when the value of K is different, the maximum number of bits of the uplink control information that the user equipment can transmit is different.
  9. 一种传输上行控制信息的方法,其特征在于,包括:A method for transmitting uplink control information, comprising:
    接入网设备从上行子帧的第一时隙内的K个资源块RB中的L1个时域符号上获取L1组调制符号,其中每组调制符号包括K×N个调制符号,K为在一个时隙内用于承载用户设备的上行控制信息的资源块RB的个数,K为大于1的正整数,N为1个RB中所包含的子载波的数量;The access network device acquires L1 group modulation symbols from L1 time domain symbols in the K resource blocks RB in the first time slot of the uplink subframe, where each group of modulation symbols includes K×N modulation symbols, where K is The number of resource blocks RBs for carrying uplink control information of the user equipment in one slot, K is a positive integer greater than 1, and N is the number of subcarriers included in one RB;
    所述接入网设备从所述上行子帧的第二时隙内的K个RB中的L2个时域符号上获取L2组调制符号,其中每组调制符号包括K×N个调制符号;The access network device acquires L2 group modulation symbols from L2 time domain symbols in the K RBs in the second time slot of the uplink subframe, where each group of modulation symbols includes K×N modulation symbols;
    所述接入网设备分别对所述L1组调制符号进行逆离散傅里叶变换IDFT,得到IDFT后的L1组调制符号;The access network device performs inverse discrete Fourier transform IDFT on the L1 group modulation symbols to obtain an L1 group modulation symbol after the IDFT;
    所述接入网设备分别对所述L2组调制符号进行IDFT,得到IDFT后的L2组调制符号;The access network device performs IDFT on the L2 group modulation symbols to obtain an L2 group modulation symbol after the IDFT;
    所述接入网设备分别对所述IDFT后的L1组调制符号中的每一组调制符号进行逆循环移位,得到逆循环移位后的L1组调制符号,其中所述IDFT后的L1组调制符号中的第i组调制符号在逆循环移位时所使用的循环移位值为
    Figure PCTCN2015073063-appb-100005
    1≤i≤L1;
    The access network device respectively performs inverse cyclic shift on each group of modulation symbols in the L1 group modulation symbols after the IDFT, to obtain an L1 group modulation symbol after inverse cyclic shift, wherein the L1 group after the IDFT The cyclic shift value used by the i-th modulation symbol in the modulation symbol in the inverse cyclic shift
    Figure PCTCN2015073063-appb-100005
    1≤i≤L1;
    所述接入网设备分别对所述IDFT后的L2组调制符号中的每一组调制符号进行逆循环移位,得到逆循环移位后的L2组调制符号,其中所述IDFT后的L2组调制符号中的第j组调制符号在逆循环移位时所使用的循环移位值为
    Figure PCTCN2015073063-appb-100006
    1≤j≤L2,
    Figure PCTCN2015073063-appb-100007
    Figure PCTCN2015073063-appb-100008
    均表示当前小区的小区特定的基本循环移位值;
    The access network device respectively performs inverse cyclic shift on each group of modulation symbols in the L2 group modulation symbols after the IDFT, to obtain an L2 group modulation symbol after inverse cyclic shift, wherein the L2 group after the IDFT The cyclic shift value used by the j-th modulation symbol in the modulation symbol in the inverse cyclic shift
    Figure PCTCN2015073063-appb-100006
    1≤j≤L2,
    Figure PCTCN2015073063-appb-100007
    with
    Figure PCTCN2015073063-appb-100008
    Each represents a cell-specific basic cyclic shift value of the current cell;
    所述接入网设备使用码长为L1的扩频码对逆循环移位后的L1组调制符号进行解扩,得到第一组调制符号,所述第一组调制符号包括K×N个调制符号;The access network device despreads the inverse cyclically shifted L1 group modulation symbols by using a spreading code with a code length of L1 to obtain a first group of modulation symbols, where the first group of modulation symbols includes K×N modulations. symbol;
    所述接入网设备使用码长为L2的扩频码对逆循环移位后的L2组调制符号进行解扩,得到第二组调制符号,所述第二组调制符号包括K×N个调制 符号;The access network device despreads the inverse cyclically shifted L2 group modulation symbols by using a spreading code having a code length of L2 to obtain a second group of modulation symbols, where the second group of modulation symbols includes K×N modulations. symbol;
    所述接入网设备获取承载于所述第一组调制符号和所述第二组调制符号中的所述上行控制信息。The access network device acquires the uplink control information carried in the first group of modulation symbols and the second group of modulation symbols.
