WO2016125782A1 - Novel alicyclic ester compound, (meth)acrylic copolymer, and functional resin composition containing same - Google Patents

Novel alicyclic ester compound, (meth)acrylic copolymer, and functional resin composition containing same Download PDF

Info

Publication number
WO2016125782A1
WO2016125782A1 PCT/JP2016/053035 JP2016053035W WO2016125782A1 WO 2016125782 A1 WO2016125782 A1 WO 2016125782A1 JP 2016053035 W JP2016053035 W JP 2016053035W WO 2016125782 A1 WO2016125782 A1 WO 2016125782A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
meth
formula
general formula
Prior art date
Application number
PCT/JP2016/053035
Other languages
French (fr)
Japanese (ja)
Inventor
宏幸 棚木
博康 田中
哲彦 水阪
古川 喜久夫
堀越 裕
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2016573372A priority Critical patent/JPWO2016125782A1/en
Publication of WO2016125782A1 publication Critical patent/WO2016125782A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/26Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D307/30Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/32Oxygen atoms
    • C07D307/33Oxygen atoms in position 2, the oxygen atom being in its keto or unsubstituted enol form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/94Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom spiro-condensed with carbocyclic rings or ring systems, e.g. griseofulvins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F20/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • the present invention includes a novel lactone (meth) acrylate compound suitable for resists for KrF, ArF, and F2 excimer lasers, and chemically amplified resist materials for X-rays, electron beams, and EUV (extreme ultraviolet light), and the novel compounds.
  • the present invention relates to a (meth) acrylic copolymer and a photosensitive resin composition containing the copolymer.
  • Photolithography is widely used in the manufacture of various electronic devices. In photolithography, miniaturization has been promoted by shortening the wavelength of the light source.
  • a chemically amplified resist is generally used.
  • a composition of a chemically amplified resist used as a solution is composed of a functional resin as a main agent, and It contains a photoacid generator, as well as several additives.
  • the functional resin which is the main component, is important to have well-balanced characteristics such as etching resistance, substrate adhesion, transparency to the light source used, and development speed, which determine resist performance. .
  • the functional resin used in the photoresist for excimer laser is generally a polymer having a vinyl compound or acrylate as a repeating unit.
  • a hydroxystyrene resin is proposed (Patent Document 1)
  • an acrylic resin having adamantyl (meth) acrylate as a basic skeleton is proposed ( Patent Documents 2 to 6).
  • Non-patent Document 1 a method using a photoacid generator having a large skeleton structure
  • Patent Document 7 a method using a resin containing a monomer having a photoacid generator
  • resist a resist
  • JP 2006-243474 A Japanese Patent Laid-Open No. 4-39665 JP 10-319595 A JP 2000-26446 A JP 2003-167346 A JP 2004-323704 A JP 2012-168502 A JP 2005-331918 A JP 2008-129388 A
  • the problem of the present invention is that the KrF excimer laser, ArF excimer laser, F2 excimer laser, X-ray, electron beam, and resist material for EUV lithography impair sensitivity, resolution, substrate adhesion, and etching resistance. And developing a resist capable of improving line edge roughness (LER), and providing a functional resin composition that is technically preferable for increasing the integration density of semiconductor substrate circuits, which will continue to advance in the future. . *
  • a lactone (meth) acrylate compound having a specific structure is a KrF excimer laser, ArF excimer laser, F2 excimer laser, X-ray, electron beam or It has been found that it is a useful compound capable of forming a fine pattern in a lithography operation performed by EUV (extreme ultraviolet light) or the like. That is, the present invention is as follows.
  • a lactone (meth) acrylate compound represented by the general formula (1) (In formula (1), R 1 represents a hydrogen atom or a methyl group; R 2 represents hydrogen, an aliphatic alkyl group having 1 to 10 carbon atoms, or an alkyl group having an alicyclic structure having 3 to 10 carbon atoms; R 3 represents hydrogen, an alkoxycarbonyl group represented by the formula (2), an aliphatic alkyl group having 1 to 10 carbon atoms, or an alkyl group having an alicyclic structure having 3 to 10 carbon atoms; In this case, R 2 and R 3 may be bonded to each other to form an alicyclic structure having 3 to 10 carbon atoms; n 1 represents an integer of 0-2.
  • R 4 represents an aliphatic alkyl group having 1 to 13 carbon atoms or an alkyl group having an alicyclic structure having 3 to 13 carbon atoms; the broken line represents a bond in the compound of the formula (1). Represents the location.
  • a (meth) acrylic copolymer having a repeating unit represented by the general formula (6) (In the formula (6), R 1 to R 3 and n1 are the same as in the formula (1), and the point * represents a bonding site with an adjacent repeating unit.)
  • R 41 represents hydrogen or a methyl group
  • R 42 to R 43 may be the same or different, each represents an alkyl group having 1 to 4 carbon atoms, and R 44 represents 1 to 4 carbon atoms
  • R 44 represents 1 to 4 carbon atoms
  • R 41 represents hydrogen or a methyl group
  • R 42 to R 44 may be the same or different and each represents one group selected from the group consisting of a hydrogen element, a hydroxyl group, a methyl group, and an ethyl group.
  • the point * represents a bonding point with an adjacent repeating unit.
  • a photosensitive resin composition comprising the (meth) acrylic copolymer according to any one of the above and a photoacid generator.
  • the lactone (meth) acrylate compound of the present invention is suitable as a raw material for various resin compositions such as various functional polymers having heat resistance, surface hardness, chemical resistance, and lipophilicity.
  • the lactone (meth) acrylate compound of the present invention is a component of a chemically amplified resist copolymer especially for KrF excimer laser, ArF excimer laser, F2 excimer laser, X-ray, electron beam, and EUV (extreme ultraviolet light). When used as, the line edge roughness (LER) can be improved without impairing the etching resistance and substrate adhesion.
  • the lactone (meth) acrylate compound of the present invention is represented by the general formula (1).
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an aliphatic alkyl group having 1 to 10 carbon atoms or an alkyl group having an alicyclic structure having 3 to 10 carbon atoms, and preferably R 2 represents an aliphatic alkyl group having 1 to 5 carbon atoms or 3 carbon atoms.
  • R 2 is an aliphatic alkyl group having 1 to 3 carbon atoms or an alkyl group having an alicyclic structure having 5 to 7 carbon atoms
  • R 3 represents an alkoxycarbonyl group represented by the formula (2), an aliphatic alkyl group having 1 to 10 carbon atoms (preferably 1 to 5 carbon atoms), or 3 to 10 carbon atoms (preferably 5 to 8 carbon atoms).
  • R 4 represents an aliphatic alkyl group having 1 to 13 carbon atoms or an alkyl group having an alicyclic structure having 3 to 13 carbon atoms.
  • R 4 represents 2 to 8 carbon atoms.
  • an alkyl group having an alicyclic structure of 5 to 10 carbon atoms; a broken line represents a bonding site in the compound of the formula (1).
  • the lactone (meth) acrylate compound (1) of the present invention is specifically exemplified below. However, it is not limited to these.
  • R 1 is a hydrogen atom or a methyl group.
  • R 3 is exemplified below.
  • the broken line in Formula (13) represents the coupling
  • the ketolactone compound represented by the general formula (3) is subjected to a reduction reaction and represented by the general formula (4).
  • the (meth) acrylic acid compound represented by the general formula (5) can be reacted, but is not limited thereto.
  • R 2 , R 3 and n 1 are the same as those in the general formula (1).
  • R 2 , R 3 and n 1 are the same as those in the general formula (1).
  • R 1 is the same as in general formula (1).
  • R 5 is one group selected from the group consisting of a hydroxyl group, a halogen atom, and a (meth) acryloyloxy group.
  • a halogen atom such as chlorine.
  • the ketolactone compound represented by the general formula (3) of the present invention is exemplified below.
  • R 3 is the same as in general formula (1).
  • Decane-2,6-dione, 1-oxaspiro [4.4] nonane-2,6-dione, 1-oxaspiro [4.6] undecane-2,6-dione, tertiary butyl 2-acetyl -5-Oxotetrahydrofuran-2-carboxylate is preferable from the viewpoint of availability, and for example, those synthesized according to the methods described in Non-Patent Documents 3 to 5 can be used.
  • the (meth) acrylic acid compound represented by the general formula (5) of the present invention is exemplified below.
  • (meth) acrylic acid chloride is preferable from the viewpoint of reactivity, and commercially available products such as acryloyl chloride (model number A0147) and methacryloyl chloride (model number M0556) manufactured by Tokyo Chemical Industry Co., Ltd. can be obtained. .
  • the manufacturing method of the lactone (meth) acrylate compound represented by the general formula (1) will be described in detail.
  • the reduction reaction of the ketolactone compound represented by the general formula (3) will be described.
  • a known reduction reaction is used for this reaction, but the reaction by hydride reduction is preferable because the operation is easy and the yield is good.
  • the reducing agent is added in an amount of 0.5 to 5.0 molar equivalents, preferably 0.6 to 3.0 molar equivalents, more preferably 0.8 to 1.5 molar equivalents relative to the ketolactone compound. If it is in the above-mentioned range, the reaction proceeds sufficiently, and the yield of the hydroxylactone compound represented by the general formula (4), which is the target product, is high and economically preferable.
  • the solvent commercially available products that are generally available can be used, and various solvents such as alcohols, ethers, hydrocarbons, and halogen-based solvents can be appropriately used as long as they do not inhibit the reaction.
  • a reducing agent such as sodium borohydride with a relatively low reducing power
  • an alcohol solvent is suitable.
  • a dehydrating solvent should be used. preferable.
  • the amount of the solvent is 1 to 100 parts by mass, preferably 5 to 10 parts by mass with respect to 1 part by mass of the ketolactone compound represented by the general formula (3).
  • reaction temperature and reaction time depend on the substrate concentration and the catalyst used, the reaction temperature is generally ⁇ 20 ° C. to 100 ° C., the reaction time is 1 hour to 10 hours, and the pressure is normal pressure, reduced pressure or increased pressure. it can.
  • the reaction can be performed by appropriately selecting a known method such as a batch system, a semi-batch system, or a continuous system.
  • the (meth) acrylic compound represented by the general formula (5) is isolated without isolating the hydroxylactone compound represented by the general formula (4).
  • the lactone (meth) acrylate compound of the general formula (1) can also be obtained by reacting with an acid compound.
  • the (meth) acrylic acid compound represented by the general formula (5) is 0.5 to 100 molar equivalents, preferably 1 to 20 molar equivalents relative to the hydroxylactone compound represented by the general formula (4). Preferably 1.2 to 5 molar equivalents are used. If it is this range, reaction will fully advance and the yield of the lactone (meth) acrylate compound represented by General formula (1) which is a target object is also high and economically preferable.
  • the solvent used for obtaining the product commercially available products can be used.
  • various solvents such as alcohols, ethers, hydrocarbons, and halogen solvents can be appropriately used as long as they do not inhibit the reaction. Since water inhibits the reaction, it is preferable to use a dehydrated solvent.
  • reaction temperature and reaction time depend on the substrate concentration and the catalyst used, the reaction temperature is generally ⁇ 20 ° C. to 100 ° C., the reaction time is 1 hour to 10 hours, and the pressure is normal pressure, reduced pressure or increased pressure. it can.
  • the reaction can be performed by appropriately selecting a known method such as a batch system, a semi-batch system, or a continuous system.
  • a polymerization inhibitor may be added to the series of reactions, and commercially available products can be used.
  • a polymerization inhibitor may be added to the series of reactions, and commercially available products can be used.
  • 2,2,6,6-tetramethyl-4-hydroxypiperidine-1-oxyl N-nitrosophenylhydroxylamine ammonium salt, N-nitrosophenylhydroxylamine aluminum salt, N-nitroso-N- (1-naphthyl)
  • Nitroso compounds such as hydroxylamine ammonium salt, N-nitrosodiphenylamine, N-nitroso-N-methylaniline, nitrosonaphthol, p-nitrosophenol, N, N'-dimethyl-p-nitrosoaniline, phenothiazine, methylene blue, 2-mercapto Sulfur-containing compounds such as benzimidazole, N, N′-diphenyl-p-phenylenediamine, N-phenyl-N′-is
  • Quinones such as hydroxynes, hydroxyquinoline, hydroquinone, methylhydroquinone, p-benzoquinone, hydroquinone monomethyl ether, p-methoxyphenol, 2,4-dimethyl-6-t-butylphenol, catechol, 3-s-butylcatechol, 2 , 2-methylenebis- (6-t-butyl-4-methylphenol) and other phenols, N-hydroxyphthalimide and other imides, cyclohexane oxime, p-quinone dioxime and other oximes, and dialkylthiodipropinates Can be mentioned.
  • the addition amount is 0.001 to 10 parts by mass, preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the (meth) acrylic acid compound represented by the general formula (5).
  • the lactone (meth) acrylate compound represented by the general formula (1) obtained by the reaction is separated by known purification methods such as filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography, activated carbon and the like. It can be isolated and purified as a desired high purity monomer by a purification method or a combination thereof.
  • a (meth) acrylic copolymer can be obtained by copolymerizing the lactone (meth) acrylate compound represented by the general formula (1) of the present invention.
  • the (meth) acrylic copolymer can be used for a functional resin used in a photoresist.
  • the (meth) acrylic copolymer of the present invention has a repeating unit represented by the general formula (6) derived from the general formula (1). Furthermore, a copolymer containing at least one kind selected from the repeating units represented by the general formulas (7) to (8) and the repeating unit represented by the general formula (9) is preferable in order to improve resist performance. is there.
  • the (meth) acrylic copolymer may contain a structure represented by the general formula (9) or the general formulas (10) to (11) as a repeating unit.
  • R 21 represents hydrogen or a methyl group
  • R 22 represents an alkyl group having 1 to 4 carbon atoms
  • R 23 represents a cycloalkyl group or alicyclic alkyl group having 5 to 20 carbon atoms.
  • the point * represents a bonding point with an adjacent repeating unit.
  • R 22 represents an alkyl group having 1 to 3 carbon atoms
  • R 23 is a cycloalkyl group having 5 to 10 carbon atoms or an alicyclic alkyl group.
  • R 31 represents hydrogen or a methyl group
  • R 32 to R 33 may be the same or different, each represents an alkyl group having 1 to 4 carbon atoms
  • R 34 represents 1 to 4 carbon atoms.
  • a group selected from the group consisting of a cycloalkyl group having 5 to 20 carbon atoms and an alicyclic alkyl group, and any two of R 32 to R 34 are bonded to each other to form a carbon number 2 to 20 alicyclic structures may be formed, and the point * represents a bonding site with an adjacent repeating unit.
  • R 22 represents an alkyl group having 1 to 3 carbon atoms
  • R 23 is a cycloalkyl group having 5 to 10 carbon atoms or an alicyclic alkyl group.
  • the alicyclic structure may include a plurality of rings such as an adamantyl group.
  • R 41 represents hydrogen or a methyl group
  • R 42 to R 44 may be the same or different, and one group selected from the group consisting of a hydrogen element, a hydroxyl group, a methyl group, and an ethyl group
  • the point * represents a bonding point with an adjacent repeating unit.
  • R 51 represents hydrogen or a methyl group
  • R 52 represents a methyl group or an ethyl group
  • n 51 represents 0 to 2
  • n 52 represents 1 to 3
  • a point * is adjacent.
  • R 61 represents hydrogen or a methyl group
  • R 62 represents methylene (—CH 2 —) or oxa (—O—)
  • R 63 is the same or different, and represents a hydroxyl group, a halogen group
  • n 61 represents 0 to 2
  • a point * represents a bonding site with an adjacent repeating unit.
  • the monomer raw material of the repeating unit represented by the general formula (8) 2-cyclohexyl-2- (meth) acryloyloxypropane, 2- (4-methylcyclohexyl) -2- (meth) acryloyloxypropane, Examples thereof include 2-adamantyl-2- (meth) acryloyloxypropane and 2- (3- (1-hydroxy-1-methylethyl) adamantyl) -2- (meth) acryloyloxypropane.
  • Commercial products can be used as these monomers, and Daicel products can be easily obtained.
  • ⁇ - (meth) acryloyloxy- ⁇ -butyrolactone As the monomer raw material of the repeating unit represented by the general formula (10), ⁇ - (meth) acryloyloxy- ⁇ -butyrolactone, ⁇ - (meth) acryloyloxy- ⁇ -butyrolactone, (meth) acryloyloxypant Examples include lactones. Commercial products can be used as these monomers, and products of Osaka Organic Chemical Industry Co., Ltd. can be easily obtained.
  • the repeating units represented by the general formulas (7) and (8) have a function of dissociating with an acid. That is, when the repeating unit represented by the general formulas (7) and (8) reacts with an acid generated from a photoacid generator at the time of exposure, a carboxylic acid group is generated, so that the copolymer is converted to alkali-soluble. be able to.
  • a repeating unit having such a structure and performance is defined as an acid dissociable group.
  • the repeating unit represented by the general formula (9) can further improve solvent solubility, substrate adhesion, and affinity for an alkaline developer.
  • a repeating unit having a hydroxyl group is preferable because it has a high effect of improving resolution.
  • a repeating unit having such a structure and performance is defined as a polar group.
  • the repeating unit represented by the general formulas (10) and (11) has a lactone group, and improves solvent solubility, substrate adhesion, and affinity for an alkaline developer.
  • a repeating unit having such a structure and performance is defined as a lactone group.
  • the repeating unit represented by the general formula (6) also has a lactone and therefore belongs to the lactone group.
  • the repeating unit represented by the general formula (6) contains 20 to 80 mol%, preferably 30 to 60 mol%.
  • the polymer contains the repeating units represented by the general formulas (7) to (11)
  • at least one repeating unit represented by the general formulas (7) to (8) is 20 to 80 in total. Mol%, preferably 40 to 60 mol%.
  • the repeating unit represented by the general formula (9) contains 10 to 50 mol%, preferably 15 to 40 mol%.
  • the polymer contains the repeating units represented by the general formulas (10) to (11), it contains 5 to 40 mol% in all components.
  • the polymerization reaction is performed while dissolving a monomer as a repeating unit in a solvent, adding a catalyst, and heating or cooling.
  • the reaction conditions can be arbitrarily set depending on the type of initiator, the starting method such as heat and light, temperature, pressure, concentration, solvent, additive, etc.
  • the polymerization of the (meth) acrylic copolymer of the present invention can be carried out by a known method such as radical polymerization using a radical generator such as azoisobutyronitrile or peroxide, or ionic polymerization using a catalyst such as alkyllithium or Grignard reagent.
  • solvent used in the polymerization reaction commercially available products can be used.
  • various solvents such as alcohols, ethers, hydrocarbons, and halogen solvents can be appropriately used as long as they do not inhibit the reaction.
  • the (meth) acrylic copolymer obtained by the polymerization reaction can be purified by a known method. Specifically, ultrafiltration, crystallization, microfiltration, acid washing, water washing with an electric conductivity of 10 mS / m or less, and extraction can be performed in combination.
  • the polystyrene-reduced weight average molecular weight (hereinafter referred to as “Mw”) of the (meth) acrylic copolymer of the present invention measured by gel permeation chromatography (GPC) is 1,000 to 500,000, preferably 3, 000 to 100,000.
  • the ratio (Mw / Mn) between the Mw of the (meth) acrylic copolymer and the polystyrene-equivalent number average molecular weight (hereinafter referred to as “Mn”) measured by GPC is 1 to 10, preferably 1 to 5. is there. A large value of this ratio is not preferable because photoresist performance such as sensitivity, resolution, and roughness deteriorates.
  • a (meth) acryl copolymer can be used individually or in mixture of 2 or more types.
  • Photoacid generators can be used as acid generators for chemically amplified resist compositions depending on the wavelength of the exposure light, while considering the thickness range of the resist coating film and its own light absorption coefficient. Can be appropriately selected.
  • examples of photoacid generators that can be used in the far ultraviolet region include onium salt compounds, sulfonimide compounds, sulfone compounds, sulfonic acid ester compounds, quinonediazide compounds, and diazomethane compounds. Can be used.
  • onium salt compounds such as sulfonium salts, iodonium salts, phosphonium salts, diazonium salts, and pyridinium salts are suitable for KrF excimer laser, EUV, and electron beams.
  • triphenylsulfonium triflate triphenylsulfonium nonafluorobutyrate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium naphthalenesulfonate, (hydroxyphenyl) benzylmethylsulfonium toluenesulfonate, diphenyliodonium triflate, diphenyl Examples thereof include iodonium pyrenesulfonate, diphenyliodonium dodecylbenzenesulfonate, diphenyliodonium hexafluoroantimonate, and the like, and the photoacid generators can be used alone or in combination of two or more.
  • the amount of the photoacid generator used is 0.1 to 20 parts by weight, preferably 0.5 to 15 parts by weight, per 100 parts by weight of the photosensitive resin composition.
  • the photosensitive resin composition may be used after being dissolved in a solvent.
  • a commercially available product can be used as the solvent used.
  • linear ketones such as 2-pentanone and 2-hexanone
  • cyclic ketones such as cyclopentanone and cyclohexanone
  • propylene glycol monoalkyl acetates such as propylene glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate
  • ethylene Ethylene glycol monoalkyl ether acetates such as glycol monomethyl ether acetate and ethylene glycol monoethyl ether acetate
  • propylene glycol monoalkyl ethers such as propylene glycol monomethyl ether and propylene glycol monoethyl ether
  • ethylene glycol monomethyl ether ethylene glycol monoethyl ether
  • Ethylene glycol monoalkyl ethers such as diethylene glycol Call dimethyl ether, diethylene glycol
  • the photosensitive resin composition may further contain an acid diffusion controller.
  • the acid diffusion control agent controls the diffusion phenomenon in the resist film of the acid generated from the acid generator by exposure, and has an action of suppressing an undesirable chemical reaction in the non-exposed region.
  • As the acid diffusion controller a nitrogen-containing organic compound whose basicity is not changed by exposure or heat treatment in the resist pattern forming step is preferable. As such nitrogen-containing organic compounds, commercially available products can be used.
  • monoalkylamines such as n-hexylamine, n-heptylamine and n-octylamine; dialkylamines such as di-n-butylamine; trialkylamines such as triethylamine; triethanolamine, tripropanolamine Substituted trialcoholamines such as tributanolamine, tripentanolamine and trihexanolamine, trialkoxyalkylamines such as trimethoxyethylamine, trimethoxypropylamine, trimethoxybutylamine and triethoxybutylamine; aniline, N, Aromatic amines such as N-dimethylaniline, 2-methylaniline, 3-methylaniline, 4-methylaniline, 4-nitroaniline and diphenylamine; amine compounds such as ethylenediamine, formaldehyde Amide compounds such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methylpyrroli
  • the photosensitive resin composition of the present invention may contain various additives such as a surfactant, a quencher, a sensitizer, an antihalation agent, a storage stabilizer, and an antifoaming agent as necessary. it can.
  • a method for forming a resist pattern using the photosensitive resin composition of the present invention will be described.
  • a resist film is formed by applying the photosensitive resin composition onto a substrate such as a silicon wafer, metal, plastic, glass, or ceramic by an application means such as a spin coater, a dip coater, or a roller coater. After the coating is formed, heat treatment is appropriately performed at about 50 ° C. to 200 ° C., and exposure is performed through a predetermined mask pattern.
  • the thickness of the coating film is 0.01 to 5 ⁇ m, preferably 0.02 to 1 ⁇ m, more preferably 0.02 to 0.1 ⁇ m.
  • Light beams of various wavelengths can be used for the exposure.
  • far ultraviolet rays such as F 2 excimer laser (wavelength 157 nm), ArF excimer laser (wavelength 193 nm), KrF excimer laser (wavelength 248 nm), EUV ( Wavelength 13 nm), X-rays, electron beams and the like.
  • the exposure conditions such as the exposure amount are appropriately selected according to the composition of the photosensitive resin composition, the type of each additive, and the like.
  • a predetermined resist pattern is formed by developing with an alkali developer at 10 to 50 ° C. for 10 to 200 seconds, preferably at 20 to 25 ° C. for 15 to 1200 seconds.
  • alkaline developer commercially available products can be used.
  • alkaline compounds such as undecene and 1,5-diazabicyclo- [4.3.0] -5-nonene, and 0.0001 to 10% by mass, preferably 0.01 to 5% by mass, and more preferably 0.8.
  • the developer composed of the alkaline aqueous solution may contain a water-soluble organic solvent or a surfactant.
  • a resist having excellent adhesion to a substrate and having alkali solubility can be produced, and a fine pattern can be formed with high accuracy.
  • the reaction solution was allowed to cool to 30 ° C., 100 g of heptane and 60 g of ion-exchanged water were added, transferred to a separatory funnel and shaken well, and the aqueous layer was recovered. After adding 18.5 g of 85 mass% phosphoric acid and 150 g of toluene to the aqueous layer and shaking well, the organic layer and the aqueous layer were separated. To the aqueous layer, 150 g of toluene was added again, and after shaking well, the organic layer was recovered. The collected organic layers were mixed and washed with 50 g of ion exchange water.
  • the solution temperature was kept at 50 to 60 ° C., and 22.0 g (194 mmol) of 30% aqueous hydrogen peroxide was added dropwise with a liquid feed pump over 2 hours (0.18 g / min). After completion of the dropwise addition, the mixture was stirred for 30 minutes and allowed to cool to a solution temperature of 20 to 30 ° C.
  • the reaction solution was transferred to a separatory funnel and washed with 250 g of a 20% by mass aqueous sodium sulfite solution. Then, 200 g of ethyl acetate was added to the separated aqueous layer to extract the organic layer. The collected organic layers were combined, washed with 200 g of ion exchange water, and this was performed twice.
  • the organic layer was concentrated with an evaporator to make the solution weight 65 g.
  • the mixture was cooled at 0 ° C. for 24 hours, and the precipitated crystals were collected by filtration.
  • the collected crystals were dried under reduced pressure at 40 ° C. to obtain 19.1 g of 1-oxaspiro [4,5] decane-2,6-dione (yield 64.5%).
  • the dropping funnel was charged with 3.76 g (36.0 mmol) of methacrylic acid chloride and added dropwise to the reaction solution.
  • the solution temperature was raised to 70 ° C. and stirred for 8 hours.
  • the solution temperature was brought to room temperature, 50 g of 1,2-dichloroethane was added, and then 30 g of ion-exchanged water was added for quenching.
  • the reaction solution was transferred to a 2 L separatory funnel, and the organic layer was collected. The organic layer was further washed with 30 g of 5% aqueous sodium hydrogen carbonate solution and 30 g of ion-exchanged water.
  • Stereoisomer 1 1 H-NMR spectrum (CDCl 3 ): ⁇ 1.43 to 2.69 ppm (12H, m, cyclohexane ring, methylene group of butyrolactone ring), 2.05 ppm (3H, s, methyl group of methacryloyl group) ), 4.80 ppm (1H, m, methine group of cyclohexane ring), 5.56 ppm (1H, s, methacryloyl group double bond), 6.00 ppm (1H, s, methacryloyl group double bond).
  • the solution temperature was kept at 50 to 60 ° C., and 37.1 g (389 mmol) of 35% aqueous hydrogen peroxide was added dropwise with a liquid feed pump over 3 hours (0.21 g / min). After completion of the dropwise addition, the mixture was stirred for 30 minutes and allowed to cool to a solution temperature of 20 to 30 ° C.
  • the reaction solution was transferred to a separatory funnel and washed by adding 325 g of a 20% by mass aqueous sodium sulfite solution. Then, 300 mL of ethyl acetate was added to the separated aqueous layer to extract the organic layer.
  • Stereoisomer 1 1 H-NMR spectrum (CDCl 3 ): ⁇ 1.27 (3H, d, C H 3 —CH (—O—) C—), 1.42 ppm (9H, s, t-butyl group) 1.90 (3H, s, methyl group of methacryloyl group), 2.24 to 2.60 ppm (4H, m, methylene group of butyrolactone ring), 5.38 ppm (1H, m, CH 3 —C H (— O-) C-), 5.58 ppm (1H, d, methacryloyl group double bond), 6.10 ppm (1H, d, methacryloyl group double bond).
  • a dropping funnel was charged with 20.7 g (200 mmol) of methacrylic acid chloride and dropped into the reaction solution.
  • the solution temperature was raised to 50 ° C. and stirred for 8 hours.
  • the solution temperature was brought to room temperature, and quenched by adding 100 g of ion exchange water.
  • the solution was transferred to a 500 mL separatory funnel and the organic layer was recovered, and then washed with 100 g of ion-exchanged water to recover the organic layer.
  • the solvent was concentrated in vacuo, purified by silica gel column chromatography, and the solvent was distilled off to obtain 16.2 g (yield 82.4%) of 1-ethyl-1-methacryloyloxycyclohexane.
  • the reaction solution was dropped into 500 mL of n-hexane to coagulate and purify the resin, and the resulting white powder was filtered through a membrane filter and washed with 1000 mL of n-hexane. The white powder was collected and dried overnight at 40 ° C. under reduced pressure to obtain 6.77 g of methacrylic copolymer P2.
  • the reaction solution was dropped into 500 mL of n-hexane to coagulate and purify the resin, and the resulting white powder was filtered through a membrane filter and washed with 1000 mL of n-hexane.
  • the white powder was collected and dried overnight at 40 ° C. under reduced pressure to obtain 4.94 g of methacrylic copolymer P3.
  • the reaction solution was dropped into 500 mL of n-hexane to coagulate and purify the resin, and the resulting white powder was filtered through a membrane filter and washed with 1000 mL of n-hexane.
  • the white powder was collected and dried overnight at 40 ° C. under reduced pressure to obtain 5.45 g of methacrylic copolymer P4.
  • Photopolymer compositions R1, R2, R3, and R4 were prepared by dissolving in a propylene glycol monomethyl ether acetate solvent so that the polymer concentration was 6.3% by mass.
  • this photoresist resin composition was applied on the antireflection film by spin coating.
  • a photosensitive layer having a thickness of 100 nm was formed.
  • the photosensitive layer is irradiated with a 100 nm half pitch line and space pattern (8 lines) using an electron beam drawing apparatus (ELS-7700, manufactured by Elionix). did.
  • ELS-7700 electron beam drawing apparatus
  • PEB post-baking
  • GBLMA ⁇ -methacryloyloxy- ⁇ -butyrolactone
  • Resist performance evaluation 2 The same operation as in Resist Performance Evaluation 1 was performed to prepare a photosensitive resin composition R5 using P5 obtained in Comparative Example 1 instead of methacrylic copolymers P1, P2, P3, and P4, and further comparison A photosensitive resin composition R6 was prepared using P6 obtained in Example 2. And about these photosensitive resin compositions R5 and R6, the resist performance was evaluated similarly to the resist performance evaluation 1.
  • the obtained line and space pattern was observed with FE-SEM, and the resolution and line edge roughness (LER) were measured.
  • the results are shown in Table 4.
  • the photosensitive resin compositions R1 and R3 had the same structure and composition other than the lactone as R1 and R3, respectively. It turned out that the value of LER is smaller than the thing R5 and R6.
  • the repeating units A1 and A2 contained in the photosensitive resin compositions R1 and R3 have a structure that is sterically bulkier than the repeating units A3 and A4 contained in R5 and R6. Therefore, it is considered that the diffusion of the acid dissociated during electron beam drawing was suppressed, and as a result, the roughness could be reduced.
  • Table 5 shows the results of the photosensitive resin compositions R2 and R4.
  • the copolymer composition of the photosensitive resin compositions R2 and R4 is different from the above-described R1 and R3, but these photosensitive resin compositions R2 and R4 also have the same degree as the photosensitive resin compositions R1 and R3. Good results were shown. That is, it was confirmed that the photosensitive resin compositions R2 and R4 can realize excellent resolution and a small value of LER. These results are also due to the same reason that the LER values of the photosensitive resin compositions R1 and R3 are smaller than the LER values of R5 and R6, that is, mainly due to the difference in the three-dimensional bulkiness of the repeating units. I can think of it.

