WO2016125496A1 - Communications system - Google Patents

Communications system Download PDF

Info

Publication number
WO2016125496A1
WO2016125496A1 PCT/JP2016/000578 JP2016000578W WO2016125496A1 WO 2016125496 A1 WO2016125496 A1 WO 2016125496A1 JP 2016000578 W JP2016000578 W JP 2016000578W WO 2016125496 A1 WO2016125496 A1 WO 2016125496A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
transmission
reception
transmitter
order
Prior art date
Application number
PCT/JP2016/000578
Other languages
French (fr)
Japanese (ja)
Inventor
峰宜 長坂
憲一 古河
Original Assignee
ミツミ電機株式会社
峰宜 長坂
憲一 古河
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミツミ電機株式会社, 峰宜 長坂, 憲一 古河 filed Critical ミツミ電機株式会社
Priority to CN201680009141.7A priority Critical patent/CN107211397B/en
Publication of WO2016125496A1 publication Critical patent/WO2016125496A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/563Allocation or scheduling criteria for wireless resources based on priority criteria of the wireless resources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention has a power generation device that converts mechanical energy into electrical energy, transmits a radio signal using the electrical energy as a power source, and receives a radio signal transmitted by the transmitter.
  • a communication system having a receiver.
  • Patent Document 1 discloses a communication system in which a power generator is provided in a transmitter.
  • the amount of electrical energy regenerated by the power generation device is low, so that [1] there is only the amount stored in the power storage device or the like, or [2] it is finite per hour, and AC There is a restriction that the amount that can be used is limited compared to a power source or a battery.
  • the present invention has been made in consideration of the above points, and is a system capable of always communicating with a good channel and capable of communicating with limited energy. Provided is a communication system that can increase the reliability of communication without performing a procedure such as sense.
  • a power generation unit that converts mechanical energy into electrical energy
  • a transmitter that performs wireless transmission using electrical energy obtained by the power generation unit as a power source, and a radio signal transmitted by the transmitter
  • a communication system comprising: The transmitter is In one transmission operation, the same transmission data is sequentially transmitted at intervals determined in an order determined by at least two or more channels. Receiving and storing information indicating the transmission channel order from the receiver; Notify the receiver of the current transmission channel order, Based on the initial setting order or the transmission channel order received from the receiver, the transmission order of the same data and the transmission channel order from the receiver are determined at predetermined intervals while switching the order of the channels to be transmitted.
  • the receiver Memorize the receiving channel number and order, Receiving and storing the transmission channel number and the transmission channel order notified from the transmitter; Transmitting information indicating the transmission channel order to the transmitter; Evaluate whether the receiving channel was regular reception or error reception, Evaluate the reception quality of each channel, When an error is received on the set channel, the reception channel is switched according to a preset order, and the transmission channel order of the next transmission is notified to the transmitter from the result of evaluating each channel.
  • a power generation unit that converts mechanical energy into electrical energy
  • a transmitter that performs wireless transmission using electrical energy obtained by the power generation unit as a power source, and a radio signal transmitted by the transmitter
  • a one-way communication system comprising: The transmitter is In one transmission operation, the same transmission data is sequentially transmitted at intervals determined in an order determined by at least two or more channels.
  • the receiver Storing the transmission channel number and transmission channel order of the transmitter; Evaluate whether the receiving channel was regular reception or error reception, When it is determined that the reception channel is busy, the reception channel is switched according to a preset order.
  • a power generation unit that converts mechanical energy into electrical energy
  • a transmitter that performs wireless transmission using electrical energy obtained by the power generation unit as a power source, and a radio signal transmitted by the transmitter
  • a one-way communication system comprising: The transmitter is In one transmission operation, the same transmission data is sequentially transmitted at intervals determined in an order determined by at least two or more channels.
  • the receiver Store the same channel number as the transmitter, Evaluate the quality of the receiving channel, The reception channel is switched when the quality of the reception channel falls below a predetermined value.
  • a power generation unit that converts mechanical energy into electrical energy
  • a transmitter that performs wireless transmission using electrical energy obtained by the power generation unit as a power source, and a radio signal transmitted by the transmitter
  • a one-way communication system comprising: The transmitter is In one transmission operation, the same transmission data is sequentially transmitted at intervals determined in an order determined by at least two or more channels.
  • the receiver Storing the transmission channel number and transmission channel order of the transmitter; The timer switches the receiving channel in synchronization with the transmission interval, The reception channel is switched according to a predetermined sequence, and the multiplex transmission data transmitted from the transmitter is received a plurality of times on different channels.
  • communication can always be performed with a good channel and communication can be performed with limited energy, and communication reliability can be increased without performing a complicated procedure such as a conventional carrier sense.
  • a communication system can be realized.
  • FIG. 2A is a diagram illustrating the principle of communication control method 1
  • FIG. 2A is a diagram illustrating an operation principle of a transmitter
  • FIG. 2B is a diagram illustrating an operation principle of a receiver.
  • the flowchart which shows the transmission processing flow of a transmitter in the communication control method 1.
  • the flowchart which shows the reception processing flow of the receiver in the communication control method 1.
  • Flow chart showing processing flow of reception start interrupt subroutine 6A and 6B are diagrams illustrating the principle of the communication control method 2.
  • FIG. 6A is a diagram illustrating the principle of the initial transmission operation of the transmitter
  • FIG. 6B is a diagram illustrating the operation principle of the receiver
  • FIG. 6C is the principle of the initial transmission operation of the transmitter.
  • FIG. 11A is a diagram illustrating the principle of communication control method 3
  • FIG. 11A is a diagram illustrating the principle of transmission operation of the transmitter
  • FIG. 11B is a diagram illustrating the principle of reception operation of the receiver.
  • Flow chart showing processing flow of reception start interrupt subroutine Flow chart showing processing flow of timer interrupt subroutine
  • Flow chart showing processing flow of reception start interrupt subroutine Flow chart showing processing flow of timer interrupt subroutine
  • the transmitting side cannot sense a good channel from a plurality of channels, and the communication channel cannot be arbitrated by the transceiver. Therefore, in this embodiment, the transmitter transmits the same data asynchronously and sequentially in multiple channels set in advance without arbitration with the receiver.
  • the receiver makes use of sufficient power, detects and evaluates the reception state, receives the signal on the reception channel in the best state, and first transmits to the transmitter with the minimum power (ACK reply).
  • ACK reply a method of instructing channel (master channel) switching and always having the highest transmission probability.
  • FIG. 1 is a diagram illustrating a schematic configuration of a communication system according to an embodiment.
  • the communication system according to the present embodiment is a communication system that performs one-way communication of transmission data from one transmitter 10 having the power generation unit 14 to one or more receivers 20.
  • the communication system of the communication system is a ZigBee wireless system based on IEEE 802.14.5 or a ZigBee Green Power wireless system based on IEEE 802.14.5.
  • the transmitter 10 performs baseband processing such as encoding and transmission frame configuration by the baseband processing unit 11, performs radio processing such as amplification and up-conversion by the radio transmission unit 12, and transmits a radio signal obtained thereby from the antenna. Send.
  • the operations of the baseband processing unit 11 and the wireless transmission unit 12 are controlled by the transmission control unit 13.
  • the transmitter 10 includes a power generation unit 14 and a power storage unit 15 that convert mechanical energy into electrical energy, and stores the electrical energy obtained by the power generation unit 14 in the power storage unit 15.
  • the electrical energy of the power storage unit 15 is supplied as energy for operating the entire transmitter 10.
  • the receiver 20 performs radio processing such as amplification and down-conversion on the signal received by the antenna by the radio reception unit 21 and performs demodulation processing such as decoding by the baseband demodulation unit 22.
  • the operations of the radio reception unit 21 and the baseband demodulation unit 22 are controlled by the reception control unit 23.
  • the communication between the transmitter 10 and the receiver 20 is controlled as in any of the communication control methods 1 to 4 described below, thereby improving the normal communication probability with low power consumption. It can be made to.
  • the power generation unit 14 includes a coil, a permanent magnet, an accumulator that accumulates mechanical energy input from the outside such as a human operation as elastic energy due to deformation of an elastic body such as a spring, and elasticity of the accumulator by a predetermined displacement input. It is possible to adopt a configuration that has a mechanism for releasing energy, the relative displacement of the coil and the permanent magnet is changed by the released energy, and the power is generated by electromagnetic induction by the change of the magnetic flux density passing through the coil. .
  • the power generation unit 14 is made of a magnetostrictive material, and includes at least one magnetostrictive rod that passes the magnetic lines of force in the axial direction, a beam member that has a function of applying stress to the magnetostrictive rods, and the magnetic lines of force pass in the axial direction. And a coil that generates a voltage based on a change in density thereof, and inputs mechanical energy from the outside, such as a human operation, with respect to one end of the magnetostrictive rod and the axial direction thereof.
  • Master channel (M-ch): Channel that transmitter 10 transmits first.
  • Sub channel (S-ch) A channel in which the transmitter 10 sequentially transmits after switching M-ch. Further, the receiver 20 temporarily saves the channel by switching the reception channel. Multiple settings are possible (S1-ch, S2-ch).
  • SFD Start Frame Ditect: A reception frame notifying that the start of data reception has been detected.
  • SFD_INT A hardware interrupt that occurs when an SFD is received.
  • LEN Frame received next to SFD, received data length.
  • SRC FCF + SEQ + DES + Source PAN ID (destination address, source address).
  • FIG. 2 is a diagram illustrating the principle of the communication control method 1.
  • FIG. 2A shows the operating principle of the transmitter 10
  • FIG. 2B shows the operating principle of the receiver 20.
  • the transmitter 10 defines the same transmission data in at least two or more channels in one transmission operation (meaning one broadcast transmission) as shown in FIG. 2A. Multiplex transmission is performed in which transmission is performed sequentially at intervals determined in order. In the example of FIG. 2A, three channels are multiplexed and broadcast.
  • the receiver 20 sequentially demodulates the reception channels in a predetermined order.
  • the receiver 20 stores in advance the transmission channel number of the transmitter 10 and the order of reception and demodulation, and sequentially receives and demodulates the channels in the stored order. Further, the receiver 20 evaluates whether the received and demodulated channel is regular reception or error reception, and if it is evaluated as error reception, it immediately switches the reception channel in the order stored in advance.
  • the other receiver 20 occupies this reception channel in the first reception channel (that is, because it is busy), an error reception occurs in the second reception channel. This is an example in which error reception occurs and normal reception can be performed on the third reception channel. In this way, it is possible to shorten the time until normal reception is performed on any channel and to improve the normal communication probability.
  • LEN is not the specified length.
  • the destination address and the source address do not correspond to the predetermined setting value or list.
  • the CRC (checksum) of the received data is not True (OK).
  • the protocol, data range, and format of the received data are not within the predetermined range.
  • FIG. 3 shows a transmission processing flow of the transmitter 10 in the communication control method 1.
  • the transmitter 10 starts transmission processing in step S10. This transmission process is triggered by a timer, a voltage rise of the power storage unit 15, voltage detection of the power storage unit 15, a sensor signal, an external signal, a switch, or the like.
  • Transmitter 10 performs initial setting in step S11. Specifically, transmission data preparation, transmission channel rank setting, and transmission count setting are performed.
  • step S12 a channel to be transmitted this time is set, and in step S13, the channel is transmitted.
  • step S14 the transmission count value of the transmission counter is incremented.
  • step S15 it is determined whether or not the number of transmissions (transmission count value) has become larger than the set number. If an affirmative result is obtained in step S15, the process proceeds to step S17 to end the transmission process. If a negative result is obtained in step S15, the process waits for a predetermined time in step S16 and then proceeds to step S12.
  • the transmitter 10 repeats steps S12-S13-S14-S15-S16-S12, thereby performing one transmission operation (meaning one broadcast transmission) as shown in FIG. 2A.
  • Multiplex transmission is performed in which the same transmission data is sequentially transmitted at intervals determined in an order determined by at least two or more channels.
  • the transmitter 10 determines M-ch and S-ch according to a predetermined initial setting, and sequentially transmits at least twice.
  • the transmission interval of each transmission packet is at least (the time required for the receiver to switch the reception channel + the normal frame length) or more.
  • FIG. 4 shows a reception processing flow of the receiver 20 in the communication control method 1.
  • the receiver 20 When the receiver 20 starts the reception process in step S20, the receiver 20 performs initial setting in step S21. Specifically, the order of receiving channels is acquired and set.
  • the receiver 20 sets the reception channel in step S22, turns on the reception unit (that is, the wireless reception unit 21 and the baseband demodulation unit 22) in step S23, turns on the reception start interrupt in step S24, and in step S25.
  • the reception process ends.
  • FIG. 5 shows the processing flow of the reception start interrupt subroutine.
  • the receiver 20 starts the reception start interrupt subroutine S30 of FIG. 4, turns off the timer interrupt in step S31, and then receives the reception control unit in step S32. It is evaluated whether 23 is regular reception or not. Specifically, the above items 1) to 4) are evaluated.
  • step S33 it is determined whether or not an error has been received. Specifically, if the reception control unit 23 corresponds to any one of the items 1) to 4), it is determined that the error is received (step S33; YES), and normal if it does not correspond to any of the items. It is determined that it is received (step S33; NO).
  • step S33 If it is determined in step S33 that the reception is normal, the process proceeds to step S34, where the reception is completed and the demodulated data is stored. In the following step S35, the current channel is set as the channel of rank 1, and the process returns to the main routine (FIG. 4) in step S36.
  • step S37 determines whether the set channel is the final rank. If the set channel is not in the final order, the process proceeds to step S38, the reception channel is changed according to the set order, the process proceeds to step S39, the timer interrupt is turned on, and the process returns to the main routine (FIG. 4) in step S36. If the set channel is the final rank, the process proceeds from step S37 to step S40, the reception channel is set to the rank 1 channel, the timer interrupt is turned off in step S41, and the process returns to the main routine (FIG. 4) in step S36. .
  • the transmitter 10 sequentially transmits the same transmission data at intervals determined in an order determined by at least two or more channels in one transmission operation.
  • the receiver 20 stores the transmission channel number and the transmission channel order of the transmitter 10, evaluates whether the reception channel is normal reception or error reception, and determines that the reception channel is busy.
  • the receiving channel is switched according to the order.
  • the transmitter 10 may repeatedly transmit the order determined by two or more channels at least twice.
  • the frame-to-frame interval (cycle) in the multiplex transmission of the transmitter 10 may be set to the time required for the receiver 20 to switch channels + the time required for receiving a normal frame + the received frame evaluation time or more.
  • the receiver 20 receives a packet, recognizes a reception interrupt (start of frame) as a trigger, sequentially evaluates information included in the received frame, and evaluates error reception in multiple stages. Good.
  • the channel is set to at least (number of set channels + 1) ⁇ normal frame time + number of set channels ⁇ transmission interval + margin. If no reception interrupt occurs, the reception channel may be returned to the initial channel. Alternatively, when the channel after the channel is set, the channel is switched to that channel, and thereafter, if there is no reception interrupt in the final setting channel, it is preferable to return to the initial channel.
  • FIG. 6 is a diagram illustrating the principle of the communication control method 2.
  • 6A shows the principle of the initial transmission operation of the transmitter 10
  • FIG. 6B shows the operation principle of the receiver 20
  • FIG. 6C shows the principle of the initial transmission operation of the transmitter 10.
  • transmitter 10 transmits the same transmission data in one transmission operation (meaning one broadcast transmission) as in communication control method 1 described above.
  • Multiplex transmission is performed in which transmission is performed sequentially at intervals determined in an order determined by at least two or more channels.
  • three channels are multiplexed and broadcast.
  • Each transmission frame includes data and transmission-side PHY information (M-ch and S-ch settings and order).
  • the transmitter 10 receives an ACK from the receiver 20 after transmitting each transmission frame.
  • the transmission interval of each transmission frame is set to at least the time during which ACK can be received from RX, and in this embodiment, the transmission interval is set to IEEE 802.15.4. After transmitting each transmission frame, the transmitter 10 receives an ACK from the receiver 20, and therefore is in a reception state until the next transmission time.
  • the receiver 20 sequentially demodulates the reception channels in a predetermined order as in the communication control method 1 described above.
  • the receiver 20 stores the transmission channel number of the transmitter 10 and the order of reception demodulation, and sequentially receives and demodulates the channels in the stored order. Further, the receiver 20 evaluates whether the received and demodulated channel is regular reception or error reception, and if it is evaluated as error reception, it immediately switches the reception channel in the order stored in advance.
  • another receiver 20 occupies this reception channel in the first reception channel (that is, because it is in a busy state), resulting in an error reception. This is an example in which error reception occurs and normal reception can be performed on the third reception channel.