  10. 如权利要求9所述的方法,其特征在于,所述接入网设备获取承载于所述第一组调制符号和所述第二组调制符号中的用户设备的上行控制信息,包括:The method according to claim 9, wherein the access network device acquires uplink control information of the user equipment that is carried in the first group of modulation symbols and the second group of modulation symbols, and includes:
    所述接入网设备分别对所述第一组调制符号和所述第二组调制符号进行解调,得到解调后的编码比特流;The access network device demodulates the first group of modulation symbols and the second group of modulation symbols to obtain a demodulated encoded bit stream;
    所述接入网设备对所述编码比特流进行译码,得到所述上行控制信息。The access network device decodes the encoded bit stream to obtain the uplink control information.
  11. 如权利要求9或10所述的方法,其特征在于,所述上行控制信息通过第一时频资源传输,所述当前小区下的其它上行控制信息通过第二时频资源传输,所述第一时频资源所包含的RB数大于所述第二时频资源所包含的RB数,且所述第一时频资源与所述第二时频资源部分重叠。The method according to claim 9 or 10, wherein the uplink control information is transmitted by using a first time-frequency resource, and other uplink control information of the current cell is transmitted by using a second time-frequency resource, where the first The number of RBs included in the time-frequency resource is greater than the number of RBs included in the second time-frequency resource, and the first time-frequency resource partially overlaps with the second time-frequency resource.
  12. 如权利要求9-11中任一项所述的方法,其特征在于,所述接入网设备为所述用户设备配置了第一下行子帧集合或第二下行子帧集合,所述第一下行子帧集合中包括的子帧数大于所述第二下行子帧集合中包括的子帧数,所述接入网设备在所述上行子帧中接收所述第一下行子帧集合所对应的上行控制信息时,每个时隙所占用的RB数大于所述接入网设备在所述上行子帧中接收所述第二下行子帧集合所对应的上行控制信息时,每个时隙所占用的RB数。The method according to any one of claims 9-11, wherein the access network device configures the first downlink subframe set or the second downlink subframe set for the user equipment, where the The number of subframes included in a downlink subframe set is greater than the number of subframes included in the second downlink subframe set, and the access network device receives the first downlink subframe in the uplink subframe When the uplink control information corresponding to the set is used, the number of RBs occupied by each time slot is greater than the uplink control information corresponding to the second downlink subframe set received by the access network device in the uplink subframe, The number of RBs occupied by time slots.
  13. 如权利要求9-12中任一项所述的方法,其特征在于,所述接入网设备为所述用户设备配置了第一下行子帧集合,其中所述第一下行子帧集合包括第一子集和第二子集,所述第一子集是所述第二子集的真子集,所述接入网设备在所述上行子帧中接收所述第一子集中的下行子帧所对应的上行控制信息时,每个时隙所占用的RB数小于所述接入网设备在所述上行子帧中传输所述第二子集中的下行子帧所对应的上行控制信息时,每个时隙所占用的RB数。The method according to any one of claims 9 to 12, wherein the access network device configures a first downlink subframe set for the user equipment, wherein the first downlink subframe set The first subset and the second subset are included, the first subset is a true subset of the second subset, and the access network device receives the downlink in the first subset in the uplink subframe When the uplink control information corresponding to the subframe is used, the number of RBs occupied by each time slot is smaller than the uplink control information corresponding to the downlink subframe in which the access network device transmits the second subset in the uplink subframe The number of RBs occupied by each time slot.
  14. 如权利要求9-13中任一项所述的方法,其特征在于,所述上行子帧的一个时域符号中的解调参考信号DMRS序列包括K段基于长度N生成的序列。The method according to any one of claims 9 to 13, wherein the demodulation reference signal DMRS sequence in one time domain symbol of the uplink subframe comprises a sequence of K segments generated based on the length N.
  15. 一种用户设备,其特征在于,包括: A user equipment, comprising:
    生成单元,用于生成承载有上行控制信息的第一组调制符号和第二组调制符号,其中所述第一组调制符号和所述第二组调制符号均包括K×N个调制符号,K为在一个时隙内用于承载所述上行控制信息的资源块RB的个数,K为大于1的正整数,N为1个资源块RB中所包含的子载波的数量;a generating unit, configured to generate a first group of modulation symbols and a second group of modulation symbols carrying uplink control information, where the first group of modulation symbols and the second group of modulation symbols each include K×N modulation symbols, K For the number of resource blocks RB used to carry the uplink control information in one slot, K is a positive integer greater than 1, and N is the number of subcarriers included in one resource block RB;
    扩频单元,用于使用码长为L1的扩频码对所述第一组调制符号进行扩频,得到L1组调制符号,并使用码长为L2的扩频码对所述第二组调制符号进行扩频,得到L2组调制符号;a spreading unit, configured to spread the first group of modulation symbols by using a spreading code with a code length of L1 to obtain an L1 group modulation symbol, and use the spreading code with a code length of L2 to modulate the second group The symbol is spread to obtain an L2 group modulation symbol;
    第一循环移位单元,用于分别对所述L1组调制符号中的每一组调制符号进行循环移位,得到移位后的L1组调制符号,其中所述L1组调制符号中的第i组调制符号在循环移位时所使用的循环移位值为
    Figure PCTCN2015073063-appb-100009
    1≤i≤L1;
    a first cyclic shift unit, configured to cyclically shift each set of modulation symbols in the L1 group modulation symbols to obtain a shifted L1 group modulation symbol, where the ith of the L1 group modulation symbols The cyclic shift value used by the group modulation symbol when it is cyclically shifted
    Figure PCTCN2015073063-appb-100009
    1≤i≤L1;
    第二循环移位单元,用于分别对所述L2组调制符号中的每一组调制符号进行循环移位,得到移位后的L2组调制符号,其中所述L2组调制符号中的第j组调制符号在循环移位时所使用的循环移位值为
    Figure PCTCN2015073063-appb-100010
    1≤j≤L2,
    Figure PCTCN2015073063-appb-100011
    Figure PCTCN2015073063-appb-100012
    均表示当前小区的小区特定的基本循环移位值;
    a second cyclic shift unit, configured to cyclically shift each set of modulation symbols in the L2 group modulation symbols to obtain a shifted L2 group modulation symbol, where the jth in the L2 group modulation symbol The cyclic shift value used by the group modulation symbol when it is cyclically shifted
    Figure PCTCN2015073063-appb-100010
    1≤j≤L2,
    Figure PCTCN2015073063-appb-100011
    with
    Figure PCTCN2015073063-appb-100012
    Each represents a cell-specific basic cyclic shift value of the current cell;
    传输单元,用于通过上行子帧的第一时隙内的K个RB和第二时隙内的K个RB,向接入网设备传输承载于所述移位后的L1组调制符号和所述移位后的L2组调制符号中的上行控制信息。a transmitting unit, configured to transmit, by using the K RBs in the first time slot of the uplink subframe and the K RBs in the second time slot, the L1 group modulation symbols and the bearer carried by the uplink network device The uplink control information in the shifted L2 group modulation symbols.
  16. 如权利要求15所述的用户设备,其特征在于,所述传输单元具体用于分别对所述移位后的L1组调制符号进行离散傅里叶变换DFT,得到DFT后的L1组调制符号;分别对所述移位后的L2组调制符号进行DFT,得到DFT后的L2组调制符号;将所述DFT后的L1组调制符号分别映射至所述第一时隙中的L1个时域符号上,且映射后的L1组调制符号占所述第一时隙内的K个RB;将所述DFT后的L2组调制符号分别映射至所述第二时隙中的L2个时域符号上,且映射后的L2组调制符号占所述第二时隙内的K个RB;分别对所述映射后的L1组调制符号进行逆快速傅里叶变换IFFT,得到IFFT后的L1组调制符号;分别对所述映射后的L2组调制符号进行IFFT,得到IFFT后的L2组调制符号;分别通过所述第一时隙和所述第二时隙,向所述接入网设备传输所述IFFT后的L1组调制符号和所述IFFT后的L2组调制符号,以便向所述接入网设备传输所述上行控制信息。The user equipment according to claim 15, wherein the transmission unit is specifically configured to perform a discrete Fourier transform DFT on the shifted L1 group modulation symbols to obtain an L1 group modulation symbol after DFT; Performing DFT on the shifted L2 group modulation symbols respectively to obtain L2 group modulation symbols after DFT; mapping the L1 group modulation symbols after the DFT to L1 time domain symbols in the first time slot respectively Up, and the mapped L1 group modulation symbols occupy K RBs in the first time slot; and the DFT group L2 group modulation symbols are respectively mapped to L2 time domain symbols in the second time slot And the mapped L2 group modulation symbols occupy K RBs in the second time slot; respectively performing inverse fast Fourier transform IFFT on the mapped L1 group modulation symbols to obtain L1 group modulation symbols after IFFT Performing an IFFT on the mapped L2 group modulation symbols to obtain an L2 group modulation symbol after the IFFT; respectively transmitting, by using the first time slot and the second time slot, to the access network device L1 group modulation symbol after IFFT and L2 group modulation symbol after IFFT, so as to The access network device transmits the uplink control information.
