WO2016127307A1 - Vehicular communication - Google Patents

Vehicular communication Download PDF

Info

Publication number
WO2016127307A1
WO2016127307A1 PCT/CN2015/072633 CN2015072633W WO2016127307A1 WO 2016127307 A1 WO2016127307 A1 WO 2016127307A1 CN 2015072633 W CN2015072633 W CN 2015072633W WO 2016127307 A1 WO2016127307 A1 WO 2016127307A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
vehicle
road
transmission range
particular transmission
Prior art date
Application number
PCT/CN2015/072633
Other languages
French (fr)
Inventor
Guoxia ZHANG
Qingshan Zhang
Original Assignee
Harman International Industries, Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harman International Industries, Incorporated filed Critical Harman International Industries, Incorporated
Priority to PCT/CN2015/072633 priority Critical patent/WO2016127307A1/en
Publication of WO2016127307A1 publication Critical patent/WO2016127307A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/024Guidance services
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/09626Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages where the origin of the information is within the own vehicle, e.g. a local storage device, digital map
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096733Systems involving transmission of highway information, e.g. weather, speed limits where a selection of the information might take place
    • G08G1/096741Systems involving transmission of highway information, e.g. weather, speed limits where a selection of the information might take place where the source of the transmitted information selects which information to transmit to each vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096766Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
    • G08G1/096791Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is another vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/161Decentralised systems, e.g. inter-vehicle communication
    • G08G1/162Decentralised systems, e.g. inter-vehicle communication event-triggered
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming

Definitions

  • the present disclosure generally relates to vehicular communication.
  • messages are generally broadcasted omni-directionally through antennas, which may waste radio frequency energy and cause interference.
  • a vehicular communication method includes: an electronic device mounted on a first vehicle broadcasting a message towards a particular transmission range, wherein the particular transmission range is determined based on the type of the message and geometry information of a road on which the first vehicle is located.
  • the message may be an event-driven message.
  • the message may include an emergency braking warning message, a turning warning message, an overtaking message or a lane changing message.
  • the geometry information of the road may include a shape of the road, for example, a roadway, an intersection or a “T” -shaped road, or position information and width of lanes of the road.
  • the geometry information of the road may include width of lanes of the road, and the particular transmission range may cover vehicles which are driving at the back of the first vehicle on the road and located on a same lane or on an adjacent lane with the first vehicle.
  • the geometry information of the road may include width of lanes of the road, and the particular transmission range may cover vehicles which are driving in front of the first vehicle on the road and located on a same lane or on an adjacent lane with the first vehicle.
  • the geometry information of the road may include width of lanes of the road, and the particular transmission range may cover vehicles which are driving at the back of the first vehicle on the road and located on a same lane or on an adjacent lane with the first vehicle.
  • the geometry information of the road may include a shape of the intersection, and position information and width of lanes at the intersection.
  • the message may be transmitted through an antenna array mounted on the first vehicle, and a parameter of the antenna array may be determined according to the particular transmission range using beamforming technology.
  • the particular transmission range may include at least one direction of wave beams which carry the message and at least one width of the wave beams which corresponds to the at least one direction.
  • the antenna array may be a circular antenna array.
  • the geometry information of the road on which the first vehicle is located may be obtained on a digital map.
  • the particular transmission range may be further determined based on messages received by the first vehicle from other vehicles.
  • a vehicular communication system mounted on a first vehicle may include: a communication device for broadcasting a message towards a particular transmission range, and a processing device for determining the particular transmission range based on the type of the message and geometry information of a road on which the first vehicle is located.
  • the message may be an event-driven message.
  • the message may include an emergency braking warning message, a turning warning message, an overtaking message or a lane changing message.
  • the geometry information of the road may include a shape of the road, for example, a roadway, an intersection or a “T” -shaped road, or position information and width of lanes of the road.
  • the geometry information of the road may include width of lanes of the road, and the processing device may be configured to determine the particular transmission range to cover vehicles which are driving at the back of the first vehicle on the road and located on a same lane or on an adjacent lane with the first vehicle.
  • the geometry information of the road may include width of lanes of the road
  • the processing device may be configured to determine the particular transmission range to cover vehicles which are driving in front of the first vehicle on the road and located on a same lane or on an adjacent lane with the first vehicle.
  • the geometry information of the road may include width of lanes of the road
  • the processing device may be configured to determine the particular transmission range to cover vehicles which are driving at the back of the first vehicle on the road and located on a same lane or on an adjacent lane with the first vehicle.
  • the geometry information of the road may include a shape of the intersection, and position information and width of lanes at the intersection.
  • the message may be transmitted through an antenna array mounted on the vehicle, and the processing device may be further configured to determine a parameter of the antenna array according to the particular transmission range using beamforming technology.
  • the particular transmission range may include at least one direction of wave beams which carry the message and at least one width of the wave beams which corresponds to the at least one direction.
  • the antenna array may be a circular antenna array.
  • the processing device may be further configured to obtain the geometry information of the road on which the vehicle is located from a digital map.
  • the processing device may be configured to determine the particular transmission range further based on messages received by the communication device from other vehicles.
  • FIG. 1 is a schematic diagram of a first driving scenario
  • FIG. 2 is a schematic diagram of a second driving scenario
  • FIG. 3 is a flow chart of a vehicular communication method 100 according to an embodiment
  • FIG. 4 is a schematic diagram of a plurality of antennas according to an embodiment.
  • FIG. 5 is a schematic block diagram of a vehicular communication 200 according to an embodiment.
  • FIG. 1 is a schematic diagram of a first driving scenario.
  • vehicles V0 and V0’ are driving on a road.
  • the vehicle V0 brakes hard emergently the vehicle V0’ as driving behind may be affected.
  • an emergency braking warning message needs to be broadcasted by the vehicle V0 when it brakes hard.
  • vehicles driving in front of the vehicle V0 do not need the emergency braking warning message basically. Therefore, if the emergency braking warning message is broadcasted omni-directionally, radio frequency energy may be wasted.
  • the vehicle V0’ needs to send an overtaking message to the vehicle V0 and other vehicles (not shown) in front of the vehicle V0’ which are driving on a same lane or on an adjacent lane with the vehicle V0’ , while it is not necessary for vehicles (not shown) behind the vehicle V0’ to receive the overtaking message. Therefore, if the overtaking message is broadcasted omni-directionally, radio frequency energy may also be wasted.
  • FIG. 2 is a schematic diagram of a second driving scenario.
  • a vehicle V1 is located at an intersection and intends to turn right. Generally, when the vehicle V1 turns right, it broadcasts an emergency turning warning message to warn vehicles around. From FIG. 2, to ensure driving safety, a vehicle V3 should receive the emergency turning warning message, while vehicles V4 and V5, although within a transmission range of the vehicle V1, do not need to receive the emergency message from the vehicle V1. Further, in some times, there may be some obstacles between the vehicles V1 and V3, for example, trees or buildings, which may influence the transmission of the emergency message.
  • the radio frequency energy can be in turn increased to focus on the particular direction, which thus may ensure that the vehicles in need of the messages safely receive the message even if there are obstacles between the vehicles.
  • FIG. 3 illustrates a flow chart of a vehicular communication method 100 according to an embodiment.
  • a vehicle To broadcast a message directionally, a vehicle needs to determine a transmission range of the message which includes vehicles in need of the message.
  • a vehicle obtains geometry information of a road on which the vehicle is located.
  • the geometry information of the road may be obtained based on a digital map.
  • the geometry information of the road may include geometry data of a roadway or an intersection, or navigable maps.
  • the geometry data may include position information and width of lanes, the lanes including normal lanes, and lanes for pedestrians, bicycles, transit vehicles and trains.
  • the geometry data of an intersection may include position information and width of approaching lanes, egress lanes, and valid paths between the approaching lanes and the egress lanes.
  • the vehicle determines a message to be transmitted.
  • the message to be transmitted may be an event-driven message.
  • the event-driven message to be transmitted may be an emergency braking warning message, a turning warning message, an overtaking message or a lane changing message.
  • the vehicle may determine the message to be transmitted based on data obtained, through a data bus of the vehicle, from, for example, a sensor, a positioning device, a drive train monitoring and control system or an entertainment system mounted on the vehicle.