  • the communication control method 1 is the same as described above.
  • the receiver 20 evaluates the reception quality of each channel, and when the normal reception is completed, the receiver 20 sends an ACK to the transmitter 10 in the corresponding channel (that is, the channel that has been normally received). By replying, the M-ch of the transmitter 10 is switched.
  • the transmitter 10 performs transmission by increasing the transmission order of the channel to which the ACK is returned.
  • the receiver 20 sets the channel to which the ACK is returned as the first reception channel and waits for the next reception. That is, the transmitter 10 increases the transmission order of the channel that is likely to be received normally, and the receiver 20 waits for channel reception in the same order. As a result, the processing time required for regular reception can be shortened compared to the communication control method 1, and communication with lower power consumption can be realized.
  • FIG. 7 shows a transmission processing flow of the transmitter 10 in the communication control method 2.
  • the transmitter 10 starts transmission processing in step S50. This transmission process is triggered by a timer, a voltage rise of the power storage unit 15, voltage detection of the power storage unit 15, a sensor signal, an external signal, a switch, or the like.
  • the transmitter 10 performs initial setting in step S51. Specifically, transmission data preparation, transmission channel rank setting, and transmission count setting are performed.
  • step S52 a channel to be transmitted this time is set, and in step S53, the channel is transmitted.
  • transmission-side PHY information M-ch, S-ch setting and order information
  • step S54 the receiving unit is turned on (note that the transmitter 10 does not have a receiving unit in the configuration of FIG. 1, but the transmitter 10 has a receiving unit in order to realize the communication control method 2).
  • the ACK from the receiver 20 is received in step S55.
  • step S56 it is determined whether the ACK reception is a timer-out. If it is determined that the ACK is not a timer-out, the process moves to step S57, stores the channel that received the ACK, and changes the transmission order according to the channel that received the ACK in step S58. Then, the changed transmission order is stored. In step S59, the transmission process ends.
  • step S56 determines whether ACK reception is timer-out. If it is determined in step S56 that ACK reception is timer-out, the process proceeds to step S60 to increment the transmission count value of the transmission counter, and in step S61, the number of transmissions (transmission count value) is the set number of times. It is judged whether it became larger than. If an affirmative result is obtained in step S61, the process proceeds to step S59 to end the transmission process. If a negative result is obtained in step S61, the process waits for a predetermined time in step S62 and then proceeds to step S52. In this manner, the transmitter 10 repeats steps S52-S53-S54-S55-S56-S60-S61-S62-S52 to perform one transmission operation (one broadcast) as shown in FIG. 6A. Multiplex transmission and ACK reception operation in which the same transmission data is sequentially transmitted at intervals determined in an order determined by at least two or more channels.
  • the transmitter 10 sets the channel to which the ACK is returned as the M-ch for the next transmission, and updates the PHY information to notify the switching operation.
  • FIG. 8 shows a reception processing flow of the receiver 20 in the communication control method 2.
  • the receiver 20 When the receiver 20 starts the reception process in step S70, the receiver 20 performs initial setting in step S71. Specifically, the order of receiving channels is acquired and set. The receiver 20 sets the reception channel in step S72, turns on the reception unit in step S73 and turns on the reception start interrupt, turns on the timer interrupt in step S74, and ends the reception process in step S75. .
  • FIG. 9 shows the processing flow of the reception start interrupt subroutine.
  • the receiver 20 starts the reception start interrupt subroutine S80 of FIG. 9, and evaluates whether the reception control unit 23 is normal reception in step S81. Specifically, the above items 1) to 4) are evaluated.
  • step S82 it is determined whether or not an error has been received. If it is determined in step S82 that the reception is normal, the process proceeds to step S83, where the data reception is completed and the demodulated data is stored.
  • step S84 the current PHY information and the current reception channel are compared. If it is determined in step S84 that the current PHY information and the current reception channel are not the same, the process proceeds to step S86 and ACK is returned on the current reception channel. On the other hand, when it is determined that the current PHY information and the current reception channel are the same, the process proceeds to step S87 and returns to the main routine (FIG. 8).
  • step S82 If it is determined in step S82 that the error has been received, the process proceeds to step S88 to change the reception channel to the next reception channel according to the setting order.
  • step S89 the channel order is redetermined, and in step S87, the process returns to the main routine (FIG. 8).
  • FIG. 10 shows the processing flow of the timer interrupt subroutine.
  • the receiver 20 starts the timer interrupt subroutine S90 of FIG. 10, measures RSSI (Received Signal Signal Strength Indicator) in step S91, and measures in step S92.
  • RSSI Receiveived Signal Signal Strength Indicator
  • the reception channel quality is evaluated based on the RSSI, and the evaluation result is stored.
  • step S93 channel switching is determined to determine the channel order, and in step S94, the process returns to the main routine (FIG. 8).
  • RSSI at the time of normal reception is a value corresponding to the distance between the transmitter 10 and the receiver 20, the presence or absence of an obstacle, and the larger the RSSI, the better the reception quality.
  • the RSSI of the SFD frame at the time of error reception is a value according to the influence of other devices on the receiver 20, and the reception quality is worse as the RSSI is larger.
  • the RSSI in the standby state of each channel is a value corresponding to the noise around the receiver, and the reception quality is worse as the RSSI is larger.
  • the transmitter 10 sequentially transmits the same transmission data at intervals determined in an order determined by at least two or more channels in one transmission operation. Transmit, receive and store information indicating the transmission channel order from the receiver 20, notify the receiver of the current transmission channel order, and transmit based on the initial setting order or the transmission channel order received from the receiver 20. While switching the channel order, transmission of the same data and reception of information indicating the transmission channel order from the receiver 20 are performed by time-division multiplexing with a predetermined interval.
  • the receiver 20 stores the reception channel number and the order, receives and stores the transmission channel number and the transmission channel order notified from the transmitter 10, and transmits information indicating the transmission channel order to the transmitter 10, Evaluate whether the reception channel is regular reception or error reception, evaluate the reception quality of each channel, and when receiving error in the set channel, the result of switching the reception channel according to the preset order and evaluating each channel To notify the transmitter of the next transmission channel order.
  • the transmitter 10 may transmit and receive at least twice the order determined by two or more channels.
  • the transmitter 10 maintains the reception state after transmission in a predetermined channel order for a certain period of time, and receives a reception completion notification from the receiver 20 during that time, thereby transmitting the channel to the first transmission at the next transmission. It is good to store as a channel and change the transmission channel order.
  • the receiver 20 evaluates the reception quality of each channel by evaluating one or a combination of the evaluation items listed below, and after completing normal reception, returns a reception completion on that channel.
  • the transmitter 10 may be instructed about the next first transmission channel. -Completion of regular reception on the channel-RSSI (Reception sensitivity) during regular reception -RSSI (reception sensitivity) of SFD frame at the time of error reception ⁇ Error frequency and history of each channel
  • the frame-to-frame interval (cycle) in the multiplex transmission / reception of the transmitter 10 is expressed as follows: time required for the receiver 20 to switch channels + time required for regular frame reception + reception frame evaluation time, or from the receiver 20 It should be more than the reception completion notification.
  • the channel is set to at least (number of set channels + 1) ⁇ normal frame time + number of set channels ⁇ transmission interval + margin. If no reception interrupt occurs, the reception channel may be returned to the initial channel. Alternatively, when the channel after the channel is set, the channel is switched to that channel, and thereafter, if there is no reception interrupt in the final setting channel, it is preferable to return to the initial channel.
  • the receiver 20 receives some packet and recognizes a reception interrupt (start of frame) as a trigger, sequentially evaluates information included in the received frame, and evaluates error reception in several stages. Good.
  • a reception interrupt start of frame
  • FIG. 11 is a diagram illustrating the principle of the communication control method 3.
  • FIG. 11A shows the principle of the transmission operation of the transmitter 10
  • FIG. 11B shows the principle of the reception operation of the receiver 20.
  • transmitter 10 transmits the same transmission data in one transmission operation (meaning one broadcast transmission), as in communication control method 1 described above.
  • Multiplex transmission is performed in which transmission is performed sequentially at intervals determined in an order determined by at least two or more channels. In the example of FIG. 11A, three channels are multiplexed and broadcast.
  • the receiver 20 sequentially demodulates the reception channels in a predetermined order as in the communication control method 1 described above.
  • reception is continued on the reception channel until the quality of the reception channel becomes lower than a predetermined value, and when the quality of the reception channel becomes lower than the predetermined value, switching to the next reception channel is performed.
  • the transmission process flow of the transmitter 10 in the communication control method 3 is the same as the transmission process flow (FIG. 3) of the transmitter 10 in the communication control method 1 described above.
  • FIG. 12 shows a reception processing flow of the receiver 20 in the communication control method 3.
  • the receiver 20 When the receiver 20 starts reception processing in step S100, the receiver 20 performs initial setting in step S101. Specifically, the order of receiving channels is acquired and set. The receiver 20 sets the reception channel in step S102, turns on the reception unit in step S103 and turns on the reception start interrupt, turns on the timer interrupt in step S104, and ends the reception process in step S105. .
  • FIG. 13 shows the processing flow of the reception start interrupt subroutine.
  • the receiver 20 starts the reception start interrupt subroutine S110 of FIG. 13, acquires (measures) RSSI in step S111, and stores it.
  • the reception control unit 23 evaluates whether or not the reception is normal. Specifically, the above items 1) to 4) are evaluated.
  • step S113 it is determined whether an error is received. If it is determined in step S113 that the reception is normal, the process proceeds to step S114 to complete the data reception and store the demodulated data. In the following step S115, the quality of the regular reception channel is evaluated and the evaluation result is stored, and the process returns to the main routine (FIG. 12) in step S116.
  • step S113 If it is determined in step S113 that an error has been received, the process proceeds to step S117, where the quality of the received channel is evaluated and the evaluation result is stored. In the subsequent step S118, channel switching is determined and the channel order is determined. In the following step S119, it is determined whether the channel switching is correct. If it is not correct, the process proceeds to step S116. If it is correct, the reception channel is changed to the next channel in step S120, and then the process proceeds to step S116.
  • FIG. 14 shows the processing flow of the timer interrupt subroutine.
  • the receiver 20 starts the timer interrupt subroutine S130 in FIG. 14, and measures and stores the RSSI in step S131.
  • step S132 the reception channel quality is evaluated based on the RSSI measured in step S131 and the evaluation result is stored.
  • step S133 channel switching is determined and the channel order is determined.
  • step S134 it is determined whether the channel switching is correct. If it is not correct, the process proceeds to step S135 and returns to the main routine (FIG. 12). If it is correct, the reception channel is changed to the next channel in step S136, and then the process proceeds to step S135.
  • the receiver 20 that performs the communication control method 3 detects environmental noise and reception intensity by SFD interruption and timer interruption, and immediately determines that switching of the reception channel is necessary by evaluating channel quality.
  • the receiving channel is switched to S-ch or later according to the evaluation.
  • the transmitter 10 sequentially transmits the same transmission data in one transmission operation at intervals determined in an order determined by at least two or more channels.
  • the receiver 20 stores the same channel number as the transmitter 10, evaluates the quality of the reception channel, and switches the reception channel when the quality of the reception channel becomes a predetermined value or less.
  • the receiver 20 measures the signal power received in the channel being set, stores this as reception strength (RSSI), and determines the RSSI when receiving data from the transmitter 10 and the RSSI of the noise signal during standby. It is preferable to perform an operation of switching channels when the difference is equal to or less than a predetermined value.
  • RSSI reception strength
  • the receiver 20 permanently stores the RSSI, compares the current transmission probability in the channel being set with the transmission probability history of other channels used in the past, and predicts the effect after channel switching in advance. Whether to switch or not and which channel to switch to may be determined.
  • the receiver 20 permanently stores a plurality of RSSIs and detected time histories as a pair, and sets the RSSI of the set channel and other channels used in the past as a moving average method, nearest neighbor method, exponential smoothing method or the like.
  • a prediction method such as this may be used alone or in combination to determine whether to switch to a channel.
  • the number of multiplex transmissions is at least three, the time required for data transmission for one channel is tT, the transmission interval for multiplex transmission is tD, and the receiver 20 is the channel.
  • tE By setting tE to be tD + 2 * tT or more when the minimum interval for switching is tE, it is possible to prevent the transmission / reception channels from entering each other and losing reception opportunities.
  • the communication control method 4 does not judge that there is no point in waiting because the current reception channel is busy like the communication control method 1 described above.
  • the communication control method 4 improves the probability of normal reception by switching channels when receiving a certain reception and enabling normal reception in a plurality of channels.
  • the transmission procedure of the transmitter 10 is the same as that of the communication control method 1.
  • the receiver 20 performs the following processing. • Set M-ch as the receiving channel according to the preset initial settings. -Some reception is detected by the SFD interrupt, and the reception channel is maintained for a certain time regardless of whether or not an error is received. • Wait until the next transmission timing and switch the reception channel. -Even after S-ch and after S-ch, a predetermined time is waited and the channel is automatically switched. The waiting time after S-ch and after S-ch is (number of set channels + 1) ⁇ frame time + number of set channels ⁇ transmission interval + margin. ⁇ After switching to the final channel, return to M-ch and wait.
  • FIG. 15 shows a reception processing flow of the receiver 20 in the communication control method 4.
  • the receiver 20 When the receiver 20 starts the reception process in step S140, the receiver 20 performs initial setting in step S141. Specifically, the order of receiving channels is acquired and set. The receiver 20 sets a reception channel in step S142, turns on the reception unit in step S143 and turns on the reception start interrupt, and ends the reception process in step S144.
  • FIG. 16 shows the processing flow of the reception start interrupt subroutine.
  • the receiver 20 starts the reception start interruption subroutine S150 in FIG. 16, turns on the timer interruption in step S151, and then receives the reception control unit in step S152. It is evaluated whether 23 is regular reception or not. Specifically, the above items 1) to 4) are evaluated.
  • step S153 it is determined whether an error is received. Specifically, if the reception control unit 23 corresponds to any of the items 1) to 4), it is determined that the error is received (step S153; YES), and if none of the items is satisfied, it is normal. It is determined that it is received (step S153; NO).
  • step S153 If it is determined in step S153 that the reception is normal, the process proceeds to step S154 where the reception is completed and the demodulated data is stored. In step S155, the timer interrupt is turned off. In step S156, the current channel is set as the rank 1 channel, and the process returns to the main routine (FIG. 15) in step S157.
  • step S153 determines whether an error has been received. If it is determined in step S153 that an error has been received, the process proceeds to step S157 and returns to the main routine (FIG. 15).
  • FIG. 17 shows the processing flow of the timer interrupt subroutine.
  • the receiver 20 starts the timer interrupt subroutine S160 in FIG. 17.
  • step S161 the receiver 20 determines whether the set channel is the final order. After moving to S162, the reception channel is changed according to the setting order, the timer interrupt is turned on in step S163, and the process returns in step S164.
  • step S165 the set channel is set to the rank 1 channel, and the timer interrupt is turned off in step S166.
  • step S164 the process returns.
  • the transmitter 10 sequentially transmits the same transmission data in one transmission operation at intervals determined in an order determined by at least two or more channels.
  • the receiver 20 stores the transmission channel number and the transmission channel order of the transmitter 10, switches the reception channel in synchronization with the transmission interval by a timer, switches the reception channel according to a predetermined sequence, and transmits the transmitter. Multiplex transmission data transmitted from 10 is received multiple times on different channels.
  • the receiver 20 measures the signal power received in the channel being set, compares this with a numerical value set in advance as the reception strength (RSSI), and the receiver 20 receives some radio wave and receives it. It is good also as a trigger of a channel switching sequence that RSSI is more than a setting value.
  • RSSI reception strength
  • the present invention includes a power generation unit that converts mechanical energy into electrical energy, a transmitter that performs wireless transmission using the electrical energy obtained by the power generation unit as a power source, and a radio that is transmitted by the transmitter. It is suitable for a communication system having a receiver for receiving a signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A transmitter 10 successively transmits the same transmission data in one transmission operation on at least two channels in a prescribed order at prescribed intervals, receives information indicating the order of transmission channels from a receiver 20 and stores the received information, and notifies the receiver of the current order of transmission channels. The transmitter 10 performs the transmission of the same data on the basis of the order of transmission channels that is initially set or received from the receiver 20 at prescribed intervals while switching the order of channels on which to transmit, and the reception of the information indicating the order of transmission channels from the receiver 20, separately in time.

