WO2016125770A1 - Electrolyte for lithium ion capacitor and lithium ion capacitor - Google Patents

Electrolyte for lithium ion capacitor and lithium ion capacitor Download PDF

Info

Publication number
WO2016125770A1
WO2016125770A1 PCT/JP2016/052997 JP2016052997W WO2016125770A1 WO 2016125770 A1 WO2016125770 A1 WO 2016125770A1 JP 2016052997 W JP2016052997 W JP 2016052997W WO 2016125770 A1 WO2016125770 A1 WO 2016125770A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonate
lithium ion
ion capacitor
electrolyte
positive electrode
Prior art date
Application number
PCT/JP2016/052997
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 昭夫
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2016573365A priority Critical patent/JPWO2016125770A1/en
Publication of WO2016125770A1 publication Critical patent/WO2016125770A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an electrolytic solution for a lithium ion capacitor that can improve the low temperature characteristics and life of the lithium ion capacitor, and a lithium ion capacitor using the same.
  • lithium ion capacitor As a large capacity capacitor of 500 F or more, a lithium ion capacitor having both advantages of a lithium ion secondary battery and an electric double layer capacitor has been put into practical use.
  • Recently developed lithium ion capacitors use activated carbon as the positive electrode active material and a carbon material capable of occluding and releasing lithium ions as the negative electrode active material.
  • the negative electrode potential is kept lower than a normal electric double layer capacitor (usually -1V to -1.35V) (about -3V), so that the operating voltage range of the cell can be increased. Yes (approximately 2.2V to 3.8V).
  • the adsorption of positive ions can also be used, so this type of lithium ion capacitor is compared to ordinary electric double layer capacitors, In principle, twice the capacity can be taken out.
  • a lithium ion capacitor has a smaller capacity than a lithium ion secondary battery, but has an advantage that the internal resistance is small, the output characteristics are excellent, and the life is long [Japanese Patent Laid-Open No. 2010-141217 ( Patent Document 1)].
  • Patent Document 2 discloses a lithium ion capacitor that has low internal resistance and excellent low-temperature characteristics by using an electrolytic solution that is a mixed solvent of ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC). is doing.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • PC propylene carbonate
  • An object of the present invention is to provide an electrolytic solution for a lithium ion capacitor having improved low-temperature characteristics and life, and a lithium ion capacitor using the same.
  • the properties required as an electrolyte for lithium ion capacitors include high conductivity, electrochemical stability, and high safety. These are the conditions for the electrolyte for lithium ion secondary batteries. Both have a lot in common. However, the basic reaction mechanism in the electrode is different (whether it is non-Faraday or Faraday), and the active material of the electrode that can be used is different, so it is reported that the characteristics are excellent for lithium ion secondary batteries. It is well known that an electrolytic solution or a widely used electrolytic solution for a lithium ion secondary battery cannot be immediately replaced or used for a lithium ion capacitor which is a kind of hybrid capacitor.
  • the inventors of the present invention conducted experiments on various organic solvents having properties suitable for an electrolyte for a lithium ion capacitor while changing the respective composition ratios, so as not to impair other performances as much as possible as compared with a single propylene carbonate.
  • An electrolytic solution which is a composition with improved low-temperature characteristics, was obtained and the present invention was conceived.
  • the electrolyte for a lithium ion capacitor according to the present invention includes a cyclic carbonate composed of ethylene carbonate (EC) and propylene carbonate (PC), and a chain carbonate composed of dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC). It is characterized by being configured.
  • EC ethylene carbonate
  • PC propylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • ethylene carbonate cannot be used if the negative electrode active material is amorphous non-graphitizable carbon. It was confirmed that it can be used by mixing with carbonate.
  • a cyclic carbonate composed of ethylene carbonate (EC) and propylene carbonate (PC) and a chain carbonate composed of dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) are lithium ion capacitors.
  • the present invention has been found to have excellent characteristics as an electrolytic solution for use in the present invention.
  • the content ratio of each component is not particularly limited, but the volume ratio of cyclic carbonate to chain carbonate in the solvent is preferably 1.0: 0.5 to 1.0: 4.0. Outside this range, the effect of improving the low temperature characteristics of the electrolyte for lithium ion capacitors is reduced. More preferably, it is 1.0: 1.5 to 1.0: 4.0, and the low temperature characteristics are considerably improved in this range. Desirably, it is about 1.0: 2.3, and the low temperature characteristics can be improved most remarkably.
  • the lithium ion capacitor electrolyte of the present invention may further contain vinylene carbonate (VC). It was confirmed that when a small amount of vinylene carbonate (VC) was added in addition to the four components, the lifetime in the high temperature range was greatly improved.
  • VC vinylene carbonate
  • Vinylene carbonate (VC) is preferably contained in an amount of 0.5 to 5.0 weight percent based on the total amount of cyclic carbonate and chain carbonate. If it is out of this range, the effect of improving the lifetime in the high temperature range becomes weak. Desirably, when 1.0 to 2.0 weight percent is contained, the effect of improving the lifetime in the high temperature range is most effectively exhibited.
  • the lithium ion capacitor of the present invention is characterized by using the above-described electrolytic solution for a lithium ion capacitor, wherein the positive electrode material includes activated carbon, and the negative electrode material includes non-graphitizable carbon.
  • (A) is a plan view of the lithium ion capacitor of the present invention
  • (b) is a cross-sectional view taken along the line IB-IB of FIG. 1 (a). It is a figure which shows the expanded view of the electrode group of the lithium ion capacitor shown in FIG. (A) And (b) is a figure which shows the example of the positive electrode plate of the lithium ion capacitor shown in FIG. 1, and a negative electrode plate.
  • (A) And (b) is a figure which shows the example of the metallic lithium support member of the lithium ion capacitor shown in FIG. It is a figure which shows the combination of the electrode group of the lithium ion capacitor shown in FIG. 1, and a positive electrode current collection member and a negative electrode current collection member.
  • FIG. 1A is a plan view showing a lithium ion capacitor 1 viewed from above the positive electrode
  • FIG. 1B is a cross-sectional view taken along the line IB-IB in FIG.
  • the cross-sectional shape of the electrode plate group 4 is omitted, and hatching representing the cross-sectional portion is also omitted.
  • the cylindrical lithium ion capacitor 1 has a bottomed cylindrical container (can) 3 made of steel plated with nickel.
  • the electrode plate group unit 2 for a lithium ion capacitor which is a combination of the electrode plate group 4, the positive electrode current collecting member 26 and the negative electrode current collecting member 36 is housed.
  • the electrode plate group 4 includes a hollow cylindrical polypropylene shaft core 5, a strip-like positive electrode plate 21 and a negative electrode plate 31, a first separator 6 and a second separator 7. It is configured to be wound through.
  • a porous substrate such as kraft paper can be used.
  • the positive electrode plate 21 is configured, for example, by coating a positive electrode active material mixture 23 on both surfaces of an aluminum foil (positive electrode current collector) 22.
  • the aluminum foil includes an aluminum alloy foil.
  • the positive electrode active material mixture 23 for example, a mixture of activated carbon, a binder composed of an acrylic binder, and a dispersant composed of carboxymethylcellulose (CMC) can be used.
  • the aluminum foil 22 has a coating portion 24 in which a number of through-holes are formed and a positive electrode active material mixture is applied, and an uncoated portion that is formed along the longitudinal direction of the coating portion 24 and has no through-holes. It has a work part 25.
  • the positive electrode active material mixture 23 is applied to the coating portion 24 with a length that is less than the length in the width direction of the coating portion. That is, the uncoated portion 25 of the aluminum foil is left exposed along the coating layer of the positive electrode active material mixture 23.
  • the negative electrode plate 31 also has the same structure as the positive electrode plate 21 shown in FIG. That is, the negative electrode plate 31 has a structure in which the negative electrode active material mixture 33 is applied to both surfaces of a copper foil (negative electrode current collector) 32.
  • the copper foil includes not only a pure copper foil but also a copper alloy foil.
  • the negative electrode active material mixture 33 include a non-graphitizable carbon that is an amorphous carbon capable of occluding and releasing lithium ions, a binder made of polyvinylidene fluoride (PVDF), and a conductive assistant such as acetylene black. Mixtures with materials can be used.
  • the copper foil 32 has a coated part 34 in which a large number of through holes are formed, and an uncoated part 35 that is formed along the longitudinal direction of the coated part 34 and has no through holes.
  • a negative electrode active material mixture 33 is applied to the coating part 34 in a length that is less than the length of the coating part 34 in the width direction. That is, the uncoated part 35 of the copper foil is left exposed along the coating layer of the negative electrode active material mixture 33.
  • the metal lithium support member 41 is for occluding (doping) lithium ions in the negative electrode active material (in this example, amorphous carbon) of the negative electrode plate 31.
  • the metal lithium support member 41 is composed of a thin plate-like metal lithium 42, a copper foil 43, and a nickel-plated copper foil 44 (support).
  • the copper foil 43 can be used by cutting the same copper foil 32 that constitutes the negative electrode plate 31 into a predetermined dimension.
  • the copper foil 43 and the nickel-plated copper foil 44 are formed with a large number of through holes (not shown), and the metal lithium 42 is formed with a large number of through holes of the two supports 43 and 44. It is sandwiched between the two supports 43 and 44 so as to contact the part.
  • the electrode plate group 4 has a spiral cross section with the shaft core 5 as the center through two separators 6 and 7 so that the positive electrode plate 21 and the negative electrode plate 31 are not in direct contact with each other. It is made up of wounds.
  • the positive electrode plate 21 and the negative electrode plate 31 are arranged so that the respective uncoated portions (uncoated portions 25 and 35) protrude outward from the separators 6 and 7 in the opposite direction.
  • the winding terminal part of the electrode plate group 4 is fixed by sticking an adhesive tape across the winding terminal part and the outer peripheral surface of the electrode plate group in order to prevent unwinding.
  • the positive electrode current collecting member 26 is made of aluminum (including an aluminum alloy), and has a ring shape in which a circular hole is formed in the central portion as shown in FIG. As shown in FIG. 1B, the hole has a diameter that fits the upper end of the shaft core 5 so that the positive electrode current collecting member 26 does not deviate from the center of the electrode plate group 4.
  • the positive electrode current collecting member 26 is welded to the uncoated portion 25 of the positive electrode plate 21 included in the electrode plate group 4. Therefore, as shown in FIG. 6, the positive electrode current collecting member 26 is brought closer to the electrode plate group 4 from the upper side of the electrode plate group 4 where the uncoated portion 25 of the positive electrode plate 21 is located, and the aluminum foil of the positive electrode plate 21.
  • the positive electrode current collecting member 26 is placed on the uncoated portion 25 of 22.
  • the uncoated portion 25 and the positive electrode current collecting member 26 are welded by laser welding.
  • the positive electrode current collecting member 26 is provided with four grooves that are convex toward the direction in contact with the electrode plate group 4 and that form a recess for welding so as to open away from the electrode plate group 4. It has been. These grooves are formed by press working, and extend radially linearly around the virtual center point of the positive electrode current collector 26.
  • the positive electrode terminal part 27b welded to the positive electrode current collection member 26 in FIG. 5 is welded to the positive electrode terminal part 27a of the container lid 51 shown in FIG.
  • a rubber insulating ring member for electrically insulating the container 3 is attached to the outer peripheral edge portion of the positive electrode current collecting member 26 during assembly.
  • the negative electrode current collecting member 36 is formed of nickel or a metal material obtained by applying nickel plating to copper.
  • the negative electrode current collector 36 is formed of a metal material obtained by applying nickel plating to copper.
  • the negative electrode current collecting member 36 has a disk shape in which a circular depression is formed in the central portion. This recess is formed so as to accommodate the lower end of the shaft core 5.
