WO2016127362A1 - 一种磁共振用鼠标及其制作方法和信号传输装置 - Google Patents

一种磁共振用鼠标及其制作方法和信号传输装置 Download PDF

Info

Publication number
WO2016127362A1
WO2016127362A1 PCT/CN2015/072900 CN2015072900W WO2016127362A1 WO 2016127362 A1 WO2016127362 A1 WO 2016127362A1 CN 2015072900 W CN2015072900 W CN 2015072900W WO 2016127362 A1 WO2016127362 A1 WO 2016127362A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
magnetic resonance
copper conductive
mouse
conductive paint
Prior art date
Application number
PCT/CN2015/072900
Other languages
English (en)
French (fr)
Inventor
龚启勇
孙怀强
任乐枫
幸浩洋
汤洁
黄晓琪
赵又谨
Original Assignee
四川大学华西医院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川大学华西医院 filed Critical 四川大学华西医院
Priority to US15/546,993 priority Critical patent/US10506747B2/en
Priority to PCT/CN2015/072900 priority patent/WO2016127362A1/zh
Publication of WO2016127362A1 publication Critical patent/WO2016127362A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0007Casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4806Functional imaging of brain activation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/546Interface between the MR system and the user, e.g. for controlling the operation of the MR system or for the design of pulse sequences
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/42Bus transfer protocol, e.g. handshake; Synchronisation
    • G06F13/4282Bus transfer protocol, e.g. handshake; Synchronisation on a serial bus, e.g. I2C bus, SPI bus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/015Input arrangements based on nervous system activity detection, e.g. brain waves [EEG] detection, electromyograms [EMG] detection, electrodermal response detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03543Mice or pucks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/038Control and interface arrangements therefor, e.g. drivers or device-embedded control circuitry
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0092Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive pigments, e.g. paint, ink, tampon printing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2213/00Indexing scheme relating to interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F2213/0042Universal serial bus [USB]