Description

通信システムCommunications system
 本発明は、機械的エネルギーを電気的エネルギーに変換する発電装置を有しその電気的エネルギーを電源として利用して無線信号を送信する送信機と、この送信機により送信された無線信号を受信する受信機と、を有する通信システムに関する。 The present invention has a power generation device that converts mechanical energy into electrical energy, transmits a radio signal using the electrical energy as a power source, and receives a radio signal transmitted by the transmitter. A communication system having a receiver.
 送信機に発電装置を設けた通信システムが、例えば特許文献1などで開示されている。 For example, Patent Document 1 discloses a communication system in which a power generator is provided in a transmitter.
 この種の通信システムにおいては、発電装置によって回生した電気的エネルギーは供給量が低いので、[1]蓄電装置などにためられた量しかない、または、[2]時間当たりにおいて有限であり、AC電源や電池に比べ、使用できる量が限られるといった制約がある。 In this type of communication system, the amount of electrical energy regenerated by the power generation device is low, so that [1] there is only the amount stored in the power storage device or the like, or [2] it is finite per hour, and AC There is a restriction that the amount that can be used is limited compared to a power source or a battery.
特開2013-126161号公報JP 2013-126161 A
 ところで、上述したように送信機に発電装置を設けた通信システムにおいては、使用可能な電力が非常に限られているので、従来の無線通信において通信の信頼性、伝達性を向上させるために用いられている、双方向通信によるキャリアセンスによる相互通信チャンネルの切り替えやACK未達に伴う再送信など、通信の調停を行うことができず、片方向のブロードキャスト方式を用いて、あらかじめ決められたチャンネルで固定的に通信が行われる。 By the way, in a communication system in which a power generation device is provided in a transmitter as described above, usable power is very limited, so it is used to improve communication reliability and transferability in conventional wireless communication. It is not possible to mediate communication such as switching of mutual communication channel by carrier sense by bidirectional communication or retransmission due to unacknowledged ACK, and a predetermined channel using a one-way broadcast method The communication is performed in a fixed manner.
 このため、無線機器の設置時などには他無線機器等で使用されておらず、良好な通信が行えたチャンネルであっても、設置後に発生する事象(携帯電話の持ち込み、他通信機器の設置)により当該チャンネルが占有される時間が増加するに従い、通信が阻害され、未達となる危険性が十分高い。このため、一部の機器では設定チャンネルの多重送信などで到達確率を上げる工夫がみられるが、当該チャンネルを高い占有率で通信を行う機器などが近傍にいれば、到達確率の改善効果が確実にあるとは言えない。 For this reason, even if the channel is not used by other wireless devices when installing wireless devices, and the channel allows good communication, events that occur after installation (such as bringing in mobile phones or installing other communication devices) ) As the time that the channel is occupied increases, there is a sufficiently high risk that communication will be interrupted and will not be achieved. For this reason, some devices have been devised to increase the arrival probability by multiplexing the set channel, but if there is a device in the vicinity that communicates with the channel with a high occupation rate, the effect of improving the arrival probability is certain. It cannot be said that there is.
 本発明は、以上の点を考慮してなされたものであり、常に良好なチャンネルで通信が可能となるべく、且つ、限られたエネルギーで通信が可能な方式であり、従来のような複雑なキャリアセンス等の手続きをしなくても通信の信頼性を挙げることができる、通信システムを提供する。 The present invention has been made in consideration of the above points, and is a system capable of always communicating with a good channel and capable of communicating with limited energy. Provided is a communication system that can increase the reliability of communication without performing a procedure such as sense.
 本発明の通信システムの一つの態様は、
 機械的エネルギーを電気的エネルギーに変換する発電部を有し、前記発電部によって得た電気的エネルギーを電源として利用して無線送信を行う送信機と、前記送信機によって送信された無線信号を受信する受信機と、を有する通信システムであって、
 前記送信機は、
 1回の送信動作において、同一の送信データを、少なくとも2つ以上のチャンネルで定めた順番に定められた間隔を以て、順次送信し、
 前記受信機から送信チャンネル順位を示す情報を受け取って記憶し、
 現在の送信チャンネル順位を前記受信機に通知し、
 初期設定順位または前記受信機から受け取った前記送信チャンネル順位に基づいて、送信するチャンネルの順位を切り替えながら、定められた間隔を以て、前記同一データの送信と、前記受信機からの前記送信チャンネル順位を示す情報の受信とを時分割多重で行い、
 前記受信機は、
 受信チャンネル番号および順位を記憶し、
 前記送信機から通知された送信チャンネル番号および前記送信チャンネル順位を受信および記憶し、
 前記送信機に前記送信チャンネル順位を示す情報を送信し、
 受信チャンネルが正規受信であったかエラー受信であったかを評価し、
 各チャンネルの受信品質を評価し、
 設定チャンネルでエラー受信した場合、予め設定した順位に従い受信チャンネルを切り替え、且つ、各チャンネルを評価した結果から次回送信の送信チャンネル順位を前記送信機に通知する。
One aspect of the communication system of the present invention is:
A power generation unit that converts mechanical energy into electrical energy, a transmitter that performs wireless transmission using electrical energy obtained by the power generation unit as a power source, and a radio signal transmitted by the transmitter; A communication system comprising:
The transmitter is
In one transmission operation, the same transmission data is sequentially transmitted at intervals determined in an order determined by at least two or more channels.
Receiving and storing information indicating the transmission channel order from the receiver;
Notify the receiver of the current transmission channel order,
Based on the initial setting order or the transmission channel order received from the receiver, the transmission order of the same data and the transmission channel order from the receiver are determined at predetermined intervals while switching the order of the channels to be transmitted. And receive the information shown by time division multiplexing,
The receiver
Memorize the receiving channel number and order,
Receiving and storing the transmission channel number and the transmission channel order notified from the transmitter;
Transmitting information indicating the transmission channel order to the transmitter;
Evaluate whether the receiving channel was regular reception or error reception,
Evaluate the reception quality of each channel,
When an error is received on the set channel, the reception channel is switched according to a preset order, and the transmission channel order of the next transmission is notified to the transmitter from the result of evaluating each channel.
 本発明の通信システムの一つの態様は、
 機械的エネルギーを電気的エネルギーに変換する発電部を有し、前記発電部によって得た電気的エネルギーを電源として利用して無線送信を行う送信機と、前記送信機によって送信された無線信号を受信する受信機と、を有する片方向の通信システムであって、
 前記送信機は、
 1回の送信動作において、同一の送信データを、少なくとも2つ以上のチャンネルで定めた順番に定められた間隔を以て、順次送信し、
 前記受信機は、
 前記送信機の送信チャンネル番号および送信チャンネル順位を記憶し、
 受信チャンネルが正規受信であったかエラー受信であったかを評価し、
 受信チャンネルをビジーと判断した場合、予め設定された順位に従い受信チャンネルを切り替える。
One aspect of the communication system of the present invention is:
A power generation unit that converts mechanical energy into electrical energy, a transmitter that performs wireless transmission using electrical energy obtained by the power generation unit as a power source, and a radio signal transmitted by the transmitter; A one-way communication system comprising:
The transmitter is
In one transmission operation, the same transmission data is sequentially transmitted at intervals determined in an order determined by at least two or more channels.
The receiver
Storing the transmission channel number and transmission channel order of the transmitter;
Evaluate whether the receiving channel was regular reception or error reception,
When it is determined that the reception channel is busy, the reception channel is switched according to a preset order.
 本発明の通信システムの一つの態様は、
 機械的エネルギーを電気的エネルギーに変換する発電部を有し、前記発電部によって得た電気的エネルギーを電源として利用して無線送信を行う送信機と、前記送信機によって送信された無線信号を受信する受信機と、を有する片方向の通信システムであって、
 前記送信機は、
 1回の送信動作において、同一の送信データを、少なくとも2つ以上のチャンネルで定めた順番に定められた間隔を以て、順次送信し、
 前記受信機は、
 前記送信機と同一のチャンネル番号を記憶し、
 受信チャンネルの品質を評価し、
 受信チャンネルの品質が所定値以下になった場合に受信チャンネルを切り替える。
One aspect of the communication system of the present invention is:
A power generation unit that converts mechanical energy into electrical energy, a transmitter that performs wireless transmission using electrical energy obtained by the power generation unit as a power source, and a radio signal transmitted by the transmitter; A one-way communication system comprising:
The transmitter is
In one transmission operation, the same transmission data is sequentially transmitted at intervals determined in an order determined by at least two or more channels.
The receiver
Store the same channel number as the transmitter,
Evaluate the quality of the receiving channel,
The reception channel is switched when the quality of the reception channel falls below a predetermined value.
 本発明の通信システムの一つの態様は、
 機械的エネルギーを電気的エネルギーに変換する発電部を有し、前記発電部によって得た電気的エネルギーを電源として利用して無線送信を行う送信機と、前記送信機によって送信された無線信号を受信する受信機と、を有する片方向の通信システムであって、
 前記送信機は、
 1回の送信動作において、同一の送信データを、少なくとも2つ以上のチャンネルで定めた順番に定められた間隔を以て、順次送信し、
 前記受信機は、
 前記送信機の送信チャンネル番号および送信チャンネル順位を記憶し、
 タイマーにより、送信間隔に同期して受信チャンネルを切り替え、
 定められたシーケンスに従い受信チャンネルを切り替えて、前記送信機から送信された多重送信のデータを異なるチャンネルで複数回受信する。
One aspect of the communication system of the present invention is:
A power generation unit that converts mechanical energy into electrical energy, a transmitter that performs wireless transmission using electrical energy obtained by the power generation unit as a power source, and a radio signal transmitted by the transmitter; A one-way communication system comprising:
The transmitter is
In one transmission operation, the same transmission data is sequentially transmitted at intervals determined in an order determined by at least two or more channels.
The receiver
Storing the transmission channel number and transmission channel order of the transmitter;
The timer switches the receiving channel in synchronization with the transmission interval,
The reception channel is switched according to a predetermined sequence, and the multiplex transmission data transmitted from the transmitter is received a plurality of times on different channels.
 本発明によれば、常に良好なチャンネルで通信が可能となり、且つ、限られたエネルギーで通信が可能となり、従来のような複雑なキャリアセンス等の手続きをしなくても通信の信頼性を挙げることができる、通信システムを実現できる。 According to the present invention, communication can always be performed with a good channel and communication can be performed with limited energy, and communication reliability can be increased without performing a complicated procedure such as a conventional carrier sense. A communication system can be realized.
実施の形態の通信システムの概略構成を示す図The figure which shows schematic structure of the communication system of embodiment 通信制御方法1の原理を示す図であり、図2Aは送信機の動作原理を示す図、図2Bは受信機の動作原理を示す図FIG. 2A is a diagram illustrating the principle of communication control method 1, FIG. 2A is a diagram illustrating an operation principle of a transmitter, and FIG. 2B is a diagram illustrating an operation principle of a receiver. 通信制御方法1における、送信機の送信処理フローを示すフローチャートThe flowchart which shows the transmission processing flow of a transmitter in the communication control method 1. 通信制御方法1における、受信機の受信処理フローを示すフローチャートThe flowchart which shows the reception processing flow of the receiver in the communication control method 1. 受信開始割込サブルーチンの処理フローを示すフローチャートFlow chart showing processing flow of reception start interrupt subroutine 通信制御方法2の原理を示す図であり、図6Aは送信機の初回送信動作の原理を示す図、図6Bは受信機の動作原理を示す図、図6Cは送信機の初回送信動作の原理を示す図6A and 6B are diagrams illustrating the principle of the communication control method 2. FIG. 6A is a diagram illustrating the principle of the initial transmission operation of the transmitter, FIG. 6B is a diagram illustrating the operation principle of the receiver, and FIG. 6C is the principle of the initial transmission operation of the transmitter. Figure showing 通信制御方法2における、送信機の送信処理フローを示すフローチャートThe flowchart which shows the transmission processing flow of a transmitter in the communication control method 2. 通信制御方法2における、受信機の受信処理フローを示すフローチャートThe flowchart which shows the reception processing flow of the receiver in the communication control method 2. 受信開始割込サブルーチンの処理フローを示すフローチャートFlow chart showing processing flow of reception start interrupt subroutine タイマー割込サブルーチンの処理フローを示すフローチャートFlow chart showing processing flow of timer interrupt subroutine 通信制御方法3の原理を示す図であり、図11Aは送信機の送信動作の原理を示す図、図11Bは受信機の受信動作の原理を示す図FIG. 11A is a diagram illustrating the principle of communication control method 3, FIG. 11A is a diagram illustrating the principle of transmission operation of the transmitter, and FIG. 11B is a diagram illustrating the principle of reception operation of the receiver. 通信制御方法3における、受信機の受信処理フローを示すフローチャートThe flowchart which shows the reception processing flow of the receiver in the communication control method 3. 受信開始割込サブルーチンの処理フローを示すフローチャートFlow chart showing processing flow of reception start interrupt subroutine タイマー割込サブルーチンの処理フローを示すフローチャートFlow chart showing processing flow of timer interrupt subroutine 通信制御方法4における、受信機の受信処理フローを示すフローチャートThe flowchart which shows the reception processing flow of the receiver in the communication control method 4. 受信開始割込サブルーチンの処理フローを示すフローチャートFlow chart showing processing flow of reception start interrupt subroutine タイマー割込サブルーチンの処理フローを示すフローチャートFlow chart showing processing flow of timer interrupt subroutine
 限られたエネルギー量では、送信側が複数のチャンネルの中から良好なチャンネルをセンスし、送受信機で相互に通信チャンネルを調停することができない。そこで、本実施の形態では、送信機は受信機との調停なしに、予め設定した複数のチャンネルで同一データを非同期、且つ、逐次多重で送信する。受信機は十分な電力を生かし、受信状態を検知し、チャンネルがビジーであれば、別チャンネルで受信できるようチャンネルを切り替える方法を提案する。 With a limited amount of energy, the transmitting side cannot sense a good channel from a plurality of channels, and the communication channel cannot be arbitrated by the transceiver. Therefore, in this embodiment, the transmitter transmits the same data asynchronously and sequentially in multiple channels set in advance without arbitration with the receiver. We propose a method for switching the channel so that the receiver can make use of sufficient power, detect the reception state, and if the channel is busy, it can be received by another channel.
 また、本実施の形態では、受信機は十分な電力を生かし、受信状態の検知と評価を行い、最も良い状態の受信チャンネルで受信すると共に、最小の電力(ACK返信)で送信機に第1チャンネル(マスターチャンネル)の切り替えを指示し、伝達確率を常に最上とする方法を提案する。 In the present embodiment, the receiver makes use of sufficient power, detects and evaluates the reception state, receives the signal on the reception channel in the best state, and first transmits to the transmitter with the minimum power (ACK reply). We propose a method of instructing channel (master channel) switching and always having the highest transmission probability.
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 <構成>
 図1は、実施の形態の通信システムの概略構成を示す図である。本実施の形態の通信システムは、発電部14を有する1つの送信機10から、1つ以上の受信機20に送信データを片方向通信する通信システムである。通信システムの通信方式は、IEEE802.14.5に基づくZigBee無線方式、または、IEEE802.14.5に基づくZigBee Green Power無線方式などである。
<Configuration>
FIG. 1 is a diagram illustrating a schematic configuration of a communication system according to an embodiment. The communication system according to the present embodiment is a communication system that performs one-way communication of transmission data from one transmitter 10 having the power generation unit 14 to one or more receivers 20. The communication system of the communication system is a ZigBee wireless system based on IEEE 802.14.5 or a ZigBee Green Power wireless system based on IEEE 802.14.5.
 送信機10は、ベースバンド処理部11によって符号化や送信フレーム構成等のベースバンド処理を行い、無線送信部12で増幅やアップコンバート等の無線処理を行い、これにより得た無線信号をアンテナから送信する。ベースバンド処理部11及び無線送信部12の動作は、送信制御部13によって制御される。また、送信機10は、機械的エネルギーを電気的エネルギーに変換する発電部14及び蓄電部15を有し、発電部14によって得た電気エネルギーを蓄電部15に蓄える。蓄電部15の電気エネルギーは、送信機10全体を動作させるためのエネルギーとして供給される。 The transmitter 10 performs baseband processing such as encoding and transmission frame configuration by the baseband processing unit 11, performs radio processing such as amplification and up-conversion by the radio transmission unit 12, and transmits a radio signal obtained thereby from the antenna. Send. The operations of the baseband processing unit 11 and the wireless transmission unit 12 are controlled by the transmission control unit 13. The transmitter 10 includes a power generation unit 14 and a power storage unit 15 that convert mechanical energy into electrical energy, and stores the electrical energy obtained by the power generation unit 14 in the power storage unit 15. The electrical energy of the power storage unit 15 is supplied as energy for operating the entire transmitter 10.
 受信機20は、アンテナで受信した信号に対して、無線受信部21によって増幅やダウンコンバート等の無線処理を行い、ベースバンド復調部22によって復号等の復調処理を行う。無線受信部21及びベースバンド復調部22の動作は、受信制御部23によって制御される。 The receiver 20 performs radio processing such as amplification and down-conversion on the signal received by the antenna by the radio reception unit 21 and performs demodulation processing such as decoding by the baseband demodulation unit 22. The operations of the radio reception unit 21 and the baseband demodulation unit 22 are controlled by the reception control unit 23.
 本実施の形態では、送信機10と受信機20との間の通信を、以下に説明する通信制御方法1~4のいずれかのように制御することにより、低消費電力で正規通信確率を向上させることができるようになっている。 In the present embodiment, the communication between the transmitter 10 and the receiver 20 is controlled as in any of the communication control methods 1 to 4 described below, thereby improving the normal communication probability with low power consumption. It can be made to.