  • the negative electrode current collecting member 36 is moved closer to the electrode plate group 4 from the side where the uncoated portion 35 of the copper foil of the negative electrode plate 31 of the electrode plate group 4 is located, It is placed on the coating part 35.
  • the negative electrode current collection member 36 and the uncoated part 35 of the copper foil 32 are laser-welded.
  • the negative electrode current collecting member 36 is also provided with four grooves that constitute a concave portion for welding so as to protrude toward the electrode plate group 4 and open in a direction away from the electrode plate group 4. It has been. These grooves are formed by pressing, and extend linearly and radially about the virtual center point of the negative electrode current collector 36.
  • Laser light is used for welding the uncoated portions 25 and 35 of the electrode plate group 4 and the current collecting members (the positive current collecting member 26 and the negative current collecting member 36).
  • a direct focusing semiconductor laser device (DLL, not shown) that continuously generates laser light can be used.
  • the case where the negative electrode current collector 36 is welded will be described as an example.
  • a direct-collecting semiconductor laser device that continuously generates laser light, the laser light is collected along the groove of the negative electrode current collector 36.
  • the negative electrode current collecting member 36 is melted locally by continuously irradiating from the outer peripheral side of the electric member 36 toward the center, and the uncoated portion 35 of the copper foil of the negative electrode plate and the negative electrode current collecting member 36 are melted by the molten metal. Weld. A good welding result can be similarly obtained even if a fiber light guiding type semiconductor laser device is used instead of the direct focusing type semiconductor laser device.
  • a metal lithium support member 41 is disposed on the outer periphery of the electrode plate group 4 to which the current collecting member is welded, that is, the electrode plate group unit 2 for a lithium ion capacitor, and is accommodated in the container 3.
  • the recess of the negative electrode current collecting member 36 and the bottom of the container 3 are joined and electrically connected by joint welding.
  • a predetermined amount of epoxy resin is injected using the inner periphery of the shaft core 5. When a predetermined time elapses, the epoxy resin is solidified to fix the inner bottom portion of the container and the negative electrode current collecting member 36.
  • the metallic lithium support member 41 and the side surface portion of the container 3 are joined by resistance welding to be electrically connected to the negative electrode current collector 36 (negative electrode plate 31) via the container 3.
  • the negative electrode current collector 36 negative electrode plate 31
  • lithium ions can be occluded (doped) in the negative electrode active material (in this example, amorphous carbon) of the negative electrode plate 31.
  • An insulating ring member for electrically insulating the positive current collecting member 26 and the container 3 is attached to the outer peripheral edge of the positive current collecting member 26.
  • the container 3 is subjected to drawing processing in the vicinity of the opening, and the electrode group unit 2 for lithium ion capacitors is fixed in the container 3 as shown in FIG.
  • a container lid 51 constituting a positive electrode terminal is disposed above the positive electrode current collecting member 26.
  • the container lid 51 includes a lid body 52 disposed on the positive electrode current collector 26 and a lid cap 53 combined with the lid body 52.
  • the lid main body 52 is made of aluminum, and the lid cap 53 is made of steel plated with nickel as in the case of the container 3.
  • the lid cap 53 has an annular flat part and a convex part protruding from the center part of the flat part.
  • the container lid 51 is configured such that the outer peripheral portion of the flat portion of the lid cap 53 is curled (curled) on the edge of the lid body 52. A gap is formed between the convex portion of the lid cap 53 and the lid body 52.
  • One end of one positive electrode terminal portion 27a out of two positive electrode terminal portions 27 formed by laminating a ribbon-like aluminum foil is joined to the upper surface of the positive electrode current collecting member 26.
  • the other positive electrode terminal portion 27 b of the positive electrode terminal portion 27 is welded to the outer bottom surface of the lid body 52 constituting the container lid 51. Also, the other ends of the two positive terminal portions 27a and 27b are joined together. Thereby, the lid body 52 is electrically connected to one electrode plate (positive electrode plate 21) of the electrode plate group 4.
  • an annular step portion is formed in the drawn container, and the container lid 51 is electrically insulated on the container lid 51 and the container 3. It arrange
  • the opening end portion is curled (caulked) so as to approach the container lid 51.
  • the container lid 51 is fixed in a state where the container lid 51 is sandwiched between the opening end portion and the stepped portion that are curled. Thereby, the inside of the lithium ion capacitor 1 is sealed.
  • the present invention is composed of a cyclic carbonate composed of ethylene carbonate (EC) and propylene carbonate (PC), and a chain carbonate composed of dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC).
  • EC ethylene carbonate
  • PC propylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • Example 1 ⁇ Method for producing positive electrode> Weight of active carbon having a specific surface area of 1000 m 2 / g or more as a positive electrode active material, an acrylic binder as a binder, carboxymethyl cellulose (CMC) as a dispersing agent, and acetylene black of conductive carbon powder as a conductive auxiliary agent ( (Mass) ratio was 85: 7: 3: 5, and water (dispersion solvent) was added and kneaded to prepare a positive electrode slurry. The slurry was applied to both surfaces of an aluminum foil having a thickness of 20 ⁇ m, dried and pressed to obtain a positive electrode.
  • CMC carboxymethyl cellulose
  • Weight of non-graphitizable carbon that is amorphous carbon capable of occluding and releasing lithium ions as negative electrode active material, polyvinylidene fluoride (PVDF) as binder, and acetylene black of conductive carbon powder as conductive aid (Mass) ratio is 90: 5: 5, and the dispersion solvent N-methylpyrrolidone (NMP) (Wako Pure Chemical Industries, Ltd., purity 99%) is added and kneaded to prepare the negative electrode slurry.
  • NMP dispersion solvent N-methylpyrrolidone
  • Metal lithium (Honjo Metal Co., Ltd., purity 95%), copper foil constituting the negative electrode plate, and nickel-plated copper foil were cut into predetermined dimensions. Metal lithium was sandwiched between two supports so as to come into contact with a portion of the support where a large number of through holes were formed.
  • the electrode plate group is wound so that the positive electrode plate and the negative electrode plate are not in direct contact via the two separators and the positive electrode plate and the two laminates are not in direct contact via the two separators with the axial center as the winding center. Wound using a machine (Minato Seisakusho Co., Ltd.). At this time, the positive electrode plate, the negative electrode plate, and the separator are cut to a predetermined size so that the diameter becomes 38 mm, and an unwinding prevention adhesive tape is provided along the longitudinal direction of the separator wound around the outer periphery of the electrode plate group. Pasted.
  • the positive electrode current collecting member and the negative electrode current collector member were fitted to both ends of the shaft core, respectively, and the positive electrode (negative electrode) plate uncoated portion and the positive electrode (negative electrode) current collector member were welded by laser welding.
  • a metal lithium support member was wound around the outer periphery of the electrode plate group, and then inserted into the container, and the inner bottom portion of the container and the negative electrode current collecting member were joined by resistance welding. Further, a predetermined amount of epoxy resin was injected into the inner periphery of the shaft core, and after waiting for a predetermined time until solidification, the metallic lithium support member and the side surface portion of the container were joined by resistance welding. Next, a positive electrode current collecting member welded to the positive electrode terminal portion in advance and a container lid for sealing the container were joined.
  • ⁇ Injection of electrolyte> A predetermined amount of non-aqueous electrolyte was injected into the container using the inner periphery of the shaft core.
  • the non-aqueous electrolyte is phosphorus hexafluoride as an electrolyte in a solvent in which PC, EC, DMC and EMC (Wako Pure Chemical Industries, Ltd., purity 98%) are mixed at a volume ratio of 33: 33: 17: 17.
  • An electrolytic solution was prepared by dissolving lithium oxide (LiPF 6 ) (Wako Pure Chemical Industries, Ltd., purity 99%) at a 1.0 molar concentration.
  • Example 2 A lithium ion capacitor was fabricated in the same manner as in Example 1 except for the solvent in which PC, EC, DMC, and EMC were mixed at a volume ratio of 30: 30: 20: 20 as the electrolytic solution.
  • Example 3 A lithium ion capacitor was fabricated in the same manner as in Example 1 except for the solvent in which PC, EC, DMC, and EMC were mixed at a volume ratio of 25: 25: 25: 25 as the electrolytic solution.
  • Example 4 A lithium ion capacitor was fabricated in the same manner as in Example 1 except for the solvent in which PC, EC, DMC, and EMC were mixed at a volume ratio of 20: 20: 30: 30 as the electrolytic solution.
  • Example 5 A lithium ion capacitor was fabricated in the same manner as in Example 1 except for the solvent in which PC, EC, DMC, and EMC were mixed at a volume ratio of 15: 15: 35: 35 as the electrolytic solution.
  • Example 6 A lithium ion capacitor was manufactured in the same manner as in Example 1 except for the solvent in which PC, EC, DMC, and EMC were mixed at a volume ratio of 10: 10: 40: 40 as the electrolytic solution.
  • Example 7 A lithium ion capacitor was fabricated in the same manner as in Example 4 except that vinylene carbonate (VC) was added at 0.5 wt% as an additive for the electrolytic solution.
  • VC vinylene carbonate
  • Example 8 A lithium ion capacitor was fabricated in the same manner as in Example 4 except that vinylene carbonate (VC) was added at 1% by weight as an additive for the electrolytic solution.
  • VC vinylene carbonate
  • Example 9 A lithium ion capacitor was fabricated in the same manner as in Example 4 except that vinylene carbonate (VC) was added at 2% by weight as an additive for the electrolytic solution.
  • VC vinylene carbonate
  • Example 10 A lithium ion capacitor was fabricated in the same manner as in Example 4 except that vinylene carbonate (VC) was added at 5% by weight as an additive for the electrolytic solution.
  • VC vinylene carbonate
  • Example 11 A lithium ion capacitor was fabricated in the same manner as in Example 4 except that vinylene carbonate (VC) was added at 10% by weight as an additive for the electrolytic solution.
  • VC vinylene carbonate
  • Example 1 A lithium ion capacitor was fabricated in the same manner as in Example 1 except that the electrolytic solution was a PC solvent.
  • Example 2 A lithium ion capacitor was fabricated in the same manner as in Example 1 except for the solvent in which PC, EC, DMC, and EMC were mixed at a volume ratio of 45: 45: 5: 5 as the electrolytic solution.
  • Example 3 A lithium ion capacitor was fabricated in the same manner as in Example 1 except for the solvent in which PC, EC, DMC, and EMC were mixed at a volume ratio of 40: 40: 10: 10 as the electrolytic solution.
  • Example 4 A lithium ion capacitor was fabricated in the same manner as in Example 1 except for the solvent in which PC, EC, DMC, and EMC were mixed at a volume ratio of 35: 35: 15: 15 as the electrolytic solution.
  • Example 5 A lithium ion capacitor was fabricated in the same manner as in Example 1 except for the solvent in which PC, EC, DMC, and EMC were mixed at a volume ratio of 5: 5: 45: 45.
  • Example 6 A lithium ion capacitor was fabricated in the same manner as in Example 1 except for the solvent in which PC, EC, DMC, and EMC were mixed at a volume ratio of 3: 3: 47: 47 as the electrolytic solution.
  • Comparative Example 7 A lithium ion capacitor was fabricated in the same manner as in Comparative Example 1 except that vinylene carbonate (VC) was added at 1% by weight as an additive for the electrolytic solution.
  • VC vinylene carbonate
  • the DC internal resistance is obtained by calculating an approximate straight line from the voltage at 1 second and 2 seconds after the start of discharge, and the voltage drop at the start is obtained by extrapolation of this line, and this voltage drop is divided by the discharge current. Determined by
  • DCR ratio DC internal resistance after test (DCR) / DC internal resistance before test (DCR)
  • Table 1 and FIG. 7 show the results of the lithium ion capacitors to which the electrolytic solution of the present invention was applied, that is, Examples 1 to 6 and Comparative Examples 1 to 6.
  • the lithium ion capacitor which applied vinylene carbonate (VC) to the additive of this invention ie, the result from Example 7 to Example 10 and Comparative Example 1 and Comparative Example 7 to Comparative Example 9, is shown in Table 2 and FIG. Show.
  • the electrolyte solution for lithium ion capacitors of the present invention is an electrolyte solution that combines the characteristics of each solvent well by optimizing the composition ratio. By using this, the lithium ion has excellent low-temperature characteristics and long life. A capacitor can be obtained.