  • the vehicle may obtain related data through a Controller Area Network (CAN network) of the vehicle.
  • the vehicle may determine to generate a message corresponding to the hard braking, such as an emergency braking warning message, based on the related data.
  • CAN network Controller Area Network
  • the vehicle determines a particular transmission range for the message to be transmitted based on the geometry information of the road on which the vehicle is located and the type of the message to be transmitted.
  • the particular transmission range may cover vehicles in need of the message to be transmitted. Based on the geometry information of the road on which the vehicle is located and the type of the message to be transmitted, the vehicle may determine the particular transmission range.
  • the type of the message to be transmitted may determine the particular transmission range of the message to be transmitted. For example, an emergency braking warning message of a vehicle should be broadcasted to vehicles driving at the back of the vehicle.
  • the particular transmission range of the message to be transmitted may be determined further based on the geometry information of the road on which the vehicle is located. For example, if the vehicle intends to broadcast an emergency turning warning message, the geometry of the road may be helpful for the vehicle to determine the particular transmission range of the emergency turning warning message.
  • the particular transmission range may include at least one direction of wave beams which carry the message to be transmitted and at least one width of the wave beams which corresponds to the at least one direction.
  • the vehicle V1 when turning right at the intersection, the vehicle V1 may determine to send a turning warning message to warn other vehicles in need of it. Based on the geometry information of the intersection obtained from a digital map, such as a shape of the intersection, and position information and width of lanes at the intersection, the vehicle V1 may determine to broadcast the turning warning message towards the transmission ranges D1 and D2.
  • the vehicle may determine the particular transmission range further based on messages received from other vehicles.
  • the vehicle V1 may determine that there is no vehicle within the transmission range D1 and that it is unnecessary to broadcast the turning warning message towards the transmission range D1, and determine only the transmission range D2 as the particular transmission range of the turning warning message. Otherwise, the vehicle V1 may determine both the transmission ranges D1 and D2 as the particular transmission range.
  • Beamforming is a signal processing technique used in sensor arrays for directional signal transmission or reception, which is achieved by combining elements in a phased array in such a way that signals at particular angles experience constructive interference while others experience destructive interference.
  • the beamforming technology is well known to those skilled in the art, and is not described in detail here.
  • the vehicle determines a parameter of an antenna array which is used to transmit the message according to the particular transmission range.
  • the vehicle is provided with the antenna array.
  • the antenna array may be a circular antenna array.
  • the parameter of the antenna array may be obtained using beamforming technology, particularly, adaptive array beamforming technology.
  • F w represents the weighted pattern
  • N represents the number of antennas
  • a n and ⁇ n are the complex weight and the azimuth angle of an n th antenna
  • the radius r is set to 1.98 ⁇
  • the antenna separation is 0.65 ⁇ .
  • adaptive array beamforming technology may be employed to determine the parameter of the antenna array, for example, a set of complex weight vector, so that the difference between the weighted pattern and an expected pattern can be minimized.
  • Multiple algorithms can be used to calculate the parameter of the antenna array, for example, Minimize Mean Squared Error (MMSE) , Least Square (LS) and so on.
  • MMSE Minimize Mean Squared Error
  • LS Least Square
  • the MMSE algorithm may be used.
  • the set of complex weight vector may be determined based on Equation (2) ,
  • F w ( ⁇ i ) is the weighted pattern function and F d ( ⁇ i ) is the expected pattern function.
  • the determined particular transmission range includes at least one direction of the wave beams and at least one width of the wave beams. Therefore, the direction of the wave beams ( ⁇ 0 , ⁇ 0 ) is known.
  • the width of the wave beams may determine the expected pattern function F d ( ⁇ i ) .
  • the expected pattern function F d ( ⁇ i ) may be represented by a cosecant, a parabolic function or an equate function.
  • the detailed information about the expected pattern function F d ( ⁇ i ) can be found in Page 92 in Vol. 23, No. 2 of Journal of Hunan University of Science & Technology (Natural Science Edition) .
  • Equations (1) and (2) the set of complex weight vector ⁇ a 1 , a 2 , ..., a n ⁇ may be obtained. That is, the parameter of the antenna array is determined.
  • the vehicle may realize to broadcast the message towards the particular transmission range.
  • the vehicle may determine the particular transmission range of the message, and further determine the parameter of the antenna array. With the antenna array having the determined parameter, the vehicle may realize to broadcast the message towards the particular transmission range, which reduces a waste of radio frequency energy and improves the possibility of reception of the message by vehicles in need of the message.
  • FIG. 5 illustrates a schematic block diagram of a vehicular communication system 200 mounted on a vehicle according to one embodiment.
  • the vehicular communication system 200 includes a processing device 201, a communication device 203, an antenna array 205 and a memory device 207.
  • the processing device 201 may be configured to obtain geometry information of a road on which the vehicle is located from a digital map.
  • the geometry information of the road may include geometry data of a roadway or an intersection, or navigable maps.
  • the geometry information of the road includes a shape of the road, for example, a roadway, an intersection or a “T” -shaped road, or position information and width of lanes of the road.
  • the processing device 201 may be further configured to determine a message to be transmitted based on data obtained from, for example, a sensor, a positioning device, a drive train monitoring and control system or an entertainment system mounted on the vehicle.
  • the message to be transmitted may indicate a state of the vehicle, such as hard braking, turning, overtaking or lane changing.
  • the message to be transmitted may be an event-driven message.
  • the message to be transmitted may be an emergency braking warning message, a turning warning message, an overtaking message or a lane changing message.
  • the processing device 201 may be further configured to determine a particular transmission range for the message to be transmitted based on the geometry information of the road on which the vehicle is located and the type of the message to be transmitted. In some embodiments, the particular transmission range may cover vehicles in need of the message to be transmitted. In some embodiments, the particular transmission range may include at least one direction of wave beams which carry the message to be transmitted and at least one width of the wave beams which corresponds to the at least one direction.
  • the processing device 201 may determine the particular transmission range further based on messages received by the communication device 203 from other vehicles.
  • the processing device 201 may be further configured to determine a parameter of the antenna array 205 which is used to transmit the message according to the particular transmission range using the beamforming technology.
  • the antenna array 205 may be a circular antenna array.
  • the communication device 203 may be configured to broadcast the message towards the particular transmission range through the antenna array 205 having the determined parameter.
  • the processing device 201 may be a CPU, or a MCU, or a DSP etc., or any combination thereof.
  • the memory device 207 may store an operating system and program instructions.
  • a non-transitory computer readable medium which contains a computer program for vehicular communication.
  • the computer program When executed by a processor, it will instruct the processor to: broadcast a message towards a particular transmission range, wherein the particular transmission range is determined based on the message and geometry information of a road on which a vehicle is located.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Traffic Control Systems (AREA)