 因みに、発電部14は、コイルと永久磁石と、人の操作など外部からの機械的エネルギー入力をばねなど弾性体の変形による弾性エネルギーとして蓄積する蓄積器と、所定の変位入力により蓄積器の弾性エネルギーを開放する機構とを有し、解放されたエネルギーにより前記コイルと永久磁石の相対変位が変化し、コイルを通過する磁束密度の変化により電磁誘導で発電するような構成を採用することができる。 Incidentally, the power generation unit 14 includes a coil, a permanent magnet, an accumulator that accumulates mechanical energy input from the outside such as a human operation as elastic energy due to deformation of an elastic body such as a spring, and elasticity of the accumulator by a predetermined displacement input. It is possible to adopt a configuration that has a mechanism for releasing energy, the relative displacement of the coil and the permanent magnet is changed by the released energy, and the power is generated by electromagnetic induction by the change of the magnetic flux density passing through the coil. .
 また、発電部14は、磁歪材料で構成され、軸方向に磁力線を通過させる少なくとも1つの磁歪棒と、この磁歪棒に応力を付与する機能を有する梁部材と、磁力線が軸方向に通過するように配置され、その密度の変化に基づいて電圧が発生するコイルとを有し、人の操作など外部からの機械的エネルギー入力を、前記磁歪棒の一端に対して他端を、その軸方向とほぼ垂直な方向に変位させて弾性エネルギーとして前記梁部材と磁歪材に蓄積し、所定の変位入力により、前記他端の強制変位を開放し、蓄積された弾性エネルギーにより前記磁歪棒を伸縮させることにより、前記磁力線の密度を変化させて前記コイルに電圧を発生するような構成を採用することができる。 The power generation unit 14 is made of a magnetostrictive material, and includes at least one magnetostrictive rod that passes the magnetic lines of force in the axial direction, a beam member that has a function of applying stress to the magnetostrictive rods, and the magnetic lines of force pass in the axial direction. And a coil that generates a voltage based on a change in density thereof, and inputs mechanical energy from the outside, such as a human operation, with respect to one end of the magnetostrictive rod and the axial direction thereof. Displace in a substantially vertical direction and store it as elastic energy in the beam member and magnetostrictive material, release the forced displacement of the other end by a predetermined displacement input, and expand and contract the magnetostrictive rod by the stored elastic energy Therefore, it is possible to adopt a configuration in which a voltage is generated in the coil by changing the density of the lines of magnetic force.
 なお、本実施の形態の説明で用いる以下の用語は以下の意味をもつ。
 Master チャンネル(M-ch) : 送信機10が最初に送信するチャンネル。また、受信機20が待機するチャンネル。
 Sub チャンネル(S-ch) : 送信機10がM-ch送信後にチャンネルを切り替えて順次送信するチャンネル。また、受信機20が一時的に受信チャンネルを切り替えて退避するチャンネル。複数設定可能(S1-ch、S2-ch)。
 SFD(Start Frame Ditect) : データ受信の開始を検知したことを知らせる受信フレーム。
 SFD_INT : SFD受信時に発生するハードウェア割り込み。
 LEN : SFDの次に受信するフレーム、受信データ長。
 SRC : FCF+SEQ+DES+Source PAN ID(宛先アドレス、送信元アドレス)。
The following terms used in the description of this embodiment have the following meanings.
Master channel (M-ch): Channel that transmitter 10 transmits first. The channel on which the receiver 20 stands by.
Sub channel (S-ch): A channel in which the transmitter 10 sequentially transmits after switching M-ch. Further, the receiver 20 temporarily saves the channel by switching the reception channel. Multiple settings are possible (S1-ch, S2-ch).
SFD (Start Frame Ditect): A reception frame notifying that the start of data reception has been detected.
SFD_INT: A hardware interrupt that occurs when an SFD is received.
LEN: Frame received next to SFD, received data length.
SRC: FCF + SEQ + DES + Source PAN ID (destination address, source address).
 <通信制御方法1>
 図2は、通信制御方法1の原理を示す図である。図2Aは送信機10の動作原理を示し、図2Bは受信機20の動作原理を示す。
<Communication control method 1>
FIG. 2 is a diagram illustrating the principle of the communication control method 1. FIG. 2A shows the operating principle of the transmitter 10, and FIG. 2B shows the operating principle of the receiver 20.
 通信制御方法1では、送信機10は、図2Aに示すように、1回の送信動作(1回のブロードキャスト送信を意味する)において、同一の送信データを、少なくとも2つ以上のチャンネルで定めた順番に定められた間隔を以て、順次送信する、多重送信を行う。図2Aの例では、3つのチャンネルを多重してブロードキャスト送信するようになっている。 In the communication control method 1, the transmitter 10 defines the same transmission data in at least two or more channels in one transmission operation (meaning one broadcast transmission) as shown in FIG. 2A. Multiplex transmission is performed in which transmission is performed sequentially at intervals determined in order. In the example of FIG. 2A, three channels are multiplexed and broadcast.
 受信機20は、図2Bに示すように、受信チャンネルを順次所定の順番で復調していく。ここで、受信機20は、送信機10の送信チャンネル番号、及び、受信復調する順位を予め記憶するようになっており、記憶した順番でチャンネルを順次受信復調していく。また、受信機20は、受信復調したチャンネルが正規受信であったかエラー受信であったかを評価し、エラー受信であると評価した場合には、予め記憶している順位で受信チャンネルを即座に切り替える。図2Bの例は、1番目の受信チャンネルにおいては他の受信機20がこの受信チャンネルを占有しているため(つまりビジー状態であるため)エラー受信となり、2番目の受信チャンネルにおいては周辺電波環境が悪いためエラー受信となり、3番目の受信チャンネルにおいて正規受信を行うことができた例である。このようにすることで、何れかのチャンネルで正規受信を行うまでの時間を短縮できると共に、正規通信確率を向上させることができる。 As shown in FIG. 2B, the receiver 20 sequentially demodulates the reception channels in a predetermined order. Here, the receiver 20 stores in advance the transmission channel number of the transmitter 10 and the order of reception and demodulation, and sequentially receives and demodulates the channels in the stored order. Further, the receiver 20 evaluates whether the received and demodulated channel is regular reception or error reception, and if it is evaluated as error reception, it immediately switches the reception channel in the order stored in advance. In the example of FIG. 2B, since the other receiver 20 occupies this reception channel in the first reception channel (that is, because it is busy), an error reception occurs in the second reception channel. This is an example in which error reception occurs and normal reception can be performed on the third reception channel. In this way, it is possible to shorten the time until normal reception is performed on any channel and to improve the normal communication probability.
 なお、正規受信であるかエラー受信であるかの評価は、下記の1)~4)のうちいずれかに該当する場合にはエラー受信と判断し、いずれにも該当しない場合には正規受信であると判断する。 In addition, the evaluation of whether it is regular reception or error reception is judged as error reception when it falls under any of the following 1) to 4), and when it does not fall under any of the following, it is regular reception. Judge that there is.
 1)LENが規定の長さではない。
 2)宛先アドレス、送信元アドレスが所定の設定値またはリストに該当しない。
 3)受信データのCRC(チェックサム)がTrue(OK)ではない。
 4)受信データのプロトコル、データ範囲、フォーマットが所定の範囲にない。
1) LEN is not the specified length.
2) The destination address and the source address do not correspond to the predetermined setting value or list.
3) The CRC (checksum) of the received data is not True (OK).
4) The protocol, data range, and format of the received data are not within the predetermined range.
 図3は、通信制御方法1における、送信機10の送信処理フローを示す。 FIG. 3 shows a transmission processing flow of the transmitter 10 in the communication control method 1.
 送信機10は、ステップS10で送信処理を開始する。この送信処理は、タイマーや、蓄電部15の電圧上昇、蓄電部15の電圧検知、センサー信号、外部信号、スイッチ等をトリガーとして開始される。 The transmitter 10 starts transmission processing in step S10. This transmission process is triggered by a timer, a voltage rise of the power storage unit 15, voltage detection of the power storage unit 15, a sensor signal, an external signal, a switch, or the like.
 送信機10は、ステップS11で初期設定を行う。具体的には、送信データの準備と、送信チャンネルの順位設定と、送信回数設定とを行う。ステップS12では今回送信するチャンネルを設定し、ステップS13ではそのチャンネルを送信する。ステップS14では送信カウンタの送信カウント値をインクリメントし、ステップS15では送信回数(送信カウント値)が設定回数よりも大きくなったか否か判断する。ステップS15で肯定結果を得た場合にはステップS17に移って送信処理を終了し、ステップS15で否定結果を得た場合にはステップS16で所定時間待機した後にステップS12に移る。このように、送信機10は、ステップS12-S13-S14-S15-S16-S12を繰り返すことで、図2Aに示したように、1回の送信動作(1回のブロードキャスト送信を意味する)において、同一の送信データを、少なくとも2つ以上のチャンネルで定めた順番に定められた間隔を以て順次送信する、多重送信を行う。 Transmitter 10 performs initial setting in step S11. Specifically, transmission data preparation, transmission channel rank setting, and transmission count setting are performed. In step S12, a channel to be transmitted this time is set, and in step S13, the channel is transmitted. In step S14, the transmission count value of the transmission counter is incremented. In step S15, it is determined whether or not the number of transmissions (transmission count value) has become larger than the set number. If an affirmative result is obtained in step S15, the process proceeds to step S17 to end the transmission process. If a negative result is obtained in step S15, the process waits for a predetermined time in step S16 and then proceeds to step S12. In this way, the transmitter 10 repeats steps S12-S13-S14-S15-S16-S12, thereby performing one transmission operation (meaning one broadcast transmission) as shown in FIG. 2A. Multiplex transmission is performed in which the same transmission data is sequentially transmitted at intervals determined in an order determined by at least two or more channels.
 換言すれば、送信機10は、予め決められた初期設定に従い、M-ch、S-chを定め、順次送信を最低2回行う。ここで、各送信パケットの送信間隔は、少なくとも(受信機が受信チャンネルの切り替えに要する時間+正規フレーム長)以上とする。 In other words, the transmitter 10 determines M-ch and S-ch according to a predetermined initial setting, and sequentially transmits at least twice. Here, the transmission interval of each transmission packet is at least (the time required for the receiver to switch the reception channel + the normal frame length) or more.
 図4は、通信制御方法1における、受信機20の受信処理フローを示す。 FIG. 4 shows a reception processing flow of the receiver 20 in the communication control method 1.
 受信機20は、ステップS20で受信処理を開始すると、ステップS21で初期設定を行う。具体的には、受信チャンネルの順位を取得し設定する。受信機20は、ステップS22で受信チャンネルを設定し、ステップS23で受信部(つまり無線受信部21及びベースバンド復調部22)をONにし、ステップS24で受信開始割込をONし、ステップS25で受信処理を終了する。 When the receiver 20 starts the reception process in step S20, the receiver 20 performs initial setting in step S21. Specifically, the order of receiving channels is acquired and set. The receiver 20 sets the reception channel in step S22, turns on the reception unit (that is, the wireless reception unit 21 and the baseband demodulation unit 22) in step S23, turns on the reception start interrupt in step S24, and in step S25. The reception process ends.
 図5は、受信開始割込サブルーチンの処理フローを示す。受信機20は、図4のステップS24で受信開始割込をONにすると、図4の受信開始割込サブルーチンS30を開始し、ステップS31でタイマー割込をOFFにし、続くステップS32で受信制御部23が正規受信か否かを評価する。具体的には、上述した1)~4)の項目を評価する。 FIG. 5 shows the processing flow of the reception start interrupt subroutine. When the reception start interrupt is turned on in step S24 of FIG. 4, the receiver 20 starts the reception start interrupt subroutine S30 of FIG. 4, turns off the timer interrupt in step S31, and then receives the reception control unit in step S32. It is evaluated whether 23 is regular reception or not. Specifically, the above items 1) to 4) are evaluated.
 そして、ステップS33でエラー受信であるか否かを判断する。具体的には、受信制御部23が1)~4)の項目のうちいずれかに該当する場合にはエラー受信であると判断し(ステップS33;YES)、いずれにも該当しない場合には正常受信であると判断する(ステップS33;NO)。 In step S33, it is determined whether or not an error has been received. Specifically, if the reception control unit 23 corresponds to any one of the items 1) to 4), it is determined that the error is received (step S33; YES), and normal if it does not correspond to any of the items. It is determined that it is received (step S33; NO).
 ステップS33で正常受信と判断した場合には、ステップS34に移って、受信を完了して復調データを格納する。続くステップS35では現在のチャンネルを順位1のチャンネルとして設定し、ステップS36でメインルーチン(図4)に戻る。 If it is determined in step S33 that the reception is normal, the process proceeds to step S34, where the reception is completed and the demodulated data is stored. In the following step S35, the current channel is set as the channel of rank 1, and the process returns to the main routine (FIG. 4) in step S36.
 これに対して、ステップS33でエラー受信と判断した場合には、ステップS37に移って、設定チャンネルが最終順位か判断する。設定チャンネルが最終順位でない場合には、ステップS38に移って、設定順位に従って受信チャンネルを変更し、ステップS39に移ってタイマー割込をONにし、ステップS36でメインルーチン(図4)に戻る。設定チャンネルが最終順位の場合には、ステップS37からステップS40に移り、受信チャンネルを順位1のチャンネルに設定し、ステップS41でタイマー割込をOFFにし、ステップS36でメインルーチン(図4)に戻る。 On the other hand, if it is determined in step S33 that an error has been received, the process proceeds to step S37 to determine whether the set channel is the final rank. If the set channel is not in the final order, the process proceeds to step S38, the reception channel is changed according to the set order, the process proceeds to step S39, the timer interrupt is turned on, and the process returns to the main routine (FIG. 4) in step S36. If the set channel is the final rank, the process proceeds from step S37 to step S40, the reception channel is set to the rank 1 channel, the timer interrupt is turned off in step S41, and the process returns to the main routine (FIG. 4) in step S36. .
 以上説明したように、通信制御方法1によれば、送信機10は、1回の送信動作において、同一の送信データを、少なくとも2つ以上のチャンネルで定めた順番に定められた間隔を以て、順次送信し、受信機20は、送信機10の送信チャンネル番号および送信チャンネル順位を記憶し、受信チャンネルが正規受信であったかエラー受信であったかを評価し、受信チャンネルをビジーと判断した場合、予め設定された順位に従い受信チャンネルを切り替える。 As described above, according to the communication control method 1, the transmitter 10 sequentially transmits the same transmission data at intervals determined in an order determined by at least two or more channels in one transmission operation. The receiver 20 stores the transmission channel number and the transmission channel order of the transmitter 10, evaluates whether the reception channel is normal reception or error reception, and determines that the reception channel is busy. The receiving channel is switched according to the order.
 これにより、何れかのチャンネルで正規受信を行うまでの時間を短縮できると共に、正規通信確率を向上させることができる。 This makes it possible to shorten the time required for normal reception on any channel and improve the normal communication probability.
 また、送信機10は、2つ以上のチャンネルで定めた順番を少なくとも2回繰り返し送信するとよい。 In addition, the transmitter 10 may repeatedly transmit the order determined by two or more channels at least twice.
 また、送信機10の多重送信におけるフレームとフレームの間隔(周期)を、受信機20がチャンネルを切り替えるのに要する時間+正規フレーム受信に必要な時間+受信フレーム評価時間以上とするとよい。 Also, the frame-to-frame interval (cycle) in the multiplex transmission of the transmitter 10 may be set to the time required for the receiver 20 to switch channels + the time required for receiving a normal frame + the received frame evaluation time or more.
 また、受信機20は、何らかのパケットを受信し、受信割込(スタートオブフレーム)を認知したことをトリガーとし、受信フレームに含まれる情報を逐次評価し、複数段階でエラー受信を評価してもよい。 The receiver 20 receives a packet, recognizes a reception interrupt (start of frame) as a trigger, sequentially evaluates information included in the received frame, and evaluates error reception in multiple stages. Good.
 また、受信機20がエラー受信により受信チャンネルを設定次チャンネルへ切り替えた後、そのチャンネルを少なくとも(設定チャンネル数+1)×正規フレーム時間+設定チャンネル数×送信間隔+マージンとし、この時間を過ぎても受信割り込みが発生しない場合、受信チャンネルを初期チャンネルへ復帰させるとよい。または、次々チャンネル以降が設定されている場合はそのチャンネルへの切り替えを行い、以降最終設定チャンネルで受信割り込みが無ければ、同様に初期チャンネルに復帰するとよい。 In addition, after the receiver 20 switches the reception channel to the set next channel due to error reception, the channel is set to at least (number of set channels + 1) × normal frame time + number of set channels × transmission interval + margin. If no reception interrupt occurs, the reception channel may be returned to the initial channel. Alternatively, when the channel after the channel is set, the channel is switched to that channel, and thereafter, if there is no reception interrupt in the final setting channel, it is preferable to return to the initial channel.
 <通信制御方法2>
 図6は、通信制御方法2の原理を示す図である。図6Aは送信機10の初回送信動作の原理を示し、図6Bは受信機20の動作原理を示し、図6Cは送信機10の初回送信動作の原理を示す。
<Communication control method 2>
FIG. 6 is a diagram illustrating the principle of the communication control method 2. 6A shows the principle of the initial transmission operation of the transmitter 10, FIG. 6B shows the operation principle of the receiver 20, and FIG. 6C shows the principle of the initial transmission operation of the transmitter 10.
 通信制御方法2では、送信機10は、図6Aに示すように、上述した通信制御方法1と同様に、1回の送信動作(1回のブロードキャスト送信を意味する)において、同一の送信データを、少なくとも2つ以上のチャンネルで定めた順番に定められた間隔を以て、順次送信する、多重送信を行う。図6Aの例では、3つのチャンネルを多重してブロードキャスト送信するようになっている。各送信フレームにはデータと送信側PHY情報(M-ch、S-chの設定と順位)が含まれる。 In communication control method 2, as shown in FIG. 6A, transmitter 10 transmits the same transmission data in one transmission operation (meaning one broadcast transmission) as in communication control method 1 described above. Multiplex transmission is performed in which transmission is performed sequentially at intervals determined in an order determined by at least two or more channels. In the example of FIG. 6A, three channels are multiplexed and broadcast. Each transmission frame includes data and transmission-side PHY information (M-ch and S-ch settings and order).
 これに加えて、通信制御方法2では、送信機10は、各送信フレームを送信後、受信機20からのACKを受信するようになっている。各送信フレームの送信間隔は少なくともRXからACKが受信できる時間以上とし、本実施の形態ではIEEE802.15.4に定める時間とする。各送信フレームを送信後、送信機10は受信機20からのACKを受け取るため、次の送信時間までは受信状態となる。 In addition to this, in the communication control method 2, the transmitter 10 receives an ACK from the receiver 20 after transmitting each transmission frame. The transmission interval of each transmission frame is set to at least the time during which ACK can be received from RX, and in this embodiment, the transmission interval is set to IEEE 802.15.4. After transmitting each transmission frame, the transmitter 10 receives an ACK from the receiver 20, and therefore is in a reception state until the next transmission time.
