WO2016125948A1 - 직장 팬텀 유닛 및 이를 포함하는 팬텀 장치 - Google Patents

직장 팬텀 유닛 및 이를 포함하는 팬텀 장치 Download PDF

Info

Publication number
WO2016125948A1
WO2016125948A1 PCT/KR2015/003332 KR2015003332W WO2016125948A1 WO 2016125948 A1 WO2016125948 A1 WO 2016125948A1 KR 2015003332 W KR2015003332 W KR 2015003332W WO 2016125948 A1 WO2016125948 A1 WO 2016125948A1
Authority
WO
WIPO (PCT)
Prior art keywords
rectal
unit
replica
phantom
rectum
Prior art date
Application number
PCT/KR2015/003332
Other languages
English (en)
French (fr)
Inventor
서태석
박지연
이스란
이정우
박혜진
최경식
Original Assignee
가톨릭대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가톨릭대학교 산학협력단 filed Critical 가톨릭대학교 산학협력단
Priority to US15/548,679 priority Critical patent/US10449392B2/en
Publication of WO2016125948A1 publication Critical patent/WO2016125948A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1075Monitoring, verifying, controlling systems and methods for testing, calibrating, or quality assurance of the radiation treatment apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/10Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
    • A61B90/14Fixators for body parts, e.g. skull clamps; Constructional details of fixators, e.g. pins
    • A61B90/17Fixators for body parts, e.g. skull clamps; Constructional details of fixators, e.g. pins for soft tissue, e.g. breast-holding devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1071Monitoring, verifying, controlling systems and methods for verifying the dose delivered by the treatment plan
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00482Digestive system
    • A61B2018/005Rectum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00547Prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1075Monitoring, verifying, controlling systems and methods for testing, calibrating, or quality assurance of the radiation treatment apparatus
    • A61N2005/1076Monitoring, verifying, controlling systems and methods for testing, calibrating, or quality assurance of the radiation treatment apparatus using a dummy object placed in the radiation field, e.g. phantom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1094Shielding, protecting against radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1097Means for immobilizing the patient