Abstract

As a chemically amplified resist, the present invention provides a resist and compound having a good balance by which line edge roughness (LER) is improved without impairing basic physical properties inherent in a resist, such as base adhesion properties and resistance to dry etching. Provided are a lactone ester compound represented by general formula (1), a method for producing same, a (meth)acrylic copolymer comprising general formula (1), and a photosensitive resin composition containing same. (In formula (1): R1 denotes a hydrogen atom or a methyl group; R2 denotes a hydrogen atom, an aliphatic alkyl group having 1-10 carbon atoms or an alkyl group having an alicyclic structure having 3-10 carbon atoms; R3 denotes a hydrogen atom, an alkoxycarbonyl group represented by formula (2), an aliphatic alkyl group having 1-10 carbon atoms or an alkyl group having an alicyclic structure having 3-10 carbon atoms; here, R2 and R3 may bond to each other to form an alicyclic structure having 3-10 carbon atoms; and n1 is an integer between 0 and 2.) (In formula (2): R4 denotes an aliphatic alkyl group having 1-13 carbon atoms or an alkyl group having an alicyclic structure having 3-13 carbon atoms; and the dotted line denotes the bonding location in the compound represented by formula (1).)

Description

新規脂環式エステル化合物、(メタ)アクリル共重合体およびそれを含む機能性樹脂組成物Novel alicyclic ester compound, (meth) acrylic copolymer, and functional resin composition containing the same
 本発明は、KrF及びArF、F2エキシマレーザー用レジストや、X線、電子ビーム、EUV(極端紫外光)用化学増幅型レジスト原料に適した新規なラクトン(メタ)アクリレート化合物、その新規化合物を含む(メタ)アクリル共重合体、及びその共重合体を含む感光性樹脂組成物に関する。 The present invention includes a novel lactone (meth) acrylate compound suitable for resists for KrF, ArF, and F2 excimer lasers, and chemically amplified resist materials for X-rays, electron beams, and EUV (extreme ultraviolet light), and the novel compounds. The present invention relates to a (meth) acrylic copolymer and a photosensitive resin composition containing the copolymer.
 半導体デバイスには、記憶デバイスであるフラッシュメモリーの大容量化や、携帯電話やスマートフォンの高解像度カメラ向けのイメージセンサー等の市場の広がりと共に、更なる微細化への強い要望がある。その各種電子デバイス製造において、フォトリソグラフィ法が広く利用されている。フォトリソグラフィにおいては、光源を短波長化させることにより、微細化が推進されてきた。光源としてKrFエキシマレーザー以降の短波長光源を使用する際には、一般的に化学増幅型レジストが使用され、一般に、溶液として使用される化学増幅型レジストの組成は、主剤の機能性樹脂、及び光酸発生剤、更には数種の添加剤を含む。その中で主剤である機能性樹脂は、エッチング耐性、基板密着性、使用する光源に対する透明性、現像速度などの特性の各特性をバランス良く備えていることが重要であり、レジスト性能を決定付ける。 Semiconductor devices have a strong demand for further miniaturization as the capacity of flash memory as a storage device increases and the market for image sensors for high-resolution cameras of mobile phones and smartphones expands. Photolithography is widely used in the manufacture of various electronic devices. In photolithography, miniaturization has been promoted by shortening the wavelength of the light source. When using a short wavelength light source after the KrF excimer laser as a light source, a chemically amplified resist is generally used. In general, a composition of a chemically amplified resist used as a solution is composed of a functional resin as a main agent, and It contains a photoacid generator, as well as several additives. Among them, the functional resin, which is the main component, is important to have well-balanced characteristics such as etching resistance, substrate adhesion, transparency to the light source used, and development speed, which determine resist performance. .
 エキシマレーザー用フォトレジストで使用される機能性樹脂は、一般的に、ビニル化合物やアクリレートなどを繰り返し単位とする高分子である。例えば、KrFエキシマレーザーリソグラフィ用レジストでは、ヒドロキシスチレン系樹脂が提案され(特許文献1)、ArFエキシマレーザーリソグラフィ用レジストでは、アダマンチル(メタ)アクリレートを基本骨格とするアクリル系樹脂が提案されている(特許文献2~6)。 The functional resin used in the photoresist for excimer laser is generally a polymer having a vinyl compound or acrylate as a repeating unit. For example, as a resist for KrF excimer laser lithography, a hydroxystyrene resin is proposed (Patent Document 1), and as a resist for ArF excimer laser lithography, an acrylic resin having adamantyl (meth) acrylate as a basic skeleton is proposed ( Patent Documents 2 to 6).
 近年のリソグラフィプロセスは更に微細化を進めており、ArFエキシマレーザーリソグラフィは、液浸露光、更にはダブルパターニング露光へと進歩し続けている。また、次世代リソグラフィー技術として注目されている極端紫外光(EUV)を利用したリソグラフィーや、電子線での直接描画、ネガティブトーン現像についても様々な開発が続けられている。このような状況の中で、微細化に適した新たな機能性モノマーの開発が望まれている。 In recent years, the lithography process has been further miniaturized, and ArF excimer laser lithography continues to advance to immersion exposure and further to double patterning exposure. In addition, various developments have been continued for lithography using extreme ultraviolet light (EUV), which has been attracting attention as a next-generation lithography technology, direct drawing with an electron beam, and negative tone development. Under such circumstances, development of a new functional monomer suitable for miniaturization is desired.
 微細化による回路幅の縮小に伴い、露光後に光酸発生剤から発生した酸の拡散によるラインエッジラフネス(LER)の影響が一層深刻になってきている。そのためLERの悪化を防ぐために酸拡散をコントロールする方法が検討されている。その例として、骨格の大きな構造の光酸発生剤を用いる方法(非特許文献1)、光酸発生剤を有するモノマーを含む樹脂を用いる方法(特許文献7、非特許文献2)、および、レジストポリマーのペンダント部分をこれまでのものより延長させることにより、酸の拡散路を阻害する方法などが提案されている(特許文献8、9)。 As the circuit width is reduced due to miniaturization, the influence of line edge roughness (LER) due to diffusion of acid generated from the photoacid generator after exposure is becoming more serious. Therefore, in order to prevent the deterioration of LER, a method for controlling acid diffusion has been studied. Examples include a method using a photoacid generator having a large skeleton structure (Non-patent Document 1), a method using a resin containing a monomer having a photoacid generator (Patent Document 7, Non-Patent Document 2), and a resist. There has been proposed a method of inhibiting the acid diffusion path by extending the pendant portion of the polymer from the conventional one (Patent Documents 8 and 9).
 しかしながら、さらなる微細化に対応するにはレジストの更なる性能の向上が不可欠であり、高感度・高解像度のレジストが要求されているが、単純に感度を向上させただけでは解像度の低下やLERが悪化するなどの新たな問題が発生するため、酸拡散をコントロールする樹脂や、様々な光酸発生剤との組み合わせも検討され、更なる改良が進められている。 However, in order to cope with further miniaturization, further improvement in resist performance is indispensable, and high-sensitivity and high-resolution resists are required. However, simply increasing the sensitivity simply reduces the resolution and LER. As new problems such as deterioration occur, combinations of resins that control acid diffusion and various photoacid generators have been studied and further improvements are being made.
特開2006-243474号公報JP 2006-243474 A 特開平4-39665号公報Japanese Patent Laid-Open No. 4-39665 特開平10-319595号公報JP 10-319595 A 特開2000-26446号公報JP 2000-26446 A 特開2003-167346号公報JP 2003-167346 A 特開2004-323704号公報JP 2004-323704 A 特開2012-168502号公報JP 2012-168502 A 特開2005-331918号公報JP 2005-331918 A 特開2008-129388号公報JP 2008-129388 A
 本発明の課題は、このような状況を鑑み、KrFエキシマレーザー、ArFエキシマレーザー、F2エキシマレーザー、X線、電子ビーム、EUVリソグラフィー用レジスト原料として、感度、解像度、基盤密着性、エッチング耐性を損なうことなく、ラインエッジラフネス(LER)を向上させることのできるレジストを開発し、今後、益々進展する半導体基板回路の集積密度向上に対して技術的に好ましい機能性樹脂組成物を提供することである。   In view of such circumstances, the problem of the present invention is that the KrF excimer laser, ArF excimer laser, F2 excimer laser, X-ray, electron beam, and resist material for EUV lithography impair sensitivity, resolution, substrate adhesion, and etching resistance. And developing a resist capable of improving line edge roughness (LER), and providing a functional resin composition that is technically preferable for increasing the integration density of semiconductor substrate circuits, which will continue to advance in the future. . *
 本発明者らは、上記の課題を解決する目的で鋭意検討した結果、特定の構造を有するラクトン(メタ)アクリレート化合物が、KrFエキシマレーザー、ArFエキシマレーザー、F2エキシマレーザー、X線、電子ビームあるいはEUV(極端紫外光)などにより実施されるリソグラフィー操作において、微細なパターン形成が可能な有用な化合物であることを見出した。すなわち、本発明は下記に表すものである。 As a result of intensive studies aimed at solving the above-mentioned problems, the present inventors have found that a lactone (meth) acrylate compound having a specific structure is a KrF excimer laser, ArF excimer laser, F2 excimer laser, X-ray, electron beam or It has been found that it is a useful compound capable of forming a fine pattern in a lithography operation performed by EUV (extreme ultraviolet light) or the like. That is, the present invention is as follows.
1.一般式(1)で表されるラクトン(メタ)アクリレート化合物。
Figure JPOXMLDOC01-appb-C000009