Abstract

A vehicular communication method (100) and a vehicular communication system (200) mounted on a first vehicle are provided. The method (100) includes: an electronic device mounted on a first vehicle broadcasting a message towards a particular transmission range, wherein the particular transmission range is determined based on the type of the message and geometry information of a road on which the first vehicle is located. The system (200) may include: a communication device (205) for broadcasting a message towards a particular transmission range, and a processing device (201) for determining the particular transmission range based on the type of the message and geometry information of a road on which the first vehicle is located. A waste of radio frequency energy may be avoided, and the possibility of reception of the message by vehicles in need of the message may be improved.

Description

VEHICULAR COMMU NICATION TECHNICAL FIELD
The present disclosure generally relates to vehicular communication.
BACKGROUND
In vehicular communications, messages are generally broadcasted omni-directionally through antennas, which may waste radio frequency energy and cause interference.
SUMMARY
In one embodiment, a vehicular communication method is provided. The method includes: an electronic device mounted on a first vehicle broadcasting a message towards a particular transmission range, wherein the particular transmission range is determined based on the type of the message and geometry information of a road on which the first vehicle is located.
In some embodiments, the message may be an event-driven message.
In some embodiments, the message may include an emergency braking warning message, a turning warning message, an overtaking message or a lane changing message.
In some embodiments, the geometry information of the road may include a shape of the road, for example, a roadway, an intersection or a “T” -shaped road, or position information and width of lanes of the road.
In some embodiments, when the message is an emergency braking warning message, the geometry information of the road may include width of lanes of the road, and the particular transmission range may cover vehicles which are driving at the back of the first vehicle on the road and located on a same lane or on an adjacent lane with the first vehicle.
In some embodiments, when the message is an overtaking message, the geometry information of the road may include width of lanes of the road, and the particular transmission range may cover vehicles which are driving in front of the first vehicle on the road and located on a same lane or on an adjacent lane with the first vehicle.
In some embodiments, when the message is a lane changing message, the geometry information of the road may include width of lanes of the road, and the particular transmission range may cover vehicles which are driving at the back of the first vehicle on the road and located on a same lane or on an adjacent lane with the first vehicle.
In some embodiments, when the first vehicle is located at an intersection and the message is a turning warning message, the geometry information of the road may include a shape of the intersection, and position information and width of lanes at the intersection.
In some embodiments, the message may be transmitted through an antenna array mounted on the first vehicle, and a parameter of the antenna array may be determined according to the particular transmission range using beamforming technology.
In some embodiments, the particular transmission range may include at least one direction of wave beams which carry the message and at least one width of the wave beams which corresponds to the at least one direction.
In some embodiments, the antenna array may be a circular antenna array.
In some embodiments, the geometry information of the road on which the first vehicle is located may be obtained on a digital map.
In some embodiments, the particular transmission range may be further determined based on messages received by the first vehicle from other vehicles.
In one embodiment, a vehicular communication system mounted on a first vehicle is provided. The vehicular communication system may include: a communication device for broadcasting a message towards a particular transmission range, and a processing device for determining the particular transmission range based on the type of the message and geometry information of a road on which the first vehicle is located.
In some embodiments, the message may be an event-driven message.
In some embodiments, the message may include an emergency braking warning message, a turning warning message, an overtaking message or a lane changing message.
In some embodiments, the geometry information of the road may include a shape of the road, for example, a roadway, an intersection or a “T” -shaped road, or position information and width of lanes of the road.
In some embodiments, when the message is an emergency braking warning message, the geometry information of the road may include width of lanes of the road, and the processing device may be configured to determine the particular transmission range to cover vehicles which are driving at the back of the first vehicle on the road and located on a same lane or on an adjacent lane with the first vehicle.
In some embodiments, when the message is an overtaking message, the geometry information of the road may include width of lanes of the road, and the processing device may be configured to determine the particular transmission range to cover vehicles which are driving in front of the first vehicle on the road and located on a same lane or on an adjacent lane with the first vehicle.
In some embodiments, when the message is a lane changing message, the geometry information of the road may include width of lanes of the road, and the processing device may be configured to determine the particular transmission range to cover vehicles which are driving at the back of the first vehicle on the road and located on a same lane or on an adjacent lane with the first vehicle.
In some embodiments, when the first vehicle is located at an intersection and the message is a turning warning message, the geometry information of the road may include a shape of the intersection, and position information and width of lanes at the intersection.
In some embodiments, the message may be transmitted through an antenna array mounted on the vehicle, and the processing device may be further configured to determine a parameter of the antenna array according to the particular transmission range using beamforming technology.
In some embodiments, the particular transmission range may include at least one direction of wave beams which carry the message and at least one width of the wave beams which corresponds to the at least one direction.
In some embodiments, the antenna array may be a circular antenna array.
In some embodiments, the processing device may be further configured to obtain the geometry information of the road on which the vehicle is located from a digital map.
In some embodiments, the processing device may be configured to determine the particular transmission range further based on messages received by the communication device from other vehicles.
BRIEF DESCRIPTION OF THE DRAWINGS
The foregoing and other features of the present disclosure will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that these drawings depict only several embodiments in accordance with the disclosure and are, therefore, not to be considered limiting of its scope, the disclosure will be described with additional specificity and detail through use of the accompanying drawings.
FIG. 1 is a schematic diagram of a first driving scenario;
FIG. 2 is a schematic diagram of a second driving scenario;
FIG. 3 is a flow chart of a vehicular communication method 100 according to an embodiment;