 受信機20は、図6Bに示すように、上述した通信制御方法1と同様に、受信チャンネルを順次所定の順番で復調していく。ここで、受信機20は、送信機10の送信チャンネル番号、及び、受信復調する順位を記憶するようになっており、記憶した順番でチャンネルを順次受信復調していく。また、受信機20は、受信復調したチャンネルが正規受信であったかエラー受信であったかを評価し、エラー受信であると評価した場合には、予め記憶している順位で受信チャンネルを即座に切り替える。図6Bの例は、1番目の受信チャンネルにおいては他の受信機20がこの受信チャンネルを占有しているため(つまりビジー状態であるため)エラー受信となり、2番目の受信チャンネルにおいては周辺電波環境が悪いためエラー受信となり、3番目の受信チャンネルにおいて正規受信を行うことができた例である。ここまでは、上述した通信制御方法1と同様である。 As shown in FIG. 6B, the receiver 20 sequentially demodulates the reception channels in a predetermined order as in the communication control method 1 described above. Here, the receiver 20 stores the transmission channel number of the transmitter 10 and the order of reception demodulation, and sequentially receives and demodulates the channels in the stored order. Further, the receiver 20 evaluates whether the received and demodulated channel is regular reception or error reception, and if it is evaluated as error reception, it immediately switches the reception channel in the order stored in advance. In the example of FIG. 6B, another receiver 20 occupies this reception channel in the first reception channel (that is, because it is in a busy state), resulting in an error reception. This is an example in which error reception occurs and normal reception can be performed on the third reception channel. Up to this point, the communication control method 1 is the same as described above.
 これに加えて、通信制御方法2では、受信機20は、各チャンネルの受信品質を評価し、正規受信が完了したときに、その該当チャンネル(つまり正規受信したチャンネル)で送信機10にACKを返信することで、送信機10のM-chを切り替えるようになっている。 In addition, in the communication control method 2, the receiver 20 evaluates the reception quality of each channel, and when the normal reception is completed, the receiver 20 sends an ACK to the transmitter 10 in the corresponding channel (that is, the channel that has been normally received). By replying, the M-ch of the transmitter 10 is switched.
 この結果、図6Cに示すように、送信機10は、次回送信時には、ACKの返信されたチャンネルの送信順位を上げて送信を行う。また、受信機20は、ACKを返信したチャンネルを最初に受信する受信チャンネルに設定して次回受信を待機する。つまり、送信機10は正規受信される可能性が高いチャンネルの送信順位を上げ、受信機20はそれと同じ順位でチャンネル受信を待機する。これにより、通信制御方法1よりも、正規受信するために要する処理時間を短縮でき、より低消費電力の通信を実現することができる。 As a result, as shown in FIG. 6C, at the next transmission, the transmitter 10 performs transmission by increasing the transmission order of the channel to which the ACK is returned. In addition, the receiver 20 sets the channel to which the ACK is returned as the first reception channel and waits for the next reception. That is, the transmitter 10 increases the transmission order of the channel that is likely to be received normally, and the receiver 20 waits for channel reception in the same order. As a result, the processing time required for regular reception can be shortened compared to the communication control method 1, and communication with lower power consumption can be realized.
 図7は、通信制御方法2における、送信機10の送信処理フローを示す。 FIG. 7 shows a transmission processing flow of the transmitter 10 in the communication control method 2.
 送信機10は、ステップS50で送信処理を開始する。この送信処理は、タイマーや、蓄電部15の電圧上昇、蓄電部15の電圧検知、センサー信号、外部信号、スイッチ等をトリガーとして開始される。 The transmitter 10 starts transmission processing in step S50. This transmission process is triggered by a timer, a voltage rise of the power storage unit 15, voltage detection of the power storage unit 15, a sensor signal, an external signal, a switch, or the like.
 送信機10は、ステップS51で初期設定を行う。具体的には、送信データの準備と、送信チャンネルの順位設定と、送信回数設定とを行う。ステップS52では今回送信するチャンネルを設定し、ステップS53ではそのチャンネルを送信する。このとき、データに加えて、送信側PHY情報(M-ch、S-chの設定と順位の情報)も送信する。続くステップS54では受信部をオンし(なお図1の構成では送信機10は受信部を有しない構成となっているが、通信制御方法2を実現するためには送信機10が受信部を有する構成とする必要がある)、ステップS55で受信機20からのACKを受信する。 The transmitter 10 performs initial setting in step S51. Specifically, transmission data preparation, transmission channel rank setting, and transmission count setting are performed. In step S52, a channel to be transmitted this time is set, and in step S53, the channel is transmitted. At this time, in addition to the data, transmission-side PHY information (M-ch, S-ch setting and order information) is also transmitted. In the subsequent step S54, the receiving unit is turned on (note that the transmitter 10 does not have a receiving unit in the configuration of FIG. 1, but the transmitter 10 has a receiving unit in order to realize the communication control method 2). The ACK from the receiver 20 is received in step S55.
 ステップS56では、ACK受信がタイマーアウトか判断し、タイマーアウトでないと判断した場合には、ステップS57に移ってACKを受信したチャンネルを記憶し、ステップS58でACKを受信したチャンネルに従って送信順位を変更し、変更した送信順位を記憶する。そして、ステップS59で送信処理を終了する。 In step S56, it is determined whether the ACK reception is a timer-out. If it is determined that the ACK is not a timer-out, the process moves to step S57, stores the channel that received the ACK, and changes the transmission order according to the channel that received the ACK in step S58. Then, the changed transmission order is stored. In step S59, the transmission process ends.
 これに対して、ステップS56でACK受信がタイマーアウトであると判断した場合には、ステップS60に移って送信カウンタの送信カウント値をインクリメントし、ステップS61で送信回数(送信カウント値)が設定回数よりも大きくなったか否か判断する。ステップS61で肯定結果を得た場合にはステップS59に移って送信処理を終了し、ステップS61で否定結果を得た場合にはステップS62で所定時間待機した後にステップS52に移る。このように、送信機10は、ステップS52-S53-S54-S55-S56-S60-S61-S62-S52を繰り返すことで、図6Aに示したように、1回の送信動作(1回のブロードキャスト送信を意味する)において、同一の送信データを、少なくとも2つ以上のチャンネルで定めた順番に定められた間隔を以て順次送信する、多重送信と、ACKの受信動作と、を行う。 On the other hand, if it is determined in step S56 that ACK reception is timer-out, the process proceeds to step S60 to increment the transmission count value of the transmission counter, and in step S61, the number of transmissions (transmission count value) is the set number of times. It is judged whether it became larger than. If an affirmative result is obtained in step S61, the process proceeds to step S59 to end the transmission process. If a negative result is obtained in step S61, the process waits for a predetermined time in step S62 and then proceeds to step S52. In this manner, the transmitter 10 repeats steps S52-S53-S54-S55-S56-S60-S61-S62-S52 to perform one transmission operation (one broadcast) as shown in FIG. 6A. Multiplex transmission and ACK reception operation in which the same transmission data is sequentially transmitted at intervals determined in an order determined by at least two or more channels.
 また、送信機10は、ACKが返信されたチャンネルを次回送信のM-chとし、その切り替え動作を通知するためにPHY情報を更新する。 Also, the transmitter 10 sets the channel to which the ACK is returned as the M-ch for the next transmission, and updates the PHY information to notify the switching operation.
 図8は、通信制御方法2における、受信機20の受信処理フローを示す。 FIG. 8 shows a reception processing flow of the receiver 20 in the communication control method 2.
 受信機20は、ステップS70で受信処理を開始すると、ステップS71で初期設定を行う。具体的には、受信チャンネルの順位を取得し設定する。受信機20は、ステップS72で受信チャンネルを設定し、ステップS73で受信部をONにすると共に受信開始割込をONにし、ステップS74でタイマー割込をONにし、ステップS75で受信処理を終了する。 When the receiver 20 starts the reception process in step S70, the receiver 20 performs initial setting in step S71. Specifically, the order of receiving channels is acquired and set. The receiver 20 sets the reception channel in step S72, turns on the reception unit in step S73 and turns on the reception start interrupt, turns on the timer interrupt in step S74, and ends the reception process in step S75. .
 図9は、受信開始割込サブルーチンの処理フローを示す。受信機20は、図8のステップS73で受信開始割込をONにすると、図9の受信開始割込サブルーチンS80を開始し、ステップS81で受信制御部23が正規受信か否かを評価する。具体的には、上述した1)~4)の項目を評価する。 FIG. 9 shows the processing flow of the reception start interrupt subroutine. When the reception start interrupt is turned ON in step S73 of FIG. 8, the receiver 20 starts the reception start interrupt subroutine S80 of FIG. 9, and evaluates whether the reception control unit 23 is normal reception in step S81. Specifically, the above items 1) to 4) are evaluated.
 そして、ステップS82でエラー受信であるか否かを判断する。ステップS82で正常受信と判断した場合には、ステップS83に移ってデータ受信を完了して復調データを格納する。 In step S82, it is determined whether or not an error has been received. If it is determined in step S82 that the reception is normal, the process proceeds to step S83, where the data reception is completed and the demodulated data is stored.
 続くステップS84では現PHY情報と現受信チャンネルを比較し、ステップS84で現PHY情報と現受信チャンネルが同じでないと判断した場合には、ステップS86に移って現受信チャンネルでACKを返信する。これに対して、現PHY情報と現受信チャンネルが同じと判断した場合には、ステップS87に移ってメインルーチン(図8)に戻る。 In the following step S84, the current PHY information and the current reception channel are compared. If it is determined in step S84 that the current PHY information and the current reception channel are not the same, the process proceeds to step S86 and ACK is returned on the current reception channel. On the other hand, when it is determined that the current PHY information and the current reception channel are the same, the process proceeds to step S87 and returns to the main routine (FIG. 8).
 また、ステップS82でエラー受信と判断した場合には、ステップS88に移って、設定順位に従って受信チャンネルを次の受信チャンネルに変更する。そして、続くステップS89でチャンネル順位を再決定した後、ステップS87でメインルーチン(図8)に戻る。 If it is determined in step S82 that the error has been received, the process proceeds to step S88 to change the reception channel to the next reception channel according to the setting order. In step S89, the channel order is redetermined, and in step S87, the process returns to the main routine (FIG. 8).
 図10は、タイマー割込サブルーチンの処理フローを示す。受信機20は、図8のステップS74でタイマー割込をONにすると、図10のタイマー割込サブルーチンS90を開始し、ステップS91でRSSI(Received Signal Strength Indicator)を測定し、ステップS92で測定したRSSIに基づいて受信チャンネル品質を評価して評価結果を保存し、ステップS93でチャンネル切り替えを決定してチャンネル順位を決定し、ステップS94でメインルーチン(図8)に戻る。 FIG. 10 shows the processing flow of the timer interrupt subroutine. When the timer interrupt is turned on in step S74 of FIG. 8, the receiver 20 starts the timer interrupt subroutine S90 of FIG. 10, measures RSSI (Received Signal Signal Strength Indicator) in step S91, and measures in step S92. The reception channel quality is evaluated based on the RSSI, and the evaluation result is stored. In step S93, channel switching is determined to determine the channel order, and in step S94, the process returns to the main routine (FIG. 8).
 なお、受信チャンネルの品質を評価する指標としては、正規受信時のRSSI、エラー受信時のSFDフレームのRSSI、各チャンネルのエラー発生頻度や履歴、各チャンネルの待機状態でのRSSIなどを用いることができる。正規受信時のRSSIは、送信機10と受信機20の距離、障害物の有無などに応じた値となり、このRSSIが大きいほど受信品質は良い。エラー受信時のSFDフレームのRSSIは、他の機器が受信機20に与える影響に応じた値となり、このRSSIが大きいほど受信品質は悪い。各チャンネルの待機状態でのRSSIは、受信機周辺のノイズに応じた値となり、このRSSIが大きいほど受信品質は悪い。 As an index for evaluating the quality of the reception channel, RSSI at the time of normal reception, RSSI of the SFD frame at the time of error reception, error occurrence frequency and history of each channel, RSSI in the standby state of each channel, and the like are used. it can. The RSSI at the time of regular reception is a value corresponding to the distance between the transmitter 10 and the receiver 20, the presence or absence of an obstacle, and the larger the RSSI, the better the reception quality. The RSSI of the SFD frame at the time of error reception is a value according to the influence of other devices on the receiver 20, and the reception quality is worse as the RSSI is larger. The RSSI in the standby state of each channel is a value corresponding to the noise around the receiver, and the reception quality is worse as the RSSI is larger.
 以上説明したように、通信制御方法2によれば、送信機10は、1回の送信動作において、同一の送信データを、少なくとも2つ以上のチャンネルで定めた順番に定められた間隔を以て、順次送信し、受信機20から送信チャンネル順位を示す情報を受け取って記憶し、現在の送信チャンネル順位を受信機に通知し、初期設定順位または受信機20から受け取った送信チャンネル順位に基づいて、送信するチャンネルの順位を切り替えながら、定められた間隔を以て、同一データの送信と、受信機20からの送信チャンネル順位を示す情報の受信とを時分割多重で行う。 As described above, according to the communication control method 2, the transmitter 10 sequentially transmits the same transmission data at intervals determined in an order determined by at least two or more channels in one transmission operation. Transmit, receive and store information indicating the transmission channel order from the receiver 20, notify the receiver of the current transmission channel order, and transmit based on the initial setting order or the transmission channel order received from the receiver 20. While switching the channel order, transmission of the same data and reception of information indicating the transmission channel order from the receiver 20 are performed by time-division multiplexing with a predetermined interval.
 一方、受信機20は、受信チャンネル番号および順位を記憶し、送信機10から通知された送信チャンネル番号および送信チャンネル順位を受信および記憶し、送信機10に送信チャンネル順位を示す情報を送信し、受信チャンネルが正規受信であったかエラー受信であったかを評価し、各チャンネルの受信品質を評価し、設定チャンネルでエラー受信した場合、予め設定した順位に従い受信チャンネルを切り替え、且つ、各チャンネルを評価した結果から次回送信の送信チャンネル順位を送信機に通知する。 On the other hand, the receiver 20 stores the reception channel number and the order, receives and stores the transmission channel number and the transmission channel order notified from the transmitter 10, and transmits information indicating the transmission channel order to the transmitter 10, Evaluate whether the reception channel is regular reception or error reception, evaluate the reception quality of each channel, and when receiving error in the set channel, the result of switching the reception channel according to the preset order and evaluating each channel To notify the transmitter of the next transmission channel order.
 これにより、何れかのチャンネルで正規受信を行うまでの時間を短縮できると共に、正規通信確率を向上させることができる。 This makes it possible to shorten the time required for normal reception on any channel and improve the normal communication probability.
 また、送信機10は、2つ以上のチャンネルで定めた順番を少なくとも2回繰り返し送受信するとよい。 Also, the transmitter 10 may transmit and receive at least twice the order determined by two or more channels.
 また、送信機10は、定められたチャンネル順位で送信後の受信状態を一定時間維持し、その間に受信機20からの受信完了通知を受信することで、当該チャンネルを次回送信時の第一送信チャンネルとして記憶し、送信チャンネル順位の変更をするとよい。 In addition, the transmitter 10 maintains the reception state after transmission in a predetermined channel order for a certain period of time, and receives a reception completion notification from the receiver 20 during that time, thereby transmitting the channel to the first transmission at the next transmission. It is good to store as a channel and change the transmission channel order.
 また、受信機20は、下記に列挙の評価項目の何れか、または組み合わせを評価することで、各チャンネルの受信品質を評価し、正規受信を完了後、そのチャンネルで受信完了を返信することで、送信機10の次回第一送信チャンネルの指示をするとよい。
 ・当該チャンネルにおける正規受信完了
 ・正規受信時のRSSI(受信感度)
 ・エラー受信時のSFDフレームのRSSI(受信感度)
 ・各チャンネルのエラー発生頻度、履歴
In addition, the receiver 20 evaluates the reception quality of each channel by evaluating one or a combination of the evaluation items listed below, and after completing normal reception, returns a reception completion on that channel. The transmitter 10 may be instructed about the next first transmission channel.
-Completion of regular reception on the channel-RSSI (Reception sensitivity) during regular reception
-RSSI (reception sensitivity) of SFD frame at the time of error reception
・ Error frequency and history of each channel
 また、送信機10の多重送受信におけるフレームとフレームの間隔(周期)を、受信機20がチャンネルを切り替えるのに要する時間+正規フレーム受信に必要な時間+受信フレーム評価時間、若しくは受信機20からの受信完了通知以上とするとよい。 Also, the frame-to-frame interval (cycle) in the multiplex transmission / reception of the transmitter 10 is expressed as follows: time required for the receiver 20 to switch channels + time required for regular frame reception + reception frame evaluation time, or from the receiver 20 It should be more than the reception completion notification.
 また、受信機20がエラー受信により受信チャンネルを設定次チャンネルへ切り替えた後、そのチャンネルを少なくとも(設定チャンネル数+1)×正規フレーム時間+設定チャンネル数×送信間隔+マージンとし、この時間を過ぎても受信割り込みが発生しない場合、受信チャンネルを初期チャンネルへ復帰させるとよい。または、次々チャンネル以降が設定されている場合はそのチャンネルへの切り替えを行い、以降最終設定チャンネルで受信割り込みが無ければ、同様に初期チャンネルに復帰するとよい。 In addition, after the receiver 20 switches the reception channel to the set next channel due to error reception, the channel is set to at least (number of set channels + 1) × normal frame time + number of set channels × transmission interval + margin. If no reception interrupt occurs, the reception channel may be returned to the initial channel. Alternatively, when the channel after the channel is set, the channel is switched to that channel, and thereafter, if there is no reception interrupt in the final setting channel, it is preferable to return to the initial channel.
 また、受信機20は、何らかのパケットを受信し、受信割込(スタートオブフレーム)を認知したことをトリガーとし、受信フレームに含まれる情報を逐次評価し、数段階でエラー受信を評価してもよい。 In addition, the receiver 20 receives some packet and recognizes a reception interrupt (start of frame) as a trigger, sequentially evaluates information included in the received frame, and evaluates error reception in several stages. Good.
 <通信制御方法3>
 図11は、通信制御方法3の原理を示す図である。図11Aは送信機10の送信動作の原理を示し、図11Bは受信機20の受信動作の原理を示す。
<Communication control method 3>
FIG. 11 is a diagram illustrating the principle of the communication control method 3. FIG. 11A shows the principle of the transmission operation of the transmitter 10, and FIG. 11B shows the principle of the reception operation of the receiver 20.
 通信制御方法3では、送信機10は、図11Aに示すように、上述した通信制御方法1と同様に、1回の送信動作(1回のブロードキャスト送信を意味する)において、同一の送信データを、少なくとも2つ以上のチャンネルで定めた順番に定められた間隔を以て、順次送信する、多重送信を行う。図11Aの例では、3つのチャンネルを多重してブロードキャスト送信するようになっている。 In communication control method 3, as shown in FIG. 11A, transmitter 10 transmits the same transmission data in one transmission operation (meaning one broadcast transmission), as in communication control method 1 described above. Multiplex transmission is performed in which transmission is performed sequentially at intervals determined in an order determined by at least two or more channels. In the example of FIG. 11A, three channels are multiplexed and broadcast.