(式(1)中、Rは水素原子又はメチル基を表し;
 Rは、水素、炭素数1~10の脂肪族アルキル基、又は炭素数3~10の脂環構造を有するアルキル基を表し;
 Rは、水素、式(2)で表されるアルコキシカルボニル基、炭素数1~10の脂肪族アルキル基、又は炭素数3~10の脂環構造を有するアルキル基を表し;
 この際、R及びRは互いに結合して炭素数3~10の脂環構造を形成してもよく;
 nは0~2の整数を表す。)
Figure JPOXMLDOC01-appb-C000010

(式(2)中、Rは、炭素数1~13の脂肪族アルキル基又は炭素数3~13の脂環構造を有するアルキル基を表し;破線は、式(1)の化合物中の結合箇所を表す。)
1. A lactone (meth) acrylate compound represented by the general formula (1).
Figure JPOXMLDOC01-appb-C000009

(In formula (1), R 1 represents a hydrogen atom or a methyl group;
R 2 represents hydrogen, an aliphatic alkyl group having 1 to 10 carbon atoms, or an alkyl group having an alicyclic structure having 3 to 10 carbon atoms;
R 3 represents hydrogen, an alkoxycarbonyl group represented by the formula (2), an aliphatic alkyl group having 1 to 10 carbon atoms, or an alkyl group having an alicyclic structure having 3 to 10 carbon atoms;
In this case, R 2 and R 3 may be bonded to each other to form an alicyclic structure having 3 to 10 carbon atoms;
n 1 represents an integer of 0-2. )
Figure JPOXMLDOC01-appb-C000010

(In the formula (2), R 4 represents an aliphatic alkyl group having 1 to 13 carbon atoms or an alkyl group having an alicyclic structure having 3 to 13 carbon atoms; the broken line represents a bond in the compound of the formula (1). Represents the location.)
2.一般式(4)で表されるヒドロキシラクトン化合物と、一般式(5)で表される(メタ)アクリル酸化合物とを反応させる工程を有する、1.に記載のラクトン(メタ)アクリレート化合物の製造方法。
Figure JPOXMLDOC01-appb-C000011

(式(4)中、R、R及びnは一般式(1)と同じである。)
Figure JPOXMLDOC01-appb-C000012

(式(5)中、Rは一般式(1)と同じである。また、Rはヒドロキシル基、ハロゲン原子、及び(メタ)アクリロイルオキシ基からなる群より選択される1つの基である。)
2. 1. a step of reacting a hydroxylactone compound represented by the general formula (4) with a (meth) acrylic acid compound represented by the general formula (5); A process for producing a lactone (meth) acrylate compound as described in 1. above.
Figure JPOXMLDOC01-appb-C000011

(In the formula (4), R 2 , R 3 and n 1 are the same as those in the general formula (1).)
Figure JPOXMLDOC01-appb-C000012

(In formula (5), R 1 is the same as in general formula (1). R 5 is one group selected from the group consisting of a hydroxyl group, a halogen atom, and a (meth) acryloyloxy group. .)
3.一般式(6)で表される繰り返し単位を有する(メタ)アクリル共重合体。
Figure JPOXMLDOC01-appb-C000013

(式(6)中、R~R及びn1は式(1)と同じであり、点*は隣接する繰り返し単位との結合箇所を表す。)
3. A (meth) acrylic copolymer having a repeating unit represented by the general formula (6).
Figure JPOXMLDOC01-appb-C000013

(In the formula (6), R 1 to R 3 and n1 are the same as in the formula (1), and the point * represents a bonding site with an adjacent repeating unit.)
4.更に一般式(7)又は(8)で表される繰り返し単位のどちらか一方又は両方、及び一般式(9)で表される繰り返し単位を有する3.に記載の(メタ)アクリル共重合体。
Figure JPOXMLDOC01-appb-C000014

(式(7)中、R21は水素又はメチル基を表し、R22は炭素数1~4のアルキル基を表し、R23は炭素数5~20のシクロアルキル基又は脂環式アルキル基を表し、点*は隣接する繰り返し単位との結合箇所を表す。)
Figure JPOXMLDOC01-appb-C000015

(式(8)中、R41は水素又はメチル基を表し、R42~R43は同一又は異なっていても良く、炭素数1~4のアルキル基を表し、R44は炭素数1~4のアルキル基又は炭素数5~20のシクロアルキル基、脂環式アルキル基からなる群より選択される1つの基を表し、点*は隣接する繰り返し単位との結合箇所を表す。)
Figure JPOXMLDOC01-appb-C000016

(式(9)中、R41は水素又はメチル基を表し、R42~R44は同一又は異なってもよく水素元素、水酸基、メチル基、エチル基からなる群より選択される1つの基を表し、点*は隣接する繰り返し単位との結合箇所を表す。)
4). Further, one or both of the repeating units represented by the general formula (7) or (8) and the repeating unit represented by the general formula (9) are included. (Meth) acrylic copolymer described in 1.
Figure JPOXMLDOC01-appb-C000014

(In formula (7), R 21 represents hydrogen or a methyl group, R 22 represents an alkyl group having 1 to 4 carbon atoms, and R 23 represents a cycloalkyl group or alicyclic alkyl group having 5 to 20 carbon atoms. (The point * represents a bonding point with an adjacent repeating unit.)
Figure JPOXMLDOC01-appb-C000015

(In Formula (8), R 41 represents hydrogen or a methyl group, R 42 to R 43 may be the same or different, each represents an alkyl group having 1 to 4 carbon atoms, and R 44 represents 1 to 4 carbon atoms) Or an cycloalkyl group having 5 to 20 carbon atoms, or one group selected from the group consisting of alicyclic alkyl groups, and a point * represents a bonding point with an adjacent repeating unit.)
Figure JPOXMLDOC01-appb-C000016

(In the formula (9), R 41 represents hydrogen or a methyl group, and R 42 to R 44 may be the same or different and each represents one group selected from the group consisting of a hydrogen element, a hydroxyl group, a methyl group, and an ethyl group. (The point * represents a bonding point with an adjacent repeating unit.)
5.一般式(6)で表される繰り返し単位を20~80モル%含み、一般式(7)および(8)で表される繰り返し単位を合計で20~80モル%含み、一般式(9)で表される繰り返し単位を10~50モル%含む、4.に記載の(メタ)アクリル共重合体。
6.3.~5.のいずれかに記載の(メタ)アクリル共重合体及び光酸発生剤を含む感光性樹脂組成物。
5. 20 to 80 mol% of the repeating unit represented by the general formula (6) is contained, and 20 to 80 mol% of the repeating units represented by the general formulas (7) and (8) are contained in total. 3. containing 10 to 50 mol% of the repeating unit represented (Meth) acrylic copolymer described in 1.
6.3. ~ 5. A photosensitive resin composition comprising the (meth) acrylic copolymer according to any one of the above and a photoacid generator.
 本発明のラクトン(メタ)アクリレート化合物は、耐熱性、表面硬度、耐薬品性、親油性を有する各種機能性ポリマー等の各種樹脂組成物の原料として好適である。本発明のラクトン(メタ)アクリレート化合物は、特に、KrFエキシマレーザー、ArFエキシマレーザー、F2エキシマレーザー、X線、電子ビーム、およびEUV(極端紫外光)用の化学増幅型レジストの共重合体の成分として使用した時に、エッチング耐性や基盤密着性を損なわずにラインエッジラフネス(LER)を向上させることができる。 The lactone (meth) acrylate compound of the present invention is suitable as a raw material for various resin compositions such as various functional polymers having heat resistance, surface hardness, chemical resistance, and lipophilicity. The lactone (meth) acrylate compound of the present invention is a component of a chemically amplified resist copolymer especially for KrF excimer laser, ArF excimer laser, F2 excimer laser, X-ray, electron beam, and EUV (extreme ultraviolet light). When used as, the line edge roughness (LER) can be improved without impairing the etching resistance and substrate adhesion.
 以下、本発明につき更に詳細に説明する。本発明のラクトン(メタ)アクリレート化合物は、一般式(1)で示されるものである。
Figure JPOXMLDOC01-appb-C000017

(式(1)中、Rは水素原子又はメチル基を表し;
 Rは炭素数1~10の脂肪族アルキル基又は炭素数3~10の脂環構造を有するアルキル基を表し、好ましくは、Rは炭素数1~5の脂肪族アルキル基又は炭素数3~8の脂環構造を有するアルキル基であり、より好ましくは、Rは炭素数1~3の脂肪族アルキル基又は炭素数5~7の脂環構造を有するアルキル基であり、; 
 Rは式(2)で表されるアルコキシカルボニル基、炭素数1~10(好ましくは炭素数1~5)の脂肪族アルキル基、又は炭素数3~10(好ましくは炭素数5~8)の脂環構造を有するアルキル基を表し;
 この際、R及びRは互いに結合して炭素数3~10の脂環構造、好ましくは炭素数5~8の脂環構造を形成してもよく;
は0~2の整数を表す。)
Figure JPOXMLDOC01-appb-C000018

(式(2)中、Rは、炭素数1~13の脂肪族アルキル基又は炭素数3~13の脂環構造を有するアルキル基を表し、好ましくは、Rは、炭素数2~8の脂肪族アルキル基又は炭素数5~10の脂環構造を有するアルキル基であり、;破線は、式(1)の化合物中の結合箇所を表す。)
Hereinafter, the present invention will be described in more detail. The lactone (meth) acrylate compound of the present invention is represented by the general formula (1).
Figure JPOXMLDOC01-appb-C000017

(In formula (1), R 1 represents a hydrogen atom or a methyl group;
R 2 represents an aliphatic alkyl group having 1 to 10 carbon atoms or an alkyl group having an alicyclic structure having 3 to 10 carbon atoms, and preferably R 2 represents an aliphatic alkyl group having 1 to 5 carbon atoms or 3 carbon atoms. An alkyl group having an alicyclic structure of ˜8, more preferably R 2 is an aliphatic alkyl group having 1 to 3 carbon atoms or an alkyl group having an alicyclic structure having 5 to 7 carbon atoms;
R 3 represents an alkoxycarbonyl group represented by the formula (2), an aliphatic alkyl group having 1 to 10 carbon atoms (preferably 1 to 5 carbon atoms), or 3 to 10 carbon atoms (preferably 5 to 8 carbon atoms). Represents an alkyl group having the following alicyclic structure;
In this case, R 2 and R 3 may be bonded to each other to form an alicyclic structure having 3 to 10 carbon atoms, preferably an alicyclic structure having 5 to 8 carbon atoms;
n 1 represents an integer of 0-2. )
Figure JPOXMLDOC01-appb-C000018

(In the formula (2), R 4 represents an aliphatic alkyl group having 1 to 13 carbon atoms or an alkyl group having an alicyclic structure having 3 to 13 carbon atoms. Preferably, R 4 represents 2 to 8 carbon atoms. Or an alkyl group having an alicyclic structure of 5 to 10 carbon atoms; a broken line represents a bonding site in the compound of the formula (1).)
 本発明のラクトン(メタ)アクリレート化合物(1)は具体的には下記に例示される。ただし、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000019
(式(12)中、Rは水素原子又はメチル基である。また、Rは、下記に例示される。)
Figure JPOXMLDOC01-appb-C000020

 なお、式(13)における破線は、式(12)の化合物中の結合箇所を表す。
The lactone (meth) acrylate compound (1) of the present invention is specifically exemplified below. However, it is not limited to these.
Figure JPOXMLDOC01-appb-C000019
(In formula (12), R 1 is a hydrogen atom or a methyl group. R 3 is exemplified below.)
Figure JPOXMLDOC01-appb-C000020

In addition, the broken line in Formula (13) represents the coupling | bond part in the compound of Formula (12).
 本発明の一般式(1)で表されるラクトン(メタ)アクリレート化合物の製造方法としては、例えば、一般式(3)で表されるケトラクトン化合物を還元反応させて、一般式(4)で表されるヒドロキシラクトン化合物を得た後、一般式(5)で表される(メタ)アクリル酸化合物を反応させることを挙げられるが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000021

(式(3)中、R、R及びnは一般式(1)と同じである。)
Figure JPOXMLDOC01-appb-C000022

(式(4)中、R、R及びnは一般式(1)と同じである。)
Figure JPOXMLDOC01-appb-C000023

(式(5)中、Rは一般式(1)と同じである。また、Rはヒドロキシル基、ハロゲン原子、及び(メタ)アクリロイルオキシ基からなる群より選択される1つの基であり、好ましくは、例えば塩素などのハロゲン原子である。)
As a manufacturing method of the lactone (meth) acrylate compound represented by the general formula (1) of the present invention, for example, the ketolactone compound represented by the general formula (3) is subjected to a reduction reaction and represented by the general formula (4). After the hydroxylactone compound to be obtained is obtained, the (meth) acrylic acid compound represented by the general formula (5) can be reacted, but is not limited thereto.
Figure JPOXMLDOC01-appb-C000021

(In the formula (3), R 2 , R 3 and n 1 are the same as those in the general formula (1).)
Figure JPOXMLDOC01-appb-C000022

(In the formula (4), R 2 , R 3 and n 1 are the same as those in the general formula (1).)
Figure JPOXMLDOC01-appb-C000023

(In formula (5), R 1 is the same as in general formula (1). R 5 is one group selected from the group consisting of a hydroxyl group, a halogen atom, and a (meth) acryloyloxy group. Preferably a halogen atom such as chlorine.)
 本発明の一般式(3)で表されるケトラクトン化合物は下記に例示される。
Figure JPOXMLDOC01-appb-C000024

(式(14)中、Rは一般式(1)と同じである。)
 これらの化合物のうち、1-オキサスピロ[4.5]デカン-2,6-ジオン、7-メチル-1-オキサスピロ[4.5]デカン-2,6-ジオン、9-メチル-1-オキサスピロ[4.5]デカン-2,6-ジオン、1-オキサスピロ[4.4]ノナン-2,6-ジオン、1-オキサスピロ[4.6]ウンデカン-2,6-ジオン、ターシャリーブチル 2-アセチル-5-オキソテトラヒドロフラン-2-カルボキシレートが入手容易性から好ましく、例えば、非特許文献3~5に記載の手法に則って合成したものを使用することができる。
The ketolactone compound represented by the general formula (3) of the present invention is exemplified below.
Figure JPOXMLDOC01-appb-C000024

(In formula (14), R 3 is the same as in general formula (1).)
Among these compounds, 1-oxaspiro [4.5] decane-2,6-dione, 7-methyl-1-oxaspiro [4.5] decane-2,6-dione, 9-methyl-1-oxaspiro [ 4.5] Decane-2,6-dione, 1-oxaspiro [4.4] nonane-2,6-dione, 1-oxaspiro [4.6] undecane-2,6-dione, tertiary butyl 2-acetyl -5-Oxotetrahydrofuran-2-carboxylate is preferable from the viewpoint of availability, and for example, those synthesized according to the methods described in Non-Patent Documents 3 to 5 can be used.
 本発明の一般式(4)で表されるヒドロキシラクトン化合物は下記に例示することができる。
Figure JPOXMLDOC01-appb-C000025

(式(15)中、Rは一般式(1)と同じである。)
The hydroxylactone compound represented by the general formula (4) of the present invention can be exemplified below.
Figure JPOXMLDOC01-appb-C000025