Definitions

  • the present invention relates to a medical device, and more particularly to a magnetic resonance mouse.
  • Functional magnetic resonance is the most commonly used technique for studying brain function. Functional magnetic resonance experiments often require subjects to respond to stimuli.
  • the commonly used feedback device is a keyboard with a small number of buttons (2-4), so it can only be issued. And receive a simple response.
  • more complex stimuli are often involved in functional magnetic resonance experiments and subjects are required to make more complex responses, while traditional keyboard-style feedback does not suffice.
  • the mouse is currently the most commonly used cursor indicator for human-computer interaction, but currently commercially available mice cannot be used directly in magnetic resonance environments.
  • the mouse contains a lot of metal parts, which will seriously affect the image quality.
  • a fast-switching gradient magnetic field induces an induced current in the wire of the mouse, so that the remote computer cannot normally receive the response of the subject.
  • the present invention aims to provide a magnetic resonance mouse capable of satisfying the clinical use of functional magnetic resonance, avoiding signal interference, and ensuring that the remote computer accurately receives the response of the subject.
  • the magnetic resonance mouse disclosed in the present invention comprises an upper casing, a lower casing, a trackball, a circuit board and a cable, and inner surfaces of the upper casing and the lower casing are coated with a silver-copper conductive paint layer, and the silver-copper conductive paint The concentration is 13%-17%.
  • the silver-copper conductive paint has a concentration of 15%.
  • the silver-copper conductive lacquer layer has a thickness of not less than 18 micrometers.
  • the silver-copper conductive lacquer layer has a resistivity of less than 1 ohm / 20 micrometers film thickness / distance 10 cm.
  • circuit board and the mounting screws used thereof are all non-magnetic components.
  • the cable is a fully shielded USB cable, and the shield of the fully shielded USB cable is connected to the silver-copper conductive paint layer of the upper or lower outer casing.
  • the invention also discloses a manufacturing method suitable for the magnetic resonance mouse, comprising the following steps:
  • Step 1 Disassemble the commercially available USB mouse and separate the circuit board, the cable, and the upper and lower casings;
  • Step 2 the commercially available silver-copper conductive paint is diluted with absolute ethanol to give 13%-17%, and the mixing time during dilution is not less than 5 minutes;
  • Step 3 Applying or spraying the diluted silver-copper conductive paint to the inner surfaces of the upper and lower outer casings;
  • Step 4 the upper outer casing and the lower outer casing coated with the silver-copper conductive paint layer are subjected to natural dry treatment for a period of not less than 2 hours;
  • Step 5 drying the upper outer casing and the lower outer casing after the natural dry treatment, the baking temperature of the drying treatment is 65 degrees Celsius, and the baking time is not less than 30 minutes.
  • Step 6 detecting the electrical resistivity of the inner surface of the upper casing and the lower casing after the drying process
  • Step 7 Replace the circuit board and its mounting screws with non-magnetic parts, replace the original cable with a fully shielded USB cable, and connect the shield of the fully shielded USB cable to the silver-copper conductive paint layer of the upper or lower case.
  • the commercially available silver-copper conductive paint is diluted to 15% with absolute ethanol.
  • the invention also discloses a signal transmission device suitable for the magnetic resonance mouse, comprising a transmitter connected to the mouse and a receiver connected to the remote computer, the transmitter comprising a USB connector and a USB HOST interface chip in sequence.
  • First processor, first level shifter, first optical transceiver The first optical fiber connector, the receiver includes a second optical fiber connector, a second optical fiber transceiver, a second level shifter, a second processor, and a USB SLAVE interface chip, which are sequentially connected, the first optical fiber
  • the connector and the second fiber optic connector are connected by an optical fiber; in clinical use of magnetic resonance, the mouse and the transmitter are located in the shielding room, and the receiver and the remote computer are located in the operation room.
  • the first processor and the second processor are single-chip microcomputers.
  • the working principle of the signal transmission device is as follows:
  • the USB connector is used to connect the USB keyboard and the mouse, and the USB HOST interface chip sends the HID information of the USB to the first processor, and after being processed by the first processor, the first level converter is transmitted to the first optical transceiver. Then enter the light solder.