  17. 如权利要求15或16所述的用户设备,其特征在于,所述生成单元具体用于对所述上行控制信息进行编码,得到编码后的上行控制信息;对所 述编码后的上行控制信息进行调制,得到所述第一组调制符号和所述第二组调制符号。The user equipment according to claim 15 or 16, wherein the generating unit is specifically configured to encode the uplink control information to obtain encoded uplink control information; The encoded uplink control information is modulated to obtain the first set of modulation symbols and the second set of modulation symbols.
  18. 如权利要求15-17中任一项所述的用户设备,其特征在于,所述上行控制信息通过第一时频资源传输,所述当前小区下的其它上行控制信息通过第二时频资源传输,所述第一时频资源所包含的RB数大于所述第二时频资源所包含的RB数,且所述第一时频资源与所述第二时频资源部分重叠。The user equipment according to any one of claims 15-17, wherein the uplink control information is transmitted by using a first time-frequency resource, and other uplink control information of the current cell is transmitted by using a second time-frequency resource. And the number of RBs included in the first time-frequency resource is greater than the number of RBs included in the second time-frequency resource, and the first time-frequency resource and the second time-frequency resource partially overlap.
  19. 如权利要求15-18中任一项所述的用户设备,其特征在于,所述用户设备被配置了第一下行子帧集合或第二下行子帧集合,所述第一下行子帧集合中包括的子帧数大于所述第二下行子帧集合中包括的子帧数,所述用户设备在所述上行子帧中传输所述第一下行子帧集合所对应的上行控制信息时,每个时隙所占用的RB数大于所述用户设备在所述上行子帧中发送所述第二下行子帧集合所对应的上行控制信息时,每个时隙所占用的RB数。The user equipment according to any one of claims 15 to 18, wherein the user equipment is configured with a first downlink subframe set or a second downlink subframe set, the first downlink subframe The number of subframes included in the set is greater than the number of subframes included in the second downlink subframe set, and the user equipment transmits the uplink control information corresponding to the first downlink subframe set in the uplink subframe. The number of RBs occupied by each time slot is greater than the number of RBs occupied by each time slot when the user equipment sends the uplink control information corresponding to the second downlink subframe set in the uplink subframe.
  20. 如权利要求15-19中任一项所述的用户设备,其特征在于,所述用户设备被配置了第一下行子帧集合,其中所述第一下行子帧集合包括第一子集和第二子集,所述第一子集是所述第二子集的真子集,所述用户设备在所述上行子帧中传输所述第一子集中的下行子帧所对应的上行控制信息时,每个时隙所占用的RB数小于所述用户设备在所述上行子帧中传输所述第二子集中的下行子帧所对应的上行控制信息时,每个时隙所占用的RB数。The user equipment according to any one of claims 15 to 19, wherein the user equipment is configured with a first downlink subframe set, wherein the first downlink subframe set includes a first subset And the second subset, the first subset is a true subset of the second subset, and the user equipment transmits the uplink control corresponding to the downlink subframe in the first subset in the uplink subframe When the information is used, the number of RBs occupied by each time slot is smaller than the uplink control information corresponding to the downlink subframes in the second subset of the user equipment in the uplink subframe. The number of RBs.
  21. 如权利要求15-20中任一项所述的用户设备,其特征在于,所述传输单元还用于在所述上行子帧的至少一个时域符号中向所述接入网设备发送解调参考信号DMRS,其中,每个时域符号中的DMRS序列包括K段基于长度N生成的序列。The user equipment according to any one of claims 15 to 20, wherein the transmitting unit is further configured to send a demodulation to the access network device in at least one time domain symbol of the uplink subframe. A reference signal DMRS, wherein the DMRS sequence in each time domain symbol comprises a sequence of K segments generated based on length N.
  22. 如权利要求15-21中任一项所述的用户设备,其特征在于,K取值不同时,所述用户设备能够传输的上行控制信息的最大比特数不同。The user equipment according to any one of claims 15 to 21, wherein when the value of K is different, the maximum number of bits of uplink control information that can be transmitted by the user equipment is different.