(In formula (15), R 3 is the same as in general formula (1).)
 本発明の一般式(5)で表される(メタ)アクリル酸化合物は下記に例示される。
Figure JPOXMLDOC01-appb-C000026
 これらの化合物のうち(メタ)アクリル酸クロリドが反応性の観点から好ましく、市販品としては例えば東京化成工業社製のアクリロイルクロリド(型番A0147)、メタクリロイルクロリド(型番M0556)等を入手することができる。
The (meth) acrylic acid compound represented by the general formula (5) of the present invention is exemplified below.
Figure JPOXMLDOC01-appb-C000026
Of these compounds, (meth) acrylic acid chloride is preferable from the viewpoint of reactivity, and commercially available products such as acryloyl chloride (model number A0147) and methacryloyl chloride (model number M0556) manufactured by Tokyo Chemical Industry Co., Ltd. can be obtained. .
 次に一般式(1)で表されるラクトン(メタ)アクリレート化合物の製造方法について詳述する。
 まず、一般式(3)で表されるケトラクトン化合物の還元反応について説明する。この反応には公知の還元反応が用いられるが、ヒドリド還元による反応が操作容易、かつ収率が良いため、好ましい。還元剤の添加量は、ケトラクトン化合物に対して0.5~5.0モル当量、好ましくは0.6~3.0モル当量、更に好ましくは0.8~1.5モル当量である。上述の範囲内であれば、十分に反応が進行し、また目的物である一般式(4)で表されるヒドロキシラクトン化合物の収率も高く経済的にも好ましい。
Next, the manufacturing method of the lactone (meth) acrylate compound represented by the general formula (1) will be described in detail.
First, the reduction reaction of the ketolactone compound represented by the general formula (3) will be described. A known reduction reaction is used for this reaction, but the reaction by hydride reduction is preferable because the operation is easy and the yield is good. The reducing agent is added in an amount of 0.5 to 5.0 molar equivalents, preferably 0.6 to 3.0 molar equivalents, more preferably 0.8 to 1.5 molar equivalents relative to the ketolactone compound. If it is in the above-mentioned range, the reaction proceeds sufficiently, and the yield of the hydroxylactone compound represented by the general formula (4), which is the target product, is high and economically preferable.
 還元剤として用いることができる化合物は、一般的に入手できる市販品を用いることができる。例えば水素化ホウ素ナトリウム、水素化トリエチルホウ素リチウム、水素化トリ(セカンダリーブチル)ホウ素リチウム、水素化トリ(セカンダリーブチル)ホウ素カリウム、水素化ホウ素リチウム、水素化リチウムアルミニウム、水素化ビス(2-メトキシエトキシ)アルミニウムナトリウム、ジボラン、水素化ジイソブチルアルミニウムなどが挙げられる。 As the compound that can be used as the reducing agent, commercially available products can be used. For example, sodium borohydride, lithium triethyl borohydride, lithium tri (secondary butyl) borohydride, potassium tri (secondary butyl) borohydride, lithium borohydride, lithium aluminum hydride, bis (2-methoxyethoxy hydride) ) Aluminum sodium, diborane, diisobutylaluminum hydride and the like.
 溶媒は、一般的に入手できる市販品を用いることができ、アルコール、エーテル、炭化水素、ハロゲン系溶媒等、種々様々な溶媒を、反応を阻害しない範囲において適宜用いることができる。
 還元力の比較的低い水素化ホウ素ナトリウムなどの還元剤を使用する場合はアルコール系溶媒が適しており、還元力が高い水素化リチウムアルミニウムなどの還元剤を使用する場合は脱水溶媒を用いることが好ましい。溶媒量は、一般式(3)で表されるケトラクトン化合物1質量部に対して、1~100質量部、好ましくは5~10質量部である。
As the solvent, commercially available products that are generally available can be used, and various solvents such as alcohols, ethers, hydrocarbons, and halogen-based solvents can be appropriately used as long as they do not inhibit the reaction.
When using a reducing agent such as sodium borohydride with a relatively low reducing power, an alcohol solvent is suitable. When using a reducing agent such as lithium aluminum hydride with a high reducing power, a dehydrating solvent should be used. preferable. The amount of the solvent is 1 to 100 parts by mass, preferably 5 to 10 parts by mass with respect to 1 part by mass of the ketolactone compound represented by the general formula (3).
 反応温度及び反応時間は、基質濃度や用いる触媒に依存するが、一般的に反応温度-20℃から100℃、反応時間1時間から10時間、圧力は常圧、減圧又は加圧下で行なうことができる。また、反応は、回分式、半回分式、連続式などの公知の方法を適宜選択して行なうことができる。 Although the reaction temperature and reaction time depend on the substrate concentration and the catalyst used, the reaction temperature is generally −20 ° C. to 100 ° C., the reaction time is 1 hour to 10 hours, and the pressure is normal pressure, reduced pressure or increased pressure. it can. In addition, the reaction can be performed by appropriately selecting a known method such as a batch system, a semi-batch system, or a continuous system.
 次に一般式(4)で表されるヒドロキシラクトン化合物と一般式(5)で表される(メタ)アクリル酸化合物の反応について説明する。
 この反応には(メタ)アクリル酸無水物を用いた酸無水物法や(メタ)アクリル酸クロライドなどを用いた酸ハロゲン法、脱水縮合剤によるエステル化といった公知のエステル化反応を適用することができる。
 ただし、ラクトン基に結合しているアルコキシカルボニル基のエステル分解等の副反応を抑制できるという利点の認められる、(メタ)アクリル酸無水物を使用する酸無水物法や、(メタ)アクリル酸クロライドなどを使用する酸ハロゲン法が好ましい。また、一般式(3)で表されるケトラクトン化合物の還元反応後、一般式(4)で表されるヒドロキシラクトン化合物を単離することなく、一般式(5)で表される(メタ)アクリル酸化合物と反応させることによっても、一般式(1)のラクトン(メタ)アクリレート化合物得ることができる。
Next, the reaction between the hydroxylactone compound represented by the general formula (4) and the (meth) acrylic acid compound represented by the general formula (5) will be described.
For this reaction, a known esterification reaction such as an acid anhydride method using (meth) acrylic anhydride, an acid halogen method using (meth) acrylic acid chloride or the like, or esterification with a dehydration condensing agent may be applied. it can.
However, an acid anhydride method using (meth) acrylic anhydride or (meth) acrylic acid chloride, which has the advantage of being able to suppress side reactions such as ester decomposition of the alkoxycarbonyl group bonded to the lactone group, The acid halogen method using the above is preferred. Further, after the reduction reaction of the ketolactone compound represented by the general formula (3), the (meth) acrylic compound represented by the general formula (5) is isolated without isolating the hydroxylactone compound represented by the general formula (4). The lactone (meth) acrylate compound of the general formula (1) can also be obtained by reacting with an acid compound.
 一般式(5)で表される(メタ)アクリル酸化合物は、一般式(4)で表されるヒドロキシラクトン化合物に対して、0.5~100モル当量、好ましくは1~20モル当量、更に好ましくは1.2~5モル当量使用する。この範囲であれば、十分に反応が進行し、また目的物である一般式(1)で表されるラクトン(メタ)アクリレート化合物の収率も高く経済的にも好ましい。 The (meth) acrylic acid compound represented by the general formula (5) is 0.5 to 100 molar equivalents, preferably 1 to 20 molar equivalents relative to the hydroxylactone compound represented by the general formula (4). Preferably 1.2 to 5 molar equivalents are used. If it is this range, reaction will fully advance and the yield of the lactone (meth) acrylate compound represented by General formula (1) which is a target object is also high and economically preferable.
 本発明の一般式(4)で表されるヒドロキシラクトン化合物と一般式(5)で表される(メタ)アクリル酸化合物との反応から一般式(1)で表されるラクトン(メタ)アクリレート化合物を得るために使用する溶媒としては、一般的に入手できる市販品を用いることができる。例えば、アルコール、エーテル、炭化水素、ハロゲン系溶媒等、種々様々な溶媒を、上記反応を阻害しない範囲において適宜用いることができる。水は反応を阻害するため、脱水溶媒の使用が好ましい。 The lactone (meth) acrylate compound represented by the general formula (1) from the reaction of the hydroxylactone compound represented by the general formula (4) of the present invention and the (meth) acrylic acid compound represented by the general formula (5) As the solvent used for obtaining the product, commercially available products can be used. For example, various solvents such as alcohols, ethers, hydrocarbons, and halogen solvents can be appropriately used as long as they do not inhibit the reaction. Since water inhibits the reaction, it is preferable to use a dehydrated solvent.
 反応温度及び反応時間は、基質濃度や用いる触媒に依存するが、一般的に反応温度-20℃から100℃、反応時間1時間から10時間、圧力は常圧、減圧又は加圧下で行なうことができる。また、反応は、回分式、半回分式、連続式などの公知の方法を適宜選択して行なうことができる。 Although the reaction temperature and reaction time depend on the substrate concentration and the catalyst used, the reaction temperature is generally −20 ° C. to 100 ° C., the reaction time is 1 hour to 10 hours, and the pressure is normal pressure, reduced pressure or increased pressure. it can. In addition, the reaction can be performed by appropriately selecting a known method such as a batch system, a semi-batch system, or a continuous system.
 また、一連の反応には重合禁止剤を添加しても良く、一般的に入手できる市販品を用いることができる。例えば2,2,6,6-テトラメチル-4-ヒドロキシピペリジン-1-オキシル、N-ニトロソフェニルヒドロキシルアミンアンモニウム塩、N-ニトロソフェニルヒドロキシルアミンアルミニウム塩、N-ニトロソ-N-(1-ナフチル)ヒドロキシルアミンアンモニウム塩、N-ニトロソジフェニルアミン、N-ニトロソ-N-メチルアニリン、ニトロソナフトール、p-ニトロソフェノール、N,N’-ジメチル-p-ニトロソアニリンなどのニトロソ化合物、フェノチアジン、メチレンブルー、2-メルカプトベンゾイミダゾールなどの含硫黄化合物、N,N’-ジフェニル-p-フェニレンジアミン、N-フェニル-N’-イソプロピル-p-フェニレンジアミン、4-ヒドロキシジフェニルアミン、アミノフェノールなどのアミン類、ヒドロキシキノリン、ヒドロキノン、メチルヒドロキノン、p-ベンゾキノン、ヒドロキノンモノメチルエーテルなどのキノン類、p-メトキシフェノール、2,4-ジメチル-6-t-ブチルフェノール、カテコール、3-s-ブチルカテコール、2,2-メチレンビス-(6-t-ブチル-4-メチルフェノール)などのフェノール類、N-ヒドロキシフタルイミドなどのイミド類、シクロヘキサンオキシム、p-キノンジオキシムなどのオキシム類、ジアルキルチオジプロピネートなどが挙げられる。添加量としては、一般式(5)で表される(メタ)アクリル酸化合物100質量部に対して、0.001~10質量部、好ましくは0.01~1質量部である。 In addition, a polymerization inhibitor may be added to the series of reactions, and commercially available products can be used. For example, 2,2,6,6-tetramethyl-4-hydroxypiperidine-1-oxyl, N-nitrosophenylhydroxylamine ammonium salt, N-nitrosophenylhydroxylamine aluminum salt, N-nitroso-N- (1-naphthyl) Nitroso compounds such as hydroxylamine ammonium salt, N-nitrosodiphenylamine, N-nitroso-N-methylaniline, nitrosonaphthol, p-nitrosophenol, N, N'-dimethyl-p-nitrosoaniline, phenothiazine, methylene blue, 2-mercapto Sulfur-containing compounds such as benzimidazole, N, N′-diphenyl-p-phenylenediamine, N-phenyl-N′-isopropyl-p-phenylenediamine, 4-hydroxydiphenylamine, aminophenol, etc. Quinones such as hydroxynes, hydroxyquinoline, hydroquinone, methylhydroquinone, p-benzoquinone, hydroquinone monomethyl ether, p-methoxyphenol, 2,4-dimethyl-6-t-butylphenol, catechol, 3-s-butylcatechol, 2 , 2-methylenebis- (6-t-butyl-4-methylphenol) and other phenols, N-hydroxyphthalimide and other imides, cyclohexane oxime, p-quinone dioxime and other oximes, and dialkylthiodipropinates Can be mentioned. The addition amount is 0.001 to 10 parts by mass, preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the (meth) acrylic acid compound represented by the general formula (5).
 反応により得られた一般式(1)で表されるラクトン(メタ)アクリレート化合物は、公知の精製方法である濾過、濃縮、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィー、活性炭等による分離精製方法や、これらの組合せによる方法で、所望の高純度モノマーとして単離精製することができる。 The lactone (meth) acrylate compound represented by the general formula (1) obtained by the reaction is separated by known purification methods such as filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography, activated carbon and the like. It can be isolated and purified as a desired high purity monomer by a purification method or a combination thereof.
 本発明の一般式(1)で表されるラクトン(メタ)アクリレート化合物を共重合することで、(メタ)アクリル共重合体を得ることができる。当該(メタ)アクリル共重合体は、フォトレジストで使用される機能性樹脂に使用できる。 A (meth) acrylic copolymer can be obtained by copolymerizing the lactone (meth) acrylate compound represented by the general formula (1) of the present invention. The (meth) acrylic copolymer can be used for a functional resin used in a photoresist.
 本発明の(メタ)アクリル共重合体は、一般式(1)から誘導される一般式(6)で表される繰り返し単位を有する。更に一般式(7)~(8)で表される繰り返し単位から選ばれる少なくとも一種類及び一般式(9)で表される繰り返し単位を含む共重合体は、レジスト性能を向上させるため好ましいものである。また、(メタ)アクリル共重合体は、一般式(9)、または一般式(10)~(11)で表される構造を繰り返し単位として含んでいても良い。
Figure JPOXMLDOC01-appb-C000027

(式(6)中、R~R及びnは式(1)と同じであり、点*は隣接する繰り返し単位との結合箇所を表す。)
Figure JPOXMLDOC01-appb-C000028

(式(7)中、R21は水素又はメチル基を表し、R22は炭素数1~4のアルキル基を表し、R23は炭素数5~20のシクロアルキル基又は脂環式アルキル基を表し、点*は隣接する繰り返し単位との結合箇所を表す。)
 好ましくは、R22は炭素数1~3のアルキル基を表し、R23は炭素数5~10のシクロアルキル基又は脂環式アルキル基である。
Figure JPOXMLDOC01-appb-C000029

(式(8)中、R31は水素又はメチル基を表し、R32~R33は同一又は異なっていても良く、炭素数1~4のアルキル基を表し、R34は炭素数1~4のアルキル基又は炭素数5~20のシクロアルキル基、脂環式アルキル基からなる群より選択される1つの基を表し、R32~R34のうちいずれか2つは互いに結合して炭素数2~20の脂環構造を形成してもよく、点*は隣接する繰り返し単位との結合箇所を表す。)
 好ましくは、R22は炭素数1~3のアルキル基を表し、R23は炭素数5~10のシクロアルキル基又は脂環式アルキル基である。また、上記脂環構造は、例えばアダマンチル基などの複数の環を含んでいても良い。
Figure JPOXMLDOC01-appb-C000030

(式(9)中、R41は水素又はメチル基を表し、R42~R44は同一又は異なってもよく、水素元素、水酸基、メチル基、エチル基からなる群より選択される1つの基を表し、点*は隣接する繰り返し単位との結合箇所を表す。)
Figure JPOXMLDOC01-appb-C000031

(式(10)中、R51は水素又はメチル基を表し、R52はメチル基、エチル基を表し、n51は0~2を表し、n52は1~3を表し、点*は隣接する繰り返し単位との結合箇所を表す。)
Figure JPOXMLDOC01-appb-C000032

(式(11)中、R61は水素又はメチル基を表し、R62はメチレン(-CH-)又はオキサ(-O-)を表し、R63は同一又は異なって、水酸基、ハロゲン基、ニトリル基、カルボン酸基、炭素数1~4のカルボン酸アルキル基、炭素数1~4のアルコキシド基を表し、n61は0~2を表し、点*は隣接する繰り返し単位との結合箇所を表す。)
The (meth) acrylic copolymer of the present invention has a repeating unit represented by the general formula (6) derived from the general formula (1). Furthermore, a copolymer containing at least one kind selected from the repeating units represented by the general formulas (7) to (8) and the repeating unit represented by the general formula (9) is preferable in order to improve resist performance. is there. The (meth) acrylic copolymer may contain a structure represented by the general formula (9) or the general formulas (10) to (11) as a repeating unit.
Figure JPOXMLDOC01-appb-C000027

(In the formula (6), R 1 to R 3 and n 1 are the same as in the formula (1), and the point * represents a bonding site with an adjacent repeating unit.)
Figure JPOXMLDOC01-appb-C000028

(In formula (7), R 21 represents hydrogen or a methyl group, R 22 represents an alkyl group having 1 to 4 carbon atoms, and R 23 represents a cycloalkyl group or alicyclic alkyl group having 5 to 20 carbon atoms. (The point * represents a bonding point with an adjacent repeating unit.)
Preferably, R 22 represents an alkyl group having 1 to 3 carbon atoms, and R 23 is a cycloalkyl group having 5 to 10 carbon atoms or an alicyclic alkyl group.
Figure JPOXMLDOC01-appb-C000029

(In the formula (8), R 31 represents hydrogen or a methyl group, R 32 to R 33 may be the same or different, each represents an alkyl group having 1 to 4 carbon atoms, and R 34 represents 1 to 4 carbon atoms. Or a group selected from the group consisting of a cycloalkyl group having 5 to 20 carbon atoms and an alicyclic alkyl group, and any two of R 32 to R 34 are bonded to each other to form a carbon number 2 to 20 alicyclic structures may be formed, and the point * represents a bonding site with an adjacent repeating unit.)
Preferably, R 22 represents an alkyl group having 1 to 3 carbon atoms, and R 23 is a cycloalkyl group having 5 to 10 carbon atoms or an alicyclic alkyl group. The alicyclic structure may include a plurality of rings such as an adamantyl group.
Figure JPOXMLDOC01-appb-C000030

(In Formula (9), R 41 represents hydrogen or a methyl group, R 42 to R 44 may be the same or different, and one group selected from the group consisting of a hydrogen element, a hydroxyl group, a methyl group, and an ethyl group) And the point * represents a bonding point with an adjacent repeating unit.)
Figure JPOXMLDOC01-appb-C000031

(In the formula (10), R 51 represents hydrogen or a methyl group, R 52 represents a methyl group or an ethyl group, n 51 represents 0 to 2, n 52 represents 1 to 3, and a point * is adjacent. Represents the point of attachment with the repeating unit.)
Figure JPOXMLDOC01-appb-C000032