  • the second fiber optic transceiver receives the information transmitted by the optical solder, converts it into an electrical signal, transmits it to the second processor through the second level shifter, and the second processor sends the information to the USB SLAVE chip, and the USBSLAVE chip transmits the information. Restore to HID information and send it to the remote computer.
  • the magnetic resonance mouse disclosed by the invention can satisfy the clinical use of functional magnetic resonance and avoid signal interference.
  • the invention also discloses a signal transmission device for the magnetic resonance mouse, which uses optical transmission to avoid electromagnetic interference of signals and ensures the distal end.
  • the computer accurately receives the response of the subject;
  • the present invention also discloses a method for manufacturing the magnetic resonance mouse, which can be modified by a conventional commercially available mouse, and is simple to manufacture and low in cost.
  • Figure 1 is a schematic view showing the separation of the mouse of the present invention
  • FIG. 2 is a schematic block diagram of a signal transmission device of the present invention.
  • FIG. 3 is a schematic block diagram of the transmitter
  • Figure 4 is a block diagram of the receiver.
  • the magnetic resonance mouse disclosed in the present invention comprises an upper casing 1, a lower casing 2, a trackball 3, a circuit board 4 and a cable 5.
  • the inner surfaces of the upper casing 1 and the lower casing 2 are coated with a concentration of 13%-17% silver-copper conductive paint layer, preferably 15%, silver-copper conductive paint layer thickness is not less than 18 microns, silver-copper conductive paint layer resistivity is less than 1 ohm / 20 micron film thickness / distance 10cm; circuit
  • the board 4 and the mounting screws used therein are all non-magnetic components
  • the cable 5 is a fully shielded USB cable
  • the shield of the fully shielded USB cable is connected to the silver-copper conductive paint layer of the upper or lower casing.
  • the invention also discloses a manufacturing method of the above magnetic resonance mouse, comprising the following steps:
  • Step 1 Disassemble the commercially available USB mouse, and separate the circuit board 4, the cable, and the upper casing 1 and the lower casing 2;
  • Step 2 the commercially available silver-copper conductive paint is diluted into absolute ethanol to give 13%-17%, preferably 15%, and the mixing time during dilution is not less than 5 minutes;
  • Step 3 applying or spraying the diluted silver-copper conductive paint to the inner surface of the upper casing 1 and the lower casing 2;
  • Step 4 the upper outer casing and the lower outer casing coated with the silver-copper conductive paint layer are subjected to natural dry treatment for a period of not less than 2 hours;
  • Step 5 drying the upper outer casing 1 and the lower outer casing 2 after the natural dry treatment, the baking temperature of the drying process is 65 degrees Celsius, and the baking time is not less than 30 minutes.
  • Step 6 Detect the resistivity of the inner surface of the upper casing 1 and the lower casing 2 after the drying process; measure with a multimeter using a digital display (the general multimeter gear should be adjusted to ⁇ 200 ⁇ ), and the measured result should remove the multimeter itself and The resistance of the wire, the impedance ratio is less than 1 ohm / 20 micron film thickness / distance 10 cm qualified.
  • Step 7 Replace the circuit board and its mounting screws with non-magnetic parts, replace the original cable with a fully shielded USB cable, and connect the shield of the fully shielded USB cable to the silver-copper conductive paint layer of the upper or lower case.
  • the present invention also discloses a signal transmission device suitable for the magnetic resonance mouse, comprising a transmitter connected to a mouse and a receiver connected to the remote computer, the transmitting
  • the device includes a USB connector, a USB HOST interface chip, a first processor, a first level shifter, a first fiber optic transceiver, and a first fiber optic connector
  • the receiver includes a second fiber optic connector sequentially connected a second fiber optic transceiver, a second level shifter, a second processor, and a USB SLAVE interface chip, wherein the first fiber connector and the second fiber connector are connected by an optical fiber; wherein, the first processor and the second The processor uses a single chip microcomputer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Signal Processing (AREA)
  • Biomedical Technology (AREA)
  • Dermatology (AREA)
  • Neurology (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种磁共振用鼠标,包括上外壳(1)、下外壳(2)、轨迹球(3)、电路板(4)和电缆(5),上外壳(1)、下外壳(2)的内表面涂覆有银铜导电漆层,银铜导电漆的浓度为13%-17%;还包括磁共振用鼠标的制作方法和信号传输装置。能够满足功能磁共振的临床使用,避免信号干扰,保证远端计算机准确接收到受试者的响应。