Definitions

  • the present invention relates to a rectal phantom unit and a phantom device including the same. More specifically, a rectal phantom unit and a phantom device including the same that enable safe and effective radiation therapy by verifying the absorbed dose delivered to the rectal wall by simulating the rectum of a patient according to the use of a rectal balloon during radiation therapy will be.
  • Radiation therapy is used to treat cancer or alleviate the patient's pain by irradiating the cancer patient's tumor to cause cancer cells to die or die no longer, thereby killing them.
  • Such radiation therapy can be used, for example, to prevent recurrence if there is a high probability of cancer cells remaining after surgery, or if surgery is not possible, or if radiation therapy is more effective than surgery, or a combination of surgery and radiation therapy If the patient wants to improve the quality of life, or in combination with chemotherapy to maximize the anti-cancer effect.
  • Radiation therapy is performed by medical equipment including radiation generators, such as linear accelerators.
  • the linear accelerator can output high-energy X-rays or electron beams and finely control the output radiation dose, so it is currently used as a standard equipment for radiation therapy.
  • the optimal dose of radiation corresponding to the condition, size, or depth of the tumor can be obtained, and the effect on the body and other adjacent organs (for example, in the treatment of prostate cancer) Since the adjacent rectum can be minimized by radiation, etc., it is very important to ensure that the optimal dose distribution is planned through irradiation of the linear accelerator.
  • the radiation treatment apparatus before using the radiation treatment apparatus, it is necessary to confirm the operation precision such as whether the accelerator operates properly, in particular, whether the radiation dose is properly adjusted to deliver the planned radiation dose.
  • the medical device is called phantom, and it is a measuring device made to perform radiation measurement on behalf of the body.
  • the present invention provides a rectal phantom unit and a phantom device including the same to enable safe and effective radiation therapy by verifying the absorbed dose delivered to the rectal wall by simulating the rectum of the patient according to the use of the rectal balloon during radiation therapy. .
  • the holder is formed through the longitudinal direction; A rectal replica inserted into the penetrating portion of the holder, the plurality of unit plates being stacked to simulate the rectum of the body; And a film provided between the rectal replica and the holder to measure an absorbed dose of radiation irradiated onto the rectal replica.
  • the outer surface of the rectal replica or the inner surface of the holder may include a film seating portion is formed stepped so that the film is seated.
  • a glass dosimeter for measuring the radiation dose irradiated to the rectal replica may be inserted inside the unit plate.
  • the rectal replica may have a cylindrical shape, the glass dosimeter may be plural, and the plurality of glass dosimeters may be disposed at an angle of 45 degrees or more with respect to a central axis of the rectal replicas.
  • the rectal replica may further include an intermediate plate provided between adjacent unit plates to space the glass dosimeter.
  • the rectal replica may have a balloon insertion portion through which the rectal balloon is inserted to fix the prostate, penetrating the unit plate.
  • the inner surface of the rectal replica may be provided with a film for measuring the dose of radiation to the inner surface of the rectal replica.
  • a phantom device for measuring the distribution of radiation to the rectum of the body the insertion hole is formed on one surface, the lower abdomen mimicking body to simulate the lower abdomen; And a rectal phantom unit according to any one of claims 1 to 7, which is inserted into the insertion hole.
  • FIG. 1 is a schematic diagram of a rectal phantom unit according to an embodiment of the present invention.
  • FIGS. 2 and 3 are a cross-sectional view and a plan view of a rectal phantom unit according to a modification of one embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of the rectal phantom unit according to another modification of the embodiment of the present invention.
  • FIG. 5 and 6 are perspective views of the rectal phantom unit according to another embodiment of the present invention.
  • 7 and 8 are a cross-sectional view and a plan view of a rectal phantom unit according to a modification of another embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of the rectal phantom unit according to another modification of another embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a phantom device including a rectal phantom unit according to the present invention.
  • FIG. 1 is a schematic view of the rectal phantom unit 10 according to an embodiment of the present invention
  • Figure 1 is a rectal replica 100, a unit plate (110, 120, 130, 140, 150), a film 210, Holder 300, through 310 is shown.
  • the rectal phantom unit 10 is inserted into the holder 300 having the through part 310 formed in the longitudinal direction, and the through part 310 of the holder 300, and the plurality of unit plates 110. , 120, 130, 140, 150 are stacked and provided between the rectal replica 100 to simulate the rectum of the body and the rectal replica 100 and the holder 300 is irradiated to the rectal replica 100 Including the film 210 to measure the absorbed dose of, by enabling accurate prediction of the dose distribution delivered to the rectum during radiation treatment, it is possible to safe and effective radiation treatment of the prostate gland.
  • the holder 300 has a through part 310 formed in the longitudinal direction, and fixes the unit plate 110, 120, 130, 140, 150 and the film 210 to be described later.
  • the rectal replica 100 to be described later is inserted into the penetrating part 310, and the penetrating part 310 may be eccentrically formed in the holder 300 in consideration of the position of the rectum of the body.
  • the holder 300 may be formed of an acrylic material. Acryl is an equivalent substance to the tissues of the body and does not affect the dose measurement during irradiation.
  • the rectal replica 100 which simulates the rectum of the body is formed by stacking a plurality of unit plates 110, 120, 130, 140, and 150, and is inserted into the penetrating portion 310 of the holder 300.
  • the unit plates 110, 120, 130, 140 and 150 are stacked in plural according to the length of the rectal wall of the patient, and the outer surface of the unit plates 110, 120, 130, 140 and 150 is formed on the inner surface of the holder 300. It is formed to correspond.
  • the film 210 is provided between the rectal replica 100 and the holder 300 to measure the dose and distribution of radiation irradiated to the rectal replica 100. That is, the dose and distribution of the radiation irradiated to the outer wall of the rectum can be predicted using the film 210 provided on the outer surface of the rectal replica 100.
  • the film 210 may be provided to fit snugly without being spaced between the rectal replica 100 and the holder 300.
  • an air layer is formed between the film 210 and the unit plates 110, 120, 130, 140 and 150, or between the film 210 and the holder 300, the irradiated radiation passes through the air layer and is disturbed by the difference in density. This is because phenomena can occur and accurate dose measurements can be difficult.
  • the holder stopper 220 may be inserted into both ends of the through part 310.
  • the holder stopper 220 fixes the rectal replica 100 inside the holder 300.
  • the holder plug 220 may be formed of an acrylic material.
  • the case in which the rectal replica 100 is fixed inside the holder 300 by the holder plug 220 is described.
  • the female thread part () is formed at an end of the hollow part 310 of the holder 300.
  • a male screw portion (not shown) corresponding to the female screw portion is formed on the unit plates 110 and 150 located at both ends of the hollow portion 310, and the inside of the holder 300 by screwing. It is also possible that the rectal replica 100 is fixed.
  • the outer surface of the rectal replica 100 or the inner surface of the holder 300 may include a film mounting portion 215 is formed stepped so that the film 210 is seated.
  • a film seating part 215 is formed on an inner surface of the rectal replica 100 to provide a film 210 for measuring radiation distribution.
  • the height of the step of the film seating portion 215 is formed by the thickness of the film 210, so that when the rectal replica 100 is inserted into the holder 300, an air layer is formed between the film 210 and the inner surface of the holder 300. Do not form.
  • the film seating portion 215 is formed on the outer surface of the rectal replica 100, and the film 210 is seated on the film seating portion 215.
  • the film seating portion 215 is disposed on the inner surface of the holder 300. It is also possible that the film seating portion 215 is formed and the film 210 is seated.
  • FIGS. 2 and 3 are a cross-sectional view and a plan view of the rectal phantom unit 10 according to a modification of one embodiment of the invention
  • Figure 4 is a cross-sectional view of the rectal phantom unit 10 according to another modification of an embodiment of the present invention to be.
  • the rectal replica 100 the unit plates 110, 120, 130, 140, and 150, the intermediate plates 115, 125, 135, and 145, the film 210, and the film seating portion 215.
  • Holder stopper 220, glass dosimeter 230, holder 300 are shown.
  • the rectal phantom unit 10 according to the present embodiment is the same as the rectal phantom unit 10 according to the previous embodiment except for the configuration of the glass dosimeter 230 and the intermediate plates 115, 125, 135, and 145. The same configuration will be replaced with the description of the foregoing embodiment.
  • a glass dosimeter 230 for measuring the radiation dose irradiated to the rectal replica 100 may be inserted.
  • the glass dosimeter 230 may be inserted into a hole (not shown) formed in the unit plates 110, 120, 130, 140, and 150.