  23. 一种接入网设备,其特征在于,包括:An access network device, comprising:
    第一获取单元,用于从上行子帧的第一时隙内的K个资源块RB中的L1个时域符号上获取L1组调制符号,其中每组调制符号包括K×N个调制符号,K为在一个时隙内用于承载用户设备的上行控制信息的资源块RB的个数,K为大于1的正整数,N为1个RB中所包含的子载波的数量;a first acquiring unit, configured to acquire L1 group modulation symbols from L1 time domain symbols in the K resource blocks RB in the first time slot of the uplink subframe, where each group of modulation symbols includes K×N modulation symbols, K is the number of resource blocks RB for carrying uplink control information of the user equipment in one slot, K is a positive integer greater than 1, and N is the number of subcarriers included in one RB;
    第二获取单元,用于从所述上行子帧的第二时隙内的K个RB中的L2个时域符号上获取L2组调制符号,其中每组调制符号包括K×N个调制符 号;a second acquiring unit, configured to acquire L2 group modulation symbols from L2 time domain symbols in the K RBs in the second time slot of the uplink subframe, where each group of modulation symbols includes K×N modulators number;
    第一变换单元,用于分别对所述L1组调制符号进行逆离散傅里叶变换IDFT,得到IDFT后的L1组调制符号;a first transform unit, configured to perform inverse discrete Fourier transform IDFT on the L1 group modulation symbols respectively, to obtain an L1 group modulation symbol after the IDFT;
    第二变化单元,用于分别对所述L2组调制符号进行IDFT,得到IDFT后的L2组调制符号;a second changing unit, configured to perform IDFT on the L2 group modulation symbols respectively, to obtain an L2 group modulation symbol after the IDFT;
    第一逆循环移位单元,用于分别对所述IDFT后的L1组调制符号中的每一组调制符号进行逆循环移位,得到逆循环移位后的L1组调制符号,其中所述IDFT后的L1组调制符号中的第i组调制符号在逆循环移位时所使用的循环移位值为
    Figure PCTCN2015073063-appb-100013
    1≤i≤L1;
    a first inverse cyclic shift unit, configured to respectively perform inverse cyclic shift on each set of modulation symbols in the L1 group modulation symbols after the IDFT, to obtain an L1 group modulation symbol after inverse cyclic shift, wherein the IDFT The cyclic shift value used in the inverse cyclic shift of the i-th modulation symbol in the latter L1 group modulation symbol
    Figure PCTCN2015073063-appb-100013
    1≤i≤L1;
    第二逆循环移位单元,用于分别对所述IDFT后的L2组调制符号中的每一组调制符号进行逆循环移位,得到逆循环移位后的L2组调制符号,其中所述IDFT后的L2组调制符号中的第j组调制符号在逆循环移位时所使用的循环移位值为
    Figure PCTCN2015073063-appb-100014
    1≤j≤L2,
    Figure PCTCN2015073063-appb-100015
    Figure PCTCN2015073063-appb-100016
    均表示当前小区的小区特定的基本循环移位值;
    a second inverse cyclic shift unit, configured to respectively perform inverse cyclic shift on each set of modulation symbols in the L2 group modulation symbols after the IDFT, to obtain an L2 group modulation symbol after inverse cyclic shift, wherein the IDFT The cyclic shift value used by the j-th set of modulation symbols in the L2 group modulation symbols in the inverse cyclic shift
    Figure PCTCN2015073063-appb-100014
    1≤j≤L2,
    Figure PCTCN2015073063-appb-100015
    with
    Figure PCTCN2015073063-appb-100016
    Each represents a cell-specific basic cyclic shift value of the current cell;
    第一解扩单元,用于使用码长为L1的扩频码对逆循环移位后的L1组调制符号进行解扩,得到第一组调制符号,所述第一组调制符号包括K×N个调制符号;a first despreading unit, configured to despread the inverse cyclically shifted L1 group modulation symbols by using a spreading code with a code length of L1, to obtain a first group of modulation symbols, where the first group of modulation symbols includes K×N Modulation symbols;
    第二解扩单元,用于使用码长为L2的扩频码对逆循环移位后的L2组调制符号进行解扩,得到第二组调制符号,所述第二组调制符号包括K×N个调制符号;a second despreading unit, configured to despread the inverse cyclically shifted L2 group modulation symbols by using a spreading code with a code length of L2, to obtain a second group of modulation symbols, where the second group of modulation symbols includes K×N Modulation symbols;
    第三获取单元,用于获取承载于所述第一组调制符号和所述第二组调制符号中的所述上行控制信息。And a third acquiring unit, configured to acquire the uplink control information that is carried in the first group of modulation symbols and the second group of modulation symbols.