Description

一种磁共振用鼠标及其制作方法和信号传输装置 技术领域
本发明涉及一种医疗设备,尤其涉及磁共振用鼠标。
背景技术
功能磁共振是目前研究脑功能最常用的技术,功能磁共振实验中往往需要受试者对刺激进行响应,目前常用的反馈设备是有少量按键(2-4个)的键盘,因此只能发出和接收简单的响应。为了研究大脑对复杂任务的响应,在功能磁共振实验中往往涉及更复杂的刺激并需要受试者做出更复杂的响应,而传统的键盘式反馈不能满足需要。
鼠标是目前人与计算机交互最常用的光标指示器,但目前市售的鼠标不能直接用于磁共振环境。首先鼠标中含有大量金属部件,会严重影响成像质量。其次在磁共振成像时,快速切换的梯度磁场会在鼠标的导线中引起感应电流,使远端计算机不能正常接收到受试者的响应。
发明内容
本发明旨在提供一种磁共振用鼠标,能够满足功能磁共振的临床使用,避免信号干扰,保证远端计算机准确接收到受试者的响应。
为达到上述目的,本发明采用的技术方案如下:
本发明公开的磁共振用鼠标,包括上外壳、下外壳、轨迹球、电路板和电缆,所述上外壳、下外壳的内表面涂覆有银铜导电漆层,所述银铜导电漆的浓度为13%-17%。
优选的,所述银铜导电漆的浓度为15%。
优选的,所述银铜导电漆层的厚度不小于18微米。
优选的,所述银铜导电漆层的电阻率小于1欧姆/20微米膜厚/距离10cm。
进一步的,所述电路板及其所用安装螺钉均采用无磁零部件。
进一步的,所述电缆为全屏蔽USB电缆,所述全屏蔽USB电缆的屏蔽层与上外壳或下外壳的银铜导电漆层连接。
本发明还公开了适用于所述磁共振用鼠标的制作方法,包括以下步骤:
步骤1、将市售USB鼠标拆开,将电路板、电缆及上外壳、下外壳分离;
步骤2、将市售银铜导电漆加入无水乙醇稀释致13%-17%,稀释时搅拌时间不少于5分钟;
步骤3、将稀释后的银铜导电漆涂抹或喷涂到上外壳、下外壳的内表面;
步骤4、将涂覆有银铜导电漆层的上外壳、下外壳进行自然阴干处理,时间不少于2小时;
步骤5、将自然阴干处理后的上外壳、下外壳进行烘干处理,所述烘干处理的烘烤温度为65摄氏度,烘烤时间不小于30分钟。
步骤6、检测烘干处理后的上外壳、下外壳的内表面的电阻率;
步骤7、用无磁零部件替代电路板及其安装螺丝,用全屏蔽USB电缆替代原有电缆,并将全屏蔽USB电缆的屏蔽层与上外壳或下外壳的银铜导电漆层连接。
优选的,将市售银铜导电漆加入无水乙醇稀释致15%。
本发明还公开了适用于所述磁共振用鼠标的信号传输装置,包括与鼠标连接的发送器和与远端计算机连接的接收器,所述发送器包括依次连接USB连接器、USB HOST接口芯片、第一处理器、第一电平转换器、第一光纤收发 器、第一光纤连接器,所述接收器包括依次连接的第二光纤连接器、第二光纤收发器、第二电平转换器、第二处理器、USB SLAVE接口芯片,所述第一光纤连接器、第二光纤连接器通过光纤连接;在磁共振的临床使用时,鼠标和发送器位于屏蔽室内,接收器和远端计算机位于操作室。
优选的,所述第一处理器、第二处理器均为单片机。
所述信号传输装置的工作原理如下:
USB连接器用来接插USB键盘、鼠标,USB HOST接口芯片将USB的HID信息发送给第一处理器,第一处理器处理后,经过第一电平转换器,传送到第一光纤收发器,再进入光钎。
第二光纤收发器接收到光钎传送的信息,转为电信号,经过第二电平转换器,传送给第二处理器,第二处理器将信息发送给USB SLAVE芯片,USBSLAVE芯片将该信息还原为HID信息,发送给远端计算机。
本发明公开的磁共振用鼠标,能够满足功能磁共振的临床使用,避免信号干扰,本发明还公开了该磁共振用鼠标的信号传输装置,采用光传输来避免信号的电磁干扰,保证远端计算机准确接收到受试者的响应;本发明还公开了该磁共振用鼠标的一种制作方法,可采用常规市售鼠标改装,制作简单、成本低。
附图说明
图1为本发明鼠标的分拆示意图;
图2为本发明信号传输装置的原理框图;
图3为发送器的原理框图;
图4为接收器的原理框图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图,对本发明进行进一步详细说明。
如图1所示,本发明公开的磁共振用鼠标,包括上外壳1、下外壳2、轨迹球3、电路板4和电缆5,上外壳1、下外壳2的内表面涂覆有浓度为13%-17%银铜导电漆层,优选浓度为15%,银铜导电漆层的厚度不小于18微米,银铜导电漆层的电阻率小于1欧姆/20微米膜厚/距离10cm;电路板4及其所用安装螺钉均采用无磁零部件,电缆5为全屏蔽USB电缆,全屏蔽USB电缆的屏蔽层与上外壳或下外壳的银铜导电漆层连接。
本发明还公开了上述磁共振用鼠标的制作方法,包括以下步骤:
步骤1、将市售USB鼠标拆开,将电路板4、电缆及上外壳1、下外壳2分离;
步骤2、将市售银铜导电漆入无水乙醇稀释致13%-17%,优选为15%,稀释时搅拌时间不少于5分钟;
步骤3、将稀释后的银铜导电漆涂抹或喷涂到上外壳1、下外壳2的内表面;
步骤4、将涂覆有银铜导电漆层的上外壳、下外壳进行自然阴干处理,时间不少于2小时;
步骤5、将自然阴干处理后的上外壳1、下外壳2进行烘干处理,烘干处理的烘烤温度为65摄氏度,烘烤时间不小于30分钟。
步骤6、检测烘干处理后的上外壳1、下外壳2的内表面的电阻率;采用数字显示的万用表测量(一般万用表档位应调至<200Ω),测量出的结果应除去万用表本身及导线的电阻,阻抗率小于1欧姆/20微米膜厚/距离10cm合格。
步骤7、用无磁零部件替代电路板及其安装螺丝,用全屏蔽USB电缆替代原有电缆,并将全屏蔽USB电缆的屏蔽层与上外壳或下外壳的银铜导电漆层连接。
最后将鼠标再次组合安装即可。
如图2、图3、图4所示,本发明还公开了适用于所述磁共振用鼠标的信号传输装置,包括与鼠标连接的发送器和与远端计算机连接的接收器,所述发送器包括依次连接USB连接器、USB HOST接口芯片、第一处理器、第一电平转换器、第一光纤收发器、第一光纤连接器,所述接收器包括依次连接的第二光纤连接器、第二光纤收发器、第二电平转换器、第二处理器、USB SLAVE接口芯片,所述第一光纤连接器、第二光纤连接器通过光纤连接;其中,第一处理器、第二处理器采用单片机。
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims (10)