FIG. 4 is a schematic diagram of a plurality of antennas according to an embodiment; and
FIG. 5 is a schematic block diagram of a vehicular communication 200 according to an embodiment.
DETAILED DESCRIPTION
In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here. It will be readily understood that the aspects of the present disclosure, as generally described herein, and illustrated in the Figures, can be arranged, substituted, combined, and designed in a wide variety of different configurations, all of which are explicitly contemplated and make part of this disclosure.
FIG. 1 is a schematic diagram of a first driving scenario. Referring to FIG. 1, vehicles V0 and V0’ are driving on a road. When the vehicle V0 brakes hard emergently,  the vehicle V0’ as driving behind may be affected. Thus, an emergency braking warning message needs to be broadcasted by the vehicle V0 when it brakes hard. However, vehicles driving in front of the vehicle V0 do not need the emergency braking warning message basically. Therefore, if the emergency braking warning message is broadcasted omni-directionally, radio frequency energy may be wasted.
Still referring to FIG. 1, for another example, if the vehicle V0’ intends to overtake the vehicle V0, the vehicle V0’ needs to send an overtaking message to the vehicle V0 and other vehicles (not shown) in front of the vehicle V0’ which are driving on a same lane or on an adjacent lane with the vehicle V0’ , while it is not necessary for vehicles (not shown) behind the vehicle V0’ to receive the overtaking message. Therefore, if the overtaking message is broadcasted omni-directionally, radio frequency energy may also be wasted.
FIG. 2 is a schematic diagram of a second driving scenario. Referring to FIG. 2, a vehicle V1 is located at an intersection and intends to turn right. Generally, when the vehicle V1 turns right, it broadcasts an emergency turning warning message to warn vehicles around. From FIG. 2, to ensure driving safety, a vehicle V3 should receive the emergency turning warning message, while vehicles V4 and V5, although within a transmission range of the vehicle V1, do not need to receive the emergency message from the vehicle V1. Further, in some times, there may be some obstacles between the vehicles V1 and V3, for example, trees or buildings, which may influence the transmission of the emergency message.
Therefore, it is important to broadcast messages directionally, that is, broadcast messages towards a particular transmission range, so that only vehicles in need of the  messages receive such messages, which is beneficial for avoiding waste of radio frequency energy and communication interference. Further, by limiting the directions of broadcasting message, the radio frequency energy can be in turn increased to focus on the particular direction, which thus may ensure that the vehicles in need of the messages safely receive the message even if there are obstacles between the vehicles.
FIG. 3 illustrates a flow chart of a vehicular communication method 100 according to an embodiment.
To broadcast a message directionally, a vehicle needs to determine a transmission range of the message which includes vehicles in need of the message.
Referring to FIG. 3, in S101, a vehicle obtains geometry information of a road on which the vehicle is located.
In some embodiments, the geometry information of the road may be obtained based on a digital map.
In some embodiments, the geometry information of the road may include geometry data of a roadway or an intersection, or navigable maps. In some embodiments, the geometry data may include position information and width of lanes, the lanes including normal lanes, and lanes for pedestrians, bicycles, transit vehicles and trains. In some embodiment, the geometry data of an intersection may include position information and width of approaching lanes, egress lanes, and valid paths between the approaching lanes and the egress lanes.
In S103, the vehicle determines a message to be transmitted.
In some embodiments, the message to be transmitted may be an event-driven  message. In some embodiments, the event-driven message to be transmitted may be an emergency braking warning message, a turning warning message, an overtaking message or a lane changing message.
In some embodiments, the vehicle may determine the message to be transmitted based on data obtained, through a data bus of the vehicle, from, for example, a sensor, a positioning device, a drive train monitoring and control system or an entertainment system mounted on the vehicle.
For example, after braking hard, the vehicle may obtain related data through a Controller Area Network (CAN network) of the vehicle. The vehicle may determine to generate a message corresponding to the hard braking, such as an emergency braking warning message, based on the related data.
In S105, the vehicle determines a particular transmission range for the message to be transmitted based on the geometry information of the road on which the vehicle is located and the type of the message to be transmitted.
In some embodiments, the particular transmission range may cover vehicles in need of the message to be transmitted. Based on the geometry information of the road on which the vehicle is located and the type of the message to be transmitted, the vehicle may determine the particular transmission range.
In some embodiments, the type of the message to be transmitted may determine the particular transmission range of the message to be transmitted. For example, an emergency braking warning message of a vehicle should be broadcasted to vehicles driving at the back of the vehicle. In some embodiments, the particular  transmission range of the message to be transmitted may be determined further based on the geometry information of the road on which the vehicle is located. For example, if the vehicle intends to broadcast an emergency turning warning message, the geometry of the road may be helpful for the vehicle to determine the particular transmission range of the emergency turning warning message.
In some embodiments, the particular transmission range may include at least one direction of wave beams which carry the message to be transmitted and at least one width of the wave beams which corresponds to the at least one direction.
For example, still referring to FIG. 2, when turning right at the intersection, the vehicle V1 may determine to send a turning warning message to warn other vehicles in need of it. Based on the geometry information of the intersection obtained from a digital map, such as a shape of the intersection, and position information and width of lanes at the intersection, the vehicle V1 may determine to broadcast the turning warning message towards the transmission ranges D1 and D2.
In some embodiments, the vehicle may determine the particular transmission range further based on messages received from other vehicles.
Still referring to FIG. 2, if the vehicle V1 does not receive periodic messages from a vehicle within the transmission range D1, for example, the vehicle V2, the vehicle V1 may determine that there is no vehicle within the transmission range D1 and that it is unnecessary to broadcast the turning warning message towards the transmission range D1, and determine only the transmission range D2 as the particular transmission range of the turning warning message. Otherwise, the vehicle V1 may determine both the transmission ranges D1 and D2 as the particular transmission range.
To realize broadcasting the message to be transmitted towards the particular transmission range, in some embodiments, beamforming technology may be used. Beamforming is a signal processing technique used in sensor arrays for directional signal transmission or reception, which is achieved by combining elements in a phased array in such a way that signals at particular angles experience constructive interference while others experience destructive interference. The beamforming technology is well known to those skilled in the art, and is not described in detail here.