  • the glass dosimeter 230 has the advantage that it is possible to read the measured value repeatedly even if a mistake occurs during the reading (reading) because the electron back to the specific energy level does not fall to the ground state.
  • FIG 2 and 4 illustrate the case where the glass dosimeter 230 is inserted into all of the plurality of unit plates 110, 120, 130, 140, and 150, but some unit plates 110, The glass dosimeter 230 may be inserted only at 120, 130, 140, and 150 to measure the dose of radiation at a desired position.
  • the rectal replica 100 may have a cylindrical shape
  • the glass dosimeter 230 is a plurality
  • the plurality of glass dosimeter 230 is the angle between the adjacent glass dosimeter 230 of the rectal replica 100 It may be disposed at 45 degrees or more with respect to the central axis.
  • the glass dosimeter 230 is annularly disposed outside the unit plate 110, and the angle a of the adjacent glass dosimeter 230 may be formed to be 45 degrees or more. This is because when the angle a of the adjacent glass dosimeter 230 is less than 45 degrees, one glass dosimeter 230 may affect other glass dosimeters around 230 and thus prevent accurate dose measurement.
  • the rectal replica 100 has an intermediate plate (115, 125, 135, 145) provided between the adjacent unit plates (110, 120, 130, 140, 150) so as to space the glass dosimeter 230 It may further include.
  • the intermediate plates 115, 125, 135, and 145 are formed in the same cross-sectional area as the unit plates 110, 120, 130, 140, and 150, and are provided between the unit plates 110, 120, 130, 140, and 150.
  • the intermediate plates 115, 125, 135, and 145 are spaced apart from the glass dosimeters 230 provided in the adjacent unit plates 110, 120, 130, 140, and 150 so that one glass dosimeter 230 is moved up and down when measuring the dose.
  • the intermediate plates 115, 125, 135, and 145 may be formed to have a height of 5 to 7 mm in consideration of interference between the glass dosimeters 230.
  • the unit plates 110, 120, 130, 140, and 150 and the intermediate plates 115, 125, 135, and 145 are sequentially stacked.
  • the unit plates 110, 120, 130, 140, and 150 are sequentially stacked. It is also possible to vary the placement and position of the glass dosimeter 230 in the rectal unit 10.
  • the present embodiment it is possible to predict the dose and distribution of radiation irradiated on the outer wall of the rectum by using the film 210 provided on the outer surface of the rectal replica 100, and unit plates 110, 120, 130,
  • the dose of radiation irradiated inside the rectal wall may be predicted using the glass dosimeter 230 inserted into the 140 and 150.
  • the film 210 and the glass dosimeter 230 are used at the same time to predict the dose of radiation.
  • the film 210 or the glass dosimeter 230 may be selected as needed. It is also possible to measure the dose of radiation.
  • an acrylic rod (not shown) having the same diameter and height as the glass dosimeter 230 is inserted into an insertion hole (not shown) into which the glass dosimeter 230 is inserted. It is also possible to measure the radiation dose after insertion to block the insertion hole (not shown).
  • FIG. 5 and 6 are perspective views of the rectal phantom unit 10 according to another embodiment of the present invention.
  • the rectal replica 100 the balloon insertion unit 170, the films 210 and 213, the holder 300, the penetrating unit 310, the rectal balloon 510, and the air injection unit 520. Is shown.
  • the rectal replica 100 of the rectal phantom unit 10 according to the present embodiment is the same as the rectal replica 100 of the rectal phantom unit 10 according to the previous embodiment, the preceding configuration is performed with respect to the same configuration. I will replace the explanation.
  • a balloon insertion unit 170 into which a rectal balloon 510 is fixed may be formed to penetrate the unit plates 110, 120, 130, 140, and 150.
  • the rectal balloon 510 In general, in order to fix the movement of the prostate gland during radiation treatment of prostate cancer and to expand the rectum using a balloon effect so that only a part of the rectal wall is exposed to radiation, the rectal balloon 510 is minimized. This can be used.
  • the rectal balloon 510 inserts the balloon into the rectum and injects air through the air inlet 520 connected to the balloon end to inflate the rectum, thereby expanding the rectum into a predetermined shape and volume.
  • the rectum When the rectum is inflated, the dose of radiation absorbed per unit area is reduced compared to when it is not expanded, thereby reducing damage to the rectum by radiation.
  • the interior of the rectal balloon 510 contains air having a lower density than the body, when the irradiated radiation passes through the rectal and rectal balloons 510, an electron disturbance phenomenon occurs due to a non-uniform material composition, and thus accurate dose prediction. Makes it difficult. In addition, there may be uneven secondary dose escalation and dose shortages at the boundary between two materials with large differences in density. Therefore, when the rectal balloon 510 is inserted into the rectum, it is necessary to verify how the radiation inside the rectal balloon 510 affects the irradiated radiation and the rectal wall. In addition, it is necessary to evaluate whether or not the use of the rectal balloon 510 is clinically effective for radiotherapy compared to the case where the rectal balloon 510 is not used.
  • the rectal balloon 510 when the rectal balloon 510 is inserted and air is injected to simulate the expansion of the rectum, it is inserted into the rectum of the body. It is possible to evaluate how the rectal balloon 510 affects the dose measurement and the effect of the use of the rectal balloon 510 in radiation therapy.
  • the penetrating portion 310 is formed in the holder 300 in the longitudinal direction, and the penetrating portion 310 is the holder 300 in consideration of the position of the rectum of the body when the rectal balloon 510 is inserted into the rectum. It can be formed in the center of the).
  • a film 213 for measuring the dose of radiation irradiated on the inner surface of the rectal replica 100 may be provided.
  • the film 213 is in close contact with the inner surface of the rectal replica 100 formed by the balloon insertion unit 170 so that no air layer is formed.
  • the dose and distribution of radiation irradiated to the outer wall of the rectal can be predicted, and the film 213 provided on the inner surface of the rectal replica 100 is used. It is possible to predict the dose and distribution of radiation irradiated on the rectal wall.
  • FIG. 7 and 8 are a cross-sectional view and a plan view of a rectal phantom unit according to a modification of another embodiment of the present invention
  • Figure 9 is a cross-sectional view of the rectal phantom unit according to another modification of another embodiment of the present invention.
  • the rectal phantom unit according to the present exemplary embodiment is except for the configuration of the balloon inserting unit 170 into which the rectal balloon 510 is inserted and the film 213 provided on the inner surface of the rectal replica 100. Since the same as the rectal replica 100 of the rectal phantom unit 10 according to the previous embodiment described in the same configuration will be replaced with the description of the previous embodiment.
  • the balloon inserting portion 170 is inserted into the rectal balloon 510, the inner surface of the rectal replica 100 is provided with a film 213 can measure the dose of radiation irradiated on the inner surface of the rectal replica 100 have. Meanwhile, the intermediate plates 115, 125, 135, and 145 provided between the unit plates 110, 120, 130, 140, and 150 have balloons corresponding to the shapes of the unit plates 110, 120, 130, 140, and 150. Insertion unit 170 may be formed.
  • FIG. 10 is a schematic view of a phantom device including a rectal phantom unit 10 according to an embodiment of the present invention.
  • the rectal phantom unit 10 the lower abdomen mimic body 400, and the insertion hole 410 are illustrated.
  • Lower abdomen mimetic plug 430, coupling 420, cover plate 440 is shown.
  • the insertion hole 410 is formed on one surface and the lower abdomen mimetics 400 to simulate the lower abdomen of the body and Rectal phantom unit 10 is inserted into the insertion hole 410.
  • rectal phantom unit 10 of the phantom device is the same as the configuration of the rectal phantom unit 10 of the previous embodiment, the same configuration is replaced with the description of the previous embodiment.
  • the lower abdomen replica 400 has a plurality of plates stacked in a plurality to simulate the lower abdomen of the body and may be formed of an acrylic material. Before and after the lower abdomen replica 400 is provided with a cover plate 440 to cover the lower abdomen replica (400). The lower abdomen replica 400 and the cover plate 440 are fastened through the coupler 420.
  • the coupler 420 means a means for fastening and fastening a plurality of objects, and may be fixed by screwing a bolt and a nut as shown.
  • Coupler 420 is preferably formed of a material equivalent to the tissue of the body, such as acrylic in consideration of the effect on the dose measurement during irradiation.
  • An insertion hole 410 is formed in the center of the lower abdomen replica 400 so that the rectal phantom unit 10 is inserted into the insertion hole 410.
  • the lower abdomen mimetic cap 430 is inserted into both ends of the insertion hole 410 to fix the rectal phantom unit 10 inserted into the lower abdomen mimic 400.
  • the cover plate 440 is intended to simulate tissue around the rectum, and covers the lower abdomen mimic 400 to provide an electronic equilibrium state at the measurement site to provide more accurate and stable measurement conditions. That is, the cover plate 440 is disposed before and after the lower abdomen miter 400 along the longitudinal direction of the rectal phantom unit 10 to prevent the rectal phantom unit 10 from being directly exposed to radiation during irradiation. It is possible to create conditions for stable and accurate dose measurement.
  • the lower abdomen mimetics 400 and the rectal phantom unit 10 can be used to accurately simulate the state of the rectum of the body, and more accurately measure the dose and distribution of radiation irradiated to the rectum during the treatment of prostate cancer. And predictable.