(In the formula (11), R 61 represents hydrogen or a methyl group, R 62 represents methylene (—CH 2 —) or oxa (—O—), R 63 is the same or different, and represents a hydroxyl group, a halogen group, A nitrile group, a carboxylic acid group, an alkyl group having 1 to 4 carbon atoms, an alkoxide group having 1 to 4 carbon atoms, n 61 represents 0 to 2, and a point * represents a bonding site with an adjacent repeating unit. To express.)
 一般式(7)で表される繰り返し単位のモノマー原料としては、2-メチル-2-(メタ)アクリルロイルオキシアダマンタン、2-エチル-2-(メタ)アクリルロイルオキシアダマンタン、2-イソプロピル-2-(メタ)アクリルロイルオキシアダマンタン、2-n-プロピル-2-(メタ)アクリルロイルオキシアダマンタン、2-n-ブチル-2-(メタ)アクリルロイルオキシアダマンタン、1-メチル-1-(メタ)アクリルロイルオキシシクロペンタン、1-エチル-1-(メタ)アクリルロイルオキシシクロペンタン、1-メチル-1-(メタ)アクリルロイルオキシシクロヘキサン、1-エチル-1-(メタ)アクリルロイルオキシシクロヘキサン、1-メチル-1-(メタ)アクリルロイルオキシシクロヘプタン、1-エチル-1-(メタ)アクリルロイルオキシシクロヘプタン、1-メチル-1-(メタ)アクリルロイルオキシシクロオクタン、1-エチル-1-(メタ)アクリルロイルオキシシクロオクタン、2-エチル-2-(メタ)アクリルロイルオキシデカヒドロ-1,4:5,8-ジメタノナフタレン、2-エチル-2-(メタ)アクリルロイルオキシノルボルナンなどが挙げられる。これらのモノマーとして市販品を使用することができ、大阪有機化学工業社製品などを容易に入手できる。 As the monomer raw material of the repeating unit represented by the general formula (7), 2-methyl-2- (meth) acryloyloxyadamantane, 2-ethyl-2- (meth) acryloyloxyadamantane, 2-isopropyl-2 -(Meth) acryloyloxyadamantane, 2-n-propyl-2- (meth) acryloyloxyadamantane, 2-n-butyl-2- (meth) acryloyloxyadamantane, 1-methyl-1- (meth) Acryloyloxycyclopentane, 1-ethyl-1- (meth) acryloyloxycyclopentane, 1-methyl-1- (meth) acryloyloxycyclohexane, 1-ethyl-1- (meth) acryloyloxycyclohexane, 1 -Methyl-1- (meth) acryloyloxycycloheptane, -Ethyl-1- (meth) acryloyloxycycloheptane, 1-methyl-1- (meth) acryloyloxycyclooctane, 1-ethyl-1- (meth) acryloyloxycyclooctane, 2-ethyl-2- (Meth) acryloyloxydecahydro-1,4: 5,8-dimethanonaphthalene, 2-ethyl-2- (meth) acryloyloxynorbornane and the like. Commercial products can be used as these monomers, and products of Osaka Organic Chemical Industry Co., Ltd. can be easily obtained.
 一般式(8)で表される繰り返し単位のモノマー原料としては、2-シクロヘキシル-2-(メタ)アクリルロイルオキシプロパン、2-(4-メチルシクロヘキシル)-2-(メタ)アクリルロイルオキシプロパン、2-アダマンチル-2-(メタ)アクリルロイルオキシプロパン、2-(3-(1-ヒドロキシ-1-メチルエチル)アダマンチル)-2-(メタ)アクリルロイルオキシプロパンなどが挙げられる。これらのモノマーとして市販品を使用することができ、ダイセル社製品などを容易に入手できる。 As the monomer raw material of the repeating unit represented by the general formula (8), 2-cyclohexyl-2- (meth) acryloyloxypropane, 2- (4-methylcyclohexyl) -2- (meth) acryloyloxypropane, Examples thereof include 2-adamantyl-2- (meth) acryloyloxypropane and 2- (3- (1-hydroxy-1-methylethyl) adamantyl) -2- (meth) acryloyloxypropane. Commercial products can be used as these monomers, and Daicel products can be easily obtained.
 一般式(9)で表される繰り返し単位のモノマー原料としては、1-(メタ)アクリロイルオキシアダマンタン、3-ヒドロキシ-1-(メタ)アクリロイルオキシアダマンタン、3,5-ジヒドロキシ-1-(メタ)アクリロイルオキシアダマンタン、3,5-ジメチル-1-(メタ)アクリロイルオキシアダマンタン、5,7-ジメチル-3-ヒドロキシ-1-(メタ)アクリロイルオキシアダマンタン、7-メチル-3,5-ジヒドロキシ-1-(メタ)アクリロイルオキシアダマンタン、3-エチル-1-(メタ)アクリロイルオキシアダマンタン、5-エチル-3-ヒドロキシ-1-(メタ)アクリロイルオキシアダマンタン、7-エチル-3,5-ジヒドロキシ-1-(メタ)アクリロイルオキシアダマンタンなどが挙げられる。これらのモノマーとして市販品を使用することができ、三菱ガス化学社、ダイセル社製品などを容易に入手できる。 As the monomer raw material of the repeating unit represented by the general formula (9), 1- (meth) acryloyloxyadamantane, 3-hydroxy-1- (meth) acryloyloxyadamantane, 3,5-dihydroxy-1- (meth) Acryloyloxyadamantane, 3,5-dimethyl-1- (meth) acryloyloxyadamantane, 5,7-dimethyl-3-hydroxy-1- (meth) acryloyloxyadamantane, 7-methyl-3,5-dihydroxy-1- (Meth) acryloyloxyadamantane, 3-ethyl-1- (meth) acryloyloxyadamantane, 5-ethyl-3-hydroxy-1- (meth) acryloyloxyadamantane, 7-ethyl-3,5-dihydroxy-1- ( And (meth) acryloyloxyadamantane . Commercial products can be used as these monomers, and products such as Mitsubishi Gas Chemical Co., Ltd. and Daicel Corp. can be easily obtained.
 一般式(10)で表される繰り返し単位のモノマー原料としては、α-(メタ)アクリルロイルオキシ-γ-ブチロラクトン、β-(メタ)アクリルロイルオキシ-γ-ブチロラクトン、(メタ)アクリルロイルオキシパントラクトンなどが挙げられる。これらのモノマーとして市販品を使用することができ、大阪有機化学工業社製品などを容易に入手できる。 As the monomer raw material of the repeating unit represented by the general formula (10), α- (meth) acryloyloxy-γ-butyrolactone, β- (meth) acryloyloxy-γ-butyrolactone, (meth) acryloyloxypant Examples include lactones. Commercial products can be used as these monomers, and products of Osaka Organic Chemical Industry Co., Ltd. can be easily obtained.
 一般式(11)で表される繰り返し単位のモノマー原料としては、2-(メタ)アクリルロイルオキシ-5-オキソ-4-オキサトリシクロ[4.2.1.03,7]ノナン、7又は8-(メタ)アクリルロイルオキシ-3-オキソ-4-オキサトリシクロ[5.2.1.02,6]デカン、9-(メタ)アクリルロイルオキシ-3-オキソ-2-オキサ-6-オキサ-トリシクロ[4.2.1.04,8]ノナン、2-(メタ)アクリルロイルオキシ-5-オキソ-4-オキサ-8-オキサトリシクロ[4.2.1.03,7]ノナン、2-(メタ)アクリルロイルオキシ-9-メトキシカルボニル-5-オキソ-4-オキサトリシクロ[4.2.1.03,7]ノナン、2-(メタ)アクリルロイルオキシ-5-オキソ-4-オキサトリシクロ[4.2.1.03,7]ノナン-6-カルボニトリルなどが挙げられる。これらのモノマーとして市販品を使用することができ、ダイセル社製品などを容易に入手できる。 As a monomer raw material of the repeating unit represented by the general formula (11), 2- (meth) acryloyloxy-5-oxo-4-oxatricyclo [4.2.1.0 3,7 ] nonane, 7 Or 8- (meth) acryloyloxy-3-oxo-4-oxatricyclo [5.2.1.0 2,6 ] decane, 9- (meth) acryloyloxy-3-oxo-2-oxa- 6-oxa-tricyclo [4.2.1.0 4,8 ] nonane, 2- (meth) acryloyloxy-5-oxo-4-oxa-8-oxatricyclo [4.2.1.0 3 , 7 ] nonane, 2- (meth) acryloyloxy-9-methoxycarbonyl-5-oxo-4-oxatricyclo [4.2.1.0 3,7 ] nonane, 2- (meth) acryloyloxy -5-oxo-4-oki Satricyclo [4.2.1.0 3,7 ] nonane-6-carbonitrile and the like. Commercial products can be used as these monomers, and Daicel products can be easily obtained.
 一般式(7)及び(8)で表される繰り返し単位は、酸で解離する機能を有している。すなわち、一般式(7)及び(8)で表される繰り返し単位が、露光時に光酸発生剤から発生した酸と反応するとカルボン酸基が生成するため、共重合体をアルカリ可溶性へと変換することができる。本発明における(メタ)アクリル共重合体において、このような構造及び性能を有する繰り返し単位を酸解離性基と定義する。 The repeating units represented by the general formulas (7) and (8) have a function of dissociating with an acid. That is, when the repeating unit represented by the general formulas (7) and (8) reacts with an acid generated from a photoacid generator at the time of exposure, a carboxylic acid group is generated, so that the copolymer is converted to alkali-soluble. be able to. In the (meth) acrylic copolymer in the present invention, a repeating unit having such a structure and performance is defined as an acid dissociable group.
 一般式(9)で表される繰り返し単位は、溶剤溶解性や基板密着性、アルカリ現像液への親和性を更に向上させることができる。特に、ヒドロキシル基を有する繰り返し単位は、解像度を向上させる効果が高いため、好ましい。本発明における(メタ)アクリル共重合体において、このような構造及び性能を有する繰り返し単位を極性基と定義する。 The repeating unit represented by the general formula (9) can further improve solvent solubility, substrate adhesion, and affinity for an alkaline developer. In particular, a repeating unit having a hydroxyl group is preferable because it has a high effect of improving resolution. In the (meth) acrylic copolymer in the present invention, a repeating unit having such a structure and performance is defined as a polar group.
 一般式(10)及び(11)で表される繰り返し単位はラクトン基を有しており、溶剤溶解性や基板密着性、アルカリ現像液への親和性を向上させる。本発明における(メタ)アクリル共重合体において、このような構造及び性能を有する繰り返し単位をラクトン基と定義する。
 また一般式(6)で表される繰り返し単位もラクトンを有しているため、ラクトン基に属する。
The repeating unit represented by the general formulas (10) and (11) has a lactone group, and improves solvent solubility, substrate adhesion, and affinity for an alkaline developer. In the (meth) acrylic copolymer in the present invention, a repeating unit having such a structure and performance is defined as a lactone group.
The repeating unit represented by the general formula (6) also has a lactone and therefore belongs to the lactone group.
 (メタ)アクリル共重合体の共重合比について、一般式(6)で表される繰り返し単位は20~80モル%、好ましくは30~60モル%を含む。
 上記重合体が一般式(7)~(11)で表される繰り返し単位を含む場合、一般式(7)~(8)で表される繰り返し単位は少なくとも1種類を、合計で、20~80モル%、好ましくは40~60モル%を含む。一般式(9)で表される繰り返し単位は10~50モル%、好ましくは15~40モル%を含む。
 上記重合体が一般式(10)~(11)で表される繰り返し単位を含む場合は、全成分中の5~40モル%を含む。一般式(6)と同じくラクトン基を有しているので、一般式(6)の一部を置換して使用することができるが、一般式(6)で表される繰り返し単位は、全成分中20モル%を下回るとLERが悪化するため好ましくない。
Regarding the copolymerization ratio of the (meth) acrylic copolymer, the repeating unit represented by the general formula (6) contains 20 to 80 mol%, preferably 30 to 60 mol%.
When the polymer contains the repeating units represented by the general formulas (7) to (11), at least one repeating unit represented by the general formulas (7) to (8) is 20 to 80 in total. Mol%, preferably 40 to 60 mol%. The repeating unit represented by the general formula (9) contains 10 to 50 mol%, preferably 15 to 40 mol%.
When the polymer contains the repeating units represented by the general formulas (10) to (11), it contains 5 to 40 mol% in all components. Since it has a lactone group as in the general formula (6), it can be used by substituting a part of the general formula (6), but the repeating unit represented by the general formula (6) is composed of all components. If the content is less than 20 mol%, LER deteriorates, which is not preferable.
 次に、(メタ)アクリル共重合体の重合反応について説明する。重合反応は、繰り返し単位となるモノマーを溶媒に溶かし、触媒を添加して加熱あるいは冷却しながら行う。反応条件は、開始剤の種類、熱や光などの開始方法、温度、圧力、濃度、溶媒、添加剤などにより任意に設定することができ、本発明の(メタ)アクリル共重合体の重合においては、アゾイソブチロニトリルや過酸化物などのラジカル発生剤を使用したラジカル重合や、アルキルリチウムやグリニャール試薬などの触媒を利用したイオン重合など、公知の方法で実施することができる。 Next, the polymerization reaction of the (meth) acrylic copolymer will be described. The polymerization reaction is performed while dissolving a monomer as a repeating unit in a solvent, adding a catalyst, and heating or cooling. The reaction conditions can be arbitrarily set depending on the type of initiator, the starting method such as heat and light, temperature, pressure, concentration, solvent, additive, etc. In the polymerization of the (meth) acrylic copolymer of the present invention. Can be carried out by a known method such as radical polymerization using a radical generator such as azoisobutyronitrile or peroxide, or ionic polymerization using a catalyst such as alkyllithium or Grignard reagent.
 重合反応に用いる溶媒としては、一般的に入手できる市販品を用いることができる。例えば、アルコール、エーテル、炭化水素、ハロゲン系溶媒等、種々様々な溶媒を、反応を阻害しない範囲において適宜用いることができる。 As the solvent used in the polymerization reaction, commercially available products can be used. For example, various solvents such as alcohols, ethers, hydrocarbons, and halogen solvents can be appropriately used as long as they do not inhibit the reaction.
 重合反応で得られた(メタ)アクリル共重合体は、公知の方法により精製を行うことができる。具体的には限外濾過、晶析、精密濾過、酸洗浄、電気伝導度が10mS/m以下の水洗浄、抽出を組み合わせて行うことができる。 The (meth) acrylic copolymer obtained by the polymerization reaction can be purified by a known method. Specifically, ultrafiltration, crystallization, microfiltration, acid washing, water washing with an electric conductivity of 10 mS / m or less, and extraction can be performed in combination.
 本発明の(メタ)アクリル共重合体のゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算重量平均分子量(以下、「Mw」という。)は、1,000~500,000、好ましくは3,000~100,000である。また、(メタ)アクリル共重合体のMwとGPCで測定したポリスチレン換算数平均分子量(以下、「Mn」という。)との比(Mw/Mn)は、1~10、好ましくは1~5である。この比の値が大きいと、感度、解像度、ラフネス等のフォトレジスト性能が悪化するため好ましくない。また、本発明において、(メタ)アクリル共重合体は、単独で、又は2種以上を混合して使用することができる。 The polystyrene-reduced weight average molecular weight (hereinafter referred to as “Mw”) of the (meth) acrylic copolymer of the present invention measured by gel permeation chromatography (GPC) is 1,000 to 500,000, preferably 3, 000 to 100,000. The ratio (Mw / Mn) between the Mw of the (meth) acrylic copolymer and the polystyrene-equivalent number average molecular weight (hereinafter referred to as “Mn”) measured by GPC is 1 to 10, preferably 1 to 5. is there. A large value of this ratio is not preferable because photoresist performance such as sensitivity, resolution, and roughness deteriorates. Moreover, in this invention, a (meth) acryl copolymer can be used individually or in mixture of 2 or more types.
 本発明の(メタ)アクリル共重合体と光酸発生剤とを含んだものが感光性樹脂組成物である。
 光酸発生剤は、露光光波長に応じて、化学増幅型レジスト組成物の酸発生剤として使用可能なものの中から、レジスト塗膜の厚さ範囲、それ自体の光吸収係数を考慮した上で、適宜選択することができる。
 例えば、遠紫外線領域において、利用可能な光酸発生剤としては、オニウム塩化合物、スルホンイミド化合物、スルホン化合物、スルホン酸エステル化合物、キノンジアジド化合物及びジアゾメタン化合物等が挙げられ、一般的に入手できる市販品を用いることができる。中でも、KrFエキシマレーザーやEUV、電子線に対しては、スルホニウム塩、ヨードニウム塩、ホスホニウム塩、ジアゾニウム塩、ピリジニウム塩等のオニウム塩化合物が好適である。具体的には、トリフェニルスルホニウムトリフレート、トリフェニルスルホニウムノナフルオルブチレート、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムナフタレンスルホネート、(ヒドロキシフェニル)ベンジルメチルスルホニウムトルエンスルホネート、ジフェニルヨードニウムトリフレート、ジフェニルヨードニウムピレンスルホネート、ジフェニルヨードニウムドデシルベンゼンスルホネート、ジフェニルヨードニウムヘキサフルオロアンチモネート等を挙げるこができ、光酸発生剤は、単独あるいは2種以上を組合せて使用することができる。
 光酸発生剤の使用量は、感光性樹脂組成物100質量部当り、0.1~20質量部、好ましくは0.5~15質量部である。
What contains the (meth) acrylic copolymer of this invention and the photo-acid generator is a photosensitive resin composition.
Photoacid generators can be used as acid generators for chemically amplified resist compositions depending on the wavelength of the exposure light, while considering the thickness range of the resist coating film and its own light absorption coefficient. Can be appropriately selected.
For example, examples of photoacid generators that can be used in the far ultraviolet region include onium salt compounds, sulfonimide compounds, sulfone compounds, sulfonic acid ester compounds, quinonediazide compounds, and diazomethane compounds. Can be used. Of these, onium salt compounds such as sulfonium salts, iodonium salts, phosphonium salts, diazonium salts, and pyridinium salts are suitable for KrF excimer laser, EUV, and electron beams. Specifically, triphenylsulfonium triflate, triphenylsulfonium nonafluorobutyrate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium naphthalenesulfonate, (hydroxyphenyl) benzylmethylsulfonium toluenesulfonate, diphenyliodonium triflate, diphenyl Examples thereof include iodonium pyrenesulfonate, diphenyliodonium dodecylbenzenesulfonate, diphenyliodonium hexafluoroantimonate, and the like, and the photoacid generators can be used alone or in combination of two or more.
The amount of the photoacid generator used is 0.1 to 20 parts by weight, preferably 0.5 to 15 parts by weight, per 100 parts by weight of the photosensitive resin composition.
 感光性樹脂組成物は、溶剤に溶解させて使用しても良い。使用される溶剤は一般的に入手できる市販品を用いることができる。例えば、2-ペンタノン、2-ヘキサノン等の直鎖状ケトン類、シクロペンタノン、シクロヘキサノン等の環状ケトン類、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等のプロピレングリコールモノアルキルアセテート類、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート等のエチレングリコールモノアルキルエーテルアセテート類、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のプロピレングリコールモノアルキルエーテル類、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル等のエチレングリコールモノアルキルエーテル類、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル等のジエチレングリコールアルキルエーテル類、酢酸エチル、乳酸エチル等のエステル類、シクロヘキサノール、1-オクタノール等のアルコール類、炭酸エチレン、γ-ブチロラクトン等を挙げることができる。これらの溶剤としては、上記のものを単独で、あるいは2種以上を混合して使用することができる。溶剤を使用する場合の使用量は、感光性樹脂組成物100質量部に対して、100~5000質量部、好ましくは1000~2000質量部である。 The photosensitive resin composition may be used after being dissolved in a solvent. A commercially available product can be used as the solvent used. For example, linear ketones such as 2-pentanone and 2-hexanone, cyclic ketones such as cyclopentanone and cyclohexanone, propylene glycol monoalkyl acetates such as propylene glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate, ethylene Ethylene glycol monoalkyl ether acetates such as glycol monomethyl ether acetate and ethylene glycol monoethyl ether acetate, propylene glycol monoalkyl ethers such as propylene glycol monomethyl ether and propylene glycol monoethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether Ethylene glycol monoalkyl ethers such as diethylene glycol Call dimethyl ether, diethylene glycol alkyl ethers such as diethylene glycol diethyl ether, ethyl acetate, esters such as ethyl lactate, cyclohexanol, alcohols such as 1-octanol, ethylene carbonate, and γ- butyrolactone. These solvents can be used alone or in admixture of two or more. When the solvent is used, the amount used is 100 to 5000 parts by mass, preferably 1000 to 2000 parts by mass with respect to 100 parts by mass of the photosensitive resin composition.
 また、感光性樹脂組成物は、更に酸拡散制御剤を含んでいても良い。
 酸拡散制御剤は、露光により酸発生剤から生じた酸のレジスト被膜中における拡散現象を制御し、非露光領域での好ましくない化学反応を抑制する作用を有する。酸拡散制御剤としては、レジストパターンの形成工程中の露光や加熱処理により塩基性が変化しない含窒素有機化合物が好ましい。このような含窒素有機化合物としては一般的に入手できる市販品を用いることができる。例えば、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミン、等のモノアルキルアミン類;ジ-n-ブチルアミン等のジアルキルアミン類;トリエチルアミン等のトリアルキルアミン類;トリエタノールアミン、トリプロパノールアミン、トリブタノールアミン、トリペンタノールアミン、トリヘキサノールアミン、等の置換トリアルコールアミン類、トリメトキシエチルアミン、トリメトキシプロピルアミン、トリメトキシブチルアミン、トリエトキシブチルアミン等のトリアルコキシアルキルアミン類;アニリン、N,N-ジメチルアニリン、2-メチルアニリン、3-メチルアニリン、4-メチルアニリン、4-ニトロアニリン、ジフェニルアミン等の芳香族アミン類等;エチレンジアミンなどのアミン化合物、ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド化合物、尿素等のウレア化合物、イミダゾール、ベンズイミダゾールなどのイミダゾール類、ピリジン、4-メチルピリジン等のピリジン類のほか、1,4-ジアザビシクロ[2.2.2]オクタン等を挙げることができる。
 酸拡散制御剤を使用する場合の配合量は、感光性樹脂組成物100質量部当り、15質量部以下、好ましくは0.001~10質量部、更に好ましくは0.005~5質量部である。
The photosensitive resin composition may further contain an acid diffusion controller.
The acid diffusion control agent controls the diffusion phenomenon in the resist film of the acid generated from the acid generator by exposure, and has an action of suppressing an undesirable chemical reaction in the non-exposed region. As the acid diffusion controller, a nitrogen-containing organic compound whose basicity is not changed by exposure or heat treatment in the resist pattern forming step is preferable. As such nitrogen-containing organic compounds, commercially available products can be used. For example, monoalkylamines such as n-hexylamine, n-heptylamine and n-octylamine; dialkylamines such as di-n-butylamine; trialkylamines such as triethylamine; triethanolamine, tripropanolamine Substituted trialcoholamines such as tributanolamine, tripentanolamine and trihexanolamine, trialkoxyalkylamines such as trimethoxyethylamine, trimethoxypropylamine, trimethoxybutylamine and triethoxybutylamine; aniline, N, Aromatic amines such as N-dimethylaniline, 2-methylaniline, 3-methylaniline, 4-methylaniline, 4-nitroaniline and diphenylamine; amine compounds such as ethylenediamine, formaldehyde Amide compounds such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methylpyrrolidone, urea compounds such as urea, imidazoles such as imidazole and benzimidazole, pyridines such as pyridine and 4-methylpyridine In addition, 1,4-diazabicyclo [2.2.2] octane and the like can be mentioned.
When the acid diffusion control agent is used, the blending amount is 15 parts by mass or less, preferably 0.001 to 10 parts by mass, more preferably 0.005 to 5 parts by mass per 100 parts by mass of the photosensitive resin composition. .
 更に、本発明の感光性樹脂組成物には、必要に応じて、界面活性剤、クエンチャー、増感剤、ハレーション防止剤、保存安定剤、消泡剤等の各種添加剤を含有させることもできる。 Furthermore, the photosensitive resin composition of the present invention may contain various additives such as a surfactant, a quencher, a sensitizer, an antihalation agent, a storage stabilizer, and an antifoaming agent as necessary. it can.
 本発明の感光性樹脂組成物を用いたレジストパターンの形成方法について説明する。感光性樹脂組成物をスピンコータ、ディップコータ、ローラコータ等の塗布手段によって、シリコンウェハー、金属、プラスチック、ガラス、セラミック等の基板上に塗布することによりレジスト被膜を形成する。被膜形成後、適宜50℃~200℃程度の加熱処理を行い、所定のマスクパターンを介して露光する。 A method for forming a resist pattern using the photosensitive resin composition of the present invention will be described. A resist film is formed by applying the photosensitive resin composition onto a substrate such as a silicon wafer, metal, plastic, glass, or ceramic by an application means such as a spin coater, a dip coater, or a roller coater. After the coating is formed, heat treatment is appropriately performed at about 50 ° C. to 200 ° C., and exposure is performed through a predetermined mask pattern.
 塗膜(レジスト被膜)の厚みは、0.01~5μm、好ましくは0.02~1μm、より好ましくは0.02~0.1μmである。露光には、種々の波長の光線が利用でき、例えば、光源としては、Fエキシマレーザー(波長157nm)、ArFエキシマレーザー(波長193nm)やKrFエキシマレーザー(波長248nm)等の遠紫外線、EUV(波長13nm)、X線、電子線等が挙げられる。露光量等の露光条件は、感光性樹脂組成物の配合組成、各添加剤の種類等に応じて、適宜選定される。 The thickness of the coating film (resist coating) is 0.01 to 5 μm, preferably 0.02 to 1 μm, more preferably 0.02 to 0.1 μm. Light beams of various wavelengths can be used for the exposure. For example, as a light source, far ultraviolet rays such as F 2 excimer laser (wavelength 157 nm), ArF excimer laser (wavelength 193 nm), KrF excimer laser (wavelength 248 nm), EUV ( Wavelength 13 nm), X-rays, electron beams and the like. The exposure conditions such as the exposure amount are appropriately selected according to the composition of the photosensitive resin composition, the type of each additive, and the like.
 高精度の微細パターンを安定して形成するためには露光後に、50~200℃の温度で30秒以上の加熱処理を行うことが好ましい。温度が50℃未満では、基板の種類による感度のばらつきが広がるため好ましくない。
 最終工程としてアルカリ現像液により、10~50℃で10~200秒、好ましくは20~25℃で15~1200秒の条件で現像することにより、所定のレジストパターンを形成する。
In order to stably form a high-precision fine pattern, it is preferable to perform a heat treatment for 30 seconds or more at a temperature of 50 to 200 ° C. after exposure. If the temperature is less than 50 ° C., the variation in sensitivity depending on the type of substrate is not preferable.
As a final step, a predetermined resist pattern is formed by developing with an alkali developer at 10 to 50 ° C. for 10 to 200 seconds, preferably at 20 to 25 ° C. for 15 to 1200 seconds.
 上記アルカリ現像液としては、一般的に入手できる市販品を用いることができる。例えば、アルカリ金属水酸化物、アンモニア水、アルキルアミン類、アルカノールアミン類、複素環式アミン類、テトラアルキルアンモニウムヒドロキシド類、コリン、1,8-ジアザビシクロ-[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ-[4.3.0]-5-ノネン等のアルカリ性化合物が挙げられ、0.0001~10質量%、好ましくは0.01~5質量%、より好ましくは0.1~3質量%のアルカリ性水溶液として使用される。また、上記アルカリ性水溶液からなる現像液には、水溶性有機溶剤や界面活性剤が含まれていても良い。 As the above alkaline developer, commercially available products can be used. For example, alkali metal hydroxide, aqueous ammonia, alkylamines, alkanolamines, heterocyclic amines, tetraalkylammonium hydroxides, choline, 1,8-diazabicyclo- [5.4.0] -7- Examples include alkaline compounds such as undecene and 1,5-diazabicyclo- [4.3.0] -5-nonene, and 0.0001 to 10% by mass, preferably 0.01 to 5% by mass, and more preferably 0.8. Used as 1 to 3% by weight alkaline aqueous solution. The developer composed of the alkaline aqueous solution may contain a water-soluble organic solvent or a surfactant.
 本発明により、基板に対して優れた密着性を有し、アルカリ可溶性を備えたレジストを作成し、微細なパターンを高い精度で形成することができる。 According to the present invention, a resist having excellent adhesion to a substrate and having alkali solubility can be produced, and a fine pattern can be formed with high accuracy.
 以下、実施例により本発明を具体的に説明するが、本発明は、発明の効果を奏する限りにおいて、実施態様を適宜変更することができる。なお、実施例において、新規(メタ)アクリル系化合物の純度及び収率は、ガスクロマトグラフィー(GC)、構造はH及び13C-NMRにより決定した。GCの測定条件は以下のとおりである。尚、例中の部、%は特に記載のない限り、それぞれ質量部、質量%である。
<GC条件>
カラム:TC-17(0.53mmI.D.×30m)、インジェクション温度:280℃、オーブン温度:70℃(1分保持)→10℃/分で昇温→280℃(10分保持)、検出器:FID、移動相:ヘリウム。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, as long as there exists an effect of this invention, an embodiment can be changed suitably. In the examples, the purity and yield of the novel (meth) acrylic compound were determined by gas chromatography (GC), and the structure was determined by 1 H and 13 C-NMR. The measurement conditions for GC are as follows. In addition, unless otherwise indicated, the part and% in an example are a mass part and the mass%, respectively.
<GC conditions>
Column: TC-17 (0.53 mm ID × 30 m), injection temperature: 280 ° C., oven temperature: 70 ° C. (1 minute hold) → temperature rise at 10 ° C./minute→280° C. (10 minute hold), detection Vessel: FID, mobile phase: helium.
[合成例1]
<1-(シクロヘキサ-1-エン-1-イル)ピロリジンの合成>
Figure JPOXMLDOC01-appb-C000033
 