Abstract

Provided are: an electrolyte for a lithium ion capacitor having improved low-temperature properties and service life; and a lithium ion capacitor using the electrolyte. The electrolyte contains a solvent formed from a cyclic carbonate comprising ethylene carbonate (EC) and propylene carbonate (PC) and a chain carbonate comprising dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC). The electrolyte may further contain vinylene carbonate (VC). The lithium ion capacitor that uses the electrolyte can be configured so that the positive electrode material contains activated carbon and the negative electrode material contains a non-graphitizing carbon.

Description

リチウムイオンキャパシタ用電解液、及びリチウムイオンキャパシタElectrolyte for lithium ion capacitor and lithium ion capacitor
 本発明は、リチウムイオンキャパシタの低温特性及び寿命を改善することのできるリチウムイオンキャパシタ用電解液、及びこれを用いたリチウムイオンキャパシタに関するものである。 The present invention relates to an electrolytic solution for a lithium ion capacitor that can improve the low temperature characteristics and life of the lithium ion capacitor, and a lithium ion capacitor using the same.
 例えば500F以上の大容量キャパシタとして、リチウムイオン二次電池と電気二重層キャパシタの両者の利点を併せ持つリチウムイオンキャパシタが実用されている。最近開発が進められているタイプのリチウムイオンキャパシタは、正極活物質に活性炭、負極活物質にリチウムイオンを吸蔵・放出可能な炭素材が用いられており、予め負極板にリチウムイオンが吸蔵またはドープされている。よってこのタイプのリチウムイオンキャパシタは、負極電位が通常の電気二重層キャパシタ(通常-1V~-1.35V)より低く保たれる(約-3V)ため、セルの使用電圧範囲を高くすることができる(およそ2.2V~3.8V)。また、正極充放電機構として、通常の電気二重層キャパシタで利用される陰イオンの吸着に加え、陽イオンの吸着も利用できるので、このタイプのリチウムイオンキャパシタは通常の電気二重層キャパシタに比べ、原理的には2倍の容量を取り出すことができる。 For example, as a large capacity capacitor of 500 F or more, a lithium ion capacitor having both advantages of a lithium ion secondary battery and an electric double layer capacitor has been put into practical use. Recently developed lithium ion capacitors use activated carbon as the positive electrode active material and a carbon material capable of occluding and releasing lithium ions as the negative electrode active material. Has been. Therefore, in this type of lithium ion capacitor, the negative electrode potential is kept lower than a normal electric double layer capacitor (usually -1V to -1.35V) (about -3V), so that the operating voltage range of the cell can be increased. Yes (approximately 2.2V to 3.8V). Moreover, as a positive electrode charge / discharge mechanism, in addition to the adsorption of anions used in ordinary electric double layer capacitors, the adsorption of positive ions can also be used, so this type of lithium ion capacitor is compared to ordinary electric double layer capacitors, In principle, twice the capacity can be taken out.
 さらに、一般にリチウムイオンキャパシタは、リチウムイオン二次電池に比べて容量は小さいものの、内部抵抗が小さく出力特性の点で優れるとともに、長寿命であるという利点がある[特開2010-141217号公報(特許文献1)]。 Further, in general, a lithium ion capacitor has a smaller capacity than a lithium ion secondary battery, but has an advantage that the internal resistance is small, the output characteristics are excellent, and the life is long [Japanese Patent Laid-Open No. 2010-141217 ( Patent Document 1)].
 リチウムイオンキャパシタの特性を向上させる方法の一つとして、電解液の改良が挙げられる。例えば、特許文献2では、エチレンカーボネイト(EC)とエチルメチルカーボメイト(EMC)とジメチルカーボネイト(DMC)の混合溶媒である電解液によって、内部抵抗が小さく、低温特性に優れたリチウムイオンキャパシタを開示している。 One way to improve the characteristics of lithium ion capacitors is to improve the electrolyte. For example, Patent Document 2 discloses a lithium ion capacitor that has low internal resistance and excellent low-temperature characteristics by using an electrolytic solution that is a mixed solvent of ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC). is doing.
特開2010-141217号公報JP 2010-141217 A 特開2012-204748号公報JP 2012-204748 A
 リチウムイオンキャパシタ用電解液の溶媒として、環状カーボネイトのみを使用することが可能であり、例えばプロピレンカーボネイト(PC)は、誘電率が高く、引火点も高いという利点を有するが、粘度が高いため、低い温度領域では特性が急激に悪くなる。また高い温度領域での充電、及び充放電を繰り返して使用すると、徐々に特性の低下を生じるが、さらに一定期間が経過すると急激に特性が低下するという問題があった。 It is possible to use only cyclic carbonate as a solvent for the electrolyte for lithium ion capacitors. For example, propylene carbonate (PC) has the advantages of high dielectric constant and high flash point, but because of its high viscosity, In the low temperature range, the characteristics deteriorate rapidly. Moreover, when charging and discharging in a high temperature range are repeatedly used, the characteristics are gradually deteriorated, but there is a problem that the characteristics are rapidly deteriorated after a certain period.
 本発明の目的は、低温特性及び寿命が改善されたリチウムイオンキャパシタ用電解液、及びこれを用いたリチウムイオンキャパシタを提供することにある。 An object of the present invention is to provide an electrolytic solution for a lithium ion capacitor having improved low-temperature characteristics and life, and a lithium ion capacitor using the same.
 本発明者らは、リチウムイオンキャパシタ用電解液の低温特性改善について鋭意研究した結果、プロピレンカーボネイト単一ではなく、他の有機溶媒との組成物とすることにより課題を解決できることを見出した。 As a result of intensive studies on improving the low temperature characteristics of the electrolyte for lithium ion capacitors, the present inventors have found that the problem can be solved by using a composition with another organic solvent instead of a single propylene carbonate.
 リチウムイオンキャパシタ用電解液として要求される性質としては、導電性が高く、電気化学的に安定しており、安全性が高いこと等が挙げられ、これらはリチウムイオン二次電池用電解液の条件とも共通点が多い。しかしながら、両者は電極における基本的な反応機構が異なり(非ファラデー的かファラデー的か)、使用できる極の活材が異なるので、特性が優れていることが報告されているリチウムイオン二次電池用電解液や広く使用されているリチウムイオン二次電池用電解液だからといって、ハイブリッドキャパシタの一種であるリチウムイオンキャパシタに対して直ちに置換・流用できないことはよく知られている。 The properties required as an electrolyte for lithium ion capacitors include high conductivity, electrochemical stability, and high safety. These are the conditions for the electrolyte for lithium ion secondary batteries. Both have a lot in common. However, the basic reaction mechanism in the electrode is different (whether it is non-Faraday or Faraday), and the active material of the electrode that can be used is different, so it is reported that the characteristics are excellent for lithium ion secondary batteries. It is well known that an electrolytic solution or a widely used electrolytic solution for a lithium ion secondary battery cannot be immediately replaced or used for a lithium ion capacitor which is a kind of hybrid capacitor.
 本発明者らは、リチウムイオンキャパシタ用電解液に適した性質を有する多数の有機溶媒を、それぞれ構成比を変えて実験することにより、プロピレンカーボネイト単一に比べて他の性能をなるべく損なうことなく低温特性を改善した組成物である電解液を得て、本発明に想到したものである。 The inventors of the present invention conducted experiments on various organic solvents having properties suitable for an electrolyte for a lithium ion capacitor while changing the respective composition ratios, so as not to impair other performances as much as possible as compared with a single propylene carbonate. An electrolytic solution, which is a composition with improved low-temperature characteristics, was obtained and the present invention was conceived.
 本発明のリチウムイオンキャパシタ用電解液は、溶媒がエチレンカーボネイト(EC)とプロピレンカーボネイト(PC)とからなる環状カーボネイト、及びジメチルカーボネイト(DMC)とエチルメチルカーボネイト(EMC)とからなる鎖状カーボネイトから構成されることを特徴とする。 The electrolyte for a lithium ion capacitor according to the present invention includes a cyclic carbonate composed of ethylene carbonate (EC) and propylene carbonate (PC), and a chain carbonate composed of dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC). It is characterized by being configured.
 まず、プロピレンカーボネイト(PC)とジメチルカーボネイト(DMC)の2成分系、プロピレンカーボネイト(PC)とエチルメチルカーボネイト(EMC)の2成分系の場合、製造過程の予備充電においてガスが大量に発生した。エチレンカーボネイト(EC)とジメチルカーボネイト(DMC)の2成分系、エチレンカーボネイト(EC)とエチルメチルカーボネイト(EMC)の2成分系の場合、常温では内部抵抗は小さくなるが、低温と高温では特性が悪くなることを確認した。 First, in the case of the two-component system of propylene carbonate (PC) and dimethyl carbonate (DMC), and the two-component system of propylene carbonate (PC) and ethyl methyl carbonate (EMC), a large amount of gas was generated during the preliminary charge in the manufacturing process. In the case of a two-component system of ethylene carbonate (EC) and dimethyl carbonate (DMC), and a two-component system of ethylene carbonate (EC) and ethyl methyl carbonate (EMC), the internal resistance is small at room temperature, but the characteristics are low and high. Confirmed that it would get worse.
 またリチウムイオン二次電池の研究開発においては、負極の活物質を非晶質の難黒鉛化炭素とすると、エチレンカーボネイト(EC)は使用できないと信じられてきたが、リチウムイオンキャパシタには鎖状カーボネイトとの混合により使用可能であることを確認した。 In the research and development of lithium ion secondary batteries, it has been believed that ethylene carbonate (EC) cannot be used if the negative electrode active material is amorphous non-graphitizable carbon. It was confirmed that it can be used by mixing with carbonate.
 プロピレンカーボネイト(PC)に、ジメチルカーボネイト(DMC)及びエチルメチルカーボネイト(EMC)を配合した3成分では、セル特性が極端に悪化することが判明した。しかし、エチレンカーボネイト(EC)を加えて4成分にすると、セル特性は悪化することなく、低温特性も改善できることが判明した。一方、エチレンカーボネイト(EC)とジメチルカーボネイト(DMC)とエチルメチルカーボネイト(EMC)との3成分ではセル特性の劣化は少ないものの、高温特性が悪くなった。 It has been found that the cell characteristics are extremely deteriorated in the three components in which dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) are blended with propylene carbonate (PC). However, it has been found that when ethylene carbonate (EC) is added to form four components, the cell characteristics are not deteriorated and the low temperature characteristics can be improved. On the other hand, the three components of ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) showed little deterioration in cell characteristics but deteriorated high temperature characteristics.
 以上のような実験を重ねた結果、エチレンカーボネイト(EC)とプロピレンカーボネイト(PC)とからなる環状カーボネイト、及びジメチルカーボネイト(DMC)とエチルメチルカーボネイト(EMC)とからなる鎖状カーボネイトがリチウムイオンキャパシタ用電解液として優れた特性を有することが見出され、本発明に至ったものである。 As a result of repeated experiments as described above, a cyclic carbonate composed of ethylene carbonate (EC) and propylene carbonate (PC) and a chain carbonate composed of dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) are lithium ion capacitors. As a result, the present invention has been found to have excellent characteristics as an electrolytic solution for use in the present invention.
 各成分の含有比は特に限定されないが、溶媒中の環状カーボネイトと鎖状カーボネイトとの体積比は1.0:0.5~1.0:4.0であることが好ましい。この範囲を外れると、リチウムイオンキャパシタ用電解液の低温特性の改善効果が低くなる。さらに好ましくは1.0:1.5~1.0:4.0であり、この範囲では低温特性がかなり改善される。望ましくは約1.0:2.3であり、低温特性が最も顕著に改善できる。 The content ratio of each component is not particularly limited, but the volume ratio of cyclic carbonate to chain carbonate in the solvent is preferably 1.0: 0.5 to 1.0: 4.0. Outside this range, the effect of improving the low temperature characteristics of the electrolyte for lithium ion capacitors is reduced. More preferably, it is 1.0: 1.5 to 1.0: 4.0, and the low temperature characteristics are considerably improved in this range. Desirably, it is about 1.0: 2.3, and the low temperature characteristics can be improved most remarkably.
 本発明のリチウムイオンキャパシタ用電解液はさらに、ビニレンカーボネイト(VC)を含んでいてもよい。4成分に加え、少量のビニレンカーボネイト(VC)を添加すると、高温域での寿命が大幅に向上することを確認した。 The lithium ion capacitor electrolyte of the present invention may further contain vinylene carbonate (VC). It was confirmed that when a small amount of vinylene carbonate (VC) was added in addition to the four components, the lifetime in the high temperature range was greatly improved.
 ビニレンカーボネイト(VC)は、環状カーボネイト及び鎖状カーボネイトの総量に対し、好適には0.5~5.0重量パーセントが含まれる。この範囲を外れると、高温域での寿命向上効果が弱くなる。望ましくは1.0~2.0重量パーセントを含むようにすると、高温域での寿命向上の効果が最も良好に発揮される。 Vinylene carbonate (VC) is preferably contained in an amount of 0.5 to 5.0 weight percent based on the total amount of cyclic carbonate and chain carbonate. If it is out of this range, the effect of improving the lifetime in the high temperature range becomes weak. Desirably, when 1.0 to 2.0 weight percent is contained, the effect of improving the lifetime in the high temperature range is most effectively exhibited.
 また本発明のリチウムイオンキャパシタは、上述のようなリチウムイオンキャパシタ用電解液を使用し、正極の材料は活性炭を含み、かつ負極の材料は難黒鉛化炭素を含むことを特徴とする。 The lithium ion capacitor of the present invention is characterized by using the above-described electrolytic solution for a lithium ion capacitor, wherein the positive electrode material includes activated carbon, and the negative electrode material includes non-graphitizable carbon.