Landscapes

  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgery (AREA)
  • Neurosurgery (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

본 발명의 일 측면에 따르면, 길이 방향으로 관통부가 형성되는 홀더; 상기 홀더의 상기 관통부에 삽입되며, 복수의 단위 플레이트가 적층되어 신체의 직장을 모사하는 직장 모사체; 및 상기 직장 모사체와 상기 홀더 사이에 구비되어 상기 직장 모사체에 조사되는 방사선의 선량을 측정하는 필름을 포함하는, 직장 팬텀 유닛 및 이를 포함하는 팬텀 장치가 제공된다.

Description

직장 팬텀 유닛 및 이를 포함하는 팬텀 장치
본 발명은 직장 팬텀 유닛 및 이를 포함하는 팬텀 장치에 관한 것이다. 보다 상세하게는 방사선 치료 시 직장 풍선 사용 여부에 따른 환자의 직장을 모사하여 직장 벽에 전달된 흡수선량을 검증함으로써, 안전하면서도 효과적인 방사선 치료가 가능하게 하는 직장 팬텀 유닛 및 이를 포함하는 팬텀 장치에 관한 것이다.
방사선 치료는 암환자의 종양에 방사선을 조사하여 암세포를 사멸시키거나 더 이상 번식하지 못하게 함으로써 암세포가 수명을 다해 죽게 하여 암을 치료하거나 환자의 고통을 경감하기 위해 사용된다.
이와 같은 방사선 치료는 예컨대 수술을 한 뒤 암세포가 남아 있을 가능성이 큰 경우 재발을 방지하기 위해서, 또는 수술을 하지 못하는 경우, 또는 수술보다는 방사선 치료가 더 효과적인 경우, 또는 수술과 방사선 치료를 같이 병행하여 환자의 삶의 질을 높이고자 하는 경우, 또는 항암 약물 치료와 함께 항암 효과를 극대화하기 위해서 행해진다.
방사선 치료는 선형가속기(linear accelerator)와 같은 방사선 발생장치를 포함하는 의료장비에 의해 행해진다. 선형가속기는 높은 에너지의 엑스선 또는 전자선을 출력할 수 있음은 물론 출력 방사선량을 세밀하게 조절할 수 있어 현재 방사선 치료의 표준장비로 사용되고 있다.
방사선 치료 수행 시 방사선 치료장치에서 출력된 방사선량이 적절하도록 제어할 필요가 있다. 종양의 상태나 크기 또는 깊이에 대응한 최적 선량의 방사선을 조사하여야 최대의 치료효과를 거둘 수 있으며, 종양이 발생한 신체 기관과 인접한 다른 기관에 미치는 영향(예를 들어, 전립선 암의 치료 시 전립선과 인접해 있는 직장이 방사선에 의해 손상되는 현상 등)을 최소화할 수 있으므로 선형가속기의 방사선 조사를 통해 계획한 최적의 선량분포를 형성할 수 있도록 하는 것은 매우 중요한 일이다.
이에 따라 방사선 치료장치를 사용하기 전에 가속기가 제대로 작동하는지 특히 방사선량의 조절이 정상적으로 이루어져 계획한 방사선량을 전달할 수 있는지 등의 동작 정밀성을 미리 확인하여야 한다. 또한, 선형가속기의 동작과 방사선 조사량은 실제로 치료가 되어야 할 환자의 몸 속 특정 부위에 전달된 흡수선량을 측정하는 것이 바람직하다. 이와 같은 목적으로 사용되는 것이 의료계에서 소위 팬텀(phantom)이라 불리는 것으로 신체를 대신하여 방사선 계측이 가능하도록 만들어진 계측 장치이다.
한편, 전립선 암의 치료 시 주요 보호장기인 직장이 방사선에 의해 손상되는 것을 방지하기 위해, 종양에 가능한 최대 방사선 선량을 전달시키면서 동시에 직장에 방사선 피폭선량을 최소화시키는 것이 바람직하다. 따라서, 효과적인 치료를 위해서는 방사선 치료 전에 환자에게 전달되는 선량 값, 특히, 종양 및 직장에 전달되는 선량 분포를 예측하여야 하는데, 환자의 직장을 모사하여 전립선의 방사선 치료 시 직장에 전달되는 선량 분포의 정확성을 검증할 수 있는 직장 팬텀이 필요한 실정이다.
본 발명은 방사선 치료 시 직장 풍선 사용 여부에 따른 환자의 직장을 모사하여 직장 벽에 전달된 흡수선량을 검증함으로써, 안전하면서도 효과적인 방사선 치료가 가능하게 하는 직장 팬텀 유닛 및 이를 포함하는 팬텀 장치를 제공한다.
본 발명의 일 측면에 따르면, 길이 방향으로 관통부가 형성되는 홀더; 상기 홀더의 상기 관통부에 삽입되며, 복수의 단위 플레이트가 적층되어 신체의 직장을 모사하는 직장 모사체; 및 상기 직장 모사체와 상기 홀더 사이에 구비되어 상기 직장 모사체에 조사되는 방사선의 흡수선량을 측정하는 필름을 포함하는, 직장 팬텀 유닛이 제공된다.
상기 직장 모사체의 외면 또는 상기 홀더의 내면에는, 상기 필름이 안착되도록 단차지게 형성되는 필름 안착부를 포함할 수 있다.
상기 단위 플레이트의 내부에는, 상기 직장 모사체에 조사되는 방사선량을 측정하기 위한 유리선량계가 삽입될 수 있다.
상기 직장 모사체는 원기둥 형상이고, 상기 유리선량계는 복수이며, 상기 복수의 유리선량계는 인접하는 유리선량계 사이의 각도가 상기 직장 모사체의 중심축을 기준으로 45도 이상으로 배치될 수 있다.
상기 직장 모사체는, 상기 유리선량계를 이격시키도록 인접하는 상기 단위 플레이트 사이에 구비되는 중간 플레이트를 더 포함할 수 있다.
상기 직장 모사체에는, 전립선을 고정하기 위한 직장 풍선이 삽입되는 풍선 삽입부가 상기 단위 플레이트를 관통하여 형성될 수 있다.
상기 직장 모사체의 내면에는, 상기 직장 모사체의 내면에 조사되는 방사선의 선량을 측정하는 필름이 구비될 수 있다.
본 발명의 일 측면에 따르면, 신체의 직장에 조사되는 방사선의 분포를 측정하기 위한 팬텀 장치에 있어서, 일면에 삽입홀이 형성되며, 신체의 하복부를 모사하는 하복부 모사체; 및 상기 삽입홀에 삽입되는 제1항 내지 제7항 중 어느 한 항에 따른 직장 팬텀 유닛을 포함하는, 팬텀 장치가 제공된다.
본 발명의 실시예에 따르면, 방사선 치료 시 직장 풍선 사용 여부에 따른 환자의 직장을 모사하여 직장 벽에 전달된 흡수선량을 검증함으로써, 안전하면서도 효과적인 방사선 치료가 가능한 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 직장 팬텀 유닛의 개략도이다.
도 2 및 도 3은 본 발명의 일 실시예의 변형예에 따른 직장 팬텀 유닛의 단면도 및 평면도이다.
도 4는 본 발명의 일 실시예의 다른 변형예에 따른 직장 팬텀 유닛의 단면도이다.
도 5는 및 도 6은 본 발명의 다른 실시예에 따른 직장 팬텀 유닛의 사시도이다.
도 7 및 도 8은 본 발명의 다른 실시예의 변형예에 따른 직장 팬텀 유닛의 단면도 및 평면도이다.
도 9는 본 발명의 다른 실시예의 다른 변형예에 따른 직장 팬텀 유닛의 단면도이다.
도 10은 본 발명에 따른 직장 팬텀 유닛을 포함하는 팬텀 장치의 개략도이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
이하, 본 발명에 직장 팬텀 유닛 및 이를 포함하는 팬텀 장치를 첨부한 도면을 참조하여 상세히 설명하기로 하며, 첨부한 도면을 참조하여 설명함에 있어서, 동일하거나 대응하는 구성 요소는 동일한 도면번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
도 1은 본 발명의 일 실시예에 따른 직장 팬텀 유닛(10)의 개략도이며, 도 1에는 직장 모사체(100), 단위 플레이트(110, 120, 130, 140, 150), 필름(210), 홀더(300), 관통부(310)가 도시되어 있다.
본 실시예에 따른 직장 팬텀 유닛(10)은, 길이 방향으로 관통부(310)가 형성되는 홀더(300)와, 홀더(300)의 관통부(310)에 삽입되며, 복수의 단위 플레이트(110, 120, 130, 140, 150)가 적층되어 신체의 직장을 모사하는 직장 모사체(100) 및 직장 모사체(100)와 홀더(300) 사이에 구비되어 직장 모사체(100)에 조사되는 방사선의 흡수선량을 측정하는 필름(210)을 포함하여, 방사선 치료 시 직장에 전달되는 선량 분포의 정확한 예측이 가능하도록 함으로써, 안전하면서도 효과적인 전립선의 방사선 치료가 가능하다.