                  
 攪拌機、温度計、ジムロート、ディーンスターク管を備えた100mL丸底フラスコにシクロヘキサノン(東京化成工業社製:C0489)9.8g(100mmol)、ベンゼン34.4g、ピロリジン8.5g(120mmol)を仕込み、溶液温度を74℃に加熱して4時間撹拌した。溶液温度を40℃まで放冷し、エバポレーターで濃縮して1-(シクロヘキサ-1-エン-1-イル)ピロリジン15.0gを取得した。これ以上の精製は行わず次工程に使用した。
[Synthesis Example 1]
<Synthesis of 1- (cyclohex-1-en-1-yl) pyrrolidine>
Figure JPOXMLDOC01-appb-C000033


A 100 mL round bottom flask equipped with a stirrer, thermometer, Dimroth, and Dean-Stark tube was charged with 9.8 g (100 mmol) of cyclohexanone (Tokyo Chemical Industry Co., Ltd .: C0489), 34.4 g of benzene, and 8.5 g (120 mmol) of pyrrolidine, The solution temperature was heated to 74 ° C. and stirred for 4 hours. The solution temperature was allowed to cool to 40 ° C. and concentrated by an evaporator to obtain 15.0 g of 1- (cyclohex-1-en-1-yl) pyrrolidine. It was used in the next step without further purification.
[合成例2]
<3-(2-オキソシクロヘキシル)プロパン酸エチルの合成>
Figure JPOXMLDOC01-appb-C000034

 攪拌機、温度計、ジムロートを備えた100mL丸底フラスコに合成例1で得た1-(シクロヘキサ)-1-エン-1-イル)ピロリジン15.0g(99.2mmol)、アクリル酸エチル15.0g(150mmol)、テトラヒドロフラン37.8gを仕込んだ。溶液温度を70℃に加熱して、6時間撹拌した。溶液温度を40℃まで放冷した後、イオン交換水6.5gを加え、溶液温度が20~30℃になるように保持して15時間撹拌した。反応溶液を分液ロートに移し、ジイソプロピルエーテル80gを加え、5質量%硫酸水溶液150gを加えて洗浄し、更にイオン交換水60gを加えての洗浄を2回行った。エバポレーターで濃縮し、3-(2-オキソシクロヘキシル)プロパン酸エチル18.2gを取得した。これ以上の精製は行わず次工程に使用した。
[Synthesis Example 2]
<Synthesis of ethyl 3- (2-oxocyclohexyl) propanoate>
Figure JPOXMLDOC01-appb-C000034

15.0 g (99.2 mmol) of 1- (cyclohexa) -1-en-1-yl) pyrrolidine obtained in Synthesis Example 1 and 15.0 g of ethyl acrylate were added to a 100 mL round bottom flask equipped with a stirrer, thermometer and Dimroth. (150 mmol) and 37.8 g of tetrahydrofuran were charged. The solution temperature was heated to 70 ° C. and stirred for 6 hours. After allowing the solution temperature to cool to 40 ° C., 6.5 g of ion exchange water was added, and the solution temperature was kept at 20 to 30 ° C. and stirred for 15 hours. The reaction solution was transferred to a separatory funnel, 80 g of diisopropyl ether was added, 150 g of a 5% by mass sulfuric acid aqueous solution was added for washing, and washing with 60 g of ion-exchanged water was further performed twice. Concentration with an evaporator gave 18.2 g of ethyl 3- (2-oxocyclohexyl) propanoate. It was used in the next step without further purification.
[合成例3]
<3-(オキソシクロヘキシル)プロパン酸の合成>
Figure JPOXMLDOC01-appb-C000035

 攪拌機、温度計、ジムロートを備えた100mL丸底フラスコに合成例2で得た3-(オキソシクロヘキシル)プロパン酸エチル18.2g(91.8mmol)、10質量%水酸化ナトリウム水溶液60g(水酸化ナトリウム6.0g)を仕込んだ。溶液温度を40℃として1時間撹拌した。反応液を放冷して30℃とした後、ヘプタン100g、イオン交換水60gを加え、分液ロートに移してよく振った後、水層を回収した。水層に85質量%リン酸18.5g、トルエン150gを加えて、良く振った後、有機層と水層を分離した。水層には再びトルエン150gを加え、よく振った後、有機層を回収した。回収した有機層を混合し、イオン交換水50gを加え洗浄した。ヘプタン200gを加えて溶液温度を0℃に冷却し、結晶を析出させ2時間撹拌した。5Cのろ紙を用いて吸引ろ過し、回収した結晶は氷冷したヘプタン30gで2回洗浄した。この結晶を40℃で減圧乾燥し、3-(オキソシクロヘキシル)プロパン酸10.9g(収率69.7%)を取得した。
[Synthesis Example 3]
<Synthesis of 3- (oxocyclohexyl) propanoic acid>
Figure JPOXMLDOC01-appb-C000035

In a 100 mL round bottom flask equipped with a stirrer, a thermometer, and a Dimroth, 18.2 g (91.8 mmol) of ethyl 3- (oxocyclohexyl) propanoate obtained in Synthesis Example 2 and 60 g of a 10 mass% sodium hydroxide aqueous solution (sodium hydroxide) 6.0 g) was charged. The solution temperature was adjusted to 40 ° C. and stirred for 1 hour. The reaction solution was allowed to cool to 30 ° C., 100 g of heptane and 60 g of ion-exchanged water were added, transferred to a separatory funnel and shaken well, and the aqueous layer was recovered. After adding 18.5 g of 85 mass% phosphoric acid and 150 g of toluene to the aqueous layer and shaking well, the organic layer and the aqueous layer were separated. To the aqueous layer, 150 g of toluene was added again, and after shaking well, the organic layer was recovered. The collected organic layers were mixed and washed with 50 g of ion exchange water. 200 g of heptane was added, the solution temperature was cooled to 0 ° C., crystals were precipitated and stirred for 2 hours. Suction filtration was performed using 5C filter paper, and the recovered crystals were washed twice with 30 g of ice-cooled heptane. The crystals were dried at 40 ° C. under reduced pressure to obtain 10.9 g (yield 69.7%) of 3- (oxocyclohexyl) propanoic acid.
[合成例4]
<1-オキサスピロ[4,5]デカン-2,6-ジオンの合成>
Figure JPOXMLDOC01-appb-C000036

 撹拌機、温度計、ジムロート、液送ポンプを備えた1L丸底フラスコに合成例3で得た3-(オキソシクロヘキシル)プロパン酸30.0g(176mmol)、テトラブチルアンモニウムヨージド13.1g(35.4mmol)、酢酸エチル320gを仕込んだ。溶液温度が50~60℃になるように保持し、30%過酸化水素水22.0g(194mmol)を2時間かけて液送ポンプで滴下した(0.18g/分)。滴下終了後30分撹拌し、放冷して溶液温度20~30℃とした。反応溶液を分液ロートに移し、20質量%亜硫酸ナトリウム水溶液250gを加えて洗浄した。そして、分離した水層には、酢酸エチル200gを加えて有機層を抽出した。回収した有機層を合わせ、イオン交換水200gで洗浄し、これを2回行った。有機層をエバポレーターで濃縮し、溶液重量を65gとした。0℃で24時間冷却し、析出した結晶をろ過により回収した。回収した結晶は40℃で減圧乾燥し、1-オキサスピロ[4,5]デカン-2,6-ジオン19.1g(収率64.5%)を取得した。
[Synthesis Example 4]
<Synthesis of 1-oxaspiro [4,5] decane-2,6-dione>
Figure JPOXMLDOC01-appb-C000036

In a 1 L round bottom flask equipped with a stirrer, thermometer, Dimroth, and liquid feed pump, 30.0 g (176 mmol) of 3- (oxocyclohexyl) propanoic acid obtained in Synthesis Example 3 and 13.1 g of tetrabutylammonium iodide (35 .4 mmol) and 320 g of ethyl acetate were charged. The solution temperature was kept at 50 to 60 ° C., and 22.0 g (194 mmol) of 30% aqueous hydrogen peroxide was added dropwise with a liquid feed pump over 2 hours (0.18 g / min). After completion of the dropwise addition, the mixture was stirred for 30 minutes and allowed to cool to a solution temperature of 20 to 30 ° C. The reaction solution was transferred to a separatory funnel and washed with 250 g of a 20% by mass aqueous sodium sulfite solution. Then, 200 g of ethyl acetate was added to the separated aqueous layer to extract the organic layer. The collected organic layers were combined, washed with 200 g of ion exchange water, and this was performed twice. The organic layer was concentrated with an evaporator to make the solution weight 65 g. The mixture was cooled at 0 ° C. for 24 hours, and the precipitated crystals were collected by filtration. The collected crystals were dried under reduced pressure at 40 ° C. to obtain 19.1 g of 1-oxaspiro [4,5] decane-2,6-dione (yield 64.5%).
[合成例5]
<6-ヒドロキシ-1-オキサスピロ[4,5]デカン-2-オンの合成>
Figure JPOXMLDOC01-appb-C000037
 撹拌機、温度計を備えた1L三口丸底フラスコに、合成例4で得た1-オキサスピロ[4,5]デカン-2,6-ジオン9.70g(57.2mmol)、メタノール453gを加え、溶液温度が20~30℃になるように保持した。水素化ホウ素ナトリウム2.60g(68.7mmol)を仕込み、溶液温度20~30を維持して5時間撹拌した。その後、溶媒をエバポレーターを用いて真空濃縮した。酢酸エチル100gを加え、2L分液ロートに移し、有機層を5質量%硫酸水溶液100gで洗浄し、更にイオン交換水100gで洗浄し、有機層を回収した。溶媒を真空濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒:酢酸エチル/ヘキサン=1/1(v/v)、Rf値:0.43)で精製し、溶媒を真空濃縮により留去することで無色透明液の6-ヒドロキシ-1-オキサスピロ[4,5]デカン-2-オン7.76g(収率80.0%)を取得した。
[Synthesis Example 5]
<Synthesis of 6-hydroxy-1-oxaspiro [4,5] decan-2-one>
Figure JPOXMLDOC01-appb-C000037
To a 1 L three-necked round bottom flask equipped with a stirrer and a thermometer, 9.70 g (57.2 mmol) of 1-oxaspiro [4,5] decane-2,6-dione obtained in Synthesis Example 4 and 453 g of methanol were added. The solution temperature was kept at 20-30 ° C. 2.60 g (68.7 mmol) of sodium borohydride was charged, and the mixture was stirred for 5 hours while maintaining the solution temperature of 20-30. Thereafter, the solvent was concentrated in vacuo using an evaporator. 100 g of ethyl acetate was added, and the mixture was transferred to a 2 L separatory funnel. The organic layer was washed with 100 g of a 5% by mass sulfuric acid aqueous solution and further washed with 100 g of ion-exchanged water, and the organic layer was recovered. The solvent was concentrated in vacuo and purified by silica gel column chromatography (developing solvent: ethyl acetate / hexane = 1/1 (v / v), Rf value: 0.43). As a clear liquid, 7.76 g (yield: 80.0%) of 6-hydroxy-1-oxaspiro [4,5] decan-2-one was obtained.
[実施例1]
<2-オキソ-1-オキサスピロ[4,5]デカン-6-イルメタクリレートの合成>
Figure JPOXMLDOC01-appb-C000038

 撹拌機、温度計、還流冷却器、滴下漏斗を備えた100mL三口丸底フラスコに、合成例5で得た6-ヒドロキシ-1-オキサスピロ[4,5]デカン-2-オン4.09g(24.1mmol)、トリエチルアミン4.15g(41.1mmol)、フェノチアジン4.83mg(0.0242mmol)、1,2-ジクロロエタン20.5gを加え、溶液温度が5~10℃になるように保持した。滴下漏斗にメタクリル酸クロリド3.76g(36.0mmol)を仕込み、反応液に滴下した。溶液温度を70℃に昇温し、8時間撹拌した。溶液温度を室温とし、1,2-ジクロロエタン50gを加えた後、イオン交換水30gを加えてクエンチした。反応溶液を2L分液漏斗に溶液を移し、有機層を回収した後、更に5%炭酸水素ナトリウム水溶液30g、イオン交換水30gで洗浄し、有機層を回収した。溶媒を真空濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒:酢酸エチル/ヘキサン=1/10(v/v)、Rf値:0.12)で精製し、溶媒を真空濃縮により留去することで淡黄色液体として2-オキソ-1-オキサスピロ[4,5]デカン-6-イルメタクリレート5.88g(収率95.3%)を取得した。立体異性体比は3:1であった。
 立体異性体1:H-NMRスペクトル(CDCl):δ1.43~2.69ppm(12H、m、シクロヘキサン環、ブチロラクトン環のメチレン基)、2.05ppm(3H、s、メタクリロイル基のメチル基)、4.80ppm(1H、m、シクロヘキサン環のメチン基)、5.56ppm(1H、s、メタクリロイル基二重結合)、6.00ppm(1H、s、メタクリロイル基二重結合)。13C-NMRスペクトル(CDCl):15.2ppm、18.5ppm、19.3ppm、24.4ppm、25.6ppm、28.0ppm、72.3ppm、82.8ppm、122.9ppm、132.9ppm、163.1ppm、173.3ppm
 立体異性体2:H-NMRスペクトル(CDCl):δ1.43~2.69ppm(12H、m、シクロヘキサン環、ブチロラクトン環のメチレン基)、2.05ppm(3H、s、メタクリロイル基のメチル基)、4.93ppm(1H、m、シクロヘキサン環のメチン基)、5.60ppm(1H、d、メタクリロイル基二重結合)、6.08ppm(1H、d、メタクリロイル基二重結合)。13C-NMRスペクトル(CDCl):15.2ppm、18.9ppm、20.4ppm、25.1ppm、26.0ppm、28.0ppm、72.3ppm、83.2ppm、123.6ppm、133.1ppm、163.2ppm、173.8ppm
[Example 1]
<Synthesis of 2-oxo-1-oxaspiro [4,5] decan-6-yl methacrylate>
Figure JPOXMLDOC01-appb-C000038

To a 100 mL three-necked round bottom flask equipped with a stirrer, a thermometer, a reflux condenser, and a dropping funnel, 4.09 g of 6-hydroxy-1-oxaspiro [4,5] decan-2-one obtained in Synthesis Example 5 (24 0.1 mmol), 4.15 g (41.1 mmol) of triethylamine, 4.83 mg (0.0242 mmol) of phenothiazine, and 20.5 g of 1,2-dichloroethane, and the solution temperature was kept at 5 to 10 ° C. The dropping funnel was charged with 3.76 g (36.0 mmol) of methacrylic acid chloride and added dropwise to the reaction solution. The solution temperature was raised to 70 ° C. and stirred for 8 hours. The solution temperature was brought to room temperature, 50 g of 1,2-dichloroethane was added, and then 30 g of ion-exchanged water was added for quenching. The reaction solution was transferred to a 2 L separatory funnel, and the organic layer was collected. The organic layer was further washed with 30 g of 5% aqueous sodium hydrogen carbonate solution and 30 g of ion-exchanged water. The solvent was concentrated in vacuo, purified by silica gel column chromatography (developing solvent: ethyl acetate / hexane = 1/10 (v / v), Rf value: 0.12), and the solvent was distilled off by vacuum concentration. As a yellow liquid, 5.88 g (yield: 95.3%) of 2-oxo-1-oxaspiro [4,5] decan-6-yl methacrylate was obtained. The stereoisomer ratio was 3: 1.
Stereoisomer 1: 1 H-NMR spectrum (CDCl 3 ): δ1.43 to 2.69 ppm (12H, m, cyclohexane ring, methylene group of butyrolactone ring), 2.05 ppm (3H, s, methyl group of methacryloyl group) ), 4.80 ppm (1H, m, methine group of cyclohexane ring), 5.56 ppm (1H, s, methacryloyl group double bond), 6.00 ppm (1H, s, methacryloyl group double bond). 13 C-NMR spectrum (CDCl 3 ): 15.2 ppm, 18.5 ppm, 19.3 ppm, 24.4 ppm, 25.6 ppm, 28.0 ppm, 72.3 ppm, 82.8 ppm, 122.9 ppm, 132.9 ppm, 163.1ppm, 173.3ppm
Stereoisomer 2: 1 H-NMR spectrum (CDCl 3 ): δ1.43 to 2.69 ppm (methylene group of 12H, m, cyclohexane ring, butyrolactone ring), 2.05 ppm (3H, s, methyl group of methacryloyl group) ), 4.93 ppm (1H, m, methine group of cyclohexane ring), 5.60 ppm (1H, d, methacryloyl group double bond), 6.08 ppm (1H, d, methacryloyl group double bond). 13 C-NMR spectrum (CDCl 3 ): 15.2 ppm, 18.9 ppm, 20.4 ppm, 25.1 ppm, 26.0 ppm, 28.0 ppm, 72.3 ppm, 83.2 ppm, 123.6 ppm, 133.1 ppm, 163.2ppm, 173.8ppm
[合成例6]
<4-(ターシャリーブトキシカルボニル)-5-オキソヘキサン酸の合成>
Figure JPOXMLDOC01-appb-C000039

 攪拌機、温度計、滴下漏斗を備えた3L丸底フラスコにアセト酢酸ターシャリーブチル(東京化成工業社製:A0816)80.0g(506mmol)、テトラヒドロフラン722mLを加え、フラスコ内を窒素置換した。カリウムターシャリーブトキシド3.41g(30.4mmol)を加え、系を氷冷して0~10℃となるよう保持した。アクリル酸メチル37.0g(430mmol)を加えて20分かけて滴下し、滴下終了後に液温を20~30℃として2時間撹拌した。再び系を氷冷して0~10℃となるように保持し、10質量%水酸化ナトリウム水溶液1.0L(水酸化ナトリウム100g)を加え、20時間撹拌した。反応溶液を分液ロートに移し、ジイソプロピルエーテル500gを加えて水層を洗浄した。これを3回行った後、水層を丸底フラスコへ移して氷冷し、0~10℃となるように保持した。1N塩酸520gを加え、分液ロートに移して酢酸エチル800mLで抽出した。これを2回行った。回収した有機層を飽和食塩水350gで洗浄し、エバポレーターで濃縮した。40℃で減圧乾燥し、4-(ターシャリーブトキシカルボニル)-5-オキソヘキサン酸92.5g(収率79.4%)を取得した。
[Synthesis Example 6]
<Synthesis of 4- (tertiary butoxycarbonyl) -5-oxohexanoic acid>
Figure JPOXMLDOC01-appb-C000039

To a 3 L round bottom flask equipped with a stirrer, a thermometer, and a dropping funnel, 80.0 g (506 mmol) of tert-butyl acetoacetate (manufactured by Tokyo Chemical Industry Co., Ltd .: A0816) and 722 mL of tetrahydrofuran were added, and the atmosphere in the flask was replaced with nitrogen. 3.41 g (30.4 mmol) of potassium tertiary butoxide was added, and the system was ice-cooled and maintained at 0 to 10 ° C. 37.0 g (430 mmol) of methyl acrylate was added and added dropwise over 20 minutes. After completion of the dropwise addition, the liquid temperature was adjusted to 20 to 30 ° C. and the mixture was stirred for 2 hours. The system was cooled again with ice and maintained at 0 to 10 ° C., and 1.0 L of a 10 mass% sodium hydroxide aqueous solution (100 g of sodium hydroxide) was added and stirred for 20 hours. The reaction solution was transferred to a separatory funnel, and 500 g of diisopropyl ether was added to wash the aqueous layer. After this was performed three times, the aqueous layer was transferred to a round bottom flask, cooled on ice, and kept at 0-10 ° C. 1N Hydrochloric acid (520 g) was added, and the mixture was transferred to a separatory funnel and extracted with 800 mL of ethyl acetate. This was done twice. The collected organic layer was washed with 350 g of saturated brine and concentrated with an evaporator. It was dried under reduced pressure at 40 ° C. to obtain 92.5 g (yield: 79.4%) of 4- (tertiary butoxycarbonyl) -5-oxohexanoic acid.
[合成例7]
<ターシャリーブチル 2-アセチル-5-オキソテトラヒドロフラン-2-カルボキシレートの合成>
Figure JPOXMLDOC01-appb-C000040