  24. 如权利要求23所述的接入网设备,其特征在于,所述第三获取单元具体用于分别对所述第一组调制符号和所述第二组调制符号进行解调,得到解调后的编码比特流;对所述编码比特流进行译码,得到所述上行控制信息。The access network device according to claim 23, wherein the third acquiring unit is specifically configured to demodulate the first group of modulation symbols and the second group of modulation symbols respectively to obtain a demodulated Encoded bitstream; decoding the encoded bitstream to obtain the uplink control information.
  25. 如权利要求23或24所述的接入网设备,其特征在于,所述上行控制信息通过第一时频资源传输,所述当前小区下的其它上行控制信息通过第二时频资源传输,所述第一时频资源所包含的RB数大于所述第二时频资源所包含的RB数,且所述第一时频资源与所述第二时频资源部分重叠。The access network device according to claim 23 or 24, wherein the uplink control information is transmitted by using a first time-frequency resource, and other uplink control information of the current cell is transmitted by using a second time-frequency resource. The number of RBs included in the first time-frequency resource is greater than the number of RBs included in the second time-frequency resource, and the first time-frequency resource and the second time-frequency resource partially overlap.
  26. 如权利要求23-25中任一项所述的接入网设备,其特征在于,所述 接入网设备为所述用户设备配置了第一下行子帧集合或第二下行子帧集合,所述第一下行子帧集合中包括的子帧数大于所述第二下行子帧集合中包括的子帧数,所述接入网设备在所述上行子帧中接收所述第一下行子帧集合所对应的上行控制信息时,每个时隙所占用的RB数大于所述接入网设备在所述上行子帧中接收所述第二下行子帧集合所对应的上行控制信息时,每个时隙所占用的RB数。An access network device according to any of claims 23-25, wherein said said The access network device configures the first downlink subframe set or the second downlink subframe set for the user equipment, where the number of subframes included in the first downlink subframe set is greater than the second downlink subframe set. When the access network device receives the uplink control information corresponding to the first downlink subframe set in the uplink subframe, the number of RBs occupied by each time slot is greater than the number of subframes included in the uplink subframe. The number of RBs occupied by each time slot when the access network device receives the uplink control information corresponding to the second downlink subframe set in the uplink subframe.
  27. 如权利要求23-26中任一项所述的接入网设备,其特征在于,所述接入网设备为所述用户设备配置了第一下行子帧集合,其中所述第一下行子帧集合包括第一子集和第二子集,所述第一子集是所述第二子集的真子集,所述接入网设备在所述上行子帧中接收所述第一子集中的下行子帧所对应的上行控制信息时,每个时隙所占用的RB数小于所述接入网设备在所述上行子帧中传输所述第二子集中的下行子帧所对应的上行控制信息时,每个时隙所占用的RB数。The access network device according to any one of claims 23 to 26, wherein the access network device configures a first downlink subframe set for the user equipment, where the first downlink is The set of subframes includes a first subset and a second subset, the first subset is a true subset of the second subset, and the access network device receives the first sub-subframe in the uplink subframe The number of RBs occupied by each time slot is smaller than the number of RBs that the access network device transmits in the uplink subframe in the downlink subframe of the second subset. The number of RBs occupied by each time slot when the control information is uplinked.
  28. 如权利要求23-27中任一项所述的接入网设备,其特征在于,所述上行子帧的一个时域符号中的解调参考信号DMRS序列包括K段基于长度N生成的序列。 The access network device according to any one of claims 23-27, wherein the demodulation reference signal DMRS sequence in one time domain symbol of the uplink subframe comprises a sequence of K segments generated based on the length N.
PCT/CN2015/073063 2015-02-13 2015-02-13 Method for transmitting uplink control information, user equipment and access network device WO2016127409A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/073063 WO2016127409A1 (en) 2015-02-13 2015-02-13 Method for transmitting uplink control information, user equipment and access network device
CN201580002265.8A CN106170940B (en) 2015-02-13 2015-02-13 Method, user equipment and the access network equipment of transmitting uplink control information