(a)は本発明のリチウムイオンキャパシタの平面図であり、(b)は図1(a)のIB-IB線断面図である。(A) is a plan view of the lithium ion capacitor of the present invention, and (b) is a cross-sectional view taken along the line IB-IB of FIG. 1 (a). 図1に示したリチウムイオンキャパシタの極板群の展開図を示す図である。It is a figure which shows the expanded view of the electrode group of the lithium ion capacitor shown in FIG. (a)及び(b)は、図1に示したリチウムイオンキャパシタの正極板及び負極板の例を示す図である。(A) And (b) is a figure which shows the example of the positive electrode plate of the lithium ion capacitor shown in FIG. 1, and a negative electrode plate. (a)及び(b)は、図1に示したリチウムイオンキャパシタの金属リチウム支持部材の例を示す図である。(A) And (b) is a figure which shows the example of the metallic lithium support member of the lithium ion capacitor shown in FIG. 図1に示したリチウムイオンキャパシタの極板群と、正極集電部材及び負極集電部材の組み合わせを示す図である。It is a figure which shows the combination of the electrode group of the lithium ion capacitor shown in FIG. 1, and a positive electrode current collection member and a negative electrode current collection member. 図1に示したリチウムイオンキャパシタ用の極板群ユニットを容器に収納し、容器蓋で密封する様子を示した図である。It is the figure which showed a mode that the electrode plate group unit for lithium ion capacitors shown in FIG. 1 was accommodated in a container, and was sealed with a container lid. 本発明の電解液を適用したリチウムイオンキャパシタにおいて、PCの含有量と低温DCR比及びフロート試験DCR比との関係を示した図である。It is the figure which showed the relationship between content of PC, low-temperature DCR ratio, and float test DCR ratio in the lithium ion capacitor to which the electrolyte solution of this invention is applied. 本発明の電解液を適用したリチウムイオンキャパシタにおいて、VCの添加量と低温DCR比及びフロート試験DCR比との関係を示した図である。It is the figure which showed the relationship between the addition amount of VC, the low temperature DCR ratio, and the float test DCR ratio in the lithium ion capacitor to which the electrolytic solution of the present invention is applied.
 以下、図面を参照して、本発明に係るリチウムイオンキャパシタの一つの実施の形態について説明する。 Hereinafter, an embodiment of a lithium ion capacitor according to the present invention will be described with reference to the drawings.
 (構成)
 <全体構成>
 図1(a)は正極の上方から視たリチウムイオンキャパシタ1を表す平面図であり、(b)は図1(a)のIB-IB線断面図である。図1(b)において、極板群4の断面形状は省略し、断面部分を表すハッチングも省略して示されている。
(Constitution)
<Overall configuration>
FIG. 1A is a plan view showing a lithium ion capacitor 1 viewed from above the positive electrode, and FIG. 1B is a cross-sectional view taken along the line IB-IB in FIG. In FIG. 1B, the cross-sectional shape of the electrode plate group 4 is omitted, and hatching representing the cross-sectional portion is also omitted.
 円筒状のリチウムイオンキャパシタ1は、ニッケルメッキが施されたスチール製の有底円筒状の容器(缶)3を有している。容器3内には、極板群4と正極集電部材26及び負極集電部材36の組み合わせからなるリチウムイオンキャパシタ用極板群ユニット2が収納されている。図1(b)及び図2に示すように、極板群4は、中空円筒状のポリプロピレン製軸芯5に帯状の正極板21及び負極板31が第1のセパレータ6及び第2のセパレータ7を介して捲回されて構成されている。第1及び第2のセパレータ6,7としては、クラフト紙等の多孔質基材を用いることができる。 The cylindrical lithium ion capacitor 1 has a bottomed cylindrical container (can) 3 made of steel plated with nickel. In the container 3, the electrode plate group unit 2 for a lithium ion capacitor, which is a combination of the electrode plate group 4, the positive electrode current collecting member 26 and the negative electrode current collecting member 36 is housed. As shown in FIGS. 1B and 2, the electrode plate group 4 includes a hollow cylindrical polypropylene shaft core 5, a strip-like positive electrode plate 21 and a negative electrode plate 31, a first separator 6 and a second separator 7. It is configured to be wound through. As the first and second separators 6 and 7, a porous substrate such as kraft paper can be used.
 <正極板>
 正極板21は、図3に示すように、例えば、アルミニウム箔(正極集電体)22の両面に、正極活物質合剤23が塗着されて構成されている。なお本願明細書において、アルミニウム箔はアルミニウム合金箔を含むものである。正極活物質合剤23としては、例えば、活性炭と、アクリル系バインダからなる結着剤と、カルボキシメチルセルロース(CMC)からなる分散剤との混合物を用いることができる。アルミニウム箔22は、多数の貫通孔が形成されて正極活物質合剤が塗布される塗工部24と、塗工部24の長手方向に沿って形成されて貫通孔が形成されていない未塗工部25を有している。塗工部24に該塗工部の幅方向の長さに満たない長さで正極活物質合剤23が塗着されている。すなわち、正極活物質合剤23の塗布層に沿ってアルミニウム箔の未塗工部25が露出した状態で残されている。
<Positive electrode plate>
As shown in FIG. 3, the positive electrode plate 21 is configured, for example, by coating a positive electrode active material mixture 23 on both surfaces of an aluminum foil (positive electrode current collector) 22. In the present specification, the aluminum foil includes an aluminum alloy foil. As the positive electrode active material mixture 23, for example, a mixture of activated carbon, a binder composed of an acrylic binder, and a dispersant composed of carboxymethylcellulose (CMC) can be used. The aluminum foil 22 has a coating portion 24 in which a number of through-holes are formed and a positive electrode active material mixture is applied, and an uncoated portion that is formed along the longitudinal direction of the coating portion 24 and has no through-holes. It has a work part 25. The positive electrode active material mixture 23 is applied to the coating portion 24 with a length that is less than the length in the width direction of the coating portion. That is, the uncoated portion 25 of the aluminum foil is left exposed along the coating layer of the positive electrode active material mixture 23.
 <負極板>
 負極板31も図2に示す正極板21と同様の構造を有している。すなわち、負極板31は、銅箔(負極集電体)32の両面に負極活物質合剤33が塗着された構造を有している。なお本願明細書において、銅箔は、純銅箔だけでなく銅合金箔も含むものである。負極活物質合剤33としては、例えば、リチウムイオンを吸蔵・放出可能な非晶質炭素である難黒鉛化炭素と、ポリフッ化ビニリデン(PVDF)からなる結着剤と、アセチレンブラック等の導電助材との混合物を用いることができる。銅箔32は、多数の貫通孔が形成された塗工部34と、塗工部34の長手方向に沿って形成されて貫通孔が形成されていない未塗工部35を有している。塗工部34には、該塗工部34の幅方向の長さに満たない長さで負極活物質合剤33が塗着されている。すなわち、負極活物質合剤33の塗布層に沿って銅箔の未塗工部35が露出した状態で残されている。
<Negative electrode plate>
The negative electrode plate 31 also has the same structure as the positive electrode plate 21 shown in FIG. That is, the negative electrode plate 31 has a structure in which the negative electrode active material mixture 33 is applied to both surfaces of a copper foil (negative electrode current collector) 32. In the present specification, the copper foil includes not only a pure copper foil but also a copper alloy foil. Examples of the negative electrode active material mixture 33 include a non-graphitizable carbon that is an amorphous carbon capable of occluding and releasing lithium ions, a binder made of polyvinylidene fluoride (PVDF), and a conductive assistant such as acetylene black. Mixtures with materials can be used. The copper foil 32 has a coated part 34 in which a large number of through holes are formed, and an uncoated part 35 that is formed along the longitudinal direction of the coated part 34 and has no through holes. A negative electrode active material mixture 33 is applied to the coating part 34 in a length that is less than the length of the coating part 34 in the width direction. That is, the uncoated part 35 of the copper foil is left exposed along the coating layer of the negative electrode active material mixture 33.
 <金属リチウム支持部材>
 金属リチウム支持部材41は、負極板31の負極活物質(本例では非晶質炭素)にリチウムイオンを吸蔵(ドープ)させるためのものである。図4(a)、(b)に示すように、金属リチウム支持部材41は、薄板状の金属リチウム42と、銅箔43と、ニッケルメッキした銅箔44(支持体)とで構成されている。銅箔43は、負極板31を構成する銅箔32と同じものを所定寸法に切断して用いることができる。銅箔43とニッケルメッキした銅箔44には、多数の貫通孔が形成されており(図示せず)、金属リチウム42は、2枚の支持体43,44の多数の貫通孔が形成された部分に接触するようにして、2枚の支持体43,44間に挟持されている。
<Metal lithium support member>
The metal lithium support member 41 is for occluding (doping) lithium ions in the negative electrode active material (in this example, amorphous carbon) of the negative electrode plate 31. As shown in FIGS. 4A and 4B, the metal lithium support member 41 is composed of a thin plate-like metal lithium 42, a copper foil 43, and a nickel-plated copper foil 44 (support). . The copper foil 43 can be used by cutting the same copper foil 32 that constitutes the negative electrode plate 31 into a predetermined dimension. The copper foil 43 and the nickel-plated copper foil 44 are formed with a large number of through holes (not shown), and the metal lithium 42 is formed with a large number of through holes of the two supports 43 and 44. It is sandwiched between the two supports 43 and 44 so as to contact the part.
 <極板群>
 図2に示すように、極板群4は、正極板21と負極板31とが、直接接触しないように、2枚のセパレータ6,7を介して、軸芯5を中心として断面渦巻き状に捲回されて構成されている。正極板21と負極板31は、それぞれの未塗工部(未塗工部25と35)が逆方向にセパレータ6,7よりも外側に突出するように配置されている。なお、極板群4の捲回終端部は、捲き解けを防止するために、粘着テープを捲回終端部と極板群の外周面とに跨がって貼り付けることで固定されている。
<Plate group>
As shown in FIG. 2, the electrode plate group 4 has a spiral cross section with the shaft core 5 as the center through two separators 6 and 7 so that the positive electrode plate 21 and the negative electrode plate 31 are not in direct contact with each other. It is made up of wounds. The positive electrode plate 21 and the negative electrode plate 31 are arranged so that the respective uncoated portions (uncoated portions 25 and 35) protrude outward from the separators 6 and 7 in the opposite direction. In addition, the winding terminal part of the electrode plate group 4 is fixed by sticking an adhesive tape across the winding terminal part and the outer peripheral surface of the electrode plate group in order to prevent unwinding.
 <正極集電部材>
 正極集電部材26は、アルミニウム(アルミニウム合金を含む)からなり、図5に示す通り、中心部分に円形の孔が形成されたリング形状を有している。この孔は図1(b)に示すように、正極集電部材26が極板群4の中心からずれないようにするために、軸芯5の上端に嵌る直径を有している。正極集電部材26は、極板群4に含まれる正極板21の未塗工部25に溶接される。そこで図6に示すように、極板群4の正極板21の未塗工部25が位置する側の上方から正極集電部材26を極板群4に向かって近付け、正極板21のアルミニウム箔22の未塗工部25の上に、正極集電部材26を載せる。レーザ溶接により、未塗工部25と正極集電部材26とを溶接する。レーザ溶接のために、正極集電部材26には、極板群4と接する方向に向かって凸となり、極板群4から離れる方向に向かって開くよう溶接用凹部を構成する溝が4本設けられている。これらの溝は、プレス加工によって形成されており、正極集電部材26の仮想中心点を中心として、放射状に直線的に延びている。なお、図5において正極集電部材26に溶接された正極端子部27bは、図6に示した容器蓋51の正極端子部27aに溶接されるものである。なお図1(b)に示すように、組立の際には、正極集電部材26の外周縁部には、容器3と電気的に絶縁するためのゴム製の絶縁リング部材が装着される。
<Positive electrode current collector>
The positive electrode current collecting member 26 is made of aluminum (including an aluminum alloy), and has a ring shape in which a circular hole is formed in the central portion as shown in FIG. As shown in FIG. 1B, the hole has a diameter that fits the upper end of the shaft core 5 so that the positive electrode current collecting member 26 does not deviate from the center of the electrode plate group 4. The positive electrode current collecting member 26 is welded to the uncoated portion 25 of the positive electrode plate 21 included in the electrode plate group 4. Therefore, as shown in FIG. 6, the positive electrode current collecting member 26 is brought closer to the electrode plate group 4 from the upper side of the electrode plate group 4 where the uncoated portion 25 of the positive electrode plate 21 is located, and the aluminum foil of the positive electrode plate 21. The positive electrode current collecting member 26 is placed on the uncoated portion 25 of 22. The uncoated portion 25 and the positive electrode current collecting member 26 are welded by laser welding. For laser welding, the positive electrode current collecting member 26 is provided with four grooves that are convex toward the direction in contact with the electrode plate group 4 and that form a recess for welding so as to open away from the electrode plate group 4. It has been. These grooves are formed by press working, and extend radially linearly around the virtual center point of the positive electrode current collector 26. In addition, the positive electrode terminal part 27b welded to the positive electrode current collection member 26 in FIG. 5 is welded to the positive electrode terminal part 27a of the container lid 51 shown in FIG. As shown in FIG. 1B, a rubber insulating ring member for electrically insulating the container 3 is attached to the outer peripheral edge portion of the positive electrode current collecting member 26 during assembly.
 <負極集電部材>
 負極集電部材36は、ニッケルまたは銅にニッケルメッキを施した金属材料のいずれかで形成されている。本実施の形態では、銅にニッケルメッキを施した金属材料で負極集電部材36を形成してある。図5に示す通り、負極集電部材36は、中心部分に円形の窪みが形成された円盤形状を有している。この窪みは、軸芯5の下端を収納するように形成されている。図5に示す通り、負極集電部材36は、極板群4の負極板31の銅箔の未塗工部35が位置する側から、極板群4に近付けられて、銅箔32の未塗工部35上に載せられる。そして負極集電部材36と銅箔32の未塗工部35とはレーザ溶接される。負極集電部材36にも、正極集電部材26と同様に、極板群4に向かって凸となり極板群4から離れる方向に向かって開くように溶接用凹部を構成する溝が4本設けられている。これらの溝は、プレス加工によって形成されており、負極集電部材36の仮想中心点を中心として放射状に直線的に延びている。