  1. 一种磁共振用鼠标,包括上外壳、下外壳、轨迹球、电路板和电缆,其特征在于:所述上外壳、下外壳的内表面涂覆有银铜导电漆层,所述银铜导电漆的浓度为13%-17%。
  2. 根据权利要求1所述的磁共振用鼠标,其特征在于:所述银铜导电漆的浓度为15%。
  3. 根据权利要求1所述的磁共振用鼠标,其特征在于:所述银铜导电漆层的厚度不小于18微米。
  4. 根据权利要求1所述的磁共振用鼠标,其特征在于:所述银铜导电漆层的电阻率小于1欧姆/20微米膜厚/距离10cm。
  5. 根据权利要求1所述的磁共振用鼠标,其特征在于:所述电路板及其所用安装螺钉均采用无磁零部件。
  6. 根据权利要求1所述的磁共振用鼠标,其特征在于:所述电缆为全屏蔽USB电缆,所述全屏蔽USB电缆的屏蔽层与上外壳或下外壳的银铜导电漆层连接。
  7. 一种适用于如权利要求1-6所述的任意一种磁共振用鼠标的制作方法,其特征在于:包括以下步骤:
    步骤1、将市售USB鼠标拆开,将电路板、电缆及上外壳、下外壳分离;
    步骤2、将市售银铜导电漆加入无水乙醇稀释致13%-17%,稀释时搅拌时间不少于5分钟;
    步骤3、将稀释后的银铜导电漆涂抹或喷涂到上外壳、下外壳的内表面;
    步骤4、将涂覆有银铜导电漆层的上外壳、下外壳进行自然阴干处理,时间不少于2小时;
    步骤5、将自然阴干处理后的上外壳、下外壳进行烘干处理,所述烘干处理的烘烤温度为65摄氏度,烘烤时间不小于30分钟。
    步骤6、检测烘干处理后的上外壳、下外壳的内表面的电阻率;
    步骤7、用无磁零部件替代电路板及其安装螺丝,用全屏蔽USB电缆替代原有电缆,并将全屏蔽USB电缆的屏蔽层与上外壳或下外壳的银铜导电漆层连接。
  8. 根据权利要求7所述的制作方法,其特征在于:在步骤2中,将市售银铜导电漆加入无水乙醇稀释致15%。
  9. 一种适用于如权利要求1-6所述的任意一种磁共振用鼠标的信号传输装置,其特征在于:包括与鼠标连接的发送器和与远端计算机连接的接收器,所述发送器包括依次连接USB连接器、USB HOST接口芯片、第一处理器、第一电平转换器、第一光纤收发器、第一光纤连接器,所述接收器包括依次连接的第二光纤连接器、第二光纤收发器、第二电平转换器、第二处理器、USBSLAVE接口芯片,所述第一光纤连接器、第二光纤连接器通过光纤连接。
  10. 根据权利要求9所述的信号传输装置,其特征在于:所述第一处理器、第二处理器均为单片机。
PCT/CN2015/072900 2015-02-12 2015-02-12 一种磁共振用鼠标及其制作方法和信号传输装置 WO2016127362A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/546,993 US10506747B2 (en) 2015-02-12 2015-02-12 Mouse for magnetic resonance, manufacturing method thereof, and signal transmission apparatus containing the same
PCT/CN2015/072900 WO2016127362A1 (zh) 2015-02-12 2015-02-12 一种磁共振用鼠标及其制作方法和信号传输装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/072900 WO2016127362A1 (zh) 2015-02-12 2015-02-12 一种磁共振用鼠标及其制作方法和信号传输装置

Publications (1)

Publication Number Publication Date
WO2016127362A1 true WO2016127362A1 (zh) 2016-08-18

Family

ID=56614038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072900 WO2016127362A1 (zh) 2015-02-12 2015-02-12 一种磁共振用鼠标及其制作方法和信号传输装置

Country Status (2)