In S107, the vehicle determines a parameter of an antenna array which is used to transmit the message according to the particular transmission range.
In some embodiments, the vehicle is provided with the antenna array. In some embodiments, the antenna array may be a circular antenna array.
In some embodiments, the parameter of the antenna array may be obtained using beamforming technology, particularly, adaptive array beamforming technology.
Hereinafter, a detailed example is described. Referring to FIG. 4, a plurality of antennas (represented by bold points) is uniformly distributed, where (φ0, θ0) represents a direction of wave beams. In the example, a weighted pattern function is given by Equation (1) ,
Figure PCTCN2015072633-appb-000001
where Fw represents the weighted pattern, N represents the number of antennas, an and φn are the complex weight and the azimuth angle of an nth antenna, the radius r is set to 1.98λ, and the antenna separation is 0.65λ.
Further, adaptive array beamforming technology may be employed to  determine the parameter of the antenna array, for example, a set of complex weight vector, so that the difference between the weighted pattern and an expected pattern can be minimized. Multiple algorithms can be used to calculate the parameter of the antenna array, for example, Minimize Mean Squared Error (MMSE) , Least Square (LS) and so on.
In some embodiments, the MMSE algorithm may be used. The set of complex weight vector may be determined based on Equation (2) ,
Figure PCTCN2015072633-appb-000002
where Fw (φi) is the weighted pattern function and Fd (φi) is the expected pattern function.
As described in S105, the determined particular transmission range includes at least one direction of the wave beams and at least one width of the wave beams. Therefore, the direction of the wave beams (φ0, θ0) is known. The width of the wave beams may determine the expected pattern function Fd (φi) . In some embodiments, the expected pattern function Fd (φi) may be represented by a cosecant, a parabolic function or an equate function. The detailed information about the expected pattern function Fd (φi) can be found in Page 92 in Vol. 23, No. 2 of Journal of Hunan University of Science & Technology (Natural Science Edition) .
Therefore, combining Equations (1) and (2) , the set of complex weight vector {a1, a2, …, an} may be obtained. That is, the parameter of the antenna array is determined.
More detailed information about the adaptive array beamforming technology  can be found in Page 37 in Vol. 38, No. 2 (Series 148) of Fire Control Radar Technology. 
In S109, the vehicle broadcasting the message towards the particular transmission range using the antenna having the determined parameter.
As provided with the antenna array having the determined parameter obtained in the S107, the vehicle may realize to broadcast the message towards the particular transmission range.
From above, based on the geometry information of the road and the type of the message to be transmitted, the vehicle may determine the particular transmission range of the message, and further determine the parameter of the antenna array. With the antenna array having the determined parameter, the vehicle may realize to broadcast the message towards the particular transmission range, which reduces a waste of radio frequency energy and improves the possibility of reception of the message by vehicles in need of the message.
FIG. 5 illustrates a schematic block diagram of a vehicular communication system 200 mounted on a vehicle according to one embodiment. Referring to FIG. 5, the vehicular communication system 200 includes a processing device 201, a communication device 203, an antenna array 205 and a memory device 207.
In some embodiments, the processing device 201 may be configured to obtain geometry information of a road on which the vehicle is located from a digital map. In some embodiments, the geometry information of the road may include geometry data of a roadway or an intersection, or navigable maps. In some embodiments, the geometry information of the road includes a shape of the road, for example, a roadway, an  intersection or a “T” -shaped road, or position information and width of lanes of the road.
In some embodiments, the processing device 201 may be further configured to determine a message to be transmitted based on data obtained from, for example, a sensor, a positioning device, a drive train monitoring and control system or an entertainment system mounted on the vehicle. In some embodiments, the message to be transmitted may indicate a state of the vehicle, such as hard braking, turning, overtaking or lane changing. In some embodiments, the message to be transmitted may be an event-driven message. In some embodiments, the message to be transmitted may be an emergency braking warning message, a turning warning message, an overtaking message or a lane changing message.
In some embodiments, the processing device 201 may be further configured to determine a particular transmission range for the message to be transmitted based on the geometry information of the road on which the vehicle is located and the type of the message to be transmitted. In some embodiments, the particular transmission range may cover vehicles in need of the message to be transmitted. In some embodiments, the particular transmission range may include at least one direction of wave beams which carry the message to be transmitted and at least one width of the wave beams which corresponds to the at least one direction.
In some embodiments, the processing device 201 may determine the particular transmission range further based on messages received by the communication device 203 from other vehicles.
In some embodiments, the processing device 201 may be further configured to determine a parameter of the antenna array 205 which is used to transmit the message  according to the particular transmission range using the beamforming technology. In some embodiments, the antenna array 205 may be a circular antenna array.
In some embodiments, the communication device 203 may be configured to broadcast the message towards the particular transmission range through the antenna array 205 having the determined parameter.
In some embodiments, the processing device 201 may be a CPU, or a MCU, or a DSP etc., or any combination thereof. The memory device 207 may store an operating system and program instructions.
According to one embodiment, a non-transitory computer readable medium, which contains a computer program for vehicular communication, is provided. When the computer program is executed by a processor, it will instruct the processor to: broadcast a message towards a particular transmission range, wherein the particular transmission range is determined based on the message and geometry information of a road on which a vehicle is located.
There is little distinction left between hardware and software implementations of aspects of systems; the use of hardware or software is generally a design choice representing cost vs. efficiency tradeoffs. For example, if an implementer determines that speed and accuracy are paramount, the implementer may opt for a mainly hardware and/or firmware vehicle; if flexibility is paramount, the implementer may opt for a mainly software implementation; or, yet again alternatively, the implementer may opt for some combination of hardware, software, and/or firmware.
While various aspects and embodiments have been disclosed herein, other  aspects and embodiments will be apparent to those skilled in the art. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the following claims.