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/073063 WO2016127409A1 (en) 2015-02-13 2015-02-13 Method for transmitting uplink control information, user equipment and access network device

Publications (1)

Publication Number Publication Date
WO2016127409A1 true WO2016127409A1 (en) 2016-08-18

Family

ID=56614094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/073063 WO2016127409A1 (en) 2015-02-13 2015-02-13 Method for transmitting uplink control information, user equipment and access network device

Country Status (2)

Country Link
CN (1) CN106170940B (en)
WO (1) WO2016127409A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018228434A1 (en) * 2017-06-16 2018-12-20 电信科学技术研究院有限公司 Uplink control channel transmitting method, receiving method, device, terminal and base station
CN110582999A (en) * 2017-05-04 2019-12-17 高通股份有限公司 New radio single symbol design via frequency division multiplexing of reference signal and data tones
CN113438672A (en) * 2021-06-24 2021-09-24 中国联合网络通信集团有限公司 Interference processing method and device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019028797A1 (en) * 2017-08-10 2019-02-14 华为技术有限公司 Uplink control signaling transmission method, terminal device and base station
US11212151B2 (en) * 2017-08-23 2021-12-28 Qualcomm Incorporated User multiplexing for uplink control information
CN111884787B (en) * 2018-07-30 2022-03-29 上海朗帛通信技术有限公司 Method and device used in user equipment and base station for wireless communication
CN112153690B (en) * 2019-06-26 2022-05-24 华为技术有限公司 Communication method and communication device
CN112543507B (en) * 2019-09-23 2022-09-13 成都鼎桥通信技术有限公司 Carrier selection method, device, base station and storage medium based on uplink interference
CN113015245B (en) * 2019-12-20 2023-10-27 中国移动通信有限公司研究院 Data transmission processing method, data receiving processing method and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101997659A (en) * 2009-08-25 2011-03-30 大唐移动通信设备有限公司 Methods and devices for allocating uplink control resources and transmitting uplink control information
US20110317640A1 (en) * 2009-01-07 2011-12-29 Ntt Docomo, Inc. Radio base station apparatus and radio communication method
US20120220327A1 (en) * 2009-11-08 2012-08-30 Moon Il Lee Method and a base station for transmitting a csi-rs, and a method and user equipment for receiving the csi-rs
CN103178926A (en) * 2011-12-21 2013-06-26 华为技术有限公司 Method for transmitting control information, user device and base station