 撹拌機、温度計、ジムロート、液送ポンプを備えた2L丸底フラスコに合成例6で得た4-(ターシャリーブトキシカルボニル)-5-オキソヘキサン酸92.5g(402mmol)、テトラブチルアンモニウムヨージド26.2g(70.8mmol)、酢酸エチル640gを仕込んだ。溶液温度が50~60℃になるように保持し、35%過酸化水素水37.1g(389mmol)を3時間かけて液送ポンプで滴下した(0.21g/分)。滴下終了後30分撹拌し、放冷して溶液温度20~30℃とした。反応溶液を分液ロートに移し、20質量%亜硫酸ナトリウム水溶液325gを加えて洗浄した。そして、分離した水層には酢酸エチル300mLを加えて有機層を抽出した。回収した有機層を合わせ、5質量%炭酸水素ナトリウム水溶液500gで洗浄した後、飽和食塩水500gで洗浄した。有機層をエバポレーターで濃縮し、50.8gを取得した。これ以上の精製は行わず次工程に使用した。
[Synthesis Example 7]
<Synthesis of tertiary butyl 2-acetyl-5-oxotetrahydrofuran-2-carboxylate>
Figure JPOXMLDOC01-appb-C000040

92.5 g (402 mmol) of 4- (tertiary butoxycarbonyl) -5-oxohexanoic acid obtained in Synthesis Example 6 in a 2 L round bottom flask equipped with a stirrer, thermometer, Dimroth, and liquid feed pump, tetrabutylammonium iodide 26.2 g (70.8 mmol) and 640 g of ethyl acetate were charged. The solution temperature was kept at 50 to 60 ° C., and 37.1 g (389 mmol) of 35% aqueous hydrogen peroxide was added dropwise with a liquid feed pump over 3 hours (0.21 g / min). After completion of the dropwise addition, the mixture was stirred for 30 minutes and allowed to cool to a solution temperature of 20 to 30 ° C. The reaction solution was transferred to a separatory funnel and washed by adding 325 g of a 20% by mass aqueous sodium sulfite solution. Then, 300 mL of ethyl acetate was added to the separated aqueous layer to extract the organic layer. The collected organic layers were combined, washed with 500 g of a 5% by mass aqueous sodium hydrogen carbonate solution, and then washed with 500 g of saturated brine. The organic layer was concentrated with an evaporator to obtain 50.8 g. It was used in the next step without further purification.
[合成例8]
<ターシャリーブチル 2-(1-ヒドロキシエチル)-5-オキソテトラヒドロフラン-2-カルボキシレートの合成>
Figure JPOXMLDOC01-appb-C000041

 撹拌機、温度計を備えた3L四口丸底フラスコに、合成例8で得たターシャリーブチル 2-アセチル-5-オキソテトラヒドロフラン-2-カルボキシレート40.4g(177mmol)、テトラヒドロフラン1333gを仕込み、溶液温度が5~10℃となるように保持した。水素化ホウ素ナトリウム8.02g(212mmol)を仕込み、4時間撹拌した。溶液温度が20℃を超えないように、20質量%塩化アンモニウム水溶液300gを加えた。5L分液漏斗に溶液を移し、酢酸エチル486gを加えて有機層を抽出した。水層は再び分液漏斗へ移し、酢酸エチル486gを加えて更に有機層を抽出した。有機層をまとめて分液漏斗へ移し、5%炭酸水素ナトリウム水溶液400g、イオン交換水400gで有機層を洗浄した。溶媒を真空濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒:クロロホルム/酢酸エチル=4/1(v/v)、Rf値:0.28)で精製し、溶媒を留去することで淡黄色液体としてターシャリーブチル 2-(1-ヒドロキシエチル)-5-オキソテトラヒドロフラン-2-カルボキシレート25.7g(収率63.1%)を取得した。
[Synthesis Example 8]
<Synthesis of tertiary butyl 2- (1-hydroxyethyl) -5-oxotetrahydrofuran-2-carboxylate>
Figure JPOXMLDOC01-appb-C000041

A 3 L four-necked round bottom flask equipped with a stirrer and a thermometer was charged with 40.4 g (177 mmol) of tertiary butyl 2-acetyl-5-oxotetrahydrofuran-2-carboxylate obtained in Synthesis Example 8 and 1333 g of tetrahydrofuran. The solution temperature was kept at 5-10 ° C. 8.02 g (212 mmol) of sodium borohydride was charged and stirred for 4 hours. To prevent the solution temperature from exceeding 20 ° C., 300 g of a 20% by mass aqueous ammonium chloride solution was added. The solution was transferred to a 5 L separatory funnel, and 486 g of ethyl acetate was added to extract the organic layer. The aqueous layer was again transferred to a separatory funnel, and 486 g of ethyl acetate was added to further extract the organic layer. The organic layers were combined and transferred to a separatory funnel, and the organic layer was washed with 400 g of 5% aqueous sodium hydrogen carbonate solution and 400 g of ion-exchanged water. The solvent was concentrated in vacuo and purified by silica gel column chromatography (developing solvent: chloroform / ethyl acetate = 4/1 (v / v), Rf value: 0.28), and the solvent was distilled off as a pale yellow liquid. Tertiary butyl 2- (1-hydroxyethyl) -5-oxotetrahydrofuran-2-carboxylate (25.7 g, yield 63.1%) was obtained.
[実施例2]
<ターシャリーブチル 2-(1-メタクリロイルオキシ)エチル-5-オキソテトラヒドロフラン-2-カルボキシレートの合成>
Figure JPOXMLDOC01-appb-C000042

 撹拌機、温度計、還流冷却器、滴下漏斗を備えた200mL三口丸底フラスコに、ターシャリーブチル 2-(1-ヒドロキシエチル)-5-オキソテトラヒドロフラン-2-カルボキシレート9.73g(42.3mmol)、トリエチルアミン12.0g(118mmol)、フェノチアジン84.0mg(0.420mmol)、N-ニトロソフェニルヒドロキシルアミンアルミニウム塩5.00mg(0.0114mmol)、1,2-ジクロロエタン48.7gを加え、溶液温度が5~10℃になるように保持した。滴下漏斗にメタクリル酸クロリド11.0g(106mmol)を仕込み、反応液に滴下した。溶液温度を53℃に昇温し、8時間撹拌した。溶液温度を室温とし、イオン交換水50gを加えてクエンチした。500mL分液漏斗に溶液を移し、有機層を回収した後、更にイオン交換水50gで洗浄し、有機層を回収した。溶媒を真空濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒:酢酸エチル/ヘキサン=1/3(v/v)、Rf値:0.32)で精製し、溶媒を留去することで白色固体としてターシャリーブチル 2-(1-メタクリロイルオキシ)エチル-5-オキソテトラヒドロフラン-2-カルボキシレート10.6g(収率84.4%)を取得した。立体異性体比は6:1であった。
 立体異性体1:H-NMRスペクトル(CDCl):δ1.27(3H、d、C -CH(-O-)C-)、1.42ppm(9H、s、t-ブチル基)、1.90(3H、s、メタクリロイル基のメチル基)、2.24-2.60ppm(4H、m、ブチロラクトン環のメチレン基)、5.38ppm(1H、m、CH-C(-O-)C-)、5.58ppm(1H、d、メタクリロイル基二重結合)、6.10ppm(1H、d、メタクリロイル基二重結合)。13C-NMRスペクトル(CDCl):10.6ppm、15.2ppm、24.5ppm、24.7ppm、24.8ppm、68.5ppm、80.5ppm、84.5ppm、123.6ppm、132.7ppm、162.9ppm、163.2ppm、172.6ppm
 立体異性体2:H-NMRスペクトル(CDCl):δ1.29(3H、d、C -CH(-O-)C-)、1.42ppm(9H、s、t-ブチル基)、1.90(3H、s、メタクリロイル基のメチル基)、2.24-2.60ppm(4H、m、ブチロラクトン環のメチレン基)、5.38ppm(1H、m、CH-C(-O-)C-)、5.64ppm(1H、d、メタクリロイル基二重結合)、6.19ppm(1H、d、メタクリロイル基二重結合)。13C-NMRスペクトル(CDCl):11.1ppm、16.1ppm、24.5ppm、24.7ppm、24.8ppm、68.8ppm、80.9ppm、84.9ppm、124.0ppm、133.3ppm、164.4ppm、165.4ppm、172.7ppm
[Example 2]
<Synthesis of tertiary butyl 2- (1-methacryloyloxy) ethyl-5-oxotetrahydrofuran-2-carboxylate>
Figure JPOXMLDOC01-appb-C000042

Into a 200 mL three-necked round bottom flask equipped with a stirrer, thermometer, reflux condenser, and dropping funnel was added 9.73 g (42.3 mmol) of tertiary butyl 2- (1-hydroxyethyl) -5-oxotetrahydrofuran-2-carboxylate. ), 12.0 g (118 mmol) of triethylamine, 84.0 mg (0.420 mmol) of phenothiazine, 5.00 mg (0.0114 mmol) of N-nitrosophenylhydroxylamine aluminum salt, 48.7 g of 1,2-dichloroethane, and the solution temperature Was maintained at 5 to 10 ° C. A dropping funnel was charged with 11.0 g (106 mmol) of methacrylic acid chloride and dropped into the reaction solution. The solution temperature was raised to 53 ° C. and stirred for 8 hours. The solution temperature was brought to room temperature and quenched by adding 50 g of ion exchange water. The solution was transferred to a 500 mL separatory funnel and the organic layer was recovered, and further washed with 50 g of ion exchange water to recover the organic layer. The solvent was concentrated in vacuo and purified by silica gel column chromatography (developing solvent: ethyl acetate / hexane = 1/3 (v / v), Rf value: 0.32). 10.6 g (84.4% yield) of butyl 2- (1-methacryloyloxy) ethyl-5-oxotetrahydrofuran-2-carboxylate was obtained. The stereoisomer ratio was 6: 1.
Stereoisomer 1: 1 H-NMR spectrum (CDCl 3 ): δ 1.27 (3H, d, C H 3 —CH (—O—) C—), 1.42 ppm (9H, s, t-butyl group) 1.90 (3H, s, methyl group of methacryloyl group), 2.24 to 2.60 ppm (4H, m, methylene group of butyrolactone ring), 5.38 ppm (1H, m, CH 3 —C H (— O-) C-), 5.58 ppm (1H, d, methacryloyl group double bond), 6.10 ppm (1H, d, methacryloyl group double bond). 13 C-NMR spectrum (CDCl 3 ): 10.6 ppm, 15.2 ppm, 24.5 ppm, 24.7 ppm, 24.8 ppm, 68.5 ppm, 80.5 ppm, 84.5 ppm, 123.6 ppm, 132.7 ppm, 162.9ppm, 163.2ppm, 172.6ppm
Stereoisomer 2: 1 H-NMR spectrum (CDCl 3 ): δ 1.29 (3H, d, C H 3 —CH (—O—) C—), 1.42 ppm (9H, s, t-butyl group) 1.90 (3H, s, methyl group of methacryloyl group), 2.24 to 2.60 ppm (4H, m, methylene group of butyrolactone ring), 5.38 ppm (1H, m, CH 3 —C H (— O-) C-), 5.64 ppm (1H, d, methacryloyl group double bond), 6.19 ppm (1H, d, methacryloyl group double bond). 13 C-NMR spectrum (CDCl 3 ): 11.1 ppm, 16.1 ppm, 24.5 ppm, 24.7 ppm, 24.8 ppm, 68.8 ppm, 80.9 ppm, 84.9 ppm, 124.0 ppm, 133.3 ppm, 164.4ppm, 165.4ppm, 172.7ppm
[合成例9]
<1-エチル-1-メタクリロイルオキシシクロヘキサンの合成>
Figure JPOXMLDOC01-appb-C000043

 撹拌機、温度計、還流冷却器、滴下漏斗を備えた500mL三口丸底フラスコに、1-エチルシクロヘキサノール(東京化成工業社製:E1136)12.8g(100mmol)、トリエチルアミン20.3g(200mmol)、フェノチアジン199mg(1.00mmol)、1,2-ジクロロエタン100gを加え、溶液温度が5~10℃になるように保持した。滴下漏斗にメタクリル酸クロリド20.7g(200mmol)を仕込み、反応液に滴下した。溶液温度を50℃に昇温し、8時間撹拌した。溶液温度を室温とし、イオン交換水100gを加えてクエンチした。500mL分液漏斗に溶液を移し、有機層を回収した後、更にイオン交換水100gで洗浄し、有機層を回収した。溶媒を真空濃縮し、シリカゲルカラムクロマトグラフィーで精製し、溶媒を留去することで1-エチル-1-メタクリロイルオキシシクロヘキサン16.2g(収率82.4%)を取得した。
[Synthesis Example 9]
<Synthesis of 1-ethyl-1-methacryloyloxycyclohexane>
Figure JPOXMLDOC01-appb-C000043

In a 500 mL three-necked round bottom flask equipped with a stirrer, thermometer, reflux condenser, and dropping funnel, 12.8 g (100 mmol) of 1-ethylcyclohexanol (Tokyo Chemical Industry Co., Ltd .: E1136), 20.3 g (200 mmol) of triethylamine , 199 mg (1.00 mmol) of phenothiazine and 100 g of 1,2-dichloroethane were added, and the solution temperature was kept at 5 to 10 ° C. A dropping funnel was charged with 20.7 g (200 mmol) of methacrylic acid chloride and dropped into the reaction solution. The solution temperature was raised to 50 ° C. and stirred for 8 hours. The solution temperature was brought to room temperature, and quenched by adding 100 g of ion exchange water. The solution was transferred to a 500 mL separatory funnel and the organic layer was recovered, and then washed with 100 g of ion-exchanged water to recover the organic layer. The solvent was concentrated in vacuo, purified by silica gel column chromatography, and the solvent was distilled off to obtain 16.2 g (yield 82.4%) of 1-ethyl-1-methacryloyloxycyclohexane.
[実施例3]
<樹脂合成例1>
 実施例1で得られた2-オキソ-1-オキサスピロ[4,5]デカン-6-イルメタクリレート(以下、モノマーA1)4.15g、2-エチル-2-メタクリロイルオキシアダマンタン(東京化成工業社製:E0909)(以下、モノマーB1)4.02g、3-ヒドロキシ-1-アダマンチルメタクリレート(三菱ガス化学社製:HADM)(以下、モノマーC1)1.91g、アゾビスイソブチロニトリル0.74gを、テトラヒドロフラン100mLに溶解させ、窒素雰囲気下、反応温度を55℃に保持して、24時間重合させた(モノマー仕込み比は、A1/B1/C1=40/40/20モル%)。重合後、反応溶液を500mLのn-ヘキサン中に滴下して、生成樹脂を凝集精製させ、生成した白色粉末をメンブレンフィルターでろ過し、n-ヘキサン1000mLで洗浄した。白色粉末を回収し、減圧下40℃で一晩乾燥させメタクリル共重合体P1を6.32g得た。
[Example 3]
<Resin synthesis example 1>
4.15 g of 2-oxo-1-oxaspiro [4,5] decan-6-yl methacrylate (hereinafter referred to as monomer A1) obtained in Example 1, 2-ethyl-2-methacryloyloxyadamantane (manufactured by Tokyo Chemical Industry Co., Ltd.) E0909) (hereinafter referred to as monomer B1) 4.02 g, 3-hydroxy-1-adamantyl methacrylate (manufactured by Mitsubishi Gas Chemical Company, Inc .: HADM) (hereinafter referred to as monomer C1) 1.91 g, azobisisobutyronitrile 0.74 g The polymer was dissolved in 100 mL of tetrahydrofuran and polymerized for 24 hours while maintaining the reaction temperature at 55 ° C. in a nitrogen atmosphere (monomer charge ratio: A1 / B1 / C1 = 40/40/20 mol%). After the polymerization, the reaction solution was dropped into 500 mL of n-hexane to coagulate and purify the generated resin, and the generated white powder was filtered through a membrane filter and washed with 1000 mL of n-hexane. The white powder was collected and dried overnight at 40 ° C. under reduced pressure to obtain 6.32 g of methacrylic copolymer P1.
[実施例4]
<樹脂合成例2>
 モノマーA1を3.11g、合成例9で得た1-エチル-1-メタクリロイルオキシシクロヘキサン(以下、モノマーB2)3.18g、2-メタクリルロイルオキシ-2-(3-(2-ヒドロキシ-2-プロピル)-1-アダマンチル)プロパン(三菱ガス化学社製:ADPM)(以下、モノマーB3)1.95g、3,5-ジヒドロキシ―1-アダマンチルメタクリレート(三菱ガス化学社製:DHADM)(以下、モノマーC2)1.53g、アゾビスイソブチロニトリル0.74gを、テトラヒドロフラン82mLに溶解させ、窒素雰囲気下、反応温度を55℃に保持して、24時間重合させた(モノマー仕込み比は、A1/B2/B3/C2=30/40/15/15モル%)。重合後、反応溶液を500mLのn-ヘキサン中に滴下して、樹脂を凝集精製させ、生成した白色粉末をメンブレンフィルターでろ過し、n-ヘキサン1000mLで洗浄した。白色粉末を回収し、減圧下40℃で一晩乾燥させメタクリル共重合体P2を6.77g得た。
[Example 4]
<Resin synthesis example 2>
3.11 g of monomer A1, 3.18 g of 1-ethyl-1-methacryloyloxycyclohexane (hereinafter referred to as monomer B2) obtained in Synthesis Example 9, 2-methacryloyloxy-2- (3- (2-hydroxy-2-) Propyl) -1-adamantyl) propane (Mitsubishi Gas Chemical Co., Ltd .: ADPM) (hereinafter, monomer B3) 1.95 g, 3,5-dihydroxy-1-adamantyl methacrylate (Mitsubishi Gas Chemical Co., Ltd .: DHADM) (hereinafter, monomer) C2) 1.53 g and azobisisobutyronitrile 0.74 g were dissolved in 82 mL of tetrahydrofuran and polymerized for 24 hours while maintaining the reaction temperature at 55 ° C. in a nitrogen atmosphere (the monomer charge ratio was A1 / B2 / B3 / C2 = 30/40/15/15 mol%). After the polymerization, the reaction solution was dropped into 500 mL of n-hexane to coagulate and purify the resin, and the resulting white powder was filtered through a membrane filter and washed with 1000 mL of n-hexane. The white powder was collected and dried overnight at 40 ° C. under reduced pressure to obtain 6.77 g of methacrylic copolymer P2.
[実施例5]
<樹脂合成例3>
 実施例2で得られたターシャリーブチル 2-(1-メタクリロイルオキシ)エチル-5-オキソテトラヒドロフラン-2-カルボキシレート(以下、モノマーA2)3.13g、モノマーB1を3.35g、モノマーC1を1.42g、アゾビスイソブチロニトリル0.49gを、テトラヒドロフラン79mLに溶解させ、窒素雰囲気下、反応温度を55℃に保持して、24時間重合させた(モノマー仕込み比は、A2/B1/C1=35/45/20モル%)。重合後、反応溶液を500mLのn-ヘキサン中に滴下して、樹脂を凝集精製させ、生成した白色粉末をメンブレンフィルターでろ過し、n-ヘキサン1000mLで洗浄した。白色粉末を回収し、減圧下40℃で一晩乾燥させメタクリル共重合体P3を4.94g得た。
[Example 5]
<Resin synthesis example 3>
Tertiary butyl 2- (1-methacryloyloxy) ethyl-5-oxotetrahydrofuran-2-carboxylate obtained in Example 2 (hereinafter referred to as monomer A2) 3.13 g, monomer B1 3.35 g, monomer C1 1 .42 g and 0.49 g of azobisisobutyronitrile were dissolved in 79 mL of tetrahydrofuran and polymerized for 24 hours while maintaining the reaction temperature at 55 ° C. in a nitrogen atmosphere (monomer charge ratio was A2 / B1 / C1 = 35/45/20 mol%). After the polymerization, the reaction solution was dropped into 500 mL of n-hexane to coagulate and purify the resin, and the resulting white powder was filtered through a membrane filter and washed with 1000 mL of n-hexane. The white powder was collected and dried overnight at 40 ° C. under reduced pressure to obtain 4.94 g of methacrylic copolymer P3.
[実施例6]
<樹脂合成例4>
 モノマーA2を2.68g、モノマーB2を2.06g、モノマーC2を1.92g、モノマーC3を1.13g、アゾビスイソブチロニトリル0.49gを、テトラヒドロフラン78mLに溶解させ、窒素雰囲気下、反応温度を55℃に保持して、24時間重合させた(モノマー仕込み比は、A2/B2/C2/C3=30/35/20/15モル%)。重合後、反応溶液を500mLのn-ヘキサン中に滴下して、樹脂を凝集精製させ、生成した白色粉末をメンブレンフィルターでろ過し、n-ヘキサン1000mLで洗浄した。白色粉末を回収し、減圧下40℃で一晩乾燥させメタクリル共重合体P4を5.45g得た。
[Example 6]
<Resin synthesis example 4>
2.68 g of monomer A2, 2.06 g of monomer B2, 1.92 g of monomer C2, 1.13 g of monomer C3, and 0.49 g of azobisisobutyronitrile were dissolved in 78 mL of tetrahydrofuran and reacted under a nitrogen atmosphere. Polymerization was carried out for 24 hours while maintaining the temperature at 55 ° C. (monomer charge ratio was A2 / B2 / C2 / C3 = 30/35/20/15 mol%). After the polymerization, the reaction solution was dropped into 500 mL of n-hexane to coagulate and purify the resin, and the resulting white powder was filtered through a membrane filter and washed with 1000 mL of n-hexane. The white powder was collected and dried overnight at 40 ° C. under reduced pressure to obtain 5.45 g of methacrylic copolymer P4.
[実施例7]
<レジスト性能評価1>
 実施例3~6及びで得られたメタクリル共重合体P1、P2、P3、P4をそれぞれ100質量部と、トリフェニルスルホニウムノナフルオロブタンスルホネート(みどり化学社製TPS-109)10質量部を、共重合体濃度6.3質量%になるようにプロピレングリコールモノメチルエーテルアセタート溶剤で溶解させ、感光性樹脂組成物R1、R2、R3、及びR4を調製した。シリコンウェハー(Wanxiang Silicon-Peak Electronics社製シリコンウェハー)上に反射防止膜(日産化学社製ARC-29)を塗布した後、このフォトレジスト用樹脂組成物をスピンコーティングにより反射防止膜上に塗布し、厚み100nmの感光層を形成した。ホットプレート上で温度90℃、60秒間プリベークした後、電子線描画装置(エリオニクス社製ELS-7700)を用いて、感光層を100nmハーフピッチのライン・アンド・スペースパターン(ライン8本)で照射した。さらに所定温度で90秒間、ポストベーク(PEB)した。次いで、0.3Mのテトラメチルアンモニウムヒドロキシド水溶液により60秒間現像し、純水でリンスし、ライン・アンド・スペースパターンを得た。
[Example 7]
<Resist performance evaluation 1>
100 parts by mass of each of the methacrylic copolymers P1, P2, P3 and P4 obtained in Examples 3 to 6 and 10 parts by mass of triphenylsulfonium nonafluorobutanesulfonate (TPS-109 manufactured by Midori Chemical Co., Ltd.) Photopolymer compositions R1, R2, R3, and R4 were prepared by dissolving in a propylene glycol monomethyl ether acetate solvent so that the polymer concentration was 6.3% by mass. After applying an antireflection film (ARC-29 made by Nissan Chemical Co., Ltd.) on a silicon wafer (silicon wafer made by Wanxing Silicon-Peak Electronics), this photoresist resin composition was applied on the antireflection film by spin coating. A photosensitive layer having a thickness of 100 nm was formed. After pre-baking for 60 seconds at a temperature of 90 ° C. on a hot plate, the photosensitive layer is irradiated with a 100 nm half pitch line and space pattern (8 lines) using an electron beam drawing apparatus (ELS-7700, manufactured by Elionix). did. Further, post-baking (PEB) was performed at a predetermined temperature for 90 seconds. Next, the film was developed with a 0.3 M aqueous solution of tetramethylammonium hydroxide for 60 seconds and rinsed with pure water to obtain a line and space pattern.
[比較例1]
 モノマーA1の代わりに、2-オキソヘキサヒドロ-2H-3,5-メタノシクロペンタ[b]フラン-6-イルメタクリレート(ダイセル社製:MNBL)(以下、モノマーA4)を3.63g用いた他は実施例3と同じ操作を行い(モノマー仕込み比は、A4/B1/C1=40/40/20モル%)、メタクリル共重合体P5を6.81g得た。
[Comparative Example 1]
Instead of monomer A1, 3.63 g of 2-oxohexahydro-2H-3,5-methanocyclopenta [b] furan-6-yl methacrylate (manufactured by Daicel: MNBL) (hereinafter referred to as monomer A4) was used. Performed the same operation as in Example 3 (monomer charge ratio: A4 / B1 / C1 = 40/40/20 mol%) to obtain 6.81 g of methacrylic copolymer P5.
[比較例2]
 モノマーA1の代わりに、α-メタクリルロイルオキシ-γ-ブチロラクトン(大阪有機化学工業社製:GBLMA)(以下、モノマーA3)を2.76g用いた他は実施例3と同じ操作を行い(モノマー仕込み比は、A3/B1/C1=40/40/20モル%)、メタクリル共重合体P6を5.69g得た。
[Comparative Example 2]
The same procedure as in Example 3 was performed except that 2.76 g of α-methacryloyloxy-γ-butyrolactone (manufactured by Osaka Organic Chemical Industry Co., Ltd .: GBLMA) (hereinafter referred to as monomer A3) was used instead of monomer A1. The ratio was A3 / B1 / C1 = 40/40/20 mol%), and 5.69 g of methacrylic copolymer P6 was obtained.
<レジスト性能評価2>
 レジスト性能評価1と同様の操作を行って、メタクリル共重合体P1、P2、P3、P4の代わりに、比較例1で得られたP5を用いて感光性樹脂組成物R5を調製し、さらに比較例2で得られたP6を用いて感光性樹脂組成物R6を調製した。そして、これらの感光性樹脂組成物R5およびR6について、レジスト性能評価1と同様にレジスト性能を評価した。
<Resist performance evaluation 2>
The same operation as in Resist Performance Evaluation 1 was performed to prepare a photosensitive resin composition R5 using P5 obtained in Comparative Example 1 instead of methacrylic copolymers P1, P2, P3, and P4, and further comparison A photosensitive resin composition R6 was prepared using P6 obtained in Example 2. And about these photosensitive resin compositions R5 and R6, the resist performance was evaluated similarly to the resist performance evaluation 1.
 得られたライン・アンド・スペースパターンをFE-SEMで観察し、解像度とラインエッジラフネス(LER)を測定した。その結果を表4に表す。同程度の解像度における各感光性樹脂組成物のLERの値を比較したところ、感光性樹脂組成物R1及びR3のほうが、ラクトン以外の構造および組成がR1及びR3とそれぞれ同じである感光性樹脂組成物R5及びR6よりも、LERの値が小さいことがわかった。感光性樹脂組成物R1及びR3に含まれる繰り返し単位A1及びA2は、R5及びR6に含まれる繰り返し単位A3及びA4よりも立体的にかさ高い構造である。そのため電子線描画時に解離した酸の拡散が抑制され、結果としてラフネスを低減できたと考えられる。
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045