Claims (20)

  1. A vehicular communication method, comprising:
    an electronic device mounted on a first vehicle broadcasting a message towards a particular transmission range, wherein the particular transmission range is related to the type of the message and geometry information of a road on which the first vehicle is located.
  2. The method according to claim 1, wherein the message is an event-driven message.
  3. The method according to claim 1, wherein the message is an emergency braking warning message, a turning warning message, an overtaking message or a lane changing message.
  4. The method according to claim 1, wherein the geometry information of the road comprises a shape of the road, or position information and width of lanes of the road.
  5. The method according to claim 1, wherein when the message is an emergency braking warning message or a lane changing message, the geometry information of the road comprises width of lanes of the road, and the particular transmission range covers vehicles which are driving at the back of the first vehicle on the road and located on a same lane or on an adjacent lane with the first vehicle.
  6. The method according to claim 1, wherein when the message is an overtaking message, the geometry information of the road comprises width of lanes of the road, and the particular transmission range covers vehicles which are driving in front of the first vehicle on the road and located on a same lane or on an adjacent lane with the first vehicle.
  7. The method according to claim 1, wherein when the first vehicle is located at an intersection and the message is a turning warning message, the geometry  information of the road comprises a shape of the intersection, and position information and width of lanes at the intersection.
  8. The method according to claim 1, wherein the particular transmission range comprises at least one direction of wave beams which carry the message and at least one width of the wave beams which corresponds to the at least one direction.
  9. The method according to claim 1, wherein the message is transmitted through an antenna array mounted on the first vehicle, and a parameter of the antenna array is determined according to the particular transmission range using beamforming technology.
  10. The method according to claim 1, wherein the particular transmission range is further determined based on messages received by the first vehicle from other vehicles.
  11. A vehicular communication system mounted on a first vehicle, comprising:
    a communication device for broadcasting a message towards a particular transmission range; and
    a processing device for determining the particular transmission range based on the type of the message and geometry information of a road on which the first vehicle is located.
  12. The system according to claim 11, wherein the message is an event-driven message.
  13. The system according to claim 11, wherein the message is an emergency braking warning message, a turning warning message, an overtaking message or a lane changing message.
  14. The system according to claim 11, wherein the geometry information of the road comprises a shape of the road, or position information and width of lanes of the road.
  15. The system according to claim 11, wherein when the message is an emergency braking warning message or a lane changing message, the geometry information of the road comprises width of lanes of the road, and the processing device is configured to determine the particular transmission range to cover vehicles which are driving at the back of the first vehicle on the road and located on a same lane or on an adjacent lane with the first vehicle.
  16. The system according to claim 11, wherein when the message is an overtaking message, the geometry information of the road comprises width of lanes of the road, and the processing device is configured to determine the particular transmission range to cover vehicles which are driving in front of the first vehicle on the road and located on a same lane or on an adjacent lane with the first vehicle.
  17. The system according to claim 11, wherein when the first vehicle is located at an intersection and the message is a turning warning message, the geometry information of the road comprises a shape of the intersection, and position information and width of lanes at the intersection.
  18. The system according to claim 11, wherein the particular transmission range comprises at least one direction of wave beams which carry the message and at least one width of the wave beams which corresponds to the at least one direction.
  19. The system according to claim 11, wherein the communication device is configured to transmit the message through an antenna array mounted on the first vehicle, and the processing device is further configured to determine a parameter of the antenna array according to the particular transmission range using beamforming technology.
  20. The system according to claim 11, wherein the processing device is configured to determine the particular transmission range further based on messages received by the communication device from other vehicles.
PCT/CN2015/072633 2015-02-10 2015-02-10 Vehicular communication WO2016127307A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/072633 WO2016127307A1 (en) 2015-02-10 2015-02-10 Vehicular communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/072633 WO2016127307A1 (en) 2015-02-10 2015-02-10 Vehicular communication