<Negative electrode current collector>
The negative electrode current collecting member 36 is formed of nickel or a metal material obtained by applying nickel plating to copper. In the present embodiment, the negative electrode current collector 36 is formed of a metal material obtained by applying nickel plating to copper. As shown in FIG. 5, the negative electrode current collecting member 36 has a disk shape in which a circular depression is formed in the central portion. This recess is formed so as to accommodate the lower end of the shaft core 5. As shown in FIG. 5, the negative electrode current collecting member 36 is moved closer to the electrode plate group 4 from the side where the uncoated portion 35 of the copper foil of the negative electrode plate 31 of the electrode plate group 4 is located, It is placed on the coating part 35. And the negative electrode current collection member 36 and the uncoated part 35 of the copper foil 32 are laser-welded. Similarly to the positive electrode current collecting member 26, the negative electrode current collecting member 36 is also provided with four grooves that constitute a concave portion for welding so as to protrude toward the electrode plate group 4 and open in a direction away from the electrode plate group 4. It has been. These grooves are formed by pressing, and extend linearly and radially about the virtual center point of the negative electrode current collector 36.
 <極板群と集電部材の溶接>
 極板群4の未塗工部25及び35と集電部材(正極集電部材26及び負極集電部材36)の溶接には、レーザ光を用いる。本実施の形態では、レーザ光を連続的に発生する直接集光型半導体レーザ装置(DLL・図示せず)を用いることができる。負極集電部材36を溶接する場合を例にして説明すると、レーザ光を連続的に発生する直接集光型半導体レーザ装置を用いて、レーザ光を負極集電部材36の溝部に沿って負極集電部材36の外周側から中心部に向かって連続照射して負極集電部材36を局部的に溶融し、溶融金属により負極板の銅箔の未塗工部35と負極集電部材36とを溶接する。なお、直接集光型半導体レーザ装置の代わりに、ファイバ導光型半導体レーザ装置を用いても同様に良好な溶接結果を得ることができる。
<Welding of electrode plate group and current collecting member>
Laser light is used for welding the uncoated portions 25 and 35 of the electrode plate group 4 and the current collecting members (the positive current collecting member 26 and the negative current collecting member 36). In the present embodiment, a direct focusing semiconductor laser device (DLL, not shown) that continuously generates laser light can be used. The case where the negative electrode current collector 36 is welded will be described as an example. Using a direct-collecting semiconductor laser device that continuously generates laser light, the laser light is collected along the groove of the negative electrode current collector 36. The negative electrode current collecting member 36 is melted locally by continuously irradiating from the outer peripheral side of the electric member 36 toward the center, and the uncoated portion 35 of the copper foil of the negative electrode plate and the negative electrode current collecting member 36 are melted by the molten metal. Weld. A good welding result can be similarly obtained even if a fiber light guiding type semiconductor laser device is used instead of the direct focusing type semiconductor laser device.
 <極板群の容器への収納>
 集電部材を溶接した極板群4、すなわち、リチウムイオンキャパシタ用極板群ユニット2の外周に、金属リチウム支持部材41を配置して、容器3へ収納する。リチウムイオンキャパシタ用極板群ユニット2を収納した状態で、負極集電部材36の窪みと容器3の底部は、接合溶接により接合され、電気的に接続される。軸芯5の内周を利用して所定量のエポキシ樹脂を注入する。所定時間経過すると、このエポキシ樹脂は固化して、容器の内底部と負極集電部材36を固定する。次に、金属リチウム支持部材41と容器3の側面部とを抵抗溶接により接合することで、容器3を介して負極集電部材36(負極板31)と電気的に接続される。このことにより、負極板31の負極活物質(本例では非晶質炭素)にリチウムイオンを吸蔵(ドープ)させることができる。
<Storing the electrode plate group in a container>
A metal lithium support member 41 is disposed on the outer periphery of the electrode plate group 4 to which the current collecting member is welded, that is, the electrode plate group unit 2 for a lithium ion capacitor, and is accommodated in the container 3. In a state in which the lithium ion capacitor electrode plate group unit 2 is housed, the recess of the negative electrode current collecting member 36 and the bottom of the container 3 are joined and electrically connected by joint welding. A predetermined amount of epoxy resin is injected using the inner periphery of the shaft core 5. When a predetermined time elapses, the epoxy resin is solidified to fix the inner bottom portion of the container and the negative electrode current collecting member 36. Next, the metallic lithium support member 41 and the side surface portion of the container 3 are joined by resistance welding to be electrically connected to the negative electrode current collector 36 (negative electrode plate 31) via the container 3. Thus, lithium ions can be occluded (doped) in the negative electrode active material (in this example, amorphous carbon) of the negative electrode plate 31.
 正極集電部材26の外周縁部には、正極集電部材26と容器3とを電気的に絶縁するための絶縁リング部材が取り付けられている。容器3には、開口部近傍において、絞り加工が施され、図1(b)に示すように、リチウムイオンキャパシタ用極板群ユニット2は容器3内で固定される。 An insulating ring member for electrically insulating the positive current collecting member 26 and the container 3 is attached to the outer peripheral edge of the positive current collecting member 26. The container 3 is subjected to drawing processing in the vicinity of the opening, and the electrode group unit 2 for lithium ion capacitors is fixed in the container 3 as shown in FIG.
 正極集電部材26の上方には、正極端子を構成する容器蓋51が配置される。容器蓋51は、正極集電部材26の上に配置された蓋本体52と、この蓋本体52と組み合わされる蓋キャップ53とから構成されている。蓋本体52は、アルミニウムにより形成されており、蓋キャップ53は、容器3と同様にニッケルメッキが施されたスチールにより形成されている。蓋キャップ53は、環状の平坦部とこの平坦部の中央部から突出する凸部とを有している。容器蓋51は、蓋キャップ53の平坦部の外周部が蓋本体52の縁部にカーリング加工が施されて(かしめられて)構成されている。蓋キャップ53の凸部と蓋本体52との間には、空隙部が形成されている。 A container lid 51 constituting a positive electrode terminal is disposed above the positive electrode current collecting member 26. The container lid 51 includes a lid body 52 disposed on the positive electrode current collector 26 and a lid cap 53 combined with the lid body 52. The lid main body 52 is made of aluminum, and the lid cap 53 is made of steel plated with nickel as in the case of the container 3. The lid cap 53 has an annular flat part and a convex part protruding from the center part of the flat part. The container lid 51 is configured such that the outer peripheral portion of the flat portion of the lid cap 53 is curled (curled) on the edge of the lid body 52. A gap is formed between the convex portion of the lid cap 53 and the lid body 52.
 正極集電部材26の上面には、リボン状のアルミニウム箔を積層した2本の正極端子部27のうち1本の正極端子部27aの一端が接合されている。正極端子部27のもう1本の正極端子部27bは、容器蓋51を構成する蓋本体52の外底面に溶接されている。また、2本の正極端子部27a,27bの他端同士も接合される。これにより、蓋本体52は、極板群4の一方の極板(正極板21)と電気的に接続される。 One end of one positive electrode terminal portion 27a out of two positive electrode terminal portions 27 formed by laminating a ribbon-like aluminum foil is joined to the upper surface of the positive electrode current collecting member 26. The other positive electrode terminal portion 27 b of the positive electrode terminal portion 27 is welded to the outer bottom surface of the lid body 52 constituting the container lid 51. Also, the other ends of the two positive terminal portions 27a and 27b are joined together. Thereby, the lid body 52 is electrically connected to one electrode plate (positive electrode plate 21) of the electrode plate group 4.
 上述のように、絞り加工が施された容器には、円環状の段部が形成されており、容器蓋51は、その上に、容器蓋51と容器3を電気的に絶縁するための絶縁部材を介して配置される。そして、開口端部は、容器蓋51に近づくようにカーリング加工(かしめ加工)されている。その結果、カーリング加工された開口端部と段部との間に、容器蓋51が絶縁部材を介して挟まれた状態で固定される。これにより、リチウムイオンキャパシタ1の内部は密封される。 As described above, an annular step portion is formed in the drawn container, and the container lid 51 is electrically insulated on the container lid 51 and the container 3. It arrange | positions through a member. The opening end portion is curled (caulked) so as to approach the container lid 51. As a result, the container lid 51 is fixed in a state where the container lid 51 is sandwiched between the opening end portion and the stepped portion that are curled. Thereby, the inside of the lithium ion capacitor 1 is sealed.
 <電解液の注入>
 実際には、容器3内にリチウムイオンキャパシタ用極板群ユニット2全体を浸潤可能な量の非水電解液(図示せず)を注入した後、開口部に容器蓋51を配置し、カーリング加工して密封する。非水電解液としては、エチレンカーボネイト(EC)とプロピレンカーボネイト(PC)とからなる環状カーボネイト、及びジメチルカーボネイト(DMC)とエチルメチルカーボネイト(EMC)とからなる鎖状カーボネイトから構成される、本発明のリチウムイオンキャパシタ用電解液を用いることができる。
<Injection of electrolyte>
Actually, after injecting an amount of nonaqueous electrolyte (not shown) that can infiltrate the entire lithium ion capacitor electrode group unit 2 into the container 3, a container lid 51 is placed in the opening and curled. And seal. As the non-aqueous electrolyte, the present invention is composed of a cyclic carbonate composed of ethylene carbonate (EC) and propylene carbonate (PC), and a chain carbonate composed of dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC). The electrolyte solution for lithium ion capacitors can be used.
 以下、本発明に係るリチウムイオンキャパシタ用電解液の実施例について説明する。 Hereinafter, examples of the electrolytic solution for a lithium ion capacitor according to the present invention will be described.
 (実施例1)
 <正極の製造方法>
 正極活物質として比表面積が1000m2/g以上の活性炭と、結着材としてアクリル系バインダと、分散材としてカルボキシメチルセルロース(CMC)と、導電助剤として導電性炭素粉末のアセチレンブラックとを重量(質量)比で85:7:3:5となるように混合し、これに水(分散溶媒)を添加、混練して正極スラリーを作製した。該スラリーを厚さ20μmのアルミニウム箔の両面に塗工し、乾燥後、プレスして正極を得た。
(Example 1)
<Method for producing positive electrode>
Weight of active carbon having a specific surface area of 1000 m 2 / g or more as a positive electrode active material, an acrylic binder as a binder, carboxymethyl cellulose (CMC) as a dispersing agent, and acetylene black of conductive carbon powder as a conductive auxiliary agent ( (Mass) ratio was 85: 7: 3: 5, and water (dispersion solvent) was added and kneaded to prepare a positive electrode slurry. The slurry was applied to both surfaces of an aluminum foil having a thickness of 20 μm, dried and pressed to obtain a positive electrode.
 <負極の製造方法>
 負極活物質としてリチウムイオンを吸蔵・放出可能な非晶質炭素である難黒鉛化炭素と、結着材としてポリフッ化ビニリデン(PVDF)と、導電助剤として導電性炭素粉末のアセチレンブラックとを重量(質量)比で90:5:5となるように混合し、これに分散溶媒のN-メチルピロリドン(NMP)(和光純薬工業株式会社,純度99%)を添加、混練して負極スラリーを作製した。該スラリーを厚さ15μmの銅箔の両面に塗工し、乾燥後、プレスして負極を得た。
<Method for producing negative electrode>
Weight of non-graphitizable carbon that is amorphous carbon capable of occluding and releasing lithium ions as negative electrode active material, polyvinylidene fluoride (PVDF) as binder, and acetylene black of conductive carbon powder as conductive aid (Mass) ratio is 90: 5: 5, and the dispersion solvent N-methylpyrrolidone (NMP) (Wako Pure Chemical Industries, Ltd., purity 99%) is added and kneaded to prepare the negative electrode slurry. Produced. The slurry was applied to both sides of a 15 μm thick copper foil, dried and pressed to obtain a negative electrode.
 <金属リチウム支持部材>
 金属リチウム(本城金属株式会社,純度95%)と、負極板を構成する銅箔とニッケルメッキした銅箔を所定寸法に切断した。金属リチウムを支持体の貫通孔が多数形成された部分に接触するようにして、2枚の支持体間に挟みこんだ。
<Metal lithium support member>
Metal lithium (Honjo Metal Co., Ltd., purity 95%), copper foil constituting the negative electrode plate, and nickel-plated copper foil were cut into predetermined dimensions. Metal lithium was sandwiched between two supports so as to come into contact with a portion of the support where a large number of through holes were formed.
 <捲回>
 極板群は、軸芯を捲回中心として、2枚のセパレータを介して、正極板及び負極板が直接接触せず、かつ、正極板と2枚の積層体が直接接触しないように捲回機(株式会社皆藤製作所)を使用して捲回した。この時、直径が38mmになるように、正極板、負極板及びセパレータは所定寸法で切断され、極板群の外周に捲回されたセパレータの長手方向に沿って、巻き解け防止の粘着テープを貼り付けた。
<Turn>
The electrode plate group is wound so that the positive electrode plate and the negative electrode plate are not in direct contact via the two separators and the positive electrode plate and the two laminates are not in direct contact via the two separators with the axial center as the winding center. Wound using a machine (Minato Seisakusho Co., Ltd.). At this time, the positive electrode plate, the negative electrode plate, and the separator are cut to a predetermined size so that the diameter becomes 38 mm, and an unwinding prevention adhesive tape is provided along the longitudinal direction of the separator wound around the outer periphery of the electrode plate group. Pasted.