Figure JPOXMLDOC01-appb-T000046

Figure JPOXMLDOC01-appb-T000047
The obtained line and space pattern was observed with FE-SEM, and the resolution and line edge roughness (LER) were measured. The results are shown in Table 4. When the LER values of the respective photosensitive resin compositions at the same level of resolution were compared, the photosensitive resin compositions R1 and R3 had the same structure and composition other than the lactone as R1 and R3, respectively. It turned out that the value of LER is smaller than the thing R5 and R6. The repeating units A1 and A2 contained in the photosensitive resin compositions R1 and R3 have a structure that is sterically bulkier than the repeating units A3 and A4 contained in R5 and R6. Therefore, it is considered that the diffusion of the acid dissociated during electron beam drawing was suppressed, and as a result, the roughness could be reduced.
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045

Figure JPOXMLDOC01-appb-T000046

Figure JPOXMLDOC01-appb-T000047
 感光性樹脂組成物R2及びR4の結果を表5に表す。感光性樹脂組成物R2及びR4の共重合体組成は、上述のR1及びR3とは異なるが、これらの感光性樹脂組成物R2及びR4においても、感光性樹脂組成物R1及びR3と同程度の良好な結果が示された。すなわち、感光性樹脂組成物R2及びR4についても、優れた解像度とLERの小さい値を実現できることが確認された。これらの結果も、感光性樹脂組成物R1及びR3のLERの値がR5及びR6のLERの値よりも小さいことと同様の理由、すなわち、主として繰り返し単位の立体的なかさ高さの差によるものと考えらえる。
Figure JPOXMLDOC01-appb-T000048

 
Table 5 shows the results of the photosensitive resin compositions R2 and R4. The copolymer composition of the photosensitive resin compositions R2 and R4 is different from the above-described R1 and R3, but these photosensitive resin compositions R2 and R4 also have the same degree as the photosensitive resin compositions R1 and R3. Good results were shown. That is, it was confirmed that the photosensitive resin compositions R2 and R4 can realize excellent resolution and a small value of LER. These results are also due to the same reason that the LER values of the photosensitive resin compositions R1 and R3 are smaller than the LER values of R5 and R6, that is, mainly due to the difference in the three-dimensional bulkiness of the repeating units. I can think of it.
Figure JPOXMLDOC01-appb-T000048

Claims (6)

  1.  一般式(1)で表されるラクトン(メタ)アクリレート化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは水素原子又はメチル基を表し;
     Rは、水素、炭素数1~10の脂肪族アルキル基、又は炭素数3~10の脂環構造を有するアルキル基を表し;
     Rは、水素、式(2)で表されるアルコキシカルボニル基、炭素数1~10の脂肪族アルキル基、又は炭素数3~10の脂環構造を有するアルキル基を表し;
     この際、R及びRは互いに結合して炭素数3~10の脂環構造を形成してもよく;
     nは0~2の整数を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、Rは、炭素数1~13の脂肪族アルキル基又は炭素数3~13の脂環構造を有するアルキル基を表し;破線は、式(1)の化合物中の結合箇所を表す。)
    A lactone (meth) acrylate compound represented by the general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In formula (1), R 1 represents a hydrogen atom or a methyl group;
    R 2 represents hydrogen, an aliphatic alkyl group having 1 to 10 carbon atoms, or an alkyl group having an alicyclic structure having 3 to 10 carbon atoms;
    R 3 represents hydrogen, an alkoxycarbonyl group represented by the formula (2), an aliphatic alkyl group having 1 to 10 carbon atoms, or an alkyl group having an alicyclic structure having 3 to 10 carbon atoms;
    In this case, R 2 and R 3 may be bonded to each other to form an alicyclic structure having 3 to 10 carbon atoms;
    n 1 represents an integer of 0-2. )
    Figure JPOXMLDOC01-appb-C000002
    (In the formula (2), R 4 represents an aliphatic alkyl group having 1 to 13 carbon atoms or an alkyl group having an alicyclic structure having 3 to 13 carbon atoms; the broken line represents a bond in the compound of the formula (1). Represents the location.)
  2.  一般式(4)で表されるヒドロキシラクトン化合物と、一般式(5)で表される(メタ)アクリル酸化合物とを反応させる工程を有する、請求項1に記載のラクトン(メタ)アクリレート化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    (式(4)中、R、R及びnは一般式(1)と同じである。)
    Figure JPOXMLDOC01-appb-C000004
    (式(5)中、Rは一般式(1)と同じである。また、Rはヒドロキシル基、ハロゲン原子、及び(メタ)アクリロイルオキシ基からなる群より選択される1つの基である。)
    The lactone (meth) acrylate compound according to claim 1, comprising a step of reacting the hydroxylactone compound represented by the general formula (4) and the (meth) acrylic acid compound represented by the general formula (5). Production method.
    Figure JPOXMLDOC01-appb-C000003
    (In the formula (4), R 2 , R 3 and n 1 are the same as those in the general formula (1).)
    Figure JPOXMLDOC01-appb-C000004
    (In formula (5), R 1 is the same as in general formula (1). R 5 is one group selected from the group consisting of a hydroxyl group, a halogen atom, and a (meth) acryloyloxy group. .)
  3.  一般式(6)で表される繰り返し単位を有する(メタ)アクリル共重合体。
    Figure JPOXMLDOC01-appb-C000005
    (式(6)中、R~R及びnは式(1)と同じであり、点*は隣接する繰り返し単位との結合箇所を表す。)
    A (meth) acrylic copolymer having a repeating unit represented by the general formula (6).
    Figure JPOXMLDOC01-appb-C000005
    (In the formula (6), R 1 to R 3 and n 1 are the same as in the formula (1), and the point * represents a bonding site with an adjacent repeating unit.)
  4.  更に一般式(7)又は(8)で表される繰り返し単位のどちらか一方又は両方、及び一般式(9)で表される繰り返し単位を有する請求項3に記載の(メタ)アクリル共重合体。
    Figure JPOXMLDOC01-appb-C000006
    (式(7)中、R21は水素又はメチル基を表し、R22は炭素数1~4のアルキル基を表し、R23は炭素数5~20のシクロアルキル基又は脂環式アルキル基を表し、点*は隣接する繰り返し単位との結合箇所を表す。)
    Figure JPOXMLDOC01-appb-C000007
    (式(8)中、R41は水素又はメチル基を表し、R42~R43は同一又は異なっていても良く、炭素数1~4のアルキル基を表し、R44は炭素数1~4のアルキル基又は炭素数5~20のシクロアルキル基、脂環式アルキル基からなる群より選択される1つの基を表し、点*は隣接する繰り返し単位との結合箇所を表す。)
    Figure JPOXMLDOC01-appb-C000008
    (式(9)中、R41は水素又はメチル基を表し、R42~R44は同一又は異なってもよく、水素元素、水酸基、メチル基、エチル基からなる群より選択される1つの基を表し、点*は隣接する繰り返し単位との結合箇所を表す。)
    The (meth) acrylic copolymer according to claim 3, further comprising one or both of the repeating units represented by the general formula (7) or (8) and the repeating unit represented by the general formula (9). .
    Figure JPOXMLDOC01-appb-C000006
    (In formula (7), R 21 represents hydrogen or a methyl group, R 22 represents an alkyl group having 1 to 4 carbon atoms, and R 23 represents a cycloalkyl group or alicyclic alkyl group having 5 to 20 carbon atoms. (The point * represents a bonding point with an adjacent repeating unit.)
    Figure JPOXMLDOC01-appb-C000007
    (In Formula (8), R 41 represents hydrogen or a methyl group, R 42 to R 43 may be the same or different, each represents an alkyl group having 1 to 4 carbon atoms, and R 44 represents 1 to 4 carbon atoms) Or an cycloalkyl group having 5 to 20 carbon atoms, or one group selected from the group consisting of alicyclic alkyl groups, and a point * represents a bonding point with an adjacent repeating unit.)
    Figure JPOXMLDOC01-appb-C000008
    (In Formula (9), R 41 represents hydrogen or a methyl group, R 42 to R 44 may be the same or different, and one group selected from the group consisting of a hydrogen element, a hydroxyl group, a methyl group, and an ethyl group) And the point * represents a bonding point with an adjacent repeating unit.)
  5.  前記一般式(6)で表される繰り返し単位を20~80モル%含み、前記一般式(7)および(8)で表される繰り返し単位を合計で20~80モル%含み、前記一般式(9)で表される繰り返し単位を10~50モル%含む、請求項4に記載の(メタ)アクリル共重合体。 20 to 80 mol% of the repeating unit represented by the general formula (6) is included, and 20 to 80 mol% in total of the repeating units represented by the general formulas (7) and (8) is included. The (meth) acrylic copolymer according to claim 4, comprising 10 to 50 mol% of the repeating unit represented by 9).
  6.  請求項3~5のいずれかに記載の(メタ)アクリル共重合体及び光酸発生剤を含む感光性樹脂組成物。
     
    A photosensitive resin composition comprising the (meth) acrylic copolymer according to any one of claims 3 to 5 and a photoacid generator.
PCT/JP2016/053035 2015-02-05 2016-02-02 Novel alicyclic ester compound, (meth)acrylic copolymer, and functional resin composition containing same WO2016125782A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016573372A JPWO2016125782A1 (en) 2015-02-05 2016-02-02 Novel alicyclic ester compound, (meth) acrylic copolymer, and functional resin composition containing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-021195 2015-02-05
JP2015021195 2015-02-05

Publications (1)

Publication Number Publication Date
WO2016125782A1 true WO2016125782A1 (en) 2016-08-11

Family

ID=56564123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053035 WO2016125782A1 (en) 2015-02-05 2016-02-02 Novel alicyclic ester compound, (meth)acrylic copolymer, and functional resin composition containing same

Country Status (3)

Country Link
JP (1) JPWO2016125782A1 (en)
TW (1) TW201634454A (en)
WO (1) WO2016125782A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014139650A (en) * 2012-12-21 2014-07-31 Jsr Corp Photoresist composition, resist pattern formation method, polymer and compound
JP2016173513A (en) * 2015-03-17 2016-09-29 Jsr株式会社 Radiation-sensitive resin composition, resist pattern formation method, polymer and compound
CN115960054A (en) * 2022-12-15 2023-04-14 南通常佑药业科技有限公司 Preparation method of ezetimibe intermediate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007156450A (en) * 2005-11-08 2007-06-21 Fujifilm Corp Positive resist composition and method of forming pattern using the same
JP2007241108A (en) * 2006-03-10 2007-09-20 Fujifilm Corp Positive resist composition and pattern forming method using same
JP2014013413A (en) * 2007-09-21 2014-01-23 Fujifilm Corp Photosensitive composition, pattern formation method using the photosensitive composition, and compound used in the photosensitive composition
JP2015007781A (en) * 2008-09-26 2015-01-15 富士フイルム株式会社 Positive resist composition for immersion exposure and pattern forming method
WO2015016027A1 (en) * 2013-07-31 2015-02-05 Jsr株式会社 Radiation-sensitive resin composition, resist pattern formation method, polymer, and compound

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007156450A (en) * 2005-11-08 2007-06-21 Fujifilm Corp Positive resist composition and method of forming pattern using the same
JP2007241108A (en) * 2006-03-10 2007-09-20 Fujifilm Corp Positive resist composition and pattern forming method using same
JP2014013413A (en) * 2007-09-21 2014-01-23 Fujifilm Corp Photosensitive composition, pattern formation method using the photosensitive composition, and compound used in the photosensitive composition
JP2015007781A (en) * 2008-09-26 2015-01-15 富士フイルム株式会社 Positive resist composition for immersion exposure and pattern forming method
WO2015016027A1 (en) * 2013-07-31 2015-02-05 Jsr株式会社 Radiation-sensitive resin composition, resist pattern formation method, polymer, and compound

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014139650A (en) * 2012-12-21 2014-07-31 Jsr Corp Photoresist composition, resist pattern formation method, polymer and compound
JP2016173513A (en) * 2015-03-17 2016-09-29 Jsr株式会社 Radiation-sensitive resin composition, resist pattern formation method, polymer and compound
CN115960054A (en) * 2022-12-15 2023-04-14 南通常佑药业科技有限公司 Preparation method of ezetimibe intermediate

Also Published As

Publication number Publication date
JPWO2016125782A1 (en) 2017-11-16
TW201634454A (en) 2016-10-01

Similar Documents

Publication Publication Date Title
TWI648270B (en) (Meth) acrylate compound, (meth) acrylic copolymer and photosensitive resin composition containing the same
WO2016125782A1 (en) Novel alicyclic ester compound, (meth)acrylic copolymer, and functional resin composition containing same
JP2010254639A (en) Alicyclic ester compound and resin composition produced therefrom
JP4780945B2 (en) Unsaturated carboxylic acid hemiacetal ester, polymer compound, and resin composition for photoresist
TWI614235B (en) Novel alicyclic ester compound, (meth)acrylic acid copolymer and photosensitive resin composition containing the same
US10005714B2 (en) (Meth)acrylic acid ester compound and production method therefor
TWI650310B (en) A method for producing a novel alicyclic ester compound, a novel alicyclic ester compound, a (meth) acrylate copolymer obtained by polymerizing the compound, and a photosensitive resin composition containing the copolymer
JP6056908B2 (en) Bicyclohexane derivative compound and process for producing the same
JP2015117305A (en) Photoresist photosensitive resin composition and (meth)acrylic copolymer used for the same
JP5577731B2 (en) Functional resin composition
JP5504892B2 (en) Novel tricyclodecane derivative and process for producing the same
JP2010168457A (en) Adamantane derivative and resin composition using the same as starting material
JP2009242809A (en) Method of manufacturing copolymer for photoresist
JP2010168303A (en) Adamantane derivative, and resin composition prepared from the same as raw material
KR20120127889A (en) Novel sulfonate salt, photoacid generator, and photoresist composition comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746613

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016573372

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746613

Country of ref document: EP

Kind code of ref document: A1