 受信機20は、図11Bに示すように、上述した通信制御方法1と同様に、受信チャンネルを順次所定の順番で復調していく。ここで、受信チャンネルの品質が所定値以下になるまではその受信チャンネルで受信し続け、受信チャンネルの品質が所定値以下になったときに次の受信チャンネルに切り替えるようになっている。 As shown in FIG. 11B, the receiver 20 sequentially demodulates the reception channels in a predetermined order as in the communication control method 1 described above. Here, reception is continued on the reception channel until the quality of the reception channel becomes lower than a predetermined value, and when the quality of the reception channel becomes lower than the predetermined value, switching to the next reception channel is performed.
 この通信制御方法3における送信機10の送信処理フローは、上述した通信制御方法1における送信機10の送信処理フロー(図3)と同じである。 The transmission process flow of the transmitter 10 in the communication control method 3 is the same as the transmission process flow (FIG. 3) of the transmitter 10 in the communication control method 1 described above.
 図12は、通信制御方法3における、受信機20の受信処理フローを示す。 FIG. 12 shows a reception processing flow of the receiver 20 in the communication control method 3.
 受信機20は、ステップS100で受信処理を開始すると、ステップS101で初期設定を行う。具体的には、受信チャンネルの順位を取得し設定する。受信機20は、ステップS102で受信チャンネルを設定し、ステップS103で受信部をONにすると共に受信開始割込をONにし、ステップS104でタイマー割込をONにし、ステップS105で受信処理を終了する。 When the receiver 20 starts reception processing in step S100, the receiver 20 performs initial setting in step S101. Specifically, the order of receiving channels is acquired and set. The receiver 20 sets the reception channel in step S102, turns on the reception unit in step S103 and turns on the reception start interrupt, turns on the timer interrupt in step S104, and ends the reception process in step S105. .
 図13は、受信開始割込サブルーチンの処理フローを示す。受信機20は、図12のステップS103で受信開始割込をONにすると、図13の受信開始割込サブルーチンS110を開始し、ステップS111でRSSIを取得(測定)しそれを記憶する。続くステップS112で受信制御部23が正規受信か否かを評価する。具体的には、上述した1)~4)の項目を評価する。 FIG. 13 shows the processing flow of the reception start interrupt subroutine. When the reception start interrupt is turned ON in step S103 of FIG. 12, the receiver 20 starts the reception start interrupt subroutine S110 of FIG. 13, acquires (measures) RSSI in step S111, and stores it. In subsequent step S112, the reception control unit 23 evaluates whether or not the reception is normal. Specifically, the above items 1) to 4) are evaluated.
 そして、ステップS113でエラー受信であるか否かを判断する。ステップS113で正常受信と判断した場合には、ステップS114に移ってデータ受信を完了して復調データを格納する。続くステップS115では正規受信チャンネルの品質を評価し評価結果を保存し、ステップS116でメインルーチン(図12)に戻る。 In step S113, it is determined whether an error is received. If it is determined in step S113 that the reception is normal, the process proceeds to step S114 to complete the data reception and store the demodulated data. In the following step S115, the quality of the regular reception channel is evaluated and the evaluation result is stored, and the process returns to the main routine (FIG. 12) in step S116.
 また、ステップS113でエラー受信と判断した場合には、ステップS117に移って、受信チャンネルの品質を評価し評価結果を保存する。続くステップS118では、チャンネル切り替えを決定し、チャンネル順位を決定する。続くステップS119では、チャンネル切り替えが正しいか判断し、正しくない場合にはステップS116に移り、正しい場合にはステップS120で受信チャンネルを次チャンネルに変更した後、ステップS116に移る。 If it is determined in step S113 that an error has been received, the process proceeds to step S117, where the quality of the received channel is evaluated and the evaluation result is stored. In the subsequent step S118, channel switching is determined and the channel order is determined. In the following step S119, it is determined whether the channel switching is correct. If it is not correct, the process proceeds to step S116. If it is correct, the reception channel is changed to the next channel in step S120, and then the process proceeds to step S116.
 図14は、タイマー割込サブルーチンの処理フローを示す。受信機20は、図12のステップS104でタイマー割込をONにすると、図14のタイマー割込サブルーチンS130を開始し、ステップS131でRSSIを測定し記憶する。ステップS132では、ステップS131で測定したRSSIに基づいて受信チャンネル品質を評価して評価結果を保存し、ステップS133では、チャンネル切り替えを決定してチャンネル順位を決定する。続くステップS134では、チャンネル切り替えが正しいか判断し、正しくない場合にはステップS135に移ってメインルーチン(図12)に戻る。正しい場合にはステップS136で受信チャンネルを次チャンネルに変更した後、ステップS135に移る。 FIG. 14 shows the processing flow of the timer interrupt subroutine. When the timer interrupt is turned on in step S104 in FIG. 12, the receiver 20 starts the timer interrupt subroutine S130 in FIG. 14, and measures and stores the RSSI in step S131. In step S132, the reception channel quality is evaluated based on the RSSI measured in step S131 and the evaluation result is stored. In step S133, channel switching is determined and the channel order is determined. In the following step S134, it is determined whether the channel switching is correct. If it is not correct, the process proceeds to step S135 and returns to the main routine (FIG. 12). If it is correct, the reception channel is changed to the next channel in step S136, and then the process proceeds to step S135.
 このように、通信制御方法3を行う受信機20は、SFD割り込み、タイマー割込みにより環境ノイズ、受信強度を検知し、チャンネル品質の評価により受信チャンネルの切り替えが必要と判断した場合には、すみやかに受信チャンネルを評価に従いS-ch以降へ切り替えるようになっている。 As described above, the receiver 20 that performs the communication control method 3 detects environmental noise and reception intensity by SFD interruption and timer interruption, and immediately determines that switching of the reception channel is necessary by evaluating channel quality. The receiving channel is switched to S-ch or later according to the evaluation.
 以上説明したように、通信制御方法3によれば、送信機10は、1回の送信動作において、同一の送信データを、少なくとも2つ以上のチャンネルで定めた順番に定められた間隔を以て、順次送信し、受信機20は、送信機10と同一のチャンネル番号を記憶し、受信チャンネルの品質を評価し、受信チャンネルの品質が所定値以下になった場合に受信チャンネルを切り替える。 As described above, according to the communication control method 3, the transmitter 10 sequentially transmits the same transmission data in one transmission operation at intervals determined in an order determined by at least two or more channels. The receiver 20 stores the same channel number as the transmitter 10, evaluates the quality of the reception channel, and switches the reception channel when the quality of the reception channel becomes a predetermined value or less.
 これにより、何れかのチャンネルで正規受信を行うまでの時間を短縮できると共に、正規通信確率を向上させることができる。 This makes it possible to shorten the time required for normal reception on any channel and improve the normal communication probability.
 また、受信機20は、設定中のチャンネルにおいて受信した信号電力を測定し、これを受信強度(RSSI)として記憶し、送信機10からのデータ受信時のRSSIと待機時の雑音信号のRSSIを比較し、差分があらかじめ定めた値以下になった場合にチャンネルを切り替える動作を行うとよい。 In addition, the receiver 20 measures the signal power received in the channel being set, stores this as reception strength (RSSI), and determines the RSSI when receiving data from the transmitter 10 and the RSSI of the noise signal during standby. It is preferable to perform an operation of switching channels when the difference is equal to or less than a predetermined value.
 また、受信機20は、RSSIを永続的に記憶し、設定中のチャンネルにおける現在の伝達確率と過去に使用した他のチャンネルの伝達確率履歴を比較し、事前にチャンネル切り替え後の効果を予測し、切り替えるか否か、どのチャンネルへ切り替えるかを判断してもよい。 Further, the receiver 20 permanently stores the RSSI, compares the current transmission probability in the channel being set with the transmission probability history of other channels used in the past, and predicts the effect after channel switching in advance. Whether to switch or not and which channel to switch to may be determined.
 また、受信機20は、RSSIとその検知した時刻歴を対にして永続的に複数個記憶し、設定チャンネルおよび過去に使用した他のチャンネルのRSSIを移動平均法や最近隣法、指数平滑法などの予測手法を単独または組み合わせて用い、チャンネルへ切り替えの判断を行うようにしてもよい。 Further, the receiver 20 permanently stores a plurality of RSSIs and detected time histories as a pair, and sets the RSSI of the set channel and other channels used in the past as a moving average method, nearest neighbor method, exponential smoothing method or the like. A prediction method such as this may be used alone or in combination to determine whether to switch to a channel.
 また、送信機10がデータを逐次送信する多重送信において、多重送信回数を少なくとも3回とし、1チャンネル分のデータ送信に要する時間をtT、多重化送信する送信間隔をtD、受信機20がチャンネルを切り替える最小間隔をtEとしたときに、tEをtD+2*tT以上とすることで、送受信チャンネルが相互に入れ違い、受信機会を失うことを防ぐことができる。 In the multiplex transmission in which the transmitter 10 sequentially transmits data, the number of multiplex transmissions is at least three, the time required for data transmission for one channel is tT, the transmission interval for multiplex transmission is tD, and the receiver 20 is the channel. By setting tE to be tD + 2 * tT or more when the minimum interval for switching is tE, it is possible to prevent the transmission / reception channels from entering each other and losing reception opportunities.
 また、多重送信回数を少なくとも4回とし、偶数回と奇数回の送信チャンネルを同一とすることで、少なくとも1回の受信期間で該当チャンネルの受信機会を発生させることができる。 Also, by setting the number of times of multiplex transmission to at least 4 and making the even-numbered and odd-numbered transmission channels the same, it is possible to generate a reception opportunity for the corresponding channel in at least one reception period.
 <通信制御方法4>
 通信制御方法4は、上述した通信制御方法1のように現受信チャンネルがビジーなので待っていても意味がないと言う判断はしない。通信制御方法4は、何がしかの受信を受けたらチャンネルを切り替え、複数チャンネルにおいて正規受信をできるようにすることで、正規受信する確率を向上させる。
<Communication control method 4>
The communication control method 4 does not judge that there is no point in waiting because the current reception channel is busy like the communication control method 1 described above. The communication control method 4 improves the probability of normal reception by switching channels when receiving a certain reception and enabling normal reception in a plurality of channels.
 送信機10の送信手順は、通信制御方法1と同様である。 The transmission procedure of the transmitter 10 is the same as that of the communication control method 1.
 受信機20は、以下の処理を行う。
 ・予め決められた初期設定に従い、M-chを受信チャンネルに設定する。
 ・SFD割り込みにより何がしかの受信を検知し、エラー受信か否かに関わらず、受信チャンネルは一定時間維持する。
 ・次送信タイミングまで待って、受信チャンネルを切り替える。
 ・S-ch及びS-ch以降においても所定時間を待機し、自動的にチャンネルを切り替える。
 ・S-ch及び、S-ch以降で待機する時間は、(設定ch数+1)×フレーム時間+設定ch数×送信間隔+マージンとする。
 ・最終チャンネルまで切り替えた後は、M-chに戻り、待機する。
The receiver 20 performs the following processing.
• Set M-ch as the receiving channel according to the preset initial settings.
-Some reception is detected by the SFD interrupt, and the reception channel is maintained for a certain time regardless of whether or not an error is received.
• Wait until the next transmission timing and switch the reception channel.
-Even after S-ch and after S-ch, a predetermined time is waited and the channel is automatically switched.
The waiting time after S-ch and after S-ch is (number of set channels + 1) × frame time + number of set channels × transmission interval + margin.
・ After switching to the final channel, return to M-ch and wait.
 図15は、通信制御方法4における、受信機20の受信処理フローを示す。 FIG. 15 shows a reception processing flow of the receiver 20 in the communication control method 4.
 受信機20は、ステップS140で受信処理を開始すると、ステップS141で初期設定を行う。具体的には、受信チャンネルの順位を取得し設定する。受信機20は、ステップS142で受信チャンネルを設定し、ステップS143で受信部をONにすると共に受信開始割込をONにし、ステップS144で受信処理を終了する。 When the receiver 20 starts the reception process in step S140, the receiver 20 performs initial setting in step S141. Specifically, the order of receiving channels is acquired and set. The receiver 20 sets a reception channel in step S142, turns on the reception unit in step S143 and turns on the reception start interrupt, and ends the reception process in step S144.
 図16は、受信開始割込サブルーチンの処理フローを示す。受信機20は、図15のステップS143で受信開始割込をONにすると、図16の受信開始割込サブルーチンS150を開始し、ステップS151でタイマー割込をONにし、続くステップS152で受信制御部23が正規受信か否かを評価する。具体的には、上述した1)~4)の項目を評価する。 FIG. 16 shows the processing flow of the reception start interrupt subroutine. When the reception start interrupt is turned on in step S143 in FIG. 15, the receiver 20 starts the reception start interruption subroutine S150 in FIG. 16, turns on the timer interruption in step S151, and then receives the reception control unit in step S152. It is evaluated whether 23 is regular reception or not. Specifically, the above items 1) to 4) are evaluated.
 そして、ステップS153でエラー受信であるか否かを判断する。具体的には、受信制御部23が1)~4)の項目のうちいずれかに該当する場合にはエラー受信であると判断し(ステップS153;YES)、いずれにも該当しない場合には正常受信であると判断する(ステップS153;NO)。 In step S153, it is determined whether an error is received. Specifically, if the reception control unit 23 corresponds to any of the items 1) to 4), it is determined that the error is received (step S153; YES), and if none of the items is satisfied, it is normal. It is determined that it is received (step S153; NO).
 ステップS153で正常受信と判断した場合には、ステップS154に移って、受信を完了して復調データを格納する。ステップS155ではタイマー割込をOFFにし、ステップS156では現在のチャンネルを順位1のチャンネルとして設定し、ステップS157でメインルーチン(図15)に戻る。 If it is determined in step S153 that the reception is normal, the process proceeds to step S154 where the reception is completed and the demodulated data is stored. In step S155, the timer interrupt is turned off. In step S156, the current channel is set as the rank 1 channel, and the process returns to the main routine (FIG. 15) in step S157.
 これに対して、ステップS153でエラー受信と判断した場合には、ステップS157に移ってメインルーチン(図15)に戻る。 On the other hand, if it is determined in step S153 that an error has been received, the process proceeds to step S157 and returns to the main routine (FIG. 15).
 図17は、タイマー割込サブルーチンの処理フローを示す。受信機20は、図16のステップS151でタイマー割込をONにすると、図17のタイマー割込サブルーチンS160を開始し、ステップS161で設定チャンネルが最終順位か判断し、最終順位でなければ、ステップS162に移って設定順位に従い受信チャンネルを変更し、ステップS163でタイマー割込をONにした後、ステップS164でリターンする。これに対して、ステップS161で設定チャンネルが最終順位であると判断した場合には、ステップS165に移って設定チャンネルを順位1のチャンネルに設定し、ステップS166でタイマー割込をOFFにした後、ステップS164でリターンする。 FIG. 17 shows the processing flow of the timer interrupt subroutine. When the timer interrupt is turned on in step S151 in FIG. 16, the receiver 20 starts the timer interrupt subroutine S160 in FIG. 17. In step S161, the receiver 20 determines whether the set channel is the final order. After moving to S162, the reception channel is changed according to the setting order, the timer interrupt is turned on in step S163, and the process returns in step S164. On the other hand, if it is determined in step S161 that the set channel is in the final order, the process proceeds to step S165, the set channel is set to the rank 1 channel, and the timer interrupt is turned off in step S166. In step S164, the process returns.
 以上説明したように、通信制御方法4によれば、送信機10は、1回の送信動作において、同一の送信データを、少なくとも2つ以上のチャンネルで定めた順番に定められた間隔を以て、順次送信し、受信機20は、送信機10の送信チャンネル番号および送信チャンネル順位を記憶し、タイマーにより、送信間隔に同期して受信チャンネルを切り替え、定められたシーケンスに従い受信チャンネルを切り替えて、送信機10から送信された多重送信のデータを異なるチャンネルで複数回受信する。 As described above, according to the communication control method 4, the transmitter 10 sequentially transmits the same transmission data in one transmission operation at intervals determined in an order determined by at least two or more channels. The receiver 20 stores the transmission channel number and the transmission channel order of the transmitter 10, switches the reception channel in synchronization with the transmission interval by a timer, switches the reception channel according to a predetermined sequence, and transmits the transmitter. Multiplex transmission data transmitted from 10 is received multiple times on different channels.
 これにより、正規受信を行うまでの時間を短縮できると共に、正規通信確率を向上させることができる。 This makes it possible to shorten the time required for normal reception and improve the normal communication probability.
 また、受信機20は、設定中のチャンネルにおいて受信した信号電力を測定し、これを受信強度(RSSI)としてあらかじめ設定された数値と比較し、受信機20は何らかの電波を受信し、その受信時のRSSIが設定値以上であることをチャンネル切り替えシーケンスのトリガーとしてもよい。 In addition, the receiver 20 measures the signal power received in the channel being set, compares this with a numerical value set in advance as the reception strength (RSSI), and the receiver 20 receives some radio wave and receives it. It is good also as a trigger of a channel switching sequence that RSSI is more than a setting value.
 上述の実施の形態は、本発明を実施するにあたっての具体化の一例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその要旨、またはその主要な特徴から逸脱することの無い範囲で、様々な形で実施することができる。 The above-described embodiments are merely examples of implementation in carrying out the present invention, and the technical scope of the present invention should not be interpreted in a limited manner. That is, the present invention can be implemented in various forms without departing from the gist or main features thereof.
 2015年2月6日出願の特願2015-022198の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。 The disclosure of the specification, drawings and abstract contained in the Japanese application of Japanese Patent Application No. 2015-022198 filed on February 6, 2015 is incorporated herein by reference.
 本発明は、機械的エネルギーを電気的エネルギーに変換する発電部を有し、この発電部によって得た電気的エネルギーを電源として利用して無線送信を行う送信機と、送信機によって送信された無線信号を受信する受信機と、を有する通信システムに好適である。 The present invention includes a power generation unit that converts mechanical energy into electrical energy, a transmitter that performs wireless transmission using the electrical energy obtained by the power generation unit as a power source, and a radio that is transmitted by the transmitter. It is suitable for a communication system having a receiver for receiving a signal.
 10 送信機
 11 ベースバンド処理部
 12 無線送信部
 13 送信制御部
 14 発電部
 15 蓄電部
 20 受信機
 21 無線受信部
 22 ベースバンド復調部
 23 受信制御部
DESCRIPTION OF SYMBOLS 10 Transmitter 11 Baseband process part 12 Wireless transmission part 13 Transmission control part 14 Power generation part 15 Power storage part 20 Receiver 21 Wireless reception part 22 Baseband demodulation part 23 Reception control part