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110317640A1 (en) * 2009-01-07 2011-12-29 Ntt Docomo, Inc. Radio base station apparatus and radio communication method
CN101997659A (en) * 2009-08-25 2011-03-30 大唐移动通信设备有限公司 Methods and devices for allocating uplink control resources and transmitting uplink control information
US20120220327A1 (en) * 2009-11-08 2012-08-30 Moon Il Lee Method and a base station for transmitting a csi-rs, and a method and user equipment for receiving the csi-rs
CN103178926A (en) * 2011-12-21 2013-06-26 华为技术有限公司 Method for transmitting control information, user device and base station

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110582999A (en) * 2017-05-04 2019-12-17 高通股份有限公司 New radio single symbol design via frequency division multiplexing of reference signal and data tones
CN110582999B (en) * 2017-05-04 2022-06-24 高通股份有限公司 New radio single symbol design via frequency division multiplexing of reference signal and data tones
WO2018228434A1 (en) * 2017-06-16 2018-12-20 电信科学技术研究院有限公司 Uplink control channel transmitting method, receiving method, device, terminal and base station
CN109152012A (en) * 2017-06-16 2019-01-04 电信科学技术研究院 Sending method, method of reseptance, device, terminal and the base station of uplink control channel
TWI677207B (en) * 2017-06-16 2019-11-11 大陸商電信科學技術研究院有限公司 Transmission method, receiving method, device, terminal and base station of uplink control channel
CN109152012B (en) * 2017-06-16 2021-09-03 大唐移动通信设备有限公司 Sending method, receiving method, device, terminal and base station of uplink control channel
US11381364B2 (en) 2017-06-16 2022-07-05 Datang Mobile Communications Equipment Co., Ltd. Method of sending uplink control channel and device thereof, method of receiving uplink control channel and device thereof, terminal and base station
CN113438672A (en) * 2021-06-24 2021-09-24 中国联合网络通信集团有限公司 Interference processing method and device

Also Published As

Publication number Publication date
CN106170940B (en) 2019-05-10
CN106170940A (en) 2016-11-30

Similar Documents

Publication Publication Date Title
JP7442853B2 (en) Method, device, and system for transmitting and receiving data channels and control channels in wireless communication systems
US20200313830A1 (en) Partial cqi feedback in wireless networks
WO2016127409A1 (en) Method for transmitting uplink control information, user equipment and access network device
US8855073B2 (en) Method and apparatus for performing contention-based uplink transmission in a wireless communication system
JP2023126921A (en) Method for multiplexing uplink control information in wireless communication system, and apparatus using the same
CN115642992A (en) Method, apparatus and system for transmitting or receiving uplink control channel
US9363811B2 (en) Mobile communication system, base station apparatus, mobile station apparatus, mobile communication method, and integrated circuit
CN111447687B (en) User equipment, access network equipment and feedback information sending and receiving method
CN103416015A (en) Physical uplink control channel resource allocation for multiple component carriers
CN110024344A (en) Method of uplink transmission and device in cellular communication system
CN107925997A (en) A kind of sending method of ascending control information, method of reseptance and relevant apparatus
WO2017028042A1 (en) Uplink control information transmitting method and receiving method, user equipment, and base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15881571

Country of ref document: EP

Kind code of ref document: A1