홀더(300)는 길이 방향으로 관통부(310)가 형성되며, 후술할 단위 플레이트(110, 120, 130, 140, 150)와 필름(210)을 고정한다. 관통부(310)에는 후술할 직장 모사체(100)가 삽입되며, 관통부(310)는 신체의 직장의 위치를 고려하여 홀더(300)에 편심되어 형성될 수 있다. 이때, 홀더(300)는 아크릴 재질로 형성될 수 있다. 아크릴은 신체의 조직과 등가 물질로서 방사선 조사시 선량 측정에 영향을 미치지 않기 때문이다.
신체의 직장을 모사하는 직장 모사체(100)는 복수의 단위 플레이트(110, 120, 130, 140, 150)가 적층되어 형성되며, 홀더(300)의 관통부(310)에 삽입된다. 단위 플레이트(110, 120, 130, 140, 150)는 환자의 직장 벽의 길이에 따라 복수로 적층되며, 단위 플레이트(110, 120, 130, 140, 150)의 외면은 홀더(300)의 내면에 대응하도록 형성된다.
필름(210)은 직장 모사체(100)와 홀더(300) 사이에 구비되어 직장 모사체(100)에 조사되는 방사선의 선량 및 분포를 측정한다. 즉, 직장 모사체(100)의 외면에 구비되는 필름(210)을 이용하여 직장 외벽에 조사되는 방사선의 선량 및 분포를 예측할 수 있다. 필름(210)은 직장 모사체(100)와 홀더(300) 사이에 이격되지 않고 꼭 맞게 구비될 수 있다. 필름(210)과 단위 플레이트(110, 120, 130, 140, 150) 또는 필름(210)과 홀더(300) 사이에 공기층이 형성되는 경우 조사된 방사선이 공기층을 지나면서 밀도의 차이에 의해 전자교란 현상이 발생하여 정확한 선량 측정이 어려울 수 있기 때문이다.
직장 모사체(100)가 홀더(300)에 삽입된 후, 관통부(310)의 양 단부에 홀더 마개(220)가 삽입될 수 있다. 홀더 마개(220)는 직장 모사체(100)를 홀더(300) 내부에 고정시킨다. 홀더 마개(220)는 아크릴 재질로 형성될 수 있다. 본 실시예에서는, 홀더 마개(220)에 의해 직장 모사체(100)를 홀더(300) 내부에 고정시키는 경우를 중심으로 설명하였으나, 홀더(300)의 중공부(310)의 단부에 암나사부(미도시)가 형성되고 중공부(310)의 양 단부에 위치하는 단위 플레이트(110, 150)에 상기 암나사부에 대응하는 수나사부(미도시)가 형성되어 나사 결합에 의해 홀더(300) 내부에 직장 모사체(100)가 고정되는 것도 가능하다.
한편, 직장 모사체(100)의 외면 또는 홀더(300)의 내면에는, 필름(210)이 안착되도록 단차지게 형성되는 필름 안착부(215)를 포함할 수 있다. 도 2를 참조하면, 직장 모사체(100)의 내면에 필름 안착부(215)가 형성되어 방사선 분포를 측정하기 위한 필름(210)이 구비된다. 필름 안착부(215)의 단차의 높이는 필름(210)의 두께만큼 형성되어, 직장 모사체(100)가 홀더(300)에 삽입되는 경우 필름(210)과 홀더(300)의 내면 사이에 공기층이 형성되지 않도록 한다.
본 실시예에서는 직장 모사체(100)의 외면에 필름 안착부(215)가 형성되고 필름 안착부(215)에 필름(210)이 안착되는 경우를 중심으로 설명하였으나, 홀더(300)의 내면에 필름 안착부(215)가 형성되고 필름(210)이 안착되는 경우도 가능하다.
도 2 및 도 3은 본 발명의 일 실시예의 변형예에 따른 직장 팬텀 유닛(10)의 단면도 및 평면도이고, 도 4는 본 발명의 일 실시예의 다른 변형예에 따른 직장 팬텀 유닛(10)의 단면도이다.
도 2 내지 도 4에는 직장 모사체(100), 단위 플레이트(110, 120, 130, 140, 150), 중간 플레이트(115, 125, 135, 145), 필름(210), 필름 안착부(215), 홀더 마개(220), 유리선량계(230), 홀더(300)가 도시되어 있다.
본 실시예에 따른 직장 팬텀 유닛(10)은, 유리선량계(230), 중간 플레이트(115, 125, 135, 145)의 구성을 제외하고 앞선 일 실시예에 따른 직장 팬텀 유닛(10)과 동일하므로 동일한 구성에 관하여는 앞선 일 실시예의 설명에 갈음하기로 한다.
직장 모사체(100)를 형성하는 단위 플레이트(110, 120, 130, 140, 150)의 내부에는, 직장 모사체(100)에 조사되는 방사선량을 측정하기 위한 유리선량계(230)가 삽입될 수 있다. 유리선량계(230)는 단위 플레이트(110, 120, 130, 140, 150)에 형성되는 구멍(미도시)에 삽입되어 구비될 수 있다. 유리선량계(230)는 여기되었던 전자가 기저상태로 떨어지지 않고 특정 에너지 준위에 다시 돌아오게 되므로, 리딩(reading) 과정에서 실수가 발생하더라도 반복하여 측정값을 읽을 수 있는 장점이 있다.
도 2 및 도 4에는 복수의 단위 플레이트(110, 120, 130, 140, 150) 모두에 유리선량계(230)가 삽입되는 경우를 도시하였으나, 측정하는 사람의 선택에 따라 일부의 단위 플레이트(110, 120, 130, 140, 150)에만 유리선량계(230)가 삽입되어 원하는 위치에서의 방사선의 선량을 측정할 수도 있다.
한편, 직장 모사체(100)는 원기둥 형상일 수 있으며, 유리선량계(230)는 복수이며, 복수의 유리선량계(230)는 인접하는 유리선량계(230) 사이의 각도가 직장 모사체(100)의 중심축을 기준으로 45도 이상으로 배치될 수 있다.
도 3을 참조하면, 유리선량계(230)는 단위 플레이트(110)의 외측에 환형으로 배치되며, 인접하는 유리선량계(230)의 각도(a)는 45도 이상으로 형성될 수 있다. 인접하는 유리선량계(230)의 각도(a)가 45도 미만인 경우 하나의 유리선량계(230)가 주위의 다른 유리선량계(230)에 영향을 주어 정확한 선량 측정을 방해할 수 있기 때문이다.
한편, 직장 모사체(100)는, 유리선량계(230)를 이격시키도록 인접하는 단위 플레이트(110, 120, 130, 140, 150) 사이에 구비되는 중간 플레이트(115, 125, 135, 145)를 더 포함할 수 있다. 중간 플레이트(115, 125, 135, 145)는 단위 플레이트(110, 120, 130, 140, 150)와 같은 단면적으로 형성되어 단위 플레이트(110, 120, 130, 140, 150) 사이에 구비된다. 중간 플레이트(115, 125, 135, 145)는 인접하는 단위 플레이트(110, 120, 130, 140, 150)에 구비되는 유리선량계(230)를 이격시켜 선량 측정시 하나의 유리선량계(230)가 상하로 인접하는 다른 유리선량계(230)에 영향을 주는 것을 방지한다. 중간 플레이트(115, 125, 135, 145)는 유리선량계(230) 간의 간섭을 고려하여 5~7mm 높이로 형성될 수 있다. 한편, 본 실시예에서는 단위 플레이트(110, 120, 130, 140, 150)와 중간 플레이트(115, 125, 135, 145)가 순차적으로 적층되는 경우를 예시하였으나, 플레이트의 적층 순서와 조합으로 달리함으로써, 직장 유닛(10) 내에서 유리선량계(230)의 배치 및 위치를 달리하는 것도 가능하다.
본 실시예에 의할 경우, 직장 모사체(100)의 외면에 구비되는 필름(210)을 이용하여 직장 외벽에 조사되는 방사선의 선량 및 분포를 예측할 수 있고, 단위 플레이트(110, 120, 130, 140, 150)에 삽입되는 유리선량계(230)를 이용하여 직장 벽 내부에 조사되는 방사선의 선량을 예측할 수 있다.