 <組立>
 軸芯の両端部にそれぞれ正極集電部材と負極集電部材をはめ合わせ、レーザ溶接により、正極(負極)板未塗工部と正極(負極)集電部材とを溶接した。この極板群の外周に金属リチウム支持部材を巻きつけた後、容器内に挿入し、容器の内底部と負極集電部材とを抵抗溶接により接合した。さらに、軸芯の内周に所定量のエポキシ樹脂を注入し、固化するまでの所定時間待った後、金属リチウム支持部材と容器の側面部を抵抗溶接により接合した。次に、あらかじめ正極端子部を溶接した正極集電部材と容器を封口するための容器蓋を接合した。
<Assembly>
The positive electrode current collecting member and the negative electrode current collector member were fitted to both ends of the shaft core, respectively, and the positive electrode (negative electrode) plate uncoated portion and the positive electrode (negative electrode) current collector member were welded by laser welding. A metal lithium support member was wound around the outer periphery of the electrode plate group, and then inserted into the container, and the inner bottom portion of the container and the negative electrode current collecting member were joined by resistance welding. Further, a predetermined amount of epoxy resin was injected into the inner periphery of the shaft core, and after waiting for a predetermined time until solidification, the metallic lithium support member and the side surface portion of the container were joined by resistance welding. Next, a positive electrode current collecting member welded to the positive electrode terminal portion in advance and a container lid for sealing the container were joined.
 <電解液の注入>
 軸芯の内周を利用して、所定量の非水電解液を容器内に注入した。非水電解液は、PC、EC、DMC及びEMC(和光純薬工業株式会社,純度98%)を体積比で33:33:17:17の割合で混合した溶媒に、電解質として6フッ化リン酸リチウム(LiPF6)(和光純薬工業株式会社,純度99%)を1.0モル濃度で溶解した電解液とした。
<Injection of electrolyte>
A predetermined amount of non-aqueous electrolyte was injected into the container using the inner periphery of the shaft core. The non-aqueous electrolyte is phosphorus hexafluoride as an electrolyte in a solvent in which PC, EC, DMC and EMC (Wako Pure Chemical Industries, Ltd., purity 98%) are mixed at a volume ratio of 33: 33: 17: 17. An electrolytic solution was prepared by dissolving lithium oxide (LiPF 6 ) (Wako Pure Chemical Industries, Ltd., purity 99%) at a 1.0 molar concentration.
 <容器の封口>
 容器にガスケットをはめた後、容器蓋で正極端子部を折りたたむようにして容器に蓋をし、密封することで、リチウムイオンキャパシタを作製した。
<Sealing container>
After the gasket was fitted to the container, the container was covered and sealed so that the positive electrode terminal portion was folded with the container lid, and a lithium ion capacitor was produced.
 <負極活物質へのリチウムの吸蔵>
 所定温度(60℃以下)に管理された貯蔵室に1か月間、リチウムイオンキャパシタを放置することでリチウムイオンが負極活物質へ吸蔵され、負極が充電状態になったリチウムイオンキャパシタを得た。
<Occlusion of lithium in negative electrode active material>
By leaving the lithium ion capacitor in a storage room controlled at a predetermined temperature (60 ° C. or lower) for one month, lithium ions were occluded in the negative electrode active material, and a lithium ion capacitor in which the negative electrode was charged was obtained.
 (実施例2)
 電解液として、PC、EC、DMC及びEMCを体積比で30:30:20:20の割合で混合した溶媒以外、他の工程は、実施例1と同じにしてリチウムイオンキャパシタを作製した。
(Example 2)
A lithium ion capacitor was fabricated in the same manner as in Example 1 except for the solvent in which PC, EC, DMC, and EMC were mixed at a volume ratio of 30: 30: 20: 20 as the electrolytic solution.
 (実施例3)
 電解液として、PC、EC、DMC及びEMCを体積比で25:25:25:25の割合で混合した溶媒以外、他の工程は、実施例1と同じにしてリチウムイオンキャパシタを作製した。
(Example 3)
A lithium ion capacitor was fabricated in the same manner as in Example 1 except for the solvent in which PC, EC, DMC, and EMC were mixed at a volume ratio of 25: 25: 25: 25 as the electrolytic solution.
 (実施例4)
 電解液として、PC、EC、DMC及びEMCを体積比で20:20:30:30の割合で混合した溶媒以外、他の工程は、実施例1と同じにしてリチウムイオンキャパシタを作製した。
Example 4
A lithium ion capacitor was fabricated in the same manner as in Example 1 except for the solvent in which PC, EC, DMC, and EMC were mixed at a volume ratio of 20: 20: 30: 30 as the electrolytic solution.
 (実施例5)
 電解液として、PC、EC、DMC及びEMCを体積比で15:15:35:35の割合で混合した溶媒以外、他の工程は、実施例1と同じにしてリチウムイオンキャパシタを作製した。
(Example 5)
A lithium ion capacitor was fabricated in the same manner as in Example 1 except for the solvent in which PC, EC, DMC, and EMC were mixed at a volume ratio of 15: 15: 35: 35 as the electrolytic solution.
 (実施例6)
電解液として、PC、EC、DMC及びEMCを体積比で10:10:40:40の割合で混合した溶媒以外、他の工程は、実施例1と同じにしてリチウムイオンキャパシタを作製した。
(Example 6)
A lithium ion capacitor was manufactured in the same manner as in Example 1 except for the solvent in which PC, EC, DMC, and EMC were mixed at a volume ratio of 10: 10: 40: 40 as the electrolytic solution.
 (実施例7)
 電解液の添加剤として、ビニレンカーボネイト(VC)を0.5重量%で添加したこと以外、他の工程は、実施例4と同じにしてリチウムイオンキャパシタを作製した。
(Example 7)
A lithium ion capacitor was fabricated in the same manner as in Example 4 except that vinylene carbonate (VC) was added at 0.5 wt% as an additive for the electrolytic solution.
 (実施例8)
 電解液の添加剤として、ビニレンカーボネイト(VC)を1重量%で添加したこと以外、他の工程は、実施例4と同じにしてリチウムイオンキャパシタを作製した。
(Example 8)
A lithium ion capacitor was fabricated in the same manner as in Example 4 except that vinylene carbonate (VC) was added at 1% by weight as an additive for the electrolytic solution.
 (実施例9)
 電解液の添加剤として、ビニレンカーボネイト(VC)を2重量%で添加したこと以外、他の工程は、実施例4と同じにしてリチウムイオンキャパシタを作製した。
Example 9
A lithium ion capacitor was fabricated in the same manner as in Example 4 except that vinylene carbonate (VC) was added at 2% by weight as an additive for the electrolytic solution.
 (実施例10)
 電解液の添加剤として、ビニレンカーボネイト(VC)を5重量%で添加したこと以外、他の工程は、実施例4と同じにしてリチウムイオンキャパシタを作製した。
(Example 10)
A lithium ion capacitor was fabricated in the same manner as in Example 4 except that vinylene carbonate (VC) was added at 5% by weight as an additive for the electrolytic solution.
 (実施例11)
 電解液の添加剤として、ビニレンカーボネイト(VC)を10重量%で添加したこと以外、他の工程は、実施例4と同じにしてリチウムイオンキャパシタを作製した。
(Example 11)
A lithium ion capacitor was fabricated in the same manner as in Example 4 except that vinylene carbonate (VC) was added at 10% by weight as an additive for the electrolytic solution.
 (比較例1)
 電解液として、PCの溶媒としたこと以外、他の工程は、実施例1と同じにしてリチウムイオンキャパシタを作製した。
(Comparative Example 1)
A lithium ion capacitor was fabricated in the same manner as in Example 1 except that the electrolytic solution was a PC solvent.
 (比較例2)
 電解液として、PC、EC、DMC及びEMCを体積比で45:45:5:5の割合で混合した溶媒以外、他の工程は、実施例1と同じにしてリチウムイオンキャパシタを作製した。
(Comparative Example 2)
A lithium ion capacitor was fabricated in the same manner as in Example 1 except for the solvent in which PC, EC, DMC, and EMC were mixed at a volume ratio of 45: 45: 5: 5 as the electrolytic solution.
 (比較例3)
 電解液として、PC、EC、DMC及びEMCを体積比で40:40:10:10の割合で混合した溶媒以外、他の工程は、実施例1と同じにしてリチウムイオンキャパシタを作製した。
(Comparative Example 3)
A lithium ion capacitor was fabricated in the same manner as in Example 1 except for the solvent in which PC, EC, DMC, and EMC were mixed at a volume ratio of 40: 40: 10: 10 as the electrolytic solution.
 (比較例4)
 電解液として、PC、EC、DMC及びEMCを体積比で35:35:15:15の割合で混合した溶媒以外、他の工程は、実施例1と同じにしてリチウムイオンキャパシタを作製した。
(Comparative Example 4)
A lithium ion capacitor was fabricated in the same manner as in Example 1 except for the solvent in which PC, EC, DMC, and EMC were mixed at a volume ratio of 35: 35: 15: 15 as the electrolytic solution.
 (比較例5)
 電解液として、PC、EC、DMC及びEMCを体積比で5:5:45:45の割合で混合した溶媒以外、他の工程は、実施例1と同じにしてリチウムイオンキャパシタを作製した。
(Comparative Example 5)
A lithium ion capacitor was fabricated in the same manner as in Example 1 except for the solvent in which PC, EC, DMC, and EMC were mixed at a volume ratio of 5: 5: 45: 45.
 (比較例6)
 電解液として、PC、EC、DMC及びEMCを体積比で3:3:47:47の割合で混合した溶媒以外、他の工程は、実施例1と同じにしてリチウムイオンキャパシタを作製した。
(Comparative Example 6)
A lithium ion capacitor was fabricated in the same manner as in Example 1 except for the solvent in which PC, EC, DMC, and EMC were mixed at a volume ratio of 3: 3: 47: 47 as the electrolytic solution.
 (比較例7)
 電解液の添加剤として、ビニレンカーボネイト(VC)を1重量%で添加したこと以外、他の工程は、比較例1と同じにしてリチウムイオンキャパシタを作製した。
(Comparative Example 7)
A lithium ion capacitor was fabricated in the same manner as in Comparative Example 1 except that vinylene carbonate (VC) was added at 1% by weight as an additive for the electrolytic solution.
 <特性測定>
 25℃及び-20℃の環境下で、10Aの定電流でリチウムイオンキャパシタのセル電圧が3.8Vになるまで充電し、その後3.8Vの定電圧を印加する定電流―定電圧充電を30分間行った。次いで、10Aの定電流でセル電圧が2.2Vになるまで放電した。この放電におけるセルの直流内部抵抗(DCR)を測定した(東洋システム株式会社 TOSCAT-3200)。
<Characteristic measurement>
In an environment of 25 ° C. and −20 ° C., charge at a constant current of 10 A until the cell voltage of the lithium ion capacitor reaches 3.8 V, and then apply a constant voltage of 3.8 V to 30 constant current-constant voltage charging. Went for a minute. Next, the battery was discharged at a constant current of 10 A until the cell voltage reached 2.2V. The direct current internal resistance (DCR) of the cell in this discharge was measured (Toyo System Co., Ltd. TOSCAT-3200).
 直流内部抵抗(DCR)は、放電開始1秒後と2秒後の電圧より近似直線を求め、この直線の外挿により開始時の電圧降下分を求め、この電圧降下分を放電電流との除算により求めた。 The DC internal resistance (DCR) is obtained by calculating an approximate straight line from the voltage at 1 second and 2 seconds after the start of discharge, and the voltage drop at the start is obtained by extrapolation of this line, and this voltage drop is divided by the discharge current. Determined by
 前記、実施例1から10及び比較例1から9までの方法で製造したリチウムイオンキャパシタのセルを各々10セルずつ測定して、フロート試験前後の平均値を表1及び表2に示す。 10 cells each of the lithium ion capacitors manufactured by the methods of Examples 1 to 10 and Comparative Examples 1 to 9 were measured, and the average values before and after the float test are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 <フロート試験>
 80℃の恒温槽内で、5Aの定電流でリチウムイオンキャパシタのセル電圧が3.8Vになるまで充電し、その後3.8Vの定電圧を印加する定電流―定電圧充電を1000時間行った。
Figure JPOXMLDOC01-appb-T000002
<Float test>
In a constant temperature bath at 80 ° C., charging was performed at a constant current of 5 A until the cell voltage of the lithium ion capacitor reached 3.8 V, and then a constant current-constant voltage charging for applying a constant voltage of 3.8 V was performed for 1000 hours. .
 <特性評価>
 DCR比(直流内部抵抗の変化率)は、下記の式で算出した。
DCR比=試験後の直流内部抵抗(DCR)/試験前の直流内部抵抗(DCR)
 本発明の電解液を適用したリチウムイオンキャパシタ、つまり実施例1から実施例6及び比較例1から比較例6までの結果を表1と図7に示す。また、本発明の添加剤にビニレンカーボネイト(VC)を適用したリチウムイオンキャパシタ、つまり実施例7から実施例10及び比較例1と比較例7から比較例9までの結果を表2と図8に示す。
<Characteristic evaluation>
The DCR ratio (change rate of direct current internal resistance) was calculated by the following formula.
DCR ratio = DC internal resistance after test (DCR) / DC internal resistance before test (DCR)
Table 1 and FIG. 7 show the results of the lithium ion capacitors to which the electrolytic solution of the present invention was applied, that is, Examples 1 to 6 and Comparative Examples 1 to 6. Moreover, the lithium ion capacitor which applied vinylene carbonate (VC) to the additive of this invention, ie, the result from Example 7 to Example 10 and Comparative Example 1 and Comparative Example 7 to Comparative Example 9, is shown in Table 2 and FIG. Show.
 総合判定は、比較例の特性値と比較して判断した。 Comprehensive judgment was judged by comparing with the characteristic value of the comparative example.
 ◎:比較例より特性が非常に優れている。 ◎: The characteristics are much better than the comparative example.
 ○:比較例より特性が優れている。 ○: The characteristics are superior to the comparative example.
 △:比較例と特性が同等である。 △: The characteristics are equivalent to those of the comparative example.
 ×:比較例より特性が悪い。 X: The characteristic is worse than the comparative example.
 本発明のリチウムイオンキャパシタ用電解液は、組成比を最適化することにより、各溶媒が有する特徴をうまく組み合わせた電解液であり、これを使用することにより低温特性と長寿命に優れたリチウムイオンキャパシタを得ることができる。 The electrolyte solution for lithium ion capacitors of the present invention is an electrolyte solution that combines the characteristics of each solvent well by optimizing the composition ratio. By using this, the lithium ion has excellent low-temperature characteristics and long life. A capacitor can be obtained.
 1 リチウムイオンキャパシタ
 3 容器
 4 極板群
 5 軸芯
 6,7 セパレータ
DESCRIPTION OF SYMBOLS 1 Lithium ion capacitor 3 Container 4 Electrode plate group 5 Shaft core 6,7 Separator