Publications (1)

Publication Number Publication Date
WO2016127307A1 true WO2016127307A1 (en) 2016-08-18

Family

ID=56615344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072633 WO2016127307A1 (en) 2015-02-10 2015-02-10 Vehicular communication

Country Status (1)

Country Link
WO (1) WO2016127307A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112339772A (en) * 2020-10-27 2021-02-09 东风汽车集团有限公司 Warning information transmission system and method between vehicles

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002342887A (en) * 2001-05-17 2002-11-29 Honda Motor Co Ltd Mobile communication device
US20070054685A1 (en) * 2005-09-07 2007-03-08 Kellum Carroll C Vehicle-to-vehicle communication
US20090309757A1 (en) * 2008-06-16 2009-12-17 Gm Global Technology Operations, Inc. Real time traffic aide
CN102717752A (en) * 2012-06-18 2012-10-10 奇瑞汽车股份有限公司 Overtaking assisting system based on vehicle-vehicle short-distance communication
CN103359013A (en) * 2012-04-01 2013-10-23 同济大学 Lane changing and overtaking assisting method and system based on inter-vehicle communication
KR101409747B1 (en) * 2012-12-28 2014-07-02 현대모비스 주식회사 Lateral control apparatus of vehicle and Control method of the same
CN104200688A (en) * 2014-09-19 2014-12-10 杜东平 Bidirectional broadcast type inter-vehicle communication system and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002342887A (en) * 2001-05-17 2002-11-29 Honda Motor Co Ltd Mobile communication device
US20070054685A1 (en) * 2005-09-07 2007-03-08 Kellum Carroll C Vehicle-to-vehicle communication
US20090309757A1 (en) * 2008-06-16 2009-12-17 Gm Global Technology Operations, Inc. Real time traffic aide
CN103359013A (en) * 2012-04-01 2013-10-23 同济大学 Lane changing and overtaking assisting method and system based on inter-vehicle communication
CN102717752A (en) * 2012-06-18 2012-10-10 奇瑞汽车股份有限公司 Overtaking assisting system based on vehicle-vehicle short-distance communication
KR101409747B1 (en) * 2012-12-28 2014-07-02 현대모비스 주식회사 Lateral control apparatus of vehicle and Control method of the same
CN104200688A (en) * 2014-09-19 2014-12-10 杜东平 Bidirectional broadcast type inter-vehicle communication system and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112339772A (en) * 2020-10-27 2021-02-09 东风汽车集团有限公司 Warning information transmission system and method between vehicles

Similar Documents

Publication Publication Date Title
CN111483457B (en) Device, system and method for collision avoidance
US11501635B2 (en) Vehicle-to-vehicle communication system, roadside communication apparatus, in-vehicle communication apparatus, and vehicle-to-vehicle communication method
US10856111B2 (en) Object tracking using a cognitive heterogeneous ad hoc mesh network
US9214086B1 (en) Vehicle to vehicle wireless communication apparatus with potential crash warning
KR101880322B1 (en) Radar sensor for motor vehicles
KR102552305B1 (en) Broadband antennas deployed in vehicles
KR20150017976A (en) Vehichl radar and operating method of it
JP2008233017A (en) Radio communication apparatus and road-vehicle communication system
EP3383076B1 (en) Vehicle-mounted millimeter-wave communication device and communication method
US10833737B2 (en) Method and apparatus for controlling multi-antenna of vehicle in autonomous driving system
KR20210012952A (en) Methods, computer programs, apparatuses, a vehicle, and a traffic entity for updating an environmental model of a vehicle
CN107515399B (en) Radar system for vehicle
JP4716896B2 (en) Communication area control device, communication area control method, in-vehicle device
GB2553634A (en) A multiple orientation antenna for vehicle communication
JP7200963B2 (en) adjustable blind spot monitor
JP2005174237A (en) Car-to-car communication apparatus
WO2016127307A1 (en) Vehicular communication
JP2019211346A (en) Radar device
TWI582451B (en) Vehicular radar system
EP3383074B1 (en) Vehicle-mounted millimeter-wave communication device and communication method
JP2009074804A (en) Object detector
WO2020230694A1 (en) Mobile body
JP6883594B2 (en) Communication devices, communication systems, mobiles, platooning systems, servers, communication methods, information management methods and programs
US10727572B2 (en) Antenna apparatus and vehicle having the same
JP6736702B2 (en) Communication device, communication system, mobile unit, platooning system, server, communication method, information management method and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15881469

Country of ref document: EP

Kind code of ref document: A1