한편, 본 실시예에서는 방사선의 선량을 예측하기 위해 필름(210)과 유리선량계(230)를 동시에 사용하는 경우를 중심으로 설명하였으나, 필요에 따라서 필름(210) 또는 유리선량계(230)를 선택하여 방사선의 선량을 측정하는 것도 가능하다. 이때, 필름(210) 만을 이용하여 방사선 선량을 예측하는 경우, 유리선량계(230)가 삽입되는 삽입구멍(미도시)에 유리선량계(230)와 동일한 직경 및 높이를 갖는 아크릴 봉(미도시)을 삽입하여 삽입구멍(미도시)을 막은 후 방사선 선량을 측정하는 것도 가능하다. 또한, 유리선량계(230) 만을 이용하여 방사선 선량을 예측하는 경우, 필름 안착부(215)가 형성되어 있지 않는 직장 모사체(100)를 사용하여 방사선 선량을 측정하는 것도 가능하다.
도 5는 및 도 6은 본 발명의 다른 실시예에 따른 직장 팬텀 유닛(10)의 사시도이다.
도 5 및 도 6에는 직장 모사체(100), 풍선 삽입부(170), 필름(210, 213), 홀더(300), 관통부(310), 직장 풍선(510), 공기 주입부(520)가 도시되어 있다.
본 실시예에 따른 직장 팬텀 유닛(10)의, 직장 모사체(100)는 앞선 일 실시예에 따른 직장 팬텀 유닛(10)의 직장 모사체(100)와 동일하므로 동일한 구성에 관하여는 앞선 일 실시예의 설명에 갈음하기로 한다.
직장 모사체(100)에는, 전립선을 고정하기 위한 직장 풍선(510)이 삽입되는 풍선 삽입부(170)가 단위 플레이트(110, 120, 130, 140, 150)를 관통하여 형성될 수 있다.
일반적으로, 전립선 암의 방사선 치료 시에 전립선의 움직임을 고정하고, 풍선 효과를 이용하여 직장을 확장시켜 직장 벽의 일부만이 방사선에 노출되도록 하여 직장 벽의 피폭 선량을 최소화하기 위해 직장 풍선(510)이 사용될 수 있다. 직장 풍선(510)은 직장 내에 풍선을 삽입한 후 풍선을 고정시킨 후 풍선 끝에 연결되어 있는 공기 주입부(520)를 통해 공기를 주입함으로써, 직장을 일정한 모양과 부피로 직장을 팽창시킨다. 직장이 팽창되면 팽창되지 않았을 때에 비해 단위 면적 당 흡수된 방사선의 선량이 감소하게 되므로 방사선에 의한 직장의 손상을 감소시키는 것이다.
그러나, 직장 풍선(510)의 내부는 신체에 비해 밀도가 낮은 공기를 포함하므로 조사된 방사선이 직장 및 직장 풍선(510)을 통과할 때 불균일한 물질 구성에 의한 전자교란 현상이 발생하면서 정확한 선량 예측을 어렵게한다. 또한 밀도 차이가 큰 두 물질 간 경계구간에서 불균일한 2차적인 선량 상승 및 선량 부족 현상들이 나타날 수 도 있다. 따라서, 직장 풍선(510)이 직장에 삽입되었을 때 직장 풍선(510) 내부의 공기가 조사된 방사선 및 직장 벽에 어떠한 선량 영향을 미치는지 검증할 필요가 있다. 또한, 직장 풍선(510)의 사용이 직장 풍선(510)을 사용하지 않는 경우와 비교하여 임상적으로 방사선 치료에 효과적인지 여부 등을 평가할 필요가 있다.
본 실시예에의 직장 모사체(100)에 형성되는 풍선 삽입부(170)를 이용하여 직장 풍선(510)이 삽입된 후 공기가 주입되어 직장이 팽창하였을 때를 모사함으로써, 신체의 직장에 삽입된 직장 풍선(510)이 선량 측정에 어떠한 영향을 미치는지 여부 및 방사선 치료 시에 직장 풍선(510) 사용의 효과를 평가할 수 있다.
도 6을 참조하면, 홀더(300)에는 길이 방향으로 관통부(310)가 형성되며, 직장에 직장 풍선(510)이 삽입 시 신체의 직장의 위치를 고려하여 관통부(310)는 홀더(300)의 중심에 형성될 수 있다.
한편, 직장 모사체(100)의 내면에는, 직장 모사체(100)의 내면에 조사되는 방사선의 선량을 측정하는 필름(213)이 구비될 수 있다. 필름(213)은 풍선 삽입부(170)에 의해 형성되는 직장 모사체(100)의 내면에 공기층이 형성되지 않도록 밀착된다.
직장 모사체(100)의 외면에 구비되는 필름(210)을 이용하여 직장 외벽에 조사되는 방사선의 선량 및 분포를 예측할 수 있으며, 직장 모사체(100)의 내면에 구비되는 필름(213)을 이용하여 직장 내벽에 조사되는 방사선의 선량 및 분포를 예측할 수 있다.
도 7 및 도 8은 본 발명의 다른 실시예의 변형예에 따른 직장 팬텀 유닛의 단면도 및 평면도이고, 도 9는 본 발명의 다른 실시예의 다른 변형예에 따른 직장 팬텀 유닛의 단면도이다.
본 실시예에 따른 직장 팬텀 유닛은 직장 풍선(510)이 삽입되는 풍선 삽입부(170) 및 직장 모사체(100)의 내면에 구비되는 필름(213)의 구성을 제외하고는 도 2 내지 도 4에서 설명한 앞선 실시예에 따른 직장 팬텀 유닛(10)의 직장 모사체(100)와 동일하므로 동일한 구성에 관하여는 앞선 실시예의 설명에 갈음하기로 한다.
풍선 삽입부(170)에는 직장 풍선(510)이 삽입되며, 직장 모사체(100)의 내면에는 필름(213)이 구비되어 직장 모사체(100)의 내면에 조사되는 방사선의 선량을 측정할 수 있다. 한편, 단위 플레이트(110, 120, 130, 140, 150) 사이에 구비되는 중간 플레이트(115, 125, 135, 145)는 단위 플레이트(110, 120, 130, 140, 150)의 형상에 대응하여 풍선 삽입부(170)가 형성될 수 있다.
도 10은 본 발명의 실시예에 따른 직장 팬텀 유닛(10)을 포함하는 팬텀 장치의 개략도이며, 도 10을 참조하면, 직장 팬텀 유닛(10), 하복부 모사체(400), 삽입홀(410), 하복부 모사체 마개(430), 결합구(420), 덮개 플레이트(440)가 도시되어 있다.
본 실시예에 따른 팬텀 장치는, 신체의 직장에 조사되는 방사선의 분포를 측정하기 위한 팬텀 장치에 있어서, 일면에 삽입홀(410)이 형성되며 신체의 하복부를 모사하는 하복부 모사체(400) 및 삽입홀(410)에 삽입되는 직장 팬텀 유닛(10)을 포함한다.
본 실시예에 따른 팬텀 장치의 직장 팬텀 유닛(10)은 앞선 실시예의 직장 팬텀 유닛(10)의 구성과 동일하므로, 동일한 구성에 관하여는 앞선 일 실시예의 설명에 갈음한다.
하복부 모사체(400)는 다수의 플레이트가 복수로 적층되어 신체의 하복부를 모사하며 아크릴 재질로 형성될 수 있다. 하복부 모사체(400)의 전/후에는 덮개 플레이트(440)가 구비되어 하복부 모사체(400)를 커버한다. 하복부 모사체(400)와 덮개 플레이트(440)는 결합구(420)를 통해 체결된다. 본 실시예에서 결합구(420)는 다수의 물체를 체결하여 고정하는 수단을 의미하며, 도시된 바와 같이 볼트와 너트의 나사 결합에 의해 고정될 수 있다. 결합구(420)는 방사선 조사시 선량 측정에 미치는 영향을 고려하여 아크릴과 같은 신체의 조직과 등가 물질로 형성되는 것이 바람직하다.
하복부 모사체(400)의 중앙에는 길이 방향으로 관통하도록 삽입홀(410)이 형성되어 삽입홀(410)에 직장 팬텀 유닛(10)이 삽입된다. 삽입홀(410)의 양 단부에는 하복부 모사체 마개(430)가 삽입되어, 하복부 모사체(400) 내부에 삽입되는 직장 팬텀 유닛(10)을 고정시킬 수 있다.
덮개 플레이트(440)는 직장 주변의 조직을 모사하기 위한 것으로서, 하복부 모사체(400)를 커버하여 측정 부위에 전자 평형 상태를 제공하여 보다 정확하고 안정적인 측정 조건을 제공한다. 즉, 덮개 플레이트(440)는 직장 팬텀 유닛(10)의 길이 방향을 따라 하복부 모사체(400) 전/후로 배치되어 방사선 조사시 방사선에 바로 노출되는 것을 방지함으로써, 직장 팬텀 유닛(10)이 보다 안정적이고 정확하게 선량을 측정할 수 있는 조건을 형성할 수 있다.
이와 같이, 하복부 모사체(400) 및 직장 팬텀 유닛(10)을 이용하여 신체의 직장의 상태를 정밀하게 모사할 수 있으며, 전립선 암의 치료 시 직장에 조사되는 방사선의 선량 및 분포를 더욱 정확하게 측정 및 예측할 수 있다.
이상에서는 본 발명의 실시예를 참조하여 설명하였지만, 해당 기술 분야에서 통상의 지식을 가진 자라면 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 쉽게 이해할 수 있을 것이다.