Claims (8)

  1.  溶媒がエチレンカーボネイトとプロピレンカーボネイトとからなる環状カーボネイト、ジメチルカーボネイトとエチルメチルカーボネイトとからなる鎖状カーボネイト及びビニレンカーボネイトから構成され、
     前記環状カーボネイトと前記鎖状カーボネイトとの体積比は1.0:0.5~1.0:4.0であり、
     前記ビニレンカーボネイトが、前記環状カーボネイト及び前記鎖状カーボネイトの総量に対し、0.5~5.0重量パーセントが含まれているリチウムイオンキャパシタ用電解液。
    The solvent is composed of cyclic carbonate composed of ethylene carbonate and propylene carbonate, chain carbonate composed of dimethyl carbonate and ethylmethyl carbonate, and vinylene carbonate,
    The volume ratio of the annular carbonate and the chain carbonate is 1.0: 0.5 to 1.0: 4.0,
    An electrolytic solution for a lithium ion capacitor, wherein the vinylene carbonate is contained in an amount of 0.5 to 5.0 weight percent with respect to the total amount of the cyclic carbonate and the chain carbonate.
  2.  溶媒がエチレンカーボネイトとプロピレンカーボネイトとからなる環状カーボネイト、及びジメチルカーボネイトとエチルメチルカーボネイトとからなる鎖状カーボネイトから構成され、前記環状カーボネイトと前記鎖状カーボネイトとの体積比は1.0:0.5~1.0:4.0であることを特徴とするリチウムイオンキャパシタ用電解液。 The solvent is composed of a cyclic carbonate composed of ethylene carbonate and propylene carbonate, and a chain carbonate composed of dimethyl carbonate and ethylmethyl carbonate, and the volume ratio of the cyclic carbonate to the chain carbonate is 1.0: 0.5. 1.0 to 4.0, an electrolyte for a lithium ion capacitor.
  3.  さらに、ビニレンカーボネイトを含む請求項2に記載のリチウムイオンキャパシタ用電解液。 Furthermore, the electrolyte solution for lithium ion capacitors of Claim 2 containing vinylene carbonate.
  4.  前記環状カーボネイトと前記鎖状カーボネイトとの体積比は1.0:1.5~1.0:4.0である請求項3に記載のリチウムイオンキャパシタ用電解液。 The electrolyte solution for a lithium ion capacitor according to claim 3, wherein the volume ratio of the annular carbonate to the chain carbonate is 1.0: 1.5 to 1.0: 4.0.
  5.  前記環状カーボネイトと前記鎖状カーボネイトとの体積比は約1.0:2.3である請求項3に記載のリチウムイオンキャパシタ用電解液。 The electrolyte solution for a lithium ion capacitor according to claim 3, wherein the volume ratio of the annular carbonate and the chain carbonate is about 1.0: 2.3.
  6.  前記ビニレンカーボネイトは、前記環状カーボネイト及び前記鎖状カーボネイトの総量に対し、0.5~5.0重量パーセントが含まれる請求項3に記載のリチウムイオンキャパシタ用電解液。 The electrolyte solution for a lithium ion capacitor according to claim 3, wherein the vinylene carbonate is contained in an amount of 0.5 to 5.0 weight percent with respect to the total amount of the cyclic carbonate and the chain carbonate.
  7.  前記ビニレンカーボネイトは、前記環状カーボネイト及び前記鎖状カーボネイトの総量に対し、1.0~2.0重量パーセントが含まれる請求項3に記載のリチウムイオンキャパシタ用電解液。 The electrolyte solution for a lithium ion capacitor according to claim 3, wherein the vinylene carbonate is contained in an amount of 1.0 to 2.0 weight percent with respect to the total amount of the cyclic carbonate and the chain carbonate.
  8.  請求項1ないし請求項7のいずれか1項のリチウムイオンキャパシタ用電解液を使用し、正極の材料は活性炭を含み、かつ負極の材料は難黒鉛化炭素を含むことを特徴とするリチウムイオンキャパシタ。 A lithium ion capacitor using the electrolyte for a lithium ion capacitor according to any one of claims 1 to 7, wherein the positive electrode material includes activated carbon, and the negative electrode material includes non-graphitizable carbon. .
PCT/JP2016/052997 2015-02-02 2016-02-02 Electrolyte for lithium ion capacitor and lithium ion capacitor WO2016125770A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016573365A JPWO2016125770A1 (en) 2015-02-02 2016-02-02 Electrolyte for lithium ion capacitor and lithium ion capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-018468 2015-02-02
JP2015018468 2015-02-02