Claims (4)

  1.  機械的エネルギーを電気的エネルギーに変換する発電部を有し、前記発電部によって得た電気的エネルギーを電源として利用して無線送信を行う送信機と、前記送信機によって送信された無線信号を受信する受信機と、を有する通信システムであって、
     前記送信機は、
     1回の送信動作において、同一の送信データを、少なくとも2つ以上のチャンネルで定めた順番に定められた間隔を以て、順次送信し、
     前記受信機から送信チャンネル順位を示す情報を受け取って記憶し、
     現在の送信チャンネル順位を前記受信機に通知し、
     初期設定順位または前記受信機から受け取った前記送信チャンネル順位に基づいて、送信するチャンネルの順位を切り替えながら、定められた間隔を以て、前記同一データの送信と、前記受信機からの前記送信チャンネル順位を示す情報の受信とを時分割多重で行い、
     前記受信機は、
     受信チャンネル番号および順位を記憶し、
     前記送信機から通知された送信チャンネル番号および前記送信チャンネル順位を受信および記憶し、
     前記送信機に前記送信チャンネル順位を示す情報を送信し、
     受信チャンネルが正規受信であったかエラー受信であったかを評価し、
     各チャンネルの受信品質を評価し、
     設定チャンネルでエラー受信した場合、予め設定した順位に従い受信チャンネルを切り替え、且つ、各チャンネルを評価した結果から次回送信の送信チャンネル順位を前記送信機に通知する、
     通信システム。
    A power generation unit that converts mechanical energy into electrical energy, a transmitter that performs wireless transmission using electrical energy obtained by the power generation unit as a power source, and a radio signal transmitted by the transmitter; A communication system comprising:
    The transmitter is
    In one transmission operation, the same transmission data is sequentially transmitted at intervals determined in an order determined by at least two or more channels.
    Receiving and storing information indicating the transmission channel order from the receiver;
    Notify the receiver of the current transmission channel order,
    Based on the initial setting order or the transmission channel order received from the receiver, the transmission order of the same data and the transmission channel order from the receiver are determined at predetermined intervals while switching the order of the channels to be transmitted. And receive the information shown by time division multiplexing,
    The receiver
    Memorize the receiving channel number and order,
    Receiving and storing the transmission channel number and the transmission channel order notified from the transmitter;
    Transmitting information indicating the transmission channel order to the transmitter;
    Evaluate whether the receiving channel was regular reception or error reception,
    Evaluate the reception quality of each channel,
    When an error is received in the set channel, the reception channel is switched according to a preset order, and the transmission channel order of the next transmission is notified to the transmitter from the result of evaluating each channel.
    Communications system.
  2.  機械的エネルギーを電気的エネルギーに変換する発電部を有し、前記発電部によって得た電気的エネルギーを電源として利用して無線送信を行う送信機と、前記送信機によって送信された無線信号を受信する受信機と、を有する片方向の通信システムであって、
     前記送信機は、
     1回の送信動作において、同一の送信データを、少なくとも2つ以上のチャンネルで定めた順番に定められた間隔を以て、順次送信し、
     前記受信機は、
     前記送信機の送信チャンネル番号および送信チャンネル順位を記憶し、
     受信チャンネルが正規受信であったかエラー受信であったかを評価し、
     受信チャンネルをビジーと判断した場合、予め設定された順位に従い受信チャンネルを切り替える、
     通信システム。
    A power generation unit that converts mechanical energy into electrical energy, a transmitter that performs wireless transmission using electrical energy obtained by the power generation unit as a power source, and a radio signal transmitted by the transmitter; A one-way communication system comprising:
    The transmitter is
    In one transmission operation, the same transmission data is sequentially transmitted at intervals determined in an order determined by at least two or more channels.
    The receiver
    Storing the transmission channel number and transmission channel order of the transmitter;
    Evaluate whether the receiving channel was regular reception or error reception,
    When the reception channel is determined to be busy, the reception channel is switched according to a preset order.
    Communications system.
  3.  機械的エネルギーを電気的エネルギーに変換する発電部を有し、前記発電部によって得た電気的エネルギーを電源として利用して無線送信を行う送信機と、前記送信機によって送信された無線信号を受信する受信機と、を有する片方向の通信システムであって、
     前記送信機は、
     1回の送信動作において、同一の送信データを、少なくとも2つ以上のチャンネルで定めた順番に定められた間隔を以て、順次送信し、
     前記受信機は、
     前記送信機と同一のチャンネル番号を記憶し、
     受信チャンネルの品質を評価し、
     受信チャンネルの品質が所定値以下になった場合に受信チャンネルを切り替える、
     通信システム。
    A power generation unit that converts mechanical energy into electrical energy, a transmitter that performs wireless transmission using electrical energy obtained by the power generation unit as a power source, and a radio signal transmitted by the transmitter; A one-way communication system comprising:
    The transmitter is
    In one transmission operation, the same transmission data is sequentially transmitted at intervals determined in an order determined by at least two or more channels.
    The receiver
    Store the same channel number as the transmitter,
    Evaluate the quality of the receiving channel,
    Switching the receiving channel when the quality of the receiving channel is below the specified value,
    Communications system.
  4.  機械的エネルギーを電気的エネルギーに変換する発電部を有し、前記発電部によって得た電気的エネルギーを電源として利用して無線送信を行う送信機と、前記送信機によって送信された無線信号を受信する受信機と、を有する片方向の通信システムであって、
     前記送信機は、
     1回の送信動作において、同一の送信データを、少なくとも2つ以上のチャンネルで定めた順番に定められた間隔を以て、順次送信し、
     前記受信機は、
     前記送信機の送信チャンネル番号および送信チャンネル順位を記憶し、
     タイマーにより、送信間隔に同期して受信チャンネルを切り替え、
     定められたシーケンスに従い受信チャンネルを切り替えて、前記送信機から送信された多重送信のデータを異なるチャンネルで複数回受信する、
     通信システム。
    A power generation unit that converts mechanical energy into electrical energy, a transmitter that performs wireless transmission using electrical energy obtained by the power generation unit as a power source, and a radio signal transmitted by the transmitter; A one-way communication system comprising:
    The transmitter is
    In one transmission operation, the same transmission data is sequentially transmitted at intervals determined in an order determined by at least two or more channels.
    The receiver
    Storing the transmission channel number and transmission channel order of the transmitter;
    The timer switches the receiving channel in synchronization with the transmission interval,
    Switch the reception channel according to a predetermined sequence, and receive the multiple transmission data transmitted from the transmitter multiple times on different channels.
    Communications system.
PCT/JP2016/000578 2015-02-06 2016-02-04 Communications system WO2016125496A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680009141.7A CN107211397B (en) 2015-02-06 2016-02-04 Communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015022198A JP6531410B2 (en) 2015-02-06 2015-02-06 Communications system
JP2015-022198 2015-02-06