Claims (8)

  1. 길이 방향으로 관통부가 형성되는 홀더;
    상기 홀더의 상기 관통부에 삽입되며, 복수의 단위 플레이트가 적층되어 신체의 직장을 모사하는 직장 모사체; 및
    상기 직장 모사체와 상기 홀더 사이에 구비되어 상기 직장 모사체에 조사되는 방사선의 흡수선량을 측정하는 필름을 포함하는, 직장 팬텀 유닛.
  2. 제1항에 있어서,
    상기 직장 모사체의 외면 또는 상기 홀더의 내면에는,
    상기 필름이 안착되도록 단차지게 형성되는 필름 안착부를 포함하는 것을 특징으로 하는, 직장 팬텀 유닛.
  3. 제1항에 있어서,
    상기 단위 플레이트의 내부에는,
    상기 직장 모사체에 조사되는 방사선량을 측정하기 위한 유리선량계가 삽입되는 것을 특징으로 하는, 직장 팬텀 유닛.
  4. 제3항에 있어서,
    상기 직장 모사체는 원기둥 형상이고,
    상기 유리선량계는 복수이며,
    상기 복수의 유리선량계는 인접하는 유리선량계 사이의 각도가 상기 직장 모사체의 중심축을 기준으로 45도 이상으로 배치되는 것을 특징으로 하는, 직장 팬텀 유닛.
  5. 제3항에 있어서,
    상기 직장 모사체는,
    상기 유리선량계를 이격시키도록 인접하는 상기 단위 플레이트 사이에 구비되는 중간 플레이트를 더 포함하는 것을 특징으로 하는, 직장 팬텀 유닛.
  6. 제1항에 있어서,
    상기 직장 모사체에는,
    전립선을 고정하기 위한 직장 풍선이 삽입되는 풍선 삽입부가 상기 단위 플레이트를 관통하여 형성되는 것을 특징으로 하는, 직장 팬텀 유닛.
  7. 제6항에 있어서,
    상기 직장 모사체의 내면에는,
    상기 직장 모사체의 내면에 조사되는 방사선의 선량을 측정하는 필름이 구비되는 것을 특징으로 하는, 직장 팬텀 유닛.
  8. 신체의 직장에 조사되는 방사선의 분포를 측정하기 위한 팬텀 장치에 있어서,
    일면에 삽입홀이 형성되며, 신체의 하복부를 모사하는 하복부 모사체; 및
    상기 삽입홀에 삽입되는 제1항 내지 제7항 중 어느 한 항에 따른 직장 팬텀 유닛을 포함하는, 팬텀 장치.
PCT/KR2015/003332 2015-02-04 2015-04-02 직장 팬텀 유닛 및 이를 포함하는 팬텀 장치 WO2016125948A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/548,679 US10449392B2 (en) 2015-02-04 2015-04-02 Rectal phantom unit and phantom device including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150017623A KR101649202B1 (ko) 2015-02-04 2015-02-04 직장 팬텀 유닛 및 이를 포함하는 팬텀 장치
KR10-2015-0017623 2015-02-04