Publications (1)

Publication Number Publication Date
WO2016125770A1 true WO2016125770A1 (en) 2016-08-11

Family

ID=56564112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052997 WO2016125770A1 (en) 2015-02-02 2016-02-02 Electrolyte for lithium ion capacitor and lithium ion capacitor

Country Status (2)

Country Link
JP (1) JPWO2016125770A1 (en)
WO (1) WO2016125770A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339010A (en) * 2005-06-01 2006-12-14 Toshiba Corp Electrolytic solution for electrochemical device
JP2008243832A (en) * 2007-03-23 2008-10-09 Stella Chemifa Corp Electrolyte for electric double-layer capacitor
JP2014212304A (en) * 2013-04-03 2014-11-13 Jmエナジー株式会社 Power storage device and method of manufacturing power storage module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339010A (en) * 2005-06-01 2006-12-14 Toshiba Corp Electrolytic solution for electrochemical device
JP2008243832A (en) * 2007-03-23 2008-10-09 Stella Chemifa Corp Electrolyte for electric double-layer capacitor
JP2014212304A (en) * 2013-04-03 2014-11-13 Jmエナジー株式会社 Power storage device and method of manufacturing power storage module

Also Published As

Publication number Publication date
JPWO2016125770A1 (en) 2017-11-09

Similar Documents

Publication Publication Date Title
JP5378718B2 (en) Electrode plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
US20080248375A1 (en) Lithium secondary batteries
JP4960326B2 (en) Secondary battery
JP2007265668A (en) Cathode for nonaqueous electrolyte secondary battery and its manufacturing method
JP2010123287A (en) Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery
JP2014127242A (en) Lithium secondary battery
JP2015072805A (en) Nonaqueous secondary battery
JPWO2017047353A1 (en) Nonaqueous electrolyte secondary battery
KR20100114515A (en) Battery
JP2003208924A (en) Lithium secondary battery
JP5433164B2 (en) Lithium ion secondary battery
JP2012181978A (en) Nonaqueous electrolyte battery
JP6241529B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP6037713B2 (en) Nonaqueous electrolyte secondary battery
JP2015070032A (en) Lithium ion capacitor
JP2011222128A (en) Secondary battery
CN111183542B (en) Nonaqueous electrolyte secondary battery
JPWO2020179149A1 (en) Electrodes for lithium secondary batteries and lithium secondary batteries
US20190067729A1 (en) Lithium ion electrochemical devices having excess electrolyte capacity to improve lifetime
JP4688527B2 (en) Lithium secondary battery
JP6299125B2 (en) Lithium ion capacitor
JP2006244921A (en) Separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
WO2016125770A1 (en) Electrolyte for lithium ion capacitor and lithium ion capacitor
JP5673307B2 (en) Nonaqueous electrolyte secondary battery
JP2017139324A (en) Lithium ion capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746601

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016573365

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746601

Country of ref document: EP

Kind code of ref document: A1