Country Link
US (1) US10506747B2 (zh)
WO (1) WO2016127362A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1769358A (zh) * 2004-10-26 2006-05-10 第一毛织株式会社 导电漆组合物以及在基底上形成导电涂层的方法
CN101228499A (zh) * 2005-06-03 2008-07-23 苹果公司 输入机构得到改善的鼠标
US20120273257A1 (en) * 2011-04-29 2012-11-01 Innovation & Infinity Global Corp. Transparent conductive structure applied to a touch panel and method of making the same
CN102814496A (zh) * 2012-08-14 2012-12-12 烟台德邦科技有限公司 一种镀银铜粉及其制备方法
CN102855002A (zh) * 2011-07-01 2013-01-02 鸿富锦精密工业(深圳)有限公司 鼠标
CN103451632A (zh) * 2013-04-22 2013-12-18 深圳信息职业技术学院 微纳米银、铜或银铜合金薄膜及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2062490A1 (en) * 1991-03-19 1992-09-20 Marc Bidiville Integral ball cage for pointing device
US20040093391A1 (en) * 2002-11-07 2004-05-13 Heng-Chien Chen Computer console for wirelessly controlling remote computers
US7666568B2 (en) * 2007-10-23 2010-02-23 E. I. Du Pont De Nemours And Company Composition and method for providing a patterned metal layer having high conductivity
CN202009254U (zh) * 2011-01-07 2011-10-12 北京希格玛和芯微电子技术有限公司 无线鼠标供电装置以及无线鼠标供电系统
GB201211976D0 (en) * 2012-07-05 2012-08-22 Univ Birmingham Long-lasting antibacterial metallic surfaces and methods for their production

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1769358A (zh) * 2004-10-26 2006-05-10 第一毛织株式会社 导电漆组合物以及在基底上形成导电涂层的方法
CN101228499A (zh) * 2005-06-03 2008-07-23 苹果公司 输入机构得到改善的鼠标
US20120273257A1 (en) * 2011-04-29 2012-11-01 Innovation & Infinity Global Corp. Transparent conductive structure applied to a touch panel and method of making the same
CN102855002A (zh) * 2011-07-01 2013-01-02 鸿富锦精密工业(深圳)有限公司 鼠标
CN102814496A (zh) * 2012-08-14 2012-12-12 烟台德邦科技有限公司 一种镀银铜粉及其制备方法
CN103451632A (zh) * 2013-04-22 2013-12-18 深圳信息职业技术学院 微纳米银、铜或银铜合金薄膜及其制备方法

Also Published As

Publication number Publication date
US20180035574A1 (en) 2018-02-01
US10506747B2 (en) 2019-12-10

Similar Documents

Publication Publication Date Title
TWI444625B (zh) High frequency probe card
CN105973940B (zh) 一种用于气液两相流探测的四电导探针测量信号处理系统
CN102928675A (zh) 一种电容式触摸屏屏蔽层的检测方法
CN102375094A (zh) 电磁辐射测量装置
WO2016127362A1 (zh) 一种磁共振用鼠标及其制作方法和信号传输装置
CN203259600U (zh) 一种电磁场近场量测工具
US20190162768A1 (en) Test apparatus for signal integrity testing of connectors
CN209215468U (zh) 一种具有铜箔屏蔽层的电流传感器
CN104679295B (zh) 一种磁共振用鼠标及其制作方法和信号传输装置
US9395808B2 (en) Identification system, physical apparatus, identification apparatus, and identification method of physical apparatus
CN204007858U (zh) 多通道可移动测量转接系统
CN113125855B (zh) 一种印制板差分信号线阻抗测量方法
CN203786165U (zh) 无源近场测试探头
WO2022121379A1 (zh) 一种生物监测电极和可穿戴设备
TW201418742A (zh) 近場電磁探棒
CN206594473U (zh) 一种穿戴设备接触皮肤判断装置
CN110824261B (zh) 一种采用混合偏置滤波网络的有源磁场探头
CN208283515U (zh) 一种心率传感器芯片测试装置
TWI495882B (zh) 印刷電路板輻射干擾的估測方法
CN207396683U (zh) 一种测量电路板波纹和噪声信号的装置
Rakov Wideband characterization of printed circuit board materials up to 50 GHz
CN110418494A (zh) 一种用于模数转换的pcb结构、aoi检测设备
CN103705249A (zh) 一种具有电磁屏蔽功能的脉搏血氧探头
CN105092975B (zh) Pcb板内单端阻抗测试头
KR20150089820A (ko) 전기장 프로브 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15881524

Country of ref document: EP

Kind code of ref document: A1