Publications (1)

Publication Number Publication Date
WO2016125948A1 true WO2016125948A1 (ko) 2016-08-11

Family

ID=56564274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/003332 WO2016125948A1 (ko) 2015-02-04 2015-04-02 직장 팬텀 유닛 및 이를 포함하는 팬텀 장치

Country Status (3)

Country Link
US (1) US10449392B2 (ko)
KR (1) KR101649202B1 (ko)
WO (1) WO2016125948A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101665615B1 (ko) * 2015-04-20 2016-10-12 국립암센터 체내 방사선량 측정기구
KR101840565B1 (ko) * 2016-10-25 2018-03-20 경희대학교 산학협력단 선량측정장치
KR101916390B1 (ko) * 2017-07-11 2019-01-30 연세대학교 산학협력단 X-선 및 입자방사선 치료 시 스텐트에서 야기되는 선량 교란을 측정하기 위한 스텐트 고정 장치
KR102293379B1 (ko) 2019-06-24 2021-08-26 한국수력원자력 주식회사 선량계를 수용하는 홀더 및 이를 이용한 방사선 선량측정방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050141672A1 (en) * 2003-12-24 2005-06-30 National Institute Of Radiological Sciences Phantom and phantom assembly
KR20080006142A (ko) * 2006-07-11 2008-01-16 가톨릭대학교 산학협력단 장기모사 팬텀을 갖는 팬텀장치
KR20090013894A (ko) * 2007-08-03 2009-02-06 사회복지법인 삼성생명공익재단 방사선량 측정장치
KR20120079726A (ko) * 2011-01-05 2012-07-13 학교법인 건국대학교 회전 조사식 체적 기반 세기조절방사선치료의 선량 검증을 위한 팬톰장치
KR20120100289A (ko) * 2011-03-03 2012-09-12 학교법인 건국대학교 체적 기반 입체조형 활꼴세기조절방사선치료의 선량 검증을 위한 팬톰장치 및 이를 이용한 선량 오차 분석방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120028616A (ko) 2010-09-15 2012-03-23 (주)모스디자인 안내표지판 고정구
KR101241108B1 (ko) * 2011-01-28 2013-03-11 경희대학교 산학협력단 정도관리를 위한 방사선량 측정용 팬텀

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050141672A1 (en) * 2003-12-24 2005-06-30 National Institute Of Radiological Sciences Phantom and phantom assembly
KR20080006142A (ko) * 2006-07-11 2008-01-16 가톨릭대학교 산학협력단 장기모사 팬텀을 갖는 팬텀장치
KR20090013894A (ko) * 2007-08-03 2009-02-06 사회복지법인 삼성생명공익재단 방사선량 측정장치
KR20120079726A (ko) * 2011-01-05 2012-07-13 학교법인 건국대학교 회전 조사식 체적 기반 세기조절방사선치료의 선량 검증을 위한 팬톰장치
KR20120100289A (ko) * 2011-03-03 2012-09-12 학교법인 건국대학교 체적 기반 입체조형 활꼴세기조절방사선치료의 선량 검증을 위한 팬톰장치 및 이를 이용한 선량 오차 분석방법

Also Published As

Publication number Publication date
US20180036555A1 (en) 2018-02-08
KR101649202B1 (ko) 2016-08-19
US10449392B2 (en) 2019-10-22
KR20160095944A (ko) 2016-08-12

Similar Documents

Publication Publication Date Title
Hensley Present state and issues in IORT physics
WO2016125948A1 (ko) 직장 팬텀 유닛 및 이를 포함하는 팬텀 장치
Followill et al. Design, development, and implementation of the radiological physics center's pelvis and thorax anthropomorphic quality assurance phantoms
Mesoloras et al. Neutron scattered dose equivalent to a fetus from proton radiotherapy of the mother
Piermattei et al. In vivo dosimetry by an aSi‐based EPID
KR101027330B1 (ko) Imrt용 선형가속기의 정도관리를 위한 팬텀
Duch et al. Thermoluminescence dosimetry applied to in vivo dose measurements for total body irradiation techniques
Elcim et al. Dosimetric comparison of pencil beam and Monte Carlo algorithms in conformal lung radiotherapy
WO2020004794A1 (ko) 동물용 방사선 치료기
Han et al. Brain stereotactic radiosurgery using MR‐guided online adaptive planning for daily setup variation: an end‐to‐end test
Drzymala et al. A round‐robin gamma stereotactic radiosurgery dosimetry interinstitution comparison of calibration protocols
US20130006035A1 (en) Radiotherapy phantom
Soriani et al. Setup verification and in vivo dosimetry during intraoperative radiation therapy (IORT) for prostate cancer
KR100613244B1 (ko) 고선량률 근접치료계획 정확성평가를 위한 팬텀 및 상기팬텀을 갖는 팬텀장치
Pallotta et al. Design and implementation of a water phantom for IMRT, arc therapy, and tomotherapy dose distribution measurements
Cheng et al. On the accuracy of dose prediction near metal fixation devices for spine SBRT
CN104189993A (zh) 一种放疗计划设计模拟和三维剂量分布测试装置
WO2017200298A1 (ko) 액상 방사성 동위원소를 이용한 원격 후장착 방사선 근접 치료 장치
CN207851309U (zh) 一种用于调强放射治疗剂量测量的模体
CN204073085U (zh) 一种放疗计划设计模拟和三维剂量分布测试装置
CN206147107U (zh) 一种用于螺旋断层放疗剂量测量的模体
KR101241108B1 (ko) 정도관리를 위한 방사선량 측정용 팬텀
Chantika et al. Comparison of Absorbed Dose in Plasticine Bolus and Silicone Rubber Bolus
CN207886537U (zh) 检测放射性能剂量仪校准用水模体
CN218824711U (zh) 一种低能x射线治疗机剂量测量模体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881266

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15548679

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15881266

Country of ref document: EP

Kind code of ref document: A1