Publications (1)

Publication Number Publication Date
WO2016125496A1 true WO2016125496A1 (en) 2016-08-11

Family

ID=56563848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000578 WO2016125496A1 (en) 2015-02-06 2016-02-04 Communications system

Country Status (3)

Country Link
JP (1) JP6531410B2 (en)
CN (1) CN107211397B (en)
WO (1) WO2016125496A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112262417B (en) * 2018-06-14 2022-09-20 住友电气工业株式会社 Wireless sensor system, wireless terminal device, communication control method, and communication control program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004289693A (en) * 2003-03-24 2004-10-14 Matsushita Electric Ind Co Ltd Radio communication method and radio communication apparatus
JP2010533999A (en) * 2008-05-13 2010-10-28 クゥアルコム・インコーポレイテッド Carrier switching in multi-carrier wireless communication networks
JP2011013765A (en) * 2009-06-30 2011-01-20 Fuji Electric Systems Co Ltd Sensor network system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003258774A (en) * 2002-03-01 2003-09-12 Denso Corp Short range radio communication system, hands-free call system for vehicle, and communication control method for short range radio communication system
JP4314905B2 (en) * 2003-07-10 2009-08-19 パナソニック株式会社 Wireless communication device
EP1830506A1 (en) * 2006-03-02 2007-09-05 Dibcom Method for receiving a signal transmitted over several channels and corresponding device
WO2010007738A1 (en) * 2008-07-15 2010-01-21 パナソニック株式会社 Control device, terminal device, and communication system
JP4871933B2 (en) * 2008-09-22 2012-02-08 アルプス電気株式会社 Receiver and receiving channel switching method in receiver
JP2010118970A (en) * 2008-11-14 2010-05-27 Meidensha Corp Method of communicating data on ad hoc network
US9531501B2 (en) * 2011-10-25 2016-12-27 Apple Inc. Data transfer between electronic devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004289693A (en) * 2003-03-24 2004-10-14 Matsushita Electric Ind Co Ltd Radio communication method and radio communication apparatus
JP2010533999A (en) * 2008-05-13 2010-10-28 クゥアルコム・インコーポレイテッド Carrier switching in multi-carrier wireless communication networks
JP2011013765A (en) * 2009-06-30 2011-01-20 Fuji Electric Systems Co Ltd Sensor network system

Also Published As

Publication number Publication date
JP2016146532A (en) 2016-08-12
JP6531410B2 (en) 2019-06-19
CN107211397A (en) 2017-09-26
CN107211397B (en) 2020-12-04

Similar Documents

Publication Publication Date Title
JP6545808B2 (en) Device and method for wireless devices receiving data in an environmentally friendly manner
US10448370B2 (en) System and method for virtual multi-point transceivers
US20180091262A1 (en) Method and apparatus for data retransmission in wireless communication system
EP2802167B1 (en) Monitoring of channel stability and interference in wireless networks
EP2340629B1 (en) Cooperative transmission in wireless communication system
KR101802387B1 (en) Method and apparatus for detection and resolution of resource collision in a peer-to-peer network
EP3729696B1 (en) Technique for reporting channel state information
EP3629508B1 (en) Lte harq feedback for configured uplink grants
CN103597874B (en) Handover event is prioritized
CN106233657A (en) For the method and apparatus controlling cell aggregation
JP2020515108A5 (en)
EP3197210A1 (en) Quick transmission point handover method, handover device, service base station and terminal
WO2018135986A1 (en) Beam management using suplink reference signals
CN109314689B (en) Method and apparatus for transmission
WO2016125496A1 (en) Communications system
WO2020085971A1 (en) Methods for uplink-based mobility management, related network node and related wireless device
KR101037679B1 (en) System and method for real-time seamless wireless data transmission
JP2011061682A (en) Radio terminal device, radio communication system, and radio communication method
JP6251665B2 (en) Adjustment method, adjustment device, and adjustment program
EP1885070A1 (en) Half-duplex communication system
JPWO2021106167A5 (en) Terminal, wireless communication method and system
JP4999566B2 (en) Guard interval length adaptive control method and communication system
JP2007166120A (en) Communication apparatus, base station apparatus, and terminal
US10855410B2 (en) Adaptive wait in data communications
CN109479325B (en) Data transmission on contention-based physical data channel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746327

Country of ref document: EP

Kind code of